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Data

Record x; € X for individual i
Datax = (X1,...,Xp) € A"

Variables
Gender | Age | Weight | Height | Smoking [Race
(M/'F) (Ibs.) (in.) (0=No,
1=Yes)
Patient #1 M 59 175 69 0 White
| Patient #2 F 67 140 62 1 Black
g Patient #3 F 73 1585 59 0 Asian
= )
=
©
o
- .
Patient #75 M 45 190 72 0 White

Src: https://statacumen. com/

Statistical model

The records are iid draws of an unknown probability law
Py € M1 (X): under Pg, X = (X1,...,X,) ~ P50 € ©
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(Statistical) Data Analysis

forx € X", outputs (X, U) ~ Qx € My (T)

[Database] Target = f(x)
[Statistics] Target = some functional of Py, while ¢(X, U) ~ PY§
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UNIVERSITE
DELYON




Framework

CREATOR GOD

01010101010
ane 01010101010
e @ 01010101010
—— » 0O
X B E ﬁ

Dataset

U
t

UNIVERSITE




Information leakage

Membership attack Model inversion attack
Src: https: //waw. arxiv-vanity. con/papers/1904. 05506/ [Fredrikson et al. '2015]
Service Provider Machine Learning as a Service

) E—E-0

* Training Data Black-box Training Model

Prediction
AP
User
(]

% | ‘é Figure 1: An image recovered using a new model in-

r e V?rs.ion a!:tack (left) and a tra.inin'g set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Is my private data in
model’s training data?

Seehttps://arxiv.org/abs/1610.05820 for more information: Membership Inference Attacks against Machine Learning Models by Reza Shokri, Marco
Stronati, Congzheng Song, Vitaly Shmatikov
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https://arxiv.org/abs/1610.05820

Anonymization is not the solution

Linkage attack

[Simple Demographics Often Identify People Uniquely, by Latanya Sweeney]
showed that gender, date of birth, and zip code are sufficient to uniquely
identify the vast majority of Americans.

= By linking these attributes in a supposedly anonymized healthcare
database to public voter records, she was able to identify the individual health
record of the Governor of Massachussetts.

Differencing attack
Imposing request on many lines is not the solution
Example from [Dwork & Roth]:

+ How many people in the database have the sickle cell trait?
« How many people, not named Z, in the database have the sickle cell trait?

UNIVERSITE
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Differential Privacy

DP: attackers can learn virtually nothing more about an individual than they
would understand if that individual's record were absent from the dataset.
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Smoker example

If an individual is openly "smoking” but wants privacy on her medical status,
+ amedical study will prove the risk associated with smoking (whether she participates or not)

+ a DP study will make it impossible to know if she indeed participated or not, even to someone who would
have all the remaining information
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer X; € {0,1} of aduts
taking PEDs

offense in
trying to gain an
unfair advantage
by an Olympic
athlete or team.
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer X; € {0,1} of aduts

taking PEDs
RANDOMIZED RESPONSE: A SURVEY TECHNIQUE is the greatest
FOR ELIMINATING EVASIVE ANSWER BIAS olirieeln
trying to gain an
Sranzey L. WARNER unfair advantage
Claremont Graduate School by an Olympic

athlete or team.
For various reasons individuals in a sample survey may prefer not
to confide to the interviewer the correct answers to certain questions.
Tn such cases the individuals may elect not to reply at all or to reply
with incorrect answers. The resulting evasive answer bias is ordinarily
difficult to assess. In this paper it is argued that such bias is potentially
removable through allowing the interviewee to maintain privacy
through the device of randomizing his response. A randomized response
method for estimating a population proportion is presented as an ex-
ample. Unbiased maximum likelihood estimates are obtained and their
mean square errors are compared with the mesn square errors of con-
ventional estimates under various assumptions about the underlying
population.
1. INTRODUCTION

or reasons of modesty, fear of being thought bigoted, or merely a reluc-
tance to confide secrets to strangers, many individuals attempt to evade
certain questions put to them by interviewers. In survey vernacular, these
people become the “non-cooperative” group [5, pp. 235-72], either refusing
outright to be surveyed, or consenting to be surveyed but purposely providing
wrong answers to the questions. In the one case there is the problem of refusal
bias [1, pp. 355-61], [2, pp. 33-6], [5, pp. 261-9]; in the other case there is the

problem of response bias [3, p. 89], [4, pp. 280-325].

