Understanding the Efficiency of Machine Learning: Progress and Challenges

Réseau Numérique en Terre Solide (NuTS)

Aurélien Garivier
May 30th, 2023

Table of contents

1. Supervised Learning
2. Dimensionality Reduction and Generative Models
3. Privacy, Fairness, Interpretability, etc.

Supervised Learning

What we want to do: prediction

Phenomenon: observations $(x, y) \in \mathcal{X} \times \mathcal{Y}$ in a product of measurables spaces $\mathcal{X} \subset \mathbb{R}^{p}$ and $\mathcal{Y} \subset \mathbb{R}^{q}$.

Goal: predict y from x. Prediction error measure by loss $\ell(\hat{y}, y)=\|\hat{y}-y\|^{2} / 2$ typically.
Statistical hypothesis: there exists $F: \mathcal{X} \times \Omega \rightarrow \mathcal{Y}$ such that the observations are distributed as (X, Y) where X has distribution \mathbb{P}_{X} and $Y=F(X, \omega)$. Typically, $Y=f(X)+\epsilon$ where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Examples:

- classification (OCR, image recognition, text classification, etc.)
- regression (response to a drug, weather or stock price forecast, etc.)

Target $=$ best possible guess of Y given $X: f(X)=\mathbb{E}[Y \mid X]$

Supervised Learning Framework

Mechanism of f is complex or hidden. Access to f only thru examples ie. a sample $S_{n}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)$ of random pairs
Learning algorithm $\mathcal{A}_{n}: S_{n} \mapsto \hat{f}_{n} \quad$ where $\hat{f}_{n} \in \mathcal{F} \subset \mathcal{Y}^{\mathcal{X}} \subset\left(\mathbb{R}^{q}\right)^{\mathbb{R}^{p}}$
$\mathcal{F}=$ hypothesis class $=$ model. Example: linear regression

$$
\mathcal{F}=\left\{f_{\theta}: x \mapsto\left(\theta_{i, 0}+\sum_{j=1}^{p} \theta_{i, j} x_{j}\right)_{1 \leq i \leq q}: \theta \in \mathcal{M}_{q, 1+p}(\mathbb{R})\right\}
$$

Quality of prediction \hat{y} : loss function $\ell: \mathbb{R}^{q} \times \mathbb{R}^{q} \rightarrow \mathbb{R}_{+}$egg. $\ell(\hat{y}, y)=\frac{(\hat{y}-y)^{2}}{2}$
Quality of hypothesis $f \in \mathcal{F}$: generalization error $=$ average loss

$$
L(f)=\mathbb{E}[\ell(f(X), Y)] \quad \text { expectation is on new observation }(\mathrm{X}, \mathrm{Y})
$$

Quality of the learning algorithm \mathcal{A} : risk $=$ average average loss

$$
R_{n}\left(\mathcal{A}_{n}\right)=\mathbb{E}\left[L\left(\hat{f}_{n}\right)\right] \quad \text { expectation is on sample } S_{n}
$$

Empirical Risk Minimization

Learning $=$ how to find the best possible $f \in \mathcal{F}$?
\rightarrow Minimize the empirical loss $=$ training error

$$
L_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} \ell\left(f\left(X_{k}\right), Y_{k}\right) \quad \text { average loss on the sample }
$$

$=$ unbiased estimator of the generalization error $L(f)$
Empirical Risk Minimizer: $\hat{f}_{n} \in \arg \min L_{n}(f)$

$$
\stackrel{\mathcal{f} \in \mathcal{F}}{ }
$$

Example: linear regression with quadratic loss (dates back at least to Gauss) $\hat{f}_{n}=f_{\hat{\theta}_{n}}$ where $\hat{\theta}_{n}^{T}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$, with

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & X_{1}^{1} & \ldots & X_{1}^{p} \\
& \ldots & & \\
1 & X_{n}^{1} & \ldots & X_{n}^{p}
\end{array}\right) \text { and } \mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right)
$$

Regression by polynomials of degrees $1,2, \ldots, n-1 \rightarrow$ more parameters is not necessarily better, bias / variance tradeoff, Structural Risk Minimization (penalize empirical risk by model complexity)

Feedforward Neural Networks: Mimicking Brains?

Neuron: $x \mapsto \sigma(\langle w, x\rangle+b)$ with

- parameter $w \in \mathbb{R}^{p}, b \in R$
- (non-linear) activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ typically $\sigma(x)=\frac{1}{1+\exp (-x)}$ or $\sigma(x)=\max (x, 0)$ called ReLU

Layer: $x \mapsto \boldsymbol{\sigma}(M x+\mathbf{b})$ with

- parameter $M \in M_{q, p}(\mathbb{R}), \mathbf{b} \in \mathbb{R}^{q}$

- component-wise activation function $\sigma=\sigma^{\otimes q}$

Network: composition of layers $f_{\theta}=\sigma_{D} \circ T_{D} \circ \cdots \circ \sigma_{1} \circ T_{1}$ with

- architecture $A=\left(D,\left(p_{1}, \ldots, p_{D-1}\right)\right)$
- $x_{0}=x, \quad x_{d}=\sigma_{d}\left(T_{d} x_{d-1}\right) \in \mathbb{R}^{p_{d}}$
- $T_{d} x=M_{d} x+\mathbf{b}_{d}$
- parameter $\theta=\left(M_{1}, \mathbf{b}_{1}, \ldots, \ldots, M_{D}, \mathbf{b}_{D}\right)$ $\theta \in \Theta_{A}=\prod_{d=1}^{D} \mathcal{M}_{p_{d-1}, p_{d}}(\mathbb{R}) \times \mathbb{R}^{p_{d}}$

- depth D (\triangle st. nb layers), width $\max _{1 \leq d \leq D} p_{d}$

Deep Neural Networks in the last Decade

Several other important ideas:

- not fully connected layers
- convolution layers
- max-pooling
- dropout
- physics-informed loss functions
- etc...

