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Supervised Learning



What we want to do: prediction

Phenomenon: observations (x , y) ∈ X × Y in a product of measurables

spaces X ⊂ Rp and Y ⊂ Rq.

Goal: predict y from x . Prediction error measure by loss

ℓ(ŷ , y) = ∥ŷ − y∥2/2 typically.

Statistical hypothesis: there exists F : X × Ω → Y such that the

observations are distributed as (X ,Y ) where X has distribution PX and

Y = F (X , ω). Typically, Y = f (X ) + ϵ where ϵ ∼ N (0, σ2).

Examples:

• classification (OCR, image recognition, text classification, etc.)

• regression (response to a drug, weather or stock price forecast, etc.)

Target = best possible guess of Y given X : f (X ) = E[Y |X ]
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Supervised Learning Framework

Mechanism of f is complex or hidden. Access to f only thru examples

i.e. a sample Sn =
(
(X1,Y1), . . . , (Xn,Yn)

)
of random pairs

Learning algorithm An : Sn 7→ f̂n where f̂n ∈ F ⊂ YX ⊂ (Rq)R
p

F = hypothesis class = model. Example: linear regression

F =

fθ : x 7→

θi,0 + p∑
j=1

θi,jxj


1≤i≤q

: θ ∈ Mq,1+p(R)


Quality of prediction ŷ : loss function ℓ : Rq ×Rq → R+ e.g. ℓ(ŷ , y) = (ŷ−y)2

2

Quality of hypothesis f ∈ F : generalization error = average loss

L(f ) = E
[
ℓ(f (X ),Y )

]
expectation is on new observation (X,Y)

Quality of the learning algorithm A: risk = average average loss

Rn(An) = E
[
L(f̂n)

]
expectation is on sample Sn
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Empirical Risk Minimization

Learning = how to find the best possible f ∈ F?

➝ Minimize the empirical loss = training error

Ln(f ) =
1

n

n∑
k=1

ℓ
(
f (Xk),Yk

)
average loss on the sample

= unbiased estimator of the generalization error L(f )

Empirical Risk Minimizer: f̂n ∈ argmin
f∈F

Ln(f )

Example: linear regression with quadratic loss (dates back at least to

Gauss) f̂n = fθ̂n where θ̂Tn = (XTX)−1XTY, with

X =

 1 X 1
1 . . . X p

1

. . .

1 X 1
n . . . X p

n

 and Y =

 Y1

...

Yn


Regression by polynomials of degrees 1, 2, . . . , n − 1 ➝ more parameters

is not necessarily better, bias / variance tradeoff, Structural Risk

Minimization (penalize empirical risk by model complexity) 4



Feedforward Neural Networks: Mimicking Brains?

Neuron: x 7→ σ
(
⟨w , x⟩+ b

)
with

• parameter w ∈ Rp, b ∈ R

• (non-linear) activation function σ : R → R
typically σ(x) = 1

1+exp(−x) or σ(x) = max(x, 0) called ReLU

Layer: x 7→ σ
(
Mx + b) with

• parameter M ∈ Mq,p(R),b ∈ Rq

• component-wise activation function σ = σ⊗q

Network: composition of layers fθ = σD ◦ TD ◦ · · · ◦ σ1 ◦ T1 with
• architecture A =

(
D, (p1, . . . , pD−1)

)
• x0 = x , xd = σd

(
Tdxd−1) ∈ Rpd

• Tdx = Mdx + bd

• parameter θ = (M1,b1, . . . , . . . ,MD ,bD)

θ ∈ ΘA =
∏D

d=1 Mpd−1,pd (R)× Rpd

• depth D ("st. nb layers), width max1≤d≤D pd
5



Deep Neural Networks in the last Decade

Several other important ideas:

• not fully connected layers

• convolution layers

• max-pooling

• dropout

• physics-informed loss functions

• etc...

Some were considered to be central and are then left apart... Even,

without those complications, understanding the success of neural nets

remains a challenge

6



How to learn with feedforward neural networks?

1. Choose architecture A =
[
D, (p1, . . . , pD−1)

]
• depth D?

• what architectures are good if f has some with given properties?

• activation function? sigmoid σ(x) = 1
1+exp(−x) or ReLU σ(x) = max(x, 0)

➝ approximation theory?

2. Learn = find the good coefficients using Sn
• Empirical Risk Minimization: f̂n solution of

min
Tk∈Mpd ,1+pd−1

(R)

1≤d≤D

1

n

n∑
k=1

ℓ
(
σD ◦ TD ◦ · · · ◦ σ1 ◦ T1(Xk),Yk

)
• non convex, high-dimensional optimization problem

• but gradient can be computed by back-propagation

➝ does gradient descent work?

