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What is Machine Learning?
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What is Machine Learning?

Data and Learning Algorithms



What is Machine Learning?

e Algorithms operate by building a model from example inputs in
order to make data-driven predictions or decisions...

e ...rather than following strictly static program instructions: useful
when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence
e evolved from the study of pattern recognition and computational
learning theory in artificial intelligence.

e Al: emulate cognitive capabilities of humans
(big data: humans learn from abundant and diverse sources of data).

e a machine mimics " cognitive” functions that humans associate with
other human minds, such as "learning” and " problem solving”.



Example: MNIST dataset

+ +as5 8 LA #¢+ Q3 B
LDA Classifier KNN Classifier QDA Classifier

poedcted & procicued 1 predicted 8
& mapectesd supected 1 wpectes 3

pradcted 4 pedited 1 presicied 3 pradicied £ pradicted 1
pacieda mepacted 3 mapectes 0 sspecterdd mcpected | expected 8

H /7 9 S04 /] oy

predctid 8 pemleted | prod e
Evorttd 2 Eaperin 1 experoend

preficted 2 predicte? 1 peedictad 8 prodicted | peadictes
wmeched 3 mepacted I mapected ) epectad | mepacted

A \N3 | ¥4

preficed 1 pres peedicted 3 predicied & peedicred 1
eipected 3 axpected 3 expected i expected 1

J 536 |

predicted T peedited L
wepacied 1 wapacted |

2\

predctedd predicted T preficted
Eepeced 3 ewpected s e

H




Arthur Samuel (1959)
Field of study that gives computers the ability to learn without being
explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.



Machine Learning: Typical Problems

e spam filtering, text classification

e optical character recognition (OCR)
e search engines

e recommendation platforms

e speach recognition software

e computer vision

e bio-informatics, DNA analysis, medicine

For each of this task, it is possible but very inefficient to write an explicit
program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good
decision rules are.



What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

Importance of probability- and statistics-based methods

— Data Science (Michael Jordan)

Computational Statistics: focuses in prediction-making through
the use of computers together with statistical models (ex: Bayesian
methods).

Data Mining (unsupervised learning) focuses more on exploratory
data analysis: discovery of (previously) unknown properties in the
data. This is the analysis step of Knowledge Discovery in Databases.
Machine Learning has more operational goals

Ex: eensisteney — oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).
Strong ties to Mathematical Optimization, which furnishes
methods, theory and application domains to the field
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What is ML composed of?

Association
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What is Machine Learning?

Classification Framework
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What is a classifier?
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Data repositories

Inside R: package datasets

Inside python/scikitlearn: package sklearn.datasets

e UCI Machine Learning Repository

UCI cZx

Machine Learning Repository

Challenges: Kaggle, etc.
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What is Machine Learning?
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Statistical Learning Hypothesis

Assumption

e The examples (X, Yi)i1<i<n are iid samples of an unknown joint
distribution D;

e The points to classify later are also independent draws of the same
distribution D.

Hence, for every decision rule h : X — ) we can define the risk
Lp(h) = Pocyyen (H(X) # ¥) = D({(x,y) : hx) # 1}) -

The goal of the learning algorithm is to minimize the expected risk:

Ro(Ay) = Epen [LD(A,,((Xl, Ya), ooy (X Vo) )1
hy
for every distribution D, using only the examples.
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Signal and Noise

new york times bestsellar " A
Signal

the signal | |

and the noise \ Signal + Noise
why so many
predictions fail- /’
but some don’t Noise

nate sifver

T ke e
U dda ™ = s e

o www.guruprasad.netj

® Cat

Height

‘ 17
Weight Weight

24
F!
3



Example: Character Recognition

Domain set X 28 x 28 images
Label set ) {0,1,...,9}
Joint distribution D ?

Prediction function h € H c ¥
Risk R(h) = Pp (h(X) %+ Y)
Sample S, = {(Xi, Y;)}Ll MNIST dataset
Empirical risk

Ls(h) = 2 Y1, L{h(X)) # Yi}
Learning algorithm

A= (A)n Ap (X x V)" > H
Expected risk R,(A) = E, {LD ('A"(S")))w

neural nets, boosting...
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As a pair (Dy, k), where
o for AC X, Dy(A) = D(A X ))) is the
marginal distribution of X,

e and for x € X and B C ),
k(B|x) =D(Y € B|X = x) is (a version of)
the conditional distribution of Y given X.

