

Missing Mass, and Optimal Discovery

based on a joint work with Sébastien Bubeck and Damien Ernst

Aurélien Garivier

TIS

Indian Institute of Science Bengalore July 11th 2023

- 1. Estimating the Unseen
- 2. Discovering dangerous contigencies in electrical systems
- 3. The Good-UCB algorithm
- 4. Optimality results

Estimating the Unseen

Enigma

- Electro-mechanical rotor cipher machines, 26 characters
- Invented at the end of WW1 by Arthur Scherbius
- Commercial use, then German Army during WW2
- First cracked by Marian Rejewski in the 1930s (Bomb), then improved to 3. 10¹¹⁴ configurations
- Read Simon Singh, The Code Book

Enigma

Battle of the Atlantic

- Massively used by the German Kriegsmarine and Luftwaffe
- weakness: 3-letters setting to initiate communication, taken from the *Kenngruppenbuch*
- Government Code and Cypher School: Bletchley Park (on the train line between Cambridge and Oxford)
- Colossus (first programmable computers) in 1943

- Discrete alphabet A.
- Unknown probability P on A
- Sample X_1, \ldots, X_n of independent draws of P.
- Goal : use the sample estimate P(a) for all $a \in A$.

Natural idea:

$$\hat{P}(a) = \frac{N(a)}{n}$$
, where $N(a) = \#\{i : X_i = a\}$

Safari preparation

:43

Learning set: john read moby dick mary read a different book she read a book by cher

$$egin{aligned} P(w_i | w_{i-1}) &= rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} \ P(s) &= \prod_{i=1}^{l+1} p(w_i | w_{i-1}) \end{aligned}$$

[Src: https://nlp.stanford.edu/~wcmac]

Learning set: john read moby dick mary read a different book she read a book by cher

$$egin{aligned} P(w_i | w_{i-1}) &= rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} \ P(s) &= \prod_{i=1}^{l+1} p(w_i | w_{i-1}) \end{aligned}$$

⇒ useless, the unseen **must** be treated correctly.

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761) Will the sun rise tomorrow?

$$\hat{P}(a) = \frac{N(a) + 1}{n + |A|}$$

- good for small alphabets and many samples
- very bad when lots of items seen once (ex: DNA sequences)
- |A| can be very large (or even infinite), but P concentrated on few items
- \implies not a satisfying solution to the problem

Alan Turing

Irving John Good

1912-1954 student of Godfrey Harold Hardy in Cambridge PhD from Princeton with Alonzo Church

1916-2009 Graduated in Cambridge Academic carrer in Bayesian statistics in Manchester and then in the University of Virginia (USA)

 X_1, \ldots, X_n independent draws of $P \in \mathfrak{M}_1(A)$.

$$O_n(x) = \sum_{m=1}^n \mathbb{1}\{X_m = x\}$$

How to 'estimate' the total mass of the unseen items

$$R_n = \sum_{x \in A} P(x) \mathbb{1} \{ O_n(x) = 0 \} ?$$

The Good-Turing Estimator

See [I.J. Good, 1953], credits idea to A. Turing

Idea: in order to estimate the mass of the unseen

$$R_n = \sum_{x \in \mathcal{A}} P(x) \mathbb{1}\{O_n(x) = 0\},$$

use the number of **hapaxes** = items seen only once (linguistic)

$$\hat{R}_n = \frac{U_n}{n}$$
, where $U_n = \sum_{x \in A} \mathbb{1}\{O_n(x) = 1\}$

Lemma [Good '53]: For every distribution P,

 $0 \leq \mathbb{E}[\hat{R}_n] - \mathbb{E}[R_n] \leq \frac{1}{n}$

Completely non-parametric: no assumption on P

$$\mathbb{E}[\hat{R}_{n}] - \mathbb{E}[R_{n}] = \frac{1}{n} \sum_{x \in A} \mathbb{P}(O_{n}(x) = 1) - \sum_{x \in A} P(x) \mathbb{P}(O_{n}(x) = 0)$$

$$= \frac{1}{n} \sum_{x \in A} n P(x) (1 - P(x))^{n-1} - \sum_{x \in A} P(x) (1 - P(x))^{n}$$

$$= \sum_{x \in A} P(x) (1 - P(x))^{n-1} (1 - (1 - P(x)))$$

$$= \frac{1}{n} \sum_{x \in A} P(x) \times n P(x) (1 - P(x))^{n-1}$$

$$= \frac{1}{n} \sum_{x \in A} P(x) \mathbb{P}(O_{n}(x) = 1)$$

$$= \frac{1}{n} \mathbb{E}\left[\sum_{x \in A} P(x) \mathbb{I}\{O_{n}(x) = 1\}\right] \in \left[0, \frac{1}{n}\right]$$

