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Enigma

+ Electro-mechanical rotor
cipher machines, 26
characters

 Invented at the end of
WW?1 by Arthur Scherbius

« Commercial use, then

Rotors wd German Army during WW2

Lampboard\, / First cracked by Marian
4 Rejewski in the 1930s
(Bomb), then improved to

3.10" configurations

Read Simon Singh, The [
Code Book

f‘*Keyboafd

— 5~ Plugboard



Reflector Left Middle Right Static
B Wheel | Wheel Il Wheel Il Wheel

] o E
I: T F &l . fE
1l o F —

= e = ] E E F 1 E o4
E ] E E E E PR S
:\: E 1 E Tttt
b 4 . F E E ] E o
3 B :'\R: ] E

= P ] E 3
1 £ ] - »

o [
] E = >

R

.

Plugboard L i = L:
ZPHHNMSWCI ¥YTQEDOEBLRFIKUVYGIXJA

ABCDEFGHI JKLMNOPQRSTUVWXYZ

_______._.;:-'-:_.______

F Lightboard 3

0000600000 000000000
Q000600006 )
6060606600 | 00500 60 5D

© 2006, by Louise Dade



http://enigma.louisedade.co.uk/

Battle of the Atlantic
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Massively used by the German
Kriegsmarine and Luftwaffe

weakness: 3-letters setting to
initiate communication, taken
from the Kenngruppenbuch

Government Code and Cypher
School: Bletchley Park (on the
train line between Cambridge and
Oxford)

Colossus (first programmable
computers) in 1943




Estimating probabilities

+ Discrete alphabet A.
+ Unknown probability p on A
« Sample X1, . .., X, of independent draws of p.
+ Goal : use the sample to estimate p(a) for all a € A.
Natural idea:
pla) = —a, where N(a) = #{i: X, = a}
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Safari preparation
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https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf
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https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf

Bigram Model for NLP o comns e

Learning set:
john read moby dick

mary read a different book
she read a book by cher

1+1

p(wilwi—1) = Zm p(s) = EP(WJW"%)

p( john read a book )
= p(john|-) p(read|john)  p(alread)  p(bookla)  p(:|book)
_ (- john) c(john read) c(reada) c(a book) c(book -)
> w) > cljohn w) >, c(read w) > claw) >, c(book w)
- 1 1 1 1
B 3 1 3 2 2

~ 0.06



https://nlp.stanford.edu/~wcmac

Bigram Model for NLP i vt v

Learning set:
john read moby dick

mary read a different book
she read a book by cher

1+1

plon) = et ) = [T olow-a)

p( cher read a book )
= p(cher|-) p(read|cher)  p(alread)  p(bookla)  P(:|book)
_ (- cher) c(cher read) c(reada) c(a book) c(book -)
> w) >, c(cher w) >, c(read w) > claw) >, c(book w)
= 0 0 2 1 1
3 1 3 2 2
0

= useless, the unseen must be treated correctly.
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https://nlp.stanford.edu/~wcmac

Bayesian Approach: Laplace Estimator

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)
Will the sun rise tomorrow?

o N()+1
pla) = m

+ good for small alphabets and many samples

+ very bad when lots of items seen once (ex: DNA sequences)

Al can be very large (or even infinite), but p concentrated on few items

== not a satisfying solution to the problem
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Alan Turing Irving J. Good

1912-1954 1916-2009

student of Godfrey Harold Hardy in Graduated in Cambridge
Cambridge Academic carrer in Bayesian statistics
PhD from Princeton with Alonzo in Manchester and then in the Univer-

Church sity of Virginia (USA)
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Missing mass estimation

X1, ..., X, independent draws of p € Iy (A).

n

Na(x) = 1{Xy = x}

m=1

How to ‘estimate’ the total mass of the unseen items

My = p(x) 1{N,(x) = 0} ?
XEA

UNIVERSITE




Missing Mass

id
LetA=N,letp € M{(N)andletXy,...,X, ~ pand foreveryx € N, let

No(x) = o1, T{X; = x}.

Pb: estimate the mass of the unseen
My=P (X1 & (X1, X} XE) =D p(x) 1{Na(x) = 0}
x=0

Idea: use hapaxes = symbols x € N that appear once in the sample

100

M, = EZO 1{N,(x) = 1}

= Good-Turing 'estimator’
= leave-one-out estimator of M: if X_; = {X1, ..., Xic1,Xig1, - - -, Xn }
n

i, = %Z 1{x ¢ %)

i=1

UNIVERSITE




‘Bias’ of the Good-Turing estimator

Proposition [Good '1953]
Whatever the law p,

N 1
0 <E[M,] —E[M,)] < -
n
Proof: E[i1,] — E[M,] = ) {Z 1{N,(x) = 1}} —E |:Zp Y1{N,(x) = 0}
- Len XEN

== Z]P’ Ny(x) = 1) — np(x) B(N,(x) = 0)
== an(x)(l —p(0))" " = np(0) (1 = p(x)"

== Zp ) X mp(x) (1 = p(x))"~

xEN

=- Zp(x) P(Na(x) = 1)

xEN

UNIVERSITE XEN
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Example: MNIST dataset

% e & - o x g
> QA= #e€d +A=R # € 4 Q=
LDA Classifier KNN Classifier QDA Classifier

predicted 5 predicted 0 predicted 4 predicted 1 predicted 9 pradicled > pradicted O spredicted 4: predicted 1, precictsd 3 predicted 4 predicted 2 predicted 0 predicted 4 predicted 2
expected S expected 0 expected 4 expected 1 expected 9 Expected s' (expecied 01 expected 4 ExRecied 11 iexpecterty expected 5 expected 0 expected 4 expected 1 expected 9
predicted 2 predicted 1 predicted 8 predicted 1 predicted 4 peecicted 9 predicted 1. ipredicted 3. predictedl predicted 4 predicted 7 predicted 1 predicted 0 predicted 4 predicted 3
expected2 expected 1 expected3 expected 1 expected 4 expected 2 expected 1 expected 3 expected 1 expected 4 expected 2 expected 1 expected 3 expected 1 expected 4
predicted 3 predicted 5 predicted 3 predicted 0 predicted 1 Brediree 3 pediecd ] ibiedited 1 Brediterd (prccded predicted 4 predicted 7 predicted 3 predicted 0 predicted 1
expected3 expected 5 expected3 expacted 6 expected 1 expected 3 expected 5 expected 3 expected 6 expected 1 expected 3 expected 5 expected 3 expected 6 expected 1

3 3 6 ) 3 3 0

3 536




What is a classifier?

2
&
g

< <

X1 »
X2 Y2

%,
Ze
00

&

oo0oo0o0o0
ooo

Xn Yn

X R 1 n
Data: n-by-p matrix X € Mmp( ) € y
+ nexamples = points of
observations Classifier A
+ p features = characteristics n

measured for each h,, X — y

example
[l - 6
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Statistical Learning Hypothesis

Assumption
* The examples ()(,, Y,»)lg,én are iid samples of an unknown joint distribution D;
+ The points to classify later are also independent draws of the same distribution D.

