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Multi-armed bandit model



Goal: Identify all ε-optimal arms



δ-correct Gaussian All-ε-BAI
Bandit instance: K Gaussian arms parameterized by µ = (µa : a ∈ [K])

Sequential sampling: for t ≥ 1, choose At = ϕt(A1, Y1, . . . , At−1, Yt−1) ∈ [K] and
observe

Yt
⊥⊥∼ N (µAt , 1)

Goal: for a risk δ ∈ (0, 1), using a number of samples τδ as low as possible,
identify

Gε(µ) ≜
{
a ∈ [K] : µa ≥ max

i
µi − ε

}
with a δ-correct algorithm outputting Ĝε depending only on the τδ
observations obeying

Pµ

(
Ĝε = Gε(µ)

)
≥ 1− δ



Related work

• Introduced by [Mason et al., Neurips 2020]

• Example: drug selection

• ̸= best-arm identification and TOP-k arms selection

• ̸= ε-best-arm identification

• ̸= thresholding bandit
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Complexity: Lower Bound

Theorem
For any δ-correct strategy and any bandit instance µ, the expected stopping
time is lower-bounded as

Eµ[τδ] ≥ T∗ε(µ) log
1

2.4δ
with

T∗ε(µ)
−1 = sup

ω∈∆K

inf
λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)

2

2︸ ︷︷ ︸
Tε(µ,ω)−1

(⋆)

where∆K =
{
(ω1, . . . ,ωK) ∈ [0,+∞)K : ω1 + · · ·+ ωK = 1

}
is the K-simplex,

and Alt(µ) is the set of all bandit models with a set of ε-optimal arms different
from that of µ



Solving the min problem λ∗
ε,µ(ω) ≜ argmin

λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)

2

2
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λ∗
ε,µ(ω) = argmin

λ∈ΛG∪ΛB

∑
a∈[K]

ωa
(µa − λa)

2

2

λ
k,ℓ
ε (ω) ≜ (µ1, . . . ,µ

k,ℓ
ε (ω)︸ ︷︷ ︸
index k

, . . . ,µk,ℓ
ε (ω) + ε︸ ︷︷ ︸
index ℓ

, . . . ,µK)
T for k ∈ G(µ)

λ
k,ℓ
ε (ω) ≜ (µ

k,ℓ
ε (ω) + ε︸ ︷︷ ︸
indices 1 to ℓ

,µℓ+1, . . . ,µ
k,ℓ
ε (ω)︸ ︷︷ ︸
index k

, . . . ,µK)
T for k /∈ G(µ) µk,ℓ

ϵ (ω) =
ωkµk+ωℓ(µℓ−ε)

ωk+ωℓ

ΛG =
{
λ

k,ℓ
ε (ω) : k ∈ Gε(µ), ℓ ∈ Gε(µ) \ {k}

}
,

ΛB =
{
λ

k,ℓ
ε (ω) : k /∈ Gϵ(µ), ℓ ∈ [|1, k − 1|] s.t. µℓ ≥ µ

k,ℓ
ε (ω) + ε > µℓ+1

}



Computing the optimal weights

Tε(µ,ω)−1 = inf
d∈Dε,µ

ωTd (1)

where

Dε,µ ≜
{(

(λa − µa)
2

2

)T

a∈[K]
: λ ∈ Alt(µ)

}

Danskin’s theorem: let λ∗(ω) be a best response to ω and define

d∗(ω) ≜
( (λ∗(ω)a−µa)

2

2

)T
a∈[K], then d

∗(ω) is a supergradient of Tε(µ, .)−1 at ω

Besides, the function ω 7→ Tε(µ,ω)−1 is L-Lipschitz with respect to ∥ · ∥1 for

L ≥ max
a,b∈[K]

(µa − µb + ε)2

2



Mirror ascent
For a (convex) miror map Φ and a learning rate (αn)n, mirror ascent is defined
as:

ωn+1 = ∇Φ−1
(
∇Φ(ωn) + αn∇f(ωn)

)
Theorem [e.g. Bubeck ’2015]

Let ω1 = ( 1K , . . . ,
1
K )

T and learning rate αn =
1
L

√
2 log K

n . The mirror ascent
algorithm defined on the simplex∆K with as a mirror map the generalized
negative entropy Φ(ω) =

∑
a∈[K] ωa log(ωa) enjoys the following guarantees:

f(ω∗)− f

(
1

N

N∑
n=1

ωn

)
≤ 2

maxa,b∈[K](µa − µb + ε)2

√
2 log K

N



About the moderate confidence regime
Eµ[τδ] ≥ T∗ε(µ) log

1
2.4δ is tight when δ →, what about δ ≈ 1/10?

