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Estimating the Unseen



Enigma

• Electro-mechanical

rotor cipher machines,

26 characters

• Invented at the end of

WW1 by Arthur

Scherbius

• Commercial use, then

German Army during

WW2

• First cracked by

Marian Rejewski in

the 1930s (Bomb),

then improved to

3. 10114 configurations

• Read Simon Singh,

The Code Book 2



Enigma

Src: http://enigma.louisedade.co.uk/
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Battle of the Atlantic

• Massively used by the

German Kriegsmarine and

Luftwaffe

• weakness: 3-letters setting to

initiate communication,

taken from the

Kenngruppenbuch

• Government Code and

Cypher School: Bletchley

Park (on the train line

between Cambridge and

Oxford)

• Colossus (first programmable

computers) in 1943
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Estimating probabilities

• Discrete alphabet A.

• Unknown probability P on A

• Sample X1, . . . ,Xn of independent draws of P.

• Goal : use the sample estimate P(a) for all a ∈ A.

Natural idea:

P̂(a) =
N(a)

n
, where N(a) = #

{
i : Xi = a

}
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: 43

Safari preparation
Observe animal sample

1 giraffe, 2 elephants, 3 zebras

Probability estimation?

Empirical frequency

3

Species Probability
giraffes 1/6

elephants 2/6
zebras 3/6

Problem?

[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]
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[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

P(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

P(s) =
l+1∏
i=1

p(wi |wi−1)

P( john read a book )

= P(john|·) P(read |john) P(a|read) P(book|a) P(·|book)
= c(· john)∑

w c(· w)
c(john read)∑

w c(john w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 1
3

1
1

2
3

1
2

1
2

≈ 0.06
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

P(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

P(s) =
l+1∏
i=1

p(wi |wi−1)

P( cher read a book )

= P(cher |·) P(read |john) P(a|read) P(book|a) P(·|book)
= c(· cher)∑

w c(· w)
c(cher read)∑

w c(cher w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 0
3

0
1

2
3

1
2

1
2

= 0

=⇒ useless, the unseen must be treated correctly.
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Bayesian Approach: Laplace Estimator

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)

Will the sun rise tomorrow?

P̂(a) =
N(a) + 1

n + |A|

• good for small alphabets and many samples

• very bad when lots of items seen once (ex: DNA sequences)

• |A| can be very large (or even infinite), but P concentrated on few

items

=⇒ not a satisfying solution to the problem
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Alan Turing Irving John Good

1912-1954

student of Godfrey Harold Hardy

in Cambridge

PhD from Princeton with Alonzo

Church

1916-2009

Graduated in Cambridge

Academic carrer in Bayesian statis-

tics in Manchester and then in the

University of Virginia (USA)
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Missing mass estimation

X1, . . . ,Xn independent draws of P ∈ M1(A).

On(x) =
n∑

m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen items

Rn =
∑
x∈A

P(x) 1{On(x) = 0} ?
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The Good-Turing Estimator

See [I.J. Good, 1953], credits idea to A. Turing

Idea: in order to estimate the mass of the unseen

Rn =
∑
x∈A

P(x) 1{On(x) = 0} ,

use the number of hapaxes = items seen only once (linguistic)

R̂n =
Un

n
, where Un =

∑
x∈A

1{On(x) = 1}

Lemma [Good ’53]: For every distribution P,

0 ≤ E
[
R̂n

]
− E

[
Rn

]
≤ 1

n

Completely non-parametric: no assumption on P
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Bias of the Good-Turing Estimator

E
[
R̂n

]
− E

[
Rn

]
=

1

n

∑
x∈A

P
(
On(x) = 1

)
−
∑
x∈A

P(x) P
(
On(x) = 0

)
=

1

n

∑
x∈A

n P(x)
(
1− P(x)

)n−1 −
∑
x∈A

P(x)
(
1− P(x)

)n
=
∑
x∈A

P(x)
(
1− P(x)

)n−1
(
1−

(
1− P(x)

))
=

1

n

∑
x∈A

P(x)× n P(x)
(
1− P(x)

)n−1

=
1

n

∑
x∈A

P(x) P
(
On(x) = 1

)
=

1

n
E

[∑
x∈A

P(x)1
{
On(x) = 1

}]
∈
[
0,

1

n

]
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Jackknife interpretation

If we had additionnal samples, we would estimate Rn by the proportion of

unseen elements in Xn+1,Xn+2, . . .

We have no additionnal samples, but we keep every observation as a

”test”, pretending that the samples was made of everything else:

R̂n =
1

n

n∑
i=1

1
{
xi /∈ {xj : j ̸= i}

}
=

1

n

∑
i=1

1
{
On(xi ) = 1

}
=

1

n

∑
x∈A

1
{
On(x) = 1

}
Remark: jackknife is a resampling method, related to bootstrap and

crossvalidation (of great use in Machine Learning).

