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The Bandit Model

Dynamic resource allocation

Imagine you are a doctor:

patients visit you one after another for a given disease

you prescribe one of the (say) 5 treatments available

the treatments are not equally efficient

you do not know which one is the best, you observe the effect
of the prescribed treatment on each patient

⇒ What do you do?

You must choose each prescription using only the previous
observations

Your goal is not to estimate each treatment’s efficiency
precisely, but to heal as many patients as possible



The Bandit Model

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric family, or not. Examples:
canonical exponential family, general bounded
rewards

Example Bernoulli rewards: θ ∈ [0, 1]K , νa = B(θa)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



The Bandit Model

Real challenges

Randomized clinical trials

original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems:

advertisement

website optimization

news, blog posts, . . .

Computer experiments

large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few choices
are possible for the parameters

Games and planning (tree-structured options)



The Bandit Model

Performance Evaluation, Regret

Cumulated Reward ST =
∑T

t=1Xt

Our goal Choose π so as to maximize

E [ST ] =

T∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . , Xt−1]

]
=

K∑
a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) =

∑
t≤T 1{At = a} is the number of

draws of arm a up to time T , and µa = E(νa).

Regret Minimization equivalent to minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
a (T )]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}
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Lower Bound for the Regret

Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any (νa)a ∈ FK ,

1

T
E[ST ]→ µ∗

The strategy is efficient if for all θ ∈ [0, 1]K and all α > 0,

RT = o(Tα)

There are efficient strategies and we consider the best
achievable asymptotic performance among efficient strategies



Lower Bound for the Regret

The Bound of Lai and Robbins

One-parameter reward distribution νa = νθa , θa ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]

If π is an efficient strategy, then, for any θ ∈ ΘK ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
KL(νa, ν∗)

where KL(ν, ν ′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case:

KL
(
B(p),B(q)

)
= dber(p, q) = p log

p

q
+ (1− p) log

1− p
1− q



Lower Bound for the Regret

The Bound of Burnetas and Katehakis

More general reward distributions νa ∈ Fa

Theorem [Burnetas and Katehakis, ’96]

If π is an efficient strategy, then, for any θ ∈ [0, 1]K ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
Kinf (νa, µ∗)

where

Kinf (νa, µ
∗) = inf

{
K(νa, ν

′) :

ν ′ ∈ Fa, E(ν ′) ≥ µ∗
}

ν∗

δ1

δ 1
2

δ0

Kinf (νa, µ
?)

νa

µ∗



Lower Bound for the Regret

Intuition

First assume that µ∗ is known and that T is fixed

How many draws na of νa are necessary to know that µa < µ∗

with probability at least 1− 1/T?

Test: H0 : µa = µ∗ against H1 : ν = νa

Stein’s Lemma: if the first type error αna ≤ 1/T , then

βna % exp
(
− naKinf (νa, µ

∗)
)

=⇒ it can be smaller than 1/T if

na ≥
log(T )

Kinf (νa, µ∗)

How to do as well without knowing µ∗ and T in advance?
Not asymptotically?
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Optimistic Algorithms

Optimism in the Face of Uncertainty

Optimism in an heuristic principle popularized by [Lai&Robins ’85;
Agrawal ’95] which consists in letting the agent

play as if the environment was the most favorable
among all environments that are sufficiently likely
given the observations accumulated so far

Surprisingly, this simple heuristic principle can be instantiated into
algorithms that are robust, efficient and easy to implement in
many scenarios pertaining to reinforcement learning



Optimistic Algorithms

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85; Agrawal ’95; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm:

Sa(t)

Na(t)︸ ︷︷ ︸
estimated reward

+

√
log(t)

2Na(t)︸ ︷︷ ︸
exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]

Its behavior is easily interpretable and intuitively appealing



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

UCB in Action



Optimistic Algorithms

Performance of UCB

For rewards in [0, 1], the regret of UCB is upper-bounded as

E[RT ] = O(log(T ))

(finite-time regret bound) and

lim sup
T→∞

E[RT ]

log(T )
≤

∑
a:µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate of
the variance in the exploration bonus (e.g., [Audibert&al ’07])
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An Optimistic Algorithm based on Kullback-Leibler Divergence

The KL-UCB algorithm [Cappé,G.&al ’13]

Parameters: An operator ΠF : M1(S)→ F ; a non-decreasing
function f : N→ R
Initialization: Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
E(ν) : ν ∈ F and KL

(
ΠF
(
ν̂a(t)

)
, ν
)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for
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Parametric setting: the kl-UCB Algorithm