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69
See also Chong, Chun Yin Andy & Chu, Amanda & So, Mike & Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized Response Approach in Public

Heglth Research: An Empirical Study on the Factors of lllegal Waste Disposal. International Journal of Environmental Research and Public Health.
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer X; € {0,1} of adlts

Randomized Response [Warner'65]  #msminan

unfair advantage
by an Olympic

Fllp a COin, then: athlete or team.
— if tails, answer according to another coin flip
— if heads, give the right answer

X P(X; = 1] = 1)
PX = 11X =x;) = 1/4 + x;/2 — =
(X = 1X = x) = 1/4+x/ B = 1% =)

* No triathlete can be prosecuted one cannot condemn 1/4th of the innocent triathletes!

* But still permits to estimate the proportion of dopers byp, = 20" > X% — 1.
i=1

ost: for the same precision, requires ~ 4x more data oreven moreifx(1 —x) < 1




Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer X; € {0,1} of adlts

believe
taking PEDs

o is the greatest’
Randomized Response [Warner’'65] offense in

trying to gain an
unfair advantage

Flip a coin, then: S
— if tails, answer according to another coin flip
— if heads, give the right answer

X P(X = 1] = 1)
PXi=1X=x)=1/44x/2 —— =

(% = 1% =x) = 1/4+x/ o
+ No triathlete can be prosecuted  one cannot condemn 1/4th of the innocent triathletes!

* But still permits to estimate the proportion of dopers byp, =2n' >~ X% — 1.
i=1

Cost: for the same precision, requires ~ 4x more data oreven moreifx(1 — x) < 1

"smoker example”: if p, = 98%,

a lot of information on each triathlete

(LT no more than if she had not participated in the study
DELYON




Formal Definition

Randomized algorithm A(x) = v (x, U) = random variable on T

Def: x~ X ifdie{l,....,n},Vj#i,x =X

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gddel Prize 2017]

Y ise-DPif forallx ~x"andallS C T

PY(A(x) € 5) < e PY(ARX) €5)

A person’s privacy cannot be compromised by a statistical release if their data
are not in the database. Therefore, with differential privacy, the goal is to give
each individual

=> the statistical functions run on the database should not
depend on the data of any one individual.
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Formal Definition

Randomized algorithm A(x) = v (x, U) = random variable on T

Def: x~ X ifdie{l,....,n},Vj#i,x =X

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gddel Prize 2017]

Yise-DPifforallx ~x"andallS C T

PY(A(x) € S) < e PY(A(X) €5)

Equivalently,

- if A(x) is discrete, —e<In w <e forallteT
P (A(x)=t)

« if A(x) has density f(:|x), —e<In jf((f‘lxx,)) <e forallteT

UNIVERSITE
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Formal Definition

Randomized algorithm A(x) = v (x, U) = random variable on T
Def: x~ X ifdie{l,....,n},Vj#i,x =X

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gdodel Prize 2017]

Yise-DPifforallx ~x"andallS C T

PY(A(x) € S) <e° PY(A(X) €5)

Differential privacy mathematically guarantees that anyone seeing the result
of a differentially private analysis will essentially make the same inference
about any individual's private information, whether or not that individual's
private information is included in the input to the analysis.
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Formal Definition

Randomized algorithm A(x) = v (x, U) = random variable on T

Def: x~ X ifdie{l,....,n},Vj#i,x =X

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gdodel Prize 2017]

Yise-DPifforallx ~x"andallS C T

PY(A(x) € S) <e° PY(A(X) €5)

In the previous example on the DP survey, algorithm A(X) = (Xy,...,X,) is
In(3)-DP.

