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Enigma

• Electro-mechanical rotor
cipher machines, 26
characters

• Invented at the end of
WW1 by Arthur Scherbius

• Commercial use, then
German Army during WW2

• First cracked by Marian
Rejewski in the 1930s
(Bomb), then improved to
3. 10114 configurations

• Read Simon Singh, The
Code Book



Enigma

Src: http://enigma.louisedade.co.uk/

http://enigma.louisedade.co.uk/


Battle of the Atlantic

• Massively used by the German
Kriegsmarine and Luftwaffe

• weakness: 3-letters setting to
initiate communication, taken
from the Kenngruppenbuch

• Government Code and Cypher
School: Bletchley Park (on the
train line between Cambridge and
Oxford)

• Colossus (first programmable
computers) in 1943



Estimating probabilities

• Discrete alphabet A.

• Unknown probability p on A

• Sample X1, . . . , Xn of independent draws of p.

• Goal : use the sample to estimate p(a) for all a ∈ A.

Natural idea:

p̂(a) =
N(a)
n

, where N(a) = #
{
i : Xi = a

}



: 43

Safari preparation
Observe animal sample

1 giraffe, 2 elephants, 3 zebras

Probability estimation?

Empirical frequency

3

Species Probability
giraffes 1/6

elephants 2/6
zebras 3/6

Problem?

[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]

https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf


[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]

https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf


Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick
mary read a different book
she read a book by cher

p(wi|wi−1) =
c(wi−1wi)∑
w c(wi−1w)

p(s) =
l+1∏
i=1

p(wi|wi−1)

p( john read a book )

= p(john|·) p(read|john) p(a|read) p(book|a) p(·|book)
= c(· john)∑

w c(· w)
c(john read)∑

w c(john w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 1
3

1
1

2
3

1
2

1
2

≈ 0.06

https://nlp.stanford.edu/~wcmac


Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick
mary read a different book
she read a book by cher

p(wi|wi−1) =
c(wi−1wi)∑
w c(wi−1w)

p(s) =
l+1∏
i=1

p(wi|wi−1)

p( cher read a book )

= p(cher|·) p(read|cher) p(a|read) p(book|a) P(·|book)
= c(· cher)∑

w c(· w)
c(cher read)∑

w c(cher w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 0
3

0
1

2
3

1
2

1
2

= 0
=⇒ useless, the unseenmust be treated correctly.

https://nlp.stanford.edu/~wcmac


Bayesian Approach: Laplace Estimator
Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)
Will the sun rise tomorrow?

p̂(a) =
N(a) + 1

n+ |A|

• good for small alphabets and many samples

• very bad when lots of items seen once (ex: DNA sequences)

• |A| can be very large (or even infinite), but p concentrated on few items

=⇒ not a satisfying solution to the problem



Alan Turing Irving J. Good

1912-1954
student of Godfrey Harold Hardy in
Cambridge
PhD from Princeton with Alonzo
Church

1916-2009
Graduated in Cambridge
Academic carrer in Bayesian statistics
inManchester and then in theUniver-
sity of Virginia (USA)



Missing mass estimation

X1, . . . , Xn independent draws of p ∈ M1(A).

Nn(x) =
n∑

m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen items

Mn =
∑
x∈A

p(x) 1{Nn(x) = 0} ?



Missing Mass
Let A = N, let p ∈ M1(N) and let X1, . . . , Xn

iid∼ p and for every x ∈ N, let
Nn(x) =

∑n
i=1 1{Xi = x}.

Pb: estimate the mass of the unseen

Mn= P
(
Xn+1 /∈ {X1, . . . , Xn}

∣∣Xn1) = ∞∑
x=0

p(x)1
{
Nn(x) = 0

}
Idea: use hapaxes = symbols x ∈ N that appear once in the sample

M̂n =
1

n

∞∑
x=0

1
{
Nn(x) = 1

}
= Good-Turing ’estimator’
= leave-one-out estimator of Mn: if X−i = {X1, . . . , Xi−1, Xi+1, . . . , Xn},

M̂n =
1

n

n∑
i=1

1
{
Xi /∈ X−i

}



’Bias’ of the Good­Turing estimator

Proposition [Good ’1953]
Whatever the law p,

0 ≤ E
[
M̂n

]
− E[Mn] ≤

1

n

Proof: E
[
M̂n
]
− E[Mn] =

1

n
E
[∑

x∈N

1{Nn(x) = 1}
]
− E

[∑
x∈N

p(X)1{Nn(x) = 0}
]

=
1

n

∑
x∈N

P
(
Nn(x) = 1

)
− np(x) P(Nn(x) = 0)

=
1

n

∑
x∈N

np(x)
(
1 − p(x)

)n−1 − np(x)
(
1 − p(x)

)n
=

1

n

∑
x∈N

p(x) × np(x)
(
1 − p(x)

)n−1

=
1

n

∑
x∈N

p(x) P
(
Nn(x) = 1

)
=

1

n
E
[∑

x∈N

p(x)1
(
Nn(x) = 1

)]
∈
[
0,

1

n

]
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Example: MNIST dataset



What is a classifier?

x1

x2

xn

y1

yn

y2
Fe
at
ur
e
1

Fe
at
ur
e
2

Fe
at
ur
e
p

Y ∈ YnX ∈ Mn,p(R)

hn : X → Y
6

Classifier An

Data: n-by-pmatrix X

• n examples = points of
observations

• p features = characteristics
measured for each
example



Statistical Learning Hypothesis

Assumption

• The examples (Xi, Yi)1≤i≤n are iid samples of an unknown joint distributionD;

• The points to classify later are also independent draws of the same distributionD.

Hence, for every decision rule h : X → Y we can define the risk

LD(h) = P(X,Y)∼D
(
h(X) 6= Y) = D

({
(x, y) : h(x) 6= y

})
.

The goal of the learning algorithm is tominimize the expected risk:

Rn(An) = ED⊗n

[
LD
(
An

(
(X1, Y1), . . . , (Xn, Yn)

)︸ ︷︷ ︸
ĥn

)]

for every distributionD, using only the examples.



Binary Classification

• Domain X , label space Y = {0, 1}
• Unknown distribution D on X × Y
• Sample S = (X1, Y1), . . . , (Xn, Yn)

iid∼ D

• h : X → Y , h ∈ H hypothesis class

• loss function ℓ(y, y′) = 1{y 6= y′}
• generalization error (loss) LD(h) = ED

[
ℓ
(
h(X), Y

)]
= ED

[
h(X) 6= Y

]
• training error LS(h) =

1

n

n∑
i=1

1{h(Xi) 6= Yi}

• agnostic learning 6= realizable assumption (when there exists h∗ such that
LS(h∗) = 0)

• learning algorithm: S 7→ ĥn such that LD(ĥn)− infh∈H LD(h) small



Performance Limit: Bayes Classifier
Consider binary classification Y = {0, 1}, η(x) := D(Y = 1|X = x).

Theorem
The Bayes classifier is defined by
h∗(x) = 1

{
η(x) ≥ 1/2

}
= 1

{
η(x) ≥ 1− η(x)

}
= 1

{
2η(x)− 1 ≥ 0

}
.

For every classifier h : X → Y = {0, 1},

LD(h) ≥ LD(h
∗) = E

[
min

(
η(X), 1− η(X)

)]
.

The Bayes risk L∗D = LD(h∗) is called the noise of the problem.
More precisely,

LD(h)− LD(h
∗) = E

[∣∣2η(X)− 1
∣∣ 1{h(X) 6= h∗(X)

}]
.

Extends to |Y| > 2.