Exponential Family Rewards
Assume that Fa = F = canonical exponential family, i.e.
such that the pdf of the rewards is given by

pθa(x) = exp
(
xθa − b(θa) + c(x)

)
, 1 ≤ a ≤ K

for a parameter θ ∈ RK , expectation µa = ḃ(θa)
The KL-UCB si simply:

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
For instance,

for Bernoulli rewards:

dber(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

for exponential rewards pθa(x) = θae−θax:

dexp(u, v) = u− v + u log
u

v

The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



Parametric setting: the kl-UCB Algorithm

Parametric version: the kl-UCB algorithm

Parameters: F parameterized by the expectation µ ∈ I ⊂ R with
divergence d, a non-decreasing function f : N→ R
Initialization: Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



Parametric setting: the kl-UCB Algorithm

The kl Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0 and

if p̂s = (Z1 + · · ·+Zs)/s, then by
Chernoff’s inequality

Pθ0 (p̂s ≤ x) ≤ exp (−sdber(x, θ0)) .

0

kl(⋅,θ)

θ
0

x

−log(α)/s

In other words, if α = exp (−sdber(x, θ0)):

Pθ0 (p̂s ≤ x) = Pθ0
(
dber(p̂s, θ0) ≤ −

log(α)

s
, p̂s < θ0

)
≤ α

=⇒ Upper Confidence Bound for p at risk α :

us = sup
{
θ > p̂s : dber(p̂s, θ) ≤ −

log(α)

s

}
.



Parametric setting: the kl-UCB Algorithm

The kl Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0 and

if p̂s = (Z1 + · · ·+Zs)/s, then by
Chernoff’s inequality

Pθ0 (p̂s ≤ x) ≤ exp (−sdber(x, θ0)) .

0

kl(⋅,θ)

p
s

kl(p
s
,⋅)

u
s

−log(α)/s

In other words, if α = exp (−sdber(x, θ0)):

Pθ0 (p̂s ≤ x) = Pθ0
(
dber(p̂s, θ0) ≤ −

log(α)

s
, p̂s < θ0

)
≤ α

=⇒ Upper Confidence Bound for p at risk α :

us = sup
{
θ > p̂s : dber(p̂s, θ) ≤ −

log(α)

s

}
.



Parametric setting: the kl-UCB Algorithm

Key Tool: Deviation Inequality for Self-Normalized Sums

Problem: random number of summands

Solution: peeling trick (as in the proof of the LIL)

Theorem For all ε > 1,

P
(
µa > µ̂a(t) and Na(t) d

(
µ̂a(t), µa

)
≥ ε
)
≤ e
⌈
ε log(t)

⌉
e−ε .

Thus,
P
(
Ua(t) < µa

)
≤ e
⌈
f(t) log(t)

⌉
e−f(t)



Parametric setting: the kl-UCB Algorithm

Regret bound

Theorem: Assume that all arms belong to a canonical, regular,
exponential family F = {νθ : θ ∈ Θ} of probability distributions
indexed by its natural parameter space Θ ⊆ R. Then, with the
choice f(t) = log(t) + 3 log log(t) for t ≥ 3, the number of draws
of any suboptimal arm a is upper bounded for any horizon T ≥ 3 as

E [Na(T )] ≤ log(T )

d (µa, µ?)
+2

√√√√2πσ2
a,?

(
d′(µa, µ?)

)2(
d(µa, µ?)

)3 √
log(T ) + 3 log(log(T ))

+

(
4e+

3

d(µa, µ?)

)
log(log(T )) + 8σ2

a,?

(
d′(µa, µ

?)

d(µa, µ?)

)2

+ 6 ,

where σ2a,? = max
{

Var(νθ) : µa ≤ E(νθ) ≤ µ?
}

and where
d′( · , µ?) denotes the derivative of d( · , µ?).



Parametric setting: the kl-UCB Algorithm

Results: Two-Arm Scenario
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Figure: Performance of various algorithms when θ = (0.9, 0.8). Left:
average number of draws of the sub-optimal arm as a function of time.
Right: box-and-whiskers plot for the number of draws of the sub-optimal
arm at time T = 5, 000. Results based on 50, 000 independent
replications



Parametric setting: the kl-UCB Algorithm

Results: Ten-Arm Scenario with Low Rewards
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Figure: Average regret as a function of time when
θ = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01). Red line: Lai
& Robbins lower bound; thick line: average regret; shaded regions:
central 99% region an upper 99.95% quantile
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Non-parametric setting and Empirical Likelihood

Non-parametric setting

Rewards are only assumed to be bounded (say in [0, 1])

Need for an estimation procedure

with non-asymptotic guarantees
efficient in the sense of Stein / Bahadur

=⇒ Idea 1: use dber (Hoeffding)

=⇒ Idea 2: Empirical Likelihood [Owen ’01]

Bad idea: use Bernstein / Bennett



Non-parametric setting and Empirical Likelihood

First idea: use dber

Idea: rescale to [0, 1], and take the divergence dber.

