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Two Problems of Dynamic Resource Allocation

Clinical Trials

Imagine you are a doctor :

patients visit you one after another for a given disease

you prescribe one of the (say) 5 treatments available

the treatments are not equally efficient

you do not know which one is the best, you observe the effect
of the prescribed treatment on each patient

⇒ What do you do ?

You must choose each prescription using only the previous
observations

Your goal is not to estimate each treatment’s efficiency
precisely, but to heal as many patients as possible



Two Problems of Dynamic Resource Allocation

Detection of Anomaly in Electrical Systems

Power system
security
assessment

By Mark MacAlester, Federal Emergency Management Agency [Public
domain], via Wikimedia Commons

Identifying contingencies/scenarios that could lead to
unacceptable operating conditions (dangerous contingencies) if no
preventive actions were taken.
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The Bandit Model

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric family, or not. Examples :
canonical exponential family, general bounded
rewards

Example Bernoulli rewards : θ ∈ [0, 1]K , νa = B(θa)

Strategy The agent’s actions follow a dynamical strategy
π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



The Bandit Model

Real challenges

Randomized clinical trials

original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems :

advertisement
website optimization
news, blog posts, . . .

Computer experiments

large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few choices
are possible for the parameters

Games and planning (tree-structured options)



The Bandit Model

Performance Evaluation, Regret

Cumulated Reward ST =
∑T

t=1Xt

Our goal Choose π so as to maximize

E [ST ] =

T∑
t=1

K∑
a=1

E
[
E [Xt1{At = a}|X1, . . . , Xt−1]

]
=

K∑
a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) =

∑
t≤T 1{At = a} is the number of

draws of arm a up to time T , and µa = E(νa).

Regret Minimization equivalent to minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
a (T )]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}



The Bandit Model Lower Bound for the Regret

Asymptotically Optimal Strategies

A strategy π is said to be consistent if, for any (νa)a ∈ FK ,

1

T
E[ST ]→ µ∗

The strategy is uniformly efficient if for all θ ∈ [0, 1]K and all
α > 0,

RT = o(Tα)

There are uniformly efficient strategies and we consider the
best achievable asymptotic performance among uniformly
efficient strategies



The Bandit Model Lower Bound for the Regret

The Bound of Lai and Robbins

One-parameter reward distribution νa = νθa , θa ∈ Θ ⊂ R .

Theorem [Lai and Robbins, ’85]

If π is a uniformly efficient strategy, then for any θ ∈ ΘK ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
KL(νa, ν∗)

where KL(ν, ν ′) denotes the Kullback-Leibler divergence

For example, in the Bernoulli case :

KL
(
B(p),B(q)

)
= dber(p, q) = p log

p

q
+ (1− p) log

1− p
1− q



The Bandit Model Lower Bound for the Regret

The Bound of Burnetas and Katehakis

More general reward distributions νa ∈ Fa

Theorem [Burnetas and Katehakis, ’96]

If π is an efficient strategy, then, for any θ ∈ [0, 1]K ,

lim inf
T→∞

RT
log(T )

≥
∑

a:µa<µ∗

µ∗ − µa
Kinf (νa, µ∗)

where

Kinf (νa, µ
∗) = inf

{
K(νa, ν

′) :

ν ′ ∈ Fa, E(ν ′) ≥ µ∗
}

ν∗

δ1

δ 1
2

δ0

Kinf (νa, µ
?)