Proof

LD(h) − LD(h
∗
) = E

[
1
{
h(X) 6= h∗(X)

}(
1
{
Y = 1

}(
1
{
h∗(X) = 1

}
− 1

{
h∗(X) = 0

})
+ 1
{
Y = 0

}(
1
{
h∗(X) = 0

}
− 1

{
h∗(X) = 1

}))]

= E
[
1
{
h(X) 6= h∗(X)

}(
21
{
Y = 1

}
− 1
)(

21
{
h∗(X) = 1

}
− 1
)]

= E
[
1
{
h(X) 6= h∗(X)

}(
21
{
Y = 1

}
− 1
)(

21
{
η(X) ≥

1

2

}
− 1
)]

= E
[
1
{
h(X) 6= h∗(X)

}(
21
{
η(X) ≥

1

2

}
− 1
)
E
[
21
{
Y = 1

}
− 1

∣∣ X]]

= E
[
1
{
h(X) 6= h∗(X)

}(
21
{
η(X) ≥

1

2

}
− 1
)(

2E
[
1
{
Y = 1

}∣∣ X]− 1
)]

= E
[
1
{
h(X) 6= h∗(X)

}
sign

(
η(X) −

1

2

)(
2η(X) − 1

)]

= E
[
1
{
h(X) 6= h∗(X)

}∣∣2η(X) − 1
∣∣]



The Nearest­Neighbor Classifier
We assume that X is a metric space with distance d.
The nearest-neighbor classifier ĥNN

n : X → Y is defined as

ĥNN
n (x) = YI where I ∈ argmin

1≤i≤n
d(x− Xi) .

Typical distance: L2 norm onRd: ‖x− x′‖ =
√∑d

j=1(xi − x′i )2 .

Buts many other possibilities: Hamming distance on {0, 1}d, etc.



Numerically



Numerically



The most simple analysis of the most
simple algorithm

A1. Y = {0, 1}.
A2. X = [0, 1[d.

A3. η is c-Lipschitz continuous:

∀x, x′ ∈ X ,
∣∣η(x)− η(x′)

∣∣ ≤ c
∥∥x− x′‖ .

Theorem
Under the previous assumptions, for all distributionsD and all m ≥ 1

E
[
LD
(
ĥNN
n

)]
≤ 2L∗D +

3c
√
d

n1/(d+1)
.



Proof Outline
• Conditioning: as I(x) = argmin1≤i≤n ‖x− Xi‖,

LD(ĥ
NN
n ) = E

[
E
[
1{Y 6= YI(X)}

∣∣X, X1, . . . , Xn]] .
• Y ∼ B(p), Y′ ∼ B(q) =⇒ P(Y 6= Y′) ≤ 2min(p, 1− p) + |p− q|,

E
[
1{Y 6= YI(X)}|X, X1, . . . , Xn

]
≤ 2min

(
η(X), 1− η(X)

)
+ c
∥∥X− XI(X)

∥∥ .

• Partition X into |C| = Td cells of diameter
√
d/T:

C =

{[
j1 − 1

T
,
j1
T

[
× · · · ×

[
jd − 1

T
,
jd
T

[
, 1 ≤ j1, . . . , jd ≤ T

}
.

• 2 cases: either the cell of X is occupied by a sample point, or not:∥∥X− XI(X)
∥∥ ≤

∑
c∈C

1{X ∈ c}

(√
d
T
1

n⋃
i=1

{Xi ∈ c}+
√
d1

n⋂
i=1

{Xi /∈ c}

)
.

• =⇒ E
[
‖X− XI(X)‖

]
≤

√
d

T +
√

dTd

e n and choose T =
⌊
n

1
d+1

⌋
.



What does the analysis say?

• Is it loose? (sanity check: uniformDX)

• Non-asympototic (finite sample bound)

• The second term 3c
√

d
n1/(d+1) is distribution independent

• Does not give the trajectorial decrease of risk

• In expectation only: concentrated?

• Exponential bound d (cannot be avoided...)
=⇒ curse of dimensionality

• How to improve the classifier?



k­nearest neighbors
Let X be a (pre-compact) metric space with distance d.

k­NN classifier
hkNN : x 7→ 1

{
η̂(x) ≥ 1/2

}
= plugin for Bayes classifier with estimator

 η̂(x) =
1

k

k∑
j=1

Y(j)(X)

where
d
(
X(1)(X), X

)
≤ d
(
X(2)(X), X

)
≤ · · · ≤ d

(
X(n)(X), X

)
.



More neighbors are better?

k = 1



More neighbors are better?

k = 3



More neighbors are better?

k = 5



More neighbors are better?

k = 7



More neighbors are better?

k = 95



Bias­Variance tradeoff
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Agnostic PAC learnability

Definition
A hypothesis classH is agnostic PAC learnable if there exists a function
nH : (0, 1)2 → N and a learning algorithm S 7→ ĥn such that for every ϵ, δ ∈ (0, 1),

for every distribution D on X × Y when S =
(
(X1, Y1), . . . , (Xn, Yn)

) iid∼ D,

P
(
LD
(
ĥn

)
≥ inf

h′∈H
LD(h

′) + ϵ
)
≤ δ

for all n ≥ nH(ϵ, δ).
The smallest possible function nH is called the sample complexity of learningH.



Learning via uniform convergence

Definition
A training set S is called ϵ-representative (wrt domain X × Y , hypothese classH, loss
function ℓ and distribution D) if

∀h ∈ H,
∣∣LS(h)− LD(h)

∣∣ ≤ ϵ .

Lemma
If S is ϵ/2-representative, then any ERM ĥn defined by ĥn ∈ argminh∈H LS(h)
satisfies:

LD
(
ĥn

)
≤ inf

h∈H
LD(h) + ϵ .

Proof: for every h ∈ H,

LD
(
ĥn

)
≤ LS

(
ĥn

)
+

ϵ

2
≤ LS

(
h
)
+

ϵ

2
≤ LD

(
h
)
+

ϵ

2
+

ϵ

2
.



Uniform Convergence Property

Definition
A hypothesis classH has the uniform convergence property (wrt X × Y and ℓ) if there
exists a function nUC

H : (0, 1)2 → N such that for every ϵ, δ ∈ (0, 1) and for every

distribution D over X × Y , a sample S =
(
(X1, Y1), . . . , (Xn, Yn)

) iid∼ D of size
n ≥ nUC

H(ϵ, δ) has probability at least 1− δ to be ϵ-representative.

Corollary
IfH has the uniform convergence property with a functionmUC

H , thenH is agnostically
PAC learnable with a sample complexity nH(ϵ, δ) ≤ nUC

H
(
ϵ
2 , δ
)
. Furthermore, the ERM

is a successful PAC learner forH.



Outline
Motivation

Missing Mass Estimation
Binary Classification
Learning Theory
Dimensionality Reduction

Chernoff’s Method
Basics
Johnson-Lindenstrauss Lemma
Non-parametric Bounds
Extensions to dependent variables
Negative association

KL Divergence and Lower Bounds
Kullback-Leibler Divergence
No Free Lunch Theorem

Uniform Laws of Large Numbers
Finite VC dimension implies Uniform Convergence
Finite VC-dimension implies learnability



Dimensionality reduction

• Data: X =


xT1
...

xTn

 ∈ Mn,p(R), p � 1.

• Dimensionality reduction: replace xi with yi = Wxi, where W ∈ Md,p(R), d � p.

• Hopefully, we do not loose too much by replacing xi by yi.
2 approaches:
– Quasi-invertibility: there exists a recovering matrix U ∈ Mp,d(R) such that for all

i ∈ {1, . . . , n},
x̃i = Uyi ≈ xi .

– More modest goal: distance-preserving property

∀1 ≤ i, j ≤ n, ∥yi − yj∥ ≈ ∥xi − xj∥



Johnson­Lindenstrauss Lemma

Theorem
Let x1, . . . , xn ∈ Rp, and let ϵ > 0. Then, for every d ≥ 4 log(n)

ϵ− log(1 + ϵ)
, there exists a

matrix A ∈ Md,p(R) such that

∀1 ≤ i < j ≤ n,
(
1− ϵ

)∥∥xi − xj
∥∥2 ≤

∥∥Axi − Axj
∥∥2 ≤

(
1 + ϵ

)∥∥xi − xj
∥∥2 .

d is independent of p (!)

on the dependence on ϵ:
4 log(n)

ϵ− log(1 + ϵ)
≤ 8 log(n)

ϵ2

(
1 +

ϵ

3

)2
.

Remark 2: how to find such a matrix A?

For every d ≥ 4 log(n) + 2 log(1/δ)
ϵ− log(1 + ϵ)

, the probability that a random matrix with

entries Ai,j
iid∼ N

(
0, 1

d

)
satisfies the lemma is larger than 1− δ.



Random Projections
Method: (constructive) probabilistic method: we choose

Ai,j
iid∼ N

(
0,

1

d

)
.

Let y ∈ Rp and Y = Ay. Then ∀1 ≤ k ≤ d,

Yk =
p∑

ℓ=1

Ak,ℓyℓ ∼ N
(
0,

∥y∥2

d

)
.