Hence, for every decision rule h : X — )) we can define the risk
Lo () = Py (h() # ¥) = D({(y) : h() #y}) -

The goal of the learning algorithm is to minimize the expected risk:

Ru(A,) = Epen lLD(An((Xl, Y1),y (X, Ya)) )]

hn

for every distribution D, using only the examples.

ENS DE LYON




Binary Classification

+ Domain X, label space Y = {0,1}

+ Unknown distribution Don X x )

« Sample S = (X1,Y1), ..., (X0, Va) = D
« h: X — Y, h € H hypothesis class

+ loss function £(y,y’) = 1{y #y'}
+ generalization error (loss) Lp(h) = Ep [¢(h(X), Y)| = Ep [h(X) # Y]

1 n
* training error Ls(h) = — Z 1{h(x;) # v}

n

=1

agnostic learning # realizable assumption (when there exists h* such that
learning algorithm: S — h, such that LD(EH) —inf,cq Lp(h) small

UNIVERSITE




Performance Limit: Bayes Classifier

Consider binary classification Y = {0, 1}, n(x) := D(Y = 1|X = x).

Theorem
The Bayes classifier is defined by

P = 1{n() > 1/2} = 1{n() > 1 - ()} = 1{2n(x) — 1> 0},
For every classifier h : X — Y = {0,1},
Lp(h) > Lp(h*) = E[min (n(),1 - n(x))} .

The Bayes risk L, = Lp(h*) is called the noise of the problem.
More precisely,

Lp(h) — Lp(h*) = ]E“Qn(x) —1| 1{n(x) # h*(x)}} .

Extends to | Y| > 2.

UNIVERSITE
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Proof

Lo(h) = Lo(h") = E{n{hm #n" 00}
1{r=1}(1{r" (0 = 1} = 1{n" () = 0})
‘Hﬂzﬂ@Wm:NfHVW:HJ
= B2 {0 £ 4 00} (21{r=1} -1) (21{h*<x>:1}—1)}
=E ﬂ{h<x> 20700} (21{r=1} 1) (21{n00 > 3} - 1)}
=E 1{h<x> 20700} (21{n00 > 5}~ 1)E[21{r=1} -1 IX}}
(

—E ]l{h(X) #h 00} (21{n00) > 1} —1) (B[ {r=1}4 - 1)}

-E ]l{h X) # h* (X)}51gn( o) — 7)(277()()71)}

UNIVERSITE

ENS DE LYON




The Nearest-Neighbor Classifier

We assume that X" is a metric space with distance d.
The nearest-neighbor classifier A" : X — ) is defined as

h"™(x) = v, where | € al;g%Tin dix —X) .
SIsn

Typical distance: L? norm on RY: ||x — X|| = Z;’:l(x, —x!)2

Buts many other possibilities: Hamming distance on {0, 1}d, etc.

UNIVERSITE




Numerically




Numerically




The most simple analysis of the most
simple algorithm

A1. Y ={0,1}.
A2. X =1[0,1["

A3. mis c-Lipschitz continuous:

Vx,x' € X, |n(x) — n(X)| < c|[x =¥ .

Theorem
Under the previous assumptions, for all distributions D and all m > 1
R 3cv/d
NN *
E [Lp(A")] <2t + /@D

UNIVERSITE
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Proof Outline

+ Conditioning: as /(x) = argmin, ., [|x — X;

’

Lo(hMV) = E[E[H{Y# Yioo XX, - - ,xn]] .
* Y~ B(p), V' ~B(q) = P(Y#VY)<2min(p,1—p)+|p—al,

]E[]l{yyé Yioo HXo X, ,xn} < 2min (n(X), 1 = n(X)) + c[|X = X0 || -
+ Partition X into |C| = T cells of diameter \/d/T:

C{{/ll’ll{x " |:/d1 ja
T T

T 7|:7 1§1177/d§7-}
+ 2 cases: either the cell of X is occupied by a sample point, or not:

-
X=Xl <> 1{xec} (‘/THRU{X, €c}+ \/&nﬂ{x, ¢ c}) .

ceC

P — X §4+@andchooseT: {nd%lJ




What does the analysis say?

* Is it loose? (sanity check: uniform Dy)

* Non-asympototic (finite sample bound)

* The second term nfﬁ% is distribution independent
+ Does not give the trajectorial decrease of risk

* In expectation only: concentrated?

+ Exponential bound d (cannot be avoided...)
== curse of dimensionality

* How to improve the classifier?

UNIVERSITE




k-nearest neighbors

Let X be a (pre-compact) metric space with distance d.

k-NN classifier
KN 2 x = 1{f(x) > 1/2} = plugin for Bayes classifier with estimator

1k
R

where
d(X(l)(X)vx) < d(X(Q) (X),X) <..- < d(X(n)(X),X) .

UNIVERSITE




More neighbors are better?
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More neighbors are better?
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More neighbors are better?
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More neighbors are better?
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More neighbors are better?
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Bias-Variance tradeoff

Risque de k-NN en fonction du nombre de voisins

knn.est.risk
0,22 024 0,26
|

UNIVERSITE
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Agnostic PAC learnability

Definition
A hypothesis class H is agnostic PAC learnable if there exists a function
ny : (0,1)? — N and a learning algorithm S ~ h, such that for every ¢, € (0,1),

for every distribution Don X x Y when S = ((Xb V), ..oy (X, Yn)) iid D,

B(Lo(hn) > inf Lo(H) +€) <6

foralln > ny(e, 9).
The smallest possible function ny is called the sample complexity of learning H.

UNIVERSITE




Learning via uniform convergence

Definition
A training set S is called e-representative (wrt domain X x Y, hypothese class H, loss
function £ and distribution D) if

Vh e H, |Ls(h) — Lp(h)| < €.

Lemma
If Sis €/2-representative, then any ERM h, defined by h, € arg min,,_,, Ls(h)
satisfies:

Lo(hy) < inf Lp(h) + €.

hEH
Proof: for every h € H,
Lo(ho) < Ls(ha) + 5 < Ls(h) + 5 < Lo(h) + 5+ 5 -

UNIVERSITE
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Uniform Convergence Property

Definition

A hypothesis class H has the uniform convergence property (wrt X x ) and /) if there
exists a function nf : (0, 1) — N such that for every €, 6 € (0, 1) and for every
distribution D over X’ x ), a sample S = ((X17 Y1)y ooy (Xos Y,,)) % b of size

n> n%’f(e, J) has probability at least 1 — § to be e-representative.

Corollary

If H has the uniform convergence property with a function m%{_f, then H is agnostically
PAC learnable with a sample complexity ny (€, 6) < nUHC(g, 5). Furthermore, the ERM
is a successful PAC learner for H.

UNIVERSITE
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Dimensionality reduction

;
X1

+ Data: X = eEM,,(R),p>1
X,

+ Dimensionality reduction: replace x; with y; = Wx;, where W & Md’p(R), d < p.