νa

µ∗
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The Bandit Model Optimistic Algorithms

Optimism in the Face of Uncertainty

Optimism in an heuristic principle popularized by [Lai&Robins
’85 ; Agrawal ’95] which consists in letting the agent

play as if the environment was the most favorable
among all environments that are sufficiently likely
given the observations accumulated so far

Surprisingly, this simple heuristic principle can be instantiated into
algorithms that are robust, efficient and easy to implement in
many scenarios pertaining to reinforcement learning



The Bandit Model Optimistic Algorithms

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85 ; Agrawal ’95 ; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm :

Sa(t)

Na(t)︸ ︷︷ ︸
estimated reward

+

√
log(t)

2Na(t)︸ ︷︷ ︸
exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79]

Its behavior is easily interpretable and intuitively appealing



The Bandit Model Optimistic Algorithms

UCB in Action



The Bandit Model Optimistic Algorithms

UCB in Action



The Bandit Model Optimistic Algorithms

Performance of UCB

For rewards in [0, 1], the regret of UCB is upper-bounded as

E[RT ] = O(log(T ))

(finite-time regret bound) and

lim sup
T→∞

E[RT ]

log(T )
≤

∑
a:µa<µ∗

1

2(µ∗ − µa)

Yet, in the case of Bernoulli variables, the rhs. is greater than
suggested by the bound by Lai & Robbins

Many variants have been suggested to incorporate an estimate of
the variance in the exploration bonus (e.g., [Audibert&al ’07])



The Bandit Model The General UCB Algorithm

The KL-UCB algorithm

Parameters : An operator ΠF : M1(S)→ F ; a non-decreasing
function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
E(ν) : ν ∈ F and KL

(
ΠF
(
ν̂a(t)

)
, ν
)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



The Bandit Model The General UCB Algorithm

Parametric setting : Exponential Families
Assume that Fa = F = canonical exponential family, i.e. such
that the pdf of the rewards is given by

pθa(x) = exp
(
xθa − b(θa) + c(x)

)
, 1 ≤ a ≤ K

for a parameter θ ∈ RK , expectation µa = ḃ(θa)
The KL-UCB si simply :

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
For instance,

for Bernoulli rewards :

dber(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

for exponential rewards pθa(x) = θae−θax :

dexp(u, v) = u− v + u log
u

v

The analysis is generic and yields a non-asymptotic regret
bound optimal in the sense of Lai and Robbins.



The Bandit Model The General UCB Algorithm

The kl-UCB algorithm

Parameters : F parameterized by the expectation µ ∈ I ⊂ R with
divergence d, a non-decreasing function f : N→ R
Initialization : Pull each arm of {1, . . . ,K} once

for t = K to T − 1 do

compute for each arm a the quantity

Ua(t) = sup

{
µ ∈ I : d

(
µ̂a(t), µ

)
≤ f(t)

Na(t)

}
pick an arm At+1 ∈ arg max

a∈{1,...,K}
Ua(t)

end for



The Bandit Model The General UCB Algorithm

The kl Upper Confidence Bound in Picture

If Z1, . . . , Zs
iid∼ B(θ0), x < θ0

and if p̂s = (Z1 + · · · + Zs)/s,
then

Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))

0

kl(⋅,θ)

θ
0

x

−log(α)/s

In other words, if α = exp (−s kl(x, θ0)) :

Pθ0 (p̂s ≤ x) = Pθ0
(

kl(p̂s, θ0) ≤ − log(α)

s
, p̂s < θ0

)
≤ α

=⇒ upper confidence bound for p at risk α :

us = sup
{
θ > p̂s : kl(p̂s, θ) ≤ −

log(α)

s

}



The Bandit Model The General UCB Algorithm
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Pθ0 (p̂s ≤ x) ≤ exp (−s kl(x, θ0))

0

kl(⋅,θ)

p
s

kl(p
s
,⋅)

u
s

−log(α)/s
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The Bandit Model The General UCB Algorithm

Key Tool : Deviation Inequality for Self-Normalized Sums

Problem : random number of summands

Solution : peeling trick (as in the proof of the LIL)

Theorem For all ε > 1,

P
(
µa > µ̂a(t) and Na(t) d

(
µ̂a(t), µa

)
≥ ε
)
≤ e
⌈
ε log(t)

⌉
e−ε .

