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I Source coding

ATCAGAATC = [0I0I000NDDNDI0

lossiess compression
Winzip, compress, etc.

Goal : minimize

codelength




I Source coding: Shannon model

- Source P

= stationnary process on Alphahet & =(A.C.T.G)

Code ¢ _:A"—{0.1)
ATCAGAATC > [0II0{{000HDDIDID

Message X[ (n-o, l0sslesscomaression Codestring §,(X?)

Winzip, compress, etc.

Goal : minimize average

codelength

ko, [‘ g (x':)[l ﬂ !




Theorem (Shannon ’48) :

Ee [|¢n(2)]] = Ha(P) = Es [~ log P" (X))

and there is a code reaching the bound (within 1 bit).

Moreover,

%Hn(]}p) — H(P)

entropy rate of the source P
= minimal number of bits necessary per symbol.



Coding distribution

» Every code ¢, (x) + can be associated the measure ¢,, on A~ such that

N - an ’
By the Kraft inequality, ¢,, is a (sub-)probability measure.

® Conversly, thru arithmetic coding, every (sub-)probability measure ¢,, on A™ can

be associated a code ¢,, such that |gbn()| = — log qn() (—I—Ct@).

Conclusion: ¢,, < ¢,

in particular, — log ¢, (x) = codelength.

&» The Shannon '48 theorem expresses that the best coding distribution is the real
probability !

® Coding distribution ¢,, suffers from regret

—log gn (X?) _ (_ log P™ (X{L)) — log P™(XT)

an(XT)




I Universal Coding

B What if the source statistics are unknown?

» What if we need versatile code?
— We need a single coding distribution ¢,, for a whole class of sources

A={F,,0 € 0}

Ex: memoryless processes, Markov chains, HMM, etc.

—> unavoidable redundancy:

Ep, [|¢ (X7)|] — H(X{) = Ep,[logg, (X7') + log Py (X7')]
— KL(P97Qn)

Kullback-Leibler information between Py and g, 4



Two ideas for universal coding

1. Two-step coding

B First transmit 6 = arg ming.g — log Py (aﬂf) = arg maxgcg I (aﬂf)
® Then code string =7 with coding distribution Ps.
Ex: (memoryless model) z9 = AAATACAGT: 6 = (5,1,2,1)

Al -1

—> regret log n.

2. Mixture coding if v is a probability measure on ©, take

() = / Py (a7) dv (6)

Ex: Memoryless model. ~ Choose v = Dirichlet (3,. .., 3)

» Bayesian conjugate prior = easy computations.
® Krichevsky-Trofimov mixture has also regret "L"T_l log n.



I Measures of universality

1. Maximal regret:

R* (gn,\) = sup sup log -
zneAn 9ce  qn (1)

2. Worst case redundancy:

. B P (xp)]
R (CIn, A) — Sup EP@ lOg n — Sup KL (P97 qn)
0cO q

3. Expected redundancy with respect to prior 7:

Py (XT)

an (XT)

— R (¢, N\) < R (¢u, \) < R" (¢, M) |

R: (gn,A) = Eq [EPQ log

[~z weionn



Measures of complexity

1. Minimax regret:

Pl (z}
RY (A) = inf R* (¢n, A) = min max log —2 (=)
dn qn x,0 qn (aﬂf)

2. Minimax redundancy:

R' (A) = inf RT (qn,A) = min max KL (Py,qn)

n
dn dn

3. maximin redundancy:

R, (A) =sup R, (¢gn,A) = maxminE; [KL (P}, qn)]
T g dn

n

= R, (A) <R (A) <R, (D)
Theorem (Haussler 97, Sion) R; (A) = R} (A)

Moreover, minimax redundancy is achived by a mixture.



Parametric Case

» Theorem (Shtarkov & al.) Let Z,,, be the class of memoryless processes over
alphabet {1,...,m}, then

m—1 n VT
RY (Im) = log — +1 1
£ (Tn) ot - log =¥ o(1)
m—1 n VT
(@) 7 s g +1og s+

&» Theorem (Rissanen ’84) If dim © = k, and if there exists a \/n consistent

estimator of 0 given X7*, then

k
liminf R~ (A) > 5 log n.

n—aoeo

Covers Markov Chains, HMM, VLMC, etc.