Note that it outputs an entire (differentially private), which is unusual: more
often, we just want the answer to a query.
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Properties

Post-processing

If A: X" — 9y (T) is e-DP, then for every f: T — T algorithm fo A is also
e-DP

Group privacy

Ifx ~x%~ .- ~xkthenforallS C T, P(A(x)€S) <eP(AX) €S)

”Composition”

If Ay : X" — 9Ny (T ) ise-DP and if Ay : X" — 90, (T") is €’-DP, then
X — (A (x), A2(x)) is (e +€')-DP

DP defines privacy not as a binary notion of "was the data of individual
exposed or not”, but rather a matter of
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The Exponential Mechanism




Example: Majority of Binary Observations

X ={0,1},n=2k+1 targetf(x) =1{ > x; > n/2} = median(x)
« A(x) dependsonlyons =Y x;, = PY(A(x) =1) =:p(s)

« By symmetry p(n —s) = 1 — p(s)

* DPip(k+1) <ep(k) = e (1 —pk+1)) = p(k+1) < 7=

1

* More generally, for all s > n/2, p(s)

= 1+ e (2s—n)e M) S e
1
* Infact, p(s) = ﬁ js =-DP (see next slide)
e \ < ) 4
. _ : . p(k+r+1) 1+4e " e
Better: p(k+r) = T is &-DP: et et e <e

1—pk 1
ple+1)  1-pletr+1)

and similarly for
p(k) 1—p(k+r)

UNIVERSITE
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Example: Majority of Binary Observations

X ={0,1},n=2k+1 targetf(x) =1{ > x; > n/2} = median(x)
« A(x) dependsonlyons =Y x;, = PY(A(x) =1) =:p(s)

« By symmetry p(n —s) = 1 — p(s)

* DPip(k+1) <ep(k) = e (1 —pk+1)) = p(k+1) < 7=

1

andp(n) < m

+ More generally, foralls > n/2, p(s) < TTe e

1
ﬁ is e-DP (See next S“de)
e (25—n) 2
* Requiresn > 1/e
* If |s — n/2| > 3/e, the answer is correct with probability > 95%
* Butif |s — n/2| < +/n, the chances are high that the majority in the sample
is not the majority in the population

* Infact, p(s) =

« = ife >3/\/n <= n>9/e? -DP does not really cost any precision!

ENS DE LYON




More generally: Exponential Mechanism

If 7 is discrete, one wants A to assign a probability to each possible outcome
t € T that depends on its u(x,t) on the data x

The of uis defined as Au = max max |u(x, t) — u(x’,t)|
teT x~x’

Exponential Mechanism
eu(x,t) )

exp
The algorithm A defined by PV (A(x) = t) = ( QA:(X .
ZﬂeT €exp (W)

n
Previous example: for u(x,t) = (2t — 1) (s — 7> = —u(x,1-1),

is e-DP

PY(A(x) =1) =

UNIVERSITE




Proof

Foreveryt € T andx ~ X/,
i
PUAX) =1) P (=2) / exp (245:2)
PU(A(X’) — t) Zr'eTeXp (u(;,Ar’u)s) ZI/ET exp (u(x z/)a)

) —u(x,0)) e R4
<E(U(x, t) — u(x',t))> SveT exp ( o - : ) P <u<;gu)i>
= exp
240 Sver e (“Ga2)

= exp(e)

/
< Zt’eTeXp( )exp (%)
eXP(2> ey exp (M)

UNIVERSITE
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Bound on the resulting utility

Theorem

For every database x the exponential mechanism satisfies:

