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Abstraction

Computer = machine able to make a few elementary operations on data, that
can be combined arbitrarily
Problem = description of the desired output for any given input

JN Output

32514 — [1,23475]
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Two approaches

Classical approach : reduction = describe the sequence of elementary
operations that permit to construct the output from the input
= computer programming (coding)

Artificial Intelligence = use a computer to build itself the program that will
solve the task
= meta-programming

Machine Learning = feed the computer only with a (large number of) example
pairs (input, output)
= search for the program that is supposed to work best on new examples

— for each problem, both approaches are possible
— but they are more or less efficient...
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(Cliché) example: MNIST dataset
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Data in Machine Learning
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Data: n-by-p matrix x X € Mpp(R) ey
+ nexamples = points of
observations Classifier A
+ pfeatures = n
characteristics measured hn B y

for each example
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Analysis

ML algorithm
* takes in inputx € M, ,(R)
+ performs some computations so as to optimize some criterion

ex: minimizes the training error of some neural network

* returns the optimal predictor h,

for future use

- Simple example: return the average value, the proportion of votes for some
candidate, etc.

- More difficult: 2-dim representation of the database, image recognition,
automatic translation, etc.
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Information leakage

Membership attack Model inversion attack
Src: https: //waw. arxiv-vanity. con/papers/1904. 05506/ [Fredrikson et al. '2015]
Service Provider Machine Learning as a Service

) E—E-0

* Training Data Black-box Training Model

Prediction
AP
User
(]

% | ‘é Figure 1: An image recovered using a new model in-

r e V?rs.ion a!:tack (left) and a tra.inin'g set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Is my private data in
model’s training data?

Seehttps://arxiv.org/abs/1610.05820 for more information: Membership Inference Attacks against Machine Learning Models by Reza Shokri, Marco
Stronati, Congzheng Song, Vitaly Shmatikov
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Anonymization is not the solution

Linkage attack

[Simple Demographics Often Identify People Uniquely, by Latanya Sweeney]
showed that gender, date of birth, and zip code are sufficient to uniquely
identify the vast majority of Americans.

= By linking these attributes in a supposedly anonymized healthcare
database to public voter records, she was able to identify the individual health
record of the Governor of Massachussetts.

Differencing attack
Imposing request on many lines is not the solution
Example from [Dwork & Roth]:

+ How many people in the database have the sickle cell trait?
« How many people, not named X, in the database have the sickle cell trait?
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Differential Privacy

Differentially private algorithms make assurance that attackers can learn
virtually nothing more about an individual than they would understand if that
individual's record were absent from the dataset.

Smoker example

if an individual is openly "smoking” but wants privacy on her medical status,

+ a medical study will prove the risk associated with smoking (whether she
participates or not)

+ a DP study will make it impossible to know if she indeed participated or not,
even to someone who would have all the remaining information

-
R — * —>||nwn -

Need to randomize the output. %
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Src: https://blog.tensorflow.org X > * nﬁﬂ\ﬂiﬂ‘
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer Y; € {0,1} of aduts
taking PEDs

offense in
trying to gain an
unfair advantage
by an Olympic
athlete or team.
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer Y; € {0,1} of aduts

taking PEDs
RANDOMIZED RESPONSE: A SURVEY TECHNIQUE is the greatest
FOR ELIMINATING EVASIVE ANSWER BIAS olirieeln
trying to gain an
Sranzey L. WARNER unfair advantage
Claremont Graduate School by an Olympic

athlete or team.
For various reasons individuals in a sample survey may prefer not
to confide to the interviewer the correct answers to certain questions.
Tn such cases the individuals may elect not to reply at all or to reply
with incorrect answers. The resulting evasive answer bias is ordinarily
difficult to assess. In this paper it is argued that such bias is potentially
removable through allowing the interviewee to maintain privacy
through the device of randomizing his response. A randomized response
method for estimating a population proportion is presented as an ex-
ample. Unbiased maximum likelihood estimates are obtained and their
mean square errors are compared with the mesn square errors of con-
ventional estimates under various assumptions about the underlying
population.
1. INTRODUCTION

or reasons of modesty, fear of being thought bigoted, or merely a reluc-
tance to confide secrets to strangers, many individuals attempt to evade
certain questions put to them by interviewers. In survey vernacular, these
people become the “non-cooperative” group [5, pp. 235-72], either refusing
outright to be surveyed, or consenting to be surveyed but purposely providing
wrong answers to the questions. In the one case there is the problem of refusal
bias [1, pp. 355-61], [2, pp. 33-6], [5, pp. 261-9]; in the other case there is the

problem of response bias [3, p. 89], [4, pp. 280-325].

