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Abstract

Let ν be a probability distribution over the linear semi-group End(E) for E a finite dimensional
vector space over a locally compact field. We assume that ν is proximal, strongly irreducible and that
ν∗n{0} = 0 for all integers n ∈ N. We consider the sequence γn := γ0 · · · γn−1 for (γk) independents of
distribution law ν. We define the logarithmic singular gap as log

(
µ1(γn)

µ2(γn)

)
, where µ1 and µ2 are the two

largest singular values. We show that (sqz(γn))n∈N escapes to infinity linearly and satisfies exponential
large deviations estimates below its escape rate. Using this escape speed, we also show that the image of
a generic line by γn as well as its eigenspace of maximal eigenvalue both converge to the same random
line l∞ at an exponential speed. This is an extension of results by Guivarc’h and Raugi.

If we moreover assume that the push-forward distribution N(ν) is Lp for N : g 7→ log
(
∥g∥∥g−1∥

)
and

for some p ≥ 1, then we show that log |w(l∞)| is Lp for all unitary linear form w and the logarithm of
each coefficient of γn is almost surely equivalent to the logarithm of the norm. This is an extension of
results by Furstenberg and Kesten.

To prove these results, we do not rely on any classical results for random products of invertible
matrices with L1 moment assumption. Instead we describe an effective way to group the i.i.d factors into
i.i.d random words that are aligned in the Cartan projection. We moreover have an explicit control over
the moments.
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1 Introduction

1.1 Results
Let E be a vector space of finite dimension d ≥ 2 over a local field K and let Γ := End(E) ≃ Matd×d(K) be
the monoid of linear maps on E. We endow Γ with the operator norm ∥γ∥ = maxx∈E\{0}

∥γx∥
∥x∥ where ∥ · ∥ is

a Euclidean or ultra-metric norm on E. Note that Γ is a finite dimensional K vector space and K is a metric
space, we endow Γ with the Borel σ-algebra associated to this structure. We also define:

N : GL(E) −→ [0,+∞)
γ 7−→ log ∥γ∥+ log ∥γ−1∥.

We use the convention N(γ) = +∞ when γ is not invertible, that way N is a sub-additive map Γ → [0,+∞].
Let ν be a probability distribution on Γ , let N := N0 be the set of non-negative integers. Draw (γn) ∈ ΓN

a random sequence of independent random variables of respective distribution ν. We write1 (γn) ∼ ν⊗N. We
consider the sequence (γn)n∈N defined by γn := γ0 · · · γn−1. We call it the random walk of step of law ν.

Our first object of interest will be the behaviour of the singular gap of γn as n goes to ∞. We define the
singular gap as follows:

sqz : Γ \ {0} −→ [0,+∞]

g 7−→ log

(
∥g∥ · ∥g∥
∥g ∧ g∥

)
= log

(
µ1(g)

µ2(g)

)
.

(1)

Here the norm on the exterior algebra is as in Definition A.37 and the family (µi(g))1≤i≤d is the family of
singular values as defined in A.42. Note that given g ∈ Γ \ {0} , we have sqz(g) = +∞ if and only if g has
rank one. The singular gap of 0 is not well defined by (1) so we take the convention sqz(0) := +∞. We are
also interested in the spectral gap. We define the logarithmic spectral gap of an endomorphism g as:

prox(g) := lim
n→∞

sqz(gn)

n
= log

(
ρ1(g)

ρ2(g)

)
. (2)

1Through this paper, the symbol ∼ means "has distribution law" when used on a known random variable or "that has
distribution law" when used to introduce a new random variable. We use the symbol ⊗ for the independent coupling of
distributions

2



Here ρ1(g) and ρ2(g) stand for the absolute values of the first and second largest eigenvalues of g. Note
that prox(g) is well defined as long as g is not nilpotent. We take the same convention as before and write
prox(g) := +∞ when g is nilpotent.

We say that ν is proximal if we have P(prox(γn) > 0) > 0 for at least one integer n ∈ N.
We say that a probability distribution ν is irreducible if there is no proper non-trivial subspace V of E

that is ν-stable i.e, stable by the action of the closed semi-group generated by the support of ν. We say that
ν is strongly irreducible if there is no non-trivial finite union of proper subspaces of E that is ν-stable.

Using the pivotal method, we prove the following central result. Consider two probability distributions
κ̃1 and κ̃2 over the monoid Γ̃ of words2 with letters in Γ. We write κi for the distributions of the left-to-
right product of the letters of a word drawn with law κ̃i. Write ⊙ for the concatenation and write ν̃ for
the distribution of the one-letter word whose single letter has law ν. We say that a distribution ζ on R≥0

dominates a distribution η when there is a constant C such that η(t,+∞) ≤ Cζ(t− C,+∞).

Theorem 1.1 (Pivotal extraction). Let ν be a strongly irreducible and proximal probability distribution over
Γ = End(E). Let ρ < 1 , ε > 0 and λ ∈ R. There exists a triple (κ̃s, κ̃a, κ̃b) that satisfies all of the following
conditions.

1. We have κ̃s ⊙ (κ̃a ⊙ κ̃b)
⊙N = ν⊗N.

2. The lengths L(κ̃s) and L(κ̃b) have finite exponential moment and L(κ̃a) is a constant.

3. For all i ∈ {s, a, b} , one has κ̃i{γ ∈ Γ|sqz(γ) ≥ λ} = 1.

4. For all pair (i, j) ∈ {(s, a), (a, b), (b, a)} , we have ∥gh∥ ≥ ε∥g∥∥h∥ for all g in the support of κi and
all h in the support of κj.

5. For all g ∈ Γ , we have κa{γ ∈ Γ | gAεγ} ≥ 1− ρ and κa{γ ∈ Γ|γAεg} ≥ 1− ρ.

6. For i ∈ {s, a, b} and a word g̃ ∼ κ̃x , conditionally to the length L(g̃) , for all k < L(g̃) and for χk the
k-th letter of g̃ , the distribution of N(γk) is dominated by N(ν).

In other words it means that there is a way to randomly group the factors into consecutive groups of
size w0, w1, w2, . . . so that we have an aligned product in the sense that for g, h the products of consecutive
groups, we have ∥gh∥ ≥ ε∥g∥∥h∥. Moreover, the grouping is so that, knowing the size of each groups, we
have some slack on each odd indexed factors to align them, the groups are independent and we have good
conditional moment assumptions on the norms of the letters i.e, if N(γk) is Lp (resp. weakly Lp , resp.
exponentially integrable) by itself, then it still satisfies the same moment assumptions conditionally to the
way of grouping the factors. Points (1) to (5) are used in the proofs of Theorems 1.2 and 1.3 and point (6)
is more technical and is only used in the proof of Theorem 1.5.

The main result is the following.

Theorem 1.2 (Quantitative estimate of the escape speed). Let (γn) be a random i.i.d sequence of matrices
that follow a strongly irreducible probability distribution. Write γn := γ0 · · · γn−1 for all n. Then there exists
a constant σ(ν) ∈ [0,+∞] (with σ(ν) > 0 if and only if ν is proximal) such that almost surely sqz(γn)

n → σ(ν).
Moreover, we have the following large deviations inequalities:

∀α < σ(ν),∃C, β > 0,∀n ∈ N,P(sqz(γn) ≤ αn) ≤ C exp(−βn). (3)
∀α < σ(ν),∃C, β > 0,∀n ∈ N,P(prox(γn) ≤ αn) ≤ C exp(−βn). (4)

One can conjecture that prox(γn)
n → σ(ν) almost surely. It is true in the specific setting described in

Theorem 5.15.
Define P(E) the set of vector lines in E , that we endow with the metric

d : (Kx,Ky) 7→ ∥x ∧ y∥
∥x∥ · ∥y∥

. (5)

2Through this paper, we will mark with a˜on top the objects that are words i.e, tuples of "letters" that we can concatenate
with each other.
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Here ∥x ∧ y∥ is the area of the parallelogram (0, x, x+ y, y) , see appendix A.4 for more details.
A consequence of the fact that ν is not supported on GL(E) is that there may be some non-zero vectors

x ∈ E such that γn(x) = 0 with non-zero probability for some integer n. However, we can show (see
Proposition 3.31) that either γn = 0 for all n larger than some random integer n0 that has finite exponential
moment or for all x outside of a countable union of proper subspaces of E , we have γn(x) ̸= 0 almost surely
and for all n ∈ N. We write ker(ν) for the essential kernel of ν , i.e, the set of vectors x ∈ E such that we
have P(γn(x) = 0) > 0 for some integer n ∈ N.

Theorem 1.3 (Quantitative convergence of the image). Let ν be a strongly irreducible and proximal probabil-
ity distribution on End(E). Let ker(ν) be a σ-closed set with empty interior as in Definition 3.30. Consider
a random sequence (γn) ∼ ν⊗N. There is a random variable u∞ ∈ P(E) that is the image of (γn)n∈N by a
shift-equivariant measurable map U∞ and such that for all α < σ(ν) , we have some constants C, β > 0 such
that:

∀u ∈ P(E) \ ker(ν),∀n ∈ N,P (d(γnu, u∞) ≥ exp(−αn)) ≤ C exp(−βn). (6)

The above theorem associates a distribution ξ∞ := U∞
(
ν⊗N) to any given strongly irreducible and

proximal probability distribution ν on End(E). In terms of dynamics, the action of ν on the projective space
endowed with the probability measure ξ∞ is measure preserving (because U∞ is shift-invariant) and ergodic
and has a spectral gap on the space of Lipschitz functions in the following sense.

Corollary 1.4 (Strong irreducibility implies exponential mixing). Let ν be any strongly irreducible and
proximal distribution of positive rank on End(E). There is a unique ν-invariant probability distribution ξν
on P(E). Moreover, there are constants C, β such that for all distribution ξ on P(E) \ ker(ν) and for all
Lipschitz function f : P(E) → R with Lipschitz constant λ(f) , we have:

∀n ∈ N,

∣∣∣∣∣
∫
P(E)

fdξν −
∫
P(E)

fdν∗n ∗ ξ

∣∣∣∣∣ ≤ λ(f)C exp(−βn). (7)

In Section 5.3 we use the above results to show that under some algebraic conditions, we have an analogue
of Oseledets Theorem. The interesting part is that this proof does not rely on usual ergodic theoretic tools.

In Section 5.4, we assume that ν is supported on GL(E). It means that for N : γ 7→ log ∥γ∥+ log ∥γ−1∥
, the distribution N(ν) is supported on R≥0.

Theorem 1.5 (Strong law of large numbers for the coefficients). Let ν be a probability measure on GL(E)
that is strongly irreducible and proximal. There are some constants C, β such that for all u ∈ E∗ \ {0} , all
v ∈ E \ {0} , for all n and for γn ∼ ν∗n , we have for all t ∈ R≥0 :

P
(
log

∥γn∥
|uγnv|

≥ t

)
≤ C exp(−βn) +

+∞∑
k=1

C exp(−βk)P
(
N(γ0) ≥

t

k

)
. (8)

See 5.18 for the proof. We write ζν for probability distribution on R≥0 obtained by trunking
∑+∞
k=1 C exp(−βk)P

(
N(γ0) ≥ t

k

)
.

Then we have the following.

Corollary 1.6 (Regularity of the invariant distribution). With the notations of Theorem 1.5 and with u∞
as in Theorem 1.3, for all x ∈ P(E) and all r > 0 , we have:

P(d(u∞, x) < r) ≤ ζν(log(2r),+∞). (9)

In particular if N(γ0) is weakly Lp , then we have a constant C the depends only on ν such that:

P(d(u∞, x) < r) ≤ C

log(r)p
. (10)

See 5.23 for the proof.
In Proposition 4.5 of the article [BQ16b, p. 20], Y.Benoist and J-F.Quint have shown that if we assume

that N(ν) has a finite Lp moment then for all w ∈ E∗ unitary and for u∞ a random unitary vector in l∞
(as in Theorem 1.3), the random variable − log |w(u∞)| has a finite Lp−1 moment. A direct consequence of
Theorems 1.5 and 1.3 implies that − log |w(l∞)| actually has a finite Lp moment and this is optimal.
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Corollary 1.7 (Almost sure convergence of coefficients and central limit theorem). Let ν be a strongly
irreducible and proximal probability measure supported on GL(E) and such that E(log ∥γ∥) and E(log ∥γ−1∥)
are both finite for γ ∼ ν. Then for all w ∈ E∗ \ {0} and all non-trivial u ∈ E , we have almost surely:

lim
n→∞

log |wγnu|
n

= lim
n→∞

log ∥γn∥
n

=: ρ1(ν) ∈ R.

If we moreover assume that E(log2 ∥γ∥) and E(log2 ∥γ−1∥) are both finite, then we have a central limit
theorem for the sequence (log |wγnu|)n.

See 5.21 and 5.22 for the proof.

1.2 Background
The study or products of random matrices bloomed with the eponym article [FK60] where Furstenberg
and Kesten construct an escape speed for the logarithm of the norm using the sub-additivity. This proof
was generalized by Kingmann’s sub-additive ergodic Theorem [Kin68]. This article followed the works of
Bellman [Bel54] who showed the almost sure convergence of coefficient for one specific example. In [FK60]
Furstenberg and Kesten show a weaker version of Theorem 1.3. These works on matrices inspired the theory
of measurable boundary theory for random walks on groups [Fur73]. In [BL85], Bougerol and Lacroix give
an overview of the field of study with applications to quantum physics. In [GR86], Guivarc’h and Raugi
show a weaker version of Theorem 1.3 in the case when ν is proximal and strongly irreducible. In [GR89] the
same authors show that we have almost sure convergence of the limit flag for absolutely strongly irreducible
distributions. In [GM89] Goldshied and Margulis show that the distribution ν is proximal and absolutely
strongly irreducible when the Zariski support of ν is SL(E). In [BQ16a] Yves Benoist and Jean-François
Quint give an extensive state of the art overview of the field of study with an emphasis on the algebraic
properties of semi-groups. Later, in [XGL21] Xiao, Grama and Liu use [BQ16b] to show that coefficients
satisfy a law of large numbers under some technical L2 moment assumption. Similar results were proven in
[Aou20] and [AG20], with some technical assumptions on the distribution. We can also mention [GQX20]
and [XGL22] that give other probabilistic estimates for the distribution of the coefficients. The strong law
of large numbers is already known for the norm from [AS21].

The importance of alignment of matrices was first noted in [AMS95] along with the importance of Schottky
sets. Those notions were then used by Aoun in [Aou11] where he uses it to show that independent draws of an
irreducible random walk that has finite exponential moment generate a free group outside of an exponentially
rare event (note that the pivotal allows us to drop the finite exponential moment assumption). In [CDJ16]
and [CDM17], Cuny, Dedeker, Jan and Merlevède give KMT estimates for the behaviour of (log ∥γn∥)n∈N
under some Lp moment assumptions for p > 2. Note that, using Borel-Cantelli’s Lemma and Theorem 1.5,
we have the same estimates for the coefficients with the same hypotheses, the proof is similar to the proof
of Corollary 5.22.

The main difference between these previous works and this paper is that the measure ν has to be
supported on The General Linear group GL(E) for the above methods to work. Some work has been done to
study non-invertible matrices in the specific case of matrices that have real positive coefficients. In [Fur63],
Furstenberg and Kesten show limit laws for the coefficients under an L∞ moment assumption, in [Muk87]
and [KS84] Mukherjea, Kesten and Spitzer show some limit theorems for matrices with non-negative entries
that are later improved by Henion in [Hen97] and more recently improved by Cuny, Dedeker and Merlevède
in [CDM23].

In [GP16], Guivarc’h and Lepage show the exponential mixing property by exhibiting a spectral gap
for the action of ν on the projective space under some moments assumptions on ν. The large deviations
inequalities were already known for the norm in the specific case of distributions having finite exponential
moment by the works of Sert [Ser18].

1.3 Method used
To prove the results, we use Markovian extractions. The idea is to adapt the following "toy model" con-
struction to the case of matrices.
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Let G = ⟨a, b, c|a2 = b2 = c2 = 1⟩ be the free right angle Coxeter group with 3 generators. One can
see the elements of G as simple (or irreducible) words in {a, b, c} , i.e,finite sequences of letters without
double letters. We write Σ := {a, b, c}(N) for the set of words in the alphabet {a, b, c}. We say that a word
w = (l1, . . . , lw) ∈ Σ can be reduced if it contains at least a double letter i.e, li = li+1 for some i = 1, . . . , n−1.
We then say that the word w′ = (l1, . . . , li−1, li+2, . . . , ln) obtained by removing a double letter is reduced
from w and write w′ ≤r w. Then one can show that every word in Σ can be reduced to a unique word in
G in finitely many steps, so the partial order relation generated by ≤r has the elements of G as minimal
elements. We write ∅ for the empty word, which is the identity element of G and of Σ. We write ⊙ for the
concatenation product on Σ and Π : Σ → G the word reduction map, note that Π is a monoid morphism
(Σ,⊙)

Π−→ (G, ·). Indeed if we take three words p, w, s ∈ Σ and w′ ≤r w , then pws ≤r pw′s. However the
lift map G ↪→ Σ is not a morphism since a concatenation of two reduced word is not necessarily reduced.
We also define the word length function | · | : G,Σ → N that is a monoid morphism from (Σ,⊙) to N and a
group norm on G.

We consider the simple random walk on the 3-tree, seen as the Cayley graph of G. Draw a random
independent uniformly distributed sequence of letters (ln)n∈N ∈ {a, b, c}N. Then for every n ∈ N , write
gn := l0 · · · ln−1 ∈ G for the position of the random walk at step n and g̃n := (l0, . . . , ln−1) the word
encoding the trajectory of the random walk up to step n. Then we know that (gn) almost surely escapes to
a point in ∂G , the set of infinite simple words. To prove it, we can show, using Markov’s inequality, that
P(gn = ∅) ≤

(
8
9

)n/2 so (gn) visits ∅ only finitely many times, and then gets trapped in a branch (the set of
simple words starting with a given letter x0 ∈ {a, b, c} ). Then using the same argument, (gn) visits the first
node of this branch only finitely many times and then escapes along the branch starting with x0x1 for some
x1 ̸= x0 and by induction, one can show that (gn) escapes along a branch (x0, x1, x2, . . . ) (i.e, an infinite
reduced word).

By symmetry, one can show that for all k > 1 , the distribution of the letter xk knowing x1, . . . , xk−1 is
the uniform distribution on {a, b, c} \ {xk−1}. We call pivotal times for the sequence (ln) the times t ∈ N
such that for every k ≥ t , we have |gk| ≥ |gt| with | · | the reduced word length function. For example the
first pivotal time t1 is the first time after the last visit in ∅ and we use the convention t0 = 0. An interesting
observation is that if we write tk for the k-th pivotal time then xk = ltk .

Then instead of drawing the sequence (ln)n∈N of letters, we can draw the limit (xn)n∈N first and then
the letters (ln)n∈N as follows.

Write X = {a, b, c, s} , ( s like "start") endow X with a transition kernel p such that p(i, j) = 1
2 for all

i ̸= j ∈ {a, b, c} and p(s, i) = 1
3 for i ∈ {a, b, c}.

s
1
3

��

1
3

��

1
3

""

(X, p) = a oo
1
2 //

OO
1
2

��

bNN

1
2qqc

Then take x0 = s and draw a Markov chain (xn)n∈N in (X, p). That means that:

∀n ∈ N,∀l ∈ X,P(xn = l|x0, . . . , xn−1) = p(xn−1, l).

Then the sequence (xk)k≥1 has the same distribution as the sequence ltk−1 defined above. Moreover, the
distribution of the word (ltk , . . . , ltk+1−1) only depends on xk and xk+1 and not on the time k ≥ 1. Write ν̃a,b
for the distribution of (ltk , . . . , ltk+1−1) knowing that ltk = a and ltk+1

= b and write ν̃s,a for the distribution
of the word (l0, . . . , lt1) knowing that lt1 = a. Both are probability distributions on Σ. In the same fashion,
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we define the whole decoration:

s
ν̃s,a

��

ν̃s,b

��

ν̃s,c

""

(X, p, ν̃) = a oo
ν̃a,b

ν̃b,a

//
OO

ν̃a,cν̃c,a

��

bTT

ν̃b,c

ν̃c,b
kkc

Then instead of drawing the (ln) ’s uniformly and independently, one can simply draw some random words
(w̃k) with distribution

⊗
ν̃xk,xk+1

. Then for every k ∈ N , w̃k has the distribution of (ltk , . . . , ltk+1−1) and
the infinite word W =

⊙∞
k=0 wk ∈ {a, b, c}N has the distribution of the infinite word L = (l0, l1, l2, . . . ).

Now, if we take a filtration (Fk)k≥0 such that xk and wk−1 are Fk-measurable for all k ≥ 1 , the
distribution of xk+1 knowing Fk is p(xk, ·) and the distribution of wk knowing Fk and xk+1 is ν̃xk,xk+1

. Now
the fact that a time t is pivotal or not is decided as soon as w0⊙· · ·⊙wk−1 has length at least t. In particular
the event ( t is a pivotal time) is Ft-measurable. However for (Cn)n∈N the cylinder filtration associated to
the random sequence (ln)n∈N , the event ( t is a pivotal time) is never Cn-measurable whatever the choice of
n, t ∈ N.

This construction gives a proof of the exponential large deviations inequalities for the random walk (gn).
This is not the simplest proof but it shows how and why we want to use the setting of Markovian extractions.