Thus,
P
(
Ua(t) < µa

)
≤ e
⌈
f(t) log(t)

⌉
e−f(t)



The Bandit Model The General UCB Algorithm

Regret bound

Theorem : Assume that all arms belong to a canonical, regular,
exponential family F = {νθ : θ ∈ Θ} of probability distributions
indexed by its natural parameter space Θ ⊆ R. Then, with the
choice f(t) = log(t) + 3 log log(t) for t ≥ 3, the number of draws
of any suboptimal arm a is upper bounded for any horizon T ≥ 3 as

E [Na(T )] ≤ log(T )

d (µa, µ?)
+2

√√√√2πσ2
a,?

(
d′(µa, µ?)

)2(
d(µa, µ?)

)3 √
log(T ) + 3 log(log(T ))

+

(
4e+

3

d(µa, µ?)

)
log(log(T )) + 8σ2

a,?

(
d′(µa, µ

?)

d(µa, µ?)

)2

+ 6 ,

where σ2
a,? = max

{
Var(νθ) : µa ≤ E(νθ) ≤ µ?

}
and where

d′( · , µ?) denotes the derivative of d( · , µ?).



The Bandit Model The General UCB Algorithm

Results : Two-Arm Scenario
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Figure: Performance of various algorithms when θ = (0.9, 0.8). Left :
average number of draws of the sub-optimal arm as a function of time.
Right : box-and-whiskers plot for the number of draws of the sub-optimal
arm at time T = 5, 000. Results based on 50, 000 independent
replications



The Bandit Model The General UCB Algorithm

Results : Ten-Arm Scenario with Low Rewards

0

100

200

300

400

500

10
2

10
3

10
4

R
n

UCB

0

100

200

300

400

500

10
2

10
3

10
4

MOSS

0

100

200

300

400

500

10
2

10
3

10
4

UCB−V

0

100

200

300

400

500

10
2

10
3

10
4

R
n

UCB−Tuned

0

100

200

300

400

500

10
2

10
3

10
4

DMED

0

100

200

300

400

500

10
2

10
3

10
4

KL−UCB

0

100

200

300

400

500

10
2

10
3

10
4

n (log scale)

R
n

CP−UCB

0

100

200

300

400

500

10
2

10
3

10
4

n (log scale)

DMED+

0

100

200

300

400

500

10
2

10
3

10
4

n (log scale)

KL−UCB+

Figure: Average regret as a function of time when
θ = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01). Red line : Lai
& Robbins lower bound ; thick line : average regret ; shaded regions :
central 99% region an upper 99.95% quantile
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The Bandit Model Non-parametric setting : Empirical Likelihood

Non-parametric setting

Rewards are only assumed to be bounded (say in [0, 1])

Need for an estimation procedure

with non-asymptotic guarantees
efficient in the sense of Stein / Bahadur

=⇒ Idea 1 : use dber (Hoeffding)

=⇒ Idea 2 : Empirical Likelihood [Owen ’01]

Bad idea : use Bernstein / Bennett



The Bandit Model Non-parametric setting : Empirical Likelihood

First idea : use dber

Idea : rescale to [0, 1], and take the divergence dber.

−→ because Bernoulli distributions maximize deviations among
bounded variables with given expectation :

Lemma (Hoeffding ’63)

Let X denote a random variable such that 0 ≤ X ≤ 1 and denote
by µ = E[X] its mean. Then, for any λ ∈ R,

E [exp(λX)] ≤ 1− µ+ µ exp(λ) .

This fact is well-known for the variance, but also true for all
exponential moments and thus for Cramer-type deviation bounds



The Bandit Model Non-parametric setting : Empirical Likelihood

Regret Bound for kl-UCB

Theorem

With the divergence dber, for all T > 3,

E
[
Na(T )

]
≤ log(T )

dber(µa, µ?)
+

√
2π log

(
µ?(1−µa)
µa(1−µ?)

)
(
dber(µa, µ?)

)3/2 √
log(T ) + 3 log

(
log(T )

)

+

(
4e+

3

dber(µa, µ?)

)
log
(
log(T )

)
+

2

(
log
(
µ?(1−µa)
µa(1−µ?)

