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Goal: identify all e-optimal arms
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d-correct Gaussian All-e-BAI

instance: K Gaussian arms parameterized by gt = (g : 0 € [K])

: fort > 1, choose Ay = ¢¢(A1, Y1, ..., A1, Y:—1) € [K] and

observe n
Ye ~ N (pas 1)
:forarisk 6 € (0,1), using a as low as possible,
identify
Ge(p) £ {ac K :po> max pj — e}
with a outputting @E depending only on the 75

observations obeying
PM(GE = GE(IJ’)) >1-94
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Related work

* Introduced by [Mason et al., Neurips 2020]

« Example: drug selection

+ # best-arm identification and TOP-k arms selection
+ = e-best-arm identification

+ = thresholding bandit
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Outline

The lower bound analysis




Complexity: Lower Bound

Theorem

For any d-correct strategy and any bandit instance u, the expected stopping
time is lower-bounded as

with
Wa (,Ua - >\a)2

a€K]

T(u) " = inf
R G )

Te (psw)~1

where Ag = { (w1, ...,wx) € [0,+00) 1wy + - + wy = 1} is the K-simplex,
and Alt(u) is the set of all bandit models with a set of e-optimal arms different
from that of p
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Solving the min problem A; , (w) £ arg min g Wa -

CALE( 1) 2
AcAlt(p) a€lK]
P
‘ t+e ﬂ: C

1 ° I e i i R
é HEk i g Q é | C £ t+e
g | i | & | i i i ¢
bz ! i i H : : : : J

" : : : ol ‘ ‘ ‘
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1 k l K 1 2 ... 41 k K
Arms Arms
2
* . (/’(‘a - Az‘i
AL (w) = argmin E waf)
AEAGUAg ac[k]

k£ —k, L —k,l

AL (w) £ (1“‘17""“5 (w), .. s Mg (w) +e,.. ~’F"K)Tfork € G(p)
—— N————
index k index £
N () 2 (BE (@) + e pagt, S B (@), ) fork @ Gp)  plt (w) = tctliems)
———— N —r
indices 1 to £ index k

Ao = {2 (w) k€ 6o (p), £ € G () \ {K} 1,
Ap = { A (W) k¢ Ge(p), £ € [ILk— 1] sitopue > p(w) + e > pega )

UNIVERSITE




Computing the optimal weights

where .
_ 2
De,p, é { <M> . A S Alt('u,)}
2 a€K]

Danskin's theorem: let A*(w) be a best response to w and define

* A" (w a—HMa 2\7 _
d*(w) £ (%)aem,then of T.(p,.) "t atw
Besides, the function w + T.(pu,w) s with respectto || - ||; for

_ 2
L 2 max M

a,be (K] 2
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Mirror ascent

For a (convex) miror map ® and a learning rate («,),, mirror ascent is defined
as:

Theorem [e.g. Bubeck '2015]
Letw; = (L,..., 1) and learning rate o, = 14/ 21%K The

defined on the simplex Ak with as a mirror map the generalized
negative entropy ®(w) = Zae[;q wq log(wy) enjoys the following guarantees:
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About the moderate confidence regime
E,.[7s] > Tz(p) log 735 is tight when § —, what about § ~ 1/10?

Theorem

Fix 6 < 1/10 and ¢ > 0. Consider an instance v such that there exists at least
one bad arm: G.(u) # [K]. Wlog, suppose that 3 > pg > -+ - > px and define
the lower margin 8. = min p; — & — .

kG (1)
Then any §-PAC algorithm has an average sample complexity over all

permuted instances satisfying

K 1

1
EWNSK]ETI' TS > )
Wl 2 o F X G T A

— 75 is linear in K (higher bound in some settings)
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Outline

T&S: an asymptotically optimal strategy
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Sampling rule
Denoting Nq(t) = 3., 1{A; = a} the current number of draws, estimate of

the means:
DIRC

s:As=a

— (1/+/t-approximate) estimate of the optimal frequencies
@ (Re) st T2 (fr) = Te (10, @ (1))

@™ (1) = projection onto Ag N [, 1% for 5t = 2¢/K2 + ¢ (forced exploration)

Ap1 = arg min N, (t Z o (

foralla € [K] whent — oc.




Stopping rule

test: the statistic can be written

aotan%N®>l

t

where N(t) = (N“(t))ae[’(]

7 =inf{te N : Z(t) > A(t,6)}

B(8,t) ~ log(1/6) + &log(log(t/d)) is enough to ensure that

P (Ge(fir,) # G=(1)) <6
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Asymptotic optimality of Track-and-Stop

Theorem (See [Garivier&Kaufmann, COLT’2016])

Forall 0 € (0, 1), Track-and-Stop terminates almost-surely and its stopping
time 74 satisfies:

Eu[7s]
lim su <T:
RSP Tog(1/) < M
= T&S matches the lower bound for small §
in practice, very good even for moderate ¢ unless K > 1 (see below)

For non-asymptotic bounds (and algorithms), see [Barrier et al., AISTATS'22]
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Experiment 1: small §

le6 le5
25| o 7 — sT2
TrackandStop TrackandStop
—— FAREAST 6
2.0
g g’
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1o 9
= =
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0.5
1
0.0 0
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log(1/6) log(1/6)

w=11,1,1,1,0.05], e = 0.9, N = 100 Monte-Carlo simulations for each risk
level, 10% and 90% quantiles (shaded area) for each algorithm.
Comparison with FAREAST and (ST)? from [Mason et al, 2020]
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Experiment 2: moderate confidence
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Va € [|1,K —1|], 1o = 1 and ux = 0.05.
e =20.9,6 = 0.1, N = 30 Monte-Carlo simulations for each K

— above =~ K = 50 arms, the complexity is driven by the moderate regime for
which FAREAST and (ST)? are better suited
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Experiment 3: Cancer Drug Discovery experiment [Mason et al, 2020]

05 — ST2
TrackandStop
— UCB

) 02 04 06 08 10
Total arm pulls 1e5

Goal = find among a list of 189 chemical compounds potential inhibitors to
ACRVL1, a kinase that has been linked to several forms of cancer.

Fixed budget N = 105, mutiplicative ¢ = 0.8.

F1 score = harmonic mean of precision and recall

— (ST)? and Track-and-Stop have comparable performance and that both
outperform UCB's sampling scheme.
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Conclusion

= New sample complexity analysis of all-epsilon BAI
= Optimal lower bound in the asymptotic regime § — 0

= sub-optimal bound for the moderate regime case that is relevant in
particular when K > 1

= Computationnally efficient Track-and-Stop strategy

= Theoretical and practical improvement over FAREAST and (ST)?
algorithms (= state-of-the-art for this problem).

=> Optimality in the moderate confidence regime remains to be understood
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