3. Apply f̂n to new data (X ,Y )

• how to bound the generalization error L(f̂n)?

• should we regularize = penalize large coefficients?

➝ no overfitting?

➝ How to explain the huge empirical success of deep learning? 7
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Depth-2 Networks Are Universal

Cybenko [’89] Approximation by superposition of sigmoidal functions

Theorem

Let σ be any bounded, measurable (or continuous) function such that

σ(t) → 0 as t → −∞ and σ(t) → 1 as t → ∞. Then for every

continuous function f on [0, 1]p there exists a width p1 and a depth-2

neural network with activation functions σ1 = σ and σ2 = id

fθ(x) =

p1∑
j=1

αjσ
(
⟨wj , x⟩+ bj

)
such that ∥fθ − f ∥∞.

Proof:
• these functions σ are such that if for a measure µ on [0, 1]p∫

[0,1]p
σ
(
⟨w , x⟩+ b

)
dµ(x) = 0

for all w ∈ Rp and b ∈ R, then µ = 0.

• Hahn-Banach + Riesz representation: the closure of⋃
p

{
fθ : θ ∈ Mp1,p+1(R)× Rp1

}
has empty complement 9



An Quantitative bounds for ReLU depth-2 networks

Lemma [e.g. Eldan&Shamir’16]

Let g : R → R be constant outside of an interval [−R,R] and

L-Lipschitz. There exists a depth-2 ReLU network f with linear output

of width at most 8RL/ϵ and weights at most max
(
2L, ∥g∥∞

)
such that

∥f − g∥∞ ≤ ϵ.

Proof. If 2RL ≤ ϵ, take f to be constantly equal to g(−R).

Otherwise, take m = ⌈RL/ϵ⌉ ≤ 2RL/ϵ, and let f be the piecewise linear function coinciding with

g at points xi = iϵ/L, i ∈ {−m, . . . ,m}, linear between xi and xi+1, and constant outside of

[−x−m, xm]. Since g is L-Lipschitz, ∥f − g∥∞ ≤ ϵ. But f can be written as a depth-2 ReLU

network with 2m + 2 ≤ 8RL/ϵ neurons:

f (x) = f (x−m) +
m∑

i=−m

[
f ′(xi+) − f ′(xi−)

]
r(x − xi )

where f ′(xi+) = g(xi+1) − g(xi ) and f ′(xi−) = g(xi ) − g(xi−1) for all −m < i < m. Except

maybe for the constant f (x−m) = g(−R), the coefficients are bounded by

|g(xi+1) − g(xi ) − g(xi ) + g(xi−1)
∣∣ ≤ 2L.
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Example: radial function

Corollary [Daniely’17, Cor. 6]

Let g : [−1, 1] → [−1, 1] be L-Lipschitz function and let ϵ > 0. For a

positive integer d , let G : Sd−1 × Sd−1 → [−1, 1] be defined by

G (x, x′) = g
(
⟨x, x′⟩

)
.

There exists a depth-3 ReLU network f of width at most 16d2L
ϵ and

weights bounded by max(4, 2L) such that ∥f − G∥∞ ≤ ϵ.
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Why deep learning, then? The dream
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Example: sawteeth function

Let s(x) =


2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 ≤ x ≤ 1

0 otherwise

= 2r(x)− 4r

(
x − 1

2

)
+2r(x − 1)

and for all m ≥ 1 let sm = s ◦ · · · ◦ s︸ ︷︷ ︸
m times

Lemma

For all m ≥ 1, all k ∈
{
0, . . . , 2m−1 − 1

}
and all t ∈ [0, 1],

sm

(
k + t

2m−1

)
=

{
2t if t ≤ 1

2

2− 2t if t ≥ 1
2
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Example: square function

Let g(x) = x2, and for m ≥ 0 let gm(x) be such that ∀k ∈
{
0, . . . , 2m

}
:

• gm
(

k
2m

)
= g

(
k
2m

)
• gm is linear on

[
k
2m ,

k+1
2m

]
Lemma

For all k ∈
{
0, . . . , 2m − 1

}
and all t ∈ [0, 1],

gm

(
k + t

2m

)
− g

(
k + t

2m

)
=

t(1− t)

4m

In particular, ∥g − gm∥∞ = 1
4m+1 and for all m ≥ 1,

gm = gm−1 −
1

4m
sm = id −

m∑
j=1

1

4j
sj

Corollary

For every ϵ > 0, there exists a neural network f of depth ⌈log4(1/ϵ)⌉,
width 3 and coefficients in [−4, 2] such that ∥f − g∥∞ ≤ ϵ on [0, 1]