+ Hopefully, we do not loose too much by replacing x; by y;.
2 approaches:

- Quasi-invertibility: there exists a recovering matrix U € M, 4(IR) such that for all
ie{l,...,n},
)?,‘ = Uy, ~ X .

- More modest goal: distance-preserving property

Vi<ij<n, |lyi—yll=Ilx—xl

UNIVERSITE




Johnson-Lindenstrauss Lemma

Theorem |
Letxy,...,Xx, € RP,and lete > 0. Then, for every d > 6—410(;%' there exists a
matrix A € Mg ,(R) such that

Vi<i<j<n, (1—6)HX,-—X/-H HAx,—Ax/H (1+€)HX,—X]H

dis independent of p (!)

on the dependence on ¢:

41og(n) < 8log(n) (1 N E)Q .

e —log(1l+¢) €2 3

Remark 2: how to find such a matrix A?

4log(n) + 2log(1/4)
e —log(1+¢)

entries A,,- ~ N( ) satisfies the lemma is larger than 1 — 4.

For every d > , the probability that a random matrix with

UNIVERSITE

ENS DE LYON




Random Projections

Method: (constructive) probabilistic method: we choose

i 1
A d/\/(o,5> .

Lety € R?and Y = Ay. Then V1 < k < d,

2
ZAki)/ZNN( ”yj ) .

=1

Hence E[[[V][*] = [lyl|*.

= does it hold with large probability?

UNIVERSITE
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Classical Examples

* Gaussian
* Rademacher
* Bernoulli

» Poisson

Sub-Gaussian variables.




Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)
Letp € (0,1). X1, ..., X% " B(w), and letx € (p, 1].
(i) Chernoffs’ bound for Bernoulli variables: P(X, > x) < exp ( —n Kl(x, /L)) , where

1 —
K(p, q) :plogg + (1= p)log T—

P . Same for left deviations.
q

(iy If p(x) = Kl(x, p), then ¢"' (x) = 1/[x(1 — x)] and

x — p)? .,
K p) = S [0 ot ste— ) 201 sy

=mw? o 2u4x
———— withx =
— 2%(1 —%) 3
1 2 2
- (x— > 2(x — .
T 2max,<,<p u(l —u) (=™ 2 200-m)

1 1
by Jensen, since ¢'" is convex and / s2(1 —s)ds = 3
0

(iii) Hoeffding's bound for Bernoulli variables: (X, > x) < exp ( — 2n(x — w)? ) .
(iv) Inequalities (3) and (22) hold for arbitrary independent random variables with range [0, 1] and expectation .
Reason: exp(Ax) < (1 — x) exp(0) + xexp(A).

UNIVERSITE
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Examples

cIfp<1/2,

P ()_(k > ;) < exp (—;(1 — 2#)2) :

(Consequence of Chernoff or direct computation with (1 — u)* < exp(—ku), or of Hoeffding).

« Forall 4 € [0, 1], Chernoff's bound with log(u) > (u — 1)/u yields

- ) 1- log(2) mip
— ) < ——m ~ —0. mu) < - .
P (Xm < 2) exp ( 5 I exp (—0.153 mu) < exp ( 7 )

Hoeffding yields a very poor result, but (ii) gives:

P ()_(m < g) < exp (—;)mu> =exp (—0.15mu) < exp (—%) .

UNIVERSITE
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Chernoff's Method

Johnson-Lindenstrauss Lemma




Proof of the Johnson-Lindenstrauss
Lemma

Method: (constructive) probabilistic method: we choose A; Ld N (0, %) Lety € R” and
Y=Ay. ThenV1 < k < d, Yy = ZAk e~ N ( ||yH ) Hence E[||Y]*] = |IyII*.

Besides, by the deviation bound for the x distribution given in the next slide,

P(nyn > (14 ) :H”(Z(W) d<1+e>> <exp(—dg*() < L

n

and similarly P( [|V]|* < (1 — e)\|y||2) <exp(—do¢ () < =
Applying this result to all y;; = x; — x;, 1 < i < j < n, by the union bound:
n(n—1)
Pl U M=% >0+agufax—x)|<-e) <=5 <1,
1<i<j<n

and hence there exists at least a matrix A for which the lemma holds.

UNIVERSITE
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Deviations of the y? distribution: rate
function

Lemma
If U~ N(0,1) and X = U? — 1, then

x —log(1 + x) - x2

*(x) = sup A — log E [eM] = )
?" (x) )\p & [ } 2 *4(1+§>2

Proof: Forevery A < 1/2,

1 2 u2 =X (1—2x))u2 1
]E{e”] :7/9*(“ DTy =S /e_ 2 du=e d—e .
V2r Jr V2 Jr V1—2X\
Hence ¢(A) = log E [e“} = —21log(1 — 2X\) — X. The concave function A > Ax — ¢ () is maximized at \* s.t.

x=¢'(\") = 1—5x= — Lthatisat \* = 1 (1 - %ﬂ) = o(ipy - Hence
. — log(1

" (x) = A'x— p(\") = M . The last inequality is obtained by "Pollard’s trick” applied to

g(x) = x — log(1 + x): since g(0) = g’ (0) = O andsince g’ (x) = 1/(1 + x)? is convex, by Jensen's inequality

1g,’(sx)2(1 —Sds>g" <x/01 s2(1— s)ds) =4 (g) )

x—log(1+x)

ENS DE LYON



Deviations of the y?(d) distribution

By Chernoffs method, if Z ~ x2(d) dist U2 + - + U2 where U ~ N (0, 1): de2
P(z>d(1+¢€)) <exp(—dp™(c)) < exp
1+ 11+ §)?

Moreover, since ¢* (—e) = 77€+log§17€) = %ZQQ j( > sz( l)k‘ = ¢"(e),
P(z<d(1—¢)) < exp(—dg*(e))andsince p* (—¢€) = —
P(z<d(1—c¢)) <exp

Note: the Laurent-Massart inequality states that for everyu > 0, ]P’(Z >d+ 2Vdu+ 2u) < exp ( — u) . Itcanbe
deduced from the previous bound by noting that for ?eryx >0

2
" (2vx + 2x) =x+% 2y/x — log <1+2\&+ @))

>x+ l(2\/>7<—10g (exp(2ﬁ))) =x,and

P(z>d+2Vdu+2u) =P(3 350 (U7 — 1) > 2,/F +2Y%) < exp(—dd™ (24/F + 24)) < ™" The proofof
Laurent and Massart (which takes elements from Blrge and Massart 1998) is a bit different: they note that

1 2X oo a(2x)¢ S 2
H(N) = ——log(1 — 2\) — A = Z @ IS &) <AZ Y enf=  and deduce that

2 k=2 2k =0 2(£ 4 2) =0

2
by x4+ 1— 2 F1
¥ (x) > ™ (x) = sup Ax — = ,whilex > 0and ™ (x) = uimpliesx = 21/u + 2u. Also note in passing that by
A 1 —2X 2

Pollard's trick ™ (x) > ™ (x) >

X
()77
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Non-parametric Bounds




Bounded variables are sub-Gaussian

Ifa < X < b, then Var[x] < (b —a)?/4
By symmetrization, Xis (b — 0)2 sub-Gaussian. In fact, one can prove better.

UNIVERSITE




”Statistical Physics” View

Let X be a real-valued random variable with law Py. For all A € R, let
¢x(A) = InE [eM]. Then there is a largest open interval [Amin, Amax] on which ¢ is
defined. If it contains 0, let P} be defined by

ary B e
dPX o ]E[QAX] '

Then
¢'(A\) =E(P}) and ¢"(\) = Var(py)

Furthermore, let (Xmin, Xmax) = [A = E(Px)](Amin, Amax), and let A(x) be it
reciprocal mapping. Then for every x > i := E[X], P(Z > x) < exp(—/(x, 1)) and
for every x < E[X], P(X < x) < exp(—/(x, ut)) where

/(w)=A sup M = ¢x(N) -
min <A< Amax

UNIVERSITE




Gibbs-Variance lemma

For any real-valued X with expectation ]E[X] = g, any x € (Xmin, Xmax) and
S ()\mina )\max):

A e
A=A 2(t)dtdu ,
ey u+/0/00(t)tu
and

10x, ) = A(x) B(x) — Px(A(x))
= KL (Pﬁ(x)7 PX) = ]E[lé]lgx KL(Q7 PX)

:/“XLUMdtdu.

UNIVERSITE




Chernoff’s rate function and KL divergence

Let P = Py, and for A € R let P be defined by djp (x) = z(/\) ie for all measurable,
non-negative function f: E,\[ } fR Z()\ P(x)

Prop:

KL(Py,P) = AEx[X] — A(X) = inf { KL(Q,P) : Eq[X] > E,[X] }

Proof: For every Q < P with Eqg[X] > x,

KL(Q,P) = /log <d—Q(X)> dQ(x)
= [10g (520" () e
)\x
= KL(Q,Px) +/log< A)> dQ(x)

= KL(Q, Px) + AEq[x] — log (2(X))
> 0 +AEAM — A(N)  =KL(Px,P)

Cor: since \(x) is such that E(Py,)) = x, I(x) = KL(P\ ,P)

UNIVERSITE
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Chernoff’s rate function and KL divergence

Let P = Py, and for A € R let P be defined by (x )= z(/\) ie for all measurable,

non-negative function f: E,\[ } fR Z()\ P(x)
Prop:
KL(Py,P) = AE5[X] — A(\) = inf { KL(Q,P) : Eq[X] > E, [x}}
Cor: since A(x) is such that E(P,,)) = x, /(x) — KL(P, A5
, , E [xeM]
Since A'(\) = E eV =E,[X] and
E 2 X E AX 2
AN'(\) = }]:"E)Eef‘x]} - ( E[E(:/\X]]> = Var,[x] > 0, the C°° mapping

A = Ax — A(X) is maximal where at A(x) where x = A’ (A(x)) = Ey(,[X] and then

1(x) = A(x)x — A(A(x))
= Awx = (AWErw K — KL (P P) )
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Hoeffding’s inequality

A [a, b]-bounded variable is (b — a)? /4-sub-Gaussian.
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Application: Finite classes are agnostically
PAC-learnable

Theorem
Let H be a finite hypothesis class. Then H enjoys the uniform convergence property with

sample complexity 2|?—t|
lo
(e, ) < [ s w .

262

Moreover, H. is agnostically PAC learnable using an ERM algorithm with sample complexity

21 2|7'l|
(e, ) < 20k (5,6) < {f’i .

€

Proof: Hoeffding's inequality and the union bound.

UNIVERSITE

ENS DE LYON




Sub-Gaussian inequalities

Bennett’s and Bernstein’s inequalities

Let (X,-)lg,-g,, be independent random variables upper-bounded by 1, let

i = (EX1] + - -+ E[X,])/n, let 0% be such that E[x?] < o2 for all i and let
¢(u) = (1 + u)log(1l + u) — u. Then, forallx > 0,

nx2/2 ) |

P(X = jitx) <exp(-no’s (7)) <exp <_02+x/3

2

Bernstein from Bennett: ¢(x) > X since () =2(1+ %) d(x) — X2 >0.
2(1+3)

Extension: if X; < b with b > 0,

N ~ no? bx nx?/2
]P)(Xn 2 1% +X) S €exp (—b2¢ <0_2>) S exp <_o'2-|—éx/3> .

Example: for X with range in [0, 1],
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Parenthesis: "Pollard’s trick”

From [Pollard, MiniEmpirical ex.14, http: //www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]
For any sufficiently smooth real-valued function g defined at least in a neighborhood of O let

g(x) —&(0) — x5'(0)

6k = x2/2

ifx # 0,and G(0) = g’ (0) .
X 1
By Taylor's integral formula g(x) — g(0) — xg' (0) = / g () (x — u)du = x* / g’ (sx)(1 — s)ds .
0

0
Thus, G(x) = [ &' (sx)dv(s), where dv(s) = 2(1 —s)1{0 <s < 1}ds.
Hence, if g is convex then g’/ > 0 and G > 0. Moreover, if g’ is increasing then the functions x + g’’ (sx) fors € [0, 1]
are all increasing and G is also increasing as an average of increasing functions. For g(u) = exp(u), this yields that
(exp(u) — u — 1) /u? is increasing, as required for the proof of Bernstein's inequality.

Similarly, if g’/ is convex then G is also convex as an average of convex functions (x — g’ (sx)) . Moreover, by Jensen’s
s

inequality applied to convex function +(s) = g’ (xs) with the probability measure dv(s) = 2(1 — s)1{0 < s < 1}ds

G(x) = /Olg”(XS) 2(1 — s)ds > ¢’ (x/ols x 2(1 7s)ds) =" (%)

Forg(u) = (1 4+ u)log(1 + u) — u,g"” (u) = 1/(1 + u) and this yields:

w2d (5) - s
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http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

Exercise: for X; ~ B(u),
P(Xy > 2u) < exp(—mx7?)