Jackknife interpretation

If we had additionnal samples, we would estimate R_n by the proportion of unseen elements in X_{n+1}, X_{n+2}, \ldots

We have no additionnal samples, **but** we keep every observation as a "test", pretending that the samples was made of everything else:

$$\hat{\mathsf{R}}_{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ x_{i} \notin \{ x_{j} : j \neq i \} \}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ O_{n}(x_{i}) = 1 \}$$
$$= \frac{1}{n} \sum_{x \in \mathcal{A}} \mathbb{1} \{ O_{n}(x) = 1 \}$$

Remark: jackknife is a **resampling method**, related to **bootstrap** and **crossvalidation** (of great use in Machine Learning).

Proposition: With probability at least $1 - \delta$ for every *P*,

$$\hat{R}_n - rac{1}{n} - (1+\sqrt{2})\sqrt{rac{\log(4/\delta)}{n}} \leq R_n \leq \hat{R}_n + (1+\sqrt{2})\sqrt{rac{\log(4/\delta)}{n}}$$

See [McAllester and Schapire '00, McAllester and Ortiz '03]:

- deviations of \hat{R}_n : McDiarmid's inequality
- deviations of R_n : negative association

Other tool: Poissonization [see Optimal Probability Estimation with Applications to Prediction and Classification, by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]

[Optimal Probability Estimation with Applications to Prediction and Classification, by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]

- P_1, P_2 probability distributions on A
- Given: two samples (X_1^1,\ldots,X_n^1) of P_1 and (X_1^2,\ldots,X_n^2) of P_2
- Goal: if I = 1, 2 with probability 1/2 and if $X \sim P_I$, build a classifier $\phi_n : A \to \{1, 2\}$ so that $P(\phi_n(X) = I))$ is as large as possible
- Maximal risk :

$$\bar{R}_n(\phi) = \max_{P_1, P_2} \mathbb{P}(\phi(X) \neq I))$$

- **Prop**: if $\phi_n^{\text{ML}}(x) = \arg \max_i \#\{j : X_j^i = x\}$ then there exists c > 0 such that for all $n \ge 1$, $\bar{R}_n(\phi_n^{\text{ML}}) \ge \min_{\phi} R_n(\phi) + c$.
- **Theorem**: there exists a Good-Turing based classifier ϕ_n^{GT} such that for all $n \ge 1$, $\bar{R_n}(\phi_n^{\text{GT}}) \le \min_{\phi} R_n(\phi) + O(n^{-1/5})$.

Discovering dangerous contigencies in electrical systems

The problem

security

Power system assessment **Areas of Probable** Impacted Regions involve **Power System** population of >130 Million Collapse

By Mark MacAlester, Federal Emergency Management Agency [Public domain], via Wikimedia Commons

Damien Ernst (Electrical Engineering, Liège): How to identify quickly contingencies/scenarios that could lead to unacceptable operating conditions (dangerous contingencies) if no preventive actions were taken?

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$, $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P_i)_{1≤i≤K}: sequential independent draws

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$, $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P_i)_{1≤i≤K}: sequential independent draws

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$, $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P_i)_{1≤i≤K}: sequential independent draws

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$, $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P_i)_{1≤i≤K}: sequential independent draws

Goal

At each time step $t = 1, 2, \ldots$:

• pick an index $I_t = \pi_t (I_1, Y_1, \dots, I_{s-1}, Y_{s-1}) \in \{1, \dots, K\}$ according to past observations

• observe
$$Y_t = X_{I_t,n_{I_t,t}} \sim P_{I_t}$$
, where

$$n_{i,t} = \sum_{s \le t} \mathbb{1}\{I_s = i\}$$

Goal: design the strategy $\pi = (\pi_t)_t$ so as to maximize the number of important items found after *t* requests

 $F^{\pi}(t) = \left| A \cap \left\{ Y_1, \ldots, Y_t \right\} \right|$

Assumption: non-intersecting supports

 $A \cap \operatorname{supp}(P_i) \cap \operatorname{supp}(P_j) = \emptyset$ for $i \neq j$

It looks like a bandit problem...

- sequential choices among K options
- want to maximize cumulative rewards
- exploration vs exploitation dilemma

... but it is not a bandit problem !

