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Data
Record xi ∈ X for individual i
Data x = (x1, . . . , xn) ∈ X n

Src: https://statacumen.com/

Statistical model
The records are iid draws of an unknown probability law
Pθ ∈ M1(X ) : under Pθ ,X = (X1, . . . , Xn) ∼ P⊗n

θ , θ ∈ Θ

https://statacumen.com/


(Statistical) Data Analysis
Randomized algorithm: for x ∈ X n, outputs ψ(x,U) ∼ Qx ∈ M1(T )

[Database] Target = f(x)
[Statistics] Target = some functional of Pθ , while ψ(X,U) ∼ PU

θ

Example: image classification, parameter estimation, prediction rule, etc.



Framework



Information leakage
Membership attack
Src: https://www.arxiv-vanity.com/papers/1904.05506/

Model inversion attack
[Fredrikson et al. ’2015]

See https://arxiv.org/abs/1610.05820 for more information: Membership Inference Attacks against Machine Learning Models by Reza Shokri, Marco
Stronati, Congzheng Song, Vitaly Shmatikov

https://www.arxiv-vanity.com/papers/1904.05506/
https://arxiv.org/abs/1610.05820


Anonymization is not the solution
Linkage attack
[Simple Demographics Often Identify People Uniquely, by Latanya Sweeney]
showed that gender, date of birth, and zip code are sufficient to uniquely
identify the vast majority of Americans.
=⇒ By linking these attributes in a supposedly anonymized healthcare
database to public voter records, she was able to identify the individual health
record of the Governor of Massachussetts.

Differencing attack
Imposing request on many lines is not the solution
Example from [Dwork & Roth]:

• How many people in the database have the sickle cell trait?

• How many people, not named Z, in the database have the sickle cell trait?



Differential Privacy
DP: attackers can learn virtually nothingmore about an individual than they
would understand if that individual’s record were absent from the dataset.

Smoker example
If an individual is openly ”smoking” but wants privacy on her medical status,

• a medical study will prove the risk associated with smoking (whether she participates or not)

• a DP study will make it impossible to know if she indeed participated or not, even to someone who would
have all the remaining information



Survey on triathletes: ”do you use doping?”
Triathletes doping status Xi

iid∼ B(p)
but they may lie: answer X̃i ∈ {0, 1}



Survey on triathletes: ”do you use doping?”
Triathletes doping status Xi

iid∼ B(p)
but they may lie: answer X̃i ∈ {0, 1}

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69

See also Chong, Chun Yin Andy & Chu, Amanda & So, Mike & Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized Response Approach in Public

Health Research: An Empirical Study on the Factors of Illegal Waste Disposal. International Journal of Environmental Research and Public Health.



Survey on triathletes: ”do you use doping?”
Triathletes doping status Xi

iid∼ B(p)
but they may lie: answer X̃i ∈ {0, 1}

Randomized Response [Warner’65]

Flip a coin, then:
→ if tails, answer according to another coin flip

→ if heads, give the right answer

P(X̃i = 1|Xi = xi) = 1/4 + xi/2
P(X̃i = 1|Xi = 1)

P(X̃i = 1|Xi = 0)
= 3

• No triathlete can be prosecuted one cannot condemn 1/4th of the innocent triathletes!

• But still permits to estimate the proportion of dopers by p̂n = 2n−1
n∑

i=1

X̃i − 1.

Cost: for the same precision, requires ≈ 4xmore data or even more if x(1 − x) ≪ 1



Survey on triathletes: ”do you use doping?”
Triathletes doping status Xi

iid∼ B(p)
but they may lie: answer X̃i ∈ {0, 1}

Randomized Response [Warner’65]

Flip a coin, then:
→ if tails, answer according to another coin flip

→ if heads, give the right answer

P(X̃i = 1|Xi = xi) = 1/4 + xi/2
P(X̃i = 1|Xi = 1)

P(X̃i = 1|Xi = 0)
= 3

• No triathlete can be prosecuted one cannot condemn 1/4th of the innocent triathletes!

• But still permits to estimate the proportion of dopers by p̂n = 2n−1
n∑

i=1

X̃i − 1.

