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This internship aims to invesigate, both theoretically and experimentally,
the potential of original activation functions respecting the symmetries of the
neural networks. One of the simplest possible “neural network architectures”
is the function

f ∶ x↦ V σ(Ux),
where x ∈ Rd, U ∈ Rℓ×d, V ∈ Rk×ℓ, and the mapping σ ∶ R → R is applied
coordinate by coordinate on V x, so that for every i ∈ {1 . . . , ℓ}, we have
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Suppose for a moment that the mapping σ is just the identity, and that
k = d. The singular value decomposition of the matrix V U gives us two
families of orthonormal vectors in Rd, say (u1, . . . , ud) and (v1, . . . , vd), as
well as a family of numbers λ1 ⩾ ⋯ ⩾ λd ⩾ 0, such that

f(x) = V Ux =
d

∑
i=1

λi(x ⋅ ui)vi.

In situations in which f is learnt from data, one can expect that many of
the directions (u1, . . . , ud) and (v1, . . . , vd) will be highly interpretable, each
one encoding one particular “feature”. On the other hand, the output of
each “neuron” indexed by i in (1) does not have any special meaning in this
case.

This simple example shows that in general, it does not really make sense
to hope that each individual “neuron” will naturally be associated with a
particular feature. When σ is a non-linear function such as the ReLU, ap-
plying the non-linearity coordinate by coordinate breaks the invariance by
change of basis, and the interpretation of singular value directions may be-
come compromised. On the other hand, attention layers are defined without
reference to a priviledged basis, and the singular vectors of the weight ma-
trices are indeed highly interpretable in this case [1].

The goal of the proposal is to look for ways to replace “perceptron” layers
of the form x↦ V σ(Ux) by alternative non-linear functions that would not
require to choose a priviledged basis. One candidate is to use mappings of
the form

x↦ (W1x)⊗ (W2x),
since the tensor product ⊗ is “basis-agnostic”. The goal would be to deter-
mine, through theorical arguments and numerical experiments, how these
tensor-product non-linearities compare with classical perceptron layers, in
terms of their expressivity, trainability, and interpretability.

Another potential benefit of using tensor-product non-linearities is that
they are polynomial functions of the data. As such, these non-linearities
can be computed efficiently even when operating on data that, for privacy
purposes, is only available through homomorphic encryption.
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