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The Non-stationary Bandit Problem

Motivating situations

Clinical trials

(PASCAL challenge: cf
Shawe-Taylor ’07) Web:
advertising and news feeds

Web routing, (El Gamal, Jiang,
Poor ’07) Communication networks

Economics, Auditing, Labor
Market,. . .

=⇒ Exploration versus Exploitation Dilemma
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The Non-stationary Bandit Problem

Idealized Problem
The rewards Xt(i) ∈ [0,B] of arm
i at times t = 1, . . . , n are in-
dependent with expectation µt(i).
At time t, a policy π:

chooses arm It given the
past observed rewards;

observes reward Xt(It).

Goal: minimize expected regret
Rn(π) =

∑
t=1..n

µt(∗)− µt(It) .
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The Non-stationary Bandit Problem

The Stationary case: Methods

Classical policies:

1 Softmax Methods like EXP3: the arm It is chosen at random by the
player according to some probability distribution giving more weight
to arms which have so-far performed well

2 UCB policies arm It is chosen that maximizes the upper bound of a
confidence interval for expected reward µ(i), which is constructed
from the past observed rewards.

It = arg max
1≤i≤K

X̄t(i) + B

√
ξ log(t)

Nt(i)
.
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The Non-stationary Bandit Problem

The Stationary case: Results

1 Probabilistic setup:

(Lai,Robbins ’85)
Rn(π) ≥ C log n .

(Auer,Cesa-Bianchi,Fischer ’02) rate log n reached by UCB;
Analysis of UCB: amounts to upper-bounding the expected number of
times Ñt(i) a suboptimal arm i is played.

2 Adversarial setup:

(Auer, Cesa-Bianchi, Freund, Schapire ’03)

Rn(π) ≥ C
√
n .

(Auer, Cesa-Bianchi, Freund, Schapire ’03) rate reached by EXP3.
In a probabilistic setup, EXP3 usually has larger regret than UCB.
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The Non-stationary Bandit Problem

Non-stationary Policies

Cf. results of PASCAL Exploration Vs Exploitation Challenge

(Auer, Cesa-Bianchi, Freund, Schapire ’03): EXP3.S

Tracking the best expert;
Randomized procedure working in an adversarial setup;
Analysis: extends EXP3

(Szepeszvári, Kocsis ’06) Discounted UCB

Promising empirical results;
More difficult to analyze;
Problem: tuning of the discount factor?
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Results A Lower-Bound

Setup of the Lower-bound

The period {1, . . . ,T} is divided into epochs of size d ∈ {1, . . . ,T};
The distribution of rewards is modified on one epoch [Z + 1,Z + d ]
(arm 2 becomes the one with highest expected reward).

Composed game P∗:
E∗π[W ] =

1

T/d

∑
Z=0...T−d

EZ
π [W ].
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Results A Lower-Bound

Lower-Bound and Consequences

Theorem: For any policy π and any horizon T such that
64/(9α) ≤ Eπ[NT (K )] ≤ T/(4α),

E∗π[RT ] ≥ C (µ)
T

Eπ[RT ]
,

where C (µ) = 32δ(µ(1)−µ(K))
27α .

Corollary: For any policy π and any positive horizon T ,

max{Eπ(RT ),E∗π(RT )} ≥
√
C (µ)T .

Remark: as standard UCB satisfies Eπ[N(K )] = Θ(logT ),

E∗π[RT ] ≥ c
T

logT
.
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Results The Discounted UCB

D-UCB (Szepeszvári, Kocsis ’06)

Idea: give more weight to recent observations =⇒ discount factor γ

Estimate µt(i) by the discounted average

X̄t(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)1{Is=i} , Nt(γ, i) =
t∑

s=1

γt−s1{Is=i}.

D-UCB policy: letting nt(γ) =
∑K

i=1 Nt(γ, i) , choose

It = arg max
1≤i≤K

X̄t(γ, i) + 2B

√
ξ log nt(γ)

Nt(γ, i)
.

Compare to standard UCB:

It = arg max
1≤i≤K

X̄t(i) + B

√
ξ log(t)

Nt(i)
.
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Results The Discounted UCB

Bound on the regret

Theorem Let ξ > 1/2 and γ ∈ (0, 1). For any arm i ∈ {1, . . . ,K},

Eγ
[
ÑT (i)

]
≤ B(γ)T (1− γ) log

1

1− γ
+ C(γ)

ΥT

1− γ
log

1

1− γ
,

where

B(γ) =
16B2ξ

γ1/(1−γ)(∆µT (i))2

dT (1− γ)e
T (1− γ)

+
2
⌈
− log(1− γ)/ log(1 + 4

√
1− 1/2ξ)

⌉
− log(1− γ)

(
1− γ1/(1−γ)

)
→

16 e B2ξ

(∆µT (i))2
+

2

(1− e−1) log
(

1 + 4
√

1− 1/2ξ
)

and

C(γ) =
γ − 1

log(1− γ) log γ
× log ((1− γ)ξ log nK (γ))→ 1 .
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Results The Discounted UCB

Consequences

If horizon T and the growth rate of the number of breakpoints ΥT are
known in advance, take γ = 1− (4B)−1

√
ΥT/T :

Eγ
[
ÑT (i)

]
= O

(√
TΥT logT

)
.

Assuming that ΥT = O(Tβ), the regret is O
(
T (1+β)/2 logT

)
.