14



Example: square function

Lemma

∥g − gm∥∞ = 1
4m+1 and for all m ≥ 1,

gm = gm−1 −
1

4m
sm = id −

m∑
j=1

1

4j
sj

Corollary

For every ϵ > 0, there exists a neural network f of depth ⌈log4(1/ϵ)⌉,
width 3 and coefficients in [−4, 2] such that ∥f − g∥∞ ≤ ϵ on [0, 1]

x0= x x1= x x2= x − s(x)
4 xD = x − s(x)

4 − · · · − sD−1(x)
4D−1

1

1

1

-1/2

-1/2 -1/2 -1/2

1

2

2

-4

2

-4

2

−2/4D−1

11

in

out
4/4D−1

-4-4
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Examples

Square on [−1, 1]: |x | = r(x) + r(−x) ➝ one additionnal width-2 layer is sufficient

Product: ∀x , y ∈ R, xy = [(x + y)2 − (x − y)2]/4 ➝ same depth, width 5

Polynomials: approximated by products

Continuous functions on [0, 1]: use uniform approximation of Lagrange

interpolation at Chebishev’s points [Liang & Srikant ’19]

See [M. Telgarsky ’16-’19. Benefits of depth in neural networks]

See work and presentation by Rémi Gribonval

Exponential separation result: [Daniely ’17. Depth Separation for Neural

Networks]
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Gradient Descent on the empirical loss

Let r(θ) = Ln(fθ) =
1
n

∑n
k=1 ℓ

(
fθ(Xk),Yk

)
• The weights are initialized at random, e.g. θd0 (i , j) ∼ N (0, 1)

• Then, they are updated by gradient descent: θt = θt−1 − ηt∇r

• Possibility to penalize the empirical loss with ∥θ∥2 ➝ adds a

tampering term in gradient descent

• Possibly Stochastic Gradient Descent: pick a point (or a batch) at

random (or turn on the data in epochs)

• convergence to a local minimum (and how to choose ηt)?

• to a global minimum? especially when over-parameterized?

See [Mei, Montanari, Nguyen ’18-’19. A Mean Field View of the

Landscape of Two-Layers Neural Networks]
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Computing the Gradient by Backpropagation

For every layer d ∈ {1, . . . ,D}, we define the vector δd ∈ Rpd by

δd(i) = ∂r
∂xd (i)

σ′
d

(
x̃d(i)

)
Recursive Equations of Backpropagation

For the squared loss ℓ(ŷ , y) = ∥ŷ−y∥2

2 ,

δD =
1

n

n∑
k=1

(f̂n(Xk)− Yk) . ∗ σ′
d(x̃D(k))

δd−1 = MT
d δ

d . ∗ σ′
d−1(x̃d−1)

∇Md
r = δd x

T
d−1

Cf. Automatic Differentiation.
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Overfitting: the Double Descent Phenomenon

Src: https://openai.com

Classical statistics suggest that there are too many parameters wrt. the

number of observations, BUT this is not what is empirically observed!

Deep neural nets overfit, but (contrary to polynomials) they seem to

generalize well (especially in high dimension)

➝ how to explain that?

Beginning of answer: Benign Overfitting in Linear Regression Bartlett, by Long et al., 2019
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Dimensionality Reduction and

Generative Models
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Dimensionality reduction

• Data: X =

 xT1
...

xTn

 ∈ Mn,p(R), p ≫ 1

• Dimensionality reduction: replace xi with yi = enc(xi ), where

enc : Rp → Rd , d ≪ p

• Hopefully, we do not loose too much by replacing xi by yi : there

exists a recovering mapping dec : Rd → Rp such that for all

i ∈ {1, . . . , n}, dec(enc(xi )) ≈ xi

Src: https://towardsdatascience.com/
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PCA = optimal linear dimensionality reduction

PCA aims at finding the compression matrix W (= enc) and the

recovering matrix U (= dec) such that the total squared distance

between the original and the recovered vectors is minimal:

argmin
W∈Md,p(R),U∈Mp,d (R)

n∑
i=1

∥∥xi − UWxi
∥∥2

Thm: The solution is given by choosing U = the eigenvectors

corresponding to the highest eigenvalues of
∑n

i=1 xix
T
i , and W = UT

Src: https://towardsdatascience.com/
23
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t-SNE, UMAP, etc.