Hence E
[
∥Y∥2

]
= ∥y∥2.

=⇒ does it hold with large probability?
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Classical Examples

• Gaussian

• Rademacher

• Bernoulli

• Poisson

Sub-Gaussian variables.



Chernoff’s Bound

Theorem (Chernoff­Hoeffding Deviation Bound)
Let µ ∈ (0, 1). X1, . . . , Xn

iid∼ B(µ), and let x ∈ (µ, 1].

(i) Chernoffs’ bound for Bernoulli variables: P(̄Xn ≥ x) ≤ exp
(
− n kl(x, µ)

)
, where

kl(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
. Same for left deviations.

(ii) If ϕ(x) = kl(x, µ), then ϕ′′(x) = 1/[x(1 − x)] and

kl(x, µ) =
(x − µ)2

2

∫ 1

0

ϕ
′′(
µ+ s(x − µ)

)
2(1 − s)ds

≥
(x − µ)2

2̃x(1 − x̃)
with x̃ =

2µ+ x

3
by Jensen, since ϕ′′ is convex and

∫ 1

0

s 2(1 − s)ds =
1

3

≥
1

2maxx≤u≤p u(1 − u)

(
x − µ)

2 ≥ 2(x − µ)
2
.

(iii) Hoeffding’s bound for Bernoulli variables: P(̄Xn ≥ x) ≤ exp
(
− 2n(x − µ)

2 )
.

(iv) Inequalities (3) and (??) hold for arbitrary independent random variables with range [0, 1] and expectation µ.
Reason: exp(λx) ≤ (1 − x) exp(0) + x exp(λ).



Examples

• If µ < 1/2,

P
(
X̄k >

1

2

)
≤ exp

(
− k
2
(1− 2µ)2

)
.

(Consequence of Chernoff or direct computation with (1 − u)k ≤ exp(−k u), or of Hoeffding).

• For all µ ∈ [0, 1], Chernoff’s bound with log(u) ≥ (u− 1)/u yields

P
(
X̄m <

µ

2

)
≤ exp

(
−1− log(2)

2
mµ

)
≈ exp (−0.153mµ) ≤ exp

(
−mµ

7

)
.

Hoeffding yields a very poor result, but (ii) gives:

P
(
X̄m <

µ

2

)
≤ exp

(
− 3

20
mµ

)
= exp (−0.15mµ) ≤ exp

(
−mµ

8

)
.
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Proof of the Johnson­Lindenstrauss
Lemma
Method: (constructive) probabilistic method: we choose Ai,j

iid∼ N
(
0, 1

d

)
. Let y ∈ Rp and

Y = Ay. Then ∀1 ≤ k ≤ d, Yk =
p∑

ℓ=1

Ak,ℓyℓ ∼ N
(
0,

∥y∥2

d

)
. Hence E

[
∥Y∥2

]
= ∥y∥2.

Besides, by the deviation bound for the χ2 distribution given in the next slide,

P
(
∥Y∥2 ≥ (1 + ϵ)∥y∥2

)
= P

(
d∑

k=1

(√
dYk

∥y∥

)2

≥ d(1 + ϵ)

)
≤ exp

(
− dϕ∗(ϵ)

)
≤ 1

n2

and similarly P
(
∥Y∥2 ≤ (1− ϵ)∥y∥2

)
≤ exp

(
− dϕ∗(ϵ)

)
≤ 1

n2
.

Applying this result to all yi,j = xi − xj, 1 ≤ i < j ≤ n, by the union bound:

P
( ⋃

1≤i<j≤n

∥∥A(xi − xj)
∥∥ ≥ (1 + ϵ) ∪

∥∥A(xi − xj)
∥∥ ≤ (1− ϵ)

)
≤ n(n− 1)

n2
< 1 ,

and hence there exists at least a matrix A for which the lemma holds.



Deviations of the χ2 distribution: rate
function
Lemma
If U ∼ N (0, 1) and X = U2 − 1, then

ϕ∗(x) = sup
λ

λx− logE
[
eλX
]
=

x− log(1 + x)
2

≥ x2

4
(
1 + x

3

)2 .

Proof: For every λ < 1/2,

E
[
eλX
]
=

1
√
2π

∫
R
eλ(u

2−1)e−
u2
2 du =

e−λ
√
2π

∫
R
e−

(1−2λ)u2

2 du = e−λ
1

√
1 − 2λ

.

Hence ϕ(λ) = logE
[
eλX
]
= − 1

2 log(1− 2λ)− λ. The concave function λ 7→ λx − ϕ(λ) is maximized at λ∗ s.t.

x = ϕ′(λ∗) = 1
1−2λ∗ − 1, that is at λ∗ = 1

2

(
1 − 1

1+x

)
= x

2(1+x) . Hence

ϕ
∗
(x) = λ

∗x − ϕ(λ
∗
) =

x − log(1 + x)

2
. The last inequality is obtained by ”Pollard’s trick” applied to

g(x) = x − log(1 + x): since g(0) = g′(0) = 0 and since g′′(x) = 1/(1 + x)2 is convex, by Jensen’s inequality

x − log(1 + x)

x2/2
=

∫ 1

0

g′′(sx)2(1 − s)ds ≥ g′′
(

x
∫ 1

0

s 2(1 − s)ds

)
= g′′

(
x

3

)
.



Deviations of the χ2(d) distribution
By Chernoff’s method, if Z ∼ χ2(d)

dist
= U2

1 + · · · + U2
d where Ui

iid∼ N (0, 1):

P
(
Z ≥ d(1 + ϵ)

)
≤ exp

(
− dϕ∗

(ϵ)
)
≤ exp

(
−

dϵ2

4
(
1 + ϵ

3

)2
)
.

Moreover, since ϕ∗(−ϵ) = − ϵ+log(1−ϵ)
2 = 1

2

∑
k≥2

ϵk

k ≥ 1
2

∑
k≥2(−1)k ϵ

k

k = ϕ∗(ϵ),

P
(
Z ≤ d(1 − ϵ)

)
≤ exp(−dϕ∗(ϵ)) and since ϕ∗(−ϵ) = − ϵ+log(1−ϵ)

2 ≥ ϵ2/4,

P
(
Z ≤ d(1 − ϵ)

)
≤ exp

(
−

dϵ2

4

)
.

Note: the Laurent-Massart inequality states that for every u > 0, P
(
Z ≥ d + 2

√
du + 2u

)
≤ exp

(
− u
)
. It can be

deduced from the previous bound by noting that for every x > 0

ϕ
∗(

2
√

x + 2x
)
= x +

1

2

(
2
√

x − log

(
1 + 2

√
x +

(
2
√

x
)2

2

))

≥ x +
1

2

(
2
√

x − log
(
exp(2

√
x)
))

= x , and

P
(
Z ≥ d + 2

√
du + 2u

)
= P
(
1
d

∑d
i=1(U

2
i − 1) ≥ 2

√
u
d + 2 u

d ) ≤ exp(−dϕ∗(2
√

u
d + 2 u

d )) ≤ e−u . The proof of
Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

ϕ(λ) = −
1

2
log(1 − 2λ) − λ =

∞∑
k=2

(2λ)k

2k
= λ

2
∞∑
ℓ=0

4(2λ)ℓ

2(ℓ + 2)
≤ λ

2
∞∑
ℓ=0

(2λ)
ℓ

=
λ2

1 − 2λ
, and deduce that

ϕ
∗
(x) ≥ ψ

∗
(x) = sup

λ
λx −

λ2

1 − 2λ
=

x + 1 −
√

2x + 1

2
, while x > 0 andψ∗(x) = u implies x = 2

√
u + 2u. Also note in passing that by

Pollard’s trickϕ∗(x) ≥ ψ∗(x) ≥ x2

4
(
1+ 2x

3

)3/2 .
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Bounded variables are sub­Gaussian
If a ≤ X ≤ b, thenVar[X] ≤ (b− a)2/4
By symmetrization, X is (b− a)2 sub-Gaussian. In fact, one can prove better.



”Statistical Physics” View
Let X be a real-valued random variable with law PX. For all λ ∈ R, let
ϕX(λ) = lnE

[
eλX
]
. Then there is a largest open interval [λmin, λmax] on which ϕ is

defined. If it contains 0, let PλX be defined by

dPλX
dPX

=
eλX

E [eλX]
.