Journal of the American Statistical Association, Mar. 1965, Vol.60, No.309, pp. 63-69
See also Chong, Chun Yin Andy & Chu, Amanda & So, Mike & Chung, Ray. (2019). Asking Sensitive Questions Using the Randomized Response Approach in Public

Heglth Research: An Empirical Study on the Factors of lllegal Waste Disposal. International Journal of Environmental Research and Public Health.
UNIVERSITE
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer Y; € {0,1} of adlts

. offense in
Randomized Response [Warner’65] trying to gain an

unfair advantage
by an Olympic

g o hi .
Flip a coin, then: sseertean
— if tails, answer according to another coin flip

— if heads, give the right answer

P(Y = 1]X = 1)

P(Y=1]X=x) = 1/4+x/2 P(Y=1X=0)

=3

* No triathlete can be prosecuted one cannot condemn 1/4th of the innocent triathletes!
+ But still permits to estimate the proportion of dopers by 2v, — 1.

Cost: for the same precision, requires ~ 4x more data orevenmoreifx(1 —x) < 1
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Survey on triathletes: “do you use doping?”

Triathletes doping status X; X B(p) 52%
but they may lie: answer Y; € {0,1} of adlts

believe
taking PEDs

o is the greatest’
Randomized Response [Warner’'65] offense in

trying to gain an
unfair advantage

Flip a coin, then: S
— if tails, answer according to another coin flip
— if heads, give the right answer

P(Y=1x=1)
PY=1X=x)=1/4+x/2 Sl
(r=1=x=1/4+x P(Y=1x=0)

* No triathlete can be prosecuted  one cannot condemn 1/4th of the innocent triathletes!

* But still permits to estimate the proportion of dopers by 2v, — 1.
Cost: for the same precision, requires ~ 4x more data oreven moreifx(1 —x) < 1

"smoker example”: if p = 98%,
a lot of information on each triathlete

no more than if she had not participated in the study
e




Formal Definition

Randomized algorithm .A(x) = random variable on T

Def: X~ i3 (1,0} # i x. =X,

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gddel Prize 2017]

AiseDPifforallx ~x andall S c T

P(A(x) €S) < e P(A(X) €5)

Equivalently,

- if A(x) is discrete, —e<lIn w <e forallteT
P(A()=t)
« if A(x) has density f(-|x), —e<In ff((tj‘;)) <e forallteT
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Formal Definition

Randomized algorithm .A(x) = random variable on T

Def: X~ i3 (1,0} # i x. =X,

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gdodel Prize 2017]

Aise-DPifforallx ~x andallS c T

P(A(x) €S) < e P(A(X) €5)

In the previous example on the DP survey, algorithm A(x) = (Y1,...,Y,)is
In(3)-DP.

Note that it outputs an entire (differentially private), which is unusual: more
often, we just want the answer to a query.
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Formal Definition

Randomized algorithm .A(x) = random variable on T

Def: X~ i3 (1,0} # i x. =X,

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gddel Prize 2017]

Aise-DPifforallx ~x"andallS Cc T

P(A(x) €S) < e P(A(X) €5)

A person’s privacy cannot be compromised by a statistical release if their data
are not in the database. Therefore, with differential privacy, the goal is to give
each individual roughly the same privacy that would result from having their

data removed. That is, the statistical functions run on the database should not
depend on the data of any one individual.

N a—
I E—
. —
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Formal Definition

Randomized algorithm .A(x) = random variable on T
Def: x~x'ifdie{l,....n},Vj#ix.=x

.
Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gdodel Prize 2017]

Aise-DPifforallx ~x andallS c T

P(A(x) €S) < e P(A(X) €5)

An algorithm is said to be differentially private if by looking at the output, one
cannot tell whether any individual’s data was included in the original dataset
or not.

Cryptographic origins (and vocabulary).
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Formal Definition

Randomized algorithm .A(x) = random variable on T
Def: x~xifde{l,....n},Yj#ixi. =x.