∃σ > 0,∀ε > 0,∃C, β > 0,∀n ∈ N,P (||gn| − nσ| ≥ εn) ≤ C exp(−βn). (11)

Proof. Let (l0, l1, l2, . . . ) = w̃0 ⊙ w̃1 ⊙ w̃2 ⊙ · · · be as above. We can associate to every integer n ∈ N a pair
of indices k ∈ N , r ∈ {0, . . . , |wk| − 1} such that n = |w̃0| + · · · + |w̃k−1| + r. This means that ln−1 is the
r-th letter of w̃k and then by triangular inequality, we have k − r ≤ |gn| ≤ k + r because k = |x0 · · ·xk| and
r ≥ |ln−r · · · ln−1|. Then note that the lengths (|wk|)k≥1 are independent, identically distributed random
variables that have finite exponential moment and |w0| has a finite exponential moment. As a consequence,
if we write σ := 1

E(|w1|) = 1
3 and take some ε > 0 , by the classical large deviations inequalities (see Lemma

B.26 and Lemma B.29 (6)), we have: P(|k − nσ| ≥ nε/2) ≤ C exp(−β′n) for some C, β′ > 0 and for all n.
Now note that ||gn| − nσ| ≤ |k − nσ|+ r so we have (11).

This proof is not really useful in our case because in this case (|gn|)n is already a martingale with bounded
steps so Lemma B.26 applies. However it shows the importance of Markovian extractions.

1.4 About the pivotal method
In the second part of this article we mainly use the tools used in [Gou22], some of them having been introduced
or used in former works like [BMSS20] where Adrien Boulanger, Pierre Mathieu, Cagri Sert and Alessandro
Sisto state large deviations inequalities from below for random walks in discrete hyperbolic groups or [MS20]
where Mathieu and Sisto show some bi-lateral large deviations inequalities in the context of distributions
that have a finite exponential moment. In [Gou22] Sébastien Gouëzel uses the pivotal method in the setting
of hyperbolic groups. The most interesting part of [Gou22] is the "toy model" described in section 2. From
which Section 4 is inspired. In [Cho22] Inhyeok Choi applies the pivotal method to show results that are
analogous to the ones presented in this article but for Γ the mapping class group of an hyperbolic surface.
In [CFFT22], Chawla, Forghani, Frisch and Tiozzo use another view of the pivotal method and the results
of [Gou22] to show that the Poisson boundary of random walk with finite entropy on a group that has an
acylindrical action on an hyperbolic space is in fact the Gromov Boundary. I believe that similar method
can be used to describe the Poisson boundary of an absolutely strongly irreducible random walk that has
finite entropy 5.17.

7



1.5 Structure of this paper
In Section 2 of this article, we define a notion of alignment of linear maps between Euclidean vector spaces
without considering any measure theoretic object. Basics in Euclidean Geometry are detailed in appendix
A. The main result of this section is the heredity of the alignment in Lemma 2.15. In Section 3, we define
Markov bundles i.e,measure theoretic objects that encode random extractions of random walks and state
some basic results about them. The main result of this section is the transitivity of the extraction defined in
Definition 3.22. In Section 4, we use all of this vocabulary to describe the pivotal method and to prove the
main technical lemma of this paper: Theorem 4.9. Then in Section 5 we give complete proofs of Theorems
1.2, 1.3 and 5.18 using pivotal times methods and Theorem 4.9.

2 About the Cartan decomposition of rectangular matrices
In this section, we describe the geometry of the monoid Γ := End(E) for E a Euclidean space or a standard
ultra-metric vector space over K, a locally compact field. For that, we use classical results in Euclidean and
ultra-metric geometry that are proven in Appendix A.

2.1 Alignment and squeezing coefficients
First we define the singular gap, it is the analogue of the reduced length of words in Section 1.3.

Definition 2.1 (Singular gap). Let E,F be standard vector spaces and h ∈ Hom(E,F ) \ {0}. We define the
first (logarithmic) singular gap, or squeeze of h as:

sqz(h) := log

(
µ1(h)

µ2(h)

)
= log

(
max
v1∈E

min
v2⊥v1

∥h(v1)∥ · ∥v2∥
∥v1∥ · ∥h(v2)∥

)
∈ [0,+∞]

Where the µi’s are the singular values as defined in Definition A.42. Given j ≥ 1, we define the j-th singular
gap of h as:

sqzj(h) := log

(
µj(h)

µj+1(h)

)
= sqz

(∧j
h
)
∈ [0,+∞].

Remark 2.2. The sum of the singular gaps is a group semi-norm on GL(E). Indeed, for γ ∈ GL(E), we
have

∑
sqzi(γ) = log ∥γ∥+ log ∥γ−1∥ =: N(γ). Note also that for K := O(E) the group of isometries of E

and γ ∈ End(E), the equivalence class K∗KγK := {rUγW | r ∈ K∗, U,W ∈ K} is completely determined by
the vector s̃qz(γ) := (sqzj(γ))1≤j<dim(E) and the rank of γ.

In this part, we often use unitary vectors in the proofs of theorems. We write S(E) := {x ∈ E | ∥x∥ = 1}
for the set of unitary vectors. in the proof, we often renormalize vectors, it means that we consider a unitary
vector proportional to our original vector. We can do it because we made sure in Definition A.18 that all
lines contain a unitary vector.

Definition 2.3 (Projective space). Let E be a standard K-vector space. We write P(E) the projective space
of E i.e, the set of lines in E, endowed with the distance map:

d(Kx,Ky) :=
∥x ∧ y∥
∥x∥ · ∥y∥

. (12)

Lemma 2.4. The distance d is indeed a distance, moreover the normalized product:

P(E∗)×P(E) −→ R≥0

(Ku,Kv) 7−→ |uv|
∥u∥·∥v∥

is a contracting map for the distance d on P(E∗) and on P(E).

Proof. Up to a renormalization, one may assume that both u and v are unitary and then this is simply a
reformulation of Lemmas A.45 and A.46.
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Definition 2.5 (Dominant spaces). Let E,F be standard vector spaces and h ∈ Hom(E,F ) \ {0}. We write
V +(h) := {x ∈ E; ∥h(x)∥ = µ1(h)∥x∥} and U+(h) := h(V +) ⊂ F and write W+(h) := U+(h∗) ⊂ E∗. We
use the convention U+(0) := F for convenience.

Note that in the Euclidean case, the space W+(h) is simply the image of V +(h) by v 7→ v⊤. We will see
that in the ultra-metric case U+(h) is the right space to look at because its diameter in the projective space3

is exp(−sqz(h)) while V +(h) has diameter at least ρK where ρK = max{|x|;x ∈ K, |x| < 1}. Note also that
for h an endomorphism of rank one, U+(h) is the image of h. For an intuitive understanding of this article,
most reader want to think of Γ as End(R3). This is a good intuition because we can not directly apply what
we know about hyperbolic groups and we can have some rank 2 random walks. However the dominant space
of a squeezing matrix is always a line, that is not a good intuition, one should rather think of U+(h) as a
bundle of lines whose thickness is proportional to µ2(h)

µ1(h)
.

Lemma 2.6. Let E,F be standard vector spaces and h ∈ Hom(E,F )\{0}. Then for every w ∈W+(h), there
exists a unitary vector v ∈ V +(h) such that |w(v)| = 1 and for all x ∈ ker(w), we have ∥h(x)∥ ≤ µ2(h)∥x∥.

Proof. Take w ∈ W+(h). By definition, there is a linear form v′ ∈ F ∗ unitary such that ∥v′h∥ = µ1(h) and
v′h ∈ Kw. Since ∥v′h∥ = µ1(h), we may take a unitary vector v ∈ E such that |v′hv| = µ1(h). Since v′ is
unitary and ∥hv∥ ≥ µ1(h), we have v ∈ V +(h) and |v′hv| = ∥v′h∥ so v′h reaches its norm on V +(h) and w
also does because they are co-linear. Now take x ∈ ker(w), unitary, one has x ∈ ker(v′) and v′ reaches its
norm on Kh(v) so h(x)⊥h(v) so ∥h(x ∧ v)∥ = ∥h(x)∥∥h(v)∥ ≤ µ2(h)µ1(h)∥x ∧ v∥ but ∥h(v)∥ = µ1(h) and
∥x ∧ v∥ = 1 so ∥h(x)∥ ≤ µ2(h).

Now we want to define a notion of alignment that allows us to define a notion of aligned sequences
analogous to the notion of chains and chain-shadows used in [Gou22]. In the toy model of section 1.3, an
aligned sequence is a sequence of non-empty reduced words whose concatenation is a geodesic, i.e, such the
last letter of the n-th word is not equal to the first letter of the (1 + n)-th word. The important property
that differentiate random walks on a tree or on a Gromov hyperbolic group from random walks on an abelian
lattice Zd is that one can see whether a sequence of non-trivial words is along a quasi-geodesic line or not
only by looking at local conditions. We want to construct a similar notion for products in End(E).

Definition 2.7 (Alignment of matrices). Let E,F,G be standard vector spaces, f ∈ Hom(E,F ), g ∈
Hom(F,G) and ε > 0. We say that g is ε-aligned with f and write gAεf whenever there is a unitary
linear form w ∈W+(g) ⊂ F ∗ and a unitary vector u ∈ U+(f) ⊂ F such that |w(u)| ≥ ε.

Remark 2.8. Definition 2.7 implies that any matrix is aligned with the 0 matrix and with the identity
matrix.

Proposition 2.9. Let E,F,G be standard vector spaces, f ∈ Hom(E,F ), g ∈ Hom(F,G) and ε > 0. Then
we have gAεh if and only if f∗Aεg∗.

Proof. This is obvious since W+(f∗) = U+(f) and U+(g∗) =W+(g) by definition.

Proposition 2.10 (Alignment in term of the norm). Let E be a standard vector space, let ε ≥ 0 and
g, h ∈ End(E). If gAεh then we have

∥gh∥ ≥ ∥g∥∥h∥ε. (13)

Moreover, if we assume (13), then for ε′ := ε− exp(−sqz(g))− exp(−sqz(h)), we have gAε′h. In particular,
when we have sqz(g), sqz(h) ≥ 2| log(ε)|+ 2 log(2) then (13) implies gA ε

2h.

Proof. Lemma 2.10 is trivial when g = 0 or h = 0 so we may assume that µ1(g) and µ1(h) are positive.
We first assume that we have gAεh. Then, there is a unitary vector v ∈ V +(h) and a unitary linear form
w ∈ V +(g∗) such that |wghv| ≥ ε∥wg∥∥hv∥ but by definition of V +, we have ∥wg∥ = ∥g∥ and ∥hv∥ = h.
This proves (13). Now assume that we do not have gAε′h. Then write g = g1 + g2 where g1 := µ1(g)u

g
1w

g
1

3By definition U+(h) and V +(h) are homogeneous and contain 0 so they are characterized by their image in the protective
space
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has rank 1 and g2 :=
∑
i≥2 µi(g)u

g
iw

g
i , that way ∥g2∥ = µ2(g). In the same fashion, write h = h1 + h2.

Saying that we do not have gAε′h is equivalent to saying that ∥g1h1∥ < ε′µ1(g)µ1(h) so we have:

∥gh∥ ≤ ∥g1h1∥+ ∥g2h∥+ ∥h2g1∥
< ε′µ1(g)µ1(h) + ∥g2∥∥h∥+ ∥h2∥µ1(g)

<

(
ε− µ2(g)

µ1(g)
− µ2(h)

µ1(h)

)
∥g∥∥h∥+ µ2(g)∥h∥+ ∥g∥µ2(h)

< ε∥g∥∥h∥.

Definition 2.11 (Weakly and strongly aligned sequences). Let A be a binary relation on End(E) and
(gn)n∈Z ∈ End(E)Z. We say that (gn) is A-aligned if for every n ∈ Z, we have gnAgn+1. We say that (gn)
is strongly A-aligned if for every a ≤ b ≤ c, we have (ga · · · gb−1)A(gb · · · gc−1).

Definition 2.12 (Squeezing sequences). Let (gi)i∈I ∈ End(E)I for I any set and λ ≥ 0. We say that the
family (gi) is λ-squeezing if for all i ∈ I, sqz(gi) ≥ λ.

Lemma 2.13 (Contraction property). Let E be a Euclidean vector space or a standard ultra-metric vector
space and g, h ∈ End(E) \ {0}. Assume that gAεh for some ε > 0. Then one has:

sqz(gh) ≥ sqz(g) + sqz(h)− 2| log(ε)|. (14)

Moreover, for every unitary vectors u ∈ U+(g), u′ ∈ U+(gh), we have:

d(u, u′) ≤ µ2(g)

εµ1(g)
(15)

Proof. We use (13) in Lemma 2.10. Note also that norm of the ∧ product is sub-multiplicative by definition
so:

µ1(gh)µ2(gh) ≤ µ1(g)µ2(g)µ1(h)µ2(h). (16)

So if we do 2 log (13) − log (16) we find (14).
Now to prove (15) take y ∈ V +(gh) and z ∈ V +(g) unitary, by (13), we have ∥gh(y)∥ ≥ µ1(g)µ1(h)ε and

by definition of the singular values, we have ∥gh(y) ∧ g(z)∥ ≤ µ1(g)µ1(h)µ2(g) so:

∥gh(y) ∧ g(z)∥
∥gh(y)∥∥g(z)∥

≤ µ1(g)µ1(h)µ2(g)

µ1(g)µ1(g)µ1(h)ε
=

µ2(g)

εµ1(g)
.

Lemma 2.14. Let f, g, h ∈ End(E). Let λ, ε1, ε2 > 0. Write ε3 := ε1 − exp(−λ)
ε2

and assume that ε3 > 0. If
we assume that fAε1gAε2h and sqz(g) ≥ λ, then we have fAε3(gh). If we assume that that fAε1(gh) and
sqz(g) ≥ λ and gAε2h, then fAε3g

Proof. Let u′ ∈ U+(gh) be unitary. Let u ∈ U+(g) and w ∈ W+(h) be unitary and such that |w(u)| ≥ ε1.
By Lemma 2.13, we have d(u′, u) ≤ exp(−λ)

ε2
so by Lemma 2.4, we have |w(u′)| ≥ |w(u)| − exp(−λ)

ε2
≥ ε3.

Now is a good time to get a visual intuition of what is going on here. In Figure 1, we illustrate the first
part of Lemma 2.15

When we look at hyperbolic groups in the sense of Gromov, the intuition is that everything is defined
up to an additive constant δ. In our case, the intuition is that everything is defined up to a multiplicative
constant. Moreover saying that two endomorphisms are aligned is useless if not at least one of them has a
large squeeze coefficient. In that sense saying that ∥gh∥

∥g∥∥h∥ ≥ ε is up-to-a-constant-equivalent to saying that
gAεh. Now we will see that the partial products of an aligned sequence are up-to-a-constant aligned. This
will allow us to treat End(E) like if it were a free group up-to-a-constant and use our intuition on hyperbolic
groups.

Lemma 2.15 (Soft transmission of the alignment). Let E be a standard vector space and f, g, h ∈ End(E) \
{0}. Let 0 < ε ≤ 1. Assume that sqz(g) ≥ 2| log(ε)| + log(4). If fAεgA ε

2h then fA ε
2 (gh). Conversely, if

gA ε
2h and fAε(gh), then fA ε

2 g.
Let e, f, g, h ∈ End(E). Assume that sqz(g), sqz(f) ≥ 2| log(ε)| + 2 log(4). If eA ε

2 fAεgA ε
2h, then

(ef)A ε
2 (gh). Conversely, if (ef)Aε(gh) and gA ε

2h and eA ε
2 f , then fA ε

2 g.
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× ×

h(S)

S ker (wg1) g

g(S)

gh(S)

ker
(
wf1

)

Figure 1: Illustration Of Lemma 2.14 in the case E = R2, with ε2 being the sinus of the angle between the
main axis of the ellipse h(S) and the dashed line ker(wg1), on the left of the arrow with ε2 being the angle
between the dotted ellipse g(S) and the dashed line ker(wf1 ) and with ε3 being the angle between the plain
ellipse gh(S) and the dashed line. We write S for the unit sphere.

Proof. For the first part, we use Lemma 2.14 with λ := 2| log(ε)| + log(4) and ε1 := ε and ε2 := ε
2 Then

we have ε3 = ε
2 . For the second part, we apply Lemma 2.14 twice. First to the product f, g, h with

λ := 2| log(ε)| + 2 log(4) and ε1 := ε and ε2 := ε/2 and we get ε3 = 3ε
4 . Then to the product (gh)∗, f∗, e∗

with the same λ, ε2 and with ε1 := 3ε
4 and we get ε3 = ε

2 .

Note that for standard ultra-metric vector spaces Lemma 2.15 is a consequence of Lemma 2.16. Note
also that it also holds trivially for endomorphisms that have rank one because U+ would be the image.

Lemma 2.16 (Hard transmission of the alignment). Let E be a standard ultra-metric vector space and
f, g, h ∈ End(E) \ {0}. Assume that for some ε > 0 we have sqz(g) > 2| log(ε)| and that gAεh. Then
fAε(gh) if and only if fAεg.

Proof. By (15) in Lemma 2.13, we have d(U+(gh), U+(g)) ≤ ε−1 exp(−sqz(g)) < ε so given w ∈W+(f) and
u ∈ U+(g) and u′ ∈ U+(gh) unitary, we have ∥u − u′∥ < ε, so since w is unitary, |w(u) − w(u′)| < ε but
by alignment property, we may assume that |w(u)| ≥ ε and by ultra-metric inequality we have |w(u′)| =
|w(u)| ≥ ε. This means that fAε(gh).

A direct consequence is the following:

Corollary 2.17 (Rigidity of the alignment in the ultra-metric case). Let E be a standard ultra-metric vector
space and ε > 0. Let (γn) be a sequence in End(E) that is 2| log(ε)| squeezing. Then (fn) is Aε-strongly
aligned if and only if it is Aε-aligned.

Proof. It is trivial that the strong alignment implies weak alignment. Now take (fn) an Aε aligned and
2| log(ε)|-squeezing sequence and an index b ∈ N. then we show by induction on k ∈ N, that for all
a ≤ b ≤ c such that bc− b, b− a ≤ k, we have (γa · · · γb−1)A(γb · · · γc−1), and (γa · · · γb−1), sqz(γb · · · γc−1) ≥
2| log(ε)|. Then we have (γb · · · γc−1)Aγc so (γa · · · γb−1)A(γb · · · γc) by Lemma 2.16 and sqz(γb · · · γc) ≥
sqz(γb · · · γc−1) + sqz(γc)− 2| log(ε) by Formula (14) in Lemma 2.13.

Note that in the toy model of section 1.3, the heredity of the alignment is even more robust. Indeed, if a
sequence (γ1, . . . , γn) of non-empty reduced words is aligned then for all 1 ≤ i ≤ n, the product γ1 ⊙ · · · ⊙ γi
is aligned with γi+1⊙· · ·⊙γn because the last letter of γ1⊙· · ·⊙γi is the last letter of γi and the first letter
of γi+1 ⊙ · · · ⊙ γn is the first letter of γi+1. In the case of matrices we use the following trick
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Lemma 2.18 (Alignment of partial products). Let E be a standard metric vector space and f, g1, . . . , gn, h ∈
End(E) \ {0}. Assume that for every i ∈ {1, . . . , n} and for some ε > 0, we have sqz(gi) ≥ 2| log(ε)|+ log(4)
and fAεg1Aε . . .AεgnAεh. Then we have fg1 · · · gnh ̸= 0 and:

sqz(fg1 · · · gnh) ≥ sqz(f) +

m∑
i=1

sqz(gi) + sqz(h)− (n+ 1)(2| log(ε)|+ 2 log(2)). (17)

If we now assume that sqz(gi) ≥ 2| log(ε)| + 2 log(4) for every index i ∈ {1, . . . , n}. Now assume that for
some specific index i, we have that fAεg1Aε . . .Aεgi and gi+1Aε . . .AεgnAεh, then:

giAεgi+1 ⇒ (fg1 · · · gi)A
ε
2 (gi+1 · · · gnh), (18)

(fg1 · · · gi)Aεgi+1 ⇒ giA
ε
2 (gi+1 · · · gnh), (19)

(fg1 · · · gi)Aε(gi+1 · · · gnh) ⇒ giA
ε
2 gi+1. (20)

Proof. We show (17) by induction using Lemma 2.15 and Formula (14). We use the convention g0 := f and
gn+1 := h. We will show that for every i = 0, . . . , n, we have:{

(fg1 · · · gi)A
ε
2 gi+1 and

sqz(fg1 . . . gi) ≥
∑i
j=0 sqz(gj)− i(2| log(ε)|+ 2 log(2)).

(A(i))

For i = 0, fA ε
2 g1 is a consequence of Definition 2.7 and sqz(f) ≥ sqz(f) is trivial. Then for i = 1, . . . , n,

assume (A(i− 1)). Apply Corollary 2.19 to (fg1 · · · gi−1)A
ε
2 giAεgi+1 with sqz(gi) ≥ 2| log(ε)|+ log(4) to get

that (fg1 · · · gi)A
ε
2 gi+1. Then apply (14) to (fg1 · · · gi−1)A

ε
2 gi to get that

sqz(fg1 . . . gi) ≥ sqz(fg1 . . . gi−1) + sqz(gi)− (2| log(ε)|+ log(4))

≥
i∑

j=0

sqz(gj)− i(2| log(ε)|+ log(4)).

This proves (A(i)) for all integer i ∈ {0, . . . , n}. Then take the transpose and change the order of fac-
tors in (A(n − i)) to get giA

ε
2 (gi+1 . . . h) for all i ≤ n. To prove (18) for i ∈ {0, n}, for 0 < i < n,

we simply apply Lemma 2.15 to (fg1 · · · gi−1)A
ε
2 giAεgi+1A

ε
2 (gi+1 . . . h). To prove (19) and (20), we use

Lemma 2.13 to show that d(U+(gi+1), U
+(gi+1 · · · gnh) ≤ ε

4 and the transpose of Lemma 2.13 to show that
d(W+(gi),W

+(g1 · · · gi)) ≤ ε
4 and conclude using Lemma 2.4.

The main result to keep in mind is the following.