Non-parametric case ?

1.

Theorem (Kieffer °78) Let 7 be the class of memoryless processes over the
countably infinte alphabet N, then R,r_b (ZOO) — OQ.

—> no universal coding possible in general.

Theorem (Shields ’93) If £ denotes the class of all stationnary ergodic processes
over alphabet {0, 1}, then R,r_b (5) = OQ.

Theorem (Csiszar and Shields ’96) Let R be the class of renewal processes on

the binary alphabet {0, 1}:

X=---100---100---1---, Niz}iﬁiuggﬁl(N),

N; Niiq

Then R (R) ~ R: (R) =3, (\/ﬁ)

n
First example of an intermediate complexity class.
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I Regret of memoryless classes

» Proposition (Boucheron-G.-Gassiat "06): If A is a class of memoryless sources,
let the tail function F'y1 be defined by F'y1 (u) = 3", -, p(k), then there exists

C > 0 such that :

u—1

R*(A") < inf [nFA1 (u) loge +

UUKN

log@JrC’].
u

» Proposition (Boucheron-G.-Gassiat '06): Let A be a class of stationary

memoryless sources over a countably infinite alphabet. Let p be defined by

p(xl) =suppep P {x]}. Then

R*(A") <00 < Y pla) <oo < R*(A")=o(n). |



I A counter-example

Proposition (Boucheron-G.-Gassiat ’06) Let f : N — [0, 1[. For k € NN, let
pr € 9 (IN) be defined by:

f

1 — f(k) ifl =0;
pl) =4  f(k) ifl = k;
0 otherwise.

\

Let A be the class of memoryless sources with first marginal in {p1,p2,...}. Then

RT(A") < oo <= sup f(k)logk < oo.
k

Donc, si supy, f(k)loghk < ocomaissi )y, f(k) =oc0,0na

RT (An) < 00 mais R* (An) = Q. |



I Envelope classes

® Definition Let f : N — [0, 1]. The envelope class A ; defined by function f is

the collection of memoryless sources with first marginal dominated by f:

Ap={P : VzeN,, P'(x) < f(z), and
P is stationary and memoryless} .

&» Theorem (Boucheron-G.-Gassiat "06)

R* (A}) < oo < R*(A}) <00 <= » f(k) < oo

keNy



I Power-law Envelope

Theorem (Boucheron-G.-Gassiat '06): Let o > 1, ((a) = > ;>4 k% and C' be such
that C{(a) > 2*. Let A .o be the envelope class associated with the (slowly-)

decreasing function

C

fa,C:x'_):E_a-

Then
nt A(a) log |CC(a)] < R™(A% L)
20n

a—1

where
A — l ! _ a1/ (a)u)
() = /1 ey (1 e ) du .

1/«
< RN ) < ( ) (logn) ™ + O(1).




I Exponential Envelope

Theorem (Boucheron-G.-Gassiat '06): Let C and « denote positive real numbers
satisfying C' > e?“. Let A-_—«. be the envelope class associated with the (faster-)

decreasing function

fa,C cx— (Ce 7,
Then

1 — (AT
8—@log n(l—o(l) < R (Ad.-a)
1
S B (Afe—o) < 2—10g2n+0(1).

—



Algorithm CensoringCode

Given a string z € N and a cutoff strategy (K;)1<i<n, let & € {0, K, }" be defined by

_ xz; ifz; <K;
Ty =
' 0 otherwise (the symbol is censored),

Let also string x be the subsequence of censored symbols, that is (z;) . >k, i<n-
Algorithm (Boucheron-G.-Gassiat '06): Code separately

P 3, with an efficient universal coder on alphabet {0, K, }7,

» and & with an Elias code.

