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Batch Testing

Large deviation bounds

Sequential Testing

2/21



Xi,..., X, X B(p)

1 1
H_:p:§—e H+:p:§—|—e

Simple test on sp%cne X ={0,1}" with sigmagrileld A ={A:AC X} of hypothesis
P_=B (; - e) versus P, = B <; + e) Xi(w) = wj, P, = B(p)®"

Test statistic T = t(Xi,...,X,) with range {0,1}

d-correct: P_(T=0)>1—-dand PL(T=1)>1-96

Sample complexity: minimal value of n such that there exists a J-correct test T
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Chernoff's bound

ldea 0: T =1 {)_(,, > %}

o-correct if P_(T =1)=Py_ (Xo>3) <dand P(T=0)=P1, (X, <3) <6
Chernoff’s bound: if 0 < p < x <1, P, ()_(,, > x) < exp ( — nkl(x, p)) where

ki(p,x) = xlog X + (1 — x) In {=%

Pinsker Bernoulli: By Taylor's formula, since f = kl(+, p) satisfies f(p) = f'(p) = 0 and
f(x) = [x(1 = x)]7 > 4, kI(x, p) = (x—2p) /1 f’((1 — s)p + sx) 2s ds > 2(x — p)?
Hoeffding's inequality: if 0 < p < x < 1, Pp()_(,,oz p+ e) < exp ( — 2n62)

. 2 log 5
Upper bound on the sample complexity P_(T = 1) < exp ( — 2ne ) <6 for n > 22
€

Similarly, if 0 < x < p <1, Pp(Xy < x) < exp (— nki(x,p))...
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Large deviation principle

Let Ly = In (X1, X,) = 37y In L5642 (X;). For all a, 8> 0,

Po(Xy > x) = Exye [n{xn > x}e—ﬂ

> e—n(kl(x+a,P)+/B)EX+€ [1{)'(,, > x}1 {I;l” < Eyta [dBd(l;((:;)E)(X")] + ﬁ}]

— en(Kberan)t) (1 _ 6,(1))
by the law of large numbers. Hence, large deviation principle: as n — oo,
1 _
=InPy (X, > x) = —kI(x, p)
n

"at exponential scale, Chernoff’s bound is tight”
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Batch Testing
Lower bounds : TV and KL

Sequential Testing
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Measuring confusion between hypotheses

"the test cannot discriminate between P_ and P, if it sees the same observation”
Coupling: Q probability on X x X such that Q(-, X) = P_ and Q(&X,-) = P4.
Maximal coupling: Denoting A = {(x,y) € X x X : x # y}, one can construct Q st

Q(A) = TV(P_, P1) % sup pcq P_(A) — P (A) = P_(A*) — P, (A*) for

*x dP+
A" = {dP, < 1}
Let R= Jpt Aland r=P_(Q) =1~ TV(P_,Py). Letthen Z ~ BdPy and 2y ~ (1 — R)/(1 — NdP_, 21 ~ (= — @)/(1 — q)dP_,

and B ~ B(q). The pair (Z, Z)U + (Z1, Z»)(1 — U) has the right distribution.

§>P(T=0)=QX {T=0})>Q{T =0})—QA)>1—-06—TV(P_,P,)

ie TV(P_,Py)>1-25
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Kullback-Leibler divergence

Other divergences like Kullback-Leibler better handle tensorization:

[Ing dPif P< Q
KL(P, Q) =

+00 otherwise

Tensorization: KL(P1 ® P2, Q1 ® @Q2) = KL(P1, Q1) + KL(P2, Q2)

Contraction: (data-processing inequality) for every measurable map

fo(x,2A) = (V,8), KL(Pf, Qf) < KL(P, Q) where VB € B, Pf(B) = P(f~1(B))
(pushforward measure)

Pinsker: KL(P, @) > 2TV(P, Q).

if TV(P, Q) = P(A*) — Q(A*), KL(P, Q) > KL (P1a* , @14* ) = ki (P(A*), Q(A*)) > 2(P(A*), Q(A*))? = 2TV(P, Q)2
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Application: lower bound for the deviations

For every a > 0, and for f(x1,...,xn) = 1{x1 + -+ 4+ x5 > nx},

nkl(x + a, p) = KL(Pxie, Pp) > KL (PL,, PF))

1

= kI (Pyse(Xn > %), Pp(Xp > X)) > Pyye(Xn > x) log B o) In(2)

since kI(p, ) = plog + — h(p) + (1 — p)log 125 > plog £ — In(2),

o (250)
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Bounding the TV by KL

Pinsker's inequality yields:

KL(P_, P kl(-el-
1—25§TV(P,P+)§W:\/” (2 262 )

2
and hence n > E(l — 26)? where k =k (% — €, % —€) = 2eln i“'%i < 8526

In order to catch the good dependency in §, need a tighter inequality for large KL like
1
Bretagnolle-Huber's inequality TV(P_, P;) < V1— e KLP-P) <1— Eef KL(P—.P+)

which yields
1 1
-k 8e?