Some were considered to be central and are then left apart... Even, without those complications, understanding the success of neural nets remains a challenge

How to learn with feedforward neural networks?

1. Choose architecture $A=\left[D,\left(p_{1}, \ldots, p_{D-1}\right)\right]$

- depth D?
- what architectures are good if f has some with given properties?
- activation function? sigmoid $\sigma(x)=\frac{1}{1+\exp (-x)}$ or $\operatorname{ReLU} \sigma(x)=\max (x, 0)$
\rightarrow approximation theory?

2. Learn $=$ find the good coefficients using S_{n}

- Empirical Risk Minimization: \hat{f}_{n} solution of

$$
\min _{\substack{\left.T_{k} \in \mathcal{M}_{p_{d}, 1+p_{d-1}}^{1 \leq d \leq D} \\ 1 \leq d \leq \mathbb{R}\right)}} \frac{1}{n} \sum_{k=1}^{n} \ell\left(\sigma_{D} \circ T_{D} \circ \cdots \circ \sigma_{1} \circ T_{1}\left(X_{k}\right), Y_{k}\right)
$$

- non convex, high-dimensional optimization problem
- but gradient can be computed by back-propagation
\rightarrow does gradient descent work?

3. Apply \hat{f}_{n} to new data (X, Y)

- how to bound the generalization error $L\left(\hat{f}_{n}\right)$?
- should we regularize $=$ penalize large coefficients?
\rightarrow no overfitting?
\rightarrow How to explain the huge empirical success of deep learning?

Outline

Supervised Learning
Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

Depth-2 Networks Are Universal

Cybenko ['89] Approximation by superposition of sigmoidal functions

Theorem

Let σ be any bounded, measurable (or continuous) function such that $\sigma(t) \rightarrow 0$ as $t \rightarrow-\infty$ and $\sigma(t) \rightarrow 1$ as $t \rightarrow \infty$. Then for every continuous function f on $[0,1]^{p}$ there exists a width p_{1} and a depth- 2 neural network with activation functions $\sigma_{1}=\sigma$ and $\sigma_{2}=i d$

$$
f_{\theta}(x)=\sum_{j=1}^{p_{1}} \alpha_{j} \sigma\left(\left\langle w_{j}, x\right\rangle+b_{j}\right)
$$

such that $\left\|f_{\theta}-f\right\|_{\infty}$.
Proof:

- these functions σ are such that if for a measure μ on $[0,1]^{p}$

$$
\int_{[0,1]^{p}} \sigma(\langle w, x\rangle+b) d \mu(x)=0
$$

for all $w \in \mathbb{R}^{p}$ and $b \in \mathbb{R}$, then $\mu=0$.

- Hahn-Banach + Riesz representation: the closure of

$$
\bigcup_{p}\left\{f_{\theta}: \theta \in \mathcal{M}_{p_{1}, p+1}(\mathbb{R}) \times \mathbb{R}^{p_{1}}\right\} \text { has empty complement }
$$

An Quantitative bounds for ReLU depth-2 networks

Lemma [e.g. Eldan\&Shamir'16]

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be constant outside of an interval $[-R, R]$ and L-Lipschitz. There exists a depth-2 ReLU network f with linear output of width at most $8 R L / \epsilon$ and weights at most max $\left(2 L,\|g\|_{\infty}\right)$ such that $\|f-g\|_{\infty} \leq \epsilon$.

Proof. If $2 R L \leq \epsilon$, take f to be constantly equal to $g(-R)$.
Otherwise, take $m=\lceil R L / \epsilon\rceil \leq 2 R L / \epsilon$, and let f be the piecewise linear function coinciding with g at points $x_{i}=i \epsilon / L, i \in\{-m, \ldots, m\}$, linear between x_{i} and x_{i+1}, and constant outside of $\left[-x_{-m}, x_{m}\right]$. Since g is L-Lipschitz, $\|f-g\|_{\infty} \leq \epsilon$. But f can be written as a depth-2 ReLU network with $2 m+2 \leq 8 R L / \epsilon$ neurons:

$$
f(x)=f\left(x_{-m}\right)+\sum_{i=-m}^{m}\left[f^{\prime}\left(x_{i}+\right)-f^{\prime}\left(x_{i}-\right)\right] r\left(x-x_{i}\right)
$$

where $f^{\prime}\left(x_{i}+\right)=g\left(x_{i+1}\right)-g\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}-\right)=g\left(x_{i}\right)-g\left(x_{i-1}\right)$ for all $-m<i<m$. Except maybe for the constant $f\left(x_{-m}\right)=g(-R)$, the coefficients are bounded by $\left|g\left(x_{i+1}\right)-g\left(x_{i}\right)-g\left(x_{i}\right)+g\left(x_{i-1}\right)\right| \leq 2 L$.

Example: radial function

Corollary [Daniely'17, Cor. 6]

Let $g:[-1,1] \rightarrow[-1,1]$ be L-Lipschitz function and let $\epsilon>0$. For a positive integer d, let $G: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow[-1,1]$ be defined by $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=g\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)$.
There exists a depth-3 ReLU network f of width at most $\frac{16 d^{2} L}{\epsilon}$ and weights bounded by $\max (4,2 L)$ such that $\|f-G\|_{\infty} \leq \epsilon$.