Cost: for the same precision, requires≈ 4xmore data or even more if x(1− x) ≪ 1

”smoker example”: if p̂n = 98%,
a lot of information on each triathlete

BUT no more than if she had not participated in the study



Formal Definition
Randomized algorithmA(x) = ψ(x,U) = random variable on T
Def: Neighboring databases x ∼ x′ if ∃i ∈ {1, . . . , n},∀j ̸= i, xj = x′j

Differential Privacy
[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith =⇒ Gödel Prize 2017]

ψ is ε-DP if for all x ∼ x′ and all S ⊂ T

PU(A(x) ∈ S
)
≤ eε PU(A(x′) ∈ S

)
A person’s privacy cannot be compromised by a statistical release if their data
are not in the database. Therefore, with differential privacy, the goal is to give
each individual roughly the same privacy that would result from having their
data removed =⇒ the statistical functions run on the database should not
overly depend on the data of any one individual.



Formal Definition
Randomized algorithmA(x) = ψ(x,U) = random variable on T
Def: Neighboring databases x ∼ x′ if ∃i ∈ {1, . . . , n},∀j ̸= i, xj = x′j

Differential Privacy
[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith =⇒ Gödel Prize 2017]

ψ is ε-DP if for all x ∼ x′ and all S ⊂ T

PU(A(x) ∈ S
)
≤ eε PU(A(x′) ∈ S

)
Equivalently,

• ifA(x) is discrete, −ε ≤ ln
PU
(
A(x)=t

)
PU
(
A(x′)=t

) ≤ ε for all t ∈ T

• ifA(x) has density f(·|x), −ε ≤ ln f(t|x)
f(t|x′) ≤ ε for all t ∈ T



Formal Definition
Randomized algorithmA(x) = ψ(x,U) = random variable on T
Def: Neighboring databases x ∼ x′ if ∃i ∈ {1, . . . , n},∀j ̸= i, xj = x′j

Differential Privacy
[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith =⇒ Gödel Prize 2017]

ψ is ε-DP if for all x ∼ x′ and all S ⊂ T

PU(A(x) ∈ S
)
≤ eε PU(A(x′) ∈ S

)
Differential privacy mathematically guarantees that anyone seeing the result
of a differentially private analysis will essentially make the same inference
about any individual’s private information, whether or not that individual’s
private information is included in the input to the analysis.



Formal Definition
Randomized algorithmA(x) = ψ(x,U) = random variable on T
Def: Neighboring databases x ∼ x′ if ∃i ∈ {1, . . . , n},∀j ̸= i, xj = x′j

Differential Privacy
[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith =⇒ Gödel Prize 2017]

ψ is ε-DP if for all x ∼ x′ and all S ⊂ T

PU(A(x) ∈ S
)
≤ eε PU(A(x′) ∈ S

)
In the previous example on the DP survey, algorithmA(X) = (X̃1, . . . , X̃n) is
ln(3)-DP.
Note that it outputs an entire (differentially private), which is unusual: more
often, we just want the answer to a query.



Properties

Post-processing

IfA : X n → M1(T ) is ε-DP, then for every f : T → T ′ algorithm f ◦ A is also
ε-DP

Group privacy

If x ∼ x2 ∼ · · · ∼ xk, then for all S ⊂ T , P
(
A(x) ∈ S

)
≤ ekε P

(
A(xk) ∈ S

)
”Composition”

IfA1 : X n → M1(T ) is ε-DP and ifA2 : X n → M1(T ′) is ε′-DP, then
x 7→

(
A1(x),A2(x)

)
is (ε+ ε′)-DP

DP defines privacy not as a binary notion of ”was the data of individual
exposed or not”, but rather a matter of accumulative risk
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Example: Majority of Binary Observations
X = {0, 1}, n = 2k+ 1 target f(x) =1

{∑
xi ≥ n/2

}
= median(x)

• A(x) depends only on s =
∑

xi =⇒ PU(A(x) = 1) =: p(s)

• By symmetry p(n− s) = 1− p(s)

