{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to Machine Learning: recognizing hand-written digits\n", "\n", "## An experiment with the MNIST dataset\n", "\n", "\n", "The Mnist dataset provides a (somewhat old but) very classical example of Machine Learning. The goal is simple and useful: recognize hand-written digits. This was an important challenge for the postal companies in the 1980s. \n", "\n", "It is available on the webpage of Yann LeCun, a very famous researcher in Machine Learning in general and neural networks in particular. \n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/aurelien/anaconda3/lib/python3.6/site-packages/IPython/core/magics/pylab.py:160: UserWarning: pylab import has clobbered these variables: ['clf', 'f']\n", "`%matplotlib` prevents importing * from pylab and numpy\n", " \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n" ] } ], "source": [ "# loading a lot of facilities for numerical computations and graphs\n", "%pylab inline \n", "pylab.rcParams['figure.figsize'] = (20, 6) # to have larger plot\n", "seed(240979) #initialize random number generator\n", "\n", "# set working directory\n", "workingdir = './'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Loading the data set\n", "\n", "### 1.1 Description of the data set\n", "The MNIST data contains $n\\_tot=70000$ images of size $dimX\\times dimY=28\\times28$, and their *labels* (a digit between $0$ and $9$). \n", "The images are stored as lines of the matrix *mnist.data*. \n", "Each image can be reshaped as a matrix $im \\in \\mathcal{M}_{dimX, dimY}(\\mathbb{R})$, where $im[i,j]$ is the intensity level of pixel (i,j): 0 means 'white', 255 means 'black'.\n", "\n", "The labels, stored in *mnist.target*, are numbers (here, we cast them to integers) between $0$ and $9$. " ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loaded 70000 images of size 28x28\n", "Number of classes: 10\n", "Classes:\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/aurelien/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:77: DeprecationWarning: Function fetch_mldata is deprecated; fetch_mldata was deprecated in version 0.20 and will be removed in version 0.22\n", " warnings.warn(msg, category=DeprecationWarning)\n", "/home/aurelien/anaconda3/lib/python3.6/site-packages/sklearn/utils/deprecation.py:77: DeprecationWarning: Function mldata_filename is deprecated; mldata_filename was deprecated in version 0.20 and will be removed in version 0.22\n", " warnings.warn(msg, category=DeprecationWarning)\n" ] } ], "source": [ "from sklearn.datasets import fetch_mldata # si besoin: sudo pip install -U scikit-learn ou (pour une install locale) pip install --user --install-option=\"--prefix=\" -U scikit-learn\n", "\n", "mnist = fetch_mldata('MNIST original', data_home='./')\n", "mnist.target = mnist.target.astype(int) # by default the digits are floating numbers: convert to integers\n", "\n", "# defining general variables for use throuhout the notebook \n", "n_tot = len(mnist.data)\n", "dimX = int(sqrt(len(mnist.data[0]))); dimY = dimX # nb of pixels in each dimension\n", "nc = len(unique(mnist.target)) # number of classes\n", "\n", "print(\"Loaded %d images of size %dx%d\"%(n_tot, dimX, dimY))\n", "print(\"Number of classes: %d\"%(nc))\n", "print(\"Classes:\")\n", "print(sorted(unique(mnist.target)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2 What does the data look like?" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGfCAYAAAAQ8aZbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzsnXmcFNXV/p8zw7AMINugzKAgERQQAZkBl7gQXAAFNfL6RkQlMTCuuESjBiKMUdGYvBoVF3CFiGIikcXEhSBq/EXBGUBA0YgKyqLsYd9mzu+P7maqepaue7r70nXnfD+f/szM7XrqqVu3qmu66tRTxMxQFEVRlENN1qFeAEVRFEUB9ICkKIqiZAh6QFIURVEyAj0gKYqiKBmBHpAURVGUjEAPSIqiKEpGkNQBiYgGENEXRLSCiO5M1UIpiqIodQ+S3odERNkA/gPgHACrAXwMYCgzf5a6xVMURVHqCsl8Q+oDYAUzf83M+wBMA3BhahZLURRFqWvUS0LbFsB3nr9XAzgpfiIiKgZQDACNc3IKO+/fX/lmly6Rn8uXV7bl5wMFBcCSJUBs2tzcyLSrVgEbN1ZO2707sGsXsGJFZVu7dkDr1kBZWWVbs2ZAx46R6f7738r2wkJgwwbg228r2zp2jPgtWVLZlpcHtG8fWc5duyJtOTkR/7VrgXXrtE/aJ+2T9kn75OnTylatsHHjRoIJzCx6AbgEwDOev68A8FhtmsL8fBYxbpwdjXqlRueql1TnqpdU56qXVOeoV2FhIbPhcSWZa0inAChh5v7Rv38TPcDdX5OmiIhLJX5EgKlOolGv1Ohc9ZLqXPWS6lz1kuoc9SoqKkJpaanRN6RkriF9DKATEXUgovoALgUwK4n5KYqiKHUY8TUkZj5ARDcAeAtANoDnmPnTlC2ZoiiKUqdIpqgBzPwPAP8ILIhd+DKltNSORr1So3PVS6pz1Uuqc9VLqnPVS4AmNSiKoigZgbioQYIWNYTMS6pz1Uuqc9VLqnPVS6pz1Mt2UYOiKIqipAw9ICmKoigZQXZJSYk1s0mTJpUU33qrTNy3rx2NeqVG56qXVOeql1TnqpdU56DXpEmTUFxcfLeJJqlrSET0HIBBANYzc7dE0xcVFXGppWoNRVEU5dBxKK4hvQBgQOCpvTlJJhQU2NGoV2p0rnpJda56SXWuekl1rnoJSLrKjoiOBvB6oG9IWmUXLi+pzlUvqc5VL6nOVS+pzlGvjKyyI6JiIiolotINkYbKV1lZ5OVti13TKiiobItRXOyfdu1aYPZsf9ukSV7zyGvw4Mjfgwf7pwUi08e3rV3rbysujrQXFla2xf5jiC2vaZ8KC837FFs+0z7Nnu1fxiB98s7PtE/xXon6FD/OQfu0dq1/HkH75O2X6TjF/IL2yXScvNtezDdon2JJz5JtD5D1yftekD55xzlon2LjFPMy2Z8A2TjF3g/ap9g4eecbpE8xD8lnhNcr6LYXw6RPseUw6ZPXywTTNNb4F4CjASwLMm1hbq5xYiwzM/fqZUejXqnRueol1bnqJdW56iXVOeplNe07htEpOy1qUBRFqRNk5Ck7H6tWyXTer8Pp1KhXanSuekl1rnpJda56SXWueglItuz7ZQB9AeQB+AHAOGZ+tqbptaghZF5SnateUp2rXlKdq15SnaNekm9IyaZ9D01GryiKoigxNDpIURRFyQjsHpC6d5fp1qyxo1Gv1Ohc9ZLqXPWS6lz1kupc9RJg94C0a5dMF7u/It0a9UqNzlUvqc5VL6nOVS+pzlUvAfo8JPVKvc5VL6nOVS+pzlUvqc5RL6tl30R0FBHNI6LlRPQpEd0knZeiKIqiJFNldwDArcy8kIiaAigjojnM/FmKlk1RFEWpQ4i/ITHzOmZeGP19O4DlANrWKmrXTmY2caIdjXqlRueql1TnqpdU56qXVOeqlwTTrKHqXojk2X0L4LBq3isGUAqgtF2zZsyRM5GRV2lp5OVtGzcuEoSUn1/ZFstRGjnSP+2aNcyzZvnbJk6MTOttGzQo0jZokL+dOTK9t23WrMh8vW0jR1bmOcXa8vMjbePGaZ+0T9on7ZP2Ka5PhyrLrgmA9wDcx8x/q21aLWoImZdU56qXVOeql1TnqpdU56iX9Sw7IsoBMB3A1EQHI0VRFEWpjWSq7AjAswCWM/NDqVskRVEUpS6SzDekHwO4AkA/IlocfZ1Xq6JZM5nToEF2NOqVGp2rXlKdq15SnateUp2rXgLs3hirz0NSFEWpE2T+85BWrJDpYo/iTbdGvVKjc9VLqnPVS6pz1Uuqc9VLgEYHqVfqda56SXWuekl1rnpJdY56Zf43JEVRFEWpAT0gKYqiKBmB3QNSYaFMJ/mKKT0VqV7J61z1kupc9ZLqXPWS6lz1EpDMfUgNiWgBEX0STfu+O6FowwaZ2aRJdjTqlRqdq15SnateUp2rXlKdq14CxEUN0RtjGzPzjmhiwwcAbmLmj2rSaFFDyLykOle9pDpXvaQ6V72kOke9JEUN4sdPRHL8sCP6Z070Za9kT1EURXGKZLPssoloMYD1AOYw8/xqpikmolIiKt0Qaah8lZVFXt62kpKIsKCgsi1GcbF/2rVrgdmz/W3er5axtlgN/eDB/mmByPTxbWvX+tuKiyPthYWVbQUFkbbY8pr2KXY9zaRPseUz7dPs2f5lDNIn7/xM+xTvlahP8eMctE9r1/rnEbRP3n6ZjlPML2ifTMfJu+3FfIP2KfaYacm2B8j65H0vSJ+84xy0T7FxinmZ7E+AbJxi7wftU2ycvPMN0qeYh+QzwusVdNuLYdKn2HKY9MnrZYJpPHh1LwDNAcwD0K226Qo7dmQRs2bZ0ahXanSuekl1rnpJda56SXWOekkeP5GSKjtm3grgXQADap0wN1dmIKnOk1b0qVfyOle9pDpXvaQ6V72kOle9BCRT1NAawH5m3kpEjQC8DeD3zPx6TRotagiZl1TnqpdU56qXVOeql1TnqJfVogYA+QAmE1E2Itei/lLbwUhRFEVRaiOZKrslAE5M4bIoiqIodRi7SQ15eTLdyJF2NOqVGp2rXlKdq15SnateUp2rXgL0eUiKoihKysn8tO/ly2W6TK8mcdVLqnPVS6pz1Uuqc9VLqnPVS4A+D0m9Uq9z1Uuqc9VLqnPVS6pz1CvzvyEpiqIoSg0kfUCKxgctIqLEJd85OTKT/Hw7GvVKjc5VL6nOVS+pzlUvqc5VLwFJn7Ijol8BKAJwGDMPqm1aLWpQFEWpG1g/ZUdERwI4H8AzgQSxMExTYsGD6daoV2p0rnpJda56SXWuekl1rnpJMA2/874AvAqgEEBfAK/XME0xgFIApe0il8UqX6WlkZe3bdy4SDJffr6/nZl55Eh/25o1kdA/b9vEiZFpvW2DBkXaBg2qOs+JE/1tsfl6/x45MjJtr16Vbfn5kbZx42R9is3LRp/i55fOPsUvp0mfYssftE/JjFOsX0H7lMw4eX+ms0/x/Ulnn5IZp9i06dj24vtU3fafjj7Fxsnblq4+2RqnJD8jJOGqyWTZDQJwHjNfR0R9AdzGiU7ZaZVduLykOle9pDpXvaQ6V72kOke9bJ+y+zGAC4hoJYBpAPoR0YtJzE9RFEWpw4gPSMz8G2Y+kpmPBnApgHeY+fJaRV26yMwkhRDS4gn1Sl7nqpdU56qXVOeql1TnqpcAvQ9JURRFyQg0qUG9Uq9z1Uuqc9VLqnPVS6pz1EuTGhRFUZTQogckRVEUJSPILrF1wxOASZMmlRTfeqtM3LevHY16pUbnqpdU56qXVOeql1TnoNekSZNQXFx8t4lGn4ekKIqipJxDER20koiWEtFiIkp8pFmyRGZUUGBHo16p0bnqJdW56iXVueol1bnqJSCpb0jRm2KLmHljkOm1yi5kXlKdq15SnateUp2rXlKdo15aZacoiqKElmQPSAzgbSIqI6Li6iYgomIiKiWi0g1ZWZEjbexVVhZ5edtiRRYFBZVtjRpF2oqL/dOuXQvMnu1vmzTJax55DR4c+XvwYP+0QGR6b9uPfhSZr7etONq1wsLKtthX2NjymvapsBDo1cusT7FlNu3T7NlAt25mffLOz6RPANCqlVmfYq/DDjPrUyw93rRPREDnzmZ9io1TzC9onwYPjoyzSZ+805j0qaws0i/TPsW8TPoUGyfve0H6RBTZPkz6FBunmFfQPhFFtnvTPnm9gvYpNk6NGpn1KeZh0qfYOHn7EKRPMS/TPsWWw6RPXi8Dkj1lV8DMa4nocABzAIxi5vdrml6LGhRFUeoG1k/ZMfPa6M/1AF4D0KdWwapVMqPiar98pV6jXqnRueol1bnqJdW56iXVueolIJnHTzQGkMXM26O/zwHwO2Z+syaNFjWEzEuqc9VLqnPVS6pz1Uuqc9RL8g2pnpGDnyMAvEaRc4X1ALxU28FIURRFUWpDfEBi5q8B9EjhsiiKoih1GLtl3927y3Rr1tjRqFdqdK56SXWuekl1rnpJda56CbB7QNq1S6YrK7OjUa/U6Fz1kupc9ZLqXPWS6lz1EqDPQ1Kv1Otc9ZLqXPWS6lz1kuoc9dKkBkVRFCW06AFJURRFyQiSTftuTkSvEtHnRLSciE6pVdCuncxo4kQ7GvVKjc5VL6nOVS+pzlUvqc5VLwHJRgdNBvAvZn6GiOoDyGXmrTVNr9FBiqIodQOr15CI6DAAZwB4FgCYeV9tByMA8koNSVCfMNxPvVKgc9VLqnPVS6pz1Uuqc9VLQDKn7H4EYAOA54loERE9E40Q8uFL+4401J4QW13qbQwbad+AvbRv0z7Fls+0T/HJwEH65J2faZ/ivYKmSMewkfYd65fpOEX9dn/1Ffa++qpPv2/CBOzevdvXVn7eeQCA73v39rXPnDkTi6+7ztf20ZgxeOv5533LOL1VK/Ts2ROf5eYebF+fk4OePXviqTZtfPqhxx5bZZ2WEIGIsNbTVhZtmxS3PgqIMNjbRoTi6LTettnRttne7ZEIAwcOxKNxqfIlhYUY9pOfVFn3K1aswB7PtAeOOAIrVqzA5htv9E373YwZ+G7GDP+2b7I/AXbTvr3z1bRvY5LJsisC8BGAHzPzfCJ6BMA2Zr6rJo2WfYfMS6pz1Suq2214P12j3FzMnDHD2OrCiy5Czx5mYSiLP/kEko8CBsS6gQMGGGneePNNrPjyS2Ovjp06hWL7yOhltOhlu+x7NYDVzDw/+verAHrVqmjWTOY0aJAdjXqlRueqF4DygQONNd8XFYm83os9HyrNGgCYLVIB81u3tqIBEIrtI+OX0fb6MCTZooZ/ARjBzF8QUQmAxsz865qm16IGJezs3r3bWPP222+LvMaNGyfSffLJJyKdhAGG345iPPbYY8aajh07iryUQ8OhuDF2FICpRLQEQE8A42udesUKmUvsXGi6NeqVGp2rXgDqDxlirDnp3ntFXo98840VDQDMEqmAEkGhkkQDIBTbR8Yvo+31YYhGB6lX6nWuekV1eg3Jr9NrSEnqHPXS6CBFURQltOgBSVEURckI7B6QvPepmCD5iik9Faleyetc9QKMT9cBEJ2uA2B8uk6qAWSn6wDz03VSDYBQbB8Zv4y214chdg9IGzbIdN6bXdOpUa/U6Fz1ApD97LPGmvZvvSXyGrJpkxUNAIwUqYCB331nRQMgFNtHxi+j7fVhSDI3xh4H4BVP048AjGXmP9Wk0aKGkHlJda56RXVa1ODXaVFDkjpHvSRFDfWMHDww8xeIlHqDiLIBrAHwmnR+iqIoSt0mVafszgLwFTOvStH8FEVRlLoGMyf9AvAcgBtqeK8YQCmA0na5ucyRL36RV2lp5OVtGzeOmZk5P7+y7ZhjIm0jR/qnXbOGedYsf9vEiZFpvW2DBkXaBg3ytzNHpve2/fa3kfl620aOjEzbq1dlW35+pG3cOFmfevWKLLuNPs2axfz883b6xMx87rmyPvXubdanuHGqGDGCKyoquMLTp4r8/Ejb2LG+ab+64QZe9MwzvrZVv/gFf/DBB7y3VauDbduPPZY/+OADXjd4sG/a41u04MuaNvW13dKkCefl5fna3szJ4cEAz/IuO8BExMVxbYMBLohrmxSdttTTtibaVhI3bSHAN8e1lUSnXeNpK422TYqbtiC6DN624ui03rZZ0TZpn94EuGHDhlzmme/aaNs92dm+aU+pX59PqV/f17b15pt51apVvP/www+27e3WjVetWsXbhw71Tbvxj39Mz/5U02fEMcekfn+y9RmR4s+9wsJCZjY7liR9Y2z0OUhrARzPzD/UNm1Rjx5cKok1Wbu2MmU2nRr1So3Oshfn5xtblc6ahX15eca6qwcPxg/Z2Uaa+hs3Yp0g/Tif2Vgn0djW5TNjc8OGxl4r3n8f5UccYaTJ/uEHtO3d29jL5f3FlpfkGlIqDkgXAriemc9NNK0WNYTMS6qz7MUVFeZWWVn4fx98YKz78WmnobXhgWzDxo3IEnzYVzAb6yQa27oKZjQSHJB279mDb1eZXRVo17697i+HyOtQJTUMBfByCuajKIqi1GGSOiARUS6AcwD8LTWLoyiKotRVxGXfAMDMuwC0CiwQnLMHAIwU3LYn0ahXanQh8PpemF48pUEDY83TIieZzqaXVCf12jF0qEjTRGIWgm04470E2E371uchKWlAsg3/+9//FnlddNFFxppNwvQEl2kgOLB/8cUXIq927dqJdEpyZH7a9/LlMp0kA0+am6deyetC4NXjqqtEun9u2WKs+Vj4T59EZ9NLqpN6tTn/fCsaAKHYhjPeS4A+D0m9Uq/TKjsfWmVXVaNVdu57Zf43JEVRFEWpAbsHpJwcmU5w46NIo16p0YXAa1+r4LU4Xr7PMt9l1oqcZDqbXlKd1OvA4Ydb0QAIxTac8V4CkjplR0S3ABgBgAEsBfALZt5T0/Ra1KCkAy1qCB9a1OA+Vk/ZEVFbADcCKGLmbgCyAVxaq2it8H+jkhI7GvVKjS4EXkcJnmsEAL/eudNYM074T59EZ9NLqpN6NXv4YSsaAKHYhjPeS0Ayz0NqC+AjAD0AbAMwA8CjzPx2TRotagiZl1SnRQ0+tKihqkaLGtz3knxDMkpijX8BuAnADgAbAEytYZrKtO+41N/AqbexhFobqbex+aYw9bbGJN/YvG0k+cb3MZ1p39WtzyB9ii2/MJ1429ChvHLlSt7TrdvBtv2HH84rV67kLTfdVMWrMO7vEqQnGdv7M/YKmow9PS+PCwsL+TNPUv76nBwuLCzkiXH7yLDOnav0cW1xMZeVlfFeTwr5zs6duaysjDf89Ke+aW+77DJ+LC6pfcppp/HIuG10cbt2PHLkSF7crp2oT7FpgyaYx4/T3NNP5zFjxvB/mzQ52La6TRseM2YML+jZs+o2ZTMZ29umad/MbCntm4haAJgO4GcAtgL4K4BXmfnFmjT6DSlkXlKdZa9VK1caW7U/+uhQfGspMrz/o7SsDAvLyoy9ehUWolhwN/6kp5+2uj5+O2aMkebe++7T/eUQedku+z4bwDfMvIGZ9yOSZ3dqrYouXWROkkIIafGEeiWvC4FXkUgl00m9Lu/c2YoGAO4VFGsAdtfHE4KbmSUaAKHYhjPeS0AyB6RvAZxMRLlERIg8NVYYxaAoiqLUdZIt+74bkVN2BwAsAjCCmffWNL2esguZl1Snp+yS1sR0esrOr9NTduHxkpyySzbtexyAccnMQ1EURVEAjQ5SFEVRMgS7ByRp/MQ4wZcwiUa9UqMLgdfdIpVMJ/WaJNhfJBoAmN2rl0hnc328c/rpVjQAQrENZ7yXAH0ekhJ6VhneLAkAHTp0SMOSpJZewoPEpEmTjDVPPfWUyOuZZ54R6SSMHj1apLv33ntTvCRKEDI/7XvJEpmuoMCORr1SowuB12rhP2ISndTrDcH+ItEAwINTp4p0NtfH7Y88YkUDIBTbcMZ7CbB7QNq/X6Zbt86ORr1SowuBl3T3kuikXq0F+4tEAwDNd+0S6Wyuj8N27LCiARCKbTjjvQQkdUAiopuIaBkRfUpEN6dqoRRFUZS6RzJp390AjATQB5GA1UFE1KlWUW6uzExyLl14/l29UqALgZf5nTpyndRruWB/kWgAYJVhYGwMm+tjTZs2VjQAQrENZ7yXgGSy7C4B0J+ZR0T/vgvAXmZ+sCaNFjUotSEpTgCAPn36GGs2bNgg8pI8x+evf/2ryOvUU2tP4qqJli1bGmv27q3xfvZaueWWW0Q6SRGFZN0DwHvvvWeskWxTih+rad8AugD4D4BWAHIBfAjgsWqmq0z7rl9flnqbl2cv9fbcc+2lfY8caS/J97LL7PSJmTk+dTpgn/YXFPDKlSt551ln+dpXrlzJG8eP97X98Mwz/N38+b62KQ0b8uGHH86L69U72LYuK4sPP/xwftCTls0A/w3JpX13aNCAL87J8bVdV68eN2zY0Nf2elYWr+zfn7/v3dvXPnv2bP7k+ut9bfPvuovffuEFX9vuK6/kTZs28f4ePQ62lR9xBG/atIl33X67b9qtc+fynvPPDz5Ocdvenq+/5n3Tp/va9k2YwHv27PG1HTjvPN6zZw8fOO88X/u1117LL555pq/tiYED+c4rr/S1rWvePKm073uys7lhw4a81tNWRsQNGzbkZ7KzfdO+lJXFX/zxj762r++8k+fHbTubTzuN58+fz5tPOy3Y/lTTZ4QnVV3Tvi2mfQMAEf0SwPWIPILiMwC7mbnGf5k0OihkXlJdEl6mMUDtjz4aRwgeU/3D+vXi+BrTZ/ns3rMHr8+ebew1aPBgbDZ82mzLVq3E637vnhof9lwjDRo2xHXXXmukeeLJJ62u+wXz5xt79TnppFDsL5nsZb3sm5mfZeZezHwGgM0AvkxmfoqiKErdJaksOyI6nJnXE1E7ABcDOCU1i6UoiqLUNZK9D2k6EX0GYDaA65l5S61Td+8uc1mzxo5GvVKjE3qtFpxakWgAoK1IBfxIcGF9zgsviLy2LFtmRQMAe7/+WqT7zZVXWtEAsnUv0QAIxf6S8V4Ckj1ldzozd2XmHsw8N6FAePMdBHH6Io16pUYn9Kq/dKkVDQCYPdShkhMrKow1zb76SuRV75NPrGgAIGvRIpGunaBaUaIBZOteogEQiv0l470E2M2y06KGcHlJdVrU4EOLGvxoUUMKNCHwyvwsO0VRFEWpAT0gKYqiKBmB3QNSu3Yy3cSJdjTqlRqd0GvT+PFWNABwtUgFXF/PvDB1yfXXi7x2PvSQFQ0A7J8wQaSbeuaZVjSAbN1LNABCsb9kvJeAhNeQiOg5AIMArGfmbtG2lgBeAXA0gJUA/jdhhR00OkipHY0O8qPRQX40OihcpOsa0gsABsS13QlgLjN3AjA3+ndipJUaggugIo16pUYn9Gp/9NFWNEDkArmE3YIL/4MGDxZ5tWzVyooGiBQnSHjiySetaADZupdoAIRif8l4LwEJD0jM/D4iKQxeLgQwOfr7ZAAXpXi5FEVRlLpGkMA7RE7NLfP8vTXu/S21aCvDVeNCEgOHDMYCAW2EDMbmm8KQwRqDE2PzthGcGN/HdIarxnnt/uor3vvqq762fRMm8O7du6tM265dO54TF1Darl07vqNlS1/bL/LyuKigwNc2CQgc2skA9