−→ because Bernoulli distributions maximize deviations among
bounded variables with given expectation:

Lemma (Hoeffding ’63)

Let X denote a random variable such that 0 ≤ X ≤ 1 and denote
by µ = E[X] its mean. Then, for any λ ∈ R,

E [exp(λX)] ≤ 1− µ+ µ exp(λ) .

This fact is well-known for the variance, but also true for all
exponential moments and thus for Cramer-type deviation bounds



Non-parametric setting and Empirical Likelihood

Regret Bound for kl-UCB

Theorem

With the divergence dber, for all T > 3,

E
[
Na(T )

]
≤ log(T )

dber(µa, µ?)
+

√
2π log

(
µ?(1−µa)
µa(1−µ?)

)
(
dber(µa, µ?)

)3/2 √
log(T ) + 3 log

(
log(T )

)

+

(
4e+

3

dber(µa, µ?)

)
log
(
log(T )

)
+

2

(
log
(
µ?(1−µa)
µa(1−µ?)

))2

(dber(µa, µ?))
2 + 6 .

kl-UCB satisfies an improved logarithmic finite-time regret
bound

Besides, it is asymptotically optimal in the Bernoulli case



Non-parametric setting and Empirical Likelihood

Comparison to UCB
KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be seen
from Pinsker’s inequality

dber(µ1, µ2) ≥ 2(µ1 − µ2)2
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Non-parametric setting and Empirical Likelihood

Idea 2: Empirical Likelihood

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)

)
and KL(ν̂n, ν

′) ≤ ε
}

or, rather, modified Empirical Likelihood:

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)∪{1}

)
and KL(ν̂n, ν

′) ≤ ε
}

µ̂n

Un



Non-parametric setting and Empirical Likelihood

Coverage properties of the modified EL confidence bound

Proposition: Let ν0 ∈M1([0, 1]) with E(ν0) ∈ (0, 1) and let
X1, . . . , Xn be independent random variables with common
distribution ν0 ∈M1

(
[0, 1]

)
, not necessarily with finite support.

Then, for all ε > 0,

P
{
U(ν̂n, ε) ≤ E(ν0)

}
≤ P

{
Kinf

(
ν̂n, E(ν0)

)
≥ ε
}

≤ e(n+ 2) exp(−nε) .

Remark: For {0, 1}–valued observations, it is readily seen that
U(ν̂n, ε) boils down to the upper-confidence bound above.
=⇒ This proposition is at least not always optimal: the presence

of the factor n in front of the exponential exp(−nε) term is
questionable.



Non-parametric setting and Empirical Likelihood

Regret bound

Theorem: Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that µa > 0 for all arms a
and that µ? < 1. There exists a constant M(νa, µ

?) > 0 only
depending on νa and µ? such that, with the choice
f(t) = log(t) + log

(
log(t)

)
for t ≥ 2, for all T ≥ 3:

E
[
Na(T )

]
≤ log(T )

Kinf

(
νa, µ?

) +
36

(µ?)4
(
log(T )

)4/5
log
(

log(T )
)

+

(
72

(µ?)4
+

2µ?

(1− µ?)Kinf

(
νa, µ?

)2
)(

log(T )
)4/5

+
(1− µ?)2M(νa, µ

?)

2(µ?)2
(
log(T )

)2/5
+

log
(
log(T )

)
Kinf

(
νa, µ?

) +
2µ?

(1− µ?)Kinf

(
νa, µ?

)2 + 4 .



Non-parametric setting and Empirical Likelihood

Example: truncated Poisson rewards

for each arm 1 ≤ a ≤ 6 is associated with νa, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.

N = 10, 000 Monte-Carlo replications on an horizon of
T = 20, 000 steps.
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Non-parametric setting and Empirical Likelihood

Example: truncated Exponential rewards
exponential rewards with respective parameters 1/5, 1/4, 1/3,
1/2 and 1, truncated at xmax = 10;
kl-UCB uses the divergence d(x, y) = x/y − 1− log(x/y)
prescribed for genuine exponential distributions, but it ignores
the fact that the rewards are truncated.
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Figure: Regret of the various algorithms as a function of time in the
truncated exponential scenario.