t-distributed stochastic neighbor embedding

Src: https://www.scdiscoveries.com/

Still to be better understood and interpreted – see [A Probabilistic Graph

Coupling View of Dimension Reduction, van Assel et al.]
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Auto-encoders

Src: https://towardsdatascience.com/
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Generative Adversarial Networks

Src: https://sthalles.github.io/
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Generator / Discriminator

Src: https://machinelearningmastery.com
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Convergence of a GAN

Target distribution: Z ∼ N (θ⋆, Id)

• U ∼ N (0, Id)

• X = U + θ

• fake data: Lψ(X ,−1) = ∥X + ψ∥2

• True data: Lψ(Z ,−1) = ∥Z − ψ∥2

=⇒ in general, the convergence of a GAN is a hard problem!
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Example

[Encoding large scale cosmological structure with Generative Adversarial

Networks, Marion Ullmo, Aurélien Decelle and Nabila Aghanim,

Astronomy & Astrophysics ]
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Using auto-encoders for data generation?

Src: https://towardsdatascience.com/
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PCA for data generation? No...
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PCA for data generation? No...
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Variational Auto-Encoders

Src: https://towardsdatascience.com/
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Example

[Geophysical Inversion Using a Variational Autoencoder to Model an

Assembled Spatial Prior Uncertainty, Jorge Lopez-Alvis, Frederic Nguyen,

M. C. Looms, Thomas Hermans, Journal of Geophysical Research: Solid

Earth]
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Privacy, Fairness, Interpretability,

etc.
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Differential Privacy

Differentially private algorithms make assurance that attackers can learn

virtually nothing more about an individual than they would understand if

that individual’s record were absent from the dataset.

Smoker example

if an individual is openly ”smoking” but wants privacy on her medical

status,

• a medical study will prove the risk associated with smoking (whether

she participates or not)

• a DP study will make it impossible to know if she indeed

participated or not, even to someone who would have all the

remaining information

Fundamental Law of Information Recovery:

Need to randomize the output.

Src: https://blog.tensorflow.org
36
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Survey on triathletes: ”do you use doping?”

Triathletes doping status Xi
iid∼ B(p)

but they may lie: answer Yi ∈ {0, 1}
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Survey on triathletes: ”do you use doping?”

Triathletes doping status Xi
iid∼ B(p)

but they may lie: answer Yi ∈ {0, 1}

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69

See also Chong, Chun Yin Andy & Chu, Amanda & So, Mike & Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized

Response Approach in Public Health Research: An Empirical Study on the Factors of Illegal Waste Disposal. International Journal of

Environmental Research and Public Health.
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Survey on triathletes: ”do you use doping?”

Triathletes doping status Xi
iid∼ B(p)

but they may lie: answer Yi ∈ {0, 1}

Randomized Response [Warner’65]

Flip a coin, then:

→ if tails, answer according to another coin

flip

→ if heads, give the right answer

P(Y = 1|X = x) = 1/4 + x/2
P(Y = 1|X = 1)

P(Y = 1|X = 0)
= 3

• No triathlete can be prosecuted one cannot condemn 1/4th of the innocent

triathletes!

• But still permits to estimate the proportion of dopers by 2Ȳn − 1.

Cost: for the same precision, requires ≈ 4x more data or even more if

x(1 − x) ≪ 1

37



Survey on triathletes: ”do you use doping?”

Triathletes doping status Xi
iid∼ B(p)

but they may lie: answer Yi ∈ {0, 1}

Randomized Response [Warner’65]

Flip a coin, then:

→ if tails, answer according to another coin

flip

→ if heads, give the right answer

P(Y = 1|X = x) = 1/4 + x/2
P(Y = 1|X = 1)

P(Y = 1|X = 0)
= 3

• No triathlete can be prosecuted one cannot condemn 1/4th of the innocent

triathletes!

• But still permits to estimate the proportion of dopers by 2Ȳn − 1.

Cost: for the same precision, requires ≈ 4x more data or even more if

x(1 − x) ≪ 1

”smoker example”: if p̂ = 98%,

a lot of information on each triathlete

BUT no more than if she had not participated in the study
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: Neighboring databases x ∼ x ′ if ∃i ∈ {1, . . . , n},∀j ̸= i , xi,· = x ′j,·

Differential Privacy

[Calibrating Noise to Sensitivity, TCC’2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

=⇒ Gödel Prize 2017]