Differential Privacy

[« Calibrating Noise to Sensitivity », TCC’2006, by Cynthia Dwork, Frank McSherry, Kobbi Nissim et Adam Smith = Gdodel Prize 2017]

Aise-DPifforallx ~x andallS c T

P(A(x) €S) < e P(A(X) €5)

Differential privacy mathematically guarantees that anyone seeing the result
of a differentially private analysis will essentially make the same inference
about any individual's private information, whether or not that individual's
private information is included in the input to the analysis.
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Properties

Post-processing

If A: M, ,(R) — 9 (T) is e-DP, then for every f: T — T’ algorithm fo A is
also e-DP.

Group privacy

IfX ~ Xg ~ -+~ xg, thenforall S € 7, P(A(x) €5) < e P(A(x) €5) .

”Composition”

If Ay : My p(R) = 9 (T) is e-DP and if Az : M, »(R) — 90, (T”) is €'-DP,
then x — (A1(x), A2(x)) is (€ + €')-DP.

DP defines privacy not as a binary notion of "was the data of individual
exposed or not”, but rather a matter of accumulative risk.




They already adopted DP

ot
HE

et Several uses of differential privacy in practice are known to date:

UNIVERSITE

2008
2014

2015
2016

2017
2019
2019
2020

U.S. Census Bureau, for showing commuting patterns.

Google's RAPPOR, for telemetry such as learning statistics
about unwanted software hijacking users’ settings.

Google, for sharing historical traffic statistics.

Apple announced its intention to use differential privacy in iOS
10 to improve its Intelligent personal assistant technology.

Microsoft, for telemetry in Windows.

Privitar Lens is an APl using differential privacy.
Sarus provides ML with DP as a service.
LinkedIn, for advertiser queries.
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Example: Majority of Binary Observations

n=2k+1, targetf(x)=1{> X >n/2}=median().

+ A(x) dependsonlyons = > x; = P(A(x) =1) =: p(s)

« By symmetry p(n —s) = 1 — p(s)

s plk+1) <epk) =e(1—p(k+1)) = plk+1) < 2=

1
More genera”y, for a” S > n/2 p( ) >~ m andp(n) < m
* Infact, p(s) = T e@ is €-DP (see next slide)
Better: p(k + r) = I +157’€ is e-DP: p(;(t::)l) e€ el:j:e:,; < €€ and similarly for p(kp:;)l) and ! Ii(:(t :rt)n.

* Requiresn > 1/e
* If |s — n/2| > 3/¢, the answer is correct with probability > 95%

Butif |[s — n/2| < v/n, the chances are high that the majority in the sample
is not the majority in the population

« = ife>3/\/n <= n>9/e% eDP does not really cost any reliability!

UNIVERSITE
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More generally: Exponential Mechanism

If 7 is discrete, one wants A to assign a probability to each possible outcome

t € T that depends on its u(x, t) on the data x.
The of uis defined as Au = maxmax |u(x,t) — u(x',t)| .
teT  x~x
Exponential Mechanism
. . exp (7€;(AX’J)) )
The algorithm A defined by P(A(x) = t) = e e-DP.
D ver €XP ( IAu )
n
Previous example: for u(x, t) = (2t — 1) (s — 5) = —u(x,1—1),

UNIVERSITE




Proof

Foreveryt € T andx ~ X/,
a
P(AX) =t) exp (%) / exp (u(xTur))

]P’(»A(X’) = t) a Zt’eTexp (U(;,At’b?e Zz/ e (U(X l/)()

= exp (6([1()(’ t) - U(X’, t)) ) E"ET exp < (u(x’.r’Q);s(“))€> exp (u(x e )

/ €
2Au S e exp (%)

= exp(e) .

J
< ex (E> Soerew (5) e (“552°)
Sexp (o z[,gex;,(w)

UNIVERSITE
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Bound on the resulting utility

Theorem

For every database x the exponential mechanism satisfies:

P <u(x, A(x)) <u(x,f(x) — - T|> <.

Proof: forany t € T such thatu(x, t) < u(x,f(x)) — 2Aue™ ' In (| T/4),

€ <u(x,f(x)) - ZTA” In ‘—p)
€xp 2Au
)
P(AKX) =1) < -2
( ) exp (eugxg(ux») T

and there are at most 7 of them.
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Bound on the resulting utility

Theorem

For every database x the exponential mechanism satisfies:
2A
P <u(x, A(x)) <u(x,f(x) — 2 ?;') <9d.
€
Equivalently, for every v > 0
P (u(x, A(x)) < u(x,f(x)) —v) < |T|e =55 .