Then
ϕ′(λ) = E(PλX ) and ϕ′′(λ) = Var(PλX )

Furthermore, let (xmin, xmax) = [λ 7→ E(Pλ)](λmin, λmax), and let λ(x) be it
reciprocal mapping. Then for every x > µ := E[X], P(Z > x) ≤ exp(−I(x, µ)) and
for every x < E[X], P(X < x) ≤ exp(−I(x, µ)) where

I(x, µ) = sup
λmin<λ<λmax

λx− ϕX(λ) .



Gibbs­Variance lemma
For any real-valued X with expectation E[X] = µ, any x ∈ (xmin, xmax) and
λ ∈ (λmin, λmax),

ϕX(λ) = λµ+

∫ λ

0

∫ λ

0

σ2(t) dt du ,

and

I(x, µ) = λ(x)β(x)− ϕX(λ(x))

= KL
(
Pβ(x), PX

)
= inf

E[Q]≥x
KL(Q, PX)

=

∫ x

µ

∫ u

µ

1

σ2(λ(t))
dt du .



Chernoff’s rate function and KL divergence
Let P = PMn and for λ ∈ R let Pλ be defined by dPλ

dP (x) =
eλx

Z(λ) , ie for all measurable,

non-negative function f: Eλ
[
f(X)
]
=
∫
R f(x) eλx

Z(λ)dP(x)

Prop:
KL(Pλ, P) = λEλ[X]− Λ(λ) = inf

{
KL(Q, P) : EQ[X] ≥ Eλ[X]

}
Proof: For every Q � P with EQ[X] ≥ x,

KL(Q, P) =

∫
R
log
(

dQ

dP
(x)

)
dQ(x)

=

∫
R
log
(

dQ

dPλ
(x)

dPλ
dP

(x)

)
dQ(x)

= KL(Q, Pλ) +
∫
R
log

(
eλx

Z(λ)

)
dQ(x)

= KL(Q, Pλ) + λEQ[X] − log
(
Z(λ)

)
≥ 0 + λEλ[X] − Λ(λ) = KL(Pλ, P)

Cor: since λ(x) is such that E(Pλ(x)) = x, I(x) = KL(Pλ(x), P)



Chernoff’s rate function and KL divergence
Let P = PMn and for λ ∈ R let Pλ be defined by dPλ

dP (x) =
eλx

Z(λ) , ie for all measurable,

non-negative function f: Eλ
[
f(X)
]
=
∫
R f(x) eλx

Z(λ)dP(x)

Prop:
KL(Pλ, P) = λEλ[X]− Λ(λ) = inf

{
KL(Q, P) : EQ[X] ≥ Eλ[X]

}
Cor: since λ(x) is such that E(Pλ(x)) = x, I(x) = KL(Pλ(x), P)

Since Λ′(λ) =
E
[
XeλX

]
E [eλX]

= Eλ[X] and

Λ′′(λ) =
E
[
X2eλX

]
E [eλX]

−

(
E
[
XeλX

]
E [eλX]

)2

= Varλ[X] > 0, the C∞ mapping

λ 7→ λx− Λ(λ) is maximal where at λ(x) where x = Λ′(λ(x)) = Eλ(x)[X] and then
I(x) = λ(x)x− Λ

(
λ(x)

)
= λ(x)x−

(
λ(x)Eλ(x)[X]− KL

(
Pλ(x), P

))
= KL

(
Pλ(x), P

)



Hoeffding’s inequality
A [a, b]-bounded variable is (b− a)2/4-sub-Gaussian.



Application: Finite classes are agnostically
PAC­learnable

Theorem
LetH be a finite hypothesis class. ThenH enjoys the uniform convergence property with
sample complexity

nUC
H(ϵ, δ) ≤

⌈
log 2|H|

δ

2ϵ2

⌉
.

Moreover,H is agnostically PAC learnable using an ERM algorithm with sample complexity

nH(ϵ, δ) ≤ 2nUC
H

( ϵ
2
, δ
)
≤

⌈
2 log 2|H|

δ

ϵ2

⌉
.

Proof: Hoeffding’s inequality and the union bound.



Sub­Gaussian inequalities

Bennett’s and Bernstein’s inequalities
Let (Xi)1≤i≤n be independent random variables upper-bounded by 1, let
µ̄ = (E[X1] + · · ·+ E[Xn])/n, let σ2 be such that E[X2i ] ≤ σ2 for all i and let
ϕ(u) = (1 + u) log(1 + u)− u. Then, for all x > 0,

P
(
X̄ ≥ µ̄+ x

)
≤ exp

(
−nσ2ϕ

( x
σ2

))
≤ exp

(
− n x2/2
σ2 + x/3

)
.

Bernstein from Bennett: ϕ(x) ≥
x2

2
(
1 + x

3

) sinceψ(x) = 2
(
1 + x

3

)
ϕ(x) − x2 ≥ 0.

Extension: if Xi ≤ b with b > 0,

P
(
X̄n ≥ µ̄+ x

)
≤ exp

(
−nσ2

b2
ϕ

(
bx
σ2

))
≤ exp

(
− n x2/2
σ2 + bx/3

)
.

Example: for X with range in [0, 1],

P
(
X̄m <

µ

2

)
≤ exp

(
−m

(
3

2
log

3

2
− 1

2

)
µ

)
≤ exp

(
−3mµ

28

)
.



Parenthesis: ”Pollard’s trick”
From [Pollard, MiniEmpirical ex.14, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]
For any sufficiently smooth real-valued function g defined at least in a neighborhood of 0 let

G(x) =
g(x) − g(0) − xg′(0)

x2/2
if x 6= 0, and G(0) = g′′(0) .

By Taylor’s integral formula g(x) − g(0) − xg′(0) =

∫ x

0

g′′(u)(x − u)du = x2
∫ 1

0

g′′(sx)(1 − s)ds .

Thus, G(x) =
∫

g′′(sx)dν(s), where dν(s) = 2(1 − s)1{0 ≤ s ≤ 1}ds.
Hence, if g is convex then g′′ ≥ 0 and G ≥ 0. Moreover, if g′′ is increasing then the functions x 7→ g′′(sx) for s ∈ [0, 1]
are all increasing and G is also increasing as an average of increasing functions. For g(u) = exp(u), this yields that
(exp(u) − u − 1)/u2 is increasing, as required for the proof of Bernstein’s inequality.

Similarly, if g′′ is convex then G is also convex as an average of convex functions
(
x 7→ g′′(sx)

)
s
. Moreover, by Jensen’s

inequality applied to convex functionψ(s) = g′′(xs) with the probability measure dν(s) = 2(1 − s)1{0 ≤ s ≤ 1}ds

G(x) =

∫ 1

0

g′′(xs) 2(1 − s)ds ≥ g′′
(

x
∫ 1

0

s × 2(1 − s)ds

)
= g′′

(
x

3

)
.

For g(u) = (1 + u) log(1 + u) − u, g′′(u) = 1/(1 + u) and this yields:

g(u)

u2/2
≥ g′′

(
u

3

)
=

1

1 + u/3
.

http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf


Exercise: for Xi
iid∼ B(µ),

P(X̄m ≥ 2µ) ≤ exp(−m×?)
Chernoff + Taylor: since log(u) ≥ (u − 1)/u,

kl(2µ, µ) = 2µ log(2) + (1 − 2µ) log
1 − 2µ

1 − 2µ
≥ 2µ log(2) − µ = µ(2 log(2) − 1) ≈ 0.386µ .

Chernoff with convexity:

kl(2µ, µ) ≥
(2µ− µ)2/2

4/3µ
=

3

8
µ = 0.375µ .

Improved Hoeffding:

kl(2µ, µ) ≥
(2µ− µ)2/2

maxµ≤u≤2µ u(1 − u)
≥
µ2/2

2µ
=

1

4
µ = 0.25µ .

Bennett:

2µ log
2µ

µ
− (2µ− µ) = µ(2 log(2) − 1) ≈ 0.386µ .

Bernstein:
(2µ− µ)2/2

µ(1 − µ) + (2µ− µ)/3
≥

µ2/2

µ+ µ/3

3

8
µ = 0.375µ .

Hoeffding: 2(2µ− µ)2 = 2µ2 , very poor (as expected) when µ is small.



