
Machine Learning - Homework

Due: November 25th, 2019

Exercise 1 is on 4 points. Exercise 2 is on 3 points. Exercise 3 is on 7 points. Exercise 4 is on 9 points.
The maximal mark is 20 points (hence, you do not need to do everything in order to have the maximal
mark). Take great care of the redaction: it must be clear and precise.

1. Hardness of learning.
In this exercise, we consider the problem of binary classification with the hypothesis class H of intersec-
tions of 3 homogeneous halfspaces in Rd. Prove that computing an ERM in the realizable case for H is
NP-hard.
Hint: Recall that a graph G = (V,E) is 3-colorable if there exists a mapping f : V → {1, 2, 3} such
that (u, v) ∈ E =⇒ f(u) 6= f(v). You may want to use the following reduction of the graph 3-coloring
problem: for any graph G = (V,E), where V = {v1, . . . , vd}, let m = |V |+ |E| and S ∈ (Rd × {0, 1})m
be the sample containing

• for every i ∈ {1, . . . , d}, the pair (ei,−1);

• for every edge (vi, vj) ∈ E, the pair

(
ei + ej

2
,+1

)
.

2. On the VC-dimension.

1. Prove that the VC-dimension of a finite class H is at most
⌊

log2

(
|H|
)⌋

, where buc denotes the

largest integer at most equal to u.

2. Give an example of an infinite class H of functions over the real interval X = [0, 1] such that
VCdim(H) = 1.

3. Give an example of a finite hypothesis class H over the domain X of your choice such that
VCdim(H) = log2

(
|H|
)
.
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3. Perceptron with margin.
Consider binary classification in X = Rd with label set Y = {±1}: the sample is

(
(x1, y1), . . . , (xm, ym)

)
∈(

Rd × {±1}
)m

. We assume that the data is linearly separable, and even that the margin

γ = max
w∈Rd:‖w∗‖=1

min
1≤i≤m

yi〈w, xi〉
‖xi‖

is known and can be used in the algorithm. The aim of the Perceptron with margin algorithm is to
find a linear separator with almost optimal margin. The aim of the questions 1-6 is to prove that the
Perceptron-with-margin algorithm below achieves margin at least γ/2 in at most 12/γ2 iterations.

Algorithm: Perceptron-with-margin γ

Input: margin γ
Data: training set (x1, y1), . . . , (xm, ym)

1 w0 ← (0, . . . , 0)
2 t ≥ 0

3 while ∃it : yit〈wt, xit〉 ≤
γ

2
‖xit‖‖wt‖ do

4 wt+1 = wt + yit
xit

‖xit‖
5 t← t+ 1

6 return wt

1. Justify the existence of w∗ such that

∀1 ≤ i ≤ m, yi〈w∗, xi〉
‖xi‖

≥ γ .

2. In this question and the following, t is a positive integer for which the condition to continue the
while loop of the algorithm (line 3) is satisfied. Prove that 〈w∗, wt〉 ≥ γt.

3. Prove that
‖wt+1‖2 ≤ ‖wt‖2 + γ‖wt‖+ 1 .

4. Show that if ‖wt‖ ≥ 2/γ, then

‖wt+1‖2 ≤
(
‖wt‖+

3γ

4

)2

.

5. Deduce that

‖wt‖ ≤ 1 +
2

γ
+

3γt

4
.

6. Conclude.

7. For any η ∈ (0, 1), give an algorithm that yields a linear separator with margin at least (1− η)γ in
at most K(η)/γ2 iterations, where K(η) is a function to be specified.



4. Adaboost.

Let n be a positive integer, and let X be a subset of Rp for some p > 0. We assume that there exists
a positive real number γ and a function Φ (called weak classifier) which, given any weighted sample
S =

{
(xi, yi, wi) : 1 ≤ i ≤ m

}
, with xi ∈ X , yi ∈ {−1, 1}, 0 ≤ wi ≤ 1 and w1 + · · · + wm = 1, yields a

classification rule h = Ψ(S) : X 7→ {−1, 1} such that

m∑
i=1

wi 1{h(xi) 6= yi} ≤
1

2
− γ .

Algorithm Adaboost works as follows. For a given number T of iterations:

• Initialization: for every i ∈ {1, . . . ,m}, let w1
i = 1/m;

• Main loop: for every t from 1 to T :

– compute ht = Φ
(
(xi, yi, w

t
i)1≤i≤m

)
;

– compute

εt =

m∑
i=1

wt
i 1{ht(xi) 6= yi} and αt =

1

2
ln

(
1− εt
εt

)
;

– for every i ∈ {1, . . . ,m}, let

wt+1
i =

wt
i

Zt
× exp

(
− αt yi ht(xi)

)
,

where Zt is such that wt+1
1 + · · ·+ wt+1

m = 1.

• Output: the final classifier is the function H : X 7→ {−1, 1} defined by

H(x) = sign

(
T∑

t=1

αt ht(x)

)
,

where sign(u) = 2× 1{u ≥ 0} − 1.

We define

F (x) =

T∑
t=1

αt ht(x)

and

e =
1

m

m∑
i=1

1{H(xi) 6= yi} .

1. In supervised classification, what is the name of e ?

2. Show that

e ≤ 1

m

m∑
i=1

1{yi F (xi) ≤ 0} ≤ 1

m

m∑
i=1

exp
(
− yi F (xi)

)
.

3. Show that for every i ∈ {1, . . . ,m},

wT+1
i =

exp
(
− yi F (xi)

)
m
∏T

t=1 Zt

,

and that
m∑
i=1

exp
(
− yi F (xi)

)
= m

T∏
t=1

Zt .



4. Show that
Zt = εt exp(αt) + (1− εt) exp(−αt) = 2

√
εt(1− εt) .

What is the value of α that minimizes

g(α) = εt exp(α) + (1− εt) exp(−α) ?

5. Show that
m∑
i=1

wt+1
i 1{ht(xi) 6= yi} =

1

2
.

How to interpret this equality?

6. For every t between 1 and T , let γt = 1/2− εt. Show that

e ≤
T∏

t=1

√
1− 4γ2t ≤ exp

(
−2Tγ2

)
.

7. Give a value of T0 such that for every T ≥ T0, e = 0. Should one necessarily choose T of order T0 ?

8. How can you interpret the sentence: ”weak learnability implies strong learnability”?

9. Why is Adaboost said to be adaptive?


