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Supervised Learning



What we want to do: prediction

Phenomenon: observations (x,y) € X x Y in a product of measurables
spaces X C RP and )Y C R9.

Goal: predict y from x. Prediction error measure by loss

U3,y) = 19 — yI?/2 typically.

Statistical hypothesis: there exists F : X x € — ) such that the
observations are distributed as (X, Y) where X has distribution Px and
Y = F(X,w). Typically, Y = f(X) + € where ¢ ~ N (0,0?).

Examples:

e classification (OCR, image recognition, text classification, etc.)

e regression (response to a drug, weather or stock price forecast, etc.)

Target = best possible guess of Y given X: f(X) =E[Y|X]



Supervised Learning Framework

Mechanism of f is complex or hidden. Access to f only thru examples
i.e. asample S, = ((Xl7 Y1)y ooy (Xans Y,,)) of random pairs

Learning algorithm A, : S, — f, where £, € F c Y* c (R9)F’

F = hypothesis class = model. Example: linear regression

P
F=<fy: x> 9,"0 + ZQ;JXJ- VNS Mq’1+p(R)
J=1 1<i<q
Quality of prediction y: loss function £ : RI x R — R eg £(y,y) = U52°
Quality of hypothesis f € F: generalization error = average loss

L(f) =E V(f()()7 Y)] expectation is on new observation (X,Y)

Quality of the learning algorithm A: risk = average average loss

Rn(.An) =E [L(fn)] expectation is on sample S,



Empirical Risk Minimization

Learning = how to find the best possible f € F7

— Minimize the empirical loss = training error
1 n

L f = — E f X 7Y | h !

”( ) n ; ( ( k) k) average loss on the sample

= unbiased estimator of the generalization error L(f)

Empirical Risk Minimizer: 7, € argmin L,(f)
feFr

Example: linear regression with quadratic loss (dates back at least to
Gauss) f, = f; where 87 = (XTX)71XTY, with

1 Xt ... XxP "
X= e and Y = :
1
1 X, ... XP Y,
Regression by polynomials of degrees 1,2,...,n —1 — more parameters

is not necessarily better, bias / variance tradeoff, Structural Risk
Minimization (penalize empirical risk by model complexity)



Feedforward Neural Networks: Mimicki

Neuron: x — o((w,x) + b) with
e parameter w e RP. b€ R
e (non-linear) activation function o : R — R
typically o(x) = k=5 or o(x) = max(x, 0) called ReLU
Layer: x — o (Mx + b) with
e parameter M € M, ,(R),b € RY

e component-wise activation function o = ¢®9

Network: composition of layers fy = opo Tpo---
e architecture A= (D, (p1,--.,Pp-1))

® Xp = X, Xd:0’d<TdXd_1)€de
o Tyx = Myx + by

e parameter 0 = (My,by,...,..., Mp,bp)
0 € ©4=Tlg_1 Mp, 5, (R) X R

o depth D (Ast. nb layers), width maxi<d<p Pd

axon
terminals

27
& RS
/)‘\".'//"‘\\ : output layer

input layer
hidden layer 1 hidden layer 2



Deep Neural Networks in the last Decade

Several other important ideas:

e not fully connected layers
e convolution layers
e max-pooling
e dropout
e physics-informed loss functions
e etc...
Some were considered to be central and are then left apart... Even,

without those complications, understanding the success of neural nets
remains a challenge



How to learn with feedforward neural networks?

1. Choose architecture A= [D, (p1,...,pp-1)]
e depth D?
e what architectures are good if f has some with given properties?

e activation function? sigmoid o(x) = or ReLU o(x) = max(x, 0)

— approximation theory?
2. Learn = find the good coefficients using S,

e Empirical Risk Minimization: #, solution of

. 1<
min fZK(aDoTDo---oaloTl(Xk),Yk)
TeEMpy 14py_ B N o
1<d<D

e non convex, high-dimensional optimization problem
e but gradient can be computed by back-propagation
— does gradient descent work?

3. Apply f, to new data (X,Y)
e how to bound the generalization error L(f,)?
e should we regularize = penalize large coefficients?
— no overfitting?