Non-parametric setting and Empirical Likelihood

Take-home message on bandit algorithms

1 Use kl-UCB rather than UCB-1 or UCB-2

2 Use KL-UCB if speed is not a problem

3 todo: improve on the deviation bounds, address general
non-parametric families of distributions

4 Alternative: Bayesian-flavored methods:

Bayes-UCB [Kaufmann, Cappé, G.]

Thompson sampling [Kaufmann & al.]
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Extensions

Non-stationary Bandits [G. Moulines ’11]

Changepoint : reward
distributions change abruptly

Goal : follow the best arm

Application : scanning
tunnelling microscope

Variants D-UCB et SW-UCB including a progressive discount
of the past

Bounds O(
√
n log n) are proved, which is (almost) optimal



Extensions

(Generalized) Linear Bandits [Filippi, Cappé, G. &
Szepesvári ’10]

Bandit with contextual information:

E[Xt|At] = µ(m′Atθ∗)

where θ∗ ∈ Rd is an unkown parameter and µ : R→ R is a
link function

Example : binary rewards

µ(x) =
exp(x)

1 + exp(x)

Application : targeted web ads

GLM-UCB : regret bound depending on dimension d and not
on the number of arms



Extensions

Stochastic Optimization

Goal : Find the maximum of a
function f : C ⊂ Rd → R
(possibly) observed in noise

Application : DAS
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Model : f is the realization of a Gaussian Process (or has a
small norm in some RKHS)

GP-UCB : evaluate f at the point x ∈ C where the
confidence interval for f(x) has the highest upper-bound



Extensions

Markov Decision Processes (MDP) [Filippi, Cappé & G.
’10]

The system is in state St which evolves as a Markov Chain:

St+1 ∼ P (·;St, At) et Rt = r(St, At) + εt

Optimistic algorithm: search the best transition matrix in a
neighborhood of the ML estimate

The use of Kullback-Leibler neighborhoods leads to better
performance and has desirable propoerties.



Extensions

Optimal Exploration with Probabilistic Expert Advice

Search space : B ⊂ Ω discrete set

Probabilistic experts : Pa ∈M1(Ω) for a ∈ A
Requests : at time t, calling expert At yields a realization of

Xt = XAt,t independent with law Pa

Goal : find as many distinct elements of B as possible with
few requests :

Fn = Card (B ∩ {X1, . . . , Xn})

6= bandit : finding the same element twice is no use !

Oracle : selects the expert with highest ‘missing mass’

A∗t+1 = arg max
a∈A

Pa (B\ {X1, . . . , Xt})



Extensions

Estimating the missing mass

Notation : Xt
iid∼ P ∈M1(Ω), On(ω) =

∑n
t=1 1{Xt = ω}

Zn(x) = 1{On(ω) = 0}
Hn(ω) = 1{On(ω) = 1}, Hn =

∑
ω∈BHn(ω)

Problem : estimate the missing mass

Rn =
∑
ω∈B

P (ω)Zn(ω)

Good-Turing : ‘estimator’ R̂n = Hn/n st. E[R̂n −Rn] ∈ [0, 1/n].

Concentration : by McDiarmid’s inequality, with probability
≥ 1− δ∣∣∣R̂n − E[R̂n]

∣∣∣ ≤√(2/n+ pmax)2 n log(2/δ)

2



Extensions

The Good-UCB algorithm [Bubeck, Ernst & G.]

Optimistic algorithm based on Good-Turing’s estimator :

At+1 = arg max
a∈A

{
Ha(t)

Na(t)
+ c

√
log (t)

Na(t)

}

Na(t) = number of draws of Pa up to time t

Ha(t) = number of elements of B seen exactly once thanks to
Pa

c = tuning parameter



Extensions

Good-UCB en action



Extensions

Macroscopic optimality

Hypotheses :

Ω = A× {1, . . . , N}
∀a ∈ A,∀j ∈ {1, . . . , N}, Pa ({(a, j)}) = 1/N

Macroscopic limit :

N →∞
∀a ∈ A, Card (B ∩ {a} × {1, . . . , N}) /N → qa ∈]0, 1[

Macroscopic optimality

When N goes to infinity, the performance of the Good-UCB
algorithm during the discovery t 7→ F ([Nt]) uniformly converges to
that of the oracle t 7→ F ∗([Nt]) on R+.



Extensions

Simulation

Number of items found by Good-UCB (line), the oracle (bold
dashed), and by uniform sampling (light dotted) as a function of
time, for sample sizes N = 128, N = 500, N = 1000 et
N = 10000, in an environment with 7 experts.
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