A is ϵ-DP if for all x ∼ x ′ and all S ⊂ T

P
(
A(x) ∈ S

)
≤ eϵ P

(
A(x ′) ∈ S

)
Equivalently,

• if A(x) is discrete, −ϵ ≤ ln
P
(
A(x)=t

)
P
(
A(x′)=t

) ≤ ϵ for all t ∈ T

• if A(x) has density f (·|x), −ϵ ≤ ln f (t|x)
f (t|x′) ≤ ϵ for all t ∈ T
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: Neighboring databases x ∼ x ′ if ∃i ∈ {1, . . . , n},∀j ̸= i , xi,· = x ′j,·

Differential Privacy

[Calibrating Noise to Sensitivity, TCC’2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

=⇒ Gödel Prize 2017]

A is ϵ-DP if for all x ∼ x ′ and all S ⊂ T

P
(
A(x) ∈ S

)
≤ eϵ P

(
A(x ′) ∈ S

)
In the previous example on the DP survey, algorithm

A(x) = (Y1, . . . ,Yn) is ln(3)-DP.

Note that it outputs an entire (differentially private), which is unusual:

more often, we just want the answer to a query.
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: Neighboring databases x ∼ x ′ if ∃i ∈ {1, . . . , n},∀j ̸= i , xi,· = x ′j,·

Differential Privacy

[Calibrating Noise to Sensitivity, TCC’2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

=⇒ Gödel Prize 2017]

A is ϵ-DP if for all x ∼ x ′ and all S ⊂ T

P
(
A(x) ∈ S

)
≤ eϵ P

(
A(x ′) ∈ S

)
A person’s privacy cannot be compromised by a statistical release if their

data are not in the database. Therefore, with differential privacy, the goal

is to give each individual roughly the same privacy that would result from

having their data removed. That is, the statistical functions run on the

database should not overly depend on the data of any one individual.
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: Neighboring databases x ∼ x ′ if ∃i ∈ {1, . . . , n},∀j ̸= i , xi,· = x ′j,·

Differential Privacy

[Calibrating Noise to Sensitivity, TCC’2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

=⇒ Gödel Prize 2017]

A is ϵ-DP if for all x ∼ x ′ and all S ⊂ T

P
(
A(x) ∈ S

)
≤ eϵ P

(
A(x ′) ∈ S

)

An algorithm is said to be differentially private if by looking at the

output, one cannot tell whether any individual’s data was included in the

original dataset or not.

Cryptographic origins (and vocabulary).
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Formal Definition

Randomized algorithm A(x) = random variable on T

Def: Neighboring databases x ∼ x ′ if ∃i ∈ {1, . . . , n},∀j ̸= i , xi,· = x ′j,·

Differential Privacy

[Calibrating Noise to Sensitivity, TCC’2006, C.Dwork, F. McSherry, K. Nissim et A. Smith

=⇒ Gödel Prize 2017]

A is ϵ-DP if for all x ∼ x ′ and all S ⊂ T

P
(
A(x) ∈ S

)
≤ eϵ P

(
A(x ′) ∈ S

)

Differential privacy mathematically guarantees that anyone seeing the

result of a differentially private analysis will essentially make the same

inference about any individual’s private information, whether or not that

individual’s private information is included in the input to the analysis.
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Private Estimation and Learning

How to estimate privately? How to fit a model privately?

• Privacy Budget Management

• Laplace and Gaussian Mechanisms

• Exponential Mechanism

• DPSGD

How does privacy affect accuracy?

• Minimax rates

• Cramer-Rao bounds

• ”free privacy”

See [On the Statistical Complexity of Estimation and Testing under

Privacy Constraints, Lalanne, Garivier, Gribonval, Transactions on

Machine Learning Research]

39



Outline

Supervised Learning

Approximation

Optimization

Generalization

Dimensionality Reduction and Generative Models

Dimensionality Reduction

GANs and VAEs

Privacy, Fairness, Interpretability, etc.

Privacy

What is fair?

How to fix the problem?

Understanding the Algorithms’ Predictions?

40



Bias in the Data

http://www.lemonde.fr/pixels/

Joy Buolamwini (MIT) has studied three face recognition software (by

IBM, Microsoft and Face++) on 1 270 official portraits of

policitians from Rwanda, Senegal, South Africa, Finland and Sweden,

asking to predict their gender.

41
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Buolamwini Study

Average results are good: 93,7% success rate for Microsoft, 90% for

Face++, and 87,9% pour IBM.

BUT

• Less successful for women than for men: for example, Face++

classifies correctly 99,3% of the men but only 78,7% of the women.

• Less successful for dark skins than for pale skins: for the IBM

softwares, success rates are 77;6% versus 95%.

• 93,6% of the mistakes of the Microsoft software were on dark skins,

and 95,9% of the mistakes of Face ++ were on women!