Why deep learning, then? The dream

Example: sawteeth function

$$
\text { Let } \begin{aligned}
s(x) & = \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\
2-2 x & \text { if } \frac{1}{2} \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& =2 r(x)-4 r\left(x-\frac{1}{2}\right)+2 r(x-1)
\end{aligned}
$$

and for all $m \geq 1$ let $s_{m}=\underbrace{s \circ \cdots \circ s}_{m \text { times }}$

Lemma

For all $m \geq 1$, all $k \in\left\{0, \ldots, 2^{m-1}-1\right\}$ and all $t \in[0,1]$,

$$
s_{m}\left(\frac{k+t}{2^{m-1}}\right)= \begin{cases}2 t & \text { if } t \leq \frac{1}{2} \\ 2-2 t & \text { if } t \geq \frac{1}{2}\end{cases}
$$

Example: square function

Let $g(x)=x^{2}$, and for $m \geq 0$ let $g_{m}(x)$ be such that $\forall k \in\left\{0, \ldots, 2^{m}\right\}$:

- $g_{m}\left(\frac{k}{2^{m}}\right)=g\left(\frac{k}{2^{m}}\right) \quad$ - g_{m} is linear on $\left[\frac{k}{2^{m}}, \frac{k+1}{2^{m}}\right]$

Lemma

For all $k \in\left\{0, \ldots, 2^{m}-1\right\}$ and all $t \in[0,1]$,

$$
g_{m}\left(\frac{k+t}{2^{m}}\right)-g\left(\frac{k+t}{2^{m}}\right)=\frac{t(1-t)}{4^{m}}
$$

In particular, $\left\|g-g_{m}\right\|_{\infty}=\frac{1}{4^{m+1}}$ and for all $m \geq 1$,

$$
g_{m}=g_{m-1}-\frac{1}{4^{m}} s_{m}=i d-\sum_{j=1}^{m} \frac{1}{4^{j}} s_{j}
$$

Corollary

For every $\epsilon>0$, there exists a neural network f of depth $\left\lceil\log _{4}(1 / \epsilon)\right\rceil$, width 3 and coefficients in $[-4,2]$ such that $\|f-g\|_{\infty} \leq \epsilon$ on $[0,1]$

Example: square function

Lemma

$$
\begin{aligned}
& \left\|g-g_{m}\right\|_{\infty}=\frac{1}{4^{m+1}} \text { and for all } m \geq 1, \\
& \qquad g_{m}=g_{m-1}-\frac{1}{4^{m}} s_{m}=i d-\sum_{j=1}^{m} \frac{1}{4^{j}} s_{j}
\end{aligned}
$$

Corollary

For every $\epsilon>0$, there exists a neural network f of depth $\left\lceil\log _{4}(1 / \epsilon)\right\rceil$, width 3 and coefficients in $[-4,2]$ such that $\|f-g\|_{\infty} \leq \epsilon$ on $[0,1]$

$x_{0}=x$
$x_{1}=x$
$x_{2}=x-\frac{s(x)}{4}$
$x_{D}=x-\frac{s(x)}{4}-\cdots-\frac{s_{D-1}(x)}{4^{D-1}}$

Examples

Square on $[-1,1]:|x|=r(x)+r(-x) \rightarrow$ one additionnal width-2 layer is sufficient
Product: $\forall x, y \in \mathbb{R}, x y=\left[(x+y)^{2}-(x-y)^{2}\right] / 4 \rightarrow$ same depth, width 5
Polynomials: approximated by products
Continuous functions on $[0,1]$: use uniform approximation of Lagrange interpolation at Chebishev's points [Liang \& Srikant '19]
See [M. Telgarsky '16-'19. Benefits of depth in neural networks]
See work and presentation by Rémi Gribonval
Exponential separation result: [Daniely '17. Depth Separation for Neural Networks]

Outline

Supervised Learning
Approximation
Optimization

Generalization

Dimensionality Reduction and Generative Models

Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

Gradient Descent on the empirical loss

Let $r(\theta)=L_{n}\left(f_{\theta}\right)=\frac{1}{n} \sum_{k=1}^{n} \ell\left(f_{\theta}\left(X_{k}\right), Y_{k}\right)$

- The weights are initialized at random, e.g. $\theta_{0}^{d}(i, j) \sim \mathcal{N}(0,1)$
- Then, they are updated by gradient descent: $\theta_{t}=\theta_{t-1}-\eta_{t} \nabla r$
- Possibility to penalize the empirical loss with $\|\theta\|^{2} \rightarrow$ adds a tampering term in gradient descent
- Possibly Stochastic Gradient Descent: pick a point (or a batch) at random (or turn on the data in epochs)
- convergence to a local minimum (and how to choose η_{t})?
- to a global minimum? especially when over-parameterized? See [Mei, Montanari, Nguyen '18-'19. A Mean Field View of the Landscape of Two-Layers Neural Networks]

Computing the Gradient by Backpropagation

For every layer $d \in\{1, \ldots, D\}$, we define the vector $\delta_{d} \in \mathbb{R}^{p_{d}}$ by $\delta^{d}(i)=\frac{\partial r}{\partial x_{d}(i)} \sigma_{d}^{\prime}\left(\tilde{x}_{d}(i)\right)$

Recursive Equations of Backpropagation

For the squared loss $\ell(\hat{y}, y)=\frac{\|\hat{y}-y\|^{2}}{2}$,

$$
\begin{aligned}
\delta_{D} & =\frac{1}{n} \sum_{k=1}^{n}\left(\hat{f}_{n}\left(X_{k}\right)-Y_{k}\right) \cdot * \sigma_{d}^{\prime}\left(\tilde{x}_{D}(k)\right) \\
\delta_{d-1} & =M_{d}^{T} \delta^{d} \cdot * \sigma_{d-1}^{\prime}\left(\tilde{x}_{d-1}\right) \\
\nabla_{M_{d}} r & =\delta_{d} X_{d-1}^{T}
\end{aligned}
$$

Cf. Automatic Differentiation.