Bennett’s inequality

Theorem
Let b ≥ 0 and let X be a centered variable such that E[X2] ≤ σ2. If P(X ≤ b) = 1, then
for all λ > 0:

E
[
eλX
]
≤ exp

(
σ2

b2
(
eλb − λb− 1

))
.

Hence, if X = X1 + · · ·+ Xn where the (Xi) are independent, Xi ≤ b, E[Xi] = 0 and
Var[Xi] ≤ σ2

i , then for every x > 0,

P(X > x) ≤ exp
(
−σ2

b2
H

(
bx
σ2

))
with σ2 =

∑n
i=1 σ

2
i .



Bernstein’s inequality

Theorem
If for all k ≥ 3,E[Xk] ≤ 1/2k!σ2bk−2, then for all λ ∈ (0, 1/b):

E
[
eλX
]
≤ exp

(
λ2σ2

2(1− λb)

)
.

Hence, if X = X1 + · · ·+ Xn where the (Xi) are independent and
∀k ≥ 3,E[Xki ] ≤ 1/2k!σ2

i b
k−2, then for every x > 0,

P(X > x) ≤ exp
(
− x2

2 (σ2 + xb)

)
with σ2 =

∑n
i=1 σ

2
i .

Proof: choose λ = x/(σ2 + tb)
Remark: Bennett’s condition is stronger since it implies E[Xk] ≤ E[X2bk−2] ≤ σ2bk−2.
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Hoeffding­Azuma
Th: Let X0, . . . , Xn be a martingale such that ∀1 ≤ k ≤ n, |Xk − Xk−1| ≤ ck. Then for
all x > 0,

P
(
|Xn − X0| > x

)
≤ 2 exp

(
− x2

2
∑n

k=1 c2k

)



Mc­Diarmid’s ineqality
McDiarmid’s inequality: If X1, . . . Xn are independent random variables on X and
f : X n → R is such that ∀1 ≤ i ≤ n,∀x1, . . . , xn, x′i ,∣∣f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x

′
i , xi+1, . . . , xn)

∣∣ ≤ ci ,

then

P
(∣∣f(X1, . . . , Xn)− E

[
f(X1, . . . , Xn)

]∣∣ ≥ x
)
≤ exp

(
−2x2∑n
i=1 c2i

)
.

Sanity check: f(x) =
∑

xi

Application to the concentration of the Good-Turing estimator.
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A first concentration result with Chebishev: negative correlation permits to bound the
variance of Mn by 1/(en).



Teaser: Missing mass ­ negative correlation



References For Negative Association
Negative Association - Definition, Properties, and Applications, by David Wajc
https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf

Balls and Bins:A Study in Negative Dependence, by Balls and Bins:A Study in Negative
Dependence, https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf
https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf


Definition
Intuitively: X1, . . . , Xn are negatively associated when, if a subset I a variables is ”high”,
a disjoint subset J has to be ”low”.

Definition
A set of real-valued random variables X1, X2, ..., Xn is said to be negatively associated
(NA) if for any two disjoint index sets I, J ⊂ [n] and two functions f, g both monotone
increasing or both monotone decreasing, it holds

E
[
f(Xi : i ∈ I) g

(
Xj : j ∈ J

)]
≤ E

[
f(Xi : i ∈ I)

]
E
[
g
(
Xj : j ∈ J

)]
NB: f ismonotone increasing if ∀i ∈ I, xi ≤ x′i implies f(x) ≤ f(x′).



First properties
Let X1, X2, ..., Xn be NA.
• For all i 6= j, E[XiXj] ≤ E[Xi]E[Xj] i.e. Cov(Xi, Xj) ≤ 0.
• For any disjoints subsets I, J ⊂ [n] and all x1, . . . , xn,

P
(
Xi ≥ xi : i ∈ I ∪ J

)
≤ P

(
Xi ≥ xi : i ∈ I

)
P
(
Xj ≥ xj : j ∈ J

)
and

P
(
Xi ≤ xi : i ∈ I ∪ J

)
≤ P

(
Xi ≤ xi : i ∈ I

)
P
(
Xj ≤ xj : j ∈ J

)
• For all monotone increasing functions f1, . . . , fk depending on disjoint subsets of
the (Xi)i,

E
[∏

j

fj(X)
]
≤
∏
j

E
[
fj(X)

]
• For all x1, . . . , xn,

P

(⋂
i

{
Xi ≥ xi

)
≤
∏
i

P
(
Xi ≥ xi

)
and P

(⋂
i

{
Xi ≤ xi

})
≤
∏
i

P
(
Xi ≤ xi

)



Consequence: NA concentrates better than
independent
For Chernoff’s method (which relies on exponential moments), NA variables can
simply be treated as independent!
In particular:

Chernoff­Hoeffding bound
Let X1, . . . , Xn be NA random variables with Xi ∈ [ai, bi] a.s. Then S = X1 + · · ·+ Xn
satifies Hoeffding’s tail bound: for all t ≥ 0,

P
[∣∣S− E[S]

∣∣ ≥ t
]
≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)



Examples of NA variables

• Independent variables...

• 0-1 principle If X1, . . . Xn are Bernoulli variables and
∑

i Xi ≤ 1 a.s., then they are
NA.

Let f and g are monotically increasing and depend on disjoint subsets of indices. E[f(X)g(X)] ≤ E[f(X)]E[g(X)] ⇐⇒
E[̃f(X)̃g(X)] ≤ E[̃f(X)]E[̃g(X)], where f̃(X) = f(X) − f(⃗0) and g̃(X) = g(X) − g(⃗0). But f̃(X)̃g(X) = 0 always, while
f̃(X) ≥ 0 and g̃(X) ≥ 0.

• Permutation distributions If x1 ≤ · · · ≤ xn and if X1, . . . , Xn are random variables
such that

{
X1, . . . , Xn

}
=
{
x1, . . . , xn

}
a.s., with all assignments equally likely,

then they are NA.

• Sampling without replacement If X1, . . . , Xn are sample without replacement
from {x1, . . . , xN} (with N ≥ n), then they are NA.



Closure properties

Union
If the {Xi : i ∈ I} are NA, if {Yj : j ∈ J} are NA, and if the {Xi} are independent from
the {Yj}, then the {Xi, Yj : i ∈ I, j ∈ J} are NA.

Concordant monotone
If the {Xi : i ∈ I} are NA, if f1, . . . , fk : Rn → R are all monotonically increasing and
depend on different subsets of [n], then

{
fj(X) : 1 ≤ j ≤ k

}
are NA.

The same holds if f1, . . . , fk : Rn → R are all monotonically decreasing.



Bins and balls
The standard bins and balls process consists ofm balls and n bins.

• each ball b is independently placed in bin i with probability pb,i: Xb
indep∼ Multi(pb,·).

• occupancy number Bi =
∑m

b=1 1{Xb = i} number of balls in bin i.

In particular
n∑

i=1

Bi = m.

Prop: The Bi are NA.

Let Xb,i = 1{ball b fell into bin i}. By the 0 − 1 principle, for all 1 ≤ b ≤ m the {Xb,i : 1 ≤ i ≤ n} are NA. By independence and closure under

union, so are the{Xb,i : 1 ≤ b ≤ m, 1 ≤ i ≤ n}. By closure under concordant monotone functions, the Bi =
m∑

b=1

Xb,i are NA.

Consequence: Concentration of the number N =
∑

i 1{Bi = 0} of empty bins, since
the (1{Bi = 0})i are NA.
If pb,i = 1/n, then the number N of empty bins satisfies N = n e−m/n ± O

(√
n e−m/n

)
.



Applications

• missing mass

• histogram rules for binary classification
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Kullback­Leibler divergence

Definition
Let P and Q be two probability distributions on a measurable setΩ. The
Kullback-Leibler divergence from Q to P is defined as follows:

• if P is not absolutely continuous with respect to Q, then KL(P,Q) = +∞;

• otherwise, let dP
dQ be the Radon-Nikodym derivative of P with respect to Q. Then

KL(P,Q) =
∫
Ω

log
dP
dQ

dP =

∫
Ω

dP
dQ

log
dP
dQ

dQ .

Property: 0 ≤ KL(P,Q) ≤ +∞, KL(P,Q) = 0 iff P = Q.
If P ≪ Q and f = dP

dQ ,
∫
Ω f log(f) dQ =

∫
Ω
[
f log(f)

]
+ dQ −

∫
Ω
[
f log(f)

]
− dQ, the later is finite since

[
f log(f)

]
− ≤ 1/e.

