Perfect Simulation of Processes with Long Memory [arXiv:1106.5971]

Aurélien Garivier

CNRS & Telecom ParisTech

July 2011

Outline

- 1 Coupling From the Past: Propp and Wilson's algorithm
- 2 Chains of Infinite Order

- 3 Perfect Simulation for Chains of Infinite Order
- 4 Implementing the Algorithm

Stationary Markov Chains

Markov Chain
$$(X_t)_{t\in\mathbb{Z}}$$
 on the finite set $G=\{1,\ldots,K\}$ Dynamical System $X_{t+1}=\phi(U_t,X_t)$ Kernel $P(i,\cdot)\in\mathcal{M}_1(G)$, such that
$$\forall i,j\in G,\quad \mathbb{P}(X_{t+1}=j|X_t=i)=P(i,j)$$

Stationary distribution π such that $\pi P = P$

Example: shop inventory

Stock size X_t at the end of the week

Maximal stock size $1 \le X_t \le K$

Selling D_t during week t, i.i.d.

Refilling when $X_t = 1$, he orders K - 1 machines

$$\implies X_{t+1} = (X_t + (K-1)\mathbb{1}\{X_t = 1\} - D_{t+1}) \vee 1$$

Kernel:

$$P(i,j) = \begin{cases} \mathbb{P}(D_t = i - j) & \text{if } i > 1\\ \mathbb{P}(D_t = K - j) & \text{if } i = 1 \end{cases}$$

Example: if K=4 and $D_t \sim \mathcal{G}(1/2)$, then

$$P = \begin{pmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

Simulating the chain

Problem given a kernel P, simulate a sample path X_0, X_1, \ldots, X_n from the stationary Markov Chain with kernel P

Coupling $\phi: [0,1[\times\{1,\ldots,K\} \to \{1,\ldots,K\}]]$ such that

$$\forall i, j: \quad \lambda \big(\{u: \phi(u,i)=j\}\big) = P(i,j)$$

Recursion Given X_t , taking $X_{t+1} = \phi(U_t, X_t)$ works \implies it is sufficient to sample X_0 from π .

Coupling from the Past

Idea: given the sequence $(U_t)_{t\leq 0}$, I may know X_0 even if I do not know X_{-1} !

Local transition for each t < 0 let $f_t : G \to G$ be defined by

$$f_t(g) = \phi(U_t, g)$$

Iterated transition $F_t = f_{-1} \circ \cdots \circ f_t$

Propp-Wilson: if you know U_t for all $t \ge \tau(n)$, where

$$\tau(n) = \sup\{t < 0 : F_t \text{ is constant}\}\ ,$$

then you know X_0 .

Prop: $\tau(n)$ is of the same order of magnitude as the *mixing* time of the chain!

The Nummerlin coupling

Nummerlin coefficient:

$$A_1 = \sum_{j=1}^K \min_{1 \le i \le K} P(i, j)$$

Coupling $\phi: [0,1[\times G \to G \text{ such that }]$

$$u \le A_1 \implies \forall i, i', \ \phi(u, i) = \phi(u, i')$$

Regeneration if $U_t \leq A_1$, then X_{t+1}, X_{t+2}, \ldots , is independent from X_t, X_{t-1}, \ldots

alternative coupling from the past: wait for a regeneration!

Outline

- 1 Coupling From the Past: Propp and Wilson's algorithm
- 2 Chains of Infinite Order

- 3 Perfect Simulation for Chains of Infinite Order
- 4 Implementing the Algorithm

Histories

$$\begin{array}{l} \text{History } \underline{w} = w_{-\infty:-1} \in G^{-\mathbb{N}^*} \\ \text{Ultrametric distance } \delta(\underline{w},\underline{z}) = 2^{\sup\{k < 0: w_k \neq z_k\}} \\ \qquad \Longrightarrow (G^{-\mathbb{N}^*},\delta) \text{ is a complete and compact set.} \\ \text{Ball } B \subset G^{-\mathbb{N}^*} \text{ is a (closed or open) ball if} \\ B = \left\{\underline{z}s:\underline{z} \in G^{-\mathbb{N}^*}\right\} \text{ for some } s \in G^* \end{array}$$

Trees and roots $B = \mathcal{T}(s)$, $s = \mathcal{R}(B)$

Ex: $\mathcal{T}(\varepsilon) = G^{-\mathbb{N}^*}$, the radius of $\mathcal{T}(s)$ is $2^{-|s|}$

Piecewise constant A mapping f defined on $G^{-\mathbb{N}^*}$ is piecewise constant if the exists a family $\{s_j\}_{j\in\mathbb{N}}$ of elements of $G^{-\mathbb{N}^*}$ such that f is constant on each ball $\mathcal{T}(s_j)$.