Outline

Supervised Learning
Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the A'gorithms' Predictions?

Overfitting: the Double Descent Phenomenon

Classical statistics suggest that there are too many parameters wrt. the number of observations, BUT this is not what is empirically observed!

Deep neural nets overfit, but (contrary to polynomials) they seem to generalize well (especially in high dimension)
\rightarrow how to explain that?
Beginning of answer: Benign Overfitting in Linear Regression Bartlett, by Long et al., 2019

Dimensionality Reduction and
 Generative Models

Outline

Supervised Learning
Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?Understanding the Algorithms' Predictions?

Dimensionality reduction

- Data: $X=\left(\begin{array}{c}x_{1}^{\top} \\ \vdots \\ x_{n}^{\top}\end{array}\right) \in \mathcal{M}_{n, p}(\mathbb{R}), p \gg 1$
- Dimensionality reduction: replace x_{i} with $y_{i}=\operatorname{enc}\left(x_{i}\right)$, where enc : $\mathbb{R}^{p} \rightarrow \mathbb{R}_{d}, d \ll p$
- Hopefully, we do not loose too much by replacing x_{i} by y_{i} : there exists a recovering mapping dec : $\mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ such that for all $i \in\{1, \ldots, n\}, \operatorname{dec}\left(\operatorname{enc}\left(x_{i}\right)\right) \approx x_{i}$

$\mathrm{x}=\mathrm{d}(\mathrm{e}(\mathrm{x}))$
$x \neq \mathrm{d}(\mathrm{e}(\mathrm{x}))$

X

PCA $=$ optimal linear dimensionality reduction

PCA aims at finding the compression matrix W (=enc) and the recovering matrix $U(=\mathrm{dec})$ such that the total squared distance between the original and the recovered vectors is minimal:

$$
\underset{W \in \mathcal{M}_{d, p}(\mathbb{R}), U \in \mathcal{M}_{p, d}(\mathbb{R})}{\arg \min } \sum_{i=1}^{n}\left\|x_{i}-U W x_{i}\right\|^{2}
$$

Thm: The solution is given by choosing $U=$ the eigenvectors corresponding to the highest eigenvalues of $\sum_{i=1}^{n} x_{i} x_{i}{ }^{T}$, and $W=U^{T}$

near optimal encoding in one dimension
(too much information lost)

5

near optimal encoding in two dimensions (less information lost)

t-SNE, UMAP, etc.

t-distributed stochastic neighbor embedding

Stage 1

Stage 2

b. Determine similarities between points
c. Move the points around until the similarities between points in low dimension resemble the similarities in high dimensions a. Randomly project
cells as points on a lowdimensional plot

between points

Src: https://www.scdiscoveries.com/
Still to be better understood and interpreted - see [A Probabilistic Graph Coupling View of Dimension Reduction, van Assel et al.]

Auto-encoders

Src: https://towardsdatascience.com/

Outline

Supervised Learning
 Approximation
 Optimization
 Generalization

Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

Generative Adversarial Networks

Src: https://sthalles.github.io/

Generator / Discriminator

Convergence of a GAN

Target distribution: $Z \sim \mathcal{N}\left(\theta^{\star}, I_{d}\right)$

- $U \sim \mathcal{N}\left(0, I_{d}\right)$
- $X=U+\theta$
- fake data: $L_{\psi}(X,-1)=\|X+\psi\|^{2}$
- True data: $L_{\psi}(Z,-1)=\|Z-\psi\|^{2}$

\Longrightarrow in general, the convergence of a GAN is a hard problem!

Example

[Encoding large scale cosmological structure with Generative Adversarial Networks, Marion Ullmo, Aurélien Decelle and Nabila Aghanim, Astronomy \& Astrophysics]

Using auto-encoders for data generation?

Src: https://towardsdatascience.com/

PCA for data generation? No...

PCA for data generation? No...

fake 0 (5 comps)

fake 0 (8 comps)

fake 0 (12 comps)

fake 1 (5 comps) fake 1 (8 comps) fake 1 (12 comps)

fake 3 (5 comps)
fake 3 (8 comps) fake 3 (12 comps) f

fake 6 (5 comps)
fake 6 (8 comps)
fake 6 (12 comps) fake 6 (16 comps) fake 6 (50 comps)

fake 9 (8 comps) fake 9 (12 comps) fake 9 (16 comps) fake 9 (50 comps)

Variational Auto-Encoders

loss $=C\|x-\hat{x}\|^{2}+K L\left[N\left(\mu_{x}, \sigma_{x}\right), N(0, I)\right]=C\|x-f(z)\|^{2}+K L[N(g(x), h(x)), N(0, I)]$

Src: https://towardsdatascience.com/

Example

[Geophysical Inversion Using a Variational Autoencoder to Model an Assembled Spatial Prior Uncertainty, Jorge Lopez-A/vis, Frederic Nguyen, M. C. Looms, Thomas Hermans, Journal of Geophysical Research: Solid Earth]

def. level $=2$

Privacy, Fairness, Interpretability, etc.

Outline

Supervised Learning
Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANS and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the A'gorithms' Predictions?

Differential Privacy

Differentially private algorithms make assurance that attackers can learn virtually nothing more about an individual than they would understand if that individual's record were absent from the dataset.