Why? Bias in the data!

”Men with white skin are over-represented, and in fact white skins in

general are.” http://www.lemonde.fr/pixels/article/2018/02/12/une-etude-demontre-les-biais-de-la-

reconnaissance-faciale-plus-efficace-sur-les-hommes-blancs 5255663 4408996.html#EZuQdOCJvJ3kYTiL.99
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This is not only about face recognition

• ...but also insurance, employment, credit risk assessment...

• ... personalized medicine: most

study of pangenomic association

were conducted on white/European

population.

=⇒ The estimated risk factors will

possibly be different for patients

with African or Asian origins!

Popejoy A., Fullerton S. (2016).

Genomics is failing on diversity, Nature 538
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Detecting a bias

Detecting an individual discrimination: Testing

• Idea: modify just one protected feature of the individual and check if

decision in changed

• Recognized by justice

• Discrimination for house rental, employment, entry in shops,

insurance, etc.

Detecting a group discrimination: Discrimination Impact Assessment.

Three measures:

• Disparate Impact (Civil Right Act 1971): DI =
P(ĥn(X ) = 1|S = 0)

P(ĥn(X ) = 1|S = 1)

• Cond. Error Rates: P(ĥn(X ) ̸= Y |S = 1) = P(ĥn(X ) ̸= Y |S = 0)

• Equality of odds: P(ĥn(X ) = 1|S = 1) vs P(ĥn(X ) = 1|S = 0)
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An Example in more Detail

The following example is based on a Jupyter Notebook by Philippe

Besse (INSA Toulouse) freely available (in R and python) on

https://github.com/wikistat
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Adult Census Dataset of UCI

• 48842 US citizens (1994)

• 14 features:

• Y= income threshold ($50k)
• age: continuous.

• workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,

Local-gov, State-gov, Without-pay, Never-worked.

• fnlwgt: continuous.

• education: Bachelors, Some-college, 11th, HS-grad, Prof-school,

Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,

Doctorate, 5th-6th, Preschool.

• education-num: continuous.

• marital-status: Married-civ-spouse, Divorced, Never-married,

Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

• occupation: Tech-support, Craft-repair, Other-service, Sales,

Exec-managerial, Prof-specialty, Handlers-cleaners,

Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving,

Priv-house-serv, Protective-serv, Armed-Forces.

• relationship: Wife, Own-child, Husband, Not-in-family,

Other-relative, Unmarried.

• race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

• sex: Female, Male.

• capital-gain: continuous.

• capital-loss: continuous. hours-per-week: continuous.

• native-country: United-States, Cambodia, England, Puerto-Rico,

Canada, . . .

• We ignore fnlwgt and nativ-country (pretty redundant with race),

relationship → child, race → CaucYes / CaucNo
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Obvious Social Bias

Con f i d ence i n t e r v a l f o r the DI

( by d e l t a method )

round ( d i sp Imp ( datBas [ , ” s ex ” ] ,

datBas [ , ” income ” ] ) , 3 )

0 .349 0 .367 0 .384

Con f i dence i n t e r v a l f o r the DI

( d e l t a method )

round ( d i sp Imp ( datBas$or igEthn ,

datBas$ income ) , 3 )

0 .566 0 .601 0 .637
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Logistic Regression augments the bias!

l o g . lm=glm ( income ˜ . , data=datApp , f am i l y=b i nom i a l )

# s i g n i f i c a t i v i t y o f the pa ramete r s

anova ( l o g . lm , t e s t=”Chi sq ”)

Df Dev iance Res id . Df Res id . Dev Pr(>Chi )

NULL NA NA 35771 40371 ,72 NA

age 1 1927 ,29010 35770 38444 ,43 0 ,000000 e+00

educNum 1 4289 ,41877 35769 34155 ,01 0 ,000000 e+00

mar iS ta t 3 6318 ,12804 35766 27836 ,88 0 ,000000 e+00

occup 6 812 ,50516 35760 27024 ,38 3 ,058070 e−172

o r i gE thn 1 17 ,04639 35759 27007 ,33 3 ,647759 e−05

sex 1 50 ,49872 35758 26956 ,83 1 ,192428 e−12

hoursWeek 1 402 ,82271 35757 26554 ,01 1 ,338050 e−89

L c a p i t a l G a i n 1 1252 ,69526 35756 25301 ,31 2 ,154522 e−274

L c a p i t a l L o s s 1 310 ,38258 35755 24990 ,93 1 ,802529 e−69

c h i l d 1 87 ,72437 35754 24903 ,21 7 ,524154 e−21

# P r e v i s i o n

pred . l o g=p r e d i c t ( l o g . lm , newdata=daTest , t ype=”r e s pon s e ”)