Chernoff + Taylor: since log(u) > (v —1)/u,

1-2
KI(2p1, 1) = 2p110g(2) + (1 — 242) log T— 2“ > 2, log(2) — pu = p(2log(2) — 1) ~ 0.386 1 .

o

Chernoff with convexity:
(2p—w?/2 3

Kl(2p, p) > ———— = — = 0.375u .
(21, 1) = sn g M 5p
Improved Hoeffding:
20— p)?/2 22 1
Kl(2p, p) > _Cuowiz w2 — =025
max,, < <2, u(l — u) 2 4
Bennett:
2u
2plog — — (2p — p) = p(2log(2) — 1) = 0.386 1 .
I
Bernstein:

2 — p)?/2 2/2 3
2p —p)”/ S M/ [ = 03755 .

p(l—p)+ (20 —p)/3 =~ p+p/38
Hoeffding: 2(21 — ;L)2 = 2,u2,very poor (as expected) when g is small.
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Bennett’s inequality

Theorem
Let b > 0 and let X be a centered variable such that E[X*] < o2, If P(X < b) = 1, then
forall X > 0:

0.2
E [e*x] < exp <b2 (eAb —\b— 1)) .

Hence, if X = X1 + - - - + X, where the (X;) are independent, X; < b, E[X;] = 0 and
Var[x;] < o2, then for every x > 0,

P(x > x) < exp (ZjH (22))




Bernstein’s inequality

Theorem
Iffor all k > 3, E[X] < 1/2klo?b*=2, then for all A € (0,1/b):

Hence, if X = X1 + - - - + X, where the (X;) are independent and
Vk > 3,E[X] < 1/2k'02b" 2, then for every x > 0,

P(X > x) < exp (_2(cr2xirxb))

witho? = Y7, o?.

Proof: choose \ = x/(a + tb)
Remark: Bennett's condition is stronger since it implies E[X*] < E[X?b=2] < o2bk—2,
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Outline

Chernoff's Method

Extensions to dependent variables




Hoeffding-Azuma

Th: Let X, . . ., X, be a martingale such that V1 < k < n, |X — Xs—1| < ¢. Then for
allx >0,

X2
P(|X, — Xo| > x) < 2exp (—n>
( ) 23 =1 i
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Mc-Diarmid’s ineqality

McDiarmid’s inequality: If X1, . . . X, are independent random variables on X and
f: X" > Rissuchthat V1l <i<n,Vxi,... %X,

‘f(xla"'7XI'717XI'7X/'+1)"'?XFI) _f(X17"'7Xi71;X/{7Xi+17" '7Xn)‘ <q ’

then

]P’(|f(x1,...,xn) —E[fx1,....%)]| 2x> < exp (5?;) )

Sanity check: f(x) = > x
Application to the concentration of the Good-Turing estimator.
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Outline

Chernoff's Method

Negative association




A first concentration result with Chebishev: negative correlation permits to bound the
variance of M, by 1/(en).

UNIVERSITE




Teaser: Missing mass - negative correlation
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References For Negative Association

Negative Association - Definition, Properties, and Applications, by David Wajc
https://www.cs.cmu.edu/~dwajc/notes/Negative)20Association. pdf

Balls and Bins:A Study in Negative Dependence, by Balls and Bins:A Study in Negative
Dependence, https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf
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https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf
https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf

Definition

Intuitively: X1, ..., X, are negatively associated when, if a subset / a variables is "high”,
a disjoint subsetJ has to be "low".

Definition

A set of real-valued random variables X1, Xo, ..., Xj, is said to be negatively associated
(NA) if for any two disjoint index sets /,J C [n] and two functions f, g both monotone
increasing or both monotone decreasing, it holds

E[fx i€ ngly:iel)| <E[x:ien] Elgly:)jc)]

NB: fis monotone increasing if Vi € I, x; < x| implies f(x) < f(x').

UNIVERSITE




First properties

Let X1, Xa, ..., X, be NA.
« Foralli# j, Exx] < E[X]E[X]i.e. Cov(X,X;) <O0.
+ For any disjoints subsets /,/ C [n] and all X1, . . ., X,,

P(X >x:i€lU)) <P(Xi>x:ic€l)P(X>x:j€)) and
P(X <x:i€1U)) <PX<x:i€l)P(X<x:jE))

+ For all monotone increasing functions f1, . . . , fy depending on disjoint subsets of

the (X)),
E[[Ts0] < [TEle)]

« Forallxy,...,x,,

P (ﬂ {x > Xi> <[[P(i=x) and P (ﬂ {x < Xi}) <[P <x)

i i
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Consequence: NA concentrates better than
independent

For Chernoff's method (which relies on exponential moments), NA variables can
simply be treated as independent!
In particular:

Chernoff-Hoeffding bound

Let X1, ..., X, be NArandom variables with X; € [a;, bj] a.s. ThenS =Xy + -+ - + X,
satifies Hoeffding's tail bound: for all t > 0,

Flls—ett|> ] <2em (- =)
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Examples of NA variables

=2
&

Independent variables...

0-1 principle If X1, . . . X, are Bernoulli variables and Z,.X,- < 1a.s., then they are
NA.

Let f and g are monotically increasing and depend on disjoint subsets of indices. E[f(X)g(X)] < E[f(N)]E[g(X)] <=
EF(XE0] < EV(X)]E [B(0)). where F(X) = f(x) — £(0) andg(x) = g(x) — g(0). ButF(N)3(X) = O always, while
FX) > 0andg(x) > 0
Permutation distributions If x; < --- < x, and if X1, ..., X, are random variables
such that {Xl, ce. ,Xn} = {xl, ce ,x,,} a.s., with all assignments equally likely,

then they are NA.

Sampling without replacement If X, . . ., X, are sample without replacement
from {x1, ..., Xy} (with N > n), then they are NA.

UNIVERSITE
DELYON



Closure properties

Union
Ifthe {X; : i € I} are NA,if {V; : j € j} are NA, and if the {X;} are independent from
the {V;}, thenthe {X,,V; : i € I,j € J} are NA.

Concordant monotone

Ifthe {X; : i € I} are NA,iff1,...,fi : R” — R are all monotonically increasing and
depend on different subsets of [n], then {fj(X) : 1 <j < k} are NA.

The same holds iff1, ..., fx : R” — R are all monotonically decreasing.

UNIVERSITE




Bins and balls

The standard bins and balls process consists of m balls and n bins.

+ each ball b is independently placed in bin i with probability pj ;: X, i Multi(pp,.).

« occupancy number B; = >, 1{X, = i} number of balls in bin i.
n

In particular Z Bi =m.

i=1

Prop: The B; are NA.
LetX ; = 1{ballbfellintobini}. Bythe 0 — 1 principle, forall 1 < b < mthe {X, ; : 1 < i < n} are NA. By independence and closure under

m
union, soarethe {X, ; : 1 < b < m, 1 < i < n}.Byclosure under concordant monotone functions, the ; = Z Xp,jare NA.

Consequence: Concentration of the number N = ). 1{B; = 0} of empty bins, since
the (1{B; = 0}); are NA.
If py,; = 1/n, then the number N of empty bins satisfies N = n e m/n+ O(\/n e*’"/”).