PY (u(x,A(x)) <u(x,f(x)) — 2A—ul |T|>

Proof: forany t € T such thatu(x, t) < u(x,f(x)) —2Aue™ " In (|71/95),

< e (u (x,f(x)) - 2?“ In léﬂ) )
exp 2AU
&

cu(x./(x)) ) =7
2Au

PY(A(x) =t) <
exp (

and there are at most 7 of them

UNIVERSITE




Bound on the resulting utility

Theorem

For every database x the exponential mechanism satisfies:
2A
PY (u(x,A(x)) <u(x,f(x)) — ?uln @) <0
Equivalently, for every v > 0
PY (u(x, A(x)) < u(x,f(x)) —v) < |T|e 232

In the example:

= Pu(u(x, Ax)) < u(x,f(x)) — 2u(x,f(x))) 2 exp (—W) =

UNIVERSITE




DB Lower Bound for Discrete Mechanisms

A (discrete) is said to be ifforallx e X andte T,
PY(A(x) = t) < PY(A(x) = f(x))
Inverse Sensibility
The of function f on data x to output t € 7T is defined as

Dy(x,t) = min {k c3x ~x! ~ L~ xFand f(xF) = t}

Lower bound

1
. B U — —
For every unbiased &-DP mechanism A, PY(A(x) = f(x)) < S e e

UNIVERSITE




Proof

Lett € 7 and letx’ be such that h(x,x') £ 37, 1{x1 # x|} = Ds(x,t) and f(x') = t. DP implies

PY(A(x) = 1) _ PU(A(x) =t) PY(AX) =t =f(x)) PY(AKX) = f(x)) S o= DFxDE 1 5 o= Dpx0E
PU(A(X) =f(x)) PU(AX)=t) PV (A ) x)) pv (A (x) =f(x)) —
and hence
_ PY (A(x) =1) U _ —2D(x,t)e U _
; WA =700 © (A(x) = f(x) > t;e 708 PY(A(x) = f(x))

n 1 o
s — 7‘ + 5 and this yields:

In the previous example, Df(x, 1 — f(x)) = 5

1
1+ e*(\Qs—n\Jrl)a
1

The Exponential Mechanism above is almost optimal: it has P (A(x) =f(x) = 35
1+4+e

PY(A(X) = f(x)) <

UNIVERSITE




Inverse Sensitivity Mechanism

Inverse sensibility Dy = good candidate utility function for an exponential
mechanism! AD; =1 = ¢-DP Inverse Sensitivity Mechanism (ISM)

Remark: if | 7| = 2 the denominator 2 is not needed:

—eDy(x,t)
e =
u — 1) —
PY(A(x) =t) = S yewar
dlvere
is e-DP
. n 1 1 )
Previous example: here Ds(x, 1 — f(x)) = |5 — 7‘ + —,theISMp(s) = —————— isane—DP
2 2 1 +e—(s—k—]l{s§k})a

mechanism slightly better than the exponential mechanism above

UNIVERSITE




DB Near-Optimality of the Inverse
Senbility Mechanism

1/4-Optimality of the ISM

The ISM A is "more accurate” than any £/4-DP algorithm A’:

PY(A'(x) = f(x)) < PY(A(x) =f(x))

Proof: Since Dy(x, f(x)) = 0, P(A(X) = f(x)) =1/ 3 e~ P/x0*
teT
Recall the lower bound: for every unbiased -DP mechanism A’, PY (A'(x) = f(x)) <1/ Z e~ 20r(x,0e
teT

Remark: if | 7| = 2, the ISM is 1/2-optimal

UNIVERSITE




Continuous Exponential Mechanism

For a continuous 7, taking .A(x) with density

-2 lE)

Jr exp (40 ) ar

also yields an e-DP mechanism.

« The ISM is hence a very good candidate in theory.

* Itis reminiscent of statistical physics "Gibbs law” (thermodynamics).

* It can be hard to sample from.

* In fact, the discrete case is already computationally challenging when the
output space 7T is "big".

+ Research question: does approximate sampling preserve differential
privacy?