• DP: p(k+ 1) ≤ eεp(k) = eε(1− p(k+ 1)) =⇒ p(k+ 1) ≤ 1
1+e−ε

• More generally, for all s > n/2, p(s) ≤ 1

1 + e−(2s−n)ε
and p(n) ≤

1

1 + e−(n+2)ε

• In fact, p(s) =
1

1 + e−(2s−n)ε/2
is ε-DP (see next slide)

Better: p(k+ r) =
1

1 + e−rε is ε-DP: p(k+r+1)
p(k+r) = eε 1+e−rε

eε+e−rε ≤ eε

and similarly for
p(k+ 1)

p(k)
and

1− p(k+ r+ 1)

1− p(k+ r)



Example: Majority of Binary Observations
X = {0, 1}, n = 2k+ 1 target f(x) =1

{∑
xi ≥ n/2

}
= median(x)

• A(x) depends only on s =
∑

xi =⇒ PU(A(x) = 1) =: p(s)

• By symmetry p(n− s) = 1− p(s)

• DP: p(k+ 1) ≤ eεp(k) = eε(1− p(k+ 1)) =⇒ p(k+ 1) ≤ 1
1+e−ε

• More generally, for all s > n/2, p(s) ≤ 1

1 + e−(2s−n)ε
and p(n) ≤

1

1 + e−(n+2)ε

• In fact, p(s) =
1

1 + e−(2s−n)ε/2
is ε-DP (see next slide)

• Requires n ≫ 1/ε

• If |s− n/2| ≥ 3/ε, the answer is correct with probability ≥ 95%

• But if |s− n/2| ≤
√
n, the chances are high that the majority in the sample

is not the majority in the population

• =⇒ if ε ≥ 3/
√
n ⇐⇒ n ≥ 9/ε2, ε-DP does not really cost any precision!



More generally: Exponential Mechanism
If T is discrete, one wantsA to assign a probability to each possible outcome
t ∈ T that depends on its utility u(x, t) on the data x
The sensibility of u is defined as∆u = max

t∈T
max
x∼x′

∣∣u(x, t)− u(x′, t)
∣∣

Exponential Mechanism

The algorithmA defined by PU(A(x) = t
)
=

exp
(
εu(x,t)
2∆u

)
∑

t′∈T exp
(

u(x,t′)ε
2∆u

) is ε-DP

Previous example: for u(x, t) = (2t − 1)

(
s −

n

2

)
= −u(x, 1 − t),

PU(A(x) = 1
)
=

exp

( (
s− n

2

)
ε

2

)

exp

( (
s− n

2

)
ε

2

)
+ exp

(
−
(
s− n

2

)
ε

2

) =
1

1 + exp
(
−
(
s − n

2

)
ε
)



Proof
For every t ∈ T and x ∼ x′ ,

PU(A(x) = t
)

PU
(
A(x′) = t

) =
exp
(
εu(x,t)
2∆u

)
∑

t′∈T exp
(

u(x,t′)ε
2∆u

)/ exp
(
εu(x′,t)
2∆u

)
∑

t′∈T exp
(

u(x′,t′)ε
2∆u

)

= exp

(
ε
(
u(x, t) − u(x′, t)

)
2∆u

) ∑
t′∈T exp

((
u(x′,t′)−u(x,t)

)
ε

2∆u

)
exp
(

u(x,t′)ε
2∆u

)
∑

t′∈T exp
(

u(x,t′)ε
2∆u

)
≤ exp

(
ε

2

) ∑
t′∈T exp

(
ε
2

)
exp
(

u(x,t′)ε
2∆u

)
∑

t′∈T exp
(

u(x,t′)ε
2∆u

) = exp(ε)



Bound on the resulting utility

Theorem
For every database x the exponential mechanism satisfies:

PU
(
u
(
x,A(x)

)
≤ u
(
x, f(x)

)
− 2∆u

ε
ln

|T |
δ

)
≤ δ

Proof: for any t ∈ T such that u
(
x, t
)
≤ u
(
x, f(x)

)
− 2∆uε−1 ln

(
|T |/δ

)
,

PU(A(x) = t
)
≤

exp

 ε

(
u
(
x,f(x)