Ex: if Vi, K; = 6 then

8
[\
—

&

()

=
N | O |

&«




Performance - Adaptivity

Theorem (Boucheron-G.-Gassiat ’06) Let M and « be positive reals. Let the sequence
of cutoffs (K;);<n be given by
K 2M i ) 1/ O‘J
K, = :
a—1

The expected redundancy of procedure CensoringCode on class A ,,. . satisfies:

QM?) ’ logn (1+0(1)).

R™ (CensoringCode, Aj—a) < (
O.{ -

» almost optimal: within a factor log n from the lower bound for
n/® A(a) log |C¢(a)] < R™ (Ayy.—a).

® Ve propose an adaptive estimation of the cutoff by &, = uC,,, where
C, = Card{ X1y, ..., X} is the number of distinct symbols in the message.
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Patterns

The information conveyed in a message x can be separated into

1. adictionary A = A(x): the sequence of distinct symbols occurring in = in order of
appearance;

2. apattern v = ¢ (x) where ¢; is the rank of x; in dictionary A.

Example:
Message r = a b r a ¢ a d a b r a
Pattern Yx) = 1 2 3 1 4 1 5 1 2 3 1
Dictionary A(z) = a b r c d

—> A random process (X,)» with distribution P induces a random pattern process
(Ur)n on N with distribution: small

PY (U} =¢f) = > P(XP==aD).

i (2]) =97



Pattern entropy & redundancy

» Proposition (Orlitsky& al. ’04, Gemelos& al '04) Let the Pattern entropy be
definedas H (¥]) = Epw [—log PY (¥7)] . Then

%H (") — H(V) = H(X).

» For a pattern coding distribution ¢,, and aclass A = {P,,0 ¢ 6}

. n n
1. Maximal pattern regret: 17, (¢, \) = SUPzncAn SUPgco log Pq (x(xi

2. Worst case pattern redundancy:
+ Py " (V1) n
Ry, (gn,A) = supgece EP@ log n(\If”) = Supgece KL (P ,qn) .
3. Expected pattern redundancy with respect to prior =:

Ry . (qn,A) = Ex {E {log Pqn(q(ji’;)ﬂ _E, [KL (PQ‘“,qn)] |

» Minimax, Maximin redundancy.



I A new lower-bound

&» Theorem (Orlitsky & al. "04)

2
RTIJ,n (Zoo) < 7T\/gloge \/ﬁ

» Theorem (G. 06)

Y

n 3
Ry (Iy) = 1.84 .

The proof uses fine combinatorics on integer partitions with small summands.

There is still a gap between lower- and upper-bounds.
—> are Ry, (Z) and Ry . (Zoo ) Of the same order of magnitude ?

| I



I Application to power-law classes

Algorithm: Code separately

# the dictionary A(x) with an Elias code,

# and the pattern ¢)(x) with an efficient pattern code.

» For P € A, .—a, the code of the dictionary requires in average O (né log n) bits.

® The second part has regret at most O (y/n), at least w (n%)

— Very simple procedure:

# efficient and adaptive for 1 < a < 2

®» poor for a > 3. |



I Presentation outline

» Lossless Source Coding

» Infinite alphabets, infinite memory

» Infinite alphabets and enveloppe classes
» Pattern coding

» Redundancy of CTW on Renewal Processes

—

» Application to model selection



Context Tree Sources

Informal Definition A Context tree Source or Variable Length Markov Chain is a Markov
Chain whose order is allowed to depend on the past data.

P(X{ =00110/X°; = 10)

_ _ 0o __
=  P(X;=0|X°, =10) (2/3, 1/3)

(
X  P(X2 =0|X1, =100)
x  P(Xs=1]X%, =1000)
X  P(X4=1]X3,; =10001) (3/4, 1/4)
x  P(X5=0|X%, =100011)

(1/5, 4/5) (1/3, 2/3)

A stationary context tree source is parameterized by

@T{( e Oay) S ET Y 9;1}
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CTS versus Markov Chains

® Markov chains of order r are context tree sources corresponding to a complete

tree of depth 7.
Markov chain of order 3 with

transition matrix

[ p(000) )
p (-[100)

p(I000) p(1100)  p(i010)  pCII10)  p(i001)  pCILOL)  pCI011)  p(li1l)

\ p(J111) )
® Finite context tree sources of depth d are Markov Chains of order d.
( p(10) )
p(-10)
p(-[01)
\ »(I11)

— much more flexibility: large number of models per parameter space dimension.