/GEsDLAv8vK4pycHF+4ahnAOTk5/DSRb9p/vfIKL77nHl/b8ltu4blz5/raNpx8cuV4BRmnZLe9+H5aDO187733+Itbb/W1LR0/nj+MC2xlg3GqLly1BMFDcBng16+5xvf3vKFD+fHHH/e1fdOtGz/++OP8TbduyY2Tt03DVZk5DeGqRHQ0gNe58hrSVmZu7nl/CzO3SDSfoubNuXTrVoPDZZTBgwHT+zgkGvVKia78/POxf/p0Y6sPWrTALw3vKXp2/XqcK7j+MRvATwUXvNcWFmLJffcZafo9/LCz28emU0/Fpw88YKQ5/s470fqjj4y9ZjLjQsNTRzOZ8d3jjxt7XffGG26OmUUvyTUk6QHpCwB9mXkdEeUDeJeZjwuwgFrUUAfYIzxvf9xxCTehavnuu++MNfWE1VdvvvmmsaZfv34irzDw/vvvi3R9+/ZN7YLUwgRBBeF1112XhiWpW9i8MXYWgOHR34cDmBlItWKFzE1yUVh4IVm9ktflDBkisnp2/XorGgB47cABka77mDHmIoe3j+PvDFbPlKwGiHzbsaEB4O6Y2f78MCRI2ffLAPoCyAPwA4BxAGYA+AuAdgC+BXAJM8cXPlRBo4NC5iXVEWHP7t3GVg0bNUJ7w3vVVn37rTiGpn5OjrFu3/79eGdu4thGL/3OOsvp7eN9w7LqM848UzxmproKZjwhOWV3/fVujlmGRwclPG/BzENreOssEyNFURRFqQ2NDlIURVEyArsHpEJh6L/kK6b03LF6Ja2TnK4DYHy6TqoBIDpdB8D4dB0Ap7cP09N1Ug0A0Wk+iQaAu2Nm+/PDELsHJGFcCyZNsqNRr5Tosp99VmQ1dMcOKxoA+KXwOTkFr79uLnJ4+2gza5YVDQCMFHwoSjQA3B0z258fhujzkNQr9TotavChRQ1+tKghBZoQeOnzkBRFUZTQkvCARETPEdF6IlrmabuEiD4logoiKkrvIiqKoih1AWna9zIAFwMwu027Y0ejyQ8iOecsPE+tXsnr9r36qsjqqrw8KxoA+Gl2tkj3yT33mIsc3j6WCZ5HJdEAwAWWNADcHTPbnx+GiNK+mXk5M39h7JabaywBIKvOk1b0qVfSuooTTxRZLa1f34oGABYKq6+2H3usucjh7WOHIO5JogEAycNrhA+8cXfMbH9+mBIkgRVxad+e9ncBFCXQatp3HU/7vvbCC/kPZ5zha3u6d28eOnRolWmJiGdV01Yc1zYY4IK4NtO07+dvuMH397/OOosfeOAB3ta06cG2dW3b8gMPPMCL+vSRj5P3Z6JxCnHa98svv8wLRozwtb132238WlyydmxMbaV9fzh6tO/vRddeyzNmzPC1rSsq4hkzZvC6oqLkxsnbpmnfzGwh7dvT/i6A25g5UGKqVtmFzEuqI8JlQ2sK+KiZl15+WVRFJa3Y+r1hSjUA3HHnnZk9Zodg+5j28stGkkuHDrVaZTdzxgxCMUKtAAAgAElEQVRjrwsvusjNMdMqO0VRFEVJjN0DkvACNEaOtKNRr5To3jnmGJHV05Y0ALC4Tx+ZMNPHzPL28ZXg0RoSDWB3+3B2zGx/fhgiTfveDOAxAK0BbAWwmJn7JzLT5yHVDS677DKRbtq0aSlekpq5//77Rbo77rgjxUsSbqRjJt1GJLz22mvGmgsvvDANS1K3SMspO2Yeysz5zJzDzEcy87PM/Fr09wbMfESQgxEAYPlyk2WrJNOrSVz1EuruEzzEDgA+FpzblmgAYPhjj4l0GT9mlrePc0ePtqIB7G4fzo5ZhlfZ2T1lt2uXTLdwoR2NeqVE12HLFpGVZJOX7iZt1qyRCTN9zCxvHy2/+caKBrC7fTg7ZrY/PwzRogZFURQlI7B7QBJG/iM/345GvVKi29KokchqrSUNAGxv2lQmzPQxs7x97G7e3IoGsLt9ODtmtj8/DLF7QOreXaZbK9isJBr1Sonu+osuElkdKbg3RaIBgCfGjBHpMn7MLG8fM5980ooGsLt9ODtmtj8/DJGGq/6BiD4noiVE9BoRBfuXR9qpkhI7GvVKiW7I0qUiq3GCC9ASDQD8eM4ckS7jx8zy9tFNkFso0QB2tw9nx8z254chQcq+zwCwA8CUWFIDEZ0L4B1mPkBEvwcAZk5YD6tJDSHzkuo0qcGP49uHJjV4yPQxC3tSA1cfrvo2Mx+I/vkRgCNNTBVFURSlCkEC71BDuGr0vdkALq9Fq+GqIQ9X3TZvHm+bN8/XtvuOO3jLli1c3qbNwbb9PXrwli1bqnh1atyYL2nUyNc2qkEDbuoJMY29kglXfaVZM+7cuTMva9DgYNsP9epx586d+bFWrap4lS9Y4Pu7YuxYLi8v5wrPOFX06hVpiwsNNQ1XrYgbp4qKCq546il/28yZXLF6tb9txIjItJ5xqsjPj7SNHeuf9uOPq46zQWjn9i++4J2vvOIf50ce4W3btvna9g8YwNu2beP9Awb4x7lTJ/7t4Yf72orz8/nHHTpUO87ScNXx9etz06ZNeS3RwbaFWVnctGlTfi4np4rX9pde8v298+GHq2yn+/r35y1btvC+/v2D7U8arpqwT4ciXHUMgCIAF3OAGRV17cqln30W/GgZo6zM/MYsiUa9qrD93XdR3rOnkeaCtm2xWPC8oWO3bzd+LEQvZuzs3NnY69MpU0TrI2vRImMdl5Za3T6oyPyZmTvff1/02JArjz8enzZsaKQ5fs8ezFy92tjrtEaNjLernuXlmCW456z5V1+5uU9b9JKcsqtn5OCBiIYDGATgrCAHI0VRFEWpDdE3JCIaAOAhAGcy84agZlrUEDKvqG6rYfJC8xYtcJjgPp9t27eLLlp3EXxDWv7556goLzfWZWVni8aMKyqMvSgry1hHWVnicd6+bZuxrOlhh+HYTp2MNP/58ktxUYPpdrVt+3bj7ReIbMNO7tNhL2qIhqt+COA4IlpNRL8EMAFAUwBziGgxET1ltKSKoiiKEkfCU3bMXF397rNpWBZFURSlDmM3qUEaPzFunB2NelVhj+BxC/fXry/yutuSBgB47FiZULAepV4SndRr7513inSPtWxpRQPItivptujsPm3588OUQNeQUoU+Dyl8bN261VjTrl07kdeOHTtEuuOOO85Y8+mnn4q8srLM/4ezXfNDgusz27dvF3kVCh9LsGLFCmNNkyZNRF7ffvutsaa5MG9PqSTzH2G+ZIlMV1BgR6NeVTisSxdjzRfCA8tqwQe3RAMAdKTwXm7JemzbVuYl0Qm9Gh97rEj3r6+/tqIBZNuVdFt0dp+2/Plhit0D0v79Mt26dXY06lWFrO+/N9bkCw8Skk1eupuQxfUo9ZLopF6ScQaAIwSVihININuupNuis/u05c8PU/R5SIqiKEpGIE37viea9L2YiN4momD/qObmypayVy87GvWqwoEePYw1iwTXWQCgzJIGANjiepR6SXRSL9M0jhjLGjSwogFk25V0W3R2n7b8+WGKNO37MGbeFv39RgBdmfmaRGZa1BA+tKjBjxY1+NGiBqUmbKZ9e2/pbgwg2B63apXJslVSXGxHo15VaHTzzcaaR/bsEXlNFHxwSzQAQFdfLdJl/JgJvRrceKNId88PP1jRALLtSrothmHMMt5LQpAEVlST9g3gPgDfAVgGoHUtWk37Dnna9yu3386v3H67r23+wIE8YcIE3nHYYQfbfjjqKJ4wYUIVrwJE0rm9bcWIpDvHT5tM2vee4cN5y5YtvL9Hj4Nt5W3a8JYtW3j3HXdUXQe2EpcB/q5nT1/7lClT+MNf/MLX9s4tt/BfH3nE1/beccfxiBEjeKUnrXxLbi6PGDGCZ554om/a3110UZU+bvvVr3jNmjV84IgjDrbtPeEEXrNmDe8YNsw37R1XXMGPxyV4v3jGGXzNNdf42j5p356vueYa/qR9e9E4xaaVpn3/o08fHjVqFG9t3Phg27etW/OoUaP4g+OPrzrONpOxvW2a9s01HRdqeiWV9h197zcAGjLzuETz0Sy7kHlFdY9PmGAkuf6GG6w+gC0MWWV/njLF2OqKK6/EyBEjjDRPP/MM1grSrQvatsW11yQ8616FJ596yupDFW8cNcpI8+hjj1nfXzJ6nw57ll0AXgIwJAXzURRFUeowogMSEXnjfS8A8HkgYffuEjtA8B+fSKNeVXj+3nuNNcLbQEU6qZfN9fjqI4+IrG4TPAZeogGAO6+4QqSzOWa//cUvrGgAuLtPW/78MEWa9v0AES0joiUAzgVwUyC3XbtkS1kmKO6VaNSrCod/952xRlZ3JdNJvWyux1YrV4qs2m/caEUDAO02BH6KjA+bYyZZRmm/nN