— How to explain the huge empirical success of deep learning? 7



Supervised Learning

Approximation



Depth-2 Networks Are Universal

Cybenko ['89] Approximation by superposition of sigmoidal functions

Theorem

Let o be any bounded, measurable (or continuous) function such that
o(t) = 0ast — —oo and o(t) — 1 as t — oo. Then for every
continuous function f on [0, 1]P there exists a width p; and a depth-2
neural network with activation functions o1 =0 and or = id

Zozj (w;j, x +b)

Jj=1
such that ||fp — f||oo.

Proof:
e these functions o are such that if for a measure x on [0, 1]°

/ o({w,x)+ b)du(x) =0
[0.1]

for all w € RP and b € R, then = 0.
e Hahn-Banach + Riesz representation: the closure of
U, {fg 10 e Mp, pr1(R) x Rpl} has empty complement 9



itative bounds for ReLU depth-2 networks

Lemma [e.g. Eldan&Shamir’16]

Let g : R — R be constant outside of an interval [-R, R] and
L-Lipschitz. There exists a depth-2 RelLU network f with linear output
of width at most 8RL/e and weights at most max (2L, ||g||«) such that
[If = glloo <€

Proof. If 2RL < ¢, take f to be constantly equal to g(—R).

Otherwise, take m = [RL/€] < 2RL/¢, and let f be the piecewise linear function coinciding with
g at points x; = ie/L, i € {—m, ..., m}, linear between x; and x;11, and constant outside of
[—=X—m, Xm]. Since g is L-Lipschitz, ||f — g||oc < €. But f can be written as a depth-2 RelLU
network with 2m + 2 < 8RL/e neurons:

m

F(x) = flm) + D [Fat) = £/ (6=)]r(x — x1)

where f'(xi+) = g(xi+1) — g(x) and f'(xi—) = g(x;) — g(xi—1) for all —m < i < m. Except

maybe for the constant f(x_,) = g(—R), the coefficients are bounded by
lg(xit1) — g(xi) — g(xi) + g(xi—1)| < 2L

10



Example: radial function

Corollary [Daniely’17, Cor. 6]

Let g : [-1,1] — [-1,1] be L-Lipschitz function and let ¢ > 0. For a
positive integer d, let G : S971 x S?~1 — [~1,1] be defined by
G(x,x') = g((x,x')).

There exists a depth-3 ReLU network f of width at most % and
weights bounded by max(4,2L) such that ||f — G||o < €.

11
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Example: sawteeth function

2x if0<x<

1
2
Let s(x) ={2-2x f3<x<1

0 otherwise

294 (- 2) v |

and forallm>1lets, =so---0s
—

m times

Lemma

Forallm=>1, all ke {0,...,2m 1 — 1} and all t € [0,1],

<k+t> 2t if t <
Sm|l——= ) =
2m-1 22t ift>

NI= N=

13



Example: square function

Let g(x) = x2, and for m > 0 let gn(x) be such that Vk € {0,...,2m}:
cn(h)—g(h) o gnislinearon [, 5]
Lemma

For all k € {0,...,2™ — 1} and all t € [0, 1],

k+t\  (k+t) _ t(l-¢)
8m om g om - 4m

|& — gml|lc = 727 and for all m > 1,

In particular,

B 1 1
gm*gmfl_ﬁsmfld_ZESJ
j=1

Corollary
For every e > 0, there exists a neural network f of depth [log,(1/€)],
width 3 and coefficients in [—4, 2] such that ||f — g|lcc < € on [0, 1]

14



Example: square function

Lemma

lg — gmlloc = ﬁ and for all m > 1,

&m = &m_1— = id — Zfsj

Corollary

For every € > 0, there exists a neural network f of depth [log,(1/€)],
width 3 and coefficients in [—4, 2] such that ||f — gl|oc < € on [0, 1]

14




Square on [—1,1]: |x| = r(x) 4 r(—x) — one additionnal width-2 layer is sufficient
Product: Vx,y € R, xy = [(x +¥)? — (x — y)?]/4 - same depth, width 5
Polynomials: approximated by products

Continuous functions on [0, 1]: use uniform approximation of Lagrange
interpolation at Chebishev's points [Liang & Srikant '19]

See [M. Telgarsky '16-'19. Benefits of depth in neural networks]
See work and presentation by Rémi Gribonval

Exponential separation result: [Daniely '17. Depth Separation for Neural
Networks]

