Exercice 1. (Warming up)

1. Inhabit the following types in $\lambda \rightarrow \times$:

\[
X \rightarrow (X \rightarrow R) \rightarrow R \quad A \times ((B \rightarrow R) \rightarrow R) \rightarrow (A \times B \rightarrow R) \rightarrow R
\]

2. Recall the encoding of binary trees with element of type A in system F. How could you generalize it to n-ary trees? to infinite branching trees?

Exercice 2 (Typing with type algebra).

In this exercise we give more power to the simple type system by considering types up to some congruence \equiv. For example, we can have equivalence of the form $A \equiv A \rightarrow B$.

Typing rules remains unchanged but a type can be replaced by an equivalent type at any point of the derivation. In this system, type derivations are denoted $\Delta \vdash t: A$.

- Show that if $A \equiv A \rightarrow B$ then $\vdash \Omega : B$. (Hint : first show that $\vdash \lambda x.xx : A$)

- Show that if \equiv is a congruence for \rightarrow then the subject reduction property holds. You can use the generation lemma associated to simply typed lambda-calculus.

Exercice 3 (Existential in System F). In propositional second order intuitionistic logic the existential quantifier is introduced and destructed via the following (annotated) rules:

\[
\left(\exists I\right) \quad \Delta \vdash t : T(S/X) \quad \Delta \vdash t : \exists X.T \quad \Delta, x : T \vdash s : B \quad X \not\in FV(\Delta, B) \\
\left(\exists E\right) \quad \Delta \vdash \text{let } [X, x : T] = t \text{ in } s : B
\]

From a logical point of view existentials can be seen as infinite disjunction, from a programming point of view they can be interpreted as an encapsulation mechanism.

1. Find an appropriate type representation for the existential in System F, with an encoding for \existsI and let \existsE. Check that it validates the corresponding β rule.

2. Recall the encoding of NJ in System F and deduce that second order propositional intuitionistic logic is representable in System F.

3. In programming, streams are co-inductive datatypes with two accessors:

\[
\text{hd} : \text{Str}_A \rightarrow A \quad \text{tl} : \text{Str}_A \rightarrow \text{Str}_A
\]

and a building function $\text{build} : (A \rightarrow B) \rightarrow \text{Str}_A \rightarrow \text{Str}_B$ such that

\[
\text{hd} (\text{build } f \ s) = f(\text{hd}s) \quad \text{tl} (\text{build } f \ s) = \text{build } f (\text{tls})
\]

What could be an encoding of Str_A in System F?

4. Define the function $\text{nth} : \text{Nat} \rightarrow \text{Str}_A \rightarrow A$ that returns the n^{th} element of a stream.

Exercice 4 (Final 2017 – Equivalence lifting). In HoTT, proofs can become involved. The goal is to prove that if $f : A \rightarrow B$ is an equivalence between A and B, then for each pair of elements $a, a' : A$, the map $\text{ap}_f(a, a') : a =_A a' \rightarrow f(a) =_B f(a')$ is an equivalence as well. Let $g : B \rightarrow A$ being an of f meaning that there are witnesses $\alpha : \Pi_{x : A} g(f \ x) =_A \text{id}_A x$ and $\beta : \Pi_{y : B} f(g \ x) =_B \text{id}_B x$ In the sequell we will left the subscript a, a' in ap_f implicit.
Question 1 As a quasi-inverse candidate for af, let us consider $G(\cdot)$, defined by
\[
G(q) \equiv \alpha(a)^{-1} \cdot ap_{q}(q) \cdot \alpha(a')
\] (1)
To satisfy the requirement, we have to exhibit homotopies γ (as left inverse) and δ (as right inverse):
\[
\gamma : \prod_{p : J} G(af(p)) = J p \quad \text{et} \quad \delta : \prod_{q : K} ap_{f}(G(q)) = K q
\]
a) What are the types J and K? What is the type of the candidate $G(\cdot)$?
b) Prove the existence of a witness γ.
c) Why is that not possible to use a similar approach to prove the existence of δ?

Question 2. Let $T : U$ and $\varphi : T \to T$ such that $\varepsilon : \prod_{x : T} \varphi(x) =_{T} \text{id}_{T}(x)$.
a) Given $x, x' : T$ and $r : x =_{T} x'$, prove that $\varepsilon(x)^{-1} \cdot ap_{\varphi}(r) \cdot \varepsilon(x') =_{S} r$, where the type S will be made explicit.
b) Conclude that, for all $x : T$, $\varepsilon(\varphi(x)) = \text{ap}_{\varphi}(\varepsilon(x))$.

Question 3. Given $x : A$, let us note $\nu(x) \equiv \beta(f(x))^{-1} \cdot \beta(f(x))$.
a) State the type of $\nu(\cdot)$.
b) Prove that $\beta(f(a))^{-1} \cdot ap_{f}(ap_{q}(q)) \cdot \beta(f(a')) =_{K} q$.
c) Simplify the path $\nu(a) \cdot ap_{f}(G(q)) \cdot \nu(a')$.
d) Conclude for the existence of an homotopy proof δ such that
\[
\delta : \prod_{q : K} ap_{f}(G(q)) =_{K} q
\]

Exercice 5 (More on equivalences). Prove the following statements:

1. (identity) For all $A : U$, quasi-inverse (id_{A}) ;
2. (between identity types) For all $A : U$, $x, y : A$ and $p : x =_{A} y$,
 \begin{itemize}
 \item $(p \cdot -) : y = z \to x = z$ and $(p^{-1} \cdot -)$ are quasi-inverse one of the other ;
 \item $(- \cdot p) : z = x \to z = y$ et $(- \cdot p^{-1})$ are quasi-inverse one of the other.
 \end{itemize}
3. (transport) If $P : A \to U$, then $\text{tr}^{P}(p, -) : P(x) \to P(y)$ has $\text{tr}^{P}(p^{-1}, -)$ for a quasi-inverse.

Exercice 6 (Barendregt natural numbers). Back to pure λ-calculus The Barendregt natural numbers $[n]$ ($n \in \mathbb{N}$) are defined by:
\[
[0] \equiv \textbf{I} \quad [n + 1] \equiv \textbf{(pair F} [n])
\]
a) Using the alternative representation, code the successor, predecessor and test-to-zero functions.
b) Implement the addition.
c) In your understanding, how to the two natural numbers encodings (Church vs Barendregt) compare?