2nLX9+mGI3y06vIYXLK6rTa0ge9BqSD72GlAKdo16Zn2WnKIqiKDWgByRFURQlI7B7QBLewY+JE+1o1KsK8y691FgjvOVUpJN62VyPHwkvrE857TQrGgCYesYZIp3NMZv2k59Y0QBwd5+2/Plhij4PSamVxx9/3FgzyvA8f7Js3rw58URx2IyG+fOf/yzSvf/++yLd3XebP7bwnnvuEXlNtPRBBQA33HCDSPfoo4+meEmUIKTlGlJ14aqe924jIiaivEBu0koNwQVQkUa9qnC94EOgQvhPjkQn9bK5Hq+48kqR1dPPPGNFA0SKEyTYHLNHH3vMigaAu/u05c8PU4KcsnsBwID4RiI6CsA5AMyTCxVFURQlDlG4apSHAdwOBAxWVRRFUZRaqCcREdEFANYw8ydGUffNmknsgEGD7GjUqwqlbdpg3rx5Rhph6Qo+at0a5xo+d+WjhQtxkmS7srge9/Xvj/PPP99Y93ciTDG8f+kiIgwWPJ59JmTXg84zVgCzAWRnZxvr/nvqqbjqqqvMNJ98AtGnjqv7tOXPD2OCJLDCk/YNIBfAfADNon+vBJBXi7Yy7btZszqZehv2Pv26Xz/+db9+vrZXunThIUOG8KaGDQ+2rWjenIcMGcKTvD4Invb9YevW3L9/f/6wdWtfe//+/flPXbv62saeeCIPPfNMX1vFiBFcUVHBFZ4+VeTnR9rGjj1k47Rp0ybe27+/r33Tpk2846GHfG3bpk7lzcuW+dqeycri+vXrc5lnXa0BuH79+vy7rCzftCfVq8cn1avnayuJruc1nrbSaJt0nGYhuVT2SQDXq1ePyzxta6Jtd8d59cnO5j7Z2b62dVdfzYsWLeJ9eXkH23Z26cKLFi3iDRdf7Jt26VtvZdz+5OJnxCFL+yaiEwDMBRDLAToSwFoAfZj5+9rmU9S8OZcKHviGwYOB2bPTr1GvKpTm5+OBH//YSDN8+nRcKLgI+u+8PJQYfkMqWbgQJwmer0MXXGBtPe4bMAA7XnrJ2OrDvDxcnJNjpPnb/v0YbOwEzGQWjZlEN5MZF9czPzmz8dRT8Y1hLmCHm25Cs/feM/Zydp+26CWpskvF4ydWAihi5oQhWhodFDKvqO5/hpiFub86fbo4GmZA//5GmjffegtcUWHsRVlZVsds86ZNxlYtW7VCg/r1jTR79+2zFtsk1VUwI0dwQNp/4AAWL1pkpOl54onW95eM3qfDHh1UQ7iqoiiKoqSUhP+mMHOtefbMfHTKlkZRFEWps9iNDioUBs9LvmJKNOpVBdPTdQBEp34AGJ+uk2oAWF2PktN1AIxP10k1gHzMJDqpl+npOqkGgLv7tOXPD1PsHpCkzyaZNMmORr2qcPbXXxtrRgo33oGCZy9JNACsrscGkyeLrH5ZXm5FA8jHTKKTerWaPt2KBoC7+7Tlzw9T9HlI6pVQp0UNXqEWNSSr06KGuuGlz0NSFEVRQosekBRFUZSMQJT2TUQlRLSGiBZHX8ESRDp2lC3lrFl2NOpVhftPOcVYc4HICRh34olWNACsrsftU6eKrCQ3j0o0gHzMJDqp19d/+pMVDQB392nLnx+miNO+ATzMzD2jr38EcsvNNVg0D5LqPGlFn3r5+LpFC2ON8CEj+PKww6xoAFhdjwd69BBZLRRc05FoAPmYSXRSr11duljRAHB3n7b8+WFKMmnf5ixZItO1bWtHo15VePofwf7X8LJG5AS8JIh4kWgAWF2PLbpVCTgJxMr9+61oAPmYSXRSr26CEn+JBoC7+7Tlzw9jggTewROuGv27BJFQ1SUAngPQohZtZbhqXMhi4JDBWCCgjZDB2HxtBCfG5m0jODG+jwZ9urJbN76yWzdf29Nt2/JJJ53E63NyDrYtz83lk046qYpX0NBOBvjyyy/nhW3bVml7Nm6+/9e3L98QF6RpNE6xsQoyTslue96ficYpbttb0a8fT5s2jTd16HCwbVeLFjxt2jReOmSIb9q3xo+v0scSZF64KgN8++2383dHHHHw7/82bsy33347v33qqb7pHrnySn7kyivl41Td9p/OIFJvm4arMnOaw1Wjfx8BYCMABnAPgHxmTpgLr2XfIfOK6k4+6SQjyUfz54tLiK+4/HIjzZ9ffNH6+rA5Zq9Mm2Yk+dmll4ai7PuO22839vr9gw+GYn/J6GV0seybmX9g5nJmrgDwNIA+gYR5wZ50XoWRI+1o1KsKM1q3NtY8LXIC5gmKXiQaAKEYs6/69bOiAeRjJtFJvcKwv2T8MtpeH4ZIvyHlM/O66O+3ADiJmS9NNJ+ioiIuLS1NaoEVu5x88snGmgULFoi8hg0bJtL9+c9/FukynVdeeUWkGzq01vjJjODXv/61seb3v/99GpZESRc2074fJKKlRLQEwE8A3BLIbflyk2WrJNOrSVz1AvDC0qXGmo8lpwQA/E5QQCHRAAjFmJ3zm99Y0QDyMZPopF5h2F8yfhkzvMpOo4PUK6FOryElqdNrSFU0eg3JfS+NDlIURVFCi90DkuHjmA+Sn29Ho15V2CAYs7UiJ2BLo0ZWNABCMWa7BTclSzSAfMwkOqlXGPaXjF9G2+vDELsHpO7dZbq1gk1YolGvKgzu1ctYc6QwLeBGwbOXJBoAoRizWU8+aUUDyMdMopN6hWF/yfhltL0+DLF7QJJ2qqTEjka9qjBi9WpjzTjhdcmffvKJFQ2AUIzZ8X/9qxUNIB8ziU7qFYb9JeOX0fb6MESLGtQroU6LGpLUaVFDFY0WNbjvla6y7ypp39H2UUT0BRF9SkQPGi2poiiKosQhSvsmop8AuBBAd2Y+HsAfU79oiqIoSl1CmvZ9LYAHmHlvdJr1gdykUfCSdAdpIoR6+RguSKouEjkBdw0caEUDIBRj9vb48VY0gHzMJDqpVxj2l4xfRtvrw5QgCayomva9GMDdAOYDeA9A71q0lWnfTZokTIitNvW2c2d7qbcPPWQv7bu01F6S7xtviPtkmvY93euD4CnSHzdqxF27duV5cdtJ165deVxc+vt1Rx3FZ3bq5GurGDGCy8vLucLTp4r8/Ejb2LH+/v/5z0klLu/88kve/Ze/+Nr2PPoo79ixw9e2f+BALp04kTeecoqv/d133+Uvbr3V17Z0/Hj+96uv+trmHnMMDx06lL9u0eJg2+ZGjXjo0KH8atyYjO7fnyecfLKvrQT20r7r16/P12Zn+9p+Wq8et/dsIwzwa0S8adMm3t+jx8G28iOO4E2bNvGu22/3Tbt17lzeOneueJz4jTfsJmN37pxwf9K079SnfS8D8A6AmwD0BvAKgB9xgplpUUPIvKI6m0UNx3ftaqT59LPPUFFebuyVlZ0tXh87d+wwkjRu0gTvvfuusdWZffviMsNcupdeftl6UUOD+vWNNHv37cPmTZuMvVq2ahWK/SWjlzHsRQ01sBrA3yKHSl4AoAKAMMpbURRFUeQHpBkA+gEAER0LoD4iz0dSFEVRFBHStO/nAPwoeupuGoDhiU7XAZDHT4wbZ0ejXlV4RvDo4rtFTsDjgudlSTQAxOtjnyBNe+Xw4SKv6YKCEokGkI/ZPVnm/9NKNABCsb9k/DLaXh+G2L0xVp+HFDpsPg+pi7AKc6ngERlZwg/FnTt3Gmuk2/zEiRNFummGN9MmQ44wn3LdunXGmpYtW4q8lEND5qd9L1ki0xUU2NGoVxVmL1xorFkt/Cdn3n/+Y0UDQLw+GgmeUHuyMG/v8RkzrGgA+Zh9s2+fFQ2AUOwvGb+MtteHIXYPSPv3y3SC/6ZEGvWqQmvBmEk33cMPHLCiASBeH1nff2+saSCoKAOAFrt3W9EA8jGT6MQfbSHYXzJ+GW2vD0P0eUiKoihKRmD3gJSbK9MJHoEg0qhXFT4XjFmZyAn4tGFDKxoA4vVR3rOnsWb7sceKvL4RPNtIogHkY7ZQcO+SRAMgFPtLxi+j7fVhSMKiBiJ6DsAgAOs9N8a+AuC46CTNAWxl5oR7qhY1hA8tavCjRQ1+tKhBqYl0FTW8gLhwVWb+GTP3jB6EpgP4WyC3VatMlq2S4mI7GvWqwp1ff22smSi8QF4ieF6WRANAvD7q33CDsabTH2XZwyMEB3aJBpCP2ROCa3gSDYBQ7C8Zv4y214chouggTzsB+BZAP2b+MtF8NDooZF5RnUYHedDooCo6jQ5KUueol+QbUqDAO8SFq3razwBQmkBbGa4aF8YYOGQwFghoI2QwNt8UhgzWGJwYm7eN4MT4Phr0aXZJCc8uKfG1Lb7oIp48eTLvbN78YNvG9u158uTJVbyChnYyqg/tJCIujmsbHJ2vt+2lpk25Q4cOvKR+/YNt32dnc4cOHfhPnuWMvZ4YMcL39ztnnMF33XUX/9cT7rqmTRu+6667+OMTT/RNe3yLFnxZ06a+tlsaN+ZWrVr52t6MBotK+zQpOm2pp21NtK0kbtrC+DGG3XDV0aNH82sDB/raplxyCd8/alTV7S8d+1N1nxGoZvtPZxCpt03DVTl2HAj6SvYb0pMAVjDz/wU5+Ok3pJB5RXVTJk82klw5fLjVp4/+qEMHY6+vv/kGY++6y1j3u3vuQV6rVkaajZs2WV0ftr8hjRk92khz3/jxTu8vGb2MGf4NSVxlR0T1AFyMSNJ3MLp3l5mtWWNHo15V+Ouf/mSsMQ8bkuukXn+4+WaRrpugii0M60Oqe2DUKCsaAKHYXzJ+GW2vD0OSKfs+G8DnzLw6sGLXLplTmaAoVaJRryq0WrnSWFMocpLppF4Fwhv9egguyIdhfUh1bQU3Cks0AEKxv2T8MtpeH4YEKft+GUBfRB4v8QOAccz8LBG9AOAjZn4qqJmesguZV1Snp+wq0VN2VXV6yi5JnaNeklN29RJNwMzVlvkw889NjBRFURSlNjQ6SFEURckI7B6Q2rWT6SR3rAvvclcvPx/+/OfGmqtFTjKd1Gvm+eeLdL9q3NhYE4b1IdXNGDjQigZAKPaXjF9G2+vDEH0eklIrU6ZMMdb8XHAQS4ajjz7aWHP55ZeLvJ544gljzebNm0VeYeA3ggcWAsB9992X4iVRMo3Mfx6StFJDEsYoDXBULx9XCp52WiH8J0eik3r97p57RLqNgoSBMKwPqe6+8eOtaACEYn/J+GW0vT4M0WtIiqIoSkaQ8IBERM8R0XoiWuZp60lEHxHRYiIqJaI+6V1MRVEUxXVEad8AHgRwN0fSvsdG/05Ms2Ymy1bJoEF2NOpVhe8Ez/+ZLXKS6aReX3TqJNK9JXjcQhjWh1T3ueCR7hINgFDsLxm/jLbXhyGiLDsiegvAc8z8ChENBTCYmS9LNB8taggfWtTgR4sa/GhRg1IT1tK+AXRB5LET3wFYA6B9LdrKtO969WSpt82a2Uu97d3bXtr3oEH2knzPPlvcp/IFC7h8wQJfW8XYsVxeXs4Vnj5V9OrF5eXl/H2DBr5pf3b66XxXz56+toe7dOFzzjnH17YOyaV9myRjv4eq6dglSE8yduyV7j4VRvsl7dNFffrwHV27+toe7NiRTz/9dF/bBy1b8umnn84ftGzpa9+/fz8feOIJX9uB117j/atW+bedo45Kz/5U3WfE2WfbTcZu1iz9fdK0bzoa/m9IjwJ4j5mnE9H/Aihm5rMTzUejg0LmFdWZPm8oKzsb555zjrHV23PmhCIqJ5OXMRmvM04/3Vj3/r/+hQP79xtp6uXkOL2/ZPQyZnh0kLTKbjgqnxL7VwBa1KAoiqIkhfSAtBbAmdHf+wFI+LRYRVEURamNhOGq3rRvIloNYByAkQAeiT4TaQ8i14kSUygMuZd8xZRo1KsKkseDS07XARCdapJobOvC4CU5XQfA+HRdTJPwg6c6QrC/ZPwy2l4fhiT8hsTMQ5k5n5lzmPlIZn6WmT9g5kJm7sHMJzFzsAiGDRtkSzlpkh2NeqVEd97q4I/I8jJSsNFLNLZ1YfAaLHw+FD39tBUNAGf3F2e9BNjNstOihnB5RXVa1JCcLixeWtRwiHSOemV+lp2iKIqi1IAekBRFUZSMwO4BSRoZMmuWHY16VaFixgxjzVhB3BAAXGBJY1sXBq87u3YV6cpfe82KBkAo9peMX0bb68MQabhqDyL6kIiWEtFsIjoskFturmwpJdV50oo+9Upa95+mTUVWkoeTCB9oYlUXBq8vmjQR6bhXLysaAM7uL856CUhY1EBEZwDYAWCKJ6nhYwC3MfN7RHQVgA7MfFciMy1qCJlXVKdFDcnpwuKlRQ2HSOeoV1qKGpj5fQDx6ZDHAXg/+vscAENMTBVFURSlCkEC71A1XPXfAC6M/v4rANtr0VaGq3rD+ExCBmOBgDZCBmPzTWHIYI3BibF5p7tP8fMz7JNpuGq8V9BwVYa9cFWGvXBV78909im+P6Z9shWuenA7tRGuimq2/3QGkXrbNFyVY8eBoC9puGpnAI8CaAVgFoAbmblVovkUtW7NpZKbY4uLzW/MkmjUKyU6HjlS5LXx4ouxaswYI037++7DeMHjJ/5nzhy80q+fse7GZcuwYMQII82Bq67CrYLrauM3bsTVhqffJjLj2uxsY69VAwbgi1/9yljXb9q0zN6GQ7C/uOolOWUnOiDFvXcsgBeZOWHAqj4PqW4QZJuqjrIy2SX5qVOnGmvKBZFIAHDyyScba2666SaR16ZNm0S6rCzz4tm3335b5NVPcFBX6gbWbowlosOjP7MA/BbAU4GEy5dL7DK/msRVL6muqEhk1eWKK6xoAODX06aJdAMMv8EBwD+3bBF5fSw4sEs0AFB0zTUiXcZvw2HYX1z1EhCk7PtlAB8COI6IVhPRLwEMJaL/APgckeTv5wO57dolW8qFC+1o1CslOhJ6Nf78cysaADhKmKvYcuVKY00P4bcxyUeA9GPjsC+Fgf2Zvg2HYH9x1ktAwtBdZh5aw1uPpHhZFEVRlDqM3aSGnByZLj/fjka9UqJjode+vDwrGgD4b+PGIt2u5s2NNd8LrukAkVMPNjQAsLdVwpqk6sn0bTgE+4uzXgLspn1rUUOdQIsa/GhRg1IXyfy077XC/99KSuxo1Cs1OqFXgaAcVaIBgIHz54t0J0yfbqz59c6dIq9xggO7RAMAHSZPFukyfht2eH/JeC8B+jwk9Uq9jghcUWFulZWF0o8/NtIU9e6NW26+2djr4T/9CTeOGmWse/Sxx/CS4Teyy4YNQ2vBqcUNGzeKooPqCe5DOlBejnfmzjXW9TvrrMzehkOyv7jolfnfkBRFURSlBoKUfR9FRPOIaDkRfUpEN0XbWxLRHCL6MvqzRfoXV1EURXGVIN+QDgC4lZm7ADgZwPVE1BXAnQDmMnMnAHOjf9dOly6ypZQUQkiLJ9QraR0bnnaL8dmUKVY0APCHn/1MpHvj3nuNNWcJKvMAQHJ7seyWZODjJ5+UCTN9Gw7B/uKsl4Agad/rmHlh9PftAJYDaAvgQgCxK6GTAVyUroVUFEVR6gAmSayIpH5/C+AwAFvj3ttSg0bTvkOe9m2cTlzd+gzSp9jy20gnjvUraJ/ixmnzsmW8bepUX9uOhx7iTZs2+dr29u/PjEOX9j39hBN42LBhvLlRo4NtX7dsycOGDeO5HTva2fbixyk2raZ9y/pU19O+AYCImgB4D8B9zPw3ItrKzM09729h5lqvI2mVXci8pDpXvaK6zYb3B7Vs1crqA/ouHzbM2OvFqVPdHDPdXw6ZV9qq7IgoB8B0AFOZ+W/R5h+IKD/6fj6A9SbGiqIoiuIlSJUdAXgWwHJmfsjz1iwAw6O/DwcwM6GbNH5i3Dg7GvVKjc5VLwC7b7/dWHO3yEmmk3o5O2a6vxw6LwEJT9kR0WkA/gVgKYDY3Y6jAcwH8BcA7RC5rnQJM8c/6tyHRgcpYWfz5lo38WrJE+btSbnsssuMNS+++GIalkSpy6TllB0zf8DMxMzdmbln9PUPZt7EzGcxc6foz8R76pIlJstWSUGBHY16pUbnqheA5l27GmtWS87ZC3VSL2fHTPeXQ+clQKOD1Cv1Ole9ojotavCQ6WOm+8sh89LoIEVRFCW02D0g5ebKdL162dGoV2p0rnoBONCjh7FG9lANmU7q5eyY6f5y6LwE6POQFFK+nsoAABrfSURBVMUALWpQlGBk/im7VatkuuJiOxr1So3OVS8AubfcYqyZKPynT6KTejk7Zrq/HDovAUHKvo8CMAVAG0TKvicx8yNEdAmAEgBdAPRh5oRffbSoIWReUp2rXlGdFjV4yPQx0/3lkHlJviHVCzBNLO17IRE1BVBGRHMALANwMYCJRkupKIqiKNWQ8IDEzOsArIv+vp2IlgNoy8xzAIAE//kpiqIoShVMkljhSfv2tL0LoKgWTWXad9OmCRNiq029PeEEe6m3zz9vL+17zRp7Sb5lZXb6xMw8bJisT2efbdanJMap/O9/5/IFC3xtFWPHcnl5OVd4+lTRq1ekbcQI37T3jxrFUy65xNf22sCBPHr0aF/b8o4duQD20r77x7V9OWwYv/nmm7y7ZcuDbVs7duQ333yTvx040M62Fz9Ow4alb9uL35/KyuwmY59wQvr7pGnfVdO+Pe3vAriNg1xD6tSJS7/8MvDB8iCzZwODB6dfo16p0YXAq2LmTJFu6qWX4vNOnYw0S8ePx+uCMwmDmI11g5hx/ZtvGnv137cv48cs472kOke9