)
− 2∆u

ε
ln

|T |
δ

)
2∆u


exp
(
εu(x,f(x))

2∆u

) =
δ

|T |

and there are at most T of them



Bound on the resulting utility

Theorem
For every database x the exponential mechanism satisfies:

PU
(
u
(
x,A(x)

)
≤ u
(
x, f(x)

)
− 2∆u

ε
ln

|T |
δ

)
≤ δ

Equivalently, for every v > 0

PU (u(x,A(x)
)
≤ u
(
x, f(x)

)
− v
)
≤ |T |e−

εv
2∆u

In the example:

PU(A(x) ̸= f(x)
)
= PU

(
u
(
x,A(x)

)
≤ u
(
x, f(x)

)
− 2u

(
x, f(x)

))
≤ 2 exp

(
− u
(
x,f(x)

)
ε

∆u

)
= 2e−

∣∣∣s− n
2

∣∣∣ε



DB Lower Bound for Discrete Mechanisms
A (discrete) is said to be unbiased if for all x ∈ X and t ∈ T ,

PU(A(x) = t
)
≤ PU(A(x) = f(x)

)
Inverse Sensibility

The inverse sensibility of function f on data x to output t ∈ T is defined as

Df(x, t) = min
{
k : ∃x ∼ x1 ∼ ... ∼ xk and f(xk) = t

}

Lower bound

For every unbiased ε-DP mechanismA, PU(A(x) = f(x)
)
≤ 1∑

t∈T e−2Df(x,t)ε



Proof
Let t ∈ T and let x′ be such that h(x, x′) ≜∑i 1{x1 ̸= x′i } = Df(x, t) and f(x′) = t. DP implies

PU(A(x) = t
)

PU
(
A(x) = f(x)

) =
PU(A(x) = t

)
PU
(
A(x′) = t

) PU(A(x′) = t = f(x′)
)

PU
(
A(x′) = f(x)

) PU(A(x′) = f(x)
)

PU
(
A(x) = f(x)

) ≥ e−Df(x,t)ε×1×e−Df(x,t)ε

and hence

1 =
∑
t∈T

PU(A(x) = t
)

PU
(
A(x) = f(x)

) PU(A(x) = f(x)
)
≥
∑
t∈T

e−2Df(x,t)ε PU(A(x) = f(x)
)

In the previous example,Df(x, 1 − f(x)) =

∣∣∣∣s − n

2

∣∣∣∣+ 1

2
and this yields:

PU(A(x) = f(x)
)
≤

1

1 + e−
(
|2s−n|+1

)
ε

The Exponential Mechanism above is almost optimal: it has PU(A(x) = f(x)
)
=

1

1 + e−
|2s−n|ε

2



Inverse Sensitivity Mechanism
Inverse sensibility Df = good candidate utility function for an exponential
mechanism! ∆Df = 1 =⇒ ε-DP Inverse Sensitivity Mechanism (ISM)

PU(A(x) = t
)
=

e−εDf(x,t)/2∑
t′∈T e−Df(x,t′)ε/2

Remark: if |T | = 2 the denominator 2 is not needed:

PU(A(x) = t
)
=

e−εDf(x,t)∑
t′∈T e−Df(x,t′)ε

is ε-DP
Previous example: hereDf(x, 1 − f(x)) =

∣∣∣∣s − n

2

∣∣∣∣+ 1

2
, the ISM p(s) =

1

1 + e−
(
s−k−1{s≤k}

)
ε
is an ε−DP

mechanism slightly better than the exponential mechanism above



DB Near-Optimality of the Inverse
Senbility Mechanism

1/4-Optimality of the ISM

The ISMA is ”more accurate” than any ε/4-DP algorithmA′:

PU(A′(x) = f(x)
)
≤ PU(A(x) = f(x)

)
Proof: SinceDf(x, f(x)) = 0, PU(A(x) = f(x)

)
= 1/

∑
t∈T

e−Df(x,t)ε/2

Recall the lower bound: for every unbiased ε-DP mechanismA′ , PU(A′
(x) = f(x)

)
≤ 1/

∑
t∈T

e−2Df(x,t)ε

Remark: if |T | = 2, the ISM is 1/2-optimal



Continuous Exponential Mechanism
For a continuous T , takingA(x) with density

fx(t) =
exp

(
εu(x,t)
2∆u

)
∫
T exp

(
u(x,t′)ε
2∆u

)
dt′

also yields an ε-DP mechanism.