# Con fu s i on mat r i x

confMat=t a b l e ( pred . log >0.5 , daTest$ income )

incB incH

FALSE 6190 899

TRUE 556 1298

t auxE r r ( confMat ) : 16 ,27

round ( d i sp Imp ( daTest [ , ” s ex ” ] , Yhat ) , 3 ) : 0 .212 0 .248 0 .283

# Ov e r a l l Accuracy Equ a l i t y ?

app l y ( t a b l e ( pred . log <0.5 , daTest$ income , daTest$sex ) , 3 , t auxE r r )

Female 91 .81 Male 79 .7
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What about Random Forest?

Random Forest improves significantly the predicition quality...

r f .mod=randomForest ( income ˜ . , data=datApp )

pred . r f=p r e d i c t ( r f .mod , newdata=daTest , t ype=”r e s pon s e ”)

confMat=t a b l e ( pred . r f , daTest$ income )

confMat

t auxE r r ( confMat )

pred . r f incB incH

incB 6301 795

incH 445 1402

13 ,87

round ( d i sp Imp ( daTest [ , ” s ex ” ] , p red . r f ) , 3 )

0 .329 0 .375 0 .42

... without augmenting the bias (here).
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Summary of the results by algorithm

=⇒ Random Forest is here both more performant and less

discriminative (BUT not interpretable)

=⇒ This is not a general rule! It depends on the dataset

=⇒ A serious learning should consider the different algorithms, and

include a discussion on the discriminative effects
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Individual Biases: Testing

Are the predictions changed if the value of variable ”sex” is switched?

daTest2=daTest

# Changement de gen re

daTest2$ sex=as . f a c t o r ( i f e l s e ( daTest$ sex==”Male ” ,” Female ” ,”Male ” ) )

# P r e v i s i o n du ” nouve l ” e c h a n t i l l o n t e s t

pred2 . l o g=p r e d i c t ( l o g . lm , daTest2 , type=”r e s pon s e ”)

t a b l e ( pred . log <0.5 , pred2 . log <0.5 , daTest$ sex )

Female

FALSE TRUE

FALSE 195 0

TRUE 23 2679

Male

FALSE TRUE

FALSE 1489 155

TRUE 0 4402

➔ 178 have a different prediction, in the expected direction.
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Avoid Issues with Testing

Easy: use maximal prediction of all modalilities of the protected variable

f a i r P r e d i c t G e n r e= i f e l s e ( pred . log<pred2 . log , pred2 . log , pred . l o g )

confMat=t a b l e ( f a i r P r e d i c t G e n r e >0.5 , daTest$ income )

confMat ; t auxE r r ( confMat )

incB incH

FALSE 6145 936

TRUE 535 1327

16 .45

round ( d i sp Imp ( daTest$sex , as . f a c t o r ( f a i r P r e d i c t G e n r e >0 .5) ) ,3 )

0 .24 0 .277 0 .314

# r e c a l l :

round ( d i sp Imp ( daTest$sex , as . f a c t o r ( pred . log >0 .5) ) ,3 )

0 .212 0 .248 0 .283

➔ No influence on the prediction quality

➔ Small bias reduction, but does not remove group over-discrimination!
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Naive approach: suppress the protected variable

# e s t ima t i o n w i thout the v a r i a b l e ” sex ”

l o g g . lm=glm ( income ˜ . , data=datApp [ ,−6] , f am i l y=b i nom i a l )

# P r e v i s i o n

p r ed g . l o g=p r e d i c t ( l o g g . lm , newdata=daTest [ ,−8] , t ype=”r e s pon s e ”)

# Con fu s i on Matr i x

confMat=t a b l e ( p r ed g . log >0.5 , daTest$ income )

confMat

incB incH

FALSE 6157 953

TRUE 523 1310

t auxE r r ( confMat )

16 .5

Yhat g=as . f a c t o r ( p r ed g . log >0.5)

round ( d i sp Imp ( daTest [ , ” s ex ” ] , Yhat g ) , 3 )

0 .232 0 .269 0 .305

=⇒ the quality of prediction is not deteriorated, but the bias

augmentation remains the same!
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Adapting the threshold to each class

Yhat cs=as . f a c t o r ( i f e l s e ( daTest$sex==”Female ” , pred . log >0.4 , pred . log >0.5))

round ( d i sp Imp ( daTest [ , ” s ex ” ] , Yhat c s ) , 3 )

t auxE r r ( t a b l e ( Yhat cs , daTest$ income ) )