Corollary 2.19 (Semi-rigidity of the alignment). Let ε > 0, let λ ≥ 2| log(ε)| + 2 log(4) and let I be an
interval of Z. Consider E a standard vector space. Any sequence (gi)i∈I ∈ End(E)I that is Aε-aligned and
λ-squeezing (i.e, sqz(gi) ≥ λ for all i) is strongly A ε

2 -aligned.

Proof. This is a reformulation of the first half of Lemma 2.18.

Lemma 2.20. Let (γn)n∈N be a sequence in End(E) that is Aε-aligned and λ-squeezing. There is a limit
u∞ such that:

∀n ∈ N, ∀u ∈ U+(γ0 · · · γn−1), d(u, u∞) ≤ 2

ε
exp(−sqz(γ0 · · · γn−1))

2.2 Discretisation of the alignment
Now we want to describe alignments with finite partitions that way knowing a finite number of alignment
conditions for a random family of endomorphisms amounts to knowing the position of a random point in
a finite set. This will be convenient for the construction of the pivotal extraction in Section 4. Indeed
conditional probabilities behave much better when we condition with respect to finite algebras. Note that
in the ultra-metric case we do not have anything to do due to the following result.
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Proposition 2.21 (Discreteness of ultra-metric alignments). Let E be a standard ultra-metric vector space
and ε > 0. There is a measurable partition

End(E) \ {0} =

M⊔
i=1

Li =

M⊔
j=1

Rj

and a set A ⊂ {1, . . . ,M} × {1, . . . ,M} such that:

Aε =
⊔
i,j∈A

Li ×Rj .

Proof. First by Lemma A.47, there are two partitions:

P(E) =

N⊔
j=1

Sj ; P(E∗) =

N⊔
i=1

S′
i,

where the Si’s and S′
i’s are the balls of radius ε. Then for every pair of indices (i, j), we write Li := {γ ∈

End(E)|W+(γ) ∩ S′
i ̸= ∅} and Rj := {γ ∈ End(E)|U+(γ) ∩ Sj ̸= ∅}. Then write A for the set of indices

(i, j) such that there are two unitary w ∈ S′
i and u ∈ Sj such that |w(u)| ≥ ε. Then the quantity |w(u)| is a

constant for all w ∈ S′
i and u ∈ Sj by ultra-metric inequality and as a consequence, for (γ′, γ) ∈ Li×Rj , we

have two unitary w ∈ W+(γ′) and u ∈ U+(γ) such that |w(u)| ≥ ε and then γ′Aεγ. Conversely, if γ′Aεγ,
then there are two unitary w ∈ W+(γ′) and u ∈ U+(γ) such that |w(u)| ≥ ε and if we write S′

i for the ball
centred at w and Sj for the ball centred at u then (γ′, γ) ∈ Li × Rj . Then to have a disjoint union, we use
the following trick. Write F = P({1, . . . ,M}) the set of subsets of {1, . . . ,M}, it is a finite set. Then write
A′ ⊂ F × F the set of pairs (I, J) such that A ∩ I × J ̸= ∅ and write for all I, J ∈ F :

L′
I :=

⋂
i∈I

Li \
⋃
i′ /∈I

Li′

R′
J :=

⋂
j∈J

Rj \
⋃
j′ /∈J

Rj′

Then the family (L′
I)I∈F is a disjoint covering of End(E) and so is (R′

J)J∈F . Moreover the relations A =⋃
(i,j)∈A Li×Rj and A′ =

⋃
(I,J)∈A′ L′

I×R′
J are the same. The inclusion A′ ⊂ A comes from the fact that for

every (I, J) ∈ A′ there is a pair (i, j) ∈ A∩ I ×J and as a consequence L′
I ×R′

J ⊂ Li×Rj and the inclusion
A ⊂ A′ comes from the fact that if one takes a pair gAh and write I := {i|g ∈ Li} and J := {j|h ∈ Rj} then
(g, h) ∈ L′

I ×R′
J and I × J contains a pair (i, j) ∈ A because gAh.

Lemma 2.22 (Fine partition of the Euclidean projective plane). Let E be a Euclidean or Hermitian vector
space and 0 < ε1 < ε2 < 1. There exists a measurable partition:

P(E) =

M⊔
i=1

Si

and a set A ⊂ {1, . . . ,M} × {1, . . . ,M} such that:

∀(i, j) ∈ A,∀u ∈ Si,∀v ∈ Sj , |⟨u, v⟩| ≥ ε1 (21)
∀(i, j) /∈ A,∀u ∈ Si,∀v ∈ Sj , |⟨u, v⟩| < ε2. (22)

Proof. Let ε = ε2−ε1
4 and let (t1, . . . , tM ) be an ε-dense covering of P(E) for the geodesic distance on S(E).

Define A :=
{
i, j
∣∣|⟨ti, tj⟩| ≥ ε2+ε1

2

}
and define by induction Si := B(ti, ε) \

⋃
j<i Sj . Now take two indices

i, j and x ∈ Si, y ∈ Sj . One has ||⟨x, tj⟩| − |⟨ti, tj⟩|| ≤ d(ti, x) and ||⟨x, y⟩| − |⟨x, tj⟩|| ≤ d(tj , y) by Lemma
2.4 so ||⟨x, y⟩| − |⟨ti, tj⟩|| ≤ 2ε. In conclusion, one has:

|⟨x, y⟩| ≥ ε2 ⇒ |⟨ti, tj⟩| ≥
ε2 + ε1

2
⇒ |⟨x, y⟩| ≥ ε1.
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If we reformulate Lemma 2.22 in term of alignments, we get the following corollary. We can read it as a
result about density of the set of finitely described alignments among {Aε|ε > 0}.

Definition 2.23. Let A be a measurable binary relation on a measurable set Γ i.e, an AΓ ⊗AΓ measurable
subset of Γ× Γ. We say that A is discrete or finitely described if there are two measurable partitions:

Γ =

M⊔
i=1

Li =

M ′⊔
j=1

Rj

and a subset A ⊂ {1, . . . ,M} × {1, . . . ,M ′} such that for all (i, j) ∈ {1, . . . ,M} × {1, . . . ,M ′}, all g ∈ Li
and all h ∈ Rj, we have gAh if and only if (i, j) ∈ A. We then call (Li)1≤i≤M the family of left tiles of A
and call the Rj’s the right tiles of A.

Note that in Definition 2.23, one may assume that the families (Li) and (Rj) are the equivalence classes
of the equivalence relations ∼L:= {(g, g′) | ∀h ∈ Γ, gAh ⇔ g′Ah} and ∼R:= {(h, h′) | ∀g ∈ Γ, gAh ⇔ gAh′}
respectively. Then saying that an alignment relation is discrete simply means that ∼L and ∼R have finitely
many equivalence classes.

Corollary 2.24 (Discrete descriptions of alignment relations). Let E be a standard Archimedean vector space
and 0 < ε1 < ε2 < 1. There exist a discrete binary relation A that satisfies the inclusions Aε2 ⊂ A ⊂ Aε1
i.e, for any given g, h ∈ End(E), we have gAε2h⇒ gAh⇒ gAε1h.

Proof. In the Ultra-metric case, this is a consequence of Proposition2.21. Now assume that E is Euclidean.
Let P(E) =

⊔M
i=1 Si and A be as in Lemma 2.22. For every 1 ≤ i, j ≤M , write Li := {h ∈ End(E)|W+(h)∩

S∗
i ̸= ∅} and Rj := {h ∈ End(E)|U+(h)∩Sj ̸= ∅}. Then the inclusion is a direct consequence of the definition

of Aε. Then we use the same trick as in the proof of Proposition 2.21 to get a disjoint partition.

2.3 Link between singular values and eigenvalues
Definition 2.25. Let h ∈ End(E) and 1 ≤ j < dim(E). Let ρ1(h) ≥ · · · ≥ ρd(h) be the absolute values of
the eigenvalues of h as defined in Definition A.53. We define:

prox(h)j := − log

(
ρ1(h)

ρ2(h)

)
For convenience, we will simply write prox(h) for prox1(h). We write E+(h) for the eigenspace of h associated
to the eigenvalues whose absolute value is ρ1(h).

Lemma 2.26. Let E be a Euclidean vector space and h ∈ End(E). One has:

prox(h) = lim
n→∞

sqz(hn)

n
(23)

E+(h) = lim
n→∞

U+(hn). (24)

Proof. Formula (23) is a direct consequence of Definition A.53. Then up to taking the exterior product
∧k

h,
we may assume that h is proximal, then for n ∈ N large enough, E+(hn) is a line (because a sub-vector
space of dimension k in E can be identified with a line in

∧k
E). Take en ∈ E+(hn) unitary, then we have

h(en) = λ1(h)en, write en = an + bn with an ∈ V +(hn) and bn ∈ ker(w) for some w ∈ W+(hn), then we
may assume that an⊥bn and hn(an)⊥hn(bn) by Lemma A.41. Then we have hn(bn) ≤ µ2(h

n) and hn(an) ≤
µ1(h

n)∥an∥ so ∥an∥ ≥ |λ1(h)
n|−µ2(h

n)
µ1(hn) so by Lemma A.52, we have log ∥an∥

n → 0 so log ∥h(an)∥
n → log |λ1(h)|

and log ∥h(bn)∥
n → log |λ2(h)|. Then we have d(E+(h), U+(hn)) = d(Ken,Kh(an)) = ∥h(bn)∥

∥h(en)∥ → 0, which
proves (24).
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Corollary 2.27. Let E be a standard vector space, let ε > 0 and take λ > 2| log(ε)| + 2 log(2). Let
h ∈ End(E) \ {0} be such that hAεh and sqz(h) ≥ λ. Then we have:

|λ1(h)| ≥ µ1(h)
ε

2
(25)

prox(h) ≥ sqz(h)− 2| log(ε)| − 2 log(2). (26)

Moreover E+(h) is a line and we have:

∀u ∈ U+(h), d(E+(h),Ku) ≤ 2 exp(−λ)
ε

. (27)

Proof. We have hAεh, so we can apply Corollary 2.19 to a sequence (h, . . . , h) of n+m copies of h, for some
n,m ∈ N we get that hmA ε

2hn. Then we apply Lemma 2.13 and we have:

∀m,n ∈ N, sqz(hn) ≥ sqz(hn) + sqz(hm)− 2| log(ε)| − 2 log(2). (28)

So going to the limit, and by Lemma 2.26, we have (26). With the same reasoning, we show (25). Now
consider a unitary x ∈ E+(h), and v ∈ V +(h). Consider some vector subspace V − that is complementary
of v and such that for all v− ∈ V − unitary, we have |h(v)| ≤ µ2(h) as constructed in Proposition A.43. We
can write x = av + bv′ with v′ ∈ V − unitary and a, b ∈ K, then by orthogonality, we have |a|, |b| ≤ 1. Then
we have:

h(x) ∧ h(v) = ah(v) ∧ h(v) + bh(v′) ∧ h(v)
∥h(x) ∧ h(v)∥ ≤ bµ1(h)µ2(h)

∥h(x) ∧ h(v)∥
∥h(x)∥ · ∥h(v)∥

≤ µ1(h)µ2(h)

|λ1(h)|µ1(h)

d(Kh(x),Kh(v)) ≤ 2 exp(−λ)
ε

Moreover Kh(x) = Kx ∈ P(E+(h)) and U+(h) = h(V +(h)) by definition so for all line u ∈ P(U+(h)), we
have a unitary vector v ∈ V +(h) such that u = Kh(v).

3 Random products and extractions
In this part we construct a theory for Markovian extractions, we extensively use the notations and results
of B.

3.1 Markov bundles
To define what it means to look at a random sub-sequence of a random sequence, we define integrable
extractions. First we will use the convenient language of category theory to define Markov bundles. However,
one does not need any base knowledge in category theory to understand the following. We only use the
formalism to compose matrices and concatenate oriented pairs of points (also called edges) to make paths.
Whenever we speak of category, the example to have in mind is the following.

Definition 3.1 (Category of paths). Let X be a finite set. We define the category Paths(X) as the set of
finite paths (x0, . . . , xn) ∈ Xn+1, endowed with the partially defined and associative concatenation:

(x0, . . . , xn = y0)⊙ (y0, . . . , ym) := (x0, . . . , xn, y1, . . . , ym) .

There is a length functor L : Paths(X) → N; (x0, . . . , xn) 7→ n and we write Pathsn(X) the set of paths that
have length n. There is also a functor:

θ : Paths(X) −→ E(X)
(x0, . . . , xn) 7−→ (x0 : xn)
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where E(X) is the set of oriented pairs X×X endowed with the partially defined associative product (x : y)·(y :
z) := (x : z) we call it the category of edges of X or the trivial category of base X. We write Pathsx−(X)
the set of paths that start in x, Paths−y(X) the set of paths that end in y, and Pathsx,y(X) = θ−1(x, y) the
set of paths that go from x to y. Note that when seen as sets E(X) = Paths1(X). Given e ∈ E(X) we write
ẽ ∈ Paths1(X) the lift of e. Note that the lift is not a functor, however it is a right inverse of θ. For every
path γ̃ = (x0, . . . , xn) ∈ Paths(X), we have (x0)⊙ γ̃ = γ⊙ (xn) = γ̃. For every x ∈ X, we say that the trivial
path (x) is the identity element of Paths(X) at the base point x.

Note that with our notations, the trivial path (x) ∈ Paths0(X) is not the same as the loop (x, x) ∈
Paths1(X). Then one can easily check that the category of edges and the category of paths are categories
in the following sense.

Definition 3.2 (Category). • We call semi-category a set Γ endowed with a partially defined associative
product · i.e, such that for all f, g, h ∈ Γ, if the products f · g and g · h are both defined then (f · g) · h
and f · (g · h) are both defined and equal.

• Given Σ and Γ two semi-categories, we call functor a map ϕ : Γ → Σ such that for every g, h ∈ Γ, the
product ϕ(g) · ϕ(h) is well defined when the product g · h is and then ϕ(g · h) = ϕ(g) · ϕ(h).

• We say that a semi-category Γ has base B if there is a canonical4 functor θ = (θ0 : θ1) : Γ → E(B)
such that for every g, h in Γ, the product g · h is defined if and only if θ(g) · θ(h) is, which means that
θ1(g) = θ0(h). In this case we call θ the base edge functor.

• We say that a semi-category Γ with base B is a category if there are some identity elements (ex)x∈X
such that θ(ex) = (x : x) and for every g ∈ γ, one has eθ0(g) · g = g · eθ1(g) = g for θ0(g), θ1(g) the ends
of the oriented pair θ(g).

Definition 3.3 (Change of base). Let Γ be a category of base B and X a set together with a map5 ϕ : X → B.
Write ΓX the bundle category of Γ over X:

ΓX = ΓX,ϕ := Γ×E(B) E(X) ≃ {(γ, e) ∈ Γ× E(X) | θ(γ) = ϕ:(e)}.

We may also write Γ = ΓB to specify the base of Γ. We also write Γx,y = Γx−∩Γ−y for θ−1(x : y) = θ−1
0 (x)∩

θ−1
1 (y) respectively. For an edge e = (x : y) and an element γ ∈ Γ such that θ(γ) = ϕ:(e) = (ϕ(x) : ϕ(y)), we

write (x : γ : y) ∈ ΓX for the element represented by the pair (γ, e) and call it a decorated edge.

Lemma 3.4 (Composition of bundles). Let ΓB be a category and Y
ϕ→ X

ψ→ B, we have a canonical
identification ΓY,ψ◦ϕ ≃ (ΓX,ψ)Y,ϕ.

Proof. Saying that ΓY,ψ◦ϕ ≃ (ΓX,ψ)Y,ϕ simply means that, knowing ϕ and ψ, the data (γ, e) ∈ ΓY of an
element γ ∈ Γ and an edge e ∈ E(Y ) such that ψ ◦ ϕ(e) = θ(γ) is the same as giving the data (γ, ϕ(e), e) ∈
(ΓX)Y .

Definition 3.5 (Step distribution on a measurable category). Let X be a finite set and Γ be a category
of base X. We say that Γ is a measurable category if it is endowed with a σ-algebra AΓ such that θ is
a measurable function (for the discrete σ-algebra on X) and for every x, y, z ∈ X, the product map · :
θ−1(x, y) × θ−1(y, z) → θ−1(x, z) is measurable. We call step distribution on Γ a family of probability
distributions (νx)x∈X such that νx is supported on Γx− := θ−1

0 (x) for all x. We write Step(Γ) the set of step
distributions on Γ.

Definition 3.6 (Convolution). Let Γ be a measurable category of finite base X. Define ∗ : Step(Γ) ×
Step(Γ) → Step(Γ) as follows. Let (νx)x∈X and (κx)x∈X be step distributions on Γ. Draw two families of
random variables fx ∼ νx and gx ∼ κx for all x ∈ X such that for all x, y ∈ X, the random variables hx and
gy are independent. For all x ∈ X, we write (ν ∗ κ)x for the distribution of the product fx · gθ1(fx).

Proposition 3.7. The convolution product is associative.
4This means that the data of a category contains the data of the base edge functor.
5Note that a map ϕ : X → B induces a functor ϕ: : E(X) → E(B).
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Proof. Let (νx)x∈X , (κx)x∈X and (ηx)x∈X be step distributions on a category Γ. Let (fx, gy, hz) ∼ νx⊗κy⊗ηz
for all x, y, z. Then we have (ν ∗ κ ∗ η)x = fx · gθ1(fx) · hθ1(gθ1(fx)).

Remark 3.8. We will write ⋆ for the convolution according to the composition law +, to be coherent with
literature and to avoid confusion with the multiplication convolution ∗. Note that since + is commutative, ⋆
also is. On R, the convolution product is given by the well known formula:

∀t ∈ R, κ ⋆ η(t,+∞) =

∫
R
κ(t− u,+∞)dη(u). (29)

On a measurable category, this formula becomes:

∀A ⊂ Γ,∀x ∈ X, (ν ∗ κ)x(A) =
∑
y∈X

∫
κx(g

−1(A))dνy(g). (30)

Here g−1(A) is the set of elements h ∈ Γ such that gh ∈ A. That way, we have gg−1(A) ⊂ A.

Definition 3.9 (Alternative definition for a Markov kernel). A Markov kernel (or stochastic matrix) over
a finite set X is a step distribution over E(X).

Remark 3.10 (The lift encodes the history). Given (X, p) a Markov space, write pn :=
n times

p ∗ · · · ∗ p ∈ Step(X)
the n-th power of p and p̃ ∈ Step(Paths(X)) the lift of p, supported on Paths1(X). Then we have for all
n ∈ N, pn = θ(p̃n) and:

∀(x0, . . . , xn) ∈ Pathsn(X), p̃nx0
(x0, . . . , xn) =

n−1∏
k=0

p(xk, xk+1).

Now we can define the notion of Markov bundle. Intuitively this is a way to draw almost i.i.d sequences.
In practice it is a nice object because it allows us to prove Theorem 1.1.

Definition 3.11 (Markov bundle). Given Γ a measurable category of base B, we call Markov bundle of base
X and fibre Γ the data of a map ϕ : X → B and a step distribution (νx)x∈X in the bundle category ΓX as
well as a starting set Xs ⊂ X such that for all x ∈ X, there is a point xs ∈ Xs and a path from xs to x that
is ν-adapted i.e, a sequence xs = x0, . . . , xn = x such that νxk

{γ | θ1(γ) = xk+1} > 0.

Definition 3.12 (Notations for Markov bundles). Given (X, ν) a Markov bundle over a category Γ:

• write pν := θ(ν) the Markov kernel on X induced by ν,

• for every x, y such that pν(x, y) > 0 write νx,y :=
(1θ−1(x:y))
pν(x,y)

νx and note that it is the distribution of a
random variable g ∼ νx conditionally to (θ1(g) = y),

• for every probability distribution ξ on X and every subset A ⊂ X such that p(ξ, A) :=
∑
x∈X,y∈A ξ(x)pν(x, y) >

0, we write:

νξ,A =
1

p(ξ, A)

∑
x∈X,y∈A

ξ(x)pν(x, y)νx,y.

Given (Ω, (Fn)n∈N,P) a filtered probability space, we say that a random sequence (γn)n≥0 ∈ ΓN
X is an orna-

mented Markov chain in (X, ν) that respects F if:

• θ1(γn) = θ0(γn+1) =: xn+1 for all n,

• γn is Fn+1-measurable for all n,

• γn has distribution νxn
conditionally to Fn.

We call x0 := θ0(γ0) the starting state of (γn)n∈N and call its distribution the starting distribution of (γn),
we then write ν̃∞ξ0 for the distribution of (γn)n∈N when ξ0 is the starting distribution of γn. We say that (γn)
is adapted if ξ0 is supported on the starting set Xs.
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Definition 3.13 (Integrable bundles). Let (X, ν) be a Markov bundle over (R≥0,+). Given p > 0, we say
that (X, ν) is Lp integrable if ∥νx∥Lp is finite for all x ∈ X.

Remark 3.14. Given (X, ν) a Markov bundle over a measurable category Γ and (γn) an ornamented Markov
chain in (X, ν), the sequence (xn := θ0(γn))n∈N is a Markov chain in (X, pν). We call the distribution of
x0 = θ0(γ0) the starting distribution of the ornamented Markov chain (γn) Moreover, just like for Markov
chains, it fully determines the distribution of the whole decorated Markov chain.

Lemma 3.15. Let Γ be a category of finite base B. Let (γn) be a random adapted sequence (i.e, such that
θ1(γn) = θ0(γn+1) for all n) defined on a filtered probability space (Ω,F ,P). Assume that for all n ∈ N,
γn is Fn+1-measurable, and the distribution of γn conditionally to Fn only depends on θ0(γn) (which is
Fn-measurable) and not on n. Then (γn) is an ornamented Markov chain in a Markov bundle (X, ν).