UNIVERSITE
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Applications

* missing mass

+ histogram rules for binary classification
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Outline

KL Divergence and Lower Bounds
Kullback-Leibler Divergence




Kullback-Leibler divergence

Definition

Let P and Q be two probability distributions on a measurable set €. The
Kullback-Leibler divergence from Q to P is defined as follows:

« if Pis not absolutely continuous with respect to Q, then KL(P, Q) = 4o0;

+ otherwise, let g—g be the Radon-Nikodym derivative of P with respect to Q. Then

dP dP dP
KL(P,Q) = [ 1 —dP:/—l P 0.
(P.Q) /Qong q dQ Ong Q

Property: 0 < KL(P, Q) < +ox0, KL§P, Q) = 0iffP = Q.
IfP < Qandf = %,fnflog(f) 40 = [q [flog(N] 1 d@ — Jq [Flog(f)] _ da. the later is finite since [flog(f)] _ < 1/e.
Examples:

KL (B(p), B(q)) = KI(p, ), KL (N (111, 02), N (jia, 0%)) = Latiel®

UNIVERSITE
DELYON

ENS DE LYON




Lower Bound: Change of Measure

Foralle > Oandalla > 0,

B (% > 1) = E, [1{7 > )] ./—\
=B [mn >x} x } L

u X X+e

= Eyqe []1{5(" >x} x ]
> Fyype {]1{)(” > x} ]1{ Z] x+e (%) < Eepe [IOg Pite (X1 )} + a}
o]
|:1 — Py (% <x)
— Peye (% ZIOg d;;:E (%) > Exte [log %(Xl)] + ”)

= (1 —o0n(1)) .

vV
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Lower Bound: Change of Measure

Foralle > Oandalla > 0,

P, (% > x) = E, [1{% > x}]

> Eeie {]1{)(” > x} ]1{ Zlog

PO “!# )
X e - H

. P +e )]+ b
>e LT J{17P,+E()’(n<x)

dPy4e APy ¢

+ ‘ -l‘)/_’
X 1 X
A S Bxte i P“\l)JX Xie

Py (% ilog dd 00) > Bype [log (xl)} + (x)
— ol (1 (1))
Asymptotic Optimality (Large Deviation Lower Bound)
limninf%IOgIPu Go > x) > —Kl(x, u) -
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Lower Bound: Change of Measure

Foralle > Oandalla > 0,

P, (% > x) = E, [1{% > x}]

> Eeie {]1{)(” > x} ]1{ Zlog

PO “!# )
X e - H

. P +e )]+ b
>e LT J{17P,+E()’(n<x)

dPy4e APy ¢

+ ‘ -l‘)/_’
X 1 X
A S Bxte i P“\l)JX Xie

— Pite (% ilog dd (%) > Exqe |:10g (X1):| + (X)
— ol (1 (1))
Asymptotic Optimality (Large Deviation Principle)

1 _
—logP, (X, > x) — —Kl(x, ) .
n n—s oo
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Properties of KL divergence

Tensorization of entropy:
Ifp= P1 & Po and Q=01 ® Qg,then

KL(P, Q) = KL(P1,Q1) + KL(P2, Q2) .

Contraction of entropy data-processing inequality:

Let (£2,.A) be a measurable space, and let P and Q be two probability measures on
(2, A). LetX : Q — (X, B) be arandom variable, and let P* (resp. Q") be the
push-forward measures, ie the laws of X wrt P (resp. Q). Then

KL (¢.¢") < KL(P.CQ)

Pinsker’s inequality:
KL(P, Q)
5

Let P, Q € M, (2, A). Then ||P — QI % sup [P(4) — Q(A)] <
AEA

UNIVERSITE
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Proof: contraction

Contraction: if KL(P, Q) = +o0, the result is obvious. Otherwise, P < Q and there exists % : © — R such that for all
measurablef : Q@ — R, [, fdP = fﬂf% dqQ.
+ Wefirst prove that P < Q" and, if v (x) := Eq [ |X = x] is the Q-a.s. unique function such that
Eo[ % |X] = v(X), theny = %. Indeed, for all B € B,

P'(B) = P(X € B) = /XGB Z—gdo =Eq {:—gn{xe B}}
= E, [EQ {%MXE B}|XH =E, [1{xe B}E, [%|x”

= Eo[1{x € 8}y(0] = /XEN‘X)"Q: / ~dQ"

and hence P < Q" and % = 7.
+ Now KL(P”, OX) :/ vlog vy dQ* :/ 7(X) log v (x) dQ
X Q

= Eq [¢ (EQ [g—g ‘X] ):| where ¢ := x — xlog(x) is convex

dp
< Eq [IEQ |:¢ <%> ‘XH by (conditional) Jensen'’s inequality

UNIVERSITE
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Proof: Pinsker

LetA € A,p = P(A) and g = Q(A). By contraction,

KL(P, Q) > KL(P™*, Q™) = KL (B(P(4)), B(a(#)) ) = Kl (P(A), 0(4)) > 2(P(4) — Q(4))* .
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Lower Bound: the Entropic Way

Let ) = {0, 1}",)(,(&}) = W /\
Probability laws on Q: P, = B(p)®". N —

Foralle > 0,

n kl(X +ep) = KL (IP)X+67 IED/_L) KL(P® P, 0 ® Q') = KL(P, 0) + KL(?', Q")
KL(p, Q) > KL(P", Q)
1{X,> X contraction of entropy

- KL (P, Py

X+e = data-processing inequality

=kl (L? (X0 >x), P, (X, > xb)

- 10g(2) Ki(p, q) > plog Lo log 2
q

1
w (Xa > x)

A non-asymptotic lower bound

- e Hlog(2)
Ve > 0, P, (X, >x)>e 1—e—2ne
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KL Divergence and Lower Bounds

No Free Lunch Theorem




The No-Free-Lunch theorem

Alearning algorithm A for binary classification maps a sample S ~ D®" to a decision
rule fl,,.

Theorem

Let A be any learning algorithm for binary classification over a domain X. If the
training set size is n < |X’|/2, then there exists a distribution D over X’ x {0, 1} such
that:

+ there exists a function f : X — {0, 1} with Ly(f) = 0;
« with probability at least 1/7 over the choice of S ~ D®",

| =

Lp(A(S)) >

Note that the ERM over H = {f}, or over any set H such that n > 8log(7|#|/6),is a
successful learner in that setting.
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Proof

Take C C X of cardinality 2n,and {0, 1}€ = {f1, . .., fr} whereT = 22" Foreach 1 < i < T, we denote by D; the probability distribution on
iy =)

0 otherwise.

We will show that max < ;<7 E[Lp; (A(S))] > 1/4, which entails the result thanks to the small lemma: if P(0 < Z < 1) = Lland E[Z] > 1/4,then
P(z> 1/8) > 1/7. Indeed, 1/4 < E[2] < P(z < 1/8)/8 + P(z > 1/8) = 1/8 — TF(z > 1/8)/8.