• The ISM is hence a very good candidate in theory.

• It is reminiscent of statistical physics ”Gibbs law” (thermodynamics).

• It can be hard to sample from.

• In fact, the discrete case is already computationally challenging when the
output space T is ”big”.

• Research question: does approximate sampling preserve differential
privacy?



WIP: Multi-quantile Estimation
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Example: estimate the mean
Here x ∈ Mn,1

(
{0, 1}

)
and f(x) = x̄ T =

{
0, 1n , . . . ,

n−1
n , 1

}
Inverse sensibility function: Df(x, t) = n|t− x̄|

ISM: P
(
A(x) = t

)
=

e−εn|t−x̄|/2∑n
j=0 e−εn|j/n−x̄|/2

P
(
A(x) ≥ x̄+

k

n

)
=

∑n
j=k e

−εj/2

2
∑n

j=0 e−εj/2
=

e−εk/2

2
and P

(
A(x) ≤ x̄ −

k

n

)
=

e−εk/2

2

=⇒ up to the discretization, A(x) has the same distribution as

A′(x) = x̄+ Y

where Y ∼ Lap
(

2
nε

)
has density ℓ 2

nε
(x) =

nε
4
e−

nε|x|
2 since P

(
A′

(x) ≥ x̄ + k/n
)
=

e−εk/2

2
.

=⇒ very simple mechanism: just add (well-calibrated) Laplace noise!



Laplace mechanism
The L1-sensitivity of a function f : X n → Rk is defined as

∆f = max
x∼x′

∥f(x)− f(x′)∥1

Example: if f(x) = n−1∑ xi and xi ∈ [0, 1], then∆(f) = 1/n

Lap(σ) has density ℓσ(x) =
1

2σ
e−

|x|
σ

Laplace Mechanism

The Laplace mechanism for f : X n → Rk defined by

A(x) = f(x) + (Y1, . . . , Yk), Yi
iid∼ Lap

(
∆f
ε

)
is ε-differentially private



Proof
For t ∈ Rk let

px(t) =
k∏

j=1

ε

2∆f
exp

(
−
ε
∣∣tj − f(x)j

∣∣
∆f

)
=

(
ε

2∆f

)k

exp

(
−
ε
∥∥t− f(x)

∥∥
1

∆f

)

be the density ofA(x). Then for every x ∼ x′ and every t ∈ Rk,

px(t)
px′(t)

=

exp
(
−
ε
∥∥t−f(x)

∥∥
1

∆f

)
exp

(
−
ε
∥∥t−f(x′)

∥∥
1

∆f

) = exp

−
ε
(∥∥t− f(x)

∥∥
1
−
∥∥t− f(x′)

∥∥
1

)
∆f



≤ exp

(
ε
∥∥f(x)− f(x′)

∥∥
1

∆f

)
≤ exp(ε)

since by definition ∥f(x)− f(x′)∥1 ≤ ∆f



Examples

• Estimate averages (or sum)

• Counting queries accuracy independent of n

• Histogram queries accuracy independent of n and of the number of bins!

• Most common value of a variable

• Noisy max accuracy depends on the number of values, but not on n

• Non-parametrics (estimate coefficients in trucated basis and add Laplace
noise) [see Wasserman&Zhou ’08]

B Finite precision arithmetic =⇒ possible privacy leaks

For example, one can have P
(
A(x) = t

)
> 0 while P

(
A(x′) = t

)
= 0 for two

neighbors x ∼ x′ because of rounding.