As a pair (Dy, (D(|y))y) where

o fory €Y, Dy(y) = D(X x y) is the "'.'<_"
marginal distribution of Y, T

e and for AC X and y € ),
D(Aly) = D(X € AlY = y) is the conditional
distribution of X given Y = y.
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As a pair (Dy, k), where
o for AC X, Dy(A) = D(A X ))) is the

marginal distribution of X, e < .
e and forx e X and BC ),
k(B|x) =D(Y € B|X = x) is (a version of) "’

the conditional distribution of Y given X.

As a pair (Dy, (D(|y))y) where
o fory €Y, Dy(y) =D(X x y) is the
marginal distribution of Y/,

e and for AC X and y € ),
D(Aly) = D(X € AlY = y) is the conditional
distribution of X given Y = y.
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Performance Limit: Bayes Classifier

Consider binary classification ) = {0, 1}, n(x) := D(Y = 1|X = x).
Theorem

The Bayes classifier is defined by
h*(x) = 1{n(x) > 1/2} = 1{n(x) > 1 — n(x)} = 1{2n(x) — 1 > 0}.
For every classifier h: X — Y = {0,1},

Lp(h) = Lp(h*) = E[ min (5(X), 1 = n(X))]

The Bayes risk L5, = Lp(h*) is called the noise of the problem.

More precisely,

Lp(h) = Lp(h") = E[[2n(X) = 1| 1{h(X) # h*(X)}] .

Extends to || > 2.
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Nearest-Neighbor Classification




The Nearest-Neighbor Classifier

We assume that X’ is a metric space with distance d.

The nearest-neighbor classifier ANV : X — ) is defined as

/S,QIN(X) =Y, where | € argmin d(x — X;) .
1<i<n

Typical distance: L2 norm on R?: ||x — x| = Zj‘.!:l(x; —x)? .

Buts many other possibilities: Hamming distance on {0, 1}, etc.

21



Numerically
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Numerically
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The most simple analysis of the most simple algorithm

Al. Y ={0,1}.
A2. X =[0,1[¢.

A3. 7 is c-Lipschitz continuous:
Vx,x" € X, |n(x) — n(x)| < c|x = x| .

Theorem

Under the previous assumptions, for all distributions D and all m > 1

3cv/d

NN *
LD(hn ) <2lp+ nl/(d+1)

23



Proof Outline

e Conditioning: as /(x) = argmin; ;< [[x — X,
Lp(ANN) = E{E[R{Y £ Yioo X, X, ... 7X,,H .
Y ~B(p), Y ~B(q) = P(Y #Y')<2min(p,1—p)

E[ﬂ{v ] Y,(X)}\X,Xl,...,X,,} < 2min (n(X), 1=n(X))+< || X=Xix) | -

Partition X into |C| = T cells of diameter v/d/T:

C_{|:J1 ﬂl:X"'X|:Jd 7Jd|:7 1<.j17"'7.jd<T}~

T T T 'T

2 cases: either the cell of X is occupied by a sample point, or not:

[ X—Xi|| < 21{x6c}<ﬂu{x6c}+\ﬁlﬂ{x )

ceC i=1

S EMX_XI ||] 4 f and choose T = {n%ﬂJ

24



What does the analysis say?

e Is it loose? (sanity check: uniform Dx)

e Non-asympototic (finite sample bound)

The second term % is distribution independent
n

Does not give the trajectorial decrease of risk

Exponential bound d (cannot be avoided...)
= curse of dimensionality

How to improve the classifier?

25



k-nearest neighbors

Let X' be a (pre-compact) metric space with distance d.

R¥NN - x5 1{A(x) > 1/2} = plugin for Bayes classifier with estimator
k
1
=7 Z

where

26



More neighbors are better?
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More neighbors are better?
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More neighbors are better?
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More neighbors are better?
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Bias-Variance tradeoff

Risque de k-NN en fonction du hombre de voisins

knn.est.risk
0,22 024 0,26

0 50 100 150
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Risk bound

Let C. be an e-covering of X

Vx € X,3x" €Cc: d(x,x") <e.