UNIVERSITE
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WIP: Multi-quantile Estimation

Private Quantiles Estimation in the Presence of Atoms

Clément Lalanne!, Aurélien Garivier'?, Rémi Gribonval'!, Clément Gastaud?, and Nicolas

slain®

'LIP Laboratory, Ecole Normale Supérieure de Lyon, Lyon, France
2UMPA Laboratory, Feole Normale Supérienre de Lyon, Lyon, France
Sarus Technologies, Paris, France

4INRIA, France
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Outline

Laplace Mechanism
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Example: estimate the mean

Here x € M,1({0,1}) and 7T={04% ..., =11}
Inverse sensibility function: Dy(x,t) = n|t — X|
( ) e—sn\t—i|/2
ISM: P(A(x) =t) = —5 ——
Zj:o e—sn\j/n—x\/Q
% Zn:k e—ci/2 e—ck/2 ok e—ck/2
P (.A(x) >x+ ;) = 221:;7:0 pery R and P (.A(x) <x-— ;) =
=> up to the discretization,
) ne _relxl —
has density £ (x) = L& T R w2 xau) = vz

= very simple mechanism: just add (well-calibrated) Laplace noise!

UNIVERSITE
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Laplace mechanism
The L!-sensitivity of a function f : X7 — R is defined as
Af = max [(x) - fx')]

Example: if f(x) = n~* S x;and x; € [0,1], then A(f) = 1/n
_

1
Lap(o) has density ¢, (x) = 558 °
g

Laplace Mechanism

The Laplace mechanism for f: X" — R¥ defined by

A(X):f(x)+(yl,7yk), Y,Ir’gLap <A6f>

is e-differentially private

UNIVERSITE
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Proof

For t € R¥ let

- —fx))| e\ e [l
) =TT - exp (5‘91 =) exp| ——7F—1
j]':_‘! 2Af Af (QAf) Af

be the density of A(x). Then for every x ~ X’ and every t € R,

s,
e )exp(s(tﬂx)lt Hl))

_ A7

pu(t) exp (_Hfﬂx)H) -

< exp <EHﬂX)AfH1) < exp(e)

since by definition ||f(x) — f(x')||1 < Af

N a—
I E—
. —
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Examples

+ Estimate averages (or sum)

. Counting queries accuracy independent of n

° Histogram queries accuracy independent of n and of the number of bins!

+ Most common value of a variable

+ Noisy max accuracy depends on the number of values, but not on n

+ Non-parametrics (estimate coefficients in trucated basis and add Laplace
noise) [see Wasserman&Zhou '08]

A\ Finite precision arithmetic = possible privacy leaks

For example, one can have P(A(x) = t) > 0 while P(A(X’) = t) = 0 for two
neighbors x ~ x’ because of rounding.

UNIVERSITE
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DB lower bound: continuous mechanisms

We consider a target function f: X7 — R. For everyx € X7, let
As(x, k) = sup {|[f(x) — f(x)| : h(x,x') < k} and Ag(x) = A(x,1)

Lower bound

Ais if EV[A(x)] = f(x) for every x. Then, for every
x e A", )
U 2 As(x,k)? /4
E [(A(X) —f(x)) } > Slip T e
and in particular if A¢(x, k) = kAz(x), thenfore < 1/2
Af(x)*
E’ [(400 —f0)7] = L5

1

For the average f(X) = Xn, As(X, k) = kAg(x) = k/n and E” [(A(x) —f(x))z] > et

UNIVERSITE




Proof
Letk > 1 and letx’ be such that h(x,x") = kand [f(x") — f(x)| = As(x, k). By definition,

A(x ) —1)2 / (s = 2P ) (5) < / (s — 02edPY 4 (5) = ¢ E” [(A(x) - r)z]
and hence

B [0y 0] B JCae) pe ] B (o) 0]
B [(Am) - f0)*] BV [(AX) = f00)?] BV [(A) - fx))7] T

since A is unbiased. Therefore, by the Bienaymé-Chebishev inequality

) 4EY [(A®x) - f(x)?
# (140 - o] = 50 < { T ] s

4e? BY | (A(x) — f(x))?
]P’U <|A(X) —f(X,)| Z #) S eks]P,U ({A(X/) —f(X/)| Z Af(;, k)) S [A(f(x k)z ) :I .