DB lower bound: continuous mechanisms
We consider a target function f : X n → R. For every x ∈ X n, let
∆f(x, k) = sup

{
|f(x′)− f(x)| : h(x,x′) ≤ k

}
and∆f(x) = ∆f(x, 1)

Lower bound
A is unbiased if EU[A(x)] = f(x) for every x. Then, for every
x ∈ X n,

EU
[(
A(x)− f(x)

)2] ≥ sup
k

∆f(x, k)2/4
1 + e2kε

and in particular if∆f(x, k) = k∆f(x), then for ε ≤ 1/2

EU
[(

A(x) − f(x)
)2] ≥

∆f(x)
2

68ε2

For the average f(x) = x̄n ,∆f(x, k) = k∆f(x) = k/n and EU
[(

A(x) − f(x)
)2] ≥

1

68n2ε2



Proof
Let k ≥ 1 and let x′ be such that h(x, x′) = k and |f(x′) − f(x)| = ∆f(x, k). By definition,

EU
[(

A(x′) − t
)2]

=

∫
T
(s − t)2dPU

A(x′)(s) ≤
∫
T
(s − t)2ekεdPU

A(x)(s) = ekε EU
[(

A(x) − t
)2]

and hence

EU
[(

A(x′) − f(x′)
)2]

EU
[(

A(x) − f(x)
)2] =

EU
[(

A(x′) − f(x′)
)2]

EU
[(

A(x′) − f(x)
)2] EU

[(
A(x′) − f(x)

)2]
EU
[(

A(x) − f(x)
)2] ≤ 1 × ekε

sinceA is unbiased. Therefore, by the Bienaymé-Chebishev inequality

PU
(∣∣A(x) − f(x)

∣∣ ≥ ∆f(x, k)

2

)
≤

4 EU
[(

A(x) − f(x)
)2]

∆f(x, k)2
and

PU
(∣∣A(x) − f(x′)

∣∣ ≥ ∆f(x, k)

2

)
≤ ekεPU

(∣∣A(x′) − f(x′)
∣∣ ≥ ∆f(x, k)

2

)
≤

4e2kε EU
[(

A(x) − f(x)
)2]

∆f(x, k)2
.

But since |f(x′) − f(x)| = ∆f(x, k),

1 ≤ PU
(∣∣A(x) − f(x)

∣∣ ≥ ∆f(x, k)

2

)
+ PU

(∣∣A(x) − f(x′)
∣∣ ≥ ∆f(x, k)

2

)
≤

4
(
1 + e2kε

)
EU
[(

A(x) − f(x)
)2]

∆f(x, k)2
.

The second statement is obtained by the choice k = ⌈1/(2ε)⌉, noting that 1/(2ε) ≤ k ≤ 1/ε
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Le Cam’s argument for Minimax Risk
For all ψ : X n × [0, 1] → Y , θ1, θ2 ∈ Θ, let S = {t ∈ θ : d(t, θ1) > d(t, θ2)}. Then
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θ∈Θ
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[
d
(
ψ(X, U), θ

)]
≥ max
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ψ(X, U), θ1

)
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)]}
≥
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(
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)
1
{
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)
1
{
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}])
≥

d(θ1, θ2)

2 × 2

(
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θ1

(
ψ(X, U) ∈ S

)
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θ2

(
ψ(X, U) ∈ S̄

))
=

d(θ1, θ2)

4
Eθ1,θ2

[
QX1

(
S
)
+ QX2

(
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)∣∣∣X1,X2

]
≥

d(θ1, θ2)

4
Eθ1,θ2

[
1{X1 = X2}

∣∣∣X1,X2

]
=

d(θ1, θ2)
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(
1 − TV

(
P⊗n
θ1
, P⊗n
θ2

))
by the coupling lemma

≥
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4

e
− KL

(
P⊗n
θ1
, P⊗n
θ2

)
2

=
d(θ1, θ2)

8
e−n KL

(
Pθ1

, Pθ2

)



Le Cam’s argument for Minimax Risk
For all ψ : X n × [0, 1] → Y , θ1, θ2 ∈ Θ,

max
θ∈Θ

EU
θ

[
d
(
ψ(X, U), θ

)]
≥

d(θ1, θ2)