Smoker example

if an individual is openly "smoking" but wants privacy on her medical status,

- a medical study will prove the risk associated with smoking (whether she participates or not)
- a DP study will make it impossible to know if she indeed participated or not, even to someone who would have all the remaining information

Fundamental Law of Information Recovery:

Need to randomize the output.

Survey on triathletes: "do you use doping?"

Triathletes doping status $X_{i} \stackrel{i i d}{\sim} \mathcal{B}(p)$
but they may lie: answer $Y_{i} \in\{0,1\}$

Survey on triathletes: "do you use doping?"

Triathletes doping status $X_{i} \stackrel{i i d}{\sim} \mathcal{B}(p)$
 but they may lie: answer $Y_{i} \in\{0,1\}$

RANDOMIZED RESPONSE: A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS

Stanley L. Warner
Claremont Graduate School

For various reasons individuals in a sample survey may prefer not to confide to the interviewer the correct answers to certain questions. In such cases the individuals may elect not to reply at all or to reply with incorrect answers. The resulting evasive answer bias is ordinarily difficult to assess. In this paper it is argued that such bias is potentially removable through allowing the interviewee to maintain privacy through the device of randomizing his response. A randomized response method for estimating a population proportion is presented as an example. Unbiased maximum likelihood estimates are obtained and their mean square errors are compared with the mean square errors of conventional estimates under various assumptions about the underlying population.

> 1. introduction

For reasons of modesty, fear of being thought bigoted, or merely a reluctance to confide secrets to strangers, many individuals attempt to evade certain questions put to them by interviewers. In survey vernacular, these people become the "non-cooperative" group [5, pp. 235-72], either refusing outright to be surveyed, or consenting to be surveyed but purposely providing wrong answers to the questions. In the one case there is the problem of refusal bias [1, pp. 355-61], [2, pp. 33-6], [5, pp. 261-9]; in the other case there is the problem of response bias [3, p. 89], [4, pp. 280-325].

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69

See also Chong, Chun Yin Andy \& Chu, Amanda \& So, Mike \& Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized

Response Approach in Public Health Research: An Empirical Study on the Factors of Illegal Waste Disposal. International Journal of

[^0]
Survey on triathletes: "do you use doping?"

Triathletes doping status $X_{i} \stackrel{i i d}{\sim} \mathcal{B}(p)$ but they may lie: answer $Y_{i} \in\{0,1\}$

Randomized Response [Warner'65]

Flip a coin, then:
\rightarrow if tails, answer according to another coin flip
\rightarrow if heads, give the right answer

$$
\mathbb{P}(Y=1 \mid X=x)=1 / 4+x / 2 \quad \frac{\mathbb{P}(Y=1 \mid X=1)}{\mathbb{P}(Y=1 \mid X=0)}=3
$$

- No triathlete can be prosecuted triathletes!
- But still permits to estimate the proportion of dopers by $2 \bar{Y}_{n}-1$.

Cost: for the same precision, requires $\approx 4 x$ more data or even more if $x(1-x) \ll 1$

Survey on triathletes: "do you use doping?"

Triathletes doping status $X_{i} \stackrel{i i d}{\sim} \mathcal{B}(p)$ but they may lie: answer $Y_{i} \in\{0,1\}$

Randomized Response [Warner'65]

Flip a coin, then:
\rightarrow if tails, answer according to another coin flip
\rightarrow if heads, give the right answer

$$
\mathbb{P}(Y=1 \mid X=x)=1 / 4+x / 2 \quad \frac{\mathbb{P}(Y=1 \mid X=1)}{\mathbb{P}(Y=1 \mid X=0)}=3
$$

- No triathlete can be prosecuted triathletes!
- But still permits to estimate the proportion of dopers by $2 \bar{Y}_{n}-1$.

Cost: for the same precision, requires $\approx 4 x$ more data or even more if $x(1-x) \ll 1$

Formal Definition

Randomized algorithm $\mathcal{A}(x)=$ random variable on \mathcal{T}
Def: Neighboring databases $x \sim x^{\prime}$ if $\exists i \in\{1, \ldots, n\}, \forall j \neq i, x_{i,}=x_{j}^{\prime}$,

Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
\Longrightarrow Gödel Prize 2017]
\mathcal{A} is ϵ-DP if for all $x \sim x^{\prime}$ and all $\mathcal{S} \subset \mathcal{T}$

$$
\mathbb{P}(\mathcal{A}(x) \in S) \leq e^{\epsilon} \mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right) \in S\right)
$$

Equivalently,

- if $\mathcal{A}(x)$ is discrete, $\quad-\epsilon \leq \ln \frac{\mathbb{P}(\mathcal{A}(x)=t)}{\mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right)=t\right)} \leq \epsilon \quad$ for all $t \in \mathcal{T}$
- if $\mathcal{A}(x)$ has density $f(\cdot \mid x), \quad-\epsilon \leq \ln \frac{f(t \mid x)}{f\left(t \mid x^{\prime}\right)} \leq \epsilon \quad$ for all $t \in \mathcal{T}$

Formal Definition

Randomized algorithm $\mathcal{A}(x)=$ random variable on \mathcal{T}
Def: Neighboring databases $x \sim x^{\prime}$ if $\exists i \in\{1, \ldots, n\}, \forall j \neq i, x_{i,}=x_{j}^{\prime}$,

Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
\Longrightarrow Gödel Prize 2017]
\mathcal{A} is ϵ-DP if for all $x \sim x^{\prime}$ and all $\mathcal{S} \subset \mathcal{T}$

$$
\mathbb{P}(\mathcal{A}(x) \in S) \leq e^{\epsilon} \mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right) \in S\right)
$$

In the previous example on the DP survey, algorithm $\mathcal{A}(x)=\left(Y_{1}, \ldots, Y_{n}\right)$ is $\ln (3)$-DP.