- rewards are not i.i.d.
- destructive rewards: no interest to observe twice the same important item
- all strategies eventually equivalent

Proposition: Under the non-intersecting support hypothesis, the greedy oracle strategy

$$I_t^* \in \underset{1 \leq i \leq K}{\arg \max} P_i \left(A \setminus \{Y_1, \dots, Y_t\} \right)$$

is optimal: for every possible strategy π , $\mathbb{E}[F^{\pi}(t)] \leq \mathbb{E}[F^{*}(t)]$.

Remark: the proposition is false if the supports may intersect

 \implies estimate the "missing mass of important items"!

The Good-UCB algorithm

Our solution and analysis

Journal of Machine Learning Research 14 (2013) 601-623

Submitted 10/11; Revised 11/12; Published 2/13

DERNST@ULG.AC.BE

Optimal Discovery with Probabilistic Expert Advice: Finite Time Analysis and Macroscopic Optimality

Sébastien Rubeck

Department of Operations Research and Financial Engineering Princeton University Princeton, NJ, 08544, USA

Damien Ernst Aurélien Garivier

Department of Electrical Engineering and Computer Science University of Liège, Institut Montefiore, B28 B-4000 Liège, Belgium

AURELIEN GARIVIER@MATH.UNIV-TOULOUSE.ER

Institut de Mathématiques de Toulouse Université Paul Sabatier 118. mute de Narbonne F-31062 Toulouse Cedex 9. France

Editor: Nicolo Cesa-Bianchi

Abstract

We consider an original problem that arises from the issue of security analysis of a power system and that we name optimal discovery with probabilistic expert advice. We address it with an algorithm based on the optimistic paradigm and on the Good-Turing missing mass estimator. We prove two different regret bounds on the performance of this algorithm under weak assumptions on the probabilistic experts. Under more restrictive hypotheses, we also prove a macroscopic optimality result, comparing the algorithm both with an oracle strategy and with uniform sampling. Finally, we provide numerical experiments illustrating these theoretical findings.

Keywords: optimal discovery, probabilistic experts, optimistic algorithm, Good-Turing estimator, UCB

The Good-UCB algorithm

Estimator of the missing important mass for expert *i*:

$$\hat{R}_{i,n_{i,t-1}} = \frac{1}{n_{i,t-1}} \sum_{x \in A} \mathbb{I}\left\{\sum_{s=1}^{n_{i,t-1}} \mathbb{I}\{X_{i,s} = x\} = 1$$

and
$$\sum_{j=1}^{K} \sum_{s=1}^{n_{j,t-1}} \mathbb{I}\{X_{j,s} = x\} = 1\right\}$$

Good-UCB algorithm:

- 1: For $1 \leq t \leq K$ choose $I_t = t$.
- 2: for $t \geq K + 1$ do
- 3: Choose $I_t = \arg \max_{1 \le i \le K} \left\{ \hat{R}_{i, n_{i,t-1}} + C_{\sqrt{\frac{\log(4t)}{n_{i,t-1}}}} \right\}$
- 4: Observe Y_t distributed as P_{I_t}
- 5: Update the missing mass estimates accordingly
- 6: end for

Optimality results

Theorem: For any $t \ge 1$, under the non-intersecting support assumption, Good-UCB (with constant $C = (1 + \sqrt{2})\sqrt{3}$) satisfies

 $\mathbb{E}\left[F^*(t) - F^{\textit{UCB}}(t)\right] \leq 17\sqrt{\textit{K}t\log(t)} + 20\sqrt{\textit{K}t} + \textit{K} + \textit{K}\log(t/\textit{K})$

Remark: Usual result for bandit problem, but not-so-simple analysis

Sketch of proof

1. On a set $\tilde{\Omega}$ of probability at least $1 - \sqrt{\frac{K}{t}}$, the "confidence intervals" hold true simultaneously all $u \ge \sqrt{Kt}$

2. Let
$$\overline{I}_u = \arg \max_{1 \le i \le K} R_{i,n_{i,u-1}}$$
. On $\tilde{\Omega}$,

$$R_{l_u,n_{l_u,u-1}} \geq R_{\bar{l}_u,n_{\bar{l}_u,u-1}} - \frac{1}{n_{l_u,u-1}} - 2(1+\sqrt{2})\sqrt{\frac{3\log(4u)}{n_{l_u,u-1}}}$$