15



Supervised Learning

Optimization

16



Gradient Descent on the empirical loss

Let r(0) = La(fy) = £ S0, €(fa(Xe), Vi)

e The weights are initialized at random, e.g. 03(i, ) ~ N(0,1)
e Then, they are updated by gradient descent: 6, = 6;_1 — n;Vr

e Possibility to penalize the empirical loss with ||| — adds a
tampering term in gradient descent

e Possibly Stochastic Gradient Descent: pick a point (or a batch) at
random (or turn on the data in epochs)

e convergence to a local minimum (and how to choose 7;)?

e to a global minimum? especially when over-parameterized?
See [Mei, Montanari, Nguyen '18-'19. A Mean Field View of the
Landscape of Two-Layers Neural Networks]

17



Computing the Gradient by Backpropagation

For every layer d € {1,..., D}, we define the vector §4 € RP¢ by
§9(i) = agf(i) ol (%4(i))

Recursive Equations of Backpropagation

For the squared loss ¢(y,y) = M
1 n
60 = = D (h(Xe) = Vi) .+ o450 (k)
k=1

5d—1 = M(;réd .k Ué_l()?d_l)

T
v[\/[dr = 5d Xd—].

Cf. Automatic Differentiation.

18



Supervised Learning

Generalization

19



Overfitting: the Double Descent Phenomenon

Expected

0.7 (Classical Statistics)
A

2 06 :
w
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1 10 20 30 40 50 60
Src: https://openai.com Model Size (ResNet18 Width)

Classical statistics suggest that there are too many parameters wrt. the
number of observations, BUT this is not what is empirically observed!

Deep neural nets overfit, but (contrary to polynomials) they seem to
generalize well (especially in high dimension)

— how to explain that?

Beginning of answer: Benign Overfitting in Linear Regression Bartlett, by Long et al., 2019
20
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Dimensionality Reduction and
Generative Models



Dimensionality Reduction and Generative Models

Dimensionality Reduction

21



Dimensionality reduction

T
X1

e Data: X = : € M,p(R), p>1

T

e Dimensionality rre7duction: replace x; with y; = enc(x;), where
enc:RP - Ry, d < p

e Hopefully, we do not loose too much by replacing x; by y;: there
exists a recovering mapping dec : R? — R such that for all

i€{l,...,n}, dec(enc(x;)) ~ x;

= d(e(x))
encoder decoder [

o d |—

= d(e(x))

d(e(x))
22

encoded-decoded data


https://towardsdatascience.com/ 

PCA = optimal linear dimensionality redu

PCA aims at finding the compression matrix W (= enc) and the
recovering matrix U (= dec) such that the total squared distance
between the original and the recovered vectors is minimal:

n

arg min HXi - UWX/H2
WeMy,p(R),UEM, 4(R) T

=

Thm: The solution is given by choosing U = the eigenvectors
corresponding to the highest eigenvalues of Y7, x;ix;T, and W= UT

=

dog .
) ‘
living flying
near optimal encoding near optimal encoding
in one dimension in two dimensions
(too much information lost) initial data with many features (less information lost)

23

Src: https://towardsdatascience.com/


https://towardsdatascience.com/ 

t-SNE, UMAP, etc.

t-distributed stochastic neighbor embedding

Stage 1 Stage 2

a. Randonmly project b. Determine similarities €. Move the points around until the similarities between points
cells as points on a low- between points in low dimension resemble the similarities in high dimensions
dimensional plot

Determine similarities Determine similarities
between cells between points

Each data point is a
single cell

Src: https://www.scdiscoveries.com/

Still to be better understood and interpreted — see [A Probabilistic Graph
Coupling View of Dimension Reduction, van Assel et al.]

24


https://www.scdiscoveries.com/

Auto-encoders

neural network
decoder

neural network
encoder

Src: https://towardsdatascience.com/

25


https://towardsdatascience.com/ 

Dimensionality Reduction and Generative Models

GANs and VAEs

26



Generative Adversarial Networks

Training set V Discriminator

N
Random _‘ / J—’ .@ {Fake
[ @

Generator : Fake image

Src: https://sthalles.github.io/

27


https://sthalles.github.io/

Generator / Discriminator
Random Input
Vector

Generator
Model

--------

Generated
Example

=

Real Example ‘

Discriminator | .

-%
fy
@

] Binary Classification | ______ | i
Real/Fake

28

Src: https://machinelearningmastery.com


https://machinelearningmastery.com

Convergence of a GAN

Target distribution: Z ~ N(6*, l4)

o U~ N(O,ly)

e X=U+90

o fake data: Ly (X, —1) = ||X + 1|2
e True data: Ly(Z,—1) =|Z — 9|

“100 75 50 25 0.0 25

= in general, the convergence of a GAN is a hard problem!