But since [f(x") — f(x)| = Ag(x, k),

A(x, k)) _t (14 ) BV [(Ax) - f(x:
2

A ’
1< (Jae - o] = 25 ) 4 (A - )] > < R

be second statement is obtained by the choice k = [1/(2¢)], notingthat 1/(2e) < k < 1/e
UNIVERSITE




Outline

The Statistical Price of Differential Privacy
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Le Cam’s argument for Minimax Risk
Forally : X" x [0,1] = Y, 601,02 € ©,letS={t € 0 :d(t,01) > d(t,02)}. Then

max g [d(4(X, ), 0) | > max «IIEQ,‘ [d(w(X,0),01) BY [d(w(X, u),ez)]}

€O

L/ \
> - (B o vy, 00)] +EG, [d(wX,0),602)] )
> %(Egl [d(w(X,0),01) 1 {w:(X,0) € 5}] + G, [d(w(X,0),02) 1 { (X, V) € 5}])
d(€ U U _
> (Pgl (¢(x, U) € s) + Py, (¢(x, U) € s))
01,0 _
= W00 Jax 9) + 0xy ()0
> S By 0 [1{X0 = X0} X1, Xo|
= W( l — 'I'\'1Pﬂ“ , PH_‘ )) by the coupling lemma
N d(61,62) e M‘“'“ 705 ) _ d(91392)p KL (Pg
=7 2 8

UNIVERSITE




Le Cam’s argument for Minimax Risk

Forall? : X" x [0,1] — Y, 01,02 € O,

d(61,02)
max Ey [d(4(X,0),0)| > ===
Hence,
Le Cam’s bound
. U d(91,02) t)i). C
R R T P

Tight in simple, low-dimensional models




Le Cam’s argument for Minimax DP Risk

Foralley : X" x [0,1] — Y, 01,02 € ©,letS={t € 0 :d(t,01) > d(t,02)}. Then

s 5[40 X, 0 Ae)] > max {EHL [d((X,0), 6) B, [d(s(X, u),ez)]},

> | (5, [aex.0),00)] + B, [a(0x.0).02)] |
2%( [d(w(X,0),01) 1 {w:(X,0) € 5}] +EG, [d(w(X,0),02) 1 {(X. V) ,S}D
> A0 <]P>91 (v(X,0) €5) + Py, (v(X,V) € S)>

d(91 02) [Qxl +QX2 |X1,X2}

91 )y, o, [o\ 5% 4o 5|, Xz}
d(91 02) ., {e*an(xl Xz)} > W0182) —cry, o, [0 X))
4
M ne 1V (P

for the product coupling st Vi € [n], Py, 0, (X1,i # Xa,i) = TV(Pg1 ,Posy)




Le Cam’s argument for Minimax DP Risk

Forally : X" x [0,1] = Y, 61,602 € O,

d(61,02)

U
pe Ea[o(vx,00,0)] 2 ==

Hence,

Le Cam’s private bound

d(91, 92) ty_p. c

. U >
min max E, [ul(w(X7 U),G)} > max e e

¥ 6€6 v (Po,  Po, ) <72

Tight for example for the estimation of a 1 /n-sensitive function by using the Laplace mechanism
= fore > 1/+/n, no cost for privacy
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Extensions

— better couplings?

— beyond Le Cam: Fano (high dimension, non-parametrics)

— better distances on image laws? p-zero differential privacy

— Sequential statistics?
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One goal of satsical pivacy research s o construet a data release mechanism that

protects individual privacy whi prescrving information conent.  An cxample s 3
that takes an inpat dtabase X and z

according to a disribution Q(1X). Diffrential privucy is 3 paticular privacy re-
 comp Qu(-1X)

X. This mak whether

agiven X. We
asttistcal prspective. We consider sveral data elease mechanisms hat saisy the
differential prvacy requicement. We show that it is usefulto compare these schemes

Westudy X
nism, introduced by MeShemy and Talva (007). We show tha the accuracy of this
ribution concentrates in a small bll around the frue distribution.