8
e−n KL

(
Pθ1

, Pθ2

)
Hence,

Le Cam’s bound

min
ψ

max
θ∈Θ
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θ

[
d
(
ψ(X, U), θ

)]
≥ max

KL
(
Pθ1

, Pθ2

)
≤ 1

n

d(θ1, θ2)

8e
typ.
=

C
√

n

Tight in simple, low-dimensional models



Le Cam’s argument for Minimax DP Risk
For all ψ : X n × [0, 1] → Y , θ1, θ2 ∈ Θ, let S = {t ∈ θ : d(t, θ1) > d(t, θ2)}. Then

max
θ∈Θ
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θ

[
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≥

1

2

(
EU
θ1

[
d
(
ψ(X, U), θ1

)]
+ EU

θ2

[
d
(
ψ(X, U), θ2

)])
≥

1

2

(
EU
θ1

[
d
(
ψ(X, U), θ1

)
1
{
ψ(X, U) ∈ S

}]
+ EU

θ2

[
d
(
ψ(X, U), θ2

)
1
{
ψ(X, U) ∈ S̄

}])
≥

d(θ1, θ2)

2 × 2

(
PU
θ1

(
ψ(X, U) ∈ S

)
+ PU

θ2

(
ψ(X, U) ∈ S̄
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)
for the product coupling st ∀i ∈ [n], Pθ1,θ2 (X1,i ̸= X2,i) = TV(Pθ1 , Pθ2 )



Le Cam’s argument for Minimax DP Risk
For all ψ : X n × [0, 1] → Y , θ1, θ2 ∈ Θ,

max
θ∈Θ

EU
θ

[
d
(
ψ(X, U), θ

)]
≥

d(θ1, θ2)

4
e−nε TV

(
Pθ1

, Pθ2

)
Hence,

Le Cam’s private bound

min
ψ

max
θ∈Θ
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θ

[
d
(
ψ(X, U), θ

)]
≥ max

TV
(
Pθ1

, Pθ2

)
≤ 1

nε

d(θ1, θ2)

4e
typ.
=

C′

nε

Tight for example for the estimation of a 1/n-sensitive function by using the Laplace mechanism
=⇒ for ε ≫ 1/

√
n, no cost for privacy



Extensions
→ better couplings?

→ beyond Le Cam: Fano (high dimension, non-parametrics)

→ better distances on image laws? ρ-zero differential privacy

→ Sequential statistics?
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The end



They already adopted DP

Several uses of differential privacy in practice are known to date:

2008 U.S. Census Bureau, for showing commuting patterns.

2014 Google’s RAPPOR, for telemetry such as learning statistics
about unwanted software hijacking users’ settings.

2015 Google, for sharing historical traffic statistics.

2016 Apple announced its intention to use differential privacy in iOS
10 to improve its Intelligent personal assistant technology.

2017 Microsoft, for telemetry in Windows.

2019 Privitar Lens is an API using differential privacy.

2019 Sarus provides ML with DP as a service.

2020 LinkedIn, for advertiser queries.



Abstraction
Computer = machine able to make a few elementary operations on data, that
can be combined arbitrarily
Problem = description of the desired output for any given input

Input−→ −→ Output

Examples:

[3,2,5,1,4] −→ [1,2,3,4,5]
le petit chat −→ the little cat

−→ 5

−→



Two approaches
Classical approach : reduction = describe the sequence of elementary
operations that permit to construct the output from the input
= computer programming (coding)

Artificial Intelligence = use a computer to build itself the program that will
solve the task
= meta-programming

Machine Learning = feed the computer only with a (large number of) example
pairs (input, output)
= search for the program that is supposed to work best on new examples

→ for each problem, both approaches are possible
→ but they are more or less efficient...



(Cliché) example: MNIST dataset



Data in Machine Learning

x1

x2

xn

y1

yn

y2
Fe
at
ur
e
1

Fe
at
ur
e
2

Fe
at
ur
e
p

Y ∈ YnX ∈ Mn,p(R)

hn : X → Y
6

Classifier An

Data: n-by-pmatrix x

• n examples = points of
observations

• p features =
characteristics measured
for each example
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