Proof. Given x ∈ B and an integer n such that P(θ0(γn) = x) > 0, we write ν(n)x for the distribution of γn
knowing θ0(γn) = x. By assumption, ν(n)x does not depend on n when it is defined. Then take Xs to be the
support of the distribution of θ0(g0) and X to be the range of (θ0(γn)) i.e,Xs := {x ∈ B |P(θ0(γ0) = x) > 0}
and X := {x ∈ B | ∃n ∈ N,P(θ0(γn) = x) > 0}. Then one can check that Xs ⊆ X, that νx is well defined on
X, that all points of X are reachable from Xs following a (νx)-adapted path and that the distribution of γn
knowing Fn is indeed νθ0(γn) for all n.

3.2 Extractions
Think of the example in Section 1.3, (gn) is the simple random walk in the 3-tree identified with the
Cayley graph of G, the free Coxeter group with 3-generators, so that gn = l0 · · · ln where the li’s are chosen
uniformly and independently among the three generators {a, b, c} of G. We defined a sequence of pivotal
times 0 = p0 < p1 < p2 < . . . such that (gpn)n∈N is a half geodesic in G. The interesting thing is that we had
a way to create the sequence of words (lpn , . . . , lpn+1−1)n∈N as the decoration of a ornamented Markov chain
in a given Markov bundle (X, p, ν̃). We say that (X, ν̃) is an extraction of the Markov bundle

(
{∗}, δa+δb+δc3

)
with {∗} the trivial Markov space with only one state and δa+δb+δc

3 the uniform probability measure over
the generators of G. First, we need a convenient notation for decomposing a sequence into words.

Definition 3.16 (Category of words). Let Γ be a category of base X. We define the category of ornamented
paths or adapted words in Γ as Paths(Γ) :=

⊔
n∈N Pathsn(Γ) where:

Pathsn(Γ) := {(γ0, . . . , γn−1) ∈ Γn | ∀k ∈ {1, . . . , n− 1}, θ1(γk−1) = θ0(γk)}

for all n ≥ 1 and Paths0(Γ) := X. The base of Paths(Γ) is still X, the elements of Paths0(Γ) are the identity
elements and there is a natural coordinate by coordinate projection morphism θ : Paths(Γ) → Paths(X). We
also define a product morphism:

Π : Paths(Γ) −→ Γ
(γ0, . . . , γn−1) 7−→ γ0 · · · γn−1

When there is an ambiguity, we write ΠΓ instead of Π to specify on which category and Π⊙ to specify for which
composition law the product morphism is defined. Given an adapted word g̃ = (γ0, . . . , γn−1) ∈ Paths(Γ), we
define:

• L (g̃) := n the length of g̃,

• for all integer k ∈ {0, . . . , n}, and for i ∈ {0, 1}, write sk (g̃) := θi(γk−i) ∈ B for the k-th state of g̃ note
that the fact that the word g̃ is adapted means that sk (g̃) does not depend on the choice of i ∈ {0, 1}
when k ∈ {1, . . . , n− 1},

• for k = 0, . . . , n− 1, write χk (g̃) := γk for the (k + 1)-th letter of g̃.

Definition 3.17 (Lift). Let Γ be a measurable category of base X. Given (νx)x∈X a step distribution over
Γ, we write (ν̃x)x∈X for the lift of ν which is a step distribution over Paths(Γ). In the same fashion, given
Σ a category of base B and π : Σ → Γ a morphism, we write π̃ : Paths(Σ) → Paths(Γ) for the letter by letter
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morphism defined by π̃(σ0, . . . , σn−1) := (π(σ0), . . . , π(σn−1)), that way, we have the following commutative
diagram:

Paths(Σ)
π̃ //

ΠΣ

��

Paths(Γ)

ΠΓ

��
Σ

π // Γ

. (31)

With the notations of Definition 3.6, we can define for all n ∈ N the n-th power of a Markov bundle
(X, ν) as (X, νn) where νn := ν ∗ · · · ∗ ν. That way νnx is the distribution of γn where (γk) is an ornamented
Markov chain in (X, ν) that starts at the point x.

Definition 3.18 (Iteration of a Markov bundle). To a Markov bundle (X, ν) on a category Γ, we associate
the lift (X, ν̃) that is a step distribution over Paths (ΓX) and we have Πν̃n = νn for all n ∈ N. We write ν̃∞x
for the distribution of the ornamented Markov chain in (X, ν) starting at the point x.

Definition 3.19. Given Γ a category, we define Paths∞(Γ) as the set of infinite paths, or infinite adapted
sequences (γn)n∈N, this is the set on which ornamented Markov chains are valued. Moreover, one can extend
the concatenation convolution ⊙ as a monoid action:

⊙ : Step(Paths(γ))×
∏
x∈X

Prob (Paths∞x (Γ)) →
∏
x∈X

Prob (Paths∞x (Γ)) .

It means that as step distribution is a way to add a random letter to an infinite random adapted word. Note
that that way we have ν̃n ⊙ ν̃∞ = ν̃∞ for all n, which justifies the notation. We say that ν̃∞ is ν̃-stable
or equivariant. Write Paths∗(Γ) := Paths(Γ) ∪ Paths∞(Γ). Then one can extend the concatenation product
functor Π⊙Paths(Paths(Γ)) → Paths(Γ) as follows:

Π∗
⊙ : Paths∗(Paths(Γ)) −→ Paths∗(Γ)

(g̃m)m∈N 7−→ (L (g̃0) + · · ·+ L (g̃k−1) + r 7→ χr (g̃k))k∈N,0≤r<L(g̃k) .

For the definition of extractions we will use the following non-probabilistic notations.

Definition 3.20 (Convenient notation). Given (wn)n≥0 a sequence of integers, we write for all n ∈ N, wn :=
w0 + · · · + wn−1. In general, for (γn)n∈N an adapted sequence in a category Γ, we write γn := γ0 · · · γn−1.
We also write for all n ∈ N:

γwn := γwn
· · · γwn+1−1 ∈ Γ

γ̃wn := (γwn
, . . . , γwn+1−1) ∈ Paths(Γ).

We say that γ̃w is the word sequence extracted from γ with waiting time w and γw is the product sequence
extracted from Γ. That way, one has formally:

• Π(γ̃wn ) = γwn for all n ∈ N

• Π∗
⊙((γ̃

w
n )n∈N) = (γn)n∈N for Π∗

⊙ as in Definition 3.19,

• γwk+r = χr (γ̃
w
k ) as long as 0 ≤ r < wk,

• γwn
= γwn for all n ∈ N,

• for all sequence (vn) ∈ NN, we have (γ̃w)
v
n = γ̃

(wv)
n for all n ∈ N.

Remark 3.21. Note that the product γwn
· · · γwn+wn−1 has no reason to be well defined so we will not need

it, therefore we write γwn for γwn because it is clear that taking the partial product is the last operation to do
in the order of priorities.

Now we can define extractions
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Definition 3.22 (Extraction). Given (X, ν) a Markov bundle over a category Γ, we call extraction of (X, ν)
the data of a Markov bundle (Y, κ̃) over Paths(ΓX)Y with a base map ϕ : Y → X such that Ys = ϕ−1(Xs)
and a family of probability distributions (Φx)x∈Xs

on Ys such that such that for all x ∈ Xs and y ∈ Ys, we
have Φx(y) > 0 if and only if ϕ(y) = x. We moreover impose that :

ν̃∞x0
=
∑
y∈Y

Φx0
(y)ϕ

(
Π∞

⊙
˜̃κ∞y ) .

This means that for (g̃n)n the ornamented Markov chain in (Y, κ̃) with starting distribution Φx0 , the sequence
Π∞

⊙ (g̃) is the ornamented Markov chain in (X, ν) with starting point x0.

In other words, saying that a bundle (Y, κ̃) is an extraction of (X, ν) means that the distribution of the
ornamented Markov chain (γn)n∈N in (X, ν) and of starting distribution ξ0 as defined in Definition 3.12 is the
distribution of the letters of the ornamented Markov chain (g̃m)m∈N of starting distribution Φ(ξ0) in (Y, κ̃)
where we have forgotten the data of the spacing between words (represented by Π∞

⊙ in the formula) and
have also forgotten the data of the exact position of each state ym in the fiber ϕ−1(xn) for xn = θ0(γn) ∈ X

and ym = θ0(g̃m) ∈ Y and n =
∑m−1
k=0 L(g̃k).

Lemma 3.23 (Composition of extractions). Let (X, ν) be a Markov bundle. Let (Y, κ̃) , ϕ,Φ be an extraction
of (X, ν) and

(
Z, ˜̃η

)
, ψ,Ψ be an extraction of (Y, κ̃). Write η̃ := Π⊙ ˜̃η for the distribution of the random word(

z0 : h00, . . . , h
0
N0−1, h

1
0, . . . , h

1
N1−1, . . . , h

M
0 , . . . , h

M
N1−1 : z1

)
∈ Paths(ΓX)Z

when the random word of words(
z0 :

(
y0 : h00, . . . , h

0
N0−1 : y1

)
, . . . ,

(
yM : hM0 , . . . , h

M
N1−1 : yM+1

)
: z1
)

∈ Paths(Paths(ΓX)Y )Z

has distribution ˜̃η. Then (Z, η̃) , ϕ ◦ ψ,Ψ ◦ Φ is an extraction of (X, ν).

Proof. First note that Π⊙ : Paths(Paths(Γ)Y )Z → (Paths(Γ)Y )Z = Paths(Γ)Z so η̃ is indeed a Markov
bundle over Paths(Γ)Z . Now we need to check that the distributions match take (γn)n∈N an ornamented
Markov chain in (X, ν) with starting distribution ξ0, take (g̃m)m∈N an ornamented Markov chain in (Y, κ̃)

with starting distribution Φ(ξ0) and take
(
˜̃
hl

)
l∈N

an ornamented Markov chain in
(
Z, ˜̃η

)
with starting

distribution Ψ ◦ Φ(ξ0). Write wm := L (g̃m) for all m ∈ N and write vl := L
(
˜̃
hl

)
and h̃l := Π⊙

˜̃
hl for all

l ∈ N. Then one has L
(
h̃l

)
= wvl for all l ∈ N because L is a category functor and h̃l = g̃vl = (γ̃w)

v
l = γ̃

(wv)
l ,

so Ψ ◦ Φ is an extraction of (X, ν).

Now note that a generic extraction is not necessarily meaningful because some basic properties are not
preserved by general extractions. For example, a recurrent random walk may have an extraction that escapes
to infinity at quadratic or exponential or whatever speed.

Lemma 3.24 (Meaningless extraction). Let Γ be a discrete group and ν be a probability distribution on Γ
that is recurrent and irreducible. Then for all Markov bundle (Y, κ) on Γ, there is an extraction (Y, κ̃) of
({∗}, ν) such that Πκ̃ = κ.

Proof. Consider an ornamented Markov chain (gm) in (Y, κ) and a sequence (γn) ∼ ν⊗N independent of
(gm). We define a sequence (wm) of integers by induction: assume wk to be defined for some integer k ≥ 0
and define wk to be the smallest integer such that γwk

· · · γwk+wk−1 = gk. Note that since ν is recurrent, wk
is almost surely finite for all k. Then write g̃m := γ̃wm for all m ∈ N. Note that for all m ∈ N, the distribution
of g̃m knowing ym := θ0(gm) is independent of (wk)k<m, of (γn)n≤wk

and of (gk)k<m, so it is independent
of (g̃k)k<m. By Lemma 3.15 (g̃m) is an ornamented Markov chain on a Markov bundle (Y, κ̃). Moreover, we
have gm = Πg̃m for all m so Πκ̃ = κ and Π∞

⊙ (g̃m) = (γn) so (Y, κ̃) is an extraction of ({∗}, ν).

Given that we want to show some large deviations inequalities in Theorem 1.2, a relevant notion of a
good extraction would be the following.
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Definition 3.25 (Exponentially integrable extraction). Let (Y, κ̃) be an extraction of a Markov bundle (X, ν)
on a monoid Γ. We say that the extraction (Y, κ̃) is exponentially integrable if there are constants C, β > 0
such that:

∀y ∈ Y,E (exp (βL(κ̃y))) ≤ C. (32)

Lemma 3.26 (Stability under composition). With the same notations as in Lemma 3.23, if moreover the
extractions are exponentially integrable, then the composed extraction also is.

Proof. We use the same notations as for the proof of Lemma 3.23. Let
(
Z, ˜̃η

)
be an exponentially integrable

extraction of (Y, κ̃) itself being an exponentially integrable extraction of a Markov bundle (X, ν). Take z ∈ Z
a point, there is a point z0 ∈ Zs that depends on z and an integer lz such that plz˜̃η (z0, z) > 0. Then take (g̃m)

a decorated Markov chain in (Y, κ̃) starting at Φ(z0) and write (vn) and (zn) for the waiting time and Markov
chain such that

(
zn : ˜̃gvn : zn+1

)
n∈N

is an ornamented Markov chain in
(
Z, ˜̃η

)
. Then L(η̃z) is the distribution

of L
(
g̃vlz

)
+ · · · + L

(
g̃vlz+vlz−1

)
knowing that (zlz = z), which is a non-negligible event. Therefore, we

can apply Lemma B.24 to the sequence (L(g̃m))vlz≤m<vlz+vlz−1 where the random integers vlz has finite
exponential moment and the (L(g̃m))’s all have bounded relative exponential moment by assumption. Doing
this gives that L(η̃z) has a finite exponential moment.

Lemma 3.27 (Motivation for Definition 3.22). Let ν be a probability distribution on R whose support has a
lower bound −M . Then the following assertions are equivalent:

1. There is an extraction (Y, κ̃) of ({∗}, ν) that is exponentially integrable and such that κ is supported on
[1,+∞).

2. There are constants α > 0, β > 0 and C such that for (γn) ∼ ν⊗N:

P(γn ≤ αn) ≤ C exp(−βn).

Proof. Consider a sequence (γn) ∼ ν⊗N. We first show the interesting6 implication, namely that 1 implies 2.
Consider a sequence (wm) such that (γ̃wm) is an ornamented Markov chain in (Y, κ̃). Then since Y is finite,
by Lemma B.26, there is a constant A and some C, β > 0 such that for all k ∈ N, we have P(wk ≥ Ak) ≤
C exp(−βk). By taking the sum and writing C ′ := C

β , we get P(∃k ≥ m,wk ≥ Ak) ≤ C ′ exp(−βm) for all
m ∈ N. Now for all k ∈ N, write rk for the largest integer such that wrk ≤ k and write β′ := β

A . Then for
all n ∈ N we have P(∃k ≥ n,Ark ≤ k) ≤ C ′ exp(−β′n). Now for all k ∈ N, we have γk ≥ rk −M(k − wrk).
The by Lemma B.23, the random variable k − wrk has a bounded exponential moment, this means that we
have some constants C ′′, β′′ > 0 such that P(k − wrk ≥ εk) ≤ C ′′ exp(−β′′εk) for all k ∈ N and all ε > 0.
Now take ε := 1

2MA and we get

P(∃k ≥ n, 2Aγk ≤ k) ≤ P(∃k ≥ n,Ark ≤ k) + P(∃k ≥ n, k − wrk ≥ εk)

≤ C ′ exp(−β′n) +
C ′′

εβ′′ exp(−β
′′εn)

≤
(
C ′ +

C ′′

εβ′′

)
exp (−min{β′, β′′ε}n) .

We now prove that 2 implies 1. Consider some constants α > 0, β > 0 and C such that P(γn ≤ αn) ≤
C exp(−βn) for all n. We define a sequence (wk)k∈N by induction. Consider some integer k ≥ 0 and
assume wk := w0 + · · ·wk−1 to be defined and define wk to be the minimal integer such that γwk :=
γwk

+· · · γwk+wk−1 ≥ 1. Then wk is a stopping time for the cylinder filtration (Fn) associated to the sequence
(γn) and wk only depends on the sequence (γn+wk

) that has law ν⊗N relatively to Fwk
so the sequence (γ̃wk )

is i.i.d, write κ̃⊗N for its distribution. Now we only need to show that w0 has finite exponential moment,
consider n ≥ 1

α an integer, we have:

P(w0 > n) ≤ P(γn < 1)

≤ P(γn ≤ αn)

≤ C exp(−βn).
6This part of the proof is interesting because it is similar to the proof of Theorem 1.2.
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This means that w0 has a finite exponential moment and therefore ({∗}, κ̃) is an exponentially integrable
extraction of ν.

3.3 Rank, kernel and boundary of a probability distribution
Now we will consider a Markov bundle with trivial basis ({∗}, ν) over Γ = End(E) for E a standard vector
space. This amounts to considering an i.i.d sequence of random matrices.

Definition 3.28 (Rank of a distribution). Let ν be a step distribution on End(E). We define the rank of ν
as the largest integer rk(ν) such that:

∀n ≥ 0, ν∗n {γ ∈ Γ | rk(γ) < rk(ν)} = 0. (33)

Lemma 3.29 (Eventual rank of a distribution). Let ν be a probability distribution on Γ. There exists an
exponentially integrable extraction ({∗}, κ̃) of ν such that the product κ = Πκ̃ is supported on the set of rank
rk(ν) endomorphisms. In other word, for (γn) ∼ ν⊗n, there is a stopping time w such that γw has rank
rk(ν) and w has finite exponential moment.

Proof. Let (γn) be a sequence of independent random matrices of distribution law ν defined over a filtered
probability space (Ω,F ,P). Let (γn) be the right partial product associated to γ. The random sequence
rk(γn) is a non-increasing sequence of non-negative integers, so it converges to a random limit r0. We want
to show that r0 is almost surely constant. Define w0 as the first integer such that rk(γn) = r0, then write r1
for the limit rank of γw0 · · · γn−1 as n goes to infinity. Since w0 is a stopping time, the distribution of r1 is
the same as the distribution of r0 and they are independent but r0 ≤ r1 almost surely so r0 is constant equal
to rk(ν). Then we write w1 for the smallest integer such that γw0

· · · γw0+w1−1 has rank rk(ν) and define a
sequence (wn) by induction such that γwn has rank rk(ν) and wn+1 is taken minimal for this property. Then
wn is a stopping time so the sequence (γ̃wn ) is i.i.d and as a consequence is an ornamented Markov chain for
a Markov bundle of trivial base that we call ({∗}, κ̃). Now to show that w0 has finite exponential moment,
we consider n0 the smallest integer such that P(w0 = n0) > 0. It means that P(γn0

= 0) = α0 > 0. Then
since (γn) is i.i.d, we have P(γkn0 · · · γ(k+1)n0−1 = 0) = α0 for all k ∈ N and these events are independent so
for all k ∈ N, we have:

P(∀k′ < k, γk′n0
· · · γ(k′+1)n0−1 ̸= 0) = (1− α0)

k

P(γ0 · · · γkn0−1 ̸= 0) ≤ (1− α0)
k

∀n ≥ kn0, P(γn ̸= 0) ≤ n0
√
1− α0

kn0

∀kn0 ≤ n < (k + 1)n0, P(w0 ≥ n) ≤ 1

1− α0

n0
√
1− α0

n

∀n ∈ N, P(w0 ≥ n) ≤ C exp (−βn).

For C = 1
1−α0

and β = | log (1− α0)|/n0 > 0.

Definition 3.30 (Essential kernel). Let ν be a probability distribution on End(E). We write ker(ν) for the
essential kernel of ν defined by:

ker(ν) := {x ∈ E | ∃n ≥ 0, ν∗n{γ|γx = 0} ≠ 0} . (34)

Proposition 3.31. Let ν be a probability distribution on End(E). The set ker(ν) is included in a finite
union of subset of E that each have dimension at most dim(E)− rk(ν).

Proof. Consider a sequence (γn) ∼ ν⊗N and write w0 for the first integer such that g := γw0−1 · · · γ0 has
rank rk(ν). Then for all x, we have g(x) = 0 if and only if there is an integer n such that γn−1 · · · γn(x) = 0.
So we have:

ker(ν) = {x ∈ E |P(g(x) = 0) > 0}

=
⋃
ε>0

{x ∈ E |P(g(x) = 0) ≥ ε}

=
⋃
n∈N

{x ∈ E|ν(γx = 0) ≥ 2−n}.
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Now given some ε > 0, we will show that Kε := {x ∈ E |P(g(x) = 0) ≥ ε} is included in a finite union of
subspaces of dimension d′ = dim(E)−rk(ν). Consider a family (x1, . . . , xN ) in general position in Kε in the
sense that for all ≤ i1 < · · · < ik ≤ N with k ≤ d′ + 1, the space

⊕k
j=1 Kxij has dimension exactly k. Then

for all i ∈ {1, . . . , N}, we define ai to be 1 if g(xi) = 0 and 0 otherwise. Then since ker(g) has dimension at
most d′ almost surely, we have

∑N
i=1 ai ≤ d′ almost surely. So if we loot at the expectation, we get d′ ≥ Nε.

Now take Nε to be maximal so that there is a family (x1, . . . , xN ) in general position in Kε. Then for all
x0 ∈ Kε, the family (x0, . . . , xN ) is not in general position so there is some k ≤ d′ and there are indices
0 ≤ i0 < · · · < ik < N such that

⊕k
j=0 Kxij has dimension at most k. We also know that i0 = 0 because

(x1, . . . , xN ) is in general position. As a consequence x0 ∈
⊕k

j=1 Kxij . Therefore, we have:

Kε ⊂
⋃

1≤i1≤···≤id′≤N

 k⊕
j=1

Kxij

 .

So K2−n is included in a union of at most
(
d′2n

d′

)
subspaces of dimension d′. Now that is true for all n ∈ N.

Therefore ker(ν) is included in a union of countably many subspaces of dimension d′.

Proposition 3.32. Let ν be a probability distribution over End(E) and (γn) be a random sequence of
distribution ν⊗N. Then for every x ∈ E, the random sequence γnx is almost surely never zero if and only if
x /∈ ker(ν).

