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Dimensionality reduction

T
X1

e Data: X = : € Mpp(R), p>> 1.
X
e Dimensionality reduction: replace x; with y; = Wx;, where
W e Md’p(R), d < p.
e Hopefully, we do not loose too much by replacing x; by the y;.
2 approaches:
e Quasi-invertibility: there exists a recovering matrix U € M,, 4(R)
such that for all i € {1,...,n},

54 = Uy,- ~ X .
e More modest goal: distance-preserving property

Hle — WXQH ~1

V1<ij<n,
[l = el



Dimension reduction: PCA



PCA

PCA aims at finding the compression matrix W and the recovering
matrix U such that the total squared distance between the original and
the recovered vectors is minimal:
. 2
arg min Z Hx, UWx,-H
WeMqy,p(R),UeUEM, 4(R) ;=

Property. A solution (W, U) is such that UTU = Iy and W = UT.
Proof. Let W € M, ,(R), U € U € M, 4(R), and let R = {UWx : x € R}. dim(R) < d, and

we can assume that dim(R) = d. Let V.= ( v» ‘ S ‘ Vg ) € M, 4(R) be an orthogonal
basis of R, hence VTV = I and for every X € RP there exists y € RY such that & = Vy. But for
every x € RP,

argmin ||x — %||> = V.argmin ||x — Wy|* = V.argmin ||x|| + [ly||> —2y" (V'x) = W Tx
ZEX yerd yerd

(as can be seen easily by differentiation in y), and hence

S [l — Umsell? = 37 [l = W2
i=1 i=1



The PCA solution

Corollary: the optimization problem can be rewritten

arg min ZHX, UUTX,'H2
UeUeM, 4(R):UTU=1y 5

Since ||x; — UUTX,-H2 = |[xi]|? = Tr (UTxx" U), this is equivalent to

arg max Tr <UT ZX,'X,-T U) .
i=1

UelUeM, 4(R):UTU=lq

Let A= 27:1 x,-x,.T, and let A= VDV be its spectral decomposition: D
is diagonal, with D11 > -+ > D, ,>0and VIV =WT =,



Solving PCA by SVD

Theorem Let A = 27:1 x,-x,-T, and let uy, ..., uy be the eigenvectors of
A corresponding to the d largest eigenvalues of A. Then the solution to
the PCA optimization problem is U = ( Uy ‘ ‘ Uy ) and W= UT.

Proof. Let U € M, 4(R) be such that UT U = Iy, and let B = V" U. Then VB = U, and
UTAU = BTVTVDVTVB = BT DB, hence

UAUZp:zi:

j=1

Since BTB=UTWwWTU = Iy, the colums of B are orthonormal and Z}‘.’:l 7:1 Bﬁ/. =d.

In addition, completing the columns of B to an orthonormal basis of R” one gets B such that
BTB = I,, and for every j one has > éﬁf =1, hence 27:1 Bj2,i <1

Thus,
p

Tr (UTAU) < D;; ,
r( )*ﬁe[o.,l?f?e\]\);ﬂhgd; )i = Z 9

which can be reached if U is made of the d leading eigenvectors of A.



Interpretation: PCA aims at max-

imizing the projected variance.

Often, the quality of the result is

measured by the proportion of the
variance explained by the d princi-

d
Y i1 Dii »
pal components: =57——-.

i=1 Dii -

-8 -6 -4 -2 0 2 4 6 8 10

[Src: wikipedia.org]

In practice: sometimes cheaper to compute svp of B = XX € M,(R),
since if u is such that Bu = Au then for v = X Tu/|| X" u|| one has
Av = Av.


wikipedia.org

Computing the PCA: iteration method

Let \;1 > X\ > --- > ), be the eigenvalues of A, and let vl be such that

|vi]| =1 and Av? = v!. Goal: approximate v?.

Algorithm: ug = [%, e :/E] where ¢; %Z/{({—l, 1}), then [Jug||® = 1.
= AUk

T Taul

Theorem

With probability at least 3/16,

A 2t
(e, V1) > 1= 2n ()\j) :

. log 22 . .
Thus, it takes at most t = 2|°g Sy iterations to ensure that
og ’\72

|<ut, v1>| >1—e.

Remark: one can similarly show that with non-vanishing probability

1—e¢
<Ut, AUt> 2 )\]_ X m http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf.


http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf

The complexity of the iteration method 1/2

Observe that (uo, v') has expectation 0 and variance >, (v})?/n = 1/n.
Hence, Z = (uo, v')? has expectation 1/n and variance such that

n’ Var[Z] = E [ Z €i€j€k€/] = Z (vi)+6 Z (vi)(v)?