3. But one shows that $\mathbb{E}F^*(t) \leq \sum_{u=1}^t \mathbb{E}R_{\bar{l}_u, n_{\bar{l}_u, u-1}}$

4. Thus

$$\mathbb{E}\left[F^*(t) - F^{UCB}(t)\right]$$

$$\leq \sqrt{Kt} + \mathbb{E}\left[\sum_{u=1}^t \frac{1}{n_{l_u,u-1}} + 2(1+\sqrt{2})\sqrt{\frac{3\log(4t)}{n_{l_u,u-1}}}\right]$$

$$\leq \sqrt{Kt} + K + K\log(t/K) + 4(1+\sqrt{2})\sqrt{3Kt\log(4t)}$$

Experiment: restoring property

Figure 1: green: oracle, blue: Good-UCB, red: uniform sampling

For $\lambda \in (0, 1)$, $T(\lambda) =$ time at which missing mass of important items is smaller than λ on all experts:

$$T(\lambda) = \inf \left\{ t : \forall i \in \{1, \dots, K\}, P_i(A \setminus \{Y_1, \dots, Y_t\}) \leq \lambda \right\}$$

Theorem: Let c > 0 and $S \ge 1$. Under the non-intersecting support assumption, for Good-UCB with $C = (1 + \sqrt{2})\sqrt{c+2}$, with probability at least $1 - \frac{\kappa}{cS^c}$, for any $\lambda \in (0, 1)$,

 $T_{UCB}(\lambda) \leq T^* + KS \log (8T^* + 16KS \log(KS)),$

where
$$T^* = T^* \left(\lambda - \frac{3}{S} - 2(1 + \sqrt{2})\sqrt{\frac{c+2}{S}}\right)$$

The macroscopic limit

- Restricted framework: $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$

The macroscopic limit

- Restricted framework: $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$

The macroscopic limit

- Restricted framework: $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$

The limiting discovery process of the Oracle strategy is deterministic

Proposition: For every $\lambda \in (0, q_1)$, for every sequence $(\lambda^N)_N$ converging to λ as N goes to infinity, almost surely

$$\lim_{N \to \infty} \frac{T^N_*(\lambda^N)}{N} = \sum_i \left(\log \frac{q_i}{\lambda} \right)_+$$

Oracle vs. uniform sampling

Oracle: The proportion of important items not found after *Nt* draws tends to

$$q - F^*(t) = I(t)\underline{q}_{I(t)} \exp\left(-t/I(t)\right) \le K\underline{q}_K \exp\left(-t/K\right)$$

with $\underline{q}_{\kappa} = \left(\prod_{i=1}^{\kappa} q_i\right)^{1/\kappa}$ the geometric mean of the $(q_i)_i$. **Uniform:** The proportion of important items not found after Nt draws tends to $K\bar{q}_{\kappa} \exp(-t/\kappa)$

 \implies Asymptotic ratio of efficiency

$$ho(q) = rac{ar{q}_{\kappa}}{\underline{q}_{\kappa}} = rac{rac{1}{\kappa}\sum_{i=1}^{k}q_{i}}{\left(\prod_{i=1}^{k}q_{i}
ight)^{1/\kappa}} \geq 1$$

larger if the $(q_i)_i$ are unbalanced

Theorem: Take $C = (1 + \sqrt{2})\sqrt{c+2}$ with c > 3/2 in the Good-UCB algorithm.

• For every sequence $(\lambda^N)_N$ converging to λ as N goes to infinity, almost surely

$$\limsup_{N \to +\infty} \frac{T^N_{UCB}(\lambda^N)}{N} \leq \sum_i \left(\log \frac{q_i}{\lambda}\right)_+$$

• The proportion of items found after *Nt* steps $F^{GUCB}(Nt)$ converges *uniformly* to $F^*(Nt)$ as *N* goes to infinity

Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and uniform sampling (dotted) as a function of time for sizes N = 128, N = 500, N = 1000 and N = 10000 in a 7-experts setting.

30

And when the assumptions are not satisfied?

Number of primes found by Good-UCB (solid), the oracle (dashed) and uniform sampling (dotted) using geometric experts with means 100, 300, 500, 700, 900, for C = 0.1 (top) and C =0.02 (bottom).

Conclusion and perspectives

- We propose an algorithm for the optimal discovery with probabilistic expert advice
- We give a standard regret analysis under the only assumption that the supports of the experts are non-overlapping
- We propose a different optimality result, which permits a macroscopic analysis in the uniform case
- Another interesting limit to consider is when the number of important items to find is fixed, but the total number of items tends to infinity (Poisson regime)
- Then, the behavior of the algorithm is not very good: too large confidence bonus because no tight deviations bounds for the Good-Turing estimator when the proportion of important items tends to 0. Improvement by better deviation bounds?

Thank you for your attention!