Projection $\Pi^n:G^{-\mathbb{N}^*}\to G^n$ be defined by $\Pi_n(\underline{w})=w_{n:-1}.$

Kernels

Kernel
$$P: G^{-\mathbb{N}^*} \to \mathcal{M}_1(G)$$

Total Variation distance: for $p, q \in \mathcal{M}_1(G)$,

$$|p - q|_{TV} = \frac{1}{2} \sum_{a \in G} |p(a) - q(a)| = 1 - \sum_{a \in G} p(a) \land q(a)$$

Process $(X_t)_{t\in\mathbb{Z}}$ with distribution ν on $G^{\mathbb{Z}}$ is compatible with kernel P if the latter is a version of the one-sided conditional probabilities of the former:

$$\nu\left(X_i = g | X_{i+j} = w_j, j \in -\mathbb{N}^*\right) = P(g|\underline{w})$$

for all $i \in \mathbb{Z}, g \in G$ and ν -almost every w.

Kernel continuity

continuity
$$P: (G^{-\mathbb{N}^*}, \delta) \to (\mathcal{M}_1(G), |\cdot|_{TV})$$
 oscillation of P on the ball $\mathcal{T}(s)$

$$\eta(s) = \sup \{ |P(\cdot|\underline{w}) - P(\cdot|\underline{z})|_{TV} : \underline{w}, \underline{z} \in \mathcal{T}(s) \}.$$

- P1: P is continuous if and only if $\forall \underline{w} \in G^{-\mathbb{N}^*}, \eta(w_{-k:-1}) \to 0$ as k goes to infinity.
- P2: P is continuous if and only if $\sup\{\eta(s):s\in G^{-k}\}\to 0$ as k goes to infinity.
- P3: P is uniformly continuous if and only it is continuous.

Outline

- 1 Coupling From the Past: Propp and Wilson's algorithm
- 2 Chains of Infinite Order
- 3 Perfect Simulation for Chains of Infinite Order
- 4 Implementing the Algorithm

Existing CFP algorithms

- Comets, Fernandez, Ferrari 2002 simulation algorithm using a Kalikow-type decomposition of the kernel as a mixture of Markov Chains of all orders. Require strong continuity conditions.
- De Santis, Piccioni mix the ideas of CFF and the algorithm of PW: they propose an hybrid simulation scheme working with a Markov regime and a long-memory regime.
 - Gallo 2010 Relaxes the continuity condition, replaced by conditions on the *shape* of the memory tree.
 - Our goal: describe a single procedure that generalizes the sampling schemes of CFF and PW in an unified framework.

Coupling functions

Def:
$$\phi: [0,1[\times G^{-\mathbb{N}^*} \to G \text{ is called a } \textit{coupling of } P \text{ if } U \sim \mathcal{U}([0,1[) \implies \phi(U,\underline{w}) \sim P(\cdot|\underline{w})$$

for all $\underline{w} \in G^{-\mathbb{N}^*}$.

Prop: There exists a coupling ϕ of P such that:

$$\forall s \in G^*, 0 \le u < 1 - |G|\eta(s) \implies \phi(u, \cdot) \text{ cst on } \mathcal{T}(s)$$
.

Prop: If P is continuous, then for all $u \in [0,1[$ the mapping $\underline{w} \to \phi(u,\underline{w})$ is continuous, i.e, piecewise constant.

Perfect Simulation Scheme

- Goal: draw (X_n, \ldots, X_{-1}) from a stationary distribution compatible with P
- Tool: semi-infinite sequence of i.i.d. random variables

 $U_t \sim \mathcal{U}([0,1[)$

Idea: $S_t=(\dots,X_{t-1},X_t), t\in\mathbb{Z}$ is a Markov Chain on $G^{-\mathbb{N}^*}$, with kernel Q given by:

$$\forall \underline{w}, \underline{z} \in G^{-\mathbb{N}^*}, \quad Q(\underline{w}|\underline{z}) = P(w_{-1}|\underline{z}) \mathbb{1}_{w_{i-1} = z_i : i < 0}.$$

A Propp-Wilson Scheme

```
Local transition f_t: G^{-\mathbb{N}^*} \to G^{-\mathbb{N}^*} be defined by
                 f_t(w) = w\phi(U_t, w);
Iterated transition F_t = f_{-1} \circ \cdots \circ f_t
  Projection H_t^n = \Pi^n \circ F_t
 Continuity: H_t^n is a piecewise constant mapping
Propp-Wilson: if you wait for
                           \tau(n) = \sup\{t < n : H_t^n \text{ is constant}\}\,
                 you will know (X_n, \ldots, X_{-1})
```