Theorem
Fix δ ≤ 1/10 and ε > 0. Consider an instance ν such that there exists at least
one bad arm: Gε(µ) ̸= [K]. Wlog, suppose that µ1 ≥ µ2 ≥ · · · ≥ µK and define
the lower margin βε = min

k/∈Gε(µ)
µ1 − ε− µk.

Then any δ-PAC algorithm has an average sample complexity over all
permuted instances satisfying

Eπ∼SKEπ(µ)[τδ] ≥
1

12|Gβε(µ)|3
K∑

b=1

1

(µ1 − µb + βε)2
,

→ τδ is linear in K (higher bound in some settings)
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Sampling rule
Denoting Na(t) =

∑
s≤t 1{As = a} the current number of draws, estimate of

the means:
µ̂t = Na(t)−1

∑
s:As=a

Ys

→ (1/
√
t-approximate) estimate of the optimal frequencies

ω̃(µ̂t) s.t. T
∗
ε

(
µ̂t

)
= Tε

(
µ̂t, ω̃(µ̂t)

)
ω̃ηt(µ̂t) = projection onto∆K ∩ [ηt, 1]K for η−1

t = 2
√
K2 + t (forced exploration)

Track the optimal proportions:

At+1 = argmin
a

Na(t)−
t∑

s=1

ω̃ηt
a (µ̂s)

Prop: Na(t) ∼ ω∗
a(µ)t for all a ∈ [K] when t → ∞.



Stopping rule
Generalized Likelihood Ratio test: the statistic can be written

Z(t) = t× Tε

(
µ̂t,

N(t)
t

)−1

where N(t) =
(
Na(t)

)
a∈[K]

Stopping time
τδ = inf

{
t ∈ N : Z(t) > β(t, δ)

}
β(δ, t) ≈ log(1/δ) + K

2 log(log(t/δ)) is enough to ensure that

Pµ

(
Gε(µ̂τδ

) ̸= Gε(µ)
)
≤ δ



Asymptotic optimality of Track-and-Stop

Theorem (See [Garivier&Kaufmann, COLT’2016])

For all δ ∈ (0, 1), Track-and-Stop terminates almost-surely and its stopping
time τδ satisfies:

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ T∗ε(µ)

−1

=⇒ T&S matches the lower bound for small δ

in practice, very good even for moderate δ unless K ≫ 1 (see below)

For non-asymptotic bounds (and algorithms), see [Barrier et al., AISTATS’22]



Experiment 1: small δ

µ = [1, 1, 1, 1, 0.05], ε = 0.9, N = 100Monte-Carlo simulations for each risk
level, 10% and 90% quantiles (shaded area) for each algorithm.
Comparison with FAREAST and (ST)2 from [Mason et al, 2020]



Experiment 2: moderate confidence

∀a ∈ [|1, K− 1|], µa = 1 and µK = 0.05.
ε = 0.9, δ = 0.1, N = 30Monte-Carlo simulations for each K

→ above ≈ K = 50 arms, the complexity is driven by the moderate regime for
which FAREAST and (ST)2 are better suited



Experiment 3: Cancer Drug Discovery experiment [Mason et al, 2020]

Goal = find among a list of 189 chemical compounds potential inhibitors to
ACRVL1, a kinase that has been linked to several forms of cancer.
Fixed budget N = 105, mutiplicative ε = 0.8.
F1 score = harmonic mean of precision and recall
→ (ST)2 and Track-and-Stop have comparable performance and that both
outperform UCB’s sampling scheme.



Conclusion

=⇒ New sample complexity analysis of all-epsilon BAI

=⇒ Optimal lower bound in the asymptotic regime δ → 0

=⇒ sub-optimal bound for the moderate regime case that is relevant in
particular when K ≫ 1

=⇒ Computationnally efficient Track-and-Stop strategy

=⇒ Theoretical and practical improvement over FAREAST and (ST)2

algorithms (= state-of-the-art for this problem).

=⇒ Optimality in the moderate confidence regime remains to be understood
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