JNeQAh2QomnfrwN4i/0Bq2YHJC1qCJeXVBcSr4rycmNZVnY2xowebaS5b/x4q0UNb0kOSAMGhGLMMtpLqnPUKy1l37WkfSuKoihKyghSZfdjAFcAWEpEi6NtowE0APAYgNYA/k5Ei5m5f3oWU1EURXGdIFV2HwCo6WvXa0Zu7doZTX6QiYLKcolGvVKjC4FXxZNPinQzBg401lwtcpLprkbkXgxjQjBmGe8l1bnqJUCjg5Q6SUVFReKJquGuu+4y1tx///0iLylvvPGGsaZ/fz25oaSWzI8OKhNGP0rudZLeH6VeyetC4JWVnS3S3Td+vLGmQvhPn0Qn9QrDmGW8l1TnqpcAffyEoiiKkhHoAUlRFEXJCIKUfR9FRPOIaDkRfUpEN0Xb/0BEnxPREiJ6jYiaJ3Rr1ky2lIMG2dGoV2p0IfDi888X6T7v2NFYM1vkJNNJvcIwZhnvJdW56iUgSNp3PoB89oSrArgIwJEA3mHmA0T0ewBg5jtqm5cWNSiZghY1+NGiBiXVpKWogZnXMfPC6O/bAcTCVd9m5gPRyT5C5ABVOytWmCxbJZKoC4lGvVKjC4EXXXCBSHfFX/5irJkpLDSQ6KReYRizjPeS6lz1kmASfIdqwlWj7bMBXF6DpjJcNS74MXDIYCwQ0EbIYGy+KQwZrDE4MTZvG8GJ8X1MZ7hqdeszSJ9iy28jDBLg/0yb5vv7+2uu4SVLlvC+1q0Ptu3q0oWXLFnCm4YM8U1bgEgYqretGJHQU2/brLifsVfQcNWpTZpw+/bteUn9+pXLmZ3N7du354ebNfNNe36bNlX6uH/MGN6zZ48vMLb8xBN5z549fOCqq+xse/HjFJvWRrhqddt/OoNIvW0arsrM9sNVxwAoAnAxJ5iZZtmFzEuqC4nX0iVLjGUndO8uypeTZtkd3b69kWblqlXYu2ePsVeDhg1DMWYZ7SXVOeqVrgf0xcJVpwOYGncwGg5gEICzEh2MFEVRFKU2xOGqRDQAwB0ALmDmXYHcCgtlSyk51kmPj+qVvC4EXpJvRwBE33QkGgDG346kGgChGLOM95LqXPUSEOQ+pFi4aj8iWhx9nQdgAoCmAOZE255KOKcNG2RLOWmSHY16pUYXAq8Wr74q0o0U7JgSDQAM3b7digZAKMYs472kOle9BNjNstNrSOHykupC4qXXkCrRa0iHUOeoV+Zn2SmKoihKDegBSVEURckI7B6QBLErAIBZs+xo1Cs1uhB4rXz0UZFOcjut7BZc4JetW1vRAAjFmGW8l1TnqpcAuwek3FyZTlKdJ63oU6/kdSHw2t21q0gneYCK8KErWFq/vhUNgFCMWcZ7SXWuegnQogb1Sr0uJF5a1FCJFjUcQp2jXmkpaqgl7fueaNL3YiJ6m4gKjJZWURRFUTwEOWV3AMCtzNwFwMkArieirgD+wMzdmbkngNcBjE3jciqKoiiOk0za9zbPZI0BJP4+l5cnW8qRI+1o1Cs1uhB4bR4yRKR72pIGAF5q0sSKBkAoxizjvaQ6V70kmCSxIi7tG8B9AL4DsAxA6xo0lWnfcenEdSX1Vvtkp08VI0ZweXk5V3j6VJGfH2kbO9Y37em5uXx6bq6vbXz9+ty0aVNe60nsXpiVxU2bNuXncnJ805qkfTdu3Jj/np3ta2/cuDHf4EnwZoD/p0EDPqZRI1/bDxddxAsWLOAdnTsfbNubl8cLFizg1SNG+KZdNnkyL5s8OePHycVtT/uUIWnf0fd+A6AhM4+rbR5FjRtz6c6dwY+WMQoLgTLDWiWJRr1So7PsVfHxx8ZWn+Tk4MzGjY1187ZvR2/DAoUyIpzeqJGx1w9HHYXPpkwx0nS98ko0Xr7c2Mvl7UP3l0PjJSlqCHRAiqZ9vw7gLfYErHrebw/g78zcrdYF1Cq7cHlJdZa9KsrLja2ysrNxWNOmxrpt27eLquyaCA5+O3buxMcLFhhpevfpo9vHofKS6hz1SleVXU1p3508k10A4HMTY0VRFEXxEuR5SLG076VEtDjaNhrAL4noOAAVAFYBuCbhnHJyZEuZn29Ho16p0YXAa53wkRBrLXrtExQB7cvLg+jW2BCMWcZ7SXWuegmwe2NsURGXlpZa81PqBhUVFcaa5s2bi7x27NhhrMkVJpTMmzdPpOvdu7dIpyipJPPTvtdK/r8EUFJiR6NeqdGFwOs3e/eKdOME/8CN3rdP5FUgeAaNRAMgFGOW8V5SnateAjQ6SL1Sr9OiBh9a1FBHvKQ6R70y/xuSoiiKotSAHpAURVGUjEAcrup5/zYiYiJKXBLUpYtsKSWFENLiCfVKXhcCrzOEhQZFAs1pDRuKvD6dPNmKBkAoxizjvaQ6V70EBCn7joWrLiSipgDKiGgOM39GREcBOAeROCFFURRFEWNc1EBEMwFMYOY5RPQqgHsAzARQxMwba9NqUUPIvKQ6LWrwoUUNdcRLqnPUS1LUYBR8B0+4KiLpDI9E21cCyKtBUxmu6g3jMwkZjAUC2ggZjM03hSGDNQYnxuad7j7Fzy+dfYpfTpM+xZbfQrgqA9bCVRmwFq5aZX1mYmhnbFobQaTVbf/pDCL1tmm4KjNbCFcF8CaAeQDOZeb/EtFK6Dck97ykOsteZYLz24VFReKnuEq+IU1+4QVjr+E//3lmr3upzlUvqc5Rr7SVfUfDVacDmMqRpO9jAHQA8En0YHQkgIVE1KbWGUnjJ8aNs6NRr9ToQuB1t0gl0y2+8EKZWaave6nOVS+pzlUvAQm/IUXDVScD2MzMN9cwzUoE+Yak0UFKGigTxOnbjNd5/vnnRbrhw4eneEkUxR7p+oYUC1ftR0SLo6/zREu4ZIlIhoICOxr1So0uBF6rJacthLpLbq72/7jEZPq6l+pc9ZLqXPUSkLDsm5k/AFDrUY6Zjw7ktn9/oMmqsG6dHY16pUYXAi/p7iXR5W7dKjPL9HUv1bnqJdW56iVAkxoURVGUjMDuAUl4dzx69bKjUa/U6ELgJXiIs1i3qX17mVmmr3upzlUvqc5VLwH6PCQl9GhRg6JkHpmf9r1qlUxXXGxHo16p0YXAa6LwHzGJ7hThASnj171U56qXVOeqlwB9HpJ6pV6nN8ZW0eiNsXXAS6pz1Cst35BqSvsmohIiWpN0KbiiKIqiIIm07+h7DzPzH9O3eIqiKEpdIeE3JGZex8wLo79vB7AcQFuRW/fuIhnWrLGjUa/U6ELgJduAZbq/PPywzCzT171U56qXVOeqlwSTJFb4075LEEn5XgLgOQAtatBUpn3HpSsHTr095hh7qbe//a29tO9Zs+wl+T7/vJ0+MTOfe66sT717m/Upbpz2DB/OW7Zs4f09ehxsK2/Thrds2cK777jDN+1jxxzDxYWFvrbn27fnvn378gZPCvcXTZpw3759eXZc+vzPTj+df+vxYYAf6tyZzz77bF/bv/PyuHzGDK44/3xfe3l5OZc/+aS/bcYMLv/uu+TG6aGHgo/ToUqRPvfc9G178X16/nm7ydjHHJP+Pmnatz/tm5n/RkRHANgIgBF5JlI+M19V2zy0qCFkXlKdZa+tW7YYWzVv0QI/6dvXWDfv3XdxztlnG2nm/POf4mc2ZfS6l+pc9ZLqHPWymfYNZv6BmcuZuQLA0wD6GC2toiiKongIUmVHAJ4FsJyZH/K0e58l8VMAy1K/eIqiKEpdIUiVXSzteykRLY62jQYwlIh6InLKbiWAqxPOqV072VJOnGhHo16p0YXA6/+OPVake7hzZ2NNxZNPirwyft1Lda56SXWuegnQ6CAl9GwVpGn/9Kc/FXnVqxfkfzg/b731lsgrK0uzj5XwkvnRQYLMMQCRC2o2NOqVGl0IvOa9+65IN+ef/zTWZGVni7wyft1Lda56SXWuegnQf8EURVGUjEAPSIqiKEpGYPeA1KyZTDdokB2NeqVGFwKvf7dqJdJ9mJdnrOHzzxd5Zfy6l+pc9ZLqXPUSoEUNSujRogZFyTyspn1H3xtFRF9E2x9M6LZihcmyVTJ4sB2NeqVGFwKv+5YuFel+t3hx4onioAsuEHll/LqX6lz1kupc9RKQ8BtS9AbYfPakfQO4CMARAMYAOJ+Z9xLR4cy8vrZ5aXRQyLykOo0O8qHRQXXES6pz1EvyDSnh+QdmXgdgXfT37UQUS/seCeABZt4bfa/Wg5GiKIqi1IpJEiv8ad+LAdwNYD4ioau9a9BUpn1702FNUm9jCbU2Um9j801h6m2NSb6xedtI8o3vYzrTvqtbn0H6FFt+G+nEsX4F7VMy4+T9mc4+xfcnnX1KZpxi09pI+65u+09nMra3TdO+mdle2vcyAO8AuAlAbwCvAPgR1zJDLWpQFEWpG1hN+wawGsDfIodLXgCgAkDtNbEbNpgsWyWTJtnRqFdqdK56SXWuekl1rnpJda56CQhS1EAAJgPYzMw3e9qvAVDAzGOJ6FgAcwG0q/UbkhY1hMtLqnPVS6pz1Uuqc9VLqnPUKy1FDag57fs5AM9FT93tAzC8toORoiiKotRGkCq7DwDUdJS7PLWLoyiKotRV7N4K3rGjTDdrlh2NeqVG56qXVOeql1TnqpdU56qXALsHpNxcma6w0I5GvVKjc9VLqnPVS6pz1Uuqc9VLgN0sOy1qCJeXVOeql1TnqpdU56qXVOeoV+Y/oE9RFEVRaiBhUQMRHQVgCoA2iNxrNImZHyGiVwAcF52sOYCtzNwzbUuqKIqiOE2Qsu8DAG5lT7gqEc1h5p/FJiCi/wPw34RzEjxLBgAwcqQdjXqlRueql1TnqpdU56qXVOeqlwDja0hENBPABGaeE/2bEMm368fMX9am1eggRVGUukHaryER0dEATkQkUDXG6QB+qOlgRETFRFRKRKUbFi2KXByLvcrKIi9vW0lJRFhQUNkWq84rLvZPu3YtMHu2vy0WceFtiz3LY/BgfzsQmd7bdswxkfl624qLI9MWFla2FRRE2kpKZH0qLIy8bPRp9mzghBPs9AmIfBOW9Cn2ROGgfUpmnLp0MetTMuNUWGinT2VlkX7Z6FMy4xQ7U5KObS++TyecYKdPsXHKzU1/n2yNU7KfEQLE4aqe9icBrGDm/0s0D62yC5mXVOeql1TnqpdU56qXVOeoV7qig1BDuCqIqB6AiwHYKVJXFEVRnCXII8wJwLMAljPzQ3Fvnw3gc2ZeHcgtJ8d4AQEA+fl2NOqVGp2rXlKdq15SnateUp2rXgKCpH2fBuBfAJYiUvYNAKOZ+R9E9AKAj5j5qSBmWtSgKIpSN0hLUQMzf8DMxMzdmbln9PWP6Hs/D3owAhC5aCYhdsEv3Rr1So3OVS+pzlUvqc5VL6nOVS8BGh2kXqnXueol1bnqJdW56iXVOeql0UGKoihKaNEDkqIoipIR2D0gdeki00kKIaTFE+qVvM5VL6nOVS+pzlUvqc5VLwH6DUlRFEXJCIKUfdeU9t0TwFMAGiISwHodMy+obV5a1BAyL6nOVS+pzlUvqc5VL6nOUa90JTVUm/YN4EEAdzPzG0R0XvTvvkZLrCiKoihREh6QmHkdgHXR37cT0XIAbQEwgMOikzUDILzJSFEURVEM70OKpn2/D6AbIgeltwAQIteiTmXmVdVoigFEY2PRDcAywXLmAdhoQaNeqdG56iXVueol1bnqJdW56nUcMzc1UjBzoBeAJgDKAFwc/ftRAEOiv/8vgH8GmEdpUL9kdepVN5ZR14euj0zxCsMyZrpXoCq7GtK+hwOI/f5XAH2CzEtRFEVRqiOZtO+1AM6M/t4PQK1Pi1UURVGU2ghSZfdjAFcAWEpEi6NtowGMBPBI9JlIe1B5nag2JomWUqZTr0Onc9VLqnPVS6pz1UuqU68oVsNVFUVRFKUmNKlBURRFyQj0gKQoiqJkBFYOSEQ0gIi+IKIVRHRnQM1zRLSeiIzuWyKio4hoHhEtJ6JPieimAJqGRLSAiD6Jau429MwmokVE9LqBZiURLSWixUQUKLmQiJoT0atE9Hm0f6cE0BwX9Yi9thHRzQF0t0TXxTIiepmIGgZcxpuimk9r86lufImoJRHNIaIvoz9bBNBcEvWqIKIiA68/RNfjEiJ6jYiaB9DcE51+MRG9TUQFQbw8791GRExEeQGXsYSI1njG7rwgXkQ0Krq/fUpEDwb0esXjs9Jzvbg2TU8i+ii2DRNRlUrbGnQ9iOjD6PY/m4gOi9NUuw8H2D5q0tW4jdSiSbR91KSrdRupSed5v8o2UotXou2jRq+atpFavBJtHzXpEm4jPiQ16Ya16NkAvgLwIwD1AXwCoGsA3RkAegFYZuiXD6BX9PemAP6TyA+Rm3ubRH/PATAfwMkGnr8C8BKA1w00KwHkGfZtMoAR0d//f3vnFmpVEcbx31dHw2NUJlrmMbVQESq0ixipWUckLTQLwSgy7CVJSqOLYpgRlZJST9mDXUDDMAIzIj1maD1kmZaX8oKWeSE1irQSNOvrYcZa7NbMfGt76TzMHxZ7Zu/5r2/2rP+sua5vtQUuqONa7Ae6J9J1Bb4D2vn4YuA+w/lPPPjciNsw8yHQy3p9ce6npvrwVGC2gdMX6AOsAq6tYGs40ODDs422ziuEHwJeseoW6IZ7kPz7susesDcTeLRKHQFu8uV+jo93tuax8PtcYIbBVgswwodHAquMeVwL3OjDE4BnajilddigjxAvqJEIJ6WPEC+qkRAvppGIrZQ+QrygRmL5S+gjZCupkeJxJkZIA4Adqvqtqh4D3gJGp0iq+jHwc1VjqvqDqq734V+BE66OYhxV1d98tI0/TLs9RKQJuBWYXzWvVeB7kUNwW/BR1WOq+kvF0zQDO7XEo0YJGoB24nZRNmJzDdUXWKOqR1T1OLAaGFOWMHB9R+MaXfzn7SmOqm5R1W2xTAV4LT6PAGuAJgPncCHanhKNRHT7IvB4GSfBCyLAmQjMUtWjPs3BKrZERHAPui8ycJLuwwK8PjiPLwArgDtrOKE6nNJHKS+mkQgnpY8QL6qRxP2pVCP13NMSvKBGUrYi+gjxKrmYOxMNUldgTyG+F0NhngqIc3XUHzfiSaU92w9DDwIrVDXJ8XgJJ6K/KmZPgRYRWSfOvVIKlwE/Aq+Lmx6cLyLtK9ocR42QSjOmug+YA+zG+TE8pKothvNvBoaISEcRacT1iLpVyN9F6nwn4j87V+CeDCYAH1gSisizIrIHuBuYYeSMAvap6oY68jbJTwG9VjtFFUBvYLCIfCYiq0Xkuor2BgMHVNXyXOFk4AVfHnOAaUYbm4FRPjyWiEZq6rBZH1XqvoET1Uctz6qRIs+qkZI8mvRRwzNpJFAeSX3U8Cpp5Ew0SGXux0/7XnMRORfnXWJyTa+lFKr6p6r2w/WEBojIFQYbtwEHVXVdHVm8QVWvBkYAD4rIkET6BtzUxzxV7Q/8jpu2MEFE2uJuAm8b0nbA9UZ7ApcA7UXknhRPVbfgpjdWAMtw07PHo6T/GSIyHZfHNy3pVXW6qnbz6ScZzt8ITMfYeNVgHnA50A/XMZhr4DQAHYCBwGPAYt+rteIuDJ0Wj4nAFF8eU/CjdwMm4DS/Dje9c6wsUdU6fDK8ECeljzKeRSNFnj9/UiMltkz6KOElNRIpw6g+SnjVNBKbzzsVB3A9sLwQnwZMM3J7UHENyfPa4OZiH6kzz08RmZstpHseN+LbhVubOQIsrMPezJQ93PuodhXig4H3K9gYDbQY044FXi3E7wVeruN/PYd7T5bp+gLbgC4+3AXYZtUEkTWkEA/n/upToLGq/oDukd/+4QFX4kbdu/xxHDfyvLiivdD/ri3DZcDQQnwn0MlYHg3AAaDJeL0O8e+zjAIcrqMcewOfl3z/nzps1Eew7oc0EuIY9BG9z4Q0UsuzaMRgK6SPsnKMaiRSHil9lNkyaeTEcSZGSGuBXiLS0/fSxwFLT5cx39KXuTqKcTqJ30UjIu2AYcDWFE9Vp6lqk6r2wP2vj1Q1OZIQkfbi3i2Fn3YbTsILuqruB/aISB//VTPwTcpWAVV6vruBgSLS6MuzGTcnnISIdPaflwJ3VLAJThfjfXg88G4FbiWIyC3AE8AoVT1i5PQqREdh08gmVe2sqj28TvbiFn/3G+x1KUTHYPOUvwTnygsR6Y3b/GL10jwM2Kqqe43p63IfVtDIWcCTuBd9Fn8P1eGoPuqs+6WclD4ivKhGyngpjURsRfURKY+gRhJlGNRHhFdNI7HW6lQduLWE7biWeLqRswg3DP0Dd4HuN/IG4aYENwJf+WNkgnMV8KXnbKZmB4nR7lCMu+xw60Eb/PF1hTLpB3zh87kE6GDkNQI/AedX+D9P4yrTZmABfkeOgfcJrqHcADRXub5AR2ClF+1K4EIDZ4wPH8X13pYbbe3ArW2e0Ejtbqgyzju+PDYC7+EWsSvplsDuyoC9BcAmb28pfnSQ4LQFFvp8rgdutuYReAN4oML1GoR7A8AG3HrBNUbew7j7wXZgFr4HnarDBn2EeEGNRDgpfYR4UY2EeDGNRGyl9BHiBTUSy19CHyFbSY0Uj+w6KCMjIyOjVSB7asjIyMjIaBXIDVJGRkZGRqtAbpAyMjIyMloFcoOUkZGRkdEqkBukjIyMjIxWgdwgZWRkZGS0CuQGKSMjIyOjVeBvm5yiipYmEaUAAAAASUVORK5CYII=\n", "text/plain": [ "