Proof. First note that if x /∈ ker(ν), then the event (∃n ∈ N, γn(x) = 0) is a countable union of negligible
events so it is negligible. Then if x ∈ ker(ν), then there is an integer k such that ν∗k{g ∈ Γ | g(x) = 0} = ε > 0
so we have P(γkn · · · γk(n+1)−1(x) = 0) = ε > 0 for all n and these events are independent so we have
P(∃n, γn(x) = 0) ≥ P(∃n, γkn · · · γk(n+1)−1(x) = 0) = 1

Definition 3.33. For a given probability distribution ν on End(E), we define
∧j

ν to be the distribution
law of

∧j
γ when γ ∼ ν. It is a distribution on End

(∧j
E
)
.

Definition 3.34 (Irreducible distributions). Let E be a standard vector space of dimension d ≥ 2 and ν be a
probability distribution over End(E). We say that ν is irreducible if there is no proper subspace V ⊂ E such
that ν(stab(V )) = 1. We say that ν is strongly irreducible if there is no non-trivial finite union of proper
subspaces A =

⋃
Vi such that ν(stab(A)) = 1. We say that ν is absolutely strongly irreducible if for every

1 ≤ j ≤ d− 1, the distribution
∧j

ν is strongly irreducible.

Definition 3.35 (Proximal distributions). Let ν be a probability distribution on Γ and (γn) ∼ ν⊗N. We say
that ν is proximal if rk(ν) ̸= 0 and there exists an integer n such that the partial product γn is proximal with
non-zero probability.

Definition 3.36 (Proximal boundary). Let E be a standard vector space and ν be a probability distribution
over End(E) of non-zero rank.

• We define rg(ν) the range of ν as the set
⋃
n∈N supp (ν∗n).

• We define the conical range C(ν) as the closure of Krg(ν).

• We define the rank r cone of ν as the intersection between C(ν) and the set of rank r matrices and
write Cr(ν) for the rank r cone.

• We write ∂r(ν) ⊂ P(End(E)) for the quotient of Cr(ν) \ {0} by the multiplicative action of K \ {0}.

• We call proximal boundary of ν the set ∂(ν) := ∂1(ν).

• We define the Furstenberg boundaries of ν as:

∂u(ν) := {im(π) |Kπ ∈ ∂(ν)} ⊂ P(E) (35)
∂w(ν) := {im(π∗) |Kπ ∈ ∂(ν)} ⊂ P(E∗). (36)
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A direct consequence of Lemma 3.38 is that the proximal boundary of a given probability distribution ν
is non-empty if and only if ν is proximal. Remark also that by definition, the Green function is monotonous
for the extraction order and so is the boundary i.e, if a given distribution ν′ is extracted from a distribution
ν, then ∂r(ν′) ⊂ ∂r(ν) for all r.

Lemma 3.37. With the notations of Definition 3.36. If we moreover assume that ν is irreducible then we
can decompose ∂1(ν) as a product:

∂(ν) = {Kef |Ke ∈ ∂u(ν),Kf ∈ ∂w(ν)} . (37)

Proof. Let e1, e2 ∈ E and f1, f2 ∈ P(E∗) be unitary. Let π1 := e1f1 and π2 := e2f2. We want to show
that e1f2 ∈ ∂(ν). Take two sequences (gm), (hm) ∈ Krg(ν)N such that gm → π1 and hm → π2. Since ν is
irreducible, there exists an endomorphism γ ∈ supp(ν∗k) for some k ≥ 0 such that γe2 /∈ ker(f1). Consider
such a γ, then by continuity of the product, we have gmγhm → e1f1γe2f2 and f1γe2 is a non-zero scalar so
limm gmγhm ∈ K∗e1f2. Now if we assume that for all m, there are integers i, j such that gm ∈ Ksupp(ν∗i)
and hm ∈ Ksupp(ν∗j) then gmγhm ∈ supp(ν∗i+j+k) so Ke1f2 ∈ ∂1(ν) which concludes the proof.

Lemma 3.38 (Characterisation of proximality). Let ν be an irreducible probability distribution of positive
rank. Then the following assertions are equivalent:

1. ν is not proximal,

2. there is a bound B such that sqz(γ) ≤ B for every γ ∈ rg(ν),

3. ∂(ν) = ∅.

Proof. We show 3 ⇔ 2. Note that sqz is a continuous function from End(E) \ {0} to [0,+∞] and it is
invariant by scalar multiplication so it is continuous on P(End(E)) which is compact. Moreover sqz = +∞
only on the set of rank one matrices so saying that sqz(γ) is bounded on rg(ν) is equivalent to saying that
∂(ν) = ∅.

We show 1 ⇒ 3. Assume that ν is not proximal. We want to show that ∂(ν) = ∅. Take e ∈ E and f ∈ E∗

unitary and write h := ef , then one has λ1(h) = f(e). Now assume that Kh ∈ ∂(ν) and that λ1(h) ̸= 0.
Then consider a sequence gn ∈ Γ such that gn → h. Write ε := |λ1(h)|/2 and λ := 2| log(ε)|+4 log(2). Then
for n large enough, we may assume that sqz(gn) ≥ λ and that gnAεgn. Then by Corollary 2.27, we have
prox(gn) > 0 which is a contradiction. This means that h2 = 0 so we have e ∈ ker(f) and this is true for all
e such that Ke ∈ ∂u(ν) which contradicts the irreducibility of ν so ∂1(ν) is empty.

Now we show 2 ⇒ 1. Assume that ν is proximal. Then there is an integer k and an element γ ∈ supp(ν∗k)

such that prox(γ) > 0. Then by the spectral theorem, we have prox(γ) = lim sqz(γn)
n so we have sqz(γn) → ∞.

Moreover γn ∈ supp(ν∗kn) ⊂ rg(ν) for all n so sqz is not bounded on rg(ν).

Note that Theorem 1.2 is not true for a general irreducible and proximal probability distribution. A
simple couter can be created by taking E := R2 and ν := 1

2 (δA + δB) with:

A :=

(
2 0
0 1

2

)
and B :=

(
0 1
−1 0

)
Then ν is irreducible because the action of B alone is. However the group generated by A and B is isomorphic
to Z/4⋉Z (because B4 = Id and BAB−1 = A−1) and one can see that the random walk (γ̄n) associated to
ν is in fact recurrent. Take (γn) ∼ ν⊗N. Write w0 for the first time such that γw0 = B and then take (wk)
such that wk is the k-th time such that γwk

= B. Then for all integer k ≥ 0, we have γw2kγ
w
2k+1 = −Ank with

nk a symmetric Z-valued random variable that has finite exponential moment. Then we know from basic
probability theory that the random walk nk is recurrent.
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4 Pivotal time method

4.1 Statement of the result
In this section, we want to show that every strongly irreducible and proximal Markov bundle has a pivotal
extraction i.e, an extraction that is convenient and allows us to have nice lower bounds on the singular and
spectral gaps using the aligned sequences that we described in section 2. All the statements of the Lemmas
mention an abstract measurable function N . This is only used in the proof of Theorem 1.5, for the proofs
of Theorems 1.2 and 1.3, we may take N to be the constant function equal to 0 and make all the conditions
on N trivial.

Definition 4.1. We say that a Markov bundle (X, ν) over Γ is A-aligned for a given binary relation A if
for every pν-admissible path (x, y, z), we have νx,y ⊗ νy,z(A) = 1. We say that (X, ν) is strongly A-aligned
if for every x0 ∈ X, the ornamented Markov chain (γn) ∼ ν̃∞x0

almost surely projects to a strongly A-aligned
sequence in Γ.

Proposition 4.2. Given (X, ν) a Markov bundle that is strongly A-aligned for some binary relation A
(such that the identity is A-aligned with everyone) and (Y, κ̃) an extraction of (X, ν), then (Y, κ̃) is strongly
A-aligned.

Proof. Take (γn)n∈N a strongly aligned sequence, then take (wn) a sequence of non-negative integers.
Then take a ≤ b ≤ c three natural integers, we have wa ≤ wb ≤ wc so (γwa

· · · γwb−1)A (γwb
· · · γwc−1)

because (γn) is strongly aligned, and if we rewrite this using the notation of Definition 3.20, we have(
γwa · · · γwb−1

)
A
(
γwb · · · γwc−1

)
so γw is strongly aligned. Then up to equivalence, one may assume that for all

y0 ∈ Y the ornamented Markov chain (g̃n) in (Y, κ̃) starting from y0 can be written as (γ̃wn ) for (γn) = (γ′n0+n)
with n0 a random integer and (γ′k) an ornamented Markov chain in (X, ν).

Definition 4.3. We say that a Markov bundle (X, ν) over Γ is λ-squeezing for a given constant λ if for
every x ∈ X, we have νx{γ|sqz(γ) ≥ λ = 1}.

Proposition 4.4. Let ε > 0 and λ ≥ 2| log(ε)|. Then every Markov bundle (X, ν) that is A2ε aligned and
λ-proximal is Aε-strongly aligned.

In this part we want to control the Lp norms of the extractions, however e do not want to assume that ν is
Lp for some p ≥ 1 so we will consider an abstract function N that may be the one defined in the introduction
or that may be 0 in the case when ν does not satisfy any moment condition.

Definition 4.5 (Word-norm). Let Γ be a measurable category and N : Γ → [0,+∞]. We write N :
Paths(Γ) → [0,+∞] for the measurable map:

N : (γ1, . . . , γL) 7−→ N(γ1) + · · ·+N(γL).

Note that the map N does not need to be a functor but N always is. Note also that saying that N is
sub-additive is equivalent to saying that N ◦Π ≤ N .

Definition 4.6 (Pivotal bundle). We say that a step distribution νs over Γ is ρ-Schottky for the alignment
relation A if

1. for all g ∈ Γ, we have νs{γ|gAγ} ≥ 1− ρ.

2. for all h ∈ Γ, we have νs{γ|γAh} ≥ 1− ρ.

We say that a Markov bundle (X, ν) over Γ is ρ-pivotal for some ρ ∈ [0, 1] if there is an edge (a : b) such
that the distribution νa:b is ρ-Schottky, and such that a Markov chain in (X, pν) goes through (a : b) with
probability one. We call such an edge a pivotal edge or a ρ-pivotal edge.

Definition 4.7 (Ping-pong). We call ping pong base a Markov chain ({s, a, b}, p) where p(s, a) = p(a, b) =
p(b, a) = 1. The points s, a, b do not have to be distinct.
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Definition 4.8. Let Γ be a measurable category endowed with a binary relation A and ρ ∈ [0, 1]. We say that
a Markov bundle (X, ν) is ρ-ping-pong if (X, pν) is a ping pong base with Xs = {s} and νa,b is ρ-Schottky.

The main theorem of this section is the following

Theorem 4.9. Let ν be a strongly irreducible and proximal distribution over a linear monoid Γ := End(E).
Let 0 < ρ < 1

3 and p ≥ 1 and N : Γ → R≥0 a measurable function. Assume that N(ν) is almost surely finite.
There exists a constant ε > 0 such that for all λ > 0, there is an exponentially integrable and eventually
irreducible extraction ({s, a, b}, κ̃) of ({∗}, ν) and three constants la ∈ N and B,C ∈ R≥0 such that:

1. For s = b and κ = Πκ̃, The Markov bundle ({s, a, b}, κ) is ρ-ping-pong, strongly Aε-aligned and λ-
squeezing.

2. Given a random word g̃ ∼ κ̃a, the length L(g̃) = la and for all 0 ≤ k < la, we have N (χk (g̃)) ≤ B.

3. Given a word g̃ ∼ κ̃s or g̃ ∼ κ̃b, we have:

∀k ∈ N,∀t > B ∀l > k, E (N (χk(g̃)) > t |L (g̃) = l) ≤ CN(ν)(t,+∞). (38)

This theorem says two things, the first one is that there is always an aligned and squeezing pivotal
extraction, without any moment conditions on ν. The second is that when we have a moment condition
on ν then we can have it on the pivotal extraction, it is not a direct consequence of the existence of the
extraction. Indeed a sum of exponentially many Lp integrable random variables is not necessarily Lp. Note
also that one cans show that C does not actually depend on λ but this is not useful to prove the main results
because we may as well take λ = 100| log(ε)|+ 100 once and for all.

4.2 Construction of the ping-pong extraction
Definition 4.10. Let E be a Euclidean vector space, let 0 < ε, ρ, α ≤ 1. We say that a probability distribution
ν on End(E) is (ε, ρ, α, λ)-mixing if there is a probability distribution νA that is ρ-Schottky for Aε, and λ-
squeezing and such that ανA ≤ ν.

Remark 4.11. We define the projective Wasserstein distance between two probability distributions η and
ν over Γ \ {0} as the minimum of E (∥ag − bh∥) for a coupling of two random variables g ∼ ν and h ∼ η
and a, b two random scalars such that ∥ag∥ = ∥bh∥ = 1. Let ε > 0, ρ > 0, α > 0 and λ ≥ | log(ε)| + log(2).
For all ρ′ < ρ, all ε′ < ε, all α′ < α and λ′ < λ, there is a constant δ > 0 such that for all distributions
ν that is (ε, ρ, α, λ)-mixing, all distribution η at Wasserstein distance at most δ is (ε′, ρ′, α′, λ′)-mixing. In
other words, being mixing is a robust notion that can be guaranteed by a Las Vegas type algorithm. Indeed,
drawing a random matrix with distribution law ν is not possible with a computer in general but on can model
a distribution arbitrarily Wasserstein-close to ν this would give an approximation of the constants defined in
the introduction.

Lemma 4.12. Let ν be a strongly irreducible and proximal distribution over Γ := End(E). For all ρ > 0,
there is a constant ε > 0 such that for all λ, there is an integer m and α > 0 such that ν∗m is (ε, ρ, α, λ)-
mixing.

Proof. Since ν is proximal, the set ∂(ν) defined in 3.36 is not empty. Write ∂u(ν) and ∂w(ν) for the
left and right boundaries as defined in Lemma 3.37. Then ∂u(ν) in invariant by the left action of ν and
∂w(ν) is invariant by the right action of ν. The claim is that for every N , one can take two families
(w1, · · · , wN ) ∈ ∂w(ν)

N and (u1, . . . , uN ) ∈ ∂u(ν)
N in general position7.

We prove this claim by induction: For N = 0 this is trivial. Then if we assume the claim for some
N − 1 ≥ 0, take x1, · · · , xN−1 ∈ ∂v(ν) in general position and write:

F :=
⋃

1≤i1≤···≤id−1≤N−1

span
{
ui1 , . . . , uid−1

}
⊂ E,

7we say that a family (xi) of vectors is in general position if for every subset {i1, . . . , ik} of indices with k ≤ d, the family
(xi1 , . . . , xid ) is linearly free.
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Since F is a finite union of proper subspaces of E, then F does not contain ∂u(ν) so one can take a
line uN ∈ ∂u(ν) \ F and then the family u1, · · · , uN ∈ ∂w(ν) is in general position. The proof of the
claim is the same for ∂w(ν) by duality. Now take N :=

⌈
d−1
ρ

⌉
and two families w1, · · · , wN ∈ ∂w(ν) and

u1, . . . , uN ∈ ∂u(ν) in general position and write:

εu := min
f∈E∗,
∥f∥=1

(
max

i1<···<id−1

(
min

i /∈{i1,...,id−1}
|f(ui)|

))
; (39)

εw := min
x∈E,
∥x∥=1

(
max

i1<···<id−1

(
min

i /∈{i1,...,id−1}
|wi(x)|

))
; (40)

ε :=
min{εu, εw}

2
(41)

The constant ε is not 0 because for every x, the hyperplane x⊥ contains at most d− 1 wi’s so:

∀x ∈ S(E), max
1≤i1<···<id−1≤M

(
min

i/∈{i1,...,id−1}
|wi(x)|

)
> 0.

Moreover each |w(x)| is 1-Lipschitz so the maxmin also is and P(E) is compact so this is indeed a minimum.
Now take any λ ≥ 2| log(ε)|+ 2 log(2) and for every pair of indices (i, j) ∈ {1, . . . , N}2, write:

Si,j := {γ ∈ Γ \ {0}|d(W+(γ), wi) ≤ ε,d(U+(γ), uj) ≤ ε, sqz(γ) ≥ λ}.

Now we claim that all probability distribution κ, that satisfies κ(Si,j) ≥ 1
N2 for all i, j, is ρ-Schottky.

Indeed, consider such a κ, and g ∈ Γ. Take some unitary ug ∈ U+(g) and wh ∈ W+(g). There is a subset
I ⊂ {1, . . . , N} of size N − d+ 1 such that for all i ∈ I, we have |wg(ui)| ≥ 2ε. Then consider some indices
(i, j) ∈ I × {1, . . . , N} and an endomorphism γ ∈ Si,j , take a unitary uγ ∈ U+(γ), we have d(uγ , ui) ≤ ε
so by Lemma 2.4, we have |wg(uγ)| ≥ 2ε − ε gAεγ so κ{γ | gAεγ} ≥ N−d+1

N ≥ 1 − ρ. Then with the same
reasoning, we get that κ{γ | γAεg} ≥ 1− ρ so κ is ρ-Schottky

Moreover each Si,j is invariant by scalar multiplication and is a neighbourhood of the point ujwi ∈ ∂(ν)
so by definition, there is an integer ni,j such that ν∗ni,j (Si,j) > 0 We want to show that actually there is an
integer n such that ν∗n(Si,j) > 0 for all 1 ≤ i, j ≤ N .

For all 1 ≤ i, j ≤ N , write:

S′
i,j :=

{
γ ∈ Γ \ {0}

∣∣∣ d(W+(γ), wi) <
ε

2
,d(U+(γ), uj) <

ε

2
, sqz(γ) > λ

}
.

Then for all i, j we have some n′i,j such that ν∗n
′
i,j (S′

i,j) > 0. Then write:

A :=
{
(i, j) ∈ {1, . . . , N}2 | |ui(wj)| ≥ 2ε

}
.

By Lemma 2.18, for all sequence (ik, jk)1≤k≤M such that (ik, jk+1) ∈ A for all 1 ≤ k < M , we have
S′
i1,j1

· · ·S′
iM ,jM

∈ Si1,jM . To all pair (i, j) of indices, we associate a pair (i′, j′) ∈ A such that (i, j′) ∈ A and
(i′, j) ∈ A. Such a pair exists because if we take (i′, j′) ∈ {1, . . . , N}2 uniformly at random, we have P((i, j′) ∈
A) ≥ 1 − ρ and P((i′, j) ∈ A) ≥ 1 − ρ and P((i′, j′) ∈ A) ≥ 1 − ρ and ρ < 1

3 so P({(i, j′), (i′, j), (i′, j′)} ⊂
A) ≥ 1− 3ρ > 0. Therefore, there is at least one pair of indices (i′, j′) such that {(i, j′), (i′, j), (i′, j′)} ⊂ A.
Now for all pair (i, j), write pi,j := n′i,j + n′i′,j′ and write M for the smallest common multiple of the family
(pi,j)1≤i,j≤N . Then for all pair (i, j), write qi,j for the integer such that pi,jqi,j =M . Then for all pair (i, j),
the product

(
S′
i,j · S′

i′,j′

)qi,j · (S′
i′,j′ · S′

i,j

)qi,j has positive ν∗2M -measure and is included in Si,j by Lemma
2.18. Therefore ν∗2M (Si,j) > 0 for all pair i, j. Then we write m := 2M and α′ := mini,j ν

∗m(Si,j). For all
i, j, write η̃i,j for the normalised restriction of ν⊗m to S̃i,j . Then α′η̃i,j ≤ ν⊗m for all i, j (if we see them
as functions A⊗m

Γ → [0, 1]) so we may write αdη̃i,j = fi,jdν
⊗m with fi,j : Γ

m → [0, 1] a measurable density
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function. Then write:

f := max
1≤i≤j≤N

fi,j

dη̃a :=
fdν⊗m∫

Γm fdν⊗m

dη̃b :=
(1− f)dν⊗m∫

Γm(1− f)dν⊗m
.

Then we have
∫
fdν⊗m ≤ N2α because max fi,j ≤

∑
fi,j but

∫
Si,j

fdν⊗m ≥ α′ for all i, j so η̃a(S̃i,j) ≥ 1
N2

for all 1 ≤ i, j ≤ N , which means that the product ηa is ρ-Schottky for Aε. Write α :=
∫
fdν⊗m then we

have αηa ≤ ν∗m by definition.

Lemma 4.13. Let ν be a strongly irreducible and proximal probability distribution over Γ := End(E). Let
N : Γ → [0,+∞] be a measurable map such that N(ν) is almost surely finite. Let 0 < ρ < 1

3 . There is
a constant ε > 0 such that for all λ < +∞, there is an exponentially integrable and eventually irreducible
extraction ({a, b}, κ̃) of ({∗}, ν) and two constants la ∈ N and B,C ∈ R≥0 such that:

1. For s = b and κ = Πκ̃, The Markov bundle ({s, a, b}, κ) is ρ-ping-pong i.e,κa is ρ-Schottky for the
alignment relation Aε.

2. Given a random word g̃ ∼ κ̃a, the length L(g̃) = la and for all 0 ≤ k < la, we have N (χk (g̃)) ≤ B and
sqz(Π(g̃)) ≥ λ almost surely.