))2

(dber(µa, µ?))
2 + 6 .

kl-UCB satisfies an improved logarithmic finite-time regret
bound

Besides, it is asymptotically optimal in the Bernoulli case



The Bandit Model Non-parametric setting : Empirical Likelihood

Comparison to UCB
KL-UCB addresses exactly the same problem as UCB, with the
same generality, but it has always a smaller regret as can be seen
from Pinsker’s inequality

dber(µ1, µ2) ≥ 2(µ1 − µ2)2
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The Bandit Model Non-parametric setting : Empirical Likelihood

Idea 2 : Empirical Likelihood

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)

)
and KL(ν̂n, ν

′) ≤ ε
}

or, rather, modified Empirical Likelihood :

U(ν̂n, ε) = sup
{
E(ν′) : ν′ ∈M1

(
Supp(ν̂n)∪{1}

)
and KL(ν̂n, ν

′) ≤ ε
}

µ̂n

Un



The Bandit Model Non-parametric setting : Empirical Likelihood

Coverage properties of the modified EL confidence bound

Proposition : Let ν0 ∈M1([0, 1]) with E(ν0) ∈ (0, 1) and let
X1, . . . , Xn be independent random variables with common
distribution ν0 ∈M1

(
[0, 1]

)
, not necessarily with finite support.

Then, for all ε > 0,

P
{
U(ν̂n, ε) ≤ E(ν0)

}
≤ P

{
Kinf

(
ν̂n, E(ν0)

)
≥ ε
}

≤ e(n+ 2) exp(−nε) .

Remark : For {0, 1}–valued observations, it is readily seen that
U(ν̂n, ε) boils down to the upper-confidence bound above.
=⇒ This proposition is at least not always optimal : the presence

of the factor n in front of the exponential exp(−nε) term is
questionable.



The Bandit Model Non-parametric setting : Empirical Likelihood

Regret bound

Theorem : Assume that F is the set of finitely supported
probability distributions over S = [0, 1], that µa > 0 for all arms a
and that µ? < 1. There exists a constant M(νa, µ

?) > 0 only
depending on νa and µ? such that, with the choice
f(t) = log(t) + log

(
log(t)

)
for t ≥ 2, for all T ≥ 3 :

E
[
Na(T )

]
≤ log(T )

Kinf

(
νa, µ?

) +
36

(µ?)4

(
log(T )

)4/5
log
(

log(T )
)

+

(
72

(µ?)4
+

2µ?

(1− µ?)Kinf

(
νa, µ?

)2
)(

log(T )
)4/5

+
(1− µ?)2M(νa, µ

?)

2(µ?)2

(
log(T )

)2/5
+

log
(
log(T )

)
Kinf

(
νa, µ?

) +
2µ?

(1− µ?)Kinf

(
νa, µ?

)2 + 4 .



The Bandit Model Non-parametric setting : Empirical Likelihood

Example : truncated Poisson rewards

for each arm 1 ≤ a ≤ 6 is associated with νa, a Poisson
distribution with expectation (2 + a)/4, truncated at 10.

N = 10, 000 Monte-Carlo replications on an horizon of
T = 20, 000 steps.
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The Bandit Model Non-parametric setting : Empirical Likelihood

Example : truncated Exponential rewards

exponential rewards with respective parameters 1/5, 1/4, 1/3,
1/2 and 1, truncated at xmax = 10 ;

kl-UCB uses the divergence d(x, y) = x/y − 1− log(x/y)
prescribed for genuine exponential distributions, but it ignores
the fact that the rewards are truncated.
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Optimal Discovery with Expert Advice

The model

Subset A ⊂ X of
important items

|X | � 1, |A| � |X |
Access to X only
by probabilistic
experts (Pi)1≤i≤K :
sequential
independent draws

Goal : discover rapidly the elements of A
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Optimal Discovery with Expert Advice

Goal

At each time step t = 1, 2, . . . :

pick an index It = πt
(
I1, Y1, . . . , Is−1, Ys−1

)
∈ {1, . . . ,K}

according to past observations

observe Yt = XIt,nIt,t
∼ PIt , where

ni,t =
∑
s≤t

1{Is = i}

Goal : design the strategy π = (πt)t so as to maximize the number
of important items found after t requests

F π(t) =
∣∣∣A ∩ {Y1, . . . , Yt

}∣∣∣
Assumption : non-intersecting supports

A ∩ supp(Pi) ∩ supp(Pj) = ∅ for i 6= j



Optimal Discovery with Expert Advice

Is it a Bandit Problem ?