In particular, if the number of breakpoints ΥT is upper-bounded by Υ
independently of T , taking γ = 1− (4B)−1

√
Υ/T the regret is bounded by

Eγ
[
ÑT (i)

]
= O

(√
ΥT logT

)
.

=⇒ D-UCB matches the lower-bound up to a factor logT .
If ΥT ≤ rT for a (small) positive constant r , taking γ = 1−

√
r/(4B) yields:

Eγ
[
ÑT (i)

]
= O

(
−T
√
r log r

)
.

(Auer & al ’03) Similar bounds for EXP3.S
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Results The Discounted UCB

Insight into the analysis

X̄t(γ, i) = µt(i)

+
∑t

s=1 γ
t−s(µs(i)−µt(i))1{Is=i}

Nt(γ,i)
“Bias”

+
∑t

s=1 γ
t−s(Xs(i)−µs(i))1{Is=i}

Nt(γ,i)
“Variance”

to control the bias term, abandon a few terms after each breakpoint;

to control the variance term, new martingale bound: ∀η > 0,

P

(∣∣∣∣∣X̄t(γ, i)−
∑t

s=1 γ
t−sµs(i)1{Is=i}

Nt(γ, i)

∣∣∣∣∣ > δ

√
Nt(γ2, i)

N2
t (γ, i)

)

≤
⌈

log nt(γ)

log(1 + η)

⌉
exp

(
−2δ2

B2

(
1− η2

16

))
.
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∣∣∣∣∣ > δ

√
Nt(γ2, i)

N2
t (γ, i)
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≤ 4 log nt(γ) exp

(
−1.99δ2

B2

)
.
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Results The Sliding Windows UCB

Presentation of SW-UCB

Idea: give weight only to recent observations =⇒ sliding windows of
width τ

Estimate µt(i) by the local average

X̄t(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xs(i)1{Is=i} , Nt(τ, i) =
t∑

s=t−τ+1

1{Is=i} .

SW-UCB policy: choose

It = arg max
1≤i≤K

X̄t(τ , i) + B

√
ξ log(t ∧ τ)

Nt(τ , i)
.

Compare to standard UCB:

It = arg max
1≤i≤K

X̄t(i) + B

√
ξ log(t)

Nt(i)
.
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Results The Sliding Windows UCB

Bounds on the regret

Theorem Let ξ > 1/2. For any integer τ and any arm i ∈ {1, . . . ,K},

Eτ
[
ÑT (i)

]
≤ C(τ)

T log τ

τ
+ τΥT + log2(τ) ,

where

C(τ) =
4B2ξ

(∆µT (i))2

dT/τe
T/τ

+
2

log τ

⌈
log(τ)

log(1 + 4
√

1− (2ξ)−1)

⌉

→ 4B2ξ

(∆µT (i))2
+

2

log(1 + 4
√

1− (2ξ)−1)
.
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Results The Sliding Windows UCB

Consequences

If horizon T and the growth rate of the number of breakpoints ΥT are
known in advance, take τ = 2B

√
T log(T )/ΥT :

Eτ
[
ÑT (i)

]
= O

(√
ΥTT logT

)
.

Assuming that ΥT = O(Tβ) for some β ∈ [0, 1), the regret is
upper-bounded as O

(
T (1+β)/2

√
logT

)
=⇒ slightly better than D-UCB.

In particular, if the number of breakpoints ΥT is upper-bounded by Υ
independently of T , taking τ = 2B

√
T log(T )/Υ the regret is bounded by

Eγ
[
ÑT (i)

]
= O

(√
ΥT logT

)
.

=⇒ SW-UCB matches the lower-bound up to a factor
√

logT .

If ΥT ≤ rT for a (small) positive constant r , taking τ = 2B
√
− log r/r

yields:

Eτ
[
ÑT (i)

]
= O

(
T
√
−r log (r)

)
.
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Simulations, Conclusions and Perspectives
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Simulations, Conclusions and Perspectives

Bernoulli MAB problem with two swaps

Evolution of the ex-
pected rewards

Cumulative fre-
quency of arm 1
pulls
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Simulations, Conclusions and Perspectives

Bernoulli MAB problem with periodic rewards

Evolution of the ex-
pected rewards

Cumulative fre-
quency of arm 1
pulls
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Simulations, Conclusions and Perspectives

Conclusions

UCB methods can be efficiently adapted to face non-stationary
environments;

Interesting properties both theoretically and practically;

No gap between stochastic and non-stochastic setups: regrets are of
order O(

√
n);

Other choice for the confidence interval using Nt(γ
2, i) instead of

N2
t (γ, i)?

Extension to continuous-time bandit: the martingale argument works
as well!

Data-driven choice of γ and τ ;

Generalization to smoothly-varying environments.
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No gap between stochastic and non-stochastic setups: regrets are of
order O(

√
n);

Other choice for the confidence interval using Nt(γ
2, i) instead of

N2
t (γ, i)?

Extension to continuous-time bandit: the martingale argument works
as well!

Data-driven choice of γ and τ ;

Generalization to smoothly-varying environments.

Thank you for your attention!

Aurélien Garivier, Eric Moulines, LTCI CNRS Telecom ParisTech ( )UCB for non-stationary BP October 6th, 2011 22 / 22


	The Non-stationary Bandit Problem
	Results
	A Lower-Bound
	The Discounted UCB
	The Sliding Windows UCB

	Simulations, Conclusions and Perspectives