12



Deviation Bounds

Proposition: With probability at least 1− δ for every P,

R̂n −
1

n
− (1 +

√
2)

√
log(4/δ)

n
≤ Rn ≤ R̂n + (1 +

√
2)

√
log(4/δ)

n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03]:

• deviations of R̂n: McDiarmid’s inequality

• deviations of Rn: negative association

Other tool: Poissonization [see Optimal Probability Estimation with Applications to Prediction and Classification,

by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]
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Application to Classification: minimax optimality

[Optimal Probability Estimation with Applications to Prediction and Classification, by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]

• P1,P2 probability distributions on A

• Given: two samples (X 1
1 , . . . ,X

1
n ) of P1 and (X 2

1 , . . . ,X
2
n ) of P2

• Goal: if I = 1, 2 with probability 1/2 and if X ∼ PI , build a classifier

ϕn : A → {1, 2} so that P
(
ϕn(X ) = I

)
) is as large as possible

• Maximal risk :

R̄n(ϕ) = max
P1,P2

P
(
ϕ(X ) ̸= I

)
)

• Prop: if ϕML
n (x) = arg maxi #

{
j : X i

j = x
}
then there exists c > 0

such that for all n ≥ 1, R̄n(ϕ
ML
n ) ≥ minϕ Rn(ϕ) + c .

• Theorem: there exists a Good-Turing based classifier ϕGT
n such that

for all n ≥ 1, R̄n(ϕ
GT
n ) ≤ minϕ Rn(ϕ) + O

(
n−1/5

)
.
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Discovering dangerous

contigencies in electrical systems



The problem

Power system

security

assessment

By Mark MacAlester, Federal Emergency Management Agency [Public domain], via

Wikimedia Commons

Damien Ernst (Electrical Engineering, Liège): How to identify quickly

contingencies/scenarios that could lead to unacceptable operating

conditions (dangerous contingencies) if no preventive actions were taken?
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The model

• Subset A ⊂ X of

important items

• |X | ≫ 1, |A| ≪ |X |
• Access to X only by

probabilistic experts

(Pi )1≤i≤K : sequential

independent draws

Goal: discover rapidly the elements of A
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Goal

At each time step t = 1, 2, . . . :

• pick an index It = πt

(
I1,Y1, . . . , Is−1,Ys−1

)
∈ {1, . . . ,K} according

to past observations

• observe Yt = XIt ,nIt ,t
∼ PIt , where

ni,t =
∑
s≤t

1{Is = i}

Goal: design the strategy π = (πt)t so as to maximize the number of

important items found after t requests

Fπ(t) =
∣∣∣A ∩

{
Y1, . . . ,Yt

}∣∣∣
Assumption: non-intersecting supports

A ∩ supp(Pi ) ∩ supp(Pj) = ∅ for i ̸= j
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Is it a Bandit Problem ?

It looks like a bandit problem. . .

• sequential choices among K options

• want to maximize cumulative rewards

• exploration vs exploitation dilemma

. . . but it is not a bandit problem !

• rewards are not i.i.d.

• destructive rewards: no interest to observe twice the same important

item

• all strategies eventually equivalent
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The oracle strategy

Proposition: Under the non-intersecting support hypothesis, the greedy

oracle strategy

I ∗t ∈ arg max
1≤i≤K

Pi (A \ {Y1, . . . ,Yt})

is optimal: for every possible strategy π, E
[
Fπ(t)

]
≤ E

[
F ∗(t)

]
.

Remark: the proposition is false if the supports may intersect

=⇒ estimate the “missing mass of important items”!
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The Good-UCB algorithm



Our solution and analysis
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The Good-UCB algorithm

Estimator of the missing important mass for expert i :

R̂i,ni,t−1 =
1

ni,t−1

∑
x∈A

1

{ ni,t−1∑
s=1

1{Xi,s = x} = 1

and
K∑
j=1

nj,t−1∑
s=1

1{Xj,s = x} = 1

}

Good-UCB algorithm:

1: For 1 ≤ t ≤ K choose It = t.