[Encoding large scale cosmological structure with Generative Adversarial
Networks, Marion Ullmo, Aurélien Decelle and Nabila Aghanim,

Astronomy & Astrophysics |

30



ncoders for data gener

neural network
decoder

neural network
encoder

Src: https://towardsdatascience.com/
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PCA for data generation? No...

fake 0 (5 comps)

o

fake 1 (5 comps)

o~

fake 3 (5 comps)

(n

fake 6 (5 comps)

N

fake 9 (5 comps)

L

fake 0 (8 comps)

A

fake 1 (8 comps)

!

fake 3 (8 comps)

fake 6 (8 comps)

q

fake 9 (8 comps)

fake 0 (12 comps) fake 0 (16 comps) fake 0 (50 comps)

O
€3
o

fake 1 (12 comps) fake 1 (16 comps) fake 1 (50 comps)

—
L
-

fake 3 (12 comps) fake 3 (16 comps) fake 3 (50 comps)

(=
‘o)
i
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£
&
k‘:
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'
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Variational Auto-Encoders

N(o, I) —

\/h

o,=h(x) X=f(z)

loss = C|[x-x]] + KLIN(1 ,0,),N(O,)] = C||x-f(z) || + KLIN(g(x), h(x)), N(O, )]

Src: https://towardsdatascience.com/

33
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Example

[Geophysical Inversion Using a Variational Autoencoder to Model an
Assembled Spatial Prior Uncertainty, Jorge Lopez-Alvis, Frederic Nguyen,
M. C. Looms, Thomas Hermans, Journal of Geophysical Research: Solid
Earth]

a) so

def. level = 0 def. level = 1 def. level = 2

404 ..
30

eroded

20 £

depth (m)

base
depth (m)

dilated
depth (m)
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Privacy, Fairness, Interpretability,
etc.




Privacy, Fairness, Interpretability, etc.

Privacy

35



Differentially private algorithms make assurance that attackers can learn
virtually nothing more about an individual than they would understand if

that individual's record were absent from the dataset.

Smoker example
if an individual is openly "smoking” but wants privacy on her medical
status,
e a medical study will prove the risk associated with smoking (whether
she participates or not)

e a DP study will make it impossible to know if she indeed
participated or not, even to someone who would have all the
remaining information

Need to randomize the output. -

Src: https://blog.tensorflow.org


https://blog.tensorflow.org

thletes: "do you use dopin

Triathletes doping status X; i B(p)
but they may lie: answer Y; € {0,1}

is the greatest'
offense in
trying to gain an
unfair advantage
by an Olympic
athlete or team.

37



Survey on triathletes: " do you use doping?

Triathletes doping status X; 5 B(p) 52%

but they may lie: answer Y; € {0,1} S

RANDOMIZED RESPONSE: A SURVEY TECHNIQUE offense in
FOR ELIMINATING EVASIVE ANSWER BIAS trying to gain an
unfair advantage
STANLEY L. WARNER by an Olympic
Claremont Graduate School athlete or team.

For various reasons individuals in a sample survey may prefer not
to confide to the interviewer the correct answers to certain questions.
In such cases the individuals may elect not to reply at all or to reply
with incorrect answers. The resulting evasive answer bias is ordinarily
difficult o assess. In this paper it is argued that such bias is potentially
removable through allowing the interviewee to maintain privacy
through the device of randomizing his response. A randomized response
method for estimating a population proportion is presented as an ex-
ample. Unbiased maximum likelihood estimates are obtained and their
‘mean square errors are compared with the mean square errors of con-
ventional estimates under various assumptions about the underlying
population.
1. INTRODUCTION

0R reasons of modesty, fear of being thought bigoted, or merely a reluc-
tance to confide secrets to strangers, many individuals attempt to evade
certain questions put to them by interviewers. In survey vernacular, these
people become the “non-cooperative” group [5, pp. 235-72], either refusing
outright to be surveyed, or consenting to besurveyed but purposely providing
wrong answers to the questions. In the one case there is the problem of refusal
bias [1, pp. 355-61], [2, pp. 33-6], [5, pp. 261-9]; in the other case there is the

problem of response bias [3, p. 89], [4, pp. 280-325].