Note that it outputs an entire (differentially private), which is unusual: more often, we just want the answer to a query.

Formal Definition

Randomized algorithm $\mathcal{A}(x)=$ random variable on \mathcal{T}
Def: Neighboring databases $x \sim x^{\prime}$ if $\exists i \in\{1, \ldots, n\}, \forall j \neq i, x_{i,}=x_{j}^{\prime}$,

Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
\Longrightarrow Gödel Prize 2017]

$$
\begin{aligned}
& \mathcal{A} \text { is } \epsilon \text {-DP if for all } x \sim x^{\prime} \text { and all } \mathcal{S} \subset \mathcal{T} \\
& \qquad \mathbb{P}(\mathcal{A}(x) \in S) \leq e^{\epsilon} \mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right) \in S\right)
\end{aligned}
$$

A person's privacy cannot be compromised by a statistical release if their data are not in the database. Therefore, with differential privacy, the goal is to give each individual roughly the same privacy that would result from having their data removed. That is, the statistical functions run on the database should not overly depend on the data of any one individual.

Formal Definition

Randomized algorithm $\mathcal{A}(x)=$ random variable on \mathcal{T}
Def: Neighboring databases $x \sim x^{\prime}$ if $\exists i \in\{1, \ldots, n\}, \forall j \neq i, x_{i,}=x_{j}^{\prime}$,

Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
\Longrightarrow Gödel Prize 2017]
\mathcal{A} is ϵ-DP if for all $x \sim x^{\prime}$ and all $\mathcal{S} \subset \mathcal{T}$

$$
\mathbb{P}(\mathcal{A}(x) \in S) \leq e^{\epsilon} \mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right) \in S\right)
$$

An algorithm is said to be differentially private if by looking at the output, one cannot tell whether any individual's data was included in the original dataset or not.
Cryptographic origins (and vocabulary).

Formal Definition

Randomized algorithm $\mathcal{A}(x)=$ random variable on \mathcal{T}
Def: Neighboring databases $x \sim x^{\prime}$ if $\exists i \in\{1, \ldots, n\}, \forall j \neq i, x_{i,}=x_{j}^{\prime}$,

Differential Privacy

[Calibrating Noise to Sensitivity, TCC'2006, C.Dwork, F. McSherry, K. Nissim et A. Smith
\Longrightarrow Gödel Prize 2017]
\mathcal{A} is ϵ-DP if for all $x \sim x^{\prime}$ and all $\mathcal{S} \subset \mathcal{T}$

$$
\mathbb{P}(\mathcal{A}(x) \in S) \leq e^{\epsilon} \mathbb{P}\left(\mathcal{A}\left(x^{\prime}\right) \in S\right)
$$

Differential privacy mathematically guarantees that anyone seeing the result of a differentially private analysis will essentially make the same inference about any individual's private information, whether or not that individual's private information is included in the input to the analysis.

Private Estimation and Learning

How to estimate privately? How to fit a model privately?

- Privacy Budget Management
- Laplace and Gaussian Mechanisms
- Exponential Mechanism
- DPSGD

How does privacy affect accuracy?

- Minimax rates
- Cramer-Rao bounds
- "free privacy"

See [On the Statistical Complexity of Estimation and Testing under Privacy Constraints, Lalanne, Garivier, Gribonval, Transactions on Machine Learning Research]

Outline

Supervised Learning
Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

Bias in the Data

2 II PIXELS

Une étude démontre les biais de la reconnaissance faciale, plus efficace sur les hommes blancs

Lorsqu'il s'agit de reconnaître le genre d'un homme blanc, des logiciels
affichent un taux de réussite de 99%. La tâche se complique lorsque la peau d'une personne est plus foncée, ou s'il s'agit d'une femme.
http://www.lemonde.fr/pixels/
Joy Buolamwini (MIT) has studied three face recognition software (by IBM, Microsoft and FACE++) on 1270 official portraits of policitians from Rwanda, Senegal, South Africa, Finland and Sweden, asking to predict their gender.

Buolamwini Study

Average results are good: 93,7\% success rate for Microsoft, 90% for FACE ++ , and $87,9 \%$ pour IBM.

BUT

- Less successful for women than for men: for example, FACE++ classifies correctly $99,3 \%$ of the men but only $78,7 \%$ of the women.
- Less successful for dark skins than for pale skins: for the IBM softwares, success rates are $77 ; 6 \%$ versus 95%.
- $93,6 \%$ of the mistakes of the Microsoft software were on dark skins, and $95,9 \%$ of the mistakes of Face ++ were on women!

Why? Bias in the data!

"Men with white skin are over-represented, and in fact white skins in general are." http://www.lemonde.fr/pixels/article/2018/02/12/une-etude-demontre-les-biais-de-la-
reconnaissance-faciale-plus-efficace-sur-les-hommes-blancs_5255663_4408996.html\#EZuQdOCJvJ3kYTiL.99

This is not only about face recognition

- ...but also insurance, employment, credit risk assessment...
- ... personalized medicine: most study of pangenomic association were conducted on white/European population.
\Longrightarrow The estimated risk factors will possibly be different for patients with African or Asian origins!

Popejoy A., Fullerton S. (2016).
Genomics is failing on diversity, Nature 538

Detecting a bias

Detecting an individual discrimination: Testing

- Idea: modify just one protected feature of the individual and check if decision in changed
- Recognized by justice
- Discrimination for house rental, employment, entry in shops, insurance, etc.