In the example:

= IP’(u(x, Ax) < u(xflx)) — 2u(x,f(x))) 2 exp (—%) =

UNIVERSITE




Lower Bound for Discrete Mechanisms

A (discrete) is said to be ifforxandte 7T,
P(A(x) = t) < P(AKX) = f(x)) .
Inverse Sensibility
The of function f on data x to output t € 7 is defined as

Dy(x,t) = min {k D3~ X~ L~ xgand flxg) = t} .

Lower bound

. . 1
For every unbiased e-DP mechanism A, P(A(x) = f(x)) < W :

UNIVERSITE




Proof

Lett € 7 and let x’ be such thatx ~ x; ~ ... ~ XDpx,—1 ~ x" and f(x') = t. Differential privacy implies

P(AX) =1t)  P(A(X) =t) P(AKX) =t=f(x")) P(AKX) = f(x)) S e Dlle o 1 5 e Dflote
P(AKX) =f(x)) (A(X’) ) PAX) =f(x)) P(AK) =fx) ~

and hence

= P(A() = 1) _ —2D(x,0)e -
= t; PIAG) = 1(0) P(A(x) = f(x) > ;e TEDCP(A®X) = f(x))

In the previous example, Ds(x, 1 — f(x)) = |s — g‘ + % and this yields:
1
The Exponential Mechanism above is almost optimal: it has P (A (x) = f(x)) = 1‘257,7‘6 .
1+e 2

P(A(x) =f(x) <

UNIVERSITE




Inverse Sensitivity Mechanism

The inverse sensibility Dy yields a good candidate utility function for an
exponential mechanism! In fact, AD; = 1, hence the ¢-DP Inverse Sensitivity
Mechanism (ISM)

e—€Dy(x.0)/2

P(.A(X) = t) = Zt/ET e—'Df(X,t')e/Q .

Remark: if |7| = 2 the denominator 2 is not needed:

e*EDf(X,t)
P(A(X) = t) = ——Df(x,t')e
Zr/eT €
is e-DP.
1 1
Previous example: here Dy(x, 1 — f(x)) = |s — n + —,theISMp(s) = —————— isan ¢—DP
2 2 1 +e—(s—k—1{s§k})s

mechanism slightly better than the exponential mechanism above.

UNIVERSITE




Near-Optimality of the Inverse Senbility
Mechanism

1/4-Optimality of the ISM

The ISM A is "more accurate” than any ¢/4-DP algorithm A’:

P(A'(x) = f(x)) < P(A() = f(x)) -

Proof: Since Dy(x,f(x)) = 0, P(A() =f(x) =1/ e~ Prlnne/2,
€T
Recall the lower bound: for every unbiased e-DP mechanism A, P(A'(x) =f(x)) <1/ e~ bt
€T

Remark: if | 7| = 2, the ISM is 1 /2-optimal.

UNIVERSITE




Continuous Exponential Mechanism

If continuous 7T, taking .A(x) with density

also yields an e-DP mechanism.

« The ISM is hence a very good candidate in theory.

* Itis reminiscent of statistical physics "Gibbs law” (thermodynamics).

* It can be hard to sample from.

* In fact, the discrete case is already computationally challenging when the
output space 7T is "big".

+ Research question: does approximate sampling preserve differential
privacy?

UNIVERSITE
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ENS DE LYON




Outline

Laplace Mechanism

UNIVERSITE




Example: estimate the mean

Here x € M,1({0,1}) and o T={0% ..., =11}
Inverse sensibility function: Dy(x, t) = n|t — X|.
( ) e—en\t—7(|/2
ISM:P(A(x) =t) = —5 .
ijo e—en|//n—x\/2
ok She ek ke
IF’(.A(X) > X+ ;) = 22;7:0975//2 = and IF’(.A(X) §x—;> =
=> up to the discretization,
_ ne _nelx o
has density £ 2 (x) = TE T R 25w = vz

= very simple mechanism: just add (well-calibrated) Laplace noise!

UNIVERSITE
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Laplace mechanism
The L!-sensitivity of a function f : 9, ,(R) — R¥ is defined as
Af = max|[[f(x) = f<)|r -

Example: if f(x) = n~! 3" x;and x; € [0, 1], then A(f) = 1/n.
Lap(o) has density ¢, (x) = Q—e*%_
g

Laplace Mechanism

The Laplace mechanism for f : M, ,(R) — R¥ defined by
iid

AX) = f0)+ (s ¥, ¥ Lap (Af) .

is e-differentially private.