Examples:

KL
(
B(p),B(q)

)
= kl(p, q), KL

(
N (µ1, σ

2), N (µ2, σ
2)
)
= (µ1−µ2)

2

2σ2 .



Lower Bound: Change of Measure

x+µ εx

For all ϵ > 0 and allα > 0,

Pµ (̄Xn ≥ x) = Eµ [1{X̄n ≥ x}]

= Ex+ϵ

[
1{X̄n ≥ x} ×

dPµ
dPx+ϵ

(X1, . . . , Xn)

]

= Ex+ϵ

[
1{X̄n ≥ x} × e

−
∑n

i=1 log
dPx+ϵ
dPµ

(Xi)
]

≥ Ex+ϵ

[
1{X̄n ≥ x} 1

{ 1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) ≤ Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

}

× e
−
∑n

i=1 log
dPx+ϵ
dPµ

(Xi)
]

≥ e
−n

{
Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+α

}[
1 − Px+ϵ (̄Xn < x)

− Px+ϵ

(
1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) > Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

)]

= e−n
{
kl(x+ϵ,µ)+α

}(
1 − on(1)

)
.



Lower Bound: Change of Measure

x+µ εx

For all ϵ > 0 and allα > 0,

Pµ (̄Xn ≥ x) = Eµ [1{X̄n ≥ x}]

≥ Ex+ϵ

[
1{X̄n ≥ x} 1

{ 1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) ≤ Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

}

× e
−
∑n

i=1 log
dPx+ϵ
dPµ

(Xi)
]

≥ e
−n

{
Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+α

}[
1 − Px+ϵ (̄Xn < x)

− Px+ϵ

(
1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) > Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

)]

= e−n
{
kl(x+ϵ,µ)+α

}(
1 − on(1)

)
.

Asymptotic Optimality (Large Deviation Lower Bound)

lim inf
n

1

n
log Pµ (̄Xn ≥ x) ≥ − kl(x, µ) .



Lower Bound: Change of Measure

x+µ εx

For all ϵ > 0 and allα > 0,

Pµ (̄Xn ≥ x) = Eµ [1{X̄n ≥ x}]

≥ Ex+ϵ

[
1{X̄n ≥ x} 1

{ 1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) ≤ Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

}

× e
−
∑n

i=1 log
dPx+ϵ
dPµ

(Xi)
]

≥ e
−n

{
Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+α

}[
1 − Px+ϵ (̄Xn < x)

− Px+ϵ

(
1

n

n∑
i=1

log
dPx+ϵ
dPµ

(Xi) > Ex+ϵ

[
log

dPx+ϵ
dPµ

(X1)

]
+ α

)]

= e−n
{
kl(x+ϵ,µ)+α

}(
1 − on(1)

)
.

Asymptotic Optimality (Large Deviation Principle)
1

n
log Pµ (̄Xn ≥ x) −→

n→∞
− kl(x, µ) .



Properties of KL divergence
Tensorization of entropy:
If P = P1 ⊗ P2 and Q = Q1 ⊗ Q2, then

KL(P,Q) = KL(P1,Q1) + KL(P2,Q2) .

Contraction of entropy data­processing inequality:
Let (Ω,A) be a measurable space, and let P and Q be two probability measures on
(Ω,A). Let X : Ω → (X ,B) be a random variable, and let PX (resp. QX) be the
push-forward measures, ie the laws of X wrt P (resp. Q). Then

KL
(
PX,QX

)
≤ KL(P,Q) .

Pinsker’s inequality:

Let P,Q ∈ M1(Ω,A). Then ‖P− Q‖TV
def
= sup

A∈A
|P(A)− Q(A)| ≤

√
KL(P,Q)

2
.



Proof: contraction
Contraction: if KL(P, Q) = +∞, the result is obvious. Otherwise, P � Q and there exists dP

dQ : Ω → R such that for all

measurable f : Ω → R,
∫
Ω

f dP =
∫
Ω

f dP
dQ dQ.

• We first prove that PX � QX and, if γ(x) := EQ
[

dP
dQ

∣∣X = x
]
is the Q-a.s. unique function such that

EQ
[

dP
dQ

∣∣X] = γ(X), then γ = dPX

dQX
. Indeed, for all B ∈ B,

PX(B) = P(X ∈ B) =

∫
X∈B

dP

dQ
dQ = EQ

[
dP

dQ
1{X ∈ B}

]
= EQ

[
EQ

[
dP

dQ
1{X ∈ B}

∣∣∣X]] = EQ

[
1{X ∈ B}EQ

[
dP

dQ

∣∣∣X]]
= EQ

[
1{X ∈ B}γ(X)

]
=

∫
X∈B

γ(X)dQ =

∫
B
γdQX

and hence PX � QX and dPX

dQX
= γ.

• Now, KL
(
PX, QX

)
=

∫
X
γ log γ dQX

=

∫
Ω

γ(X) log γ(X) dQ

= EQ

[
ϕ

(
EQ

[
dP

dQ

∣∣∣X])] where ϕ := x 7→ x log(x) is convex

≤ EQ

[
EQ

[
ϕ

(
dP

dQ

) ∣∣∣X]] by (conditional) Jensen’s inequality

= EQ

[
ϕ

(
dP

dQ

)]
= KL(P, Q) .



Proof: Pinsker
Let A ∈ A, p = P(A) and q = Q(A). By contraction,

KL(P, Q) ≥ KL(P1A , Q1A ) = KL
(
B
(
P(A)

)
,B
(
Q(A)

))
= kl

(
P(A), Q(A)

)
≥ 2
(
P(A) − Q(A)

)2
.



Lower Bound: the Entropic Way

x+µ εx

LetΩ = {0, 1}n, Xi(ω) = ωi

Probability laws onΩ: Pp = B(p)⊗n.
For all ϵ > 0,

n kl(x+ ϵ, µ) = KL (Px+ϵ,Pµ) KL(P ⊗ P′, Q ⊗ Q′) = KL(P, Q) + KL(P′, Q′)

≥ KL
(
P1{X̄n≥x}

x+ϵ , P1{X̄n≥x}
µ

) KL(P, Q) ≥ KL(PX, QX)
contraction of entropy

= data-processing inequality

= kl
(
Px+ϵ (X̄n ≥ x) , Pµ (X̄n ≥ x)

)
≥ Px+ϵ (X̄n ≥ x) log

1

Pµ (X̄n ≥ x)
− log(2) kl(p, q) ≥ p log

1

q
− log 2

A non­asymptotic lower bound

∀ϵ > 0, Pµ (X̄n ≥ x) ≥ e
− n kl(x+ϵ,µ)+log(2)

1−e−2nϵ2 .
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The No­Free­Lunch theorem
A learning algorithm A for binary classification maps a sample S ∼ D⊗n to a decision
rule ĥn.

Theorem
Let A be any learning algorithm for binary classification over a domain X . If the
training set size is n ≤ |X |/2, then there exists a distributionD overX × {0, 1} such
that:

• there exists a function f : X → {0, 1} with LD(f) = 0;

• with probability at least 1/7 over the choice of S ∼ D⊗n,

LD
(
A(S)

)
≥ 1

8
.

Note that the ERM overH = {f}, or over any setH such that n ≥ 8 log(7|H|/6), is a
successful learner in that setting.



Proof
Take C ⊂ X of cardinality 2n, and{0, 1}C = {f1, . . . , fT} where T = 22n . For each 1 ≤ i ≤ T, we denote by Di the probability distribution on

C × {0, 1} defined by Di
(
{x, y}

)
=

{
1
2n if y = fi(x) ,

0 otherwise.

We will show thatmax1≤i≤T E
[
LDi (A(S))

]
≥ 1/4, which entails the result thanks to the small lemma: if P(0 ≤ Z ≤ 1) = 1 and E[Z] ≥ 1/4, then

P(Z ≥ 1/8) ≥ 1/7. Indeed, 1/4 ≤ E[Z] ≤ P(Z < 1/8)/8 + P(Z ≥ 1/8) = 1/8 − 7 P(Z ≥ 1/8)/8.

