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| Basics of Information Theory

® Let X be a stochastic process on the finite alphabet A,
with stationary ergodic distribution P.

#® For n € N* and the coding function C,, : A” — {0,1}",
the average coding rate is

Ey [1(Co(@)] >~ Ha(X) = Bz [~ log P(X])] — H(X),

# Kraftinequality : Y _,, 271 @) L1

#» Arithmetic coding = correspondence between coding
functions and probability distributions.

#® —logQ(xr)=code length for = with coding distribution (). I



| Universal Coding

® PP known only to belong to a class of sources
S — {IP)Q . 6 ~ @}

# EX: Markov chains, general stationary ergodic
processes.

#® Two- steps codes : code ¢ and then z|6.

#» Mixture codes : coding distribution = weighted average
of the (]P)Q)Qe@.

® EX: memoryless sources e ={0e0,1]4: 3, 4 6. = 1}.
Krichevski-Trofimov (K7) mixture

10
KT (1) = / Py() ——— 0 e
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| Redundancy

#® Pointwise redundancy R(C),|P)(z) = I(C,(x)) + logP(x)
Maximal redundancy R*(C,,|P) = max, R(C,|P)(x).
Minimax redundancy in class S :

R’ (S) = inf sup R*(C,,| P)

Cn PeS

#» For parametric classes with £ free parameters (like
Markov Chains), R (S) = £logn + O(1)

#» For the whole class of stationary ergodic processes, no
universal rate (Shields '93).

#» EX: the K7 mixture Is a almost %ptimal since
—log KT (z) < Qin(g — log Py(x) + 5 (JA] — 1) log
<
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| Complete suffix dictionnary

® 7 is a Complete Suffix Dictionnary (CSD) iff
vzl € A* FkeN: 2 €T
®» Forz® e A%, we call T (z) its suffix in 7.

® Any CSD can be represented as a trie whose leaves
are the elements of 7.

7 ={00,10,1} T = {0°} U {107 cofreossh et



| Context Iree Sources

® let7 beaCSDandp = (p(.|w)),.r be |7| probability
distributions on A.

#® The Context tree source P, Is the stationary
distribution on A% defined by

Pr, (X1 =a1|X o =22) =p(x1|T (22)).

» EX
P (X} =1001X°  =...01)
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I Finite CI.S are Markov chains

» The depth of the trie = Markovian order.

[ p(.|0)
p(.]0)
(.[01)

p
\ p(.]11) )
p(/01) p(J11)

# Variable Length Markov Chains : fewer free

parameters for a given memory size.




I Markov-Chains are CTS

» Corresponding trie = the full tree of depth
equal to the Markovian order :

[ p(./000) \

v — | P ([100)

\ p(.]111) )

o — CTS have the approximation power of
Markov chains to approach every stationary
ergodic source.

» They are not more complicated to use. I

p(j000) p(J100) p(jo20) p(J110) p(jooy)  P([0D)  p(jost)  p([iLL)



Expression of the likelihood

» Asz=(),.+7(x,s), the likelihood is:

Pro(aflats) = [[pl@|T@0)

# Hence the expression of the Maximum
Likelihood:

— log PT Z H(T I
seT



| ICZ mixture for a given model

» We define similarily:

KTr(a1]2" ) =[ler KT (T (2, 5))

#» Theorem : there is a constant (' such that :

—log, KI7(27]2Z,,) < inf —log, Prg(af]a”L,)
0ceT

Al —1
HT\‘ ‘ 10g<‘;‘>+07\
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» — Mminimax redundancy.



| Context Tree Weighting

#» \We only consider the binary case here.
# Prior 7 on the trees : there are Catalans = - (*)
trees with s + 1 leaves, thus we can choose:

w(7T) = 92T+,

® e define the double mixture
=Y KIr(z)n(T

#» This is a probability distribution on each A"
—> We can use arithmetic coding.
#» Efficiency : oracle inequality

—log CIW(x) < iTnf—logPyp( z) + |7 log (T + 2|7
P |2 I



| Algorithm to compute C7WW(x)

In each node, compute the arithmetical mean of a selfcost and a subcost.

(4, 3)
(2, 2) (2,1)
/\ /\

(2,0) (0, 2) (1, 0) (1,1) I
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| Algorithm to compute C7WW(x)

In each node, compute the arithmetical mean of a selfcost and a subcost.

(4,3)

2(s ¥ stms) =2 3G X511) =1
(2,2) (2, 1)
/\ /\

3 3 1 1
8 8 2 8



| Algorithm to compute C7WW(x)

In each node, compute the arithmetical mean of a selfcost and a subcost.

5 (356 ¥ 16 T 3058) = 5192
(4, 3)

1 /3 3 3 21 1 /1 1 1 1
5 (8 X 8T 198) = 256 5 (3X5T16) = 16
(2, 2) (2, 1)

3 3 1 1
8 8 2 8
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| Renewal Processes

#® X is a Renewal Process if it takes its values In
A ={0,1} and if the distances between successive 1’
In X are 1id random variables on N* with distribution ().

11000110100001

1 4 1 2 5

# Similarily, Markovian Renewal processes are defined

thru a Markovian kernel ().



| Properties

» A memoryless B(p) process is a RP with
geometric G(p) renewal times;

» If () I1s bounded, the RP is a Markov Chain
(better : a CTS).

s If o =001 0" 1102711 .. 0Pl Ofve
and If the renewal distribution is (), then
letting Ro(t) = > ., Q(u) we have:

1 N

PR (z) — (mﬁ@@o)) [T Q) Roix



I Minimax Redondancy - csiszarshieids

Theorem : In the class R of Renewal Processes,
there are two positive constants c et C' such that
Vn € N ;

cvn < R (R) < Cyn.

Theorem : In the class MR of Markovian
Renewal Processes, there are two positive
constants c et C' such that Vn € N :

n*3 < RY(MR) < Cn?3,

— First example of intermediate complexity classes. I



| Redundancy ofC7WW on RP _caeros

Theorem: There are two positive constants c et
C such thatforalln € N :

cyv/nlogn < R (CTW, P.R.) < C'y/nlogn.

Theorem: There are two positive constants c et
C telles que pour tout n € N :

en*Plogn < R (CTW., M.R.) < Cn*3logn.

B



Outline for the upper-bound

The approximation
tree sources “un-
derstands” P, until
depth k.

P,

Approximation tree of depth &k = /n;

—log CIW(x) < —log KIp(x) + 2k + 1;
—log KT (z) < —log Pr(x) + %;’1 logn + 3k + 1;
—log Pr(z) < —logPg (x) — log KT (7 (0%, z));

7 (0%, x) contains at most n/k = y/n symbols '1’, hence it can be coded with less
than /n log n bits.

oo 00 b



| Consequences

o CT)VV Is thus almost adaptive in this
Intermediate complexity, long-memory class.

» Extends to the Markovian case with n2/3.

» Also shows that restricting depth Is a serious
limitation.

» We use very unbalanced trees : decisive
advantage of Context Tree sources over

Markov models.
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