3. Given a word g̃ ∼ κ̃b, we have for all A ⊂ Γ measurable:

∀l > k, P (χk(g̃) ∈ A |L (g̃) = l) ≤ 2N(ν)(t,+∞). (42)

Proof. Consider ε > 0, λ ≥ 2| log(ε)|, α > 0 and la ∈ N be such that there is a probability distribution η′a
that is ρ

2 -Schottky, for Aε and λ-proximal, and such that α′η′a ≤ ν∗la . Such constants exist by lemma 4.12.
Consider η̃a a lift pf η′a such that α′η̃′a ≤ ν⊗la . Since N(ν) is almost surely finite, we have a constant B
such that N(ν)(B,+∞) → 0 as B goes to infinity. Take b so that ν⊗la(N−1(B,+∞)la) ≥ 1 − α′/2. Then
the normalised restriction η̃a of η̃′a to N−1(B,+∞)la is bounded by 2η̃′a so its product is ρ-Schottky and
we have α′η̃a ≤ 2ν⊗la . Write α := α′/2 Draw (γ1, . . . , γla , x) ∼ αη̃a ⊗ δa + (1 − α′)η̃b ⊗ δb. Then we have
(γ1 . . . , γm) ∼ ν⊗m so for all k ∈ {1, . . . ,m}, and for all measurable A ⊂ Γ, we have:

P (γk ∈ A) ≤ ν(A)

P (γk ∈ A ∩ (x = b)) ≤ ν(A)

P (γk ∈ A |x = b) ≤ 2N(ν)(t,+∞). (43)

Then we define the Markov Bundle ({a, b}, κ̃) as follows:

κ̃a,b = η̃a pκ̃(a, b) = 1

κ̃b,a =

∞∑
k=0

(1− α′)k

α′ η̃⊙kb pκ̃(b, a) = 1.

Then ({a, b}, κ̃) is ρ-ping-pong because ηa is ρ Schottky. Now if we draw:

(γmk . . . , γm(k+1)−1, xk)k∈N ∼ (α′η̃a ⊗ δa + (1− α′)η̃b ⊗ δb)
⊗N

. (44)

Then we have (γn) ∼ ν⊗N and if we write t0 for the first time such that xt0 = a then we have (γ0, · · · , γmt0+1−1) ∼
κ̃b,a ⊙ κ̃a,b. Moreover, t0 is a stopping time so (γm(k+t0+1), . . . , γm(k+t0+2)−1, xk+t0+1)k∈N has the same dis-
tribution as (γmk, . . . , γm(k+1)−1, xk)k∈N. In particular, (γn+mt0+1) ∼ ν⊗N, so we have:

κ̃b,a ⊙ κ̃a,b ⊙ ν⊗N = ν⊗N

(κ̃b,a ⊙ κ̃a,b)
⊙N

= ν⊗N,
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because L (κ̃b,a ⊙ κ̃a,b) is not supported on {0}. It means that the Markov Bundle ({a, b}, κ̃) is an extraction
of ({∗}, ν). Then by definition, the length L(κ̃b,a) has finite exponential moment. Moreover, for all k, the
distribution of the k-th letter of g̃ knowing L(g̃) is simply the k −m

⌊
k
m

⌋
-th marginal of η̃b so (43) implies

(42).

Lemma 4.14. Let ν be a strongly irreducible and proximal distribution over Γ := End(E). Let N : Γ →
[0,+∞] be a measurable map such that N(ν) is almost surely finite. Let 0 < ρ < 1

3 . There is a constant
ε > 0 such that for all λ < +∞, there is an exponentially integrable and eventually irreducible extraction
({a, b}, η̃) of ({∗}, ν) and two constants la ∈ N and B ∈ R≥0 such that:

1. For s = b and η = Πη̃, The Markov bundle ({s, a, b}, κ) is λ-squeezing and ρ-ping-pong i.e, ηa is
ρ-Schottky for the alignment relation Aε.

2. Given a random word g̃ ∼ η̃b, the length L(g̃) = la and for all 0 ≤ k < la, we have N (χk (g̃)) ≤ B.

3. Given a word g̃ ∼ η̃b, we have:

∀t ≥ B, ∀l > k, P (N (χk(g̃)) > t |L (g̃) = l) ≤ 2N(ν)(t,+∞). (45)

Proof. Let ε,B be as in Lemma 4.13 and let λ′ = λ+4| log(ε)|+4 log(2). Consider ({a, b}, κ̃) the extraction
constructed in Lemma 4.13. Now we build a new extraction ({a, b}, η̃). Write m for the length of κ̃a. Draw
three random sequences: (g̃2k)k∈N ∼ κ̃⊗N

b and (g̃2k+1)k∈N ∼ κ̃⊗N
a and (τk)k∈N ∈ [0, 1]N uniformly. Given

f, g, h ∈ End(E), and γ ∼ κa, we define:

F (f, g, h) :=
1(fAεgAεh)
P (fAεγAεh)

(1− 2ρ) (46)

For all k, write gk := Π(g̃k) and wk := L(g̃k) and write (γn)n∈N :=
⊙+∞

k=0 g̃k. We define k0 to be the smallest
random integer such that:

τk0 < F (g2k0+1, g2k0+1, g2k0+2).

It implies that F (g2k0+1, g2k0+1, g2k0+2) > 0, so we have:

g2k0+1Aεg2k0+1Aεg2k0+2.

Then by Lemma 2.18, we have:

sqz
(
g2k0+3

)
≥ λ′ − 4| log(ε)| − 4 log(2) ≥ λ. (47)

Moreover, F takes values in [0, 1], so we have for all k ∈ N:

P (k0 > k | (g̃2n)n∈N, (g̃2k′+1)k′<k) = P (τk ≥ Fk | (g̃2n)n∈N, (g̃2k′+1, τk′)k′<k)

= E (1− Fk | (g̃2n)n∈N, (g̃2k′+1, τk′)k′<k)

= 2ρ

As a consequence, k0 has a geometric distribution of scale factor 2ρ and is independent of (g̃2n)n∈N. Now
for all n ∈ N, write tn for the only integer such that wtn ≤ n < wtn+1. Then by (42), we have:

∀A ⊂ Γ, P (N(γn) > t | (w2k)k∈N, tn ∈ 2N) ≤ 2ν(A). (48)

Moreover k0 and (g̃2k)k∈N are independent so conditionally to tn ∈ 2N), the random variables k0 and γn are
independent. Then (48) becomes:

∀A ⊂ Γ, P (N(γn) > t | (w2k)k∈N, k0, tn ∈ 2N) ≤ 2ν(A). (49)

Moreover, when tn is odd, N(γn) ≤ B, so for all t ≥ B, we have:

P(N(γn) > t | tn /∈ 2N) = 0. (50)
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If we combine (50) with (49) and take A = {γ ∈ Γ |N(γ) > t}, then we get:

∀t ≥ B,P(N(γn) > t | (w2k)k∈N, k0) ≤ 2N(ν)(t,+∞). (51)

Then wk0+3 is a function of ((w2k)k∈N, k0) so we have:

∀t ≥ B,P (N(γn) > t |wk0+3) ≤ 2N(ν)(t,+∞).

Which proves (45) for η̃b the distribution of g̃0 ⊙ · · · ⊙ g̃2k0+2. Write η̃a := κ̃a. Then note that 2k0 + 2 is a
stopping time for the sequence (g̃k) and it is non-zero so we have:

η̃b ⊙ η̃a ⊙ (κ̃b ⊙ κ̃a)
⊙N = (κ̃b ⊙ κ̃a)

⊙N

(η̃b ⊙ η̃a)
⊙N = (κ̃b ⊙ κ̃a)

⊙N

(η̃b ⊙ η̃a)
⊙N = ν⊗N.

This proves that ({a, b}, η̃) is indeed an extraction of ({∗}, ν).

4.3 Pivot algorithm
Now we show how to turn a ρ-ping pong and λ-squeezing extraction into a pivotal and aligned extraction.

Definition 4.15 (Naive pivot algorithm). Given (γn) an acceptable sequence in a category Γ, and A a binary
relation on Γ. we define a sequence of integers (wk) ∈ NN ⊔ N(N) × {+∞} as follows: create n0 := 0 and
m0 := 0 two integer variables and create a variable sequence (w0

k)k ∈ NN that we initialize with the value
w0
k := 1 for all k. Then we define inductively for j ≥ 0:

1. if γwmj
Aγj+1, set wj+1

k := wj+1
k for all k, and change mj+1 := mj + 1 and nj+1 := j + 1,

2. otherwise, and if there is an integer l ∈ {0, . . . ,m} such that:

γw
j

l−1A
(
γw

j

l · · · γw
j

mj
γj+1

)
then take l the largest such integer and change wj+1

l := wjl + · · ·+wjmj+1, mj+1 := l and nj+1 := j+1

3. otherwise write t ≥ j + 2 the smallest integer such that γt−1Aγt−1Aγt and set wj+1
0 := t then change

mj+1 := 0 and nj+1 := j + t. If there is no such t, the algorithm ends and we set w0 := +∞ and
m = 0.

If there is an index k such that (wjk)j does not converge then write m for the smallest such integer and set
wm := +∞, otherwise, we say that the pivot algorithm converges and write m = +∞. For all k < m, the
sequence (wjk)j converges (is stationary) and we set wk to be its limit. This creates a sequence of integers
(wk)0≤k<m with m = lim infmj and wk = limwjk.

Lemma 4.16. Write Γ = ⟨a, b, c|a2, b2, c2⟩, consider the binary relation A defined by (gAh) :⇔ (χL(g)(g) ̸=
χ1(h)) or equivalently (gAh) :⇔ (L(gh) = L(g)+L(h)). Then for (γn) ∈ {a, b, c}N uniformly distributed and
independent, the naive pivot algorithm converges almost surely and the extracted sequence (γ̃wk ) is the pivotal
extraction described in the introduction.

Sketch of proof. One can show by induction that at every step of the algorithm, (γw0 , . . . , γ
w
m) is a geodesic

segment. Moreover the average length gain in case 1 is 2
3 and the average loss in case2 is 1

3 because l = m−1
always works. As a consequence one has m ∼ n

3 with exponential rare linear deviations so γn travels along
a geodesic with exponentially rare linear deviations i.e, for all ε > 0, the probability of large deviations
P
(
d
(
γn, γ

w
⌊n/3⌋

)
≥ nε

)
decreases exponentially fast with n.

Now the problem with the naive pivot algorithm is that it is not easy to show that it converges in general,
therefore we will use the following pivot algorithm, for which we can show that there is convergence only
assuming that the odd elements of the sequence have a good behaviour, namely they are ρ-Schottky for ρ
small enough.
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Definition 4.17 (Alternate pivot algorithm). Let (γn) be an acceptable sequence in a category Γ, and A a
binary relation on Γ. We define a sequence of integers (wk) ∈ NN ⊔ N(N) × {+∞} as follows:
Create by induction over j ∈ N, a family of sequences (wjk)0≤k ∈ NN that we initialise with the value w0

k := 1
for all k and a family of integers that we initialise with the value m0 = 0. For all j ∈ N, we do as follows:

1. if γw
j

2mj
Aγ2j+1Aγj+2, change mj+1 := mj + 1 and keep wj+1

k = wjk for all k,

2. otherwise, and if there is an even integer l ∈ {1, . . . ,mj − 1} such that:

γw
j

2l+1A
(
γw

j

2l+2 · · · γw
j

2mj
γ2j+1γ2j+2

)
,

then take l the largest such integer or l = 0 if there is no such integer and change wj+1
2l := wj2l + · · ·+

wjmj
+ 2, mj+1 := l, for all k > 2mj+1, set wj+1

k := 1 and for k < 2mj+1, we keep wj+1
k := wjk.

If there is an index k such that (wjk)j does not converge then write m for the smallest such integer and set
wm := +∞, otherwise, we say that the pivot algorithm converges and write m = +∞. For all k < m, the
sequence (wjk)j converges (is stationary) and we set wk to be its limit. This creates a sequence of integers
(wk)0≤k<m with m = lim infmj and wk = limwjk.

Lemma 4.18. Take a constant ε > 0, define λ = 4| log(ε)| + 4 log(2) and take a relation A ⊂ Aε. Take a
sequence (γk) ∈ End(E)N that is λ-squeezing. Then the families (wjk)j,k and (mj)j defined by the alternate
pivot algorithm as in Definition 4.17 satisfy the following properties:

1. at each iteration j of the algorithm, we have wj2mj+1 = 2j,

2. for all k ∈ N, the sequence (wjk)j∈N is non-decreasing and for all odd k and all j, we have wjk = 1,

3. at each iteration j of the algorithm, for all k < 2mj, we have γw
j

k A ε
2 γw

j

k+1,

4. at each iteration j of the algorithm, for all 1 ≤ k ≤ 2mj, we have sqz
(
γw

j

k

)
≥ λ.

Proof. Items (1) and (2) are direct properties of the construction. Note also that for all odd k, we have
γw

j

k = γwj
k

so we have sqz(γw
j

k ) ≥ λ by hypothesis, which proves the odd part of (4). Now we show by

induction on j the proposition C(j): "for all even integer k < 2mj , we have γw
j

k Aεγwj

k+1". Let j ≥ 0 and
assume C(j), we consider two cases, if we are in case (2) the for all even k < 2mj+1, we also have k < 2mj

and γw
j+1

k = γw
j

k and γw
j+1

k+1 = γw
j

k+1 (indeed only γw
j

2mj+1
changes) so we have γw

j+1

k Aεγwj+1

k+1 by C(j), which
proves C(j+1), otherwise, we are in case (1), then for all even k < 2mj+1, we either have k < 2mj , in which
case the above reasoning still works and we have γw

j+1

k Aεγwj+1

k+1 or we have k = 2mj , then since the condition
of (1) applies, we have γw

j

2mj
Aεγ2j+1 and γw

j+1

2mj
= γw

j

2mj
and γw

j+1

2mj+1 = γw
j

2j+1, which proves C(j + 1).
Now we get to the tricky part. We will show by induction on j the property S(j): for all odd integer

k ≤ 2mj , we have γw
j

k Ãγ̃wj

k+1. Where the notation γÃg̃ is defined inductively and means that either g̃ has
only one letter and γAεg and sqz(g) ≥ λ; or there is a decomposition of g̃ into three words g̃ = g̃1 ⊙ (s)⊙ g̃2
such that g1AεsAεg2 and sqz(s) ≥ λ and γÃg̃1. First we show S(j) by induction. Let j ≥ 0 and assume
S(j). Assume that we are in case (1) in Definition 4.17, then for all k < mj we have nothing to prove and for
k = 2mj +1, we have γw

j+1

2mj+1Aεγw
j

2j+2 and γ̃w
j

2j+2 has only one letter which proves S(j+1). Now assume that
we are in case (2), then for some odd k < 2mj+1, we always have γw

j+1

k = γw
j

k and if k ̸= 2mj+1 − 1, then
we also have γ̃w

j+1

k+1 = γ̃w
j

k+1 so there is nothing to prove. If k = 2mj+1 − 1, then we have the decomposition:

γ̃w
j+1

2mj+1
= γ̃w

j

2mj+1
⊙
(
γwj

2mj+1+1

)
⊙
(
γwj

2mj+1+2
, . . . , γ2j+2

)
. (52)

Now we have γw
j+1

k Ãγ̃wj

2mj+1
by S(j) and:

γw
j

2mj+1
Aεγwj

2mj+1+1
Aε
(
γwj

2mj+1+2
· · · γ2j+2

)
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because we are in case (2) with mj+1 > 0. This proves S(j) for all j. Now we need to show that for all γ ∈ Γ

and all g̃ ∈ Paths(Γ), such that γÃg̃, we have sqz(g) ≥ λ and γA ε
2 g. We write λ′ := 2| log(ε)|+ 4 log(2) and

we show by induction we show D(g̃): "g̃ can be decomposed into a product:

g̃ = g̃1 ⊙ · · · ⊙ g̃l

such that γAεg1A ε
2 · · ·A ε

2 gl and sqz(gi) ≥ λ′". Note that when g̃ has length one, we have such a decompo-
sition with l = 1 because λ ≥ λ′ Note also that by lemma 2.18 (14), D(g̃) implies that we have sqz(g) ≥ λ
and γA ε

2 g. For g̃ of length more than one, we decompose g̃ := g̃1 ⊙ (s) ⊙ g̃2, then by D(g̃1), we have a
decomposition:

g̃1 = g̃1 ⊙ · · · ⊙ g̃l−1 (53)

we write g̃l := (s)⊙ g̃2. Then we have g1Aεs so by Lemma 2.18 (19), we have gl−1A ε
2 gl and by Lemma 2.13,

we have sqz(gl) ≥ sqz(s) + sqz(g2) − 2| log(ε)| ≥ λ′. In conclusion, S(j) implies (4) for all even k ≥ 2 and
(3) for all odd k and C(j) implies (3) for all even k and (2) implies (4) for all odd k.

Now we need to prove that the pivotal algorithm does converge almost surely for some specific sequences.

Lemma 4.19 (Pivotal concatenation). Let Γ be a measurable semi-group endowed with a binary relation A
and ρ < 1. Let g ∈ Γ be fixed. Let (γk)k∈N be a sequence of random variables in Γ that respects a filtration
(Fk) in the sense of Definition B.7 and such that for all odd n, the distribution of γn knowing (Fn) is
ρ-Schottky in the sense of Definition 4.17. Then if one writes l for the smallest integer such that (gγl)Aγl,
one has:

∀k ∈ N, P(l > 2k + 1) ≤ ρk.

As a consequence l has a finite exponential moment

Proof. First note that the family of events (l > 2k + 1)k≥0 is non-increasing for the inclusion. By Schottky
property, for all k, we have P((gγ2k+1)Aγ2k+1 | F2k+1) ≥ (1−ρ) because (gγ2k+1) is F2k+1-measurable. This
means that P(l > 2k + 1 | F2k+1) < ρ. Moreover, if k ̸= 0 the event (l > 2k − 1) is F2k+1-measurable so
P(l > 2k + 1 | l > 2k − 1) = P(l>2k+1)

P(l>2k−1) ≤ ρ. When k = 0, we have P(l > 1) ≤ 1 because P is a probability
measure so we can conclude by induction.

Now we want to show that the pivotal algorithm converges. To have some nice probabilistic estimates,
we will change the algorithm the following way:

Definition 4.20 (Weighted pivot algorithm). Let (γn) be an acceptable sequence in a category Γ, and A
a binary relation on Γ. Let (tk) ∈ [0, 1]N, let F : Γ3 → [0, 1] and let R : Γ4 → [0, 1] be two measurable
functions. We define a sequence of integers (wk) ∈ NN ⊔ N(N) × {+∞} as follows:
We create by induction over j ∈ N, a family of sequences (wjk)0≤k ∈ NN and a family of integers (mj) that
we initialise with the value w0

k := 1 for all k and m0 := 0. the for all j ≥ 0, we do as follows

1. if t2j+1 < F (γw
j

2mj
, γ2j+1, γ2j+2), change mj+1 := mj + 1 and keep wj+1

k = wjk for all k,

2. otherwise, and if there is an integer l ∈ {1, . . . ,mj − 1} such that:

twj
2l+1

< R
(
γw

j

2l , γ
wj

2l+1, γ
wj

2l+2, γwj2l+2 · · · γ2j+2

)
then take l to be the largest such integer and take l = 0 otherwise and change wj+1

l := wjl+· · ·+wj2mj
+2,

take mj+1 := l and for all k > 2mj+1, set wj+1
k := 1.

If there is an index k such that (wjk)j does not converge then write m for the smallest such integer and set
wm := +∞, otherwise, we say that the pivot algorithm converges and write m = +∞. For all k < m, the
sequence (wjk)j converges (is stationary) and we set wk to be its limit. This creates a sequence of integers
(wk)0≤k<m with m = lim infmj and wk = limwjk.
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Lemma 4.21. Let 0 < ρ < 1
5 . Let η be a ρ-Schottky probability distribution on a measurable semi-group Γ

for a binary relation A. Let γ ∼ η. Write:

∀f, g, h ∈ Γ, F (f, g, h) :=
1(fAgAh)
P (gAγAh)

(1− 2ρ)

∀f, g, h, h′ ∈ Γ, R(f, g, h, h′) :=
1(fAεgAεh)1(gAh′)
P ((gAγAh) ∩ (γAh′))

(1− 3ρ)

Let (γ2k+1)k∈N ∼ η⊗N, let (γ2k)k∈N be any random sequence and (tk)k∈N ∈ [0, 1]N be a uniformly distributed
sequence independent of (γn)n∈N. Then the weighted pivotal algorithm associated to the sequences (γn)n∈N
and (tk)k∈N and to the functions F and R converges almost surely. Moreover, if we write P for the σ-algebra
generated by the construction of (wjk)j∈N,k∈N, (j)j∈N and (mj)j∈N, then (γ2k)k∈N is independent of P and
for all n ∈ N, the distribution of γw2n+1 knowing P and (γ2k)k∈N and (γw2n′+1)n′ ̸=n are absolutely continuous
with respect to η and ( ρ

1−2ρ )-Schottky.