All the X-samples SX1, . . . , S
X
k , for k = (2n)n , are equaly likely. For 1 ≤ j ≤ k, if SXj = (x1, . . . , xn) we denote by

Sij =
(
(x1, fi(x1)), . . . , (xn, fi(xn)

)
, and f̂ij = A

(
Sij
)
.

max
1≤i≤T

E
[
LDi
(
A(S)

)]
= max

1≤i≤T

1

k

k∑
j=1

LDi

(̂
fij

)
≥

1

T

T∑
i=1

1

k

k∑
j=1

LDi

(̂
fij

)

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi

(̂
fij

)
≥ min

1≤j≤k

1

T

T∑
i=1

LDi

(̂
fij

)
.

Fix 1 ≤ j ≤ k, denote SXj = (x1, . . . , xn) and define{v1, . . . , vp} = C \ {x1, . . . , xn}, where p ≥ n. Then

LDi

(̂
fij

)
=

1

2n

∑
x∈C

1
{̂
fij(x) ̸= fi(x)

}
≥

1

2p

p∑
r=1

1
{̂
fij(vr) ̸= fi(vr)

}
and hence

1

T

T∑
i=1

LDi

(̂
fij

)
≥

1

T

T∑
i=1

1

2p

p∑
r=1

1
{̂
fij(vr) ̸= fi(vr)

}
≥

1

2
min

1≤r≤p

1

T

T∑
i=1

1
{̂
fij(vr) ̸= fi(vr)

}
.

Fix 1 ≤ r ≤ p. Then the functions{fi : 1 ≤ i ≤ T} can be grouped into T/2 pairs of functions
(̃
f0i , f̃

1
i
)
, 1 ≤ i ≤ T/2 which agree on all x ∈ C except on vr ,

and for all 1 ≤ i ≤ T/2 it holds that1
{̂
fij(vr) ̸= f̃0i (vr)

}
+ 1

{̂
fij(vr) ̸= f̃1i (vr)

}
= 1. Hence,

T∑
i=1

1
{̂
fij(vr) ̸= fi(vr)

}
=

T/2∑
i=1

1
{̂
fij(vr) ̸= f̃0i (vr)

}
+ 1

{̂
fij(vr) ̸= f̃1i (vr)

}
= T/2, which concludes the proof.



Consequence: infinite VC­dimension =⇒
no learnability
Recall that a hypothesis classH is agnostic PAC learnable if there exists a function
nH : (0, 1)2 → N and a learning algorithm S 7→ ĥn such that for every ϵ, δ ∈ (0, 1),

for every distribution D on X × Y when S =
(
(X1, Y1), . . . , (Xn, Yn)

) iid∼ D,

P
(
LD
(
ĥn

)
≥ min

h′∈H
LD(h

′) + ϵ
)
≤ δ

for all n ≥ nH(ϵ, δ).

Theorem
LetH be a class of infinite VC-dimension. ThenH is not PAC-learnable.

Proof: for every training size n, there exists a set C ⊂ X of size 2n that is shattered by
H. By the NFL theorem, for every learning algorithm A there exists a probability
distribution D over X × {0, 1} and h : X → {0, 1} such that LD(h) = 0 but with
probability at least 1/7 over the training set, we have LD

(
A(S)

)
≥ 1/8.



Consequence: Curse of Dimensionality

Theorem
Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for binary
classification over a domain X = [0, 1]d. If the training set size is n ≤ (c+ 1)d/2,
then there exists a distributionD over [0, 1]d × {0, 1} such that:

• η(x) = P(Y = 1|X = x) is c-Lipschitz;

• the Bayes error of the distribution is 0;

• with probability at least 1/7 over the choice of S ∼ D⊗n,

LD
(
A(S)

)
≥ 1

8
.



Shattering

Definition
LetH be a class of functions X → {0, 1} and let C = {x1, . . . , xm} ⊂ X . The
restriction ofH to C is the set of functions C → {0, 1} that can be derived fromH:

HC =
{
(x1, . . . , xm) →

(
h(x1), . . . , h(xm)

)
: h ∈ H

}
.

Shattering
A hypothesis classH shatters a finite set C ⊂ X ifHC = {0, 1}C.

Example:
• H =

{
1]−∞,a] : a ∈ R}.

• H2
rec =

{
h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2

}
where

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 ;

0 otherwise .



VC dimension

Definition
The Vapnik Chervonenkis dimension VCdim(H) of a hypothesis classH is the
maximal size of a set C ⊂ X that can be shattered byH. IfH can shatter sets of
arbitrarily large size we say that VCdim(H) = ∞.

Example:

• H =
{
1]−∞,a] : a ∈ R}.

• H2
rec =

{
R2 3 x 7→ 1[a1,b1](x1)1[a2,b2](x2) : a1 ≤ b1 and a2 ≤ b2

}



Fundamental theorem of PAC learning
LetH be a hypothesis class of functions from a domain X to {0, 1} and let the loss
function of 0− 1 loss. Then the following propositions are equivalent:

1. H has the uniform convergence property,

2. any ERM rule is a successful agnostic PAC learner forH,

3. H is agnostic PAC learnable,

4. H has finite VC-dimension.



Fundamental theorem of PAC learning
(quantitative version)
LetH be a hypothesis class of functions from a domain X to {0, 1} and let the loss
function of 0− 1 loss. Assume that d := VCdim(H) < ∞. Then there exist
constants C1, C2 such that:

1. H has the uniform convergence property with sample complexity

C1
d+ log(1/δ)

ϵ2
≤ nUC

H(ϵ, δ) ≤ C2
d+ log(1/δ)

ϵ2
,

2. H is agnostic PAC learnable with sample complexity

C1
d+ log(1/δ)

ϵ2
≤ nH(ϵ, δ) ≤ C2

d+ log(1/δ)
ϵ2

,



Sauer’s lemma

Definition
LetH be a hypothesis class. Then the growth function ofH, denoted τH : N → N, is
defined as the maximal number of different functions that can be obtained by
restrictingH to a set of sizem: τH(m) = max

C⊂X:|C|=m

∣∣HC

∣∣ .
Note: if VCdim(H) = d, then for anym ≤ d we have τH(m) = 2m.

Sauer’s lemma
LetH be a hypothesis class with d = VCdim(H) < ∞. Then, for allm ≥ d,

τH(m) ≤
d∑

i=0

(
m
i

)
≤
(em

d

)d
.

Think of example: H =
{
1(−∞,a] : a ∈ R} with d = VCdim(H) = 1.



Proof of Sauer’s lemma 1/2
In fact we prove the stronger claim: ∣∣HC

∣∣ ≤ ∣∣{B ⊂ C : H shatters B}
∣∣ ≤ d∑

i=0

(m

i

)
.

where the last inequality holds since no set of size larger than d is shattered byH. The proof is by induction.
m=1: The empty set is always considered to be shattered byH. Hence, either |HC| = 1 and d = 0, inequality 1 ≤ 1, or d ≥ 1 and the inequality is 2 ≤ 2.

Induction: Let C = {x1, . . . , xm}, and let C′ = {x2, . . . , xm}. We note functions like vectors, and we define

Y0 =
{
(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC or (1, y2, . . . , ym) ∈ HC

}
, and

Y1 =
{
(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC and (1, y2, . . . , ym) ∈ HC

}
.

Then |HC| = |Y0| + |Y1|. Moreover, Y0 = HC′ and hence by the induction hypothesis:

|Y0| =
∣∣HC′

∣∣ ≤ ∣∣{B′ ⊂ C′ : H shatters B′}
∣∣ = ∣∣{B ⊂ C : x1 /∈ B andH shatters B}

∣∣
Next, define

H′
=

{
h ∈ H : ∃h′ ∈ H s.t. ∀1 ≤ i ≤ m, h′(xi) =

{
1 − h(x1) if i = 1

h(xi) otherwise

}

Note thatH′ shatters B′ ⊂ C′ iffH′ shatters B′ ∪ {x1}, and that Y1 = H′
C′ . Hence, by the induction hypothesis,

|Y1| =
∣∣H′

C′
∣∣ ≤ ∣∣{B′ ⊂ C′ : H′ shatters B′}

∣∣ = ∣∣{B′ ⊂ C′ : H′ shatters B′ ∪ {x1}}
∣∣

=
∣∣{B ⊂ C : x1 ∈ B andH′ shatters B}

∣∣ ≤ ∣∣{B ⊂ C : x1 ∈ B andH shatters B}
∣∣ .

Overall,∣∣HC
∣∣ = |Y0| + |Y1| ≤

∣∣{B ⊂ C : x1 /∈ B andH shatters B}
∣∣ + ∣∣{B ⊂ C : x1 ∈ B andH shatters B}

∣∣ = ∣∣{B ⊂ C : H shatters B}
∣∣ .