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69
See also Chong, Chun Yin Andy & Chu, Amanda & So, Mike & Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized
Response Approach in Public Health Research: An Empirical Study on the Factors of lllegal Waste Disposal. International Journal of

Environmental Research and Public Health.
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Survey on triathletes: ”do you use doping

Triathletes doping status X; 5 B(p) 52%
but they may lie: answer Y; € {0,1} of adults

believe
taking PEDs
is the greatest’

Randomized Response [Warner’65] e
) ) unfair advantage
Flip a coin, then: SRS,

— if tails, answer according to another coin
flip

— if heads, give the right answer

P(Y =1|X =1)
P(Y = 1|X = 0)

e No triathlete can be prosecuted  one cannot condemn 1/4th of the innocent

P(Y = 1|X = x) = 1/4 + x/2 =3

triathletes!

e But still permits to estimate the proportion of dopers by 2V, — 1.

Cost: for the same precision, requires =~ 4x more data or even more if
x(1-x)<1
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Cost: for the same precision, requires =~ 4x more data or even more if
x(1-x)<1
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: x~x"if ie{l,...,n},Vj #i,x;. = x
Differential Privacy
[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

= Godel Prize 2017]

Ais e-DP if forall x ~ x" and all S C T

P(A(x) € S) < e P(A(X') € 5)

Equivalently,
o if A(x) is discrete, —e<In w <e forallteT
P(A(x)=t)
e if A(x) has density f(-|x), —e<n il < ¢ forallteT

f(tlx") =

38



Formal Definition

Randomized algorithm A(x) = random variable on T

Def: x~x'ifdie{l,....,n},Vi#£i,x. =x!

s

Differential Privacy
[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
= Godel Prize 2017]

Ais eDP if forall x ~ x" and all S ¢ T

P(A(x) € S) < e*P(A(X) € 5)

In the previous example on the DP survey, algorithm

A(x) = (Y1,...,Yy) is In(3)-DP.

Note that it outputs an entire (differentially private), which is unusual:
more often, we just want the answer to a query.

38



Formal Definition

Randomized algorithm A(x) = random variable on T

Def: x~x"if ie{l,...,n},Vj #i,x;. = x
Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

= Godel Prize 2017]

Ais eDP if forall x ~ x" and all S c T

P(A(x) € §) < e P(A(X) € 5)

A person's privacy cannot be compromised by a statistical release if their
data are not in the database. Therefore, with differential privacy, the goal
is to give each individual roughly the same privacy that would result from
having their data removed. That is, the statistical functions run on the
database should not overly depend on the data of any one individual.

38



Formal Definition

Randomized algorithm A(x) = random variable on T

Def: x~xif 3ie{l,...,n} VY # i, xi. = x|

Differential Privacy
[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

= Godel Prize 2017]

Ais e-DP if forall x ~ x" and all S C T

P(A(x) € S) < e P(A(X') € 5)

An algorithm is said to be differentially private if by looking at the
output, one cannot tell whether any individual’'s data was included in the
original dataset or not.

Cryptographic origins (and vocabulary).

38



Formal Definition

Randomized algorithm A(x) = random variable on T

Def: x~x'if3die{l,....,n},Yj#i,x. =x.

s

Differential Privacy
[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

= Godel Prize 2017]

Ais e-DP if forall x ~ x" and all S C T

P(A(x) € S) < e P(A(X') € 5)

Differential privacy mathematically guarantees that anyone seeing the
result of a differentially private analysis will essentially make the same
inference about any individual's private information, whether or not that
individual's private information is included in the input to the analysis.

38



Private Estimation and Learning

How to estimate privately? How to fit a model privately?

e Privacy Budget Management

e Laplace and Gaussian Mechanisms
e Exponential Mechanism

e DPSGD

How does privacy affect accuracy?

e Minimax rates
e Cramer-Rao bounds
e "free privacy”
See [On the Statistical Complexity of Estimation and Testing under

Privacy Constraints, Lalanne, Garivier, Gribonval, Transactions on
Machine Learning Research]

39



Privacy, Fairness, Interpretability, etc.

What is fair?