Proof. Let j be a step of the algorithm, Write Pj the σ-algebra generated by the construction of the pivotal
extraction up to step j. We have:

E
(
F (γw

j

2mj
, γ2j+1, γ2j+2)

∣∣∣ (γ2k)k∈N, (γ2k+1)k ̸=j ,Pj
)
= 1− 2ρ

P
(
t2j+1 < F (γw

j

2mj
, γ2j+1, γ2j+2)

∣∣∣ (γ2k)k∈N, (γ2k+1)k ̸=j ,Pj
)
= 1− 2ρ (54)

It means that we are in (1) of Definition 4.20 with probability 1− 2ρ. Moreover, for all l ≤ mj , if we write
2k + 1 = wj2l+2, and γ′l := γw

j

2l+2 · · · γw
j

2mj
γ2j+1γj+2 we have:

P
(
t2k+1 < R

(
γw

j

2l , γ2k+1, γ2k+2, γ
′
l

) ∣∣∣ (γn)n̸=2k,Pj
)
=

1− 3ρ

1− 2ρ
. (55)

Indeed, knowing Pj and knowing that 2k+1 is a pivotal time at time j, we have tk < F
(
γw

j

2l , γ2k+1, γ2k+2

)
and E

(
R
F

∣∣F > 0
)
= 1−3ρ

1−2ρ . Those three estimate determine the law of (wjk)k∈N and j and mj for all step j

and they do not depend on the sequence (γ2k)k∈N. For all k ∈ N, we take jk to be the last time such that
mjk = k. Note that w0 = 2r0−1 and in fact for all k, we have w2k = 2rk−1 and w2k = 2(rk+1−rk)−1. Now
we need to prove that all of this is well defined, for that, we need to show that mj satisfies large deviations
inequalities around a positive escape speed in the sense of Definition B.27. Note that conditionally to mj ,
the possible values for mj+1 are {0, . . . ,mj − 1,mj + 1}. By (54), we have P(mj+1 = mj + 1|mj) = 1− 2ρ.
By (55), we have for all value of mj :

∀0 < k < mj , P(mj+1 < k |mj+1 < k + 1,mj , . . . ,m0) =
ρ

1− 2ρ

∀0 ≤ k < mj , P(mj+1 ≤ k |mj , . . . ,m0) = 2ρ

(
ρ

1− 2ρ

)mj−1−k
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Now we compute the conditional expectation for some j ∈ N:

E(mj+1 |mj , . . . ,m0) = mj + P(mj+1 = mj + 1)−
mj−1∑
k=0

(mj − k)P(mj+1 = k)

= mj + P(mj+1 = mj + 1) +

mj−1∑
k=0

P(mj+1 ≤ k)

= mj + 1− 2ρ− 2ρ

mj−1∑
k=0

(
ρ

1− 2ρ

)mj−1−k

= mj + 1− 2ρ− 2ρ
1− 2ρ

1− 3ρ

(
1−

(
ρ

1− 2ρ

)mj
)

= mj +
1− 2ρ

1− 3ρ
(1− 5ρ) +

(
ρ

1− 2ρ

)mj

2ρ
1− 2ρ

1− 3ρ

≥ mj +
1− 2ρ

1− 3ρ
(1− 5ρ)

By assumption ρ < 1
5 so σρ := 1−2ρ

1−3ρ (1 − 5ρ) > 0. then by Lemma B.26, the sequence (mj)j satisfies large
deviations inequalities below the speed σρ which is positive. As a consequence, w0 has finite exponential
moment. Now with the same reasoning as above, we get for all k ∈ N, and for all j ∈ N:

E(mj+1+jk−1
|mj+jk−1

, . . . ,m0) = mj +
1− 2ρ

1− 3ρ
(1− 5ρ) +

(
ρ

1− 2ρ

)mj−k

2ρ
1− 2ρ

1− 3ρ
.

This means that w2k has the same distribution law as w0 for all k so the (w2k)k≥0 are i.i.d and have finite
exponential moment by the large deviations inequality for α = 0 < σρ. Then note that for all j, the
distribution of γw

j

2n+1 knowing Pj and (γ2k)k∈N and (γw
j

2k+1)k ̸=n is simply the normalised restriction of η to

the set
{
γ ∈ Γ

∣∣∣ γwj

2nAγAγwj
2n+2

}
so it is bounded by η

1−2ρ . Therefore it is ρ
1−2ρ -Schottky.

Lemma 4.22. Let ν be a strongly irreducible and proximal distribution over Γ := End(E). Let N : Γ →
[0,+∞] be a measurable map such that N(ν) is almost surely finite. Let 0 < ρ < 1

3 . There are constants
ε′ > 0 such that for all λ > 0, there is an exponentially integrable and eventually irreducible extraction
(X, κ̃) of ({∗}, ν) and three constants la ∈ N and B ∈ R≥0 and C ∈ R≥0 and a non-empty family of edges
S ⊂ E(X, κ̃) such that, we have:

1. The Markov bundle (X, κ̃) is λ-proximal and A ε′
2 aligned.

2. For all (a : b) ∈ S, the product distribution κa,b is ρ Schottky for A ε
2 and almost all Markov chain in

(X, pκ̃) reaches (a : b).

3. Given (a : b) ∈ S and a random word h̃ ∼ κ̃a,b, the length L(h̃) = la and for all 0 ≤ k < la, we have
N
(
χk

(
h̃
))

≤ B.

4. For all (c : d) ∈ E(X, κ̃) and for h̃ ∼ η̃c,d a random word, we have:

∀t ≥ B, ∀l > k, P (N (χk(g̃)) > t |L (g̃) = l) ≤ CN(ν)(t,+∞).

Proof. Let ρ′ := ρ
1+2ρ <

1
5 . Let ε > 0 and λ ≥ 4| log(ε)|+4 log(2) and B be as in Lemma 4.14. Let ({a, b}, η̃)

be the extraction of ν that we constructed in Lemma 4.14. Consider (g̃k) an ornamented Markov chain in
({a, b}, η̃) that starts at b. For all k, we write gk := Π(g̃k) and lk := L(g̃k) and we write (γn) :=

⊙
k∈N g̃k ∼

ν⊗N. Then construct A to be a discrete alignment relation such that Aε ⊂ A ⊂ A ε
2 as described in 2.24.

Write A =
⊔

(i,j)∈A Li×Rj for (Li)1≤i≤M and (Rj)1≤j≤M two measurable partitions of Γ := End(E). Then
write (wk) for the extraction constructed in Definition 4.20 for η := Πηa and for the sequence (gk)k∈N and
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for (tn) ∈ [0, 1]N taken uniformly and independently of (g̃k). Then by Lemma 4.21, the sequence (wk) is well
defined and independent of (g̃2k)k∈N. So by (45), we have:

∀t ≥ B, P (N(γk) > t | (γk′)k′ ̸=k, (wn)n∈N) ≤ 2N(ν)(t,+∞). (56)

Now we want the sequence (gwk ) to be λ squeezing. For that, we shift w to the left We define w′
2k := w2k+1

and w′
2k−1 := 1 for all k ≥ 1 and w′

0 := w0 + 1 + w2. Then (gw
′

k ) is λ-squeezing and A ε
2 -aligned. Then

write Xs := {s} and X ′
a := {a1, . . . , aM} and Y ′

a := {a′1, . . . , a′M} and X ′
b := {b1, . . . , bM} three abstract

sets. Then for all time k, we write (ik, jk) for the pair of indices such that gw
′

2k ∈ Lik and gw′
2k

∈ Rjk . Then
we write x0 = s and x1 := a′i0 and for all k ≥ 1, we write x2k = bjk and x2k+1 := lik . Now note that the
(g̃w

′

2k )k≥1 are i.i.d by construction. Write κ̃′b their distribution. Draw g̃′ ∼ κ̃′b, write i(g̃) for the index such
that Π(g̃′) ∈ Li(g̃′). Then for all 1 ≤ i, j ≤M , write:

q(i) := P (Π (g̃′) ∈ Li)

p(j) := P (χ0(g̃
′) ∈ Rj)

Let j be such that p(j) > 0, write κ̃bj for the distribution of (bj : g̃ : ai(g̃) knowing that (χ0(g̃) ∈ Rj). Then
write κ̃s for the distribution of (x0 : g̃w0 : x1) where x1 = a′i for 1 ≤ i ≤M the index such that gw

′

0 ∈ Li and
write s(i) := P(gw′

0 ∈ Li).
Now note that for all n, the condition gw

′

2nAgw
′

2n+1Agw′
2n+2

only depends on (in, jn+1) so the distribution
of g̃w

′

2k+1 knowing (w′
k)k∈N and (g̃k)k ̸=w′

n
only depends on (x2n+1 : x2n+2) =

(
ain : bjn+1

)
. For all pair

1 ≤ i, j ≤M , we write κ̃ai,bj for the normalised restriction of η̃a to the set:

Si,j := Π−1

 ⊔
(i′,j)∈A

⊔
(i,j′)∈A

Li′ ∩Rj′

 .

Note that η̃a(Si,j) ≥ 1− 2ρ′ for all pair i, j which proves 3 for S. Then write:

κ̃ai :=

M∑
1=j

p(j)(ai : κ̃ai,bj : bj)

Now writeXb := {bj | p(j) > 0} andXa := {ai | q(i) > 0} and Ya := {ai | s(i) > 0} andX := Xs⊔Ya⊔Xa⊔Xb.
Then the sequence

(
xk : g̃w

′

k : xk+1

)
k∈N

is an ornamented Markov chain in (X, κ̃). Note that it is eventually

irreducible. Indeed, for all a ∈ Xa there is b ∈ Xb such that pκ̃(b, a) > 0 and for all b ∈ Xb we have
pκ̃(b, a) > 0 for all a ∈ Xa. Moreover Xa ∪ Xb is pκ̃-stable so it is irreducible. Then pκ̃(s, Ya) = 1 and
pκ̃(a

′, Xb) = 1 for all a′ ∈ Ya so all orbit ends in Xb ∪Xa after time 3.Write S := {(a : b) | a ∈ Xa, b ∈ Xb}
note that we have (3) because for all a ∈ Xa and all b ∈ Xb, κ̃a,b is absolutely continuous with respect to
ηa. Then for all other edge (c : d) note that κ̃c,d is a fraction of the distribution of g̃w

′

0 (when c = s) or of
the distribution of g̃w

′

2 (when c ∈ Xb) or the norm of each letter is bounded when c ∈ Ya. Then by (56), we
have:

∀t ≥ B, ∀k ∈ N, P (N(γk) > t | (w′
n), (ln), (γk′)k′ ̸=k) ≤ 2N(ν)(t,+∞)

∀t ≥ B, ∀k ∈ N, P
(
N(γ

k+l
w′
2

) > t
∣∣∣ (wn), (ln), (γk′)k′ ̸=k) ≤ 2N(ν)(t,+∞).

Note that there are only finitely many possibilities for (x1, x2, x3). We write:

δ := min{P(x1 = y1, x2 = y2, x3 = y3) | y1, y2, y3 ∈ X,P(x1 = y1, x2 = y2, x3 = y3) > 0}

and we have δ > 0 because it is the minimum of finitely many positive numbers. Then we have for all a′ ∈ Ya
and all b ∈ Xb and all a ∈ Xa such that pκ̃(b, a) > 0:

∀k ∈ N, P (N(γk) > t | (w′
n), (ln), x1 = a′) ≤ 2

δ
N(ν)(t,+∞) (57)

∀k ∈ N, P
(
N(γ

k+l
w′
2

) > t
∣∣∣ (w′

n), (ln), x2 = b, x3 = a
)
≤ 2

δ
N(ν)(t,+∞). (58)
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This proves (4) for C := 2
δ . Indeed, (57) implies (4) when g̃ ∼ κs,a′ and (58) implies (4) when g̃ ∼ κb,a.

Then for all a ∈ Xa ∪ Ya and b ∈ Xb the distribution of κ̃a,b is bounded by η̃a
1−2ρ so it is ρ

1+2ρ -Schottky.

Now we can conclude the proof.

proof of Theorem 4.9. Consider ε′ > 0, as in Lemma 4.22 and write ε := ε′

4 . Then for all λ ≥ 4| log(ε)| +
4 log(2), write (X, κ̃′) for the extraction constructed in Lemma 4.22 with the constants B′, la. By Lemma
2.18, the bundle (X, κ̃′) is strongly Aε-aligned. Write B = B′. Then draw (xk : g̃k : xk+1) an ornamented
Markov chain in (X, κ̃′) and write (γk) :=

⊙
g̃k and lk := L(g̃k) for all k. Then take an edge (a : b) ∈ S.

Write κ̃a := κ̃′a,b which is ρ-Schottky by (3). Then write k0 for the first time such that (xk0 : xk0+1) = (a : b)
and write κ̃s for the distribution of g̃0 ⊙ · · · ⊙ g̃k0 Then write k1 > k0 for the second time such that
(xk1 : xk1+1) = (a : b) and write κ̃b for the distribution of g̃k0+2 ⊙ · · · ⊙ g̃k1 . Note that k0 and k1 both
have finite exponential moment by B.22. Then the distribution of (xk0 : g̃k+k0 : xk+k0+1) is the same as
(xk1 : g̃k+k0 : xk+k1+1) so we have:

κ̃s ⊙ (κ̃a ⊙ κ̃b)
⊙N

= ν⊗N.

This proves that (X, κ̃) is an extraction of ({∗}, ν). By Lemma 4.22, for all m ∈ N, we have:

∀t ≥ B, P (N(γm) > t | (xk)k∈N, (lk)k∈N, (γm′)m′ ̸=m) ≤ CN(ν)(t,+∞).

Moreover the sequence (kn)n∈N only depends on (xk)k∈N so we have:

∀t ≥ B, P (N(γn) > t | (kn)k∈N, (lk)k∈N, (γm′)m′ ̸=m) ≤ CN(ν)(t,+∞)

∀t ≥ B, P
(
N(γn+lk0+1

) > t
∣∣∣ (kn)n∈N, (lk)k∈N, (γn′)n′ ̸=n

)
≤ CN(ν)(t,+∞).

This proves (38).

5 Proof of the results
In this section E is a standard vector space of finite dimension d over a local field K and Γ is the semi-group
of endomorphisms over E.

5.1 Asymptotic estimates for the singular gap
In this section, we define the escape speed of a random product of matrices using the formalism of pivotal
extractions. First we show that we have large deviations from below as long as there is a pivotal, squeezing
and strongly aligned extraction (which is always the case for strongly irreducible and proximal distributions
according to Theorem 4.9). Then we show that the upper bound of all the numbers α > 0 such that
P(sqz(γn) ≤ αn) is exponentially small is in fact the almost sure limit of sqz(γn)

n .

Lemma 5.1 (Large deviations on a Markov bundle over R). Let (X, ν) be a Markov bundle over R that is
eventually irreducible. Assume that there are constants C, β > 0 such that E(exp(−βνx)) ≤ C for all x ∈ X.
Write ξ for the pν-invariant measure on X and write σ :=

∑
x∈X ξ(x)E(νx). Then for (γn) an ornamented

Markov chain in (X, ν), the sequence (γn) satisfies large deviations inequalities below the speed σ in the sense
of Definition B.27.

Proof. For all e be an edge in the support of ξ, write ξ(e) := ξ(θ0(e))pν(e) the invariant measure of e. Then
we have σ :=

∑
e∈E(X) ξ(e)E(νe). We write (wek)k≥1 the sequence of times such that θ

(
γwe

k

)
= e. Then

write wek = we0 + · · · + wek−1 with we0 := we1 the time of first visit in x a random variable that has finite
exponential moment and (wek)k≥1 the length of the consecutive loops of the chain (θ(γn)) around e, which
is an i.i.d. sequence of integers that have finite exponential moment and expectation 1

ξ(e) . For all time n,
write ren := #{k < n | θ(γk) = x}. Then by Lemma B.26 applied to (wek)k≥1, the sequence (wek − we0)k∈N
satisfies large deviations inequalities above and below the speed 1

ξ(e) . Moreover we0 is no,n-negative and has
finite exponential moment so (wek)k∈N satisfies large deviations inequalities around the speed 1

ξ(e) . Then by
Lemma B.29 applied to (wk), the sequence (ren) satisfies large deviations inequalities around the speed ξ(e).
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Let e be an edge in the support of ξ, we define the sequence (Sen) by Se(n) :=
∑n
k=1 γwe

k
for all n. Then

(Se(n))n∈N satisfies large deviations inequalities around the speed E(νe). Let t0 be the first time such that
ξ(θ(γt0)) > 0. The support of ξ is eventually reached by definition so t0 has finite exponential moment and
by Lemma B.24 the negative part of γt0 has finite exponential moment. Moreover, for all t ≥ t0, we have
ξ(θ(γt)) > 0 so for all n ∈ N, we have the decomposition:

γn = γt0 +
∑

e∈supp(ξ)

Se(ren). (59)

So by Lemma B.29, the sequence (γn) satisfies large deviations inequalities below the speed σ.

Definition 5.2. Let (Y, κ̃) be an eventually irreducible Markov bundle over a category of words. Let ξ be
the invariant probability distribution over Y , we write:

L(Y, κ̃) :=
∑
y∈Y

ξ{y}E(L(κ̃y)). (60)

Lemma 5.3 (Escape speed of a strongly aligned bundle). Let ε > 0 and let (X, ν) be a strongly Aε-aligned,
and irreducible Markov bundle. There is a constant σ(X, ν) ∈ [0,+∞] such that for (γn) an ornamented
Markov chain in (X, ν), we have sqz(γn)

n → σ(X, ν) and:

∀α < σ(X, ν),∃C, β > 0,∀n ∈ N,P(sqz(γn) ≤ αn) ≤ C exp(−βn). (61)

If moreover (X, ν) is λ-proximal for some λ > 2| log(ε)|, then σ(X, ν) ≥ λ− 2| log(ε)| > 0.

Proof. The fact that (X, ν) is strongly Aε-aligned means that for almost every ornamented Markov chain
(γn) in (X, ν), and every N ∈ N \ {0}, by Lemma 2.18 (17), we have:

sqz(γn) ≥
⌊ n

N ⌋∑
k=0

sqz
(
γkN · · · γ(k+1)N−1

)
+ sqz

(
γ⌊ n

N ⌋N · · · γn−1

)
− 2n| log(ε)|

N
. (62)

For every integer N ≥ 0 that is co-prime with the period of (X, ν), (i.e, such that
(
X, ν∗N

)
is eventually

irreducible), we define:

σN :=
1

N

∑
x0∈X

E
(
sqz
(
ν∗Nx0

))
ξ(x0).

Then by Lemma 5.1 and (62) for any ornamented Markov chain (γn) in (X, ν), one has:

∀α < σN − 2| log(ε)|
N

,∃C, β > 0, P(sqz(γnN ) ≤ αn) ≤ C exp(−βn).

Then since (γn) is an aligned sequence, sqz(γn) is increasing with n, so we have:

∀α < σN − 2| log(ε)|
N

,∃C, β > 0, P(sqz(γn) ≤ αn) ≤ C exp(−βn).

Then by taking the expectation of the above inequality, we get:

σNM ≥ σN − 2| log(ε)|
N

∀M,N ≥ 1

σM ≥ σN (1−N/M)− 2| log(ε)|
N

∀M ≥ N ≥ 1

lim inf
M→∞

σM ≥ σN − 2| log(ε)|
N

∀N ≥ 1

lim inf
M→∞

σM ≥ lim sup
N→∞

σN .
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As a consequence the limit σ(X, ν) := limN→∞ σN exists in [0,+∞] and we have (61). Then to show that we
have almost sure convergence, we use Kingmann’s sub-additive ergodic Theorem [Kin68]. We consider the
space Ω of ornamented Markov chains in (X, ν) whose starting point has distribution ξ and θ : Ω → Ω the
shift map. For all ω = (xn : γn : xn + 1)n∈N, we write Fn(ω) := −sqz(γn)− 2 log(ε). Then by Lemma 2.18,
the sequence (Fn) is θ sub-additive in the sense that for all m,n we have Fn+m ≤ Fn+Fm ◦ θn. Moreover, θ
is ergodic so Fn

n almost surely converges to a constant limit by the sub-additive ergodic theorem. Moreover
by definition, we have E(Fn)

n → σ(X, ν) so the limit in question is σ(X, ν).

Lemma 5.4 (alignment on both sides). Let ε > 0, let ρ < 1 and let λ ≥ 2| log(ε)|+ 2 log(4). Let (X,κ) be
a ρ-ping-pong Aε-aligned and λ-proximal Markov bundle over Γ. Let (xn : γn : xn+1)n∈N be an ornamented
Markov chain in (X,κ) and gn, hn ∈ End(E) be non-random sequences (or independent of (γn)). There are
two sequences of integers (ln) such that for all n, one of the following holds:

• we have (gnγ0 · · · γln−1)Aεγln and γn−rn−1Aε(γn−rn · · · γn−1hn).

• rn + ln ≥ n.

Moreover ln is a stopping time i.e, , conditionally to ln the sequence (γln+1+k)k≥0 is an ornamented Markov
chain in (X, ν). Moreover, ln and rn have bounded exponential moment conditionally to the even times
i.e, there are constants C, β > 0 such that :

∀n ∈ N,∀t ∈ N,P (ln + rn ≥ t|(γ2k)k∈N, gn, hn) ≤ C exp(−βk). (63)

Proof. Consider an integer n ∈ N. We define the forward filtration (Fk)k∈N as the family of σ-algebras
initialized with F0 := ⟨(γ2k)k∈N, gn, hn⟩ and with the induction relation Fk+1 := ⟨γk,Fk⟩ for all k ∈ N.
If there is an odd integer l ≤ n such that (gnγ0 · · · γl−1)Aεγl, then we take ln to be the smallest such l,
otherwise, we take ln = n. Then ln is a stopping time for (Fk) because the event (ln < l) only depends on
(gn, . . . , γl−1) so it is Fl-measurable. In particular, knowing (ln > l) for some odd l ≤ n− 2, the distribution
of γl+2 is still ρ-Schottky so we have:

∀l ≤ n− 2,P(ln > l + 2|ln > l) ≤ ρ. (64)

The above implies that the distribution of ln is dominated by a geometric distribution so it has exponential
moment. Then to define rn, we use the same technique, note that drawing an ornamented Markov chain
in a ping-pong bundle amounts to drawing γ0 ∼ κs and then (γ2k−1, γ2k) ∼ κa ⊗ κb independently for all
k ≥ 1. We draw the sequence backwards. We define a backwards filtration (Bk) by B0 := ⟨(γ2k)k∈N, gn, hn⟩
and Bk+1 := ⟨γn−k,Bk⟩ for all k ∈ N. Then we define rn as the smallest integer that has the parity of n and
such that γn−rn−1Aε(γn−rn · · · γn−1hn) or rn = n if there is no such r. The same reasoning as above holds
and we have:

∀l ≤ n− 2,P(rn > l + 2|rn > l) ≤ ρ. (65)

Then by (64) and (65), and by lemma B.36, we have for all t ∈ N:

P (ln + rn ≥ t|(γ2k)k∈N, gn, hn) ≤ 2ρ
t−2
4 .