2: for t ≥ K + 1 do

3: Choose It = arg max1≤i≤K

{
R̂i,ni,t−1 + C

√
log (4t)
ni,t−1

}
4: Observe Yt distributed as PIt

5: Update the missing mass estimates accordingly

6: end for
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Optimality results



Classical analysis

Theorem: For any t ≥ 1, under the non-intersecting support

assumption, Good-UCB (with constant C = (1 +
√
2)
√
3) satisfies

E
[
F ∗(t)− FUCB(t)

]
≤ 17

√
Kt log(t) + 20

√
Kt + K + K log(t/K )

Remark: Usual result for bandit problem, but not-so-simple analysis

22



Sketch of proof

1. On a set Ω̃ of probability at least 1−
√

K
t , the “confidence

intervals” hold true simultaneously all u ≥
√
Kt

2. Let Īu = arg max1≤i≤K Ri,ni,u−1 . On Ω̃,

RIu,nIu ,u−1
≥ RĪu,nĪu ,u−1

− 1

nIu,u−1
− 2(1 +

√
2)

√
3 log(4u)

nIu,u−1

3. But one shows that EF ∗(t) ≤
∑t

u=1 ERĪu,nπĪu ,u−1

4. Thus

E
[
F ∗(t)− FUCB(t)

]
≤

√
Kt + E

[
t∑

u=1

1

nIu,u−1
+ 2(1 +

√
2)

√
3 log(4t)

nIu,u−1

]
≤

√
Kt + K + K log(t/K ) + 4(1 +

√
2)
√
3Kt log(4t)
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Experiment: restoring property

Figure 1: green: oracle, blue: Good-UCB, red: uniform sampling

24



Another analysis of Good-UCB

For λ ∈ (0, 1), T (λ) = time at which missing mass of important items is

smaller than λ on all experts:

T (λ) = inf

{
t : ∀i ∈ {1, . . . ,K},Pi

(
A \ {Y1, . . . ,Yt}

)
≤ λ

}
Theorem: Let c > 0 and S ≥ 1. Under the non-intersecting support

assumption, for Good-UCB with C = (1 +
√
2)
√
c + 2, with probability

at least 1− K
cSc , for any λ ∈ (0, 1),

TUCB(λ) ≤ T ∗ + KS log (8T ∗ + 16KS log(KS)) ,

where T ∗ = T ∗

(
λ− 3

S
− 2(1 +

√
2)

√
c + 2

S

)
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The macroscopic limit

• Restricted framework: Pi = U{1, . . . ,N}
• N → ∞
• |A ∩ supp(Pi )|/N → qi ∈ (0, 1), q =

∑
i qi
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The Oracle behaviour

The limiting discovery process of the Oracle strategy is deterministic

Proposition: For every λ ∈ (0, q1), for every sequence (λN)N converging

to λ as N goes to infinity, almost surely

lim
N→∞

TN
∗ (λN)

N
=
∑
i

(
log

qi
λ

)
+
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Oracle vs. uniform sampling

Oracle: The proportion of important items not found after Nt

draws tends to

q − F ∗(t) = I (t)q
I (t)

exp (−t/I (t)) ≤ Kq
K
exp(−t/K )

with q
K
=
(∏K

i=1 qi
)1/K

the geometric mean of the (qi )i .

Uniform: The proportion of important items not found after Nt

draws tends to Kq̄K exp(−t/K )

=⇒ Asymptotic ratio of efficiency

ρ(q) =
q̄K
q
K

=
1
K

∑k
i=1 qi(∏k

i=1 qi
)1/K ≥ 1

larger if the (qi )i are unbalanced
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Macroscopic optimality

Theorem: Take C = (1 +
√
2)
√
c + 2 with c > 3/2 in the Good-UCB

algorithm.

• For every sequence (λN)N converging to λ as N goes to infinity,

almost surely

lim sup
N→+∞

TN
UCB(λ

N)

N
≤
∑
i

(
log

qi
λ

)
+

• The proportion of items found after Nt steps FGUCB(Nt) converges

uniformly to F ∗(Nt) as N goes to infinity
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Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and

uniform sampling (dotted) as a function of time for sizes

N = 128,N = 500,N = 1000 and N = 10000 in a 7-experts setting.
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And when the assumptions are not satisfied?

Number of primes found by

Good-UCB (solid),

the oracle (dashed)

and uniform sampling (dot-

ted) using geometric ex-

perts with means 100, 300,

500, 700, 900,

for C = 0.1 (top) and C =

0.02 (bottom).
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Conclusion and perspectives

• We propose an algorithm for the optimal discovery with probabilistic

expert advice

• We give a standard regret analysis under the only assumption that

the supports of the experts are non-overlapping

• We propose a different optimality result, which permits a

macroscopic analysis in the uniform case

• Another interesting limit to consider is when the number of

important items to find is fixed, but the total number of items tends

to infinity (Poisson regime)

• Then, the behavior of the algorithm is not very good: too large

confidence bonus because no tight deviations bounds for the

Good-Turing estimator when the proportion of important items

tends to 0. Improvement by better deviation bounds?
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Thank you for your attention!
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