Detecting a group discrimination: Discrimination Impact Assessment.
Three measures:

- Disparate Impact (Civil Right Act 1971): $D I=\frac{\mathbb{P}\left(\hat{h}_{n}(X)=1 \mid S=0\right)}{\mathbb{P}\left(\hat{h}_{n}(X)=1 \mid S=1\right)}$
- Cond. Error Rates: $\mathbb{P}\left(\hat{h}_{n}(X) \neq Y \mid S=1\right)=\mathbb{P}\left(\hat{h}_{n}(X) \neq Y \mid S=0\right)$
- Equality of odds: $\mathbb{P}\left(\hat{h}_{n}(X)=1 \mid S=1\right)$ vs $\mathbb{P}\left(\hat{h}_{n}(X)=1 \mid S=0\right)$

An Example in more Detail

The following example is based on a Jupyter Notebook by Philippe Besse (INSA Toulouse) freely available (in R and python) on https://github.com/wikistat

Adult Census Dataset of UCI

- 48842 US citizens (1994)
- 14 features:
- $Y=$ income threshold (\$50k)
- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners,
Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family,

Other-relative, Unmarried.

Obvious Social Bias

Logistic Regression augments the bias!

```
log.Im=glm(income ~ .,data=datApp,family=binomial)
# significativity of the parameters
anova(log.Im,test="Chisq")
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Df & Devi & & Resid & Df & Resid & Dev & \multirow[t]{2}{*}{\(\operatorname{Pr}(>\mathrm{Chi})\)} \\
\hline NULL & NA & NA 3 & 35771 & 40371 & & NA & \\
\hline age & 1 & \multicolumn{2}{|l|}{1927,29010} & 35770 & \multicolumn{2}{|l|}{38444,43} & \(0,000000 \mathrm{e}+00\) \\
\hline educNum & 1 & \multicolumn{2}{|l|}{4289,41877} & 35769 & 34155, & & \(0,000000 \mathrm{e}+00\) \\
\hline mariStat & & \multicolumn{3}{|l|}{3 6318,12804} & 35766 & 27836,88 & \(0,000000 \mathrm{e}+00\) \\
\hline occup & 6 & \multicolumn{2}{|l|}{812,50516} & 35760 & \multicolumn{2}{|l|}{27024,38} & 3,058070e-172 \\
\hline origEthn & & \multicolumn{3}{|l|}{1 17,04639} & 35759 & 27007,33 & 3,647759e-05 \\
\hline sex & 1 & \multicolumn{2}{|l|}{50,49872} & 35758 & \multicolumn{2}{|l|}{26956,83} & 1,192428e-12 \\
\hline hoursWeek & & 1 & \multicolumn{2}{|l|}{402,82271} & 35757 & 26554,01 & \(1,338050 \mathrm{e}-89\) \\
\hline Lcapital & Gain & \(1 \quad 1\) & \multicolumn{2}{|l|}{} & 35756 & 25301,31 & \(2,154522 \mathrm{e}-274\) \\
\hline Lcapital & Ioss & 13 & \multicolumn{2}{|l|}{\[
310,38258
\]} & 35755 & 24990,93 & \(1,802529 \mathrm{e}-69\) \\
\hline child & 1 & \multicolumn{2}{|l|}{87,72437} & 35754 & \multicolumn{2}{|l|}{24903,21} & 7,524154e-21 \\
\hline
\end{tabular}
# Prevision
pred.log=predict(log.Im,newdata=daTest,type="response")
# Confusion matrix
confMat=table(pred.log>0.5,daTest$income)
incB incH
FALSE 6190 899
TRUE 556 1298
tauxErr(confMat): 16,27
round(displmp(daTest[," sex"],Yhat),3) : 0.212 0.248 0.283
# Overall Accuracy Equality?
apply(table(pred.log<0.5,daTest$income,daTest$sex),3,tauxErr)

\section*{What about Random Forest?}

Random Forest improves significantly the predicition quality...
```

rf.mod=randomForest(income ~. , data=datApp)
pred.rf=predict(rf.mod, newdata=daTest, type="response")
confMat=table(pred.rf, daTest\$income)
confMat
tauxErr(confMat)
pred.rf incB incH
incB 6301 795
incH 445 1402
13,87
round(dispImp(daTest[," sex"],pred.rf),3)
0.329 0.375 0.42

```
... without augmenting the bias (here).

\section*{Summary of the results by algorithm}

Précision


Effet disproportionné

\(\Longrightarrow\) Random Forest is here both more performant and less discriminative (BUT not interpretable)
\(\Longrightarrow\) This is not a general rule! It depends on the dataset
\(\Longrightarrow\) A serious learning should consider the different algorithms, and include a discussion on the discriminative effects

\section*{Individual Biases: Testing}

Are the predictions changed if the value of variable "sex" is switched?
```

daTest2=daTest

Changement de genre

 daTest2$sex=as.factor(ifelse(daTest$sex=="Male"," Fe

Prevision du "nouvel" echantillon test

 pred2.log=predict(log.Im,daTest2,type="response")
 table(pred.log <0.5,pred2.log<0.5,daTest$sex)
 Female
 FALSE TRUE
 FALSE 195 0
 TRUE 23 2679
 Male
 FALSE TRUE
 FALSE 1489 155
 TRUE 0 4402
    ```
\(\rightarrow 178\) have a different prediction, in the expected direction.