40



m PIXE LS CHRONIQUES
DES (RIEVOLUTIONS NUMERIQUES VIE EN LIGNE

Une étude démontre les biais de la
reconnaissance faciale, plus efficace
sur les hommes blancs

Lorsqu'il s'agit de reconnaitre le genre d’un homme blanc, des logiciels

affichent un taux de réussite de 99 %. La tache se complique lorsque la peau
d’une personne est plus foncée, ou s'il s’agit d’'une femme.

http://www.lemonde.fr/pixels/

Joy Buolamwini (MIT) has studied three face recognition software (by
IBM, MICROSOFT and FACE++) on 1 270 official portraits of
policitians from Rwanda, Senegal, South Africa, Finland and Sweden,
asking to predict their gender.

41


http://www.lemonde.fr/pixels/

Buolamwini Study

Average results are good: 93,7% success rate for MICROSOFT, 90% for
FACE++, and 87,9% pour IBM.

BUT

e Less successful for women than for men: for example, FACE+4+
classifies correctly 99,3% of the men but only 78,7% of the women.

e Less successful for dark skins than for pale skins: for the IBM
softwares, success rates are 77;6% versus 95%.

e 093,6% of the mistakes of the Microsoft software were on dark skins,
and 95,9% of the mistakes of Face ++ were on women!

Why? Bias in the data!
"Men with white skin are over-represented, and in fact white skins in
general are.” http://www.lemonde.fr/pixels/article/2018/02/12/une- etude-demontre-les-biais-de-la-

reconnaissance-faciale-plus-efficace-sur-les-hommes-blancs_5255663.4408996.htm1#EZuQd0CJvJI3kYTiL.99

42
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This is not only about face recognition

e ...but also insurance, employment, credit risk assessment...

PERSISTENT BIAS

Over the past seven years, the proportion of participants in genome-wide
association studies (GWAS) that are of Asian ancestry has increased.
Groups of other ancestries continue to be very poorly represented.

. o 2009 2016
study of pangenomic association R 251 sudies

35 million samples

e ... personalized medicine: most

were conducted on white/European 96Y% 81%
. European European
population. ancesty e
Asian
—> The estimated risk factors will o
European

possibly be different for patients

with African or Asian origins!

49, Non- 199 Non-

European European
ancestry ancestry

Popejoy A., Fullerton S. (2016).
Genomics is failing on diversity, Nature 538
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Detecting a bias

Detecting an individual discrimination: Testing

e Idea: modify just one protected feature of the individual and check if

decision in changed
e Recognized by justice

e Discrimination for house rental, employment, entry in shops,
insurance, etc.

Detecting a group discrimination: Discrimination Impact Assessment.

Three measures:

e Disparate Impact (Civil Right Act 1971): DI =

Il
SN—r

~ ~

e Cond. Error Rates: P(h,(X) # Y|S =1) = P(h,(X) # Y|S
e Equality of odds: P(h,(X) =1|S =1) vs P(h,(X) =1|S =0)
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An Example in more Detail

The following example is based on a Jupyter Notebook by Philippe
Besse (INSA Toulouse) freely available (in R and python) on
https://github.com/wikistat
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https://github.com/wikistat

Adult Census Dataset of UCI

e 48842 US citizens (1994)
e 14 features:

Y = income threshold ($50k)

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,
Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school,
Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married,
Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
occupation: Tech-support, Craft-repair, Other-service, Sales,
Exec-managerial, Prof-specialty, Handlers-cleaners,
Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving,
Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family,
Other-relative Unmarried.
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Obvious Social Bias

Female Male CaucNo CaucYes

incB
incB

ier
incH

[ ]

Confidence interval for the DI

Confidence interval for the
(by delta method)

(delta method)

round (dispImp (datBas[,” sex"],

round (displmp (datBas$origEt
datBas[,” income"]),3)

datBasS$income),3)

0.349 0.367 0.384 0.566 0.601 0.637
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Logistic Regression augments the bias!

log . Im=glm (income ~., data=datApp , family=binomial)

# significativity of the parameters
anova(log.Im, test="Chisq")

Df Deviance Resid . Df Resid. Dev Pr(>Chi)

NULL NA NA 35771 40371,72 NA

age 1 1927,29010 35770 38444 ,43 0,000000e+00

educNum 1 4289,41877 35769 34155,01 0,000000e+00
mariStat 9 6318,12804 35766 27836,88 0,000000e+00
occup 6 812,50516 35760 27024 ,38 3,058070e—172
origEthn 1 17,04639 35759 27007,33 3,647759e—05
sex 1 50,49872 35758 26956,83 1,192428e—12
hoursWeek 1 402,82271 35757 26554,01 1,338050e—89
LcapitalGain 1 1252,69526 35756 25301,31 2,154522e—274
LcapitalLoss 1 310,38258 B51Abb] 24990,93 1,802529e—69
child 1 87,72437 35754 24903,21 7,524154e-=21