If ) is c-Lipschitz continuous: Vx,x" € X, |n(x) — n(x')| < cd(x,x’),

then for all k > 2 and all n > 1:

+

() — () < 4 20 | g

2

1 _L
1 ak) 1 for e = (a—k) o
< +(2+4¢) () n
Vke n if |Ce| < ae™d
1 2

@\ 753 n\ as
< = = (=
_(3+4c)(n) for k (a) .
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Room for improvement

. 1
e Lower bound? in n= 4.

Margin conditions
— fast rates

More regularity?
—> weighted nearest neighbors

Is regularity required everywhere?
= What matters are the balls of mass ~ k/n near the
decision boundary.

e 2 "parameters”:

e obvious: the number of neighbors k (bias-variance tradeoff)
e hidden: the distance d (real problem)

30



Curse of dimensionality: No free lunch theorem

Theorem
Let ¢ > 1 be a Lipschitz constant. Let A be any learning algorithm for
binary classification over a domain X' = [0, 1]?. If the training set size is
n < (c+1)?/2, then there exists a distribution D over [0,1]¢ x {0, 1}
such that:

e 7)(x) is c-Lipschitz;

e the Bayes error of the distribution is 0;

e with probability at least 1/7 over the choice of S, ~ D®",

LD (A(Sn)> Z

| =

31



Empirical Risk Minimization




Going empirical

Idea for every candidate rule h in an hypothesis class H, replace the

unknown risk
Lp(h) = Px,v)~p (h(X) # Y)

by the computable empirical risk

Ls,() = T D" L{H(X) # Vi)

i=1

and use some uniform law of large numbers:

Pp | sup |Ls,(h) — Lp(h)| > ¢
heH

\/DH log(n) + log 3

n

where Dy is the Vapnik-Chervonenkis dimension of H.
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Empirical Risk minimization

Uniform law of large numbers:

Dy | log 1
Pp | sup |Ls,(h) — Lp(h)| > c\/ nlog(n) +logs | _ 5
heH

— Empirical Risk Minimizer.

h, = argmin Ls,(h) .
heH

Good if

e the class H is not too large
e the number n of examples is large enough

Dy, log(n)+log 1
so as to ensure that cy/ w <e.

— Sample complexity = number of examples required to have an
e-optimal rule in the hypothesis class H = O (%}) .

33



The class of halfspaces

Definition

The class of linear (affine) functions on X = R9 is defined as
Ly={hwp:weR! beR}, whereh,(x)= (w,x)+b.
The hypothesis class of halfspaces for binary classification is defined as
HSy = signoly = {x — sign (hw7b(x)) thwp € Ld}

where sign(u) = 1{u > 0} — 1{u < 0}. Depth 1 neural networks.

By taking X' = X x {1} and d’ = d + 1, we may omit the bias b and
focus on functions hy, (x) = (w, x).

Property

The VC-dimension of HS, is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity
O(d+1+|og(1/5))-

2 34



Realizable case: Learning halfspaces with a linear program

solver

Realizable case: there exists w* such that Vi € {1,...,n}, yi(w*,x;) > 0.

Then there exists w € R? such that Vi € {1,...,n}, y;(w,x;) > 1: if we
can find one, we have an ERM.

Let A€ M, 4(R) be defined by A; j = y; x;j, and let
v=(1,...,1) € R™. Then any solution of the linear program

max (0, w) subject to Aw > v
weRd

is an ERM. It can thus be computed in polynomial time.
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Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1, 1), .-, (Xn, Yn)
1 W0<—(0,...70)

2t>0
4 Wii1 <= W +)/n HX I

5 t«—t+1

6 return w;

Each updates helps reaching the solution, since

y/r<Wt+1’X/t> = Yi <Wt +y/r || || > = yit<Wf7Xir> + ||Xit|| .
’t

Relates to a coordinate descent (stepsize does not matter).