1 Introduction

One soal of data privacy rescarch s o derive a mechanism tha fakes an input database X and

s preserved paperve

+ our contributions (here and to come):

Private Quantiles Estimation in the Presence of Atoms. Clément Lalanne, Clément Gastaud, Nicolas Grislain,

Aurélien Garivier, Rémi Gribonval.

+ On the Statistical Complexity of Estimation and Testing under Privacy Constraints. Clément Lalanne, Aurélien
Garivier, Rémi Gribonval

+ On Private Bandits. Aymen Al Marjani, Aurélien Garivier, Emilie Kaufmann
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They already adopted DP

ot
HE

et Several uses of differential privacy in practice are known to date:

UNIVERSITE

2008
2014

2015
2016

2017
2019
2019
2020

U.S. Census Bureau, for showing commuting patterns.

Google's RAPPOR, for telemetry such as learning statistics
about unwanted software hijacking users’ settings.

Google, for sharing historical traffic statistics.

Apple announced its intention to use differential privacy in iOS
10 to improve its Intelligent personal assistant technology.

Microsoft, for telemetry in Windows.

Privitar Lens is an APl using differential privacy.
Sarus provides ML with DP as a service.
LinkedIn, for advertiser queries.
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Abstraction

Computer = machine able to make a few elementary operations on data, that
can be combined arbitrarily
Problem = description of the desired output for any given input

JN Output

32514 — [1,23475]
le petitchat —— the little cat
—

—

Examples:
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Two approaches

Classical approach : reduction = describe the sequence of elementary
operations that permit to construct the output from the input
= computer programming (coding)

Artificial Intelligence = use a computer to build itself the program that will
solve the task
= meta-programming

Machine Learning = feed the computer only with a (large number of) example
pairs (input, output)
= search for the program that is supposed to work best on new examples

— for each problem, both approaches are possible
— but they are more or less efficient...
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(Cliché) example: MNIST dataset

Cy— [ - 8 Xk

3 4 Q= # €9 $+Q # €3> + Q=
LDA Classifier KNN Classifier QDA Classifier

predicted 5 predicted 0 predicted 4 predicted 1 predicted 9 bredicra 2 (prdiciead preditad 4 predioeds prediemd predicted 4 predicted 2 predicted 0 predicted 4 predicted 2
expected 5 expected 0 expected 4 expected 1 expected 9 expected5 expected 0 expected 4 expected 1 expected 9 expected 5 expected 0 expected 4 expected 1 expected 3
predicted 2 predicted 1 predicted 8 predicted 1 predicted 4 P'e““;*;‘g P'eﬂ‘C:egll P'edK:e:g wed‘(:e:l P’“‘"‘e‘“ predicted 7 predicted 1 predicted 0 predicted 4 predicted 3
expected 2 expected 1 expected3 expected 1 expected 4 expected2 expected 1 expected 3 expected 1 expect expected 2 expected 1 expected 3 expected 1 expected 4
pr:dl(led) predicted 5 predicted 3 pvzdl:ledn prem(teul predicted 3 predicted 1 predicted 1 predicted 1 predicted 1 predicted 4 predicted 7 predicted 3 predicted 0 predicted 1

expected 5 expected3 expected 6 expect expected 3 ‘expectad 5 expected 3 expected 6 |expectedl expected 3 expected 5 expected 3 expected 6 expected 1

35361 3536 336
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Data in Machine Learning

& &
ég.g.
&K 8

X1 Y1
X2 Y2

o
o [
. °
o
o
Xn Yn
n
Data: n-by-p matrix x X € Mpp(R) ey
+ nexamples = points of
observations Classifier A
+ pfeatures = n
characteristics measured hn B y

for each example

6]~ 6
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