It looks like a bandit problem. . .

sequential choices among K options

want to maximize cumulative rewards

exploration vs exploitation dilemma



Optimal Discovery with Expert Advice

Is it a Bandit Problem ?

It looks like a bandit problem. . .

sequential choices among K options

want to maximize cumulative rewards

exploration vs exploitation dilemma

. . . but it is not a bandit problem !

rewards are not i.i.d.

destructive rewards : no interest to observe twice the same
important item

all strategies eventually equivalent



Optimal Discovery with Expert Advice

The oracle strategy

Proposition : Under the non-intersecting support hypothesis, the
greedy oracle strategy

I∗t ∈ arg max
1≤i≤K

Pi (A \ {Y1, . . . , Yt})

is optimal : for every possible strategy π, E
[
F π(t)

]
≤ E

[
F ∗(t)

]
.

Remark : the proposition if false if the supports may intersect

=⇒ estimate the “missing mass of important items” !



Optimal Discovery with Expert Advice The Good-UCB algorithm

Missing mass estimation

Let us first focus on one expert i : P = Pi, Xn = Xi,n

X1, . . . , Xn independent draws of P

On(x) =

n∑
m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen important items

Rn =
∑
x∈A

P (x)1{On(x) = 0} ?



Optimal Discovery with Expert Advice The Good-UCB algorithm

The Good-Turing Estimator

Idea : use the hapaxes = items seen only once (linguistic)

R̂n =
Un
n
, where Un =

∑
x∈A

1{On(x) = 1}

Lemma [Good ’53] : For every distribution P ,

0 ≤ E
[
R̂n
]
− E

[
Rn
]
≤ 1

n

Proposition : With probability at least 1− δ for every P ,

R̂n −
1

n
− (1 +

√
2)

√
log(4/δ)

n
≤ Rn ≤ R̂n + (1 +

√
2)

√
log(4/δ)

n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03] :

deviations of R̂n : McDiarmid’s inequality

deviations of Rn : negative association



Optimal Discovery with Expert Advice The Good-UCB algorithm

The Good-UCB algorithm

Estimator of the missing important mass for expert i :

R̂i,ni,t−1 =
1

ni,t−1

∑
x∈A

1

{ ni,t−1∑
s=1

1{Xi,s = x} = 1

and
K∑
j=1

nj,t−1∑
s=1

1{Xj,s = x} = 1

}

Good-UCB algorithm :

1: For 1 ≤ t ≤ K choose It = t.
2: for t ≥ K + 1 do

3: Choose It = arg max1≤i≤K

{
R̂i,ni,t−1 + C

√
log (4t)
ni,t−1

}
4: Observe Yt distributed as PIt
5: Update the missing mass estimates accordingly
6: end for
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Classical analysis

Theorem : For any t ≥ 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 +

√
2)
√

3) satisfies

E
[
F ∗(t)− FUCB(t)

]
≤ 17

√
Kt log(t)+20

√
Kt+K+K log(t/K)

Remark : Usual result for bandit problem, but not-so-simple
analysis
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Sketch of proof

1 On a set Ω̃ of probability at least 1−
√

K
t , the “confidence

intervals” hold true simultaneously all u ≥
√
Kt

2 Let Īu = arg max1≤i≤K Ri,ni,u−1 . On Ω̃,

RIu,nIu,u−1
≥ RĪu,nĪu,u−1

− 1

nIu,u−1
− 2(1 +

√
2)

√
3 log(4u)

nIu,u−1

3 But one shows that EF ∗(t) ≤
∑t

u=1 ERĪu,nπĪu,u−1

4 Thus

E
[
F ∗(t)− FUCB(t)