Good dependency in € and ¢ (but a factor 4 too large)
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Purely informational analysis

By contraction,

11
nkl (2 —65+ e> = KL(P_,Py) > KL (PT,P])

= K (P_(T =0),P,(T =0)) > k(1 —6,8) > In 215

and hence
In 55 (1—2€)In 555

2.45
n> >
= = 8e2

== hJ

Same bound by direct KL (information) manipulations.

Can we get rid of the factor 47
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A somewhat improved bound

11 1 1
n ki (2,2+€> ZPl/z(TZO)Inm — |n(2) ZP1/2(T:0)|n5 — |n(2),

7 (53~ €) 2 PualT = Din g5 = 0(2) 2 Papo(T = Din ~ n(2)

and hence, with k = kI (3,3 +¢) =kl (3,2 —¢) = L In L5 < {29

2’21 1— 462—1 4e2

Int  (1—4€)log 2

2nk > 1Ini —2In(2) = In L thatis n> —% > 45
=9 () 49 - 2k 4e

still sub-optimal.
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An asymptotically asymptotic lower bound

1
With L, = In 2= SXL LX) = Sy o (X;). Forall #>0,
2

6= P (T=0)=E [IL{TZO} e_L")}
E

;[]l{T:O}]l{I;I”gkI (;;ﬂ)}]

= g nwta) P1(T = 0) (1 — on(1))

1
2
> e—n( k|(2,2+e)+a)

and similarly § > e """t Py (T = 1)(1 — 0,(1)).

Hence 26 > e_”(“+a)(1 — 0p(1)), so that n(8) can give a d-correct test only if

~—

liming 100
6—0 Iog

>

1 1—4¢
— >
Kk 2€?

IN

5
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Batch Testing

Sequential Testing

A sequential lower bound
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Sequential testing

Possibility to interrupt the experiment at stopping time 7 < n wrt the filtration
Fr = (O'(Xl, . ’Xt))t<n if sufficient evidence has been gathered. The test T then has

to be F--measurable.

. . dB(L—e 1 1 ..
Since the increments In d6§§+eg (Xs) =kl (5 —€,5 +¢) areiid,

t 1
dB (5 — 1 1
M, = ; (In M(Xs) — ki (2 — €, 5 + e)) 1{s > 7} is a P_-martingale.

The restrictions P” (resp. P7 ) of P_ (resp. Py) to (X, F;) satisfy
KL(P§, PT) = E_[M;] = E_[7]Kl(p, q). By concentration,

E_[r] kI <; — ¢, % + e) =KL(PT,PT) > KL ((PT)",(P])T)

= K(PT(T =0), PT(T =0)) > KI(1 - 6,8) > In ﬁ
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Batch Testing

Sequential Testing

An "optimal” sequential test
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This time, the bound is tight!

25

1 In £
o=inflt>1: X, > = —¢€e+ 2
2t 15
= 1 In £
=inf¢t>1: X, <= — 20 o
T1=1m = £S5 + € o
7 =min {71, 72} T=1{r=mn} .

Prop: P_(1p < 00) < § and P, (711 < o0) < 4, hence T is d-correct
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Never (much) worse than sequential testing

2
1 In§
— def |n75 2|n7
Prop: <t = —

LS 2¢2 62

t2

almost surely

Proof: let ut:%—e+ S and ¢y = §+e— 2 For t > t, ur < £ and hence

either g < torm <Lt Indeed,

<l = 2e>2 In2‘5<:>t>lll+ Int
R— JR— 7n
ve = e =\ 2 =22 " 25

and we conclude since forall vy > a>1/2 , t >~v+2aln(2y) = t>~v+alnt
Indeed, if £(t) = t —y — arIn(t), then f'(t) = 1 —a/t > 0 iff t > a. Hence, for all t > to = v +2aIn(27) > a,
f(t) > f(to) = v+ 2aIn(2y) — v — aln (v + 2aIn(27)) = aln(4y) — aln (1 —+ 2 In(2’y)) which has the
samesignas4'y—1—27°‘|n(2'y)24'y—1—4:“—]2404—1—20420 !
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On average 4 times better!

E 1
Prop: limsup [ ] < — when 6§ < 4%
550 Ini 86

1
Proof: if t* = —20 4 then asabove t > t* — u; < (% + e) t

8¢2 22
Ifa>0t>(1+a)t* = u < (%+e—g(a))t for some g(a) > 0, and hence

P_|_ (7'() > t) < P_|_ <)_<t < <; +€ —g(a)>> < ef2tg(a)2

[e.e]

* —2tg(a)? * 1 :
and hence E[7] < (14 a)t* + Z e B < (1+a)t™+ 1 o2y which
t:(1+a)t*
entails that liminf +[1T] < Y for all a > 0.
=0 In 5 8 2

With some more work, one can obtain an explicit non-asymptotic bound on E[7]
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Of course, this is a lot more general!

» similar analysis for " p < % —€" " vs"p> % + €" (where the sequential approach is

even more relevant)
> generalize to other Bernoulli parameters
> generalize to other (one-parameter exponential) families of distributions
P non-parametric approach via the Empirical Likelihood method
> generalize to "p > % +e" vs"p< % + € (more interesting)

P> Best-arm identification in bandit models: generalize to active sequential sampling
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