Local Continuity Coefficients

For every $\underline{w} \in G^{-\mathbb{N}^*}$ the continuity of kernel P is locally characterized by the coefficients

$$a_k(g|w_{-k:-1}) = \inf\{P(g|\underline{z}) : \underline{z} \in \mathcal{T}(w_{-k:-1})\}$$

$$A_k(w_{-k:-1}) = \sum_{g \in G} a_k(g|w_{-k:-1})$$

$$A_k^- = \inf_{s \in G^{-k}} A_k(s)$$

$$\alpha_k(g|w_{-k:-1}) = A_{k-1}(w_{-k+1:-1}) + \sum_{h < g} \{a_k(h|w_{-k:-1}) - a_{k-1}(h|w_{-k+1:-1})\}$$

$$\beta_k(g|w_{-k:-1}) = A_{k-1}(w_{-k+1:-1}) + \sum_{h < g} \{a_k(h|w_{-k:-1}) - a_{k-1}(h|w_{-k+1:-1})\}$$

Local characterization of the kernel continuity

Let P be a fixed kernel on G.

Prop: For all $s \in G^*$,

$$1 - |G|\eta(s) \le A_{|s|}(s) \le 1 - \eta(s) .$$

Prop: The three assertions are equivalent:

- (i) the kernel *P* is continuous;
- (ii) $\forall \underline{w} \in G^{-\mathbb{N}^*}$, $A_k(w_{-k:-1}) \to 1$ as $k \to \infty$;
- (iii) $A_k^- \to 1$ as k goes to infinity.

Construction of the coupling

Prop: For every $\underline{w} \in G^{-\mathbb{N}^*}$,

$$[0,1] = \bigsqcup_{g \in G, k \in \mathbb{N}} [\alpha_k(g|w_{-k:-1}), \beta_k(g|w_{-k:-1})].$$

Def: The mapping $\phi:[0,1[\times G^{-\mathbb{N}^*}\to G \text{ is defined as follows:}$

$$\phi(u,\underline{w}) = \sum_{g \in G, k \in \mathbb{N}} g \mathbb{1}_{[\alpha_k(g), \beta_k(g)[}(u) .$$

Prop: ϕ is a coupling function such that $\forall s \in G^*, \forall u \in [0,1]$:

$$\forall \underline{w}, \underline{z} \in \mathcal{T}(s), \quad u < A_{|s|}(s) \implies \phi(u, \underline{w}) = \phi(u, \underline{z}).$$

Illustration

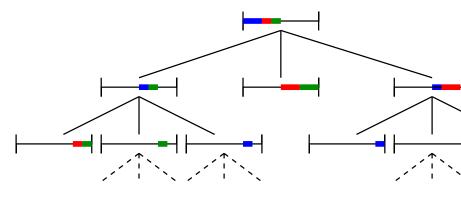


Figure: Graphical representation of a coupling ϕ on alphabet $\{0,1,2\}$: for each $w_{-k:-1}$, the intervals $[\alpha_k(g|w_{-k:-1}),\beta_k(g|w_{-k:-1})[$ are represented in blue (g=0), red (g=1) and green (g=2). For example, $P(1|1)=\alpha_0(1|\varepsilon)+\alpha_1(1|1)=1/8+1/4$, and $P(0|00)=\alpha_0(|\varepsilon)+\alpha_1(0|0)+\alpha_2(0|00)=1/4+1/8+0$.

Outline

- 1 Coupling From the Past: Propp and Wilson's algorithm
- 2 Chains of Infinite Order
- 3 Perfect Simulation for Chains of Infinite Order
- 4 Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words $D \subset \mathcal{P}(G^*)$ is a CSD if one of the following equivalent properties is satisfied:

lacksquare every $\underline{w} \in G^{-\mathbb{N}^*}$ has a unique suffix in D:

$$\forall \underline{w} \in G^{-\mathbb{N}^*}, \exists ! s \in D : \underline{w} \succeq s ;$$

 \blacksquare $\{T(s): s \in D\}$ is a partition of $G^{-\mathbb{N}^*}$:

$$G^{-\mathbb{N}^*} = \sqcup_{s \in D} \mathcal{T}(s)$$
.

The depth of D is

$$d(D) = \sup\{|s| : s \in D\}$$

The smallest possible CSD is $\{\epsilon\}$: it has depth 0 and size 1. The second smallest is G, it has depth 1.