36



Convergence of the Perceptron algorithm

Theorem
Assume that the dataset S, = {(xl,yl), .. ,(X,,,y,,)} is linearly
separable and let the separation margin -~y be defined as:

o yi{w, xi)
Y= max min —————
weR?: |w||=11<i<n  ||x;]]

Then the perceptron algorithm stops after at most 1/+? iterations.

yI<W* X,) + + * *
Proof: Let w* besuch that V1 <i<n, ——"—>~.
e If iteration t is necessary, then [l s o %o
o o
o
(W*, Wess — we) = i <w = > > and hence (w", w;) > 7t .
It
e |[f iteration t is necessary, then
2y (W, Xy )
werall® = [|we + yie 55 || = lwell® + =520 4y2 < lwe|? 41
H Xiy [EA
2 =0
and hence ||w:||* < t, or ||we|| < V't

e As a consequence, the algorithm iterates at least t times if
1
vt < (whwe) < we| S VE = t< — .

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually,

it converges quite fast. If Vi, [|x|| = 1, v = d(S, D) where D = {x: (w",x) = 0}. i



Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces
Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approxii ly imizil by Ben-David, Eiron and Long.
Since the 0-1 loss 2
1 n 2.0 — 0
Lgn(hw) = - E ]l{y; <W,X,'> < 0} s square
n i=1 absolute
% logistic
is intractable to minimize in the hinge
. . 05 boosting
agnostic case, one may consider
surrogate loss functions RS T —
1 n
LSn(hw) = ; E g(y: <W Xl>) ’

where the loss function ¢ : R — Rt

e dominates the function ]l{u < 0},
e and leads to a "simple” optimization problem (e.g. convex). 38



0&-

0.4

Regression model
= linzar

— logistic
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Logistic loss Y = {-1,1}

Statistics: "logistic regression” : 0-1
square
absolute

PW(Y :y|X :X) = |ogistic
1 hinge
boosting

1+exp (—y(w,x))
1.0 0.5 0.5 10 15 20
log with base 2 here so that £(0) = 1

Ls(hy) = %ng (1 + exp(—yi(w, x1)))

i=1

Convex minimization problem, can be solved by Newton's algorithm (in
small dimension) or stochastic gradient descent (in higher dimension).

40



Structural Risk minimization

What if H = | ] Ha, with Hg C Hyi1?
d=1

— empirical risk minimization fails

underfit

X X

1 1 1
9(to + Oy + Boz) (0 & Oyzy 4 Boxo + az? 4 Bzl Bezza)  9(0o + OiTy + ByTa + Byx 4
0,73 + Bz, 2y + Bpziz,
Goxyxl + Bgrird + Byxi. )

— structural risk minimization:

~

h, = argmin Ls, (h) 4+ Dy,log(n) .
d>1,heHy

41



Support Vector Machines




Margin for linear separation

e Training sample S, = {(xl,yl), R (xn.,y,,)}, where x; € R? and
yi € {:l:].}.

e Linearly separable if there exists a halfspace h = (w, b) such that
Vi, y; = sign ({(w,x;) + b).

e What is the best separating hyperplane for generalization?

Distance to hyperplane

If |[w|| = 1, then the distance from x
to the hyperplane h = (w, b) is
d(x,H) = [{(w,x) + b|.

Proof: Check that min {[[x — v[? : v €
h} is reached at v = x — ((w,x) + b)w.

42



Hard-SVM

Formulation 1:

argmax _min |<W,x;> + b| such that Vi,y;((w,x,-> + b) 0.
(w,b):||w|=1 1<i<m

Formulation 2:

mill;\ |w||® such that Vi, y;((w,x;) + b) > 1.

Remark: b is not penalized.
Proposition

The two formulations are equivalent.

Proof: if (wo, by) is the solution of Formulation 2, then w = %0 b= 2 s

[fwoll [wl
a solution of Formulation 1: if (w*, b*) is another solution, then letting

v* = mini<i<m yi ((w, i) + b) we see that (:’—:, S—i) satisfies the constraint of

Formulation 2, hence ||wo|| < H::H = ﬁ/% and thus
mini<i<m |(W, i) + B! =1 >4

llwoll =

43



Sample Complexity

Definition

A distribution D over RY x {1} is separable with a (v, p)-margin if
there exists (w*, b*) such that ||w*|| = 1 and with probability 1 on a
pair (X, Y) ~ D, it holds that || X|| < p and Y ((w*, X) + b) > .