\section*{Outline}

\section*{Supervised Learning}

Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANs and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

\section*{Avoid Issues with Testing}

Easy: use maximal prediction of all modalilities of the protected variable
```

fairPredictGenre=ifelse(pred.log<pred2.log, pred2.log
confMat=table(fairPredictGenre>0.5,daTest\$income)
confMat;tauxErr(confMat)
incB incH
FALSE 6145 936
TRUE 535 1327

```
16.45
round (displmp (daTest\$sex, as. factor (fairPredictGenre
\(0.24 \quad 0.277 \quad 0.314\)
\# recall:
round (displmp (daTest\$sex, as.factor (pred. log \(>0.5\) )) , 3
\(0.212 \quad 0.248 \quad 0.283\)
\(\rightarrow\) No influence on the prediction quality
\(\rightarrow\) Small bias reduction, but does not remove group over-discrimination!

\section*{Naive approach: suppress the protected variable}
```


estimation without the variable "sex"

log-g.Im=glm(income ~., data=datApp[, -6], family=binomial)

Prevision

pred_g.log=predict(log_g.Im,newdata=daTest[, -8],type="response")

Confusion Matrix

confMat=table(pred_g.log>0.5,daTestSincome)
confMat
incB incH
FALSE 6157 953
TRUE 523 1310
tauxErr(confMat)
16.5
Yhat_g=as.factor(pred_g.log>0.5)
round(displmp(daTest[,"sex"], Yhat_g),3)
0.232 0.269 0.305

```
\(\Longrightarrow\) the quality of prediction is not deteriorated, but the bias augmentation remains the same!

\section*{Adapting the threshold to each class}
```

Yhat_cs=as.factor(ifelse(daTest$sex=="Female",pred.log>0.4,pred.log>0.5))
round(dispImp(daTest[," sex"],Yhat_cs),3)
tauxErr(table(Yhat_cs,daTest$income))
0.293 0.334 0.375
16.55

Stronger correction forcing the DI to be at least 0.8:

Yhat_cs=as.factor(ifelse(daTest$sex=="Female",pred.log >0.15, pred.log >0.5))
round(dispImp(daTest[," sex"],Yhat_cs),3)
tauxErr(table(Yhat_cs,daTest$income))
0.796
18.57

```
\(\Longrightarrow\) the prediction performance is significantly deteriorated
\(\Longrightarrow\) this kind of affirmative action is a questionable choice

\section*{Building one classifier per class}

Logistic regression \(\rightarrow\) consider the interactions of the protected variable with the others
```

yHat=predict(reg.log, newdata=daTest, type="response")
yHatF=predict(reg.logF,newdata=daTestF,type="response")
yHatM=predict(reg. logM, newdata=daTestM, type="response")
yHatFM=c(yHatF,yHatM); daTestFM=rbind(daTestF,daTestM)

Cumulated errors

table(yHatFM>0.5,daTestFMSincome)
incB incH
FALSE 6150 935
TRUE 530 1328
table(yHat>0.5,daTest$income)
incB incH
FALSE 6154 950
TRUE 526 1313
tauxErr(table(yHatFM>0.5,daTestFM$income))
16.38
tauxErr(table(yHat>0.5,daTest\$income))
16.5

Bias with an without class separation

round(dispImp(daTestFM[,"sex"], as.factor(yHatFM>0.5)),3)
0.284 0.324 0.365
round(displmp(daTest[,"sex"], as.factor(yHat>0.5)),3)
0.212 0.248}0.28

```

\section*{Comparison of several classifiers}


\section*{Summary}
- Automatic classification can augment the social bias
- All algorithms are not equivalent
- Linear classifiers should be particularly watched
- Random Forest can (at least sometimes) be less discriminative
- The bias augmentation diminishes with the consideration of variable interactions
- Removing the protected variable from the analysis is not sufficient
- Fitting different models on the different classes is in general a quick and simple way to avoid bias augmentation...
- ... if the protected variable is observed!

See [L'IA du Quotidien peut elle être Éthique ? : Loyauté des Algorithmes d'Apprentissage Automatique, Besse, Castets-Renard, Garivier, Loubes, Statistique et Société]

\section*{Outline}

\section*{Supervised Learning}

Approximation
Optimization
Generalization
Dimensionality Reduction and Generative Models
Dimensionality Reduction
GANS and VAEs
Privacy, Fairness, Interpretability, etc.
Privacy
What is fair?
How to fix the problem?
Understanding the Algorithms' Predictions?

\section*{Explainability vs Interpretability}

Two distinct notions (but the vocabulary is misleading: we flllow here
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ).
A decision rule is said to be:
interpretable if we understand how a prediction is associated to an observation; typical example: decision tree

http://www.up2.fr/
explainable if we understand what feature values led to the prediction, possibly by a counterfactual analysis; for example: "if variable \(X_{3}\) had taken that other value, then the prediction would have been different".

\section*{Explainability vs Interpretability}

Two distinct notions (but the vocabulary is misleading: we flllow here https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ).

A decision rule is said to be:
interpretable if we understand how a prediction is associated to an observation; typical example: decision tree
explainable if we understand what feature values led to the prediction, possibly by a counterfactual analysis; for example: "if variable \(X_{3}\) had taken that other value, then the prediction would have been different".

Expainability relates to the statistical notions of causal inference and sensibility analysis

Interpreting a deep Neural Work : the Founding Dream

http://aiehive.com

An audacious scientific bet...

\section*{Local Interpretable Model-Agnostic Explanations: LIME}


Linear model with feature selection on local subset of data


Src: "Why Should I Trust You?" Explaining the Predictions of Any Classifier, by Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin.

\section*{Local Interpretable Model-Agnostic Explanations: LIME}

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

\footnotetext{
Src: "Why Should I Trust You?" Explaining the Predictions of Any Classifier, by Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin.
}

\section*{Conclusion}
- Huge need for more research and good practice
- Not only average performance matters
- Fairness should be included in data analysis with human impact
- Important issues that everyone should be aware of
- Interesting experiments to run at every level```


[^0]:    Environmental Research and Public Health.