Representation as a trie

A CSD D can be represented by a trie, that is, a tree with edges labelled by elements of G such that the path from the root to any leaf is labelled by an element of D.

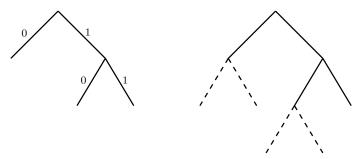


Figure: Left: the trie representing the Complete Suffix Dictionary $D = \{0,01,11\}$. Right: $\{00,10,001,101,11\} \succeq \{0,01,11\}$. Both examples concern the binary alphabet.

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on $G^{-\mathbb{N}^*}$ is D-constant if

$$\forall s \in D, \forall w \in \mathcal{T}(s), f(\underline{w}) = f(\underline{0}s)$$
.

Def: For every $h \in G^{-\mathbb{N}^*} \cup G^*$ we define $f(h) = f(\mathcal{T}(h)) = f\left(\vec{D}(h)\right)$ and note that if $h \succeq D, f(h)$ is a singleton.

Minimal CSD $D^f = \text{CSD}$ with minimal cardinality such that f is constant on each of its elements.

Pruning if f is D-constant, then D^f can be obtained by recursive pruning of D.

Recursive construction of H_t^n

The mapping H^n_t being piecewise constant, we define $D^n_t = D^{H^n_t}$.

- $\qquad \text{Initialization: } D^1_{-1} = G, \quad \forall g \in G, \forall \underline{w} \in \mathcal{T}(s), H^1_{-1}(\underline{w}) = g.$
- For t<-1, $s\in D(U_t)$ denote $\{g_t(s)\}=\phi(U_t,s)$ and define $E^n_t(s)$ as follows:
 - $\blacksquare \text{ if } sg_t(s) \succeq D^n_{t+1} \text{, let } E^n_t(s) = \{s\};$
 - otherwise, let

$$E_t^n(s) = \bigcup_{hg_t(s) \in D_{t+1}^n(sg_t(s))} \{h\} .$$

Let

$$E_t^n = \bigcup_{s \in D(U_t)} E_t^n(s) .$$

 E^n_t is a CSD, and H^n_t is E^n_t -constant.

- lacksquare D^n_t is obtained by pruning E^n_t
- for t=n, D_t^t is equal to D_t^{t+1} unless $D_t^{t+1}=\{\epsilon\}$, in which case $D_t^t=G$.

How it works

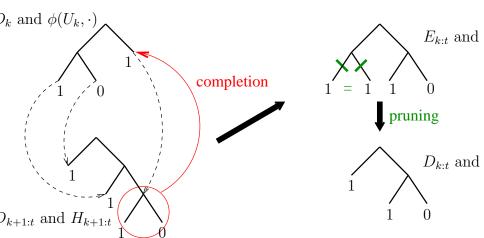


Figure: Obtaining D_t^n from D_t and D_{t+1}^n . For each function $\phi(U_t,\cdot), D_{t+1}^n$ and D_t^n , we represent a CSD on which it is constant, and the values taken in each leaf; here, $G=\{0,1\}$.

Example

Renewal process For all $k \geq 0$, let

$$P(0|01^k) = 1 - 1/\sqrt{k}$$

Not Harris Observe that $P(1|0) = \lim_{k\to\infty} P(0|01^k) = 1$, so that $a_0 = 0$.

Slow continuity for $k \geq 0$, $A_{k+1} = A_k(01^k) = 1 - 1/\sqrt{k}$, so that

$$\sum_{n} \prod_{k=2}^{n} A_{k}^{-} < \infty$$

⇒ the continuity conditions of [Comets, Fernandez, Ferrari] and [De Santis, Piccioni] do not apply.

yet the algorithm works well

Example: the coupling illustrated

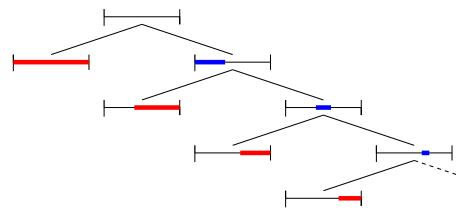


Figure: Graphical representation of the coupling function of ${\cal P}$ - blue stands for 0, red stands for 1

Conclusion

The perfect simulation scheme described in this presentation is

Versatile: works as well for Markov Chains and for (mixing)

infinite memory processes

Powerful: needs weak continuity assumptions to converge

Fast: for (large order) Markov chains, much faster than Propp-Wilson's algorithm on the extended chain

but a little hard to implement...