Mixtures. for VLMC

Let T be a context tree with |T'| leaves, that is |T'| contexts.

Using a product of T Dirichlet(%, ..., 1) distributions as a prior for the parameter
space ©r, we define the Krichevky-Trofimov mixture for contexts trees ¢/

satisfying:

| I

¢r(at)zlo) = || ¢ (T(x,9)).

® Proposition (Shtarkov&al ’93)

Al =1 n
+

—log g (a7]a o) < inf py(affa o) +—5— [T log"

+ |T'|logm +m — 1.



CTW :a double mixture

®» Proposition (Sharkov & al "93) Let T be a context tree and |T'| its number of
leaves. Then
7(T) = 2~ 2ITI+1

is a probability distribution on the set 7 of all context trees.

® Context Tree Weighting coding distribution :

ar V(@) = ) w(T)gp(})
T

can be computed efficiently and satisfies the oracle inequality:

] CTW/ nj,..0 < n| .0
0g dy ( L ’x—oo) %ﬂg Hl%pr ( L ’x—oo)
Al —1
‘ ‘ T log™ = + |T](2 4+ logm) +m — 2.

T



Questions on CTW

Adaptivity on small parametric classes CTW is constructed on.

What performance on more massive classes ?

L 3 I

Csiszar and Shields result:

R, (R) ~ R} (R) = © (Vn)

was not constructive: is there a general-purpose algorithm performing well on
renewal processes ?

CTW is a good candidate since re-
® newal processes are “infinite context tree
sources”.




Main redundancy result

» Theorem (G.’04): There exist constants C; and Cs such that the regret of CTW

over the class R of renewal processes satisfies:

Civnlogn < R (R) < co/nlogn.

P Theorem (G. ’04): There exist constants C'3 and Cy4 such that the regret of CTW

over the class MR of Markovian renewal processes satisfies:

Csn3 logn < R (MR) < Cyn3 log n.



Comments

® Adaptivity result for CTW on a
massive class.

» [f the renewal distribution is bounded,
CTW achieves regret O(logn)
(contrary to ad-hoc coders).

® Requires deep contexts in the double
mixtures ( = the tree should not be
cut off at depth log n).

® Kind of non-parametric estimation:
need for a balance between approxi-
mation and estimation.
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Model selection

| I

We are given data, say a string =7,

We suppose that it has been generated by a source that belongs to some model
Mo, Mj...

Goal: Identify that model M ; using data x'.
Examples :

®» DNAsequence:xz = ACCACTGACTACGACCT ...
Is it the realization of a Markov chain of order 0, 1, 2, ... ? of which VLMC ?

» Mixture of Gaussians with unknown number of componenents:

Fa\ I L LN AW an )
QAN

P ol s

Fa\ Fa\ I
J S



I The MDL Principle

P Guillaume d’Ockham (XIV. century):
Entia non sunt multiplicanda praeter necessitatem
» Jorma Rissanen ('78):

Choose the model that gives the
shortest description of data

» Problem 1: what is the description length of data in a model ?
— need for an objective notion of description length.

® Problem 1: only a heuristic !
—> Provides estimators, the consistency remains to be proved.

B



I Objective Description Length

» Information theory:

objective codelength = codelength of a minimax coder.

& Estimator associated with optimal 2-step coder:

arg min Plélj\f@ —log P (x7) + 5 log n.

Coincides with a penalized maximum likelihood estimator with a BIC

penalty.