]
≤
√
Kt+ E

[
t∑

u=1

1

nIu,u−1
+ 2(1 +

√
2)

√
3 log(4t)

nIu,u−1

]
≤
√
Kt+K +K log(t/K) + 4(1 +

√
2)
√

3Kt log(4t)
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Experiment : restoring property

Figure: green : oracle, blue : Good-UCB, red : uniform sampling
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Another analysis of Good-UCB

For λ ∈ (0, 1), T (λ) = time at which missing mass of important
items is smaller than λ on all experts :

T (λ) = inf

{
t : ∀i ∈ {1, . . . ,K}, Pi(A \ {Y1, . . . , Yt}) ≤ λ

}
Theorem : Let c > 0 and S ≥ 1. Under the non-intersecting
support assumption, for Good-UCB with C = (1 +

√
2)
√
c+ 2,

with probability at least 1− K
cSc , for any λ ∈ (0, 1),

TUCB(λ) ≤ T ∗ +KS log (8T ∗ + 16KS log(KS)) ,

where T ∗ = T ∗

(
λ− 3

S
− 2(1 +

√
2)

√
c+ 2

S

)
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The macroscopic limit

Restricted framework : Pi = U{1, . . . , N}
N →∞
|A ∩ supp(Pi)|/N → qi ∈ (0, 1), q =

∑
i qi
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N →∞
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The Oracle behaviour

The limiting discovery process of the Oracle strategy is
deterministic

Proposition : For every λ ∈ (0, q1), for every sequence (λN )N
converging to λ as N goes to infinity, almost surely

lim
N→∞

TN∗ (λN )

N
=
∑
i

(
log

qi
λ

)
+
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Oracle vs. uniform sampling

Oracle : The proportion of important items not found after
Nt draws tends to

q−F ∗(t) = I(t)q
I(t)

exp (−t/I(t)) ≤ Kq
K

exp(−t/K)

with q
K

=
(∏K

i=1 qi

)1/K
the geometric mean of the

(qi)i.

Uniform : The proportion of important items not found after
Nt draws tends to Kq̄K exp(−t/K)

=⇒ Asymptotic ratio of efficiency

ρ(q) =
q̄K
q
K

=
1
K

∑k
i=1 qi(∏k

i=1 qi

)1/K
≥ 1

larger if the (qi)i are unbalanced
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Macroscopic optimality

Theorem : Take C = (1 +
√

2)
√
c+ 2 with c > 3/2 in the

Good-UCB algorithm.

For every sequence (λN )N converging to λ as N goes to
infinity, almost surely

lim sup
N→+∞

TNUCB(λN )

N
≤
∑
i

(
log

qi
λ

)
+

The proportion of items found after Nt steps FGUCB

converges uniformly to F ∗ as N goes to infinity
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Experiment
Number of items found by Good-UCB (solid), the OCL (dashed),
and uniform sampling (dotted) as a function of time for sizes
N = 128, N = 500, N = 1000 and N = 10000 in a 7-experts
setting.
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Conclusion and perspectives

For True Bandit Problems :

Use kl-UCB (not UCB), or KL-UCB if speed is not a problem

To do : improve on the deviation bounds

address more general non-parametric families of distributions

Otherwise :

Ideas can be adapted to specific needs

For the optimal discovery with probabilistic expert advice, we
give a standard regret analysis under the only assumption that
the supports of the experts are non-overlapping

We propose a different optimality result, which permits a
macroscopic analysis in the uniform case

Another interesting limit to consider is when the number of
important items to find is fixed, but the total number of items
tends to infinity (Poisson regime)

Then, the behavior of the algorithm is not very good : need
tighter deviation bounds



Conclusion and perspectives

For model-based Reinforcement
Learning in Markov Decision Processes,
see :
[Filippi et al., Optimism in Reinforcement

Learning and Kullback-Leibler Divergence,

Allerton Conference, 2010]

Thank you for your attention !
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