¢ x {0, 1} defined by D; ({x,y}) =

Allthe x-samples S , . . ., 5§, fork = (2n)", are equaly likely. For 1 < j < k, \rsf = (x1, - - . ) we denote by
§ = (1. 5i(x1))s - -5 (i fjGem)) and = A(S)).
1k 1 T o1 Kk
max E|Lp. (A(S))| = max — p (1) > — — Lp. (F
1<i<rt [D’< ( ))} 1<i<T k/; D’(d) I Z:l kazl D’(’)
1 ko1 . 1 T .
= - — Lp > min — Lp .
02 s 50
Fix1l < j < k,denotes;( = (x1,..-,m)anddefine {vy, ..., v} =C\ {xq,...,x } wherep > n.Then
= 1 5 1 5
w (7)) = = S {0 £50} = — 3 1{fen) £ 50}
2n x€c 2p =1

[) T

1 . 1 1
>=> l{fj(w) #fir)} > 3 min - > 1{?}@:) # )} -

and hence
=1 2 r=1 1<r<p 71/

Il Mﬂ
—
-
)
=
=
v

1
T i

Fix1 < r < p.Thenthe functions {f; : 1 < i < T} can be grouped into /2 pairs of functions (7°, 7-), 1 < i < T/2whichagreeonallx € Cexcepton v,
andforall 1 < i < 7/2itholds that 1{F(vr) AP0} + {7 # ()} = 1. Hence,

T T/2
Z l{fj(v,) #filv)} = Z ]l{]j(v,) # flJ(v,)} + ]l{}j(v,) # fll (vr)} = T/2, which concludes the proof.

i 1
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Consequence: infinite VC-dimension =
no learnability

Recall that a hypothesis class H. is agnostic PAC learnable if there exists a function
ny : (0,1)? — N and a learning algorithm S + h,, such that for every €, € (0,1),

for every distribution Don X X Y when S = ((Xh i)y, (X, Yn)) iid D,

P(LD(Hn) > min Lo(h") +e> <4é

foralln > ny (e, 0).

Theorem
Let H be a class of infinite VC-dimension. Then H is not PAC-learnable.

Proof: for every training size n, there exists a set C C X of size 2n that is shattered by
‘H. By the NFL theorem, for every learning algorithm A there exists a probability
distribution D over X x {0, 1} and h : X — {0, 1} such that Lp(h) = 0 but with
probability at least 1/7 over the training set, we have Ly (A(S)) > 1/8.
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Consequence: Curse of Dimensionality

Theorem

Let ¢ > 1 be a Lipschitz constant. Let A be any learning algorithm for binary
classification over a domain X = [0, 1]. If the training set sizeis n < (c + 1)?/2,
then there exists a distribution D over [0, 1] x {0, 1} such that:

« n(x) =P(Y = 1]X = x) is c-Lipschitz;
+ the Bayes error of the distribution is 0;

« with probability at least 1/7 over the choice of S ~ D®",

Lp(A(S)) >

co| —
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Shattering

Definition
Let H be a class of functions X — {0,1} and let C = {x1,...,xn} C X. The
restriction of H to Cis the set of functions C — {0, 1} that can be derived from #:

He = {(xl,...,xm) = (h(x1), .. h(xm)) s h € 7—[} .

Shattering
A hypothesis class H shatters a finite set C C X if He = {0, 1}€.

Example:
c H= {]l]—oo,a] ta € R}
« Hie = {N(a1 br,02,05) : 01 < b1 and az < by } where

1 ifag <x1 <bjandas < x9 < by

N(ay b1 ,as,b) (X15X2) = <
(o1 br,02.02) (41, 2) 0 otherwise .
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VC dimension

Definition
The Vapnik Chervonenkis dimension VCdim () of a hypothesis class H is the

maximal size of a set C C X that can be shattered by . If H can shatter sets of
arbitrarily large size we say that VCdim(#H) = oc.

Example:
cH= {1],Oo’a] NS R}.
. H?ec = {R2 DX ]l[al,bl]()(l)]l[az,bz](XQ) rap < bypandag < bg}
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Fundamental theorem of PAC learning

Let H be a hypothesis class of functions from a domain X" to {0, 1} and let the loss
function of 0 — 1 loss. Then the following propositions are equivalent:

1. H has the uniform convergence property,

2. any ERM rule is a successful agnostic PAC learner for H,
3. H is agnostic PAC learnable,

4. H has finite VC-dimension.
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Fundamental theorem of PAC learning
(quantitative version)

Let H be a hypothesis class of functions from a domain X" to {0, 1} and let the loss
function of 0 — 1 loss. Assume that d := VCdim(#H) < oo. Then there exist
constants Cy, Co such that:

1. H has the uniform convergence property with sample complexity

d+log(1/6 d+log(1/6
CliJr O%( /%) < ni(e,0) < C27+ 0%( /%) ;
€ €
2. H is agnostic PAC learnable with sample complexity
d+log(1/5 d+log(1/6
CliJr O%( /%) < ny(e,d) < C27+ 0%( /%) ;
€ €
e

Gt




Sauer’s lemma

Definition
Let H be a hypothesis class. Then the growth function of H, denoted 7 : N — N, is
defined as the maximal number of different functions that can be obtained by

restricting H to a set of size m: 73y(m) = max ”H,C’ .
ccx:|c|=m

Note: if VCdim(#) = d, then for any m < d we have 74 (m) = 2.

Sauer’s lemma
Let H be a hypothesis class with d = VCdim(#) < oo. Then, for allm > d,

nim <3 (7)< (%)

Think of example: H = {1(_ 4 : @ € R} withd = VCdim(H) = 1.




Proof of Sauer’s lemma 1/2

In fact we prove the stronger claim:

d
[He| < [{8 C C: HshattersB}| < > (m> .
i

i=0

where the last inequality holds since no set of size larger than d is shattered by . The proof is by induction.
m=1: The empty set is always considered to be shattered by 7. Hence, either | H | = landd = 0,inequality 1 < 1,ord > 1 andthe inequalityis 2 < 2.
Induction: Let C = {x1, ..., xm} andletc’ = {xa, ..., xm}. We note functions like vectors, and we define

Yo = {(yzv cosym) s (0,y2, .oy ym) € Heor(L,y9, ... ,ym) € Hc}, and

vy = {(yzv coouym) 2 (0yy2, - ym) € Heand (1,2, -+ - ,ym) € Hc} -
Then |Hc| = |Yg| 4 [¥1 |. Moreover, vy = H ¢+ and hence by the induction hypothesis:

ol = |Her| < [{8" € ¢+ Hoshatterss’ }| = [{8 C C:xq & Band H shatters 8} |
Next, define

H o =<heH: 3 € Hse V1 <i<mn(x)=
- = h(x;) otherwise

1= h(xg)ifi =1 }

Note that 7 shatters 8/ C ¢’ iff H/ shatters 8’ U {x1 },andthaty; = Hé,. Hence, by the induction hypothesis,

il = |HL] < 18" €« #H shaverss’}| = [{8" C ¢ : ' shatterss” U {x1}}|

=|{sCc:x € Band H' shatters 8} | < |{B C C:xq € Band H shattersB8}| .
Overall,

|[He| = Yol + Iv1] < |{B C C:xy & Band H shattersB}| + |[{B C C: x; € Band H shatters8}| = |{B C C : H shattersB}| .