# Prevision
pred.log=predict (log.Im, newdata=daTest , type="response”)
# Confusion matrix

confMat=table (pred.log >0.5 daTest$income)

incB incH
FALSE 6190 899
TRUE 556 1298

tauxErr(confMat): 16,27
round (displmp(daTest[," sex"],Yhat),3) : 0.212 0.248 0.283

# Overall Accuracy Equality?
apply(table(pred.log <0.5,daTest$income, daTest$sex),3,tauxErr)

48
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What about Random Forest?

Random Forest improves significantly the predicition quality...

rf .mod=randomForest(income ~., data=datApp)

pred. rf=predict (rf.mod, newdata=daTest , type="response”)
confMat=table (pred.rf, daTest$income)

confMat

tauxErr (confMat)

pred.rf incB incH
incB 6301 795
incH 445 1402
13,87

round (displmp(daTest[,” sex”], pred.rf), 3)
0.329 0.375 0.42

. without augmenting the bias (here).
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Summary of the results by algorithm

Précision Effet disproportionné

== g [ =
g — ° | =
o -
b | == -
g < - =
Q0 - — = !
o 4l p——
— o =
1 — I i —
o L —_T
= o ==
) o !
0 H o e
< T T T T T T T
P.Logit P.Tree P.RF Dl.Base Dl.Logit DI.Tree DI.RF

—> Random Forest is here both more performant and less
discriminative (BUT not interpretable)

= This is not a general rule! It depends on the dataset

— A serious learning should consider the different algorithms, and

include a discussion on the discriminative effects
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Individual Biases: Testing

Are the predictions changed if the value of variable "sex" is switched?

daTest2=daTest

# Changement de genre
daTest2$sex=as.factor(ifelse(daTest$sex=="Male” ,” Fe
# Prevision du "nouvel” echantillon test
pred2.log=predict (log.Im,daTest2,type="response”)
table (pred.log <0.5,pred2.log <0.5,daTest$sex)

Female

FALSE TRUE

FALSE 195 0
TRUE 23 2679
Male

FALSE TRUE

FALSE 1489 155
TRUE 0 4402

-> 178 have a different prediction, in the expected direction.
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Privacy, Fairness, Interpretability, etc.

How to fix the problem?
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Avoid Issues with Testing

Easy: use maximal prediction of all modalilities of the protected variable

fairPredictGenre=ifelse (pred.log<pred2.log ,h pred2.lo;
confMat=table(fairPredictGenre >0.5,daTest$income)
confMat; tauxErr(confMat)

incB incH

FALSE 6145 936
TRUE 535) 1327
16.45

round (displmp (daTest$sex ,as.factor(fairPredictGenre
0.24 0.277 0.314

# recall:

round (displmp (daTest$sex,as.factor(pred.log >0.5)),3
0.212 0.248 0.283

- No influence on the prediction quality

-> Small bias reduction, but does not remove group over-discrimination!
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Naive approach: suppress the protected variable

# estimation without the variable "sex”

log-g .Im=glm (income "., data=datApp[,—6],family=binomial)

# Prevision
pred_g.log=predict(log.g.Im, newdata=daTest[, —8], type="response”)
# Confusion Matrix

confMat=table (pred.g.log >0.5,daTest$income)
confMat

incB incH
FALSE 6157 953
TRUE 523 1310

tauxErr(confMat)

16.5

Yhat.g—as.factor (pred-g.log >0.5)
round (displmp (daTest[,” sex”], Yhat_g),3)

0.232 0.269 0.305

= the quality of prediction is not deteriorated, but the bias
augmentation remains the same!
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Adapting the threshold to each class

Yhat_cs=as.factor(ifelse (daTest$sex=="Female” ,pred.log >0.4,pred.log >0.5))
round (displmp (daTest[,” sex”], Yhat_cs),3)
tauxErr(table(Yhat.cs,daTest$income))

0.293 0.334 0.375

16.55

# Stronger correction forcing the DI to be at least 0.8:
Yhat_cs=as.factor(ifelse (daTest$sex=="Female” , pred.log >0.15,pred.log >0.5))
round (displmp(daTest[,” sex”], Yhat_cs),3)
tauxErr(table(Yhat.cs,daTest$income))