B Estimator associated with minimax mixtures (v;);:

arg min — log/ Py (™) v; (d6) .
i 0cO;
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Consistency

» Theorem (Csiszar& Talata '04): If the BIC and Mixture estimators are restricted
to trees of depth smaller than D(n), where D(n) = o(logn), then eventually

almost-surely

TBICéD — TMing — TO-

P relies on fine “typicality” results by Csiszar and Shields.

B Theorem (G. '05): Eventually almost-surely, the unlimited BIC estimator 71 has

2 logn
TBIC‘ =0 .
log log logn

size at most




Comments

°

L I

The unlimited mixture estimator is not consistent: it fails to recognize 5 (

).

N

There is an exponential number of models per dimension.

However, there is sequential, time-linear algorithm for computing the unlimited
estimators TBIC and Tii.. It relies on the notion of compact suffix tree.
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I Hidden Markov Models

& Each hidden state z has its own emission distribution p..
» The process (Z,,), of hidden states is Markovian.

P At every time n, one symbol is emitted independently with distribution p .

— estimate the order = number of hidden states
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Parameterization

Model My (k € N) (of order k) : set of all HMM with k hidden states, parameterized by

k
@k — (p]]/)1<]7j/<k . ijjl =3 X{m — (ml, « oo ,mk) - Rk}

j'=1

® s the transition kernel of the hidden Markov Chain,

® 1, is the expectation of the emission distribution in state ;.

dim Oy = k(k — 1) + k = &’

Poisson emission: conditionally on Z,, = j, X,, ~ P(m;).
Gaussian emission: conditionally on Z,, = j, X, ~ N(m;,o?) where o2 is a fixed but

unknown noise level.



Mixtures.in model M

Mixture ¢* is obtained with prior v, over ©;, such that, for a constant = > 0, we have
under vy, :

—

tures.

p and m are independent;

the iniation distribution p;?, = 1/k for every j/ < k is deterministic,

vectors (p,,/ : 7' < k) (j < k) are independent and Dirichlet(1/2,...,1/2)
distributed,

parameters m1, ..., m; are iid with Ny - for Gaus-
sian emission, and Gamma(r, 1/2) for Poisson emis- *'
sion. |

we use conjugate priors with parameters inspired from Krichevsky-Trofimov mix-



I Mixture inequalities

Proposition (Chambaz-G.-Gassiat '05): BIC-type mixture inequalities:
#» Poisson emission:

]C2
0 < sup log Pg(X"™)—log ¢" (X1 < ?logn—FkTX(n)—FC]m.
0cO,

» Gaussian emission:

k* k
0 < sup log fy(XT)—log ¢" (X" < — logn+—2\X|%n)+dkn.
0cOy, 2 27_

—

Remark: can no longer be interpreted as codelength inequalities!



I Two order. estimators

e Penalized Maximum Likelihood:

kyrr = arg min — log pr(x}) + pen(n, k).
kEN

e Mixture :

kairx = arg min — log g7 (27) + pen(n, k).
kEN

We need to penalize more than BIC (because of the maxima).

| I

We also need to penalize the mixture — it is often necessary.
Ex: B (1/2) for Markovian order

—



Consistency theorems

Theorem (Chambaz-G.-Gassiat ’05) Let

Skn = Din + k(k+ 1), logn in the Gaussian case, and

Skn = Epn + k(k + 1)% in the Poisson case.

kg2 + «
pen(n,k) = > 51087 + Cin + Sk,
=1

then kp 1, = ko eventually almost surely.
®» |

k—1

pen(n, k) = Z

=1

62
o logn + Si.,,.

then ka7 x = ko eventually almost surely.



Comments on the proofs

Different behaviours of the maxima :
# Poisson emission: X,,) = o(logn) does not interfer with the BIC term.

$ Gaussian emission: \X\%n) is of order logn — we have to penalize
significantly more than BIC.

Underestimation is easy to avoid, not overestimation!
The proofs are “imbricated”. we use the mixture inequalities even for kL

Analog result for Gaussian and Poisson mixtures with 2 — 1 degrees of freedom
instead of 2.

Advantage : no need for a priori bounds on the order or on the emission
parameters.

Disadvantage: in practice, computationally difficult.
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