Proof of Sauer’s lemma 2/2
For the last inequality, one may observe that ifm ≥ 2d, defining N ∼ B(m, 1/2), Chernoff’s inequality and inequality
log(u) ≥ (u − 1)/u yield

− log P(N ≤ d) ≥ m kl
(

d

m
,
1

2

)
≥ d log

2d

m
+ (m − d) log

2(m − d)

m

≥ m log(2) + d log
d

m
+ (m − d)

−d/m

(m − d)/m
= m log(2) + d log

d

em
,

and hence
d∑

i=0

(m
i

)
= 2

mP(N ≤ d) ≤ exp
(
−d log

d

em

)
=

(
em

d

)d

.

Besides, for the case d ≤ m ≤ 2d, the inequality is obvious since (em/d)d ≥ 2m : indeed, function f : x 7→ −x log(x/e)
is increasing on [0, 1], and hence for all d ≤ m ≤ 2d:

d

m
log

em

d
= f(d/m) ≥ f(1/2) =

1

2
log(2e) ≥ log(2) ,

which implies
(

em
d

)d = exp
(
d log em

d

)
≥ exp(m log(2)) = 2m .

Alternately, you may simply observe that for allm ≥ d,(
d

m

)d d∑
i=0

(m
i

)
≤

d∑
i=0

(
d

m

)i (m
i

)
≤

m∑
i=0

(
d

m

)i (m
i

)
=

(
1 +

d

m

)m

≤ ed .



Finite VC dimension implies Uniform
Convergence

Theorem
LetH be a class and let τH be its growth function. Then, for every distribution D dans
for every δ ∈ (0, 1), with probability at least 1− δ over the choice of the sample
S ∼ D⊗n we have

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ ≤ 1 +

√
log
(
τH(2n))

δ
√

n/2
.

Note: this result is sufficient to prove that finite VC-dim =⇒ learnable, but the
dependency in δ is not correct at all: roughly speaking, the factor 1/δ can be replaced
by log(1/δ).



Proof: symmetrization and Rademacher
complexity (1/2)
We consider the 0-1 loss ℓ(h, (x, y)) = 1{h(x) 6= y}, or any [0, 1]−valued loss ℓ. We denote Zi = (Xi, Yi), and
observe that LD(h) = EZi [ℓ(h, Zi)] = ES′ [LS′ (h)] if S

′ = Z′1, . . . , Z
′
n denotes another iid sample of D. Hence,

ES

[
sup
h∈H

∣∣LD(h) − LS(h)
∣∣] = ES

[
sup
h∈H

∣∣ES′ [LS′ (h)] − LS(h)
∣∣] = ES

[
sup
h∈H

∣∣∣ES′
[
LS′ (h) − LS(h)

]∣∣∣]

≤ ES

[
sup
h∈H

ES′
[∣∣LS′ (h) − LS(h)

∣∣]] ≤ ES

[
ES′
[
sup
h∈H

∣∣LS′ (h) − LS(h)
∣∣]]

= ES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

ℓ(h, Z′i ) − ℓ(h, Zi)

∣∣∣∣∣
]

= ES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣
]

for all σ ∈ {±1}n

= EΣES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣
]

ifΣ ∼ U
(
{±1}n

)

= ES,S′EΣ

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣
]
.



Proof: symmetrization and Rademacher
complexity (1/2)
We consider the 0-1 loss ℓ(h, (x, y)) = 1{h(x) 6= y}, or any [0, 1]−valued loss ℓ. We denote Zi = (Xi, Yi), and
observe that LD(h) = EZi [ℓ(h, Zi)] = ES′ [LS′ (h)] if S

′ = Z′1, . . . , Z
′
n denotes another iid sample of D. Hence,

ES

[
sup
h∈H

∣∣LD(h) − LS(h)
∣∣] = ES

[
sup
h∈H

∣∣ES′ [LS′ (h)] − LS(h)
∣∣] = ES

[
sup
h∈H

∣∣∣ES′
[
LS′ (h) − LS(h)

]∣∣∣]

= ES,S′EΣ

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣
]
.

Now, for every S, S′ , let C = CS,S′ =
{
x : ∃i ∈ {1, . . . , n} : x = Xi or X

′
i

}
. Then ∀σ ∈ {−1, 1}n ,

sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣ = max
h∈HC

1

n

∣∣∣∣∣
n∑

i=1

σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣ .



Proof: symmetrization and Rademacher
complexity (2/2)
Moreover, for every h ∈ HC let Zh = 1

n

∑n
i=1 Σi

(
ℓ(h, Z′i ) − ℓ(h, Zi)

)
. Then EΣ[Zh] = 0, each summand belongs to

[−1, 1] and by Hoeffding’s inequality, for every ϵ > 0:

PΣ

[
|Zh| ≥ ϵ

]
≤ 2 exp

(
−

nϵ2

2

)
.

Hence, by the union bound,

PΣ

[
max
h∈HC

|Zh| ≥ ϵ
]
≤ 2
∣∣HC

∣∣ exp(−
nϵ2

2

)
.

The following lemma permits to deduce that

EΣ

[
max
h∈HC

|Zh|
]
≤

1 +
√
log(|HC|)√
n/2

≤
1 +

√
log(τH(2n))√

n/2
.

since |C| ≤ 2n. Hence,

ES

[
sup
h∈H

∣∣LD(h) − LS(h)
∣∣] ≤ ES,S′EΣ

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi
(
ℓ(h, Z′i ) − ℓ(h, Zi)

)∣∣∣∣∣
]

≤
1 +

√
log(τH(2n))√

n/2
,

and we conclude by using Markov’s inequality (poor idea! Better: McDiarmid’s inequality).



Technical Lemma

Lemma
Let a > 0, b > 1, and let Z be a real-valued random variable such that for all t ≥ 0,

P(Z ≥ t) ≤ 2b exp
(
− t2

a2

)
. Then

E[Z] ≤ a

(√
log(b) +

1√
log(b)

)
.

Proof: E[Z] ≤
∫ ∞

0

P(Z ≥ t)dt ≤ a
√
log(b) +

∫ ∞

a
√

log(b)
2b exp

(
−

t2

a2

)
dt

≤ a
√
log(b) + 2b

∫ ∞

a
√

log(b)

t

a
√
log(b)

exp

(
−

t2

a2

)
dt

= a
√
log(b) +

2b

a
√
log(b)

×
a2

2
exp

(
−
(
a
√
log(b)

)2
a2

)

= a
√
log(b) +

a√
log(b)

.

NB: cutting at a
√
log(2b) gives a better but less nice inequality for our use.



Application: Finite VC­dim classes are
agnostically learnable
It suffices to prove that finite VC-dim implies the uniform convergence property. From
Sauer’s lemma, for allm ≥ d/2 we have τH(2n) ≤ (2en/d)d. With the previous
theorem, this yields that with probability at least 1− δ:

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ ≤ 1 +

√
d log

(
2en/d

)
δ
√

n/2
≤ 1

δ

√
8d log(2en/d)

n

as soon as
√

d log
(
2en/d

)
≥ 1. To ensure that this is at most ϵ, one may choose

n ≥ 8d log(n)
(δϵ)2

+
8d log(2e/d)

(δϵ)2
.

By the following lemma, it is sufficient that

n ≥
32d log

(
4d

(δϵ)2

)
(δϵ)2

+
16d log

(
2e
d

)
(δϵ)2

.



Technical Lemma

Lemma
Let a > 0. Then

x ≥ 2a log(a) =⇒ x ≥ a log(x) .

Proof: For a ≤ e, true for every x > 0. Otherwise, for a ≥
√
e we have 2a log(a) ≥ a

and thus for every t ≥ 2a log(a), as f : t 7→ t− a log(t) is increasing on [a,∞),
f(t) ≥ f(2a log(a)) = a log(a)− a log(2 log(a)) ≥ 0, since for every a > 0 it holds
that a ≥ 2 log(a).

Lemma
Let a ≥ 1, b > 0. Then

x ≥ 4a log(2a) + 2b =⇒ x ≥ a log(x) + b .

Proof: It suffices to check that x ≥ 2a log(x) (given by the above lemma) and that
x ≥ 2b (obvious since 4a log(2a) ≥ 0).
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