0.796 0.863 0.93

18.57

= the prediction performance is significantly deteriorated

= this kind of affirmative action is a questionable choice
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Building one classifier per class

Logistic regression — consider the interactions of the protected variable with the others
yHat=predict(reg.log ,newdata=daTest ,type="response”)
yHatF=predict (reg.logF , newdata=daTestF , type="response”)
yHatM=predict (reg.logM , newdata=daTestM , type="response")

yHatFM=c (yHatF ,yHatM); daTestFM=rbind (daTestF 6 daTestM)

# Cumulated errors
table (yHatFM >0.5,daTestFMS$income)

incB incH
FALSE 6150 935
TRUE 530 1328

table (yHat >0.5,daTest$income)

incB incH
FALSE 6154 950
TRUE 526 1313

tauxErr(table (yHatFM >0.5,daTestFMS$income))
16.38

tauxErr(table(yHat >0.5,daTest$income))
16.5

# Bias with an without class separation

round (displmp (daTestFM[,” sex”], as. factor (yHatFM >0.5)),3)
0.284 0.324 0.365

round (displmp(daTest[,” sex"],as.factor (yHat >0.5)),3)
0.212 0.248 0.283

—> it reduces the bias 56



Comparison of

several classif

Model
dataBaseBias
linLogit
linLogit_w_S
linLogit-testing
condLinLogit
quadLogit
condQuadLogit
binaryTree
wBinaryTree
condBinTree
randomForest
wRandomForest
condRandForest

Accuracv

100 L —
83.5 ———

83.5 —

83.55 —

83.62 ——
83.54

83.32

85.45 s
85.31 ———
85.16 el —
85.98 B . e

85.91 ———
85.74 —_—

0.4 0.5

T
0.1 0.2 0.3
Disparate Impact
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e Automatic classification can augment the social bias

e All algorithms are not equivalent

e Linear classifiers should be particularly watched

e Random Forest can (at least sometimes) be less discriminative

e The bias augmentation diminishes with the consideration of variable
interactions

e Removing the protected variable from the analysis is not sufficient

e Fitting different models on the different classes is in general a quick
and simple way to avoid bias augmentation...

e ... if the protected variable is observed!

See [L'IA du Quotidien peut elle &tre Ethique ? : Loyauté des
Algorithmes d’Apprentissage Automatique, Besse, Castets-Renard,
Garivier, Loubes, Statistique et Société]
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Privacy, Fairness, Interpretability, etc.

Understanding the Algorithms’ Predictions?
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Explainability vs Interpretability

Two distinct notions (but the vocabulary is misleading: we flllow here

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ) .

A decision rule is said to be:

interpretable if we understand how a prediction is associated to an
observation; typical example: decision tree

Douleur I
Abdomen
Gorge Aucune
Appendicite Fievre Toux
Oui Non
Rhume Mal de gorge

http://www.up2.fr/

explainable if we understand what feature values led to the prediction,
possibly by a counterfactual analysis; for example: "if
variable X3 had taken that other value, then the prediction

would have been different” .
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Explainability vs Interpretability

Two distinct notions (but the vocabulary is misleading: we flllow here

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ) .

A decision rule is said to be:

interpretable if we understand how a prediction is associated to an
observation; typical example: decision tree
explainable if we understand what feature values led to the prediction,
possibly by a counterfactual analysis; for example: "if
variable X3 had taken that other value, then the prediction
would have been different”.

Expainability relates to the statistical notions of causal inference and

sensibility analysis
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http://aiehive.com

An audacious scientific bet...
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Local Interpretable Model-Agnostic Explanations: LIME

Linear model with feature selection on local subset of data

¥

v

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Src: “Why Should | Trust You?" Explaining the Predictions of Any Classifier, by Marco Tulio
Ribeiro, Sameer Singh and Carlos Guestrin.
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Local Interpretable Model-Agnostic Explanations: LIME

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Src: “Why Should | Trust You?” Explaining the Predictions of Any Classifier, by Marco Tulio
Ribeiro, Sameer Singh and Carlos Guestrin.
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Conclusion

Huge need for more research and good practice

Not only average performance matters

Fairness should be included in data analysis with human impact

Important issues that everyone should be aware of

Interesting experiments to run at every level
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