Remark: by multiplying the x; by «, the margin is mutliplied by «.
Theorem

For any distribution D over R? x {+£1} that satisfies the

(v, p)-separability with margin assumption using a homogenous
halfspace, with probability at least 1 — § over the training set of size n
the 0 — 1 loss of the output of Hard-SVM is at most

\/4(p/v)2 N \/2 log(2/9)]

n n

Remark: depends on dimension d only thru p and 7.
44



When the data is not linearly separable, allow slack variables &;:
min \||w|? + lzn:& such that Vi, y; ((w,x;) + b) > 1—¢ and & >0
w,b,& n" ' ’ - ’ v
= mig A wl? + Lksli"ge(w, b) where (M18(y) = max(0,1 — u) .

Theorem

Let D be a distribution over B(0, p) x {£1}. If A,(S,) is the output of
the soft-SVM algorithm on the sample S of D of size n,

: _ 2
E[L%—I(An(sn))} < E[L*g;“ge(An(sn))] < inf L™ () + AJul? + % .
For every B > 0, setting A = %i yields:
_ . 8,282
0—1 hinge . hinge P
E[L5 ™ (An(S0)]| S E[LE™(An(S0)] < i Lo W)y

45



0-1
square
Margin maximization leads to ?bs_m_u'e
ogistic
=== hinge
boosting

1.0 0.5 0.5 10 15 20

Lginngo(hw) = %Z max {0,1 — yi(w,x;)} ,
i=1

convex but non-smooth minimization problem, used with a penalization
term A|w/||?.
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Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

g(w) = max Za;(l—yi<w,xi>)={0 if Vi, yiw, xi) 2 1,

a€[0,+o00)" = +o0o otherwise .

Then the hard-SVM problem is equivalent to

1
SlwlP?

min
Wi,y (w,x;)>1 2

1
Sl + g(w)

=min max 7||WH2+ZO‘I — yi(w X,>)
w  a€l0,+o00

min—max thm ) 5

ot max min=[wl2+S ai(1—yi(w.x;)) .
a€l0,+o00)” W 2” ” ; ’( y’< ’ I>)
n

The inner min is reached at w = Zamx’. and can thus be written as
i=1

n
1
max E Qjp — — E Qi yiViiXi, Xj) .
Q€R", 020 £ 2 1YY %, %)
i=

1<i,j<n ]



Support vectors

Still for the homogeneous case of hard-SVM:
Property

Let wp be a solution of and let / = {i : |(wo, x;)| = 1}. There exist

Wwp = E QX .

i€l

a1, ...,0p such that

The dual problem involves the x; only thru scalar products (x;, x;).
It is of size n (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM

— Kernel trick.
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Numerically solving Soft-SVM

f(w) = 3||w|® + LE™(w) is A-strongly convex.
— Stochastic Gradient Descent with learning rate 1/(At). Stochastic
subgradient of Lgmge(w) cve = =y, 1{y (w, x,) < 1}

1 £—1 1 1
WtJrl:Wt_E()\Wt—'—Vt): t Wt_ﬁ\/t:_ﬂ;\/t.

Algorithm: SGD for Soft-SVM

1 Setfy=0

2 fort=0...T —1do

3 Let w; = %9,5

4 Pick Ip ~U({1,...,n})

5 if y,(we, x;,) <1 then

6 ‘ Ory1 < 0: + yi,x,

7 else

8 t Orr1 < 0:

o return wr = L " tw, 49




Neural Networks




One-layer network

Src: http://insanedev.co.uk/open-cranium/
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One-layer network

D, SMPy* . IR
| ————=

\@l/p‘/“'

couche de sortie

—
@)
couche d'entrée

Figure 8.3 - Réseau de neurones sans couche cachée

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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One-layer network

TEMPERATURE

RELATIVE
HUMIDITY
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NUTRIENT
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Src: http://www.makhfi.com
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Two-layer network

S1SERp)
+ Fafag))

Z)“—'

couche de sortie

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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Profound ideas and tricks

e Convolutional networks
e Max-pooling

e Dropout

e Data augmentation

e GANs

e Representation learning

e Self-learning (ex: classify against rotations)
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The three main theoretical challenges of deep learning

e Expressive power of DNN: why are the function we are interested
in so well approximated by (deep convolutive) neural networks?

e Success of naive optimisation: why does gradient descent lead to
a good local minimum?

e Generalization miracle: why is there no overfitting with so many
parameters?
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