UNIVERSITE
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Proof

For t € R¥ let

€ el — f(x); e \* elit—=fll,
px(t):Hﬂexp (W) = (2Af> exp( H Af H )

be the density of A(x). Then for every x ~ x’ and every t € R,

o) eXp<er§fx>l>exp(e(|t )|, — ||t —f ||))

_ A

po(t) ( erf(X’)HL> -
exp - AF

< exp <€Hf Af Hl) < exp(e)

since by definition ||f(x) — f(x)||1 < Af.

N a—
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Examples

° Counting queries accuracy independent of n

. Histogram queries accuracy independent of n and of the number of bins!

* Most common value of a variable

+ Noisy max accuracy depends on the number of values, but not on n
+ Estimate average (or sum)

A\ Finite precision arithmetic = possible privacy leaks

For example, one can have P(A(x) = t) > 0 while P(A(x") = t) = 0 for two
neighbors x ~ x’ because of rounding.

UNIVERSITE
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Lower bound for continuous mechanisms

We consider a target function f: M, ,(R) — R. For every x € M, ,(R), let
As(x, k) = sup {[f(xc) — f(xX)] : x ~ x1 ~ -+ ~ X} and Ag(x) = Ag(x, 1).

Lower bound
Alis if for every x, E[A(x)] = f(x). Then, for every
x € My p(R),

Ag(x,k)* /4

2
E {(A(x) — f(x)) } > Slip 1 ek

and in particular if Ag(x, k) = kAf(x), then fore < 1/2

A 2
B (400 - 00)?] > 229

For the average f(x) = X,, Af(X, k) = kAs(x) = k/nand E [(.A(x) —f(x))Q] > 6&1%

UNIVERSITE
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Proof
Letk > 1 and letx, be such thatx ~ x1 ~ - - ~ xgand [f(xx) — f(x)| = Af(x, k). By definition,

E [(A(xk) - r)2] = /T(s — 0)2dP 4 (5) < /T(s — 2P 4 () (5) = € E [(A(x) - r)ﬂ
and hence

2 [(AG) —100)°] _ E[(AG) —50)*] B [(AG) —100)°]

ke

E[(A(0 —100)]  E[(A0 —f0)*] E[(A0) —0)*] ~

since A is unbiased. Therefore, by the Bienaymé-Chebishev inequality
2
A 4FE | (AKX) — f(x)
/R [( ) ]
2 - Af(x, k)2

and

P(\A(x)—f<x>| >

4e% E [(A(0) — ()]

Ag(x,
But since |f(xk) — f(x)| = Af(x, k), /

4
1<P <|A(X) — )] > w> +P <|A(x) — fx0)| > A/(;%k)) <

(14 e*)E[(AK) - £(0)?]
Af(X7 k)2 ’

he cecond statement is obtained by the choice k = [1/(2¢)], noting that 1/(2¢) < k < 1/e.
UNIVERSITE




Working Research: Multi-quantile
Estimation

Differentially Private Quantile:

Jennifer Gillenwater” Matthew Joseph' Alex Kuleszat

September 21, 2021

1

Abstract

Quantiles are often used for summarizing and understanding data. If that data is sensitive.
it may be necessary to compute quantiles in a way that is differentially private, providing theo-
retical guarantees that the result does not reveal private information. However, when multiple
quantiles are needed, existing differentially private algorithms fare poorly: they either compute
quantiles individually, splitting the privacy budget, or summarize the entire distribution, wasting
cffort. In c In this work we propose an instance of the
exponential mechanism that simultaneously estimates exactly m quantiles from n data points
while guaranteeing differential privacy. The utility function is carefully structured to allow for an
efficient implementation that returns estimates of all m quantiles in time O{mn log(n) + m?n)
Experiments show that our method significantly outperforms the current state of the art on
both real and synthetic data while remaining efficient enough to be practical.

ither case the result is reduced accurag
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44v3 [es.LG] 20 Sep 202

Quantiles are a widespread method for understanding real-world data, with example applications

N ranging from income [29] to birth weight [8] to standardized test scores [16]. At the same time,
® the individuals contributing data may require that these quantiles not reveal too much information
:\i about individual contributions. As a toy example, suppose that an individual joins a company that
o has exactly two salaries, and half of current employees have one salary and half have another. In
— this case, publishing the exact median company salary will reveal the new employee’s salary.

N Differential privacy [14] offers a solution to this problem. Informally, the distribution over a

ENS DE LYON




	Machine Learning
	Modeling Privacy
	Exponential Mechanism
	Laplace Mechanism