0 .293 0 .334 0 .375

16 .55

# St r onge r c o r r e c t i o n f o r c i n g the DI to be at l e a s t 0 . 8 :

Yhat c s=as . f a c t o r ( i f e l s e ( daTest$sex==”Female ” , pred . log >0.15 , pred . log >0.5))

round ( d i sp Imp ( daTest [ , ” s ex ” ] , Yhat c s ) , 3 )

t auxE r r ( t a b l e ( Yhat cs , daTest$ income ) )

0 .796 0 .863 0 .93

18 .57

=⇒ the prediction performance is significantly deteriorated

=⇒ this kind of affirmative action is a questionable choice
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Building one classifier per class

Logistic regression → consider the interactions of the protected variable with the others

yHat=p r e d i c t ( r eg . log , newdata=daTest , t ype=”r e s pon s e ”)

yHatF=p r e d i c t ( r eg . logF , newdata=daTestF , type=”r e s pon s e ”)

yHatM=p r e d i c t ( r eg . logM , newdata=daTestM , type=”r e s pon s e ”)

yHatFM=c ( yHatF , yHatM ) ; daTestFM=rb i n d ( daTestF , daTestM )

# Cumulated e r r o r s

t a b l e (yHatFM>0.5 , daTestFM$ income )

incB incH

FALSE 6150 935

TRUE 530 1328

t a b l e ( yHat>0.5 , daTest$ income )

incB incH

FALSE 6154 950

TRUE 526 1313

t auxE r r ( t a b l e (yHatFM>0.5 , daTestFM$ income ) )

16 .38

t auxE r r ( t a b l e ( yHat>0.5 , daTest$ income ) )

16 .5

# Bias w i th an w i thout c l a s s s e p a r a t i o n

round ( d i sp Imp ( daTestFM [ , ” sex ” ] , as . f a c t o r (yHatFM>0.5)) ,3)

0 .284 0 .324 0 .365

round ( d i sp Imp ( daTest [ , ” s ex ” ] , as . f a c t o r ( yHat >0.5)) ,3)

0 .212 0 .248 0 .283

=⇒ it reduces the bias 56



Comparison of several classifiers

57



Summary

• Automatic classification can augment the social bias

• All algorithms are not equivalent

• Linear classifiers should be particularly watched

• Random Forest can (at least sometimes) be less discriminative

• The bias augmentation diminishes with the consideration of variable

interactions

• Removing the protected variable from the analysis is not sufficient

• Fitting different models on the different classes is in general a quick

and simple way to avoid bias augmentation...

• ... if the protected variable is observed!

See [L’IA du Quotidien peut elle être Éthique ? : Loyauté des

Algorithmes d’Apprentissage Automatique, Besse, Castets-Renard,

Garivier, Loubes, Statistique et Société]
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Explainability vs Interpretability

Two distinct notions (but the vocabulary is misleading: we flllow here

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ).

A decision rule is said to be:

interpretable if we understand how a prediction is associated to an

observation; typical example: decision tree

http://www.up2.fr/

explainable if we understand what feature values led to the prediction,

possibly by a counterfactual analysis; for example: ”if

variable X3 had taken that other value, then the prediction

would have been different”.
60

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf
http://www.up2.fr/


Explainability vs Interpretability

Two distinct notions (but the vocabulary is misleading: we flllow here

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.pdf ).

A decision rule is said to be:

interpretable if we understand how a prediction is associated to an

observation; typical example: decision tree

explainable if we understand what feature values led to the prediction,

possibly by a counterfactual analysis; for example: ”if

variable X3 had taken that other value, then the prediction

would have been different”.

Expainability relates to the statistical notions of causal inference and

sensibility analysis
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Interpreting a deep Neural Work : the Founding Dream

http://aiehive.com

An audacious scientific bet...
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Local Interpretable Model-Agnostic Explanations: LIME

Linear model with feature selection on local subset of data

Src: “Why Should I Trust You?” Explaining the Predictions of Any Classifier, by Marco Tulio

Ribeiro, Sameer Singh and Carlos Guestrin.
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Local Interpretable Model-Agnostic Explanations: LIME

Src: “Why Should I Trust You?” Explaining the Predictions of Any Classifier, by Marco Tulio

Ribeiro, Sameer Singh and Carlos Guestrin.
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Conclusion

• Huge need for more research and good practice

• Not only average performance matters

• Fairness should be included in data analysis with human impact

• Important issues that everyone should be aware of

• Interesting experiments to run at every level
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