UNIVERSITE
DELYON

xR
W

-
- —
ENS DE LYON



Proof of Sauer’s lemma 2/2

For the last inequality, one may observe that if m > 2d, defining N ~ B(m, 1/2), Chernoffs inequality and inequality
log(u) > (u—1)/uyield

d 1 2d 2 —d
“logP(N < d) > mKl (7, 7> > dlog 2 4 (m — d)log 27 =%
m 2 m m

> mlog(2) + dlog & + (m — d)— L™ _ mlog(2) + dlog - ,
m (m—d)/m em
and hence
‘. /m d em\ ¢
E () =2"P(N < d) < exp (—dlog—) = <—> .
i em d

i=0
Besides, for the case d < m < 2d, the inequality is obvious since (em/d)? > 2™: indeed, function f : x — —xlog(x/e)
is increasing on [0, 1], and hence foralld < m < 2d:
d em 1
1og = = f(a/m) > (1/2) = log(2¢) > log(2)

which implies (€2)? = exp (dlog €) > exp(mlog(2)) = 2 .
Alternately, you may simply observe that for all m > d,

(YSMs (O M=z (2) M =(+2) <
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Finite VC dimension implies Uniform
Convergence

Theorem
Let H be a class and let 7 be its growth function. Then, for every distribution D dans
for every § € (0, 1), with probability at least 1 — ¢ over the choice of the sample

S ~ D®" we have
1+ 4/log (7'7.[(2/7))
< .

sup (Lp(h) — Ls(h
h€£|D() <] < d+/n/2

Note: this result is sufficient to prove that finite VC-dim == learnable, but the
dependency in § is not correct at all: roughly speaking, the factor 1/4 can be replaced

by log(1/4).
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Proof: symmetrization and Rademacher
complexity (1/2)

We consider the 0-1 loss £(h, (x,y)) = 1{h(x) # y}, orany [0, 1]—valued loss £. We denote Z; = (X;, ¥;), and
observe that Ly (h) = B [£(h,Z)] = By Ly (h)]ifS" =2, .., Z) denotes another iid sample of D. Hence,

Es |:sup |Lo(h) — Ls(h)‘:| = Es [sup |Eg [Lor ()] — Lg(h)|:| = E |:sup By [Lor (h) — Ls()] ”
heH heH heH

< Es {sup Ey [}Lsz(h) - Lg(h)}]} < Es |:]E5/ [ sup |Ly (h) — Lg(h)‘]:|
heH heH

|

Xn:af(e(h,z,’) - e(n,z,))H forallo € {£1}"
i=1

2": 0(h, 2y — €(h,z)
i=1

1
=E;o {snp -
T |hen n

1
=[E; o [sup —
T |hen n

=EsE gy |:sup ! Z Si(e(h, 2)) — e(h,z,))H if5 ~ U ({£1}")
IS ey

XHIE/(Z(M{) —f(h,zo)H .

1
=E; ¢Ex |:sup —
' heH N
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Proof: symmetrization and Rademacher
complexity (1/2)

We consider the 0-1 loss £(h, (x,y)) = 1{h(x) # y}, orany [0, 1]—valued loss £. We denote Z; = (X;, ¥;), and
observe that Ly (h) = B [£(h,Z)] = By Ly (h)]ifS" =2, .., Z) denotes another iid sample of D. Hence,

Es {sup |to(h) — Ls(h)‘:| = Es |:sup |Eg/ [Lgr ()] — Lg(h)q = [ {sup Eg [Lsr (h) — Ls(h)] ”
heH heH heH

S s (n2) ff(h,m)H .
i=1

1
= ES.S’EE |:Sllp -
he#H N

Now, for every S, 8", letC = G, v = {x: 3i € {1,...,n} :x=XorX }.ThenVo € {—1,1}",
1< 1<

sup — oi(4(h,Z)) —£(h,2))| = max — oi(€(h,z)) — e(h,2)))| -

S0~ 160,20)| = e 2|12 - 0.2)|
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Proof: symmetrization and Rademacher
complexity (2/2)

Moreover, for every h € HcletZ, = L 577 | 53(£(h, Z) — £(h,Z;)). Then Ex[Z;] = 0, each summand belongs to

n

[—1, 1] and by Hoeffding’s inequality, for every ¢ > 0:

ne2
Ps[|z4] > ¢] < 2exp (‘7) .
Hence, by the union bound,
2
Ps [ max |zy| > €] < 2|Hc|exp e
= heHc - - 2
The following lemma permits to deduce that

1+ log([He) 1+ vlog(rs(2n))
\/n/2 - \/n/2

Es [max \th <
heHc
since €| < 2n. Hence,

1+ vlog(ry (2n))
\/n/2 /

1l
Es |:sup |to(n) — Ls(h)|:| < Es o Ex |:sup - § Si(e(h, z)) — e(h,z,))H <
heH her N | =

aodlwve conclude by using Markov's inequality (poor idea! Better: McDiarmid's inequality).
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Technical Lemma

Lemma
Leta > 0,b > 1, and let Z be a real-valued random variable such that for all t > 0,

P(z>t) <2bexp (—;22). Then
E[ <a ( Tog(b) + mlg(m> .

. oo r2
Proof: E[7] < /u P(z > t)dt < ay/log(b) + 2bexp (—;) dt

a log(b

oo

‘ 2
y/log(b) + 2b o a\/m exp < = ) dt
\/— 2b o> (7 (u\/log(b))2>

log(b) + X — exp

) a+/log(b) 2
a
= ay/log(b) + Jos)

<a
=a 5

a2
=a

NB- cutting at a+/10g(2b) gives a better but less nice inequality for our use.




Application: Finite VC-dim classes are
agnostically learnable
It suffices to prove that finite VC-dim implies the uniform convergence property. From

Sauer’s lemma, for all m > d/2 we have 73/(2n) < (2en/d)?. With the previous
theorem, this yields that with probability at least 1 — ¢:

1+ /dlog (2en/d) 1 [8qlog(2en/d)
sup |Lp(h) — Ls(h)| < <SSV
her dy/n/2 0 "

as soon as dlog (Qen/d) > 1. To ensure that this is at most €, one may choose
; 8dlog(n) = 8dlog(2e/d)
~ (0e)? (de)2
By the following lemma, it is sufficient that

320108 (57)  10g10g (%)
st - 2o (0e)>



Technical Lemma

Lemma
Leta > 0. Then
x> 2alog(a) = x> alog(x).

Proof: For a < e, true for every x > (. Otherwise, for a > /e we have 2alog(a) > a
and thus for every t > 2alog(a), asf: t — t — alog(t) is increasing on [a, c0),

f(t) > f(2alog(a)) = alog(a) — alog(2log(a)) > 0, since for every a > 0 it holds
that a > 2log(a).

Lemma
Leta > 1,b > 0. Then

x > 4alog(2a) +2b = x>alog(x)+b.

Proof: It suffices to check that x > 2alog(x) (given by the above lemma) and that
x > 2 (obvious since 4alog(2a) > 0).
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