1<isj,k,1<d 1<j<d 1<j<k=d

_ 2 (||V||2)2 -2 3 () <3,

1<j<d
By the Cauchy-Schwartz inequality, for every ¢ € (0, 1)
E[Z] = ]E[ZJI{Z < 5E[Z]}]E[Z]1{Z > 5E[Z]}} < 5IE[Z]—|—IE[ZZ]]P’(Z > 5IE[Z]) .

and hence, for 6 = 1/4:

P(Z > 3B(2) > (1~ 9 gk > (%) dr-2xix3.



The complexity of the iteration method 2/2

But whenever (up, v')> > L

1 | | Lo, v |>‘t _ 1

T R . X 2t
VDRl PN S v ()
1

2t
\/1 +4n Y0 (w0, vi)2 (32)

A2
>1-2
n()u)

|<th7 v




Dimension reduction: random
projections




Johnson-Lindenstrauss Lemma

Theorem
Let x1,...,x, € RP, and let € > 0. Then, for every
4 log(n) th ist trix W € Mg »(R) such that
2 Tiog(l—20)—2¢' ere exists a matrix de suc a
VI<i<) (1)l < W — Wigl* < (14 )

Remark 1: on the dependence on c.

4 log(n) 8log(n) €\2
flog(172e)726§ e (1+§) '

Remark 2: how to find such a matrix W.
4log(n) + 2log(1/9)
—log(1 — 2¢) — 2¢
with entries W, ; s (0, %) satisfies the lemma is larger than 1 — .

For every d > , the probability that a random matrix

10



Proof of the Johnson-Lindenstrauss Lemma

Method: (constructive) probabilistic method. We choose Wi j %./\/'(0, %) Let
y€RPand Y = Wy. Then, forall 1 <i<d,

2
Yi=3" Wiy~ N (07 %) Hence E[||Y||°] = |ly||>. Besides, by the

deviation bound for the x? distribution presented below,

P(W > <1+e>\|yu2) —p (Z (*/EY') > d(1+ e)) < exp(—d¢™(e)) < L

2\ Tyl

and similarly IP’(HYH2 <(1- e)HyHQ) <exp(—do(e)) < .

Applying this result to all y;; = xi — x;, 1 < i < j < n, we obtain the
conclusion by the union bound:

P( U HW(X:‘*XJ)HZ(1+6)|\Xi*XJHUHW(XI‘*XJ‘)HS(lfe)l\xl'*XjH)

1<i<j<n
n(n—1)

<
= 2

<1,

and hence there exists at least a matrix W for which the lemma holds.

11



Deviations of the Y2 distribution: rate func

Lemma
If U~ N(0,1) and X = U? — 1, then

_ 2
¢*(x) = sup Ax — logE [e**] = x — log(1+x) > X 5
A 2 4(14%)

Proof: For every A < 1/2,

_ 1
du=e?

m/ v m/ e i

Hence ¢()) = logE [e”] = —1Llog(1 — 2)) — A. The concave function A - Ax — ¢()\) is

E []

maximized at A* s.t. 0 = ¢'(A\*) = =&+ — 1 — x, that isat A\* = 1 (1 - 1%) = i
Hence log(1 )

* * * x — log(1 + x

8700 = A"x — gx7) = * BTN

The last inequality is obtained by " Pollard’s trick” applied to g(x) = x — log(1 + x): since
g(0) = g’(0) = 0 and since g’’/(x) = 1/(1 + x)? is convex, by Jensen’s inequality

%5124”) _ (/Olg//(sx)z(l —s)ds > g"’ </01 sx2(1 — 5)d5> =g" (g) .

12



Deviations of the x?(d) distribution

By Chernoff's method, if Z ~ x2(d) “=" U2 + - - - + U2 where U; % A7(0,1):
P(Z > d(1+¢€) < exp(— do™(e)) < exp <,d7€22>
4(1+%)
Note: the Laurent-Massart inequality states that for every u > 0,
P(Z > d+2Vdu+2u) <exp(—u).

It can be deduced from the previous bound by noting that for every u > 0

2

2
" (2v/u+ 2u) 7u+% <2f—|og <1+2ﬁ+ M))

%

u+ %(fo log (exp(2ﬁ))) >u.

The proof of Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

1 < (2x)k oo 42x)t ] A2
BN = ——lgl—2x) —Aa=3 0 —a23 S <23l -  and deduce that

2 = 2k =0 20 +2) = 1—2x

2
A Xx+1—2x+1
¢™(x) > ¥ (x) = sup Ax — = ——  whilex > 0and 9 *(x) = uimplies x = 2y/u + 2u. Also note in
N 1—2x 2
2
passing that by Pollard’s trick ¢™ (x) > 4™ (x) > X73/2
4(1+%X)

Moreover, since ¢*(—¢) = — (e + log(1 — €)) /2 > €% /4,

deé?
P(Z <d(1—¢€)) <exp <7T>
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