Moreover, the bound on right does not depend on n, which proves (63).

Lemma 5.5. Let ν be a probability distribution on Γ. Let ε > 0, let ρ < 1 and let λ ≥ 2| log(ε)|+2 log(4). Let
(X, κ̃) be an exponentially integrable extraction of ({∗}, ν). Assume that (X,κ) be a ρ-ping-pong Aε-aligned
and λ-proximal Markov bundle over Γ. Assume also that L(κ̃a) is a constant. Let (γn)n∈N ∼ ν⊗N and let
(wn) be a sequence of random integers such that (γ̃wn )n∈N be an ornamented Markov chain in (X,κ). Then
we have:

∀α < σ(X,κ)

L(X, κ̃)
,∃C, β > 0,∀n ∈ N,P(sqz(γn ≤ αn) ≤ C exp(−βn). (66)

Proof. We use the language of large deviations as in Definition B.27. Consider an integer time n ∈ N, we
write mn for the largest integer such that wmn

≤ n. The sequence of random integers (mn) satisfies large
deviations inequalities around the speed 1

L(X,κ̃) by Lemma B.26 applied to (w2n)n≥1 and Lemma B.29 with
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(1) applied to w0 and (6) to switch to mn. We also define two integers ln and rn as in Lemma 5.4 so that
γwlnA

εγwln and γwmn−rn−1Aε(γwmn−rn
· · · γn−1). Then by Lemma 5.4 ln and rn both have bounded exponential

moment and by Lemma B.29 (1), the sequence (mn − ln − rn − 2)n satisfies large deviations inequalities
around the speed 1

L(X,κ̃) . Since ln is a stopping time, by Lemma 5.3, the sequence
(
sqz(γ̃wln+1 · · · γ̃wln+2+k)

)
k

satisfies large deviations inequalities below the speed σ(X,κ). Moreover, by Lemma 2.18, we have for all n:

sqz(γn) ≥ sqz(γ̃wln+1 · · · γ̃wmn−rn−2). (67)

Then by Lemma B.29 (5), the term on the right of (67) satisfies large deviations inequalities below the speed
σ(X,κ)
L(X,κ̃) and so does (sqz(γn))n.

Lemma 5.6. Let ν be a strongly irreducible and proximal probability distribution over Γ := End(E). Let
(γn) ∼ ν⊗N. There are constants ε > 0, l ∈ N and C > 0 that depend on ν and such that for all g ∈ Γ \ {0},
we have:

P(∀n ≥ l, gAεγn) ≥ C. (68)

Proof. Consider ρ := 1
3 . Apply Theorem 4.9 to get some ε > 0, some λ ≥ 4| log(ε)| + 4 log(2) and an

extraction ({s, a, b}, κ̃) of ν whose product is ρ-ping-pong Aε-aligned and λ-squeezing and write l0 the
constant length of L(κ̃a,b). Then κ̃a,b is absolutely continuous with respect to ν̃⊙l0 so there is a constant
δ > 0 such that δκ̃a,b ≤ ν̃⊙l0 = ν⊗l0 . Then draw the sequence (γn) ∼ ν⊗N as follows. With probability δ,
draw (γn)n≥0 ∼ κ̃a,b ⊗ ν⊗N and with probability (1 − δ) draw (γn)n≥0 ∼ 1

1−δ (ν
⊗l0 − δκ̃a,b) ⊗ ν⊗N. Write

gn := γn+l0 for all n ∈ N. Then write (wk) a sequence of integers independent of (γ0, . . . , γl0−1) such that
(g̃wn ) is an ornamented Markov chain in ({s, a, b}, κ̃). Then for all n ≥ l0, write mn the largest integer such
that wmn ≥ n− l0 and write rn for the smallest integer such that gwmn−rn−1Aε(γwmn−rn+l0 · · · γn−1). Then
(mn − rn) satisfies large deviations inequalities below a positive speed so we have constants C, β > 0 such
that P(mn − rn ≤ 0) ≤ C exp(−βn) for all n ∈ N. In particular, there is an integer l1 ≥ l0 such that:

P (∃n ≥ l1, mn − rn ≤ 0) ≤ 1

2
. (69)

Moreover, κa,b is ρ-Schottky, so we have

P
(
gAεγl0A

εgw0
∣∣(gn), (wn)) ≥ δ(1− 2ρ). (70)

Moreover, when mn − rn ≥ 0 and gAεγl0A
εgw0 , we have gA ε

2 γn so we have:

P(∀n ≥ l1, gA
ε
2 γn) ≥

δ

2
(1− 2ρ).

Remark 5.7. Up to taking the transpose of ν, the conclusion of Lemma 5.6 also holds for the right to left
product and we also have:

P(∀n ≥ l, (γn−1 · · · γ0)Aεg) ≥ C. (71)

Theorem 5.8 (Escape speed of the singular gap). Let ν be a strongly irreducible and proximal probability
distribution over Γ := End(E). Let (γn) ∼ ν⊗N. Define σ(ν) to be the essential supremum of lim sup sqz(γn)

n .
Then the random sequence (sqz (γn))n∈N satisfies large deviations inequalities below the speed σ(ν). As a
consequence sqz(γn)

n → σ(ν) almost surely.

Proof. We start with the Aε aligned and λ-squeezing ρ-ping-pong extraction (X, κ̃) constructed in Theorem
4.9 for some ε > 0, some λ > 2 log(ε)+4 log(2) and some ρ < 1

2 . Assume also that ε is small enough to apply
Lemma 5.6. Draw two random sequences (γn) ∼ ν⊗N and (wn) such that (γ̃wn ) is an ornamented Markov
chain in (X, κ̃). By lemma 5.3, we have sqz(γw

1 ···γw
k

k → σ(X,κ) with σ(X,κ) > 0 a constant. By Lemma 5.5,
the sequence (sqz(γn))n satisfies large deviations inequalities below the speed σ(X,κ)

L(X,κ̃) so σ(ν) ≥ σ(X,κ)
L(X,κ̃) .

We now need to show that σ(ν) ≤ σ(Y,η̃)
L(Y,η̃) , consider some α < σ(ν) and δ > 0. Note that by definition

of the essential supremum, we have P
(
lim sup sqz(γn)

n ≥ α
)
> 0. Write Cα := P

(
lim sup sqz(γn)

n ≥ α
)
. Then

by Lemma 5.6, up to taking ε small enough, there is an integer l and a constant Cl such that:

∀m ∈ N, P (∀m′ ≥ m+ l, γmAε(γm · · · γm′−1) | (γn)n<m) ≥ Cl. (72)
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Then for all m1 ∈ N, we have:
P(∃m ≥ m1, sqz(γm) ≥ mα) ≥ Cα. (73)

Consider m0 ≤ m1 two integers. With probability at least Cα, there is an integer m2 ≥ m1 such that
sqz(γm0

· · · γm0+m2−1) ≥ m2α. We define m2 to be the smallest such integer and +∞ otherwise then m2

is a stopping time for the cylinder filtration associated to the sequence (γm+m0
)m∈N. In particular, for

g = (γm0
· · · γm2−1), we have for all finite m ≥ m1:

P (∀m ≤ m0 − l,∀m′ ≥ m2 + l, (γm · · · γm0−1)AεgAε(γm2 · · · γm′−1) |m2 = m) ≥ C2
l . (74)

Now we write n0, for the largest integer such that wn0
≤ m0 − l and n1 for the smallest integer such that

m2 + l ≤ wn1
. Then by Lemma 2.18 and (74), we have for all finite m:

P
(
sqz(γwn0

· · · γwn1−1) ≥ m2α
∣∣m2 = m

)
≥ C2

l (75)

Now take m0 large enough so that:

P(n0 = 0) ≤ CαC
2
l

4
(76)

and take m1 large enough so that for n(m) the smallest integer such that wn ≥ m+ l, we have:

P (∃m ≥ m1, n(m)(1− δ)L(X, κ̃) > m) ≤ CαC
2
l

4
. (77)

If we combine (75) with (77) and (76), we get that:

P
(
sqz(γw1 · · · γwn1−1) ≥ n1α(1− δ)L(X, κ̃)

)
≥ CαC

2
l

2
(78)

Now this is true for all m1 and we may assume that n1 ≥ m1

2L(X,κ̃) with probability at least 1− CαC
2
l

4 , so we
get:

P
(
∃n ≥ m1

2L(X, κ̃)
,
sqz(γw1 · · · γwn )

n
≥ α(1− δ)L(X, κ̃)

)
≥ CαC

2
l

2
. (79)

The above is true for all m1, which means that the essential supremum of lim sup
sqz(γw

1 ···γw
n )

n is at least
α(1− δ)L(X, κ̃) so by Lemma 5.3, σ(X,κ) ≥ α(1− δ)L(X, κ̃). Moreover this is true for all α < σ(ν) and all
δ > 0 so σ(X,κ) ≥ L(X, κ̃)σ(ν). Now the convergence is a consequence of the large deviations inequalities
from below by Remark B.28.

Theorem 5.9 (Quantitative convergence to the boundary). Let ν be a strongly irreducible probability dis-
tribution over Γ := End(E). Consider a random sequence (γn) ∼ ν⊗N. Let u ∈ P(E) \ ker(ν) be a generic
line (in the sense that u is not included in ker(ν)). Then we have a random limit u∞ ∈ P(E) such that for
all α < σ(ν), we have constants C, β > 0 such that for all n ∈ N:

∀u ∈ P(E), P(d(γnu, u∞) ≥ exp(−αn)) ≤ C exp(−βn), (80)

P
(
∃u ∈ U+(γn), d(u, u∞) ≥ exp(−αn)

)
≤ C exp(−βn). (81)

Proof. Consider some ρ < 1, ε > 0 and λ ≥ 2| log(ε)|+log(4) such that there is (X, κ̃) a λ-squeezing, strongly
Aε-aligned and ρ-ping-pong extraction of ν as in Theorem 4.9. Then take a random sequence (γn) ∼ ν⊗N

and a random sequence (wk) of integers such that (γ̃wk ) is a decorated Markov chain in (X, κ̃). By Lemma
2.18, for all integers m ≥ n, we have γwnAε

(
γwn · · · γwm−1

)
so by Lemma 2.13, we have:

∀u ∈ U+(γwn ), , ∀u′ ∈ U+ (γwm) , d(u, u′) ≤ 2

ε
exp (−sqz (γwn )) . (82)

Then (82) is true for all m ∈ N so we have:

∀u ∈ U+(γwn ), ∀u′ ∈
⋂
k≥0

cl⋃
m≥k

U+(γwm), d(u, u′) ≤ 2

ε
exp (−sqz (γwn )) . (83)
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Now (83) is true for all n ∈ N and exp(−sqz(γn)) → 0 so
⋂
k≥0

⋃cl
m≥k U

+(γwm) has only one random point that
we call u∞. For all n ∈ N, write mn for the largest integer such that wmn ≤ n and rn for the smallest integer
such that γwmn−rn−1Aε

(
γwmn−rn · · · γn−1h

)
. By Lemma 4.19, The sequence (rn) is uniformly exponentially

integrable and by Lemma B.29, the sequence (mn−rn) satisfies large deviations inequalities below the speed
1

L(X,κ̃) . Moreover, by Lemma 2.13, we have:

∀u ∈ U+(γnh), ∀u′ ∈ U+(γwmn−rn), d(u, u
′) ≤ 2

ε
exp

(
−sqz

(
γwmn−rn

))
(84)

So by triangular inequality with (83) and (84), we have:

∀u ∈ U+(γnh), d(u, u∞) ≤ 2

ε
exp

(
−sqz

(
γwmn−rn

))
(85)

Moreover, the random sequence (wn) satisfies large deviations inequalities around the speed L(X, κ̃) by
Lemma 5.1. By Lemma B.29 6 random sequence (mn) satisfies large deviations inequalities around the
speed 1

L(X,κ̃) and by Lemma B.29 1 (mn − rn) also does. Then by Lemma B.29 5 and Theorem 5.8, the
random sequence

(
sqz
(
γwmn−rn

))
n∈N satisfies large deviations inequalities below the speed σ(ν). If we take

h = Id in (85) then the large deviations inequalities for
(
sqz
(
γwmn−rn

))
n∈N give (81). Now, if we take h to

be a rank one endomorphism of image u ∈ P(E), then U+(γnh) = γnu so (85) and the large deviations
inequalities for

(
sqz
(
γwmn−rn

))
n∈N give (80).

Corollary 5.10. Let ν be any strongly irreducible and proximal distribution of positive rank on End(E).
There is a unique ν-invariant probability distribution ξν on P(E). Moreover, There is a constant C, β such
that for all distribution ξ on P(E) \ ker(ν) and for all Lipschitz function f : P(E) → R with Lipschitz
constant λ(f), we have:

∀n ∈ N,

∣∣∣∣∣
∫
P(E)

fdξν −
∫
P(E)

fdνn ∗ ξ

∣∣∣∣∣ ≤ λ(f)C exp(−βn). (86)

Proof. Let (γn) ∼ ν⊗N. Consider some line u ∈ P(E) \ ker(ν), with ker(ν) as in Definition 3.30. Write
un := γnu and u′n := γ1 · · · γnu for all n ∈ N. Then by Theorem 5.9 and by Borel Cantelli’s Lemma,
(u′n) and (un) both converge to a random limit that does not depend on u. We write u∞ := limun and
u′∞ :=: limu′n. Then u∞ and u′∞ only depend on (γn)n≥0 and (γn+1)n≥0 so both have the same distribution
that we write ξ∞. Then we have γ0u′n = un+1 for all n ∈ N so γ0u

′
∞ = u∞ so ξ∞ is ν-invariant. Now

consider ξ a ν-invariant probability distribution. Draw u0, (γn) ∼ ξ⊗ ν⊗N. Assume that ξ(ker(ν)) > 0, then
by definition of ker(ν), we have P(γ0u = 0) > 0 so ξ{{0}} > 0 which contradicts the fact that ξ is supported
on P(E). As a consequence, we have γnu0 → u∞ so in law, we have ν∗n∗ξ → ξ∞ but ξ = ν∗n∗ξ for all n ∈ N
so ξ = ξ∞. Now to prove (86) draw u0, (γn) ∼ ξ ⊗ ν⊗N for ξ any probability distribution on P(E) \ ker(ν).
Write un := γnu0 for all n ∈ N and u∞ := limun. Then we have E(f(un)) =

∫
f(u)dνn ∗ ξ(u) for all n ∈ N

and E(f(u∞)) =
∫
f(u)dξ(u). Now consider some 0 < α < σ(ν), we have some constants C, β > 0 that

satisfy (80) for all n ∈ N. Then since f is λ-Lipschitz we have:

E(f(un)− f(u∞)) ≤ λ(f)E(d(un, u∞))

≤ λ(f) (P(d(un, u∞) > exp(−αn)) + exp(−αn))
≤ λ(f)(C exp(−βn) + exp(−αn)).

We have shown that the left dominant space U+(γn) converges exponentially fast to a limit l∞ whose
distribution is the unique ν-invariant distribution on P(E). In the meantime, the right dominant space
W+(γn) does not converge, in fact it has a mixing behaviour.

Corollary 5.11 (Mixing property for the right dominant space). Let ν be any strongly irreducible and
proximal distribution of positive rank on End(E). Let ξ′ be the only ν-invariant probability distribution on
P(E∗) i.e, such that ξ′ ∗ ν = ξ′. Let (γn) ∼ ν⊗N and w ∈ P(E∗) \ ker(ν∗). Then we have:

1

n

n∑
k=0

δwγn
−→ ξ′.
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5.2 Asymptotic estimates for the spectral gap
Now that we understand the behaviour of the singular gap, we can study the spectral gap using the following
trick.

Lemma 5.12 (Pivotal concatenation). Let Γ be a measurable semi-group endowed with a binary relation A
and ρ < 1. Let n be an odd integer and let (γ0, · · · , γn−1) be a sequence of random variables such that for
all odd 1 ≤ k ≤ n− 2, the distribution of γk knowing (γj)j ̸=k is ρ-Schottky. Write c ≤ n−1

2 for the smallest
odd integer such that:

(γn−c · · · γn−1γc)Aγc (87)
γn−cn−1A(γn−c · · · γn−1γc+1) (88)

and take c := n+1
2 if there is no such c. Then we have:

∀k ∈ N, P(c > 2k + 1) ≤ (2ρ− ρ2)k. (89)

Proof. Consider some odd integer n ∈ N and a random sequence (γk)0≤k<n as in Lemma 5.12. For all k ≤
n−1
4 , write Ck for the σ-algebra generated by the families (γ2j)0≤j≤n−1

2
and (γ2j−1)1≤j≤k and (γn−2j)1≤j≤k.

Then for all 0 ≤ k ≤ n−3
4 , the distribution of γ2k+1 knowing Ck, is ρ-Schottky, and (γn−2k+1 · · · γn−1γ2k−1)

is Ck-measurable so we have:

P
(
(γn−2k−1 · · · γn−1γ2k+1)Aγ2k+1

∣∣ Ck) ≥ (1− ρ). (90)

Then the distribution of γn−2k−2 knowing Ck and γ2k+1 is also ρ-Schottky, so we have:

P
(
γn−2k−2A(γn−2k−1 · · · γn−1γ2k+2)

∣∣ Ck, ) ≥ (1− ρ). (91)

Then note that for all 0 ≤ k′ < k, the event c = 2k′ +1 in Ck-measurable so if we combine (90) and (91), we
get that:

P(c ≤ 2k + 1 | Ck) ≥ (1− ρ)2

P(c > 2k + 1 | c > 2k − 1) ≤ 2ρ− ρ2. (92)

Moreover, for k = ⟨n+1
4 ⟩, we have P(c > 2k + 1) = 0. Then if we apply (92), by induction initializing with

P(c ≥ 1) = 1, we have (89).

Theorem 5.13 (large deviations inequalities for the spectral gap and convergence of the dominant eigenspace).
Let ν be a strongly irreducible and proximal probability distribution over End(E). Let (γn) ∼ ν⊗N and σ(ν)
be as in Theorem 5.8. We have σ(ν) = lim inf prox(γn)

n and:

∀α < σ(ν),∃C, β > 0,∀n ∈ N,P (prox(γn) ≤ αn) ≤ C exp(−βn). (93)

Moreover, if we write E+(γn) for the dominant eigenspace of γn. Then for u∞ as defined in Theorem 5.9,
we have:

∀α < σ(ν), ∃C, β > 0, ∀n ∈ N, P(d(E+(γn), u∞) ≥ exp(−αn)) ≤ C exp(−βn) (94)

Proof. Consider some ρ < 1, ε > 0 and λ ≥ 4| log(ε)| + 4 log(2) such that there is (X, κ̃) a λ-squeezing,
strongly Aε-aligned and ρ-ping-pong extraction of ν as in Theorem 4.9. Then take a random sequence
(γn) ∼ ν⊗N and a random sequence (wk) of integers such that (γ̃wk ) is a decorated Markov chain in (X, κ̃).
For all n ∈ N, write mn for the largest even integer such that wmn

≤ n. then write cn ≤ mn

2 for the smallest
odd integer such that: (

γwmn+1−cn · · · γwmn−1(γwmn
· · · γn−1)γ

w
cn

)
Aεγcn (95)

and
γwmn−cnA

ε
(
γwmn+1−cn · · · γwmn−1(γwmn

· · · γn−1)γ
w
cn+1

)
(96)
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and take cn = mn

2 otherwise. Then by lemma 5.12 applied to the sequence:(
γw0 , . . . , γ

w
mn−1, (γwmn

· · · γn−1)
)
,

we know that cn has bounded exponential moment. So (mn − 2cn) satisfies large deviations inequalities
below the speed 1

L(X,κ̃) . Now assume that mn − 2cn > 0. Then by (95) and by Lemma 2.18, we have:

sqz
(
γwmn+1−cn · · · γwmn−1(γwmn

· · · γn−1)γ
w
cn+1

)
≥ λ− 2| log(ε)| − 2 log(2), (97)(

γwmn+1−cn · · · γwmn−1(γwmn
· · · γn−1)γ

w
cn+1

)
A

ε
2 γwcn+1. (98)

Define kn := wmn−cn for hn := γkn · · · γn−1γkn−1. Note that kn satisfies large deviations inequalities around
the speed 1 by lemma B.29. Moreover, by Lemma 2.18, we have hnA

ε
2hn and:

sqz(hn) ≥ sqz
(
γwcn+1 · · · γkn

)
. (99)

Then by Lemma 5.3, the random sequence (sqz(hn))n∈N satisfies large deviations inequalities below the speed
σ(ν). Moreover, by Corollary 2.27, we have:

prox(hn) ≥ sqz (hn)− 2| log(ε)| − 4 log(2) (100)

∀u ∈ U+(hn), d
(
u,E+(hn)

)
≤ exp (−sqz (hn))

4

ε
. (101)

Moreover, hn is cyclically conjugated to γn for all n such that mn − 2cn > 0 so prox(hn) = prox(γn) and
E+(γn) = γknE

+(hn)). Moreover, by Lemma 2.18, we also have γknA
ε
2hn. Now consider n large enough so

that sqz (hn) ≥ 2| log(ε)| − 4 log(2) and by Lemma 2.13 and (101), we have:

∀u ∈ U+
(
γkn
)
, d
(
u,E+ (γn)

)
≤ exp

(
−sqz

(
γkn
)) 4
ε

(102)

Then by Theorem 5.9, we have a sequence U+
(
γkn
)

is in a ball of radius at most exp(−λn) around a random
limit u∞ ∈ P(E), for a random sequence (λn) that satisfies large deviations inequalities below the speed
σ(ν). Then by lemma 5.3 (sqz(kn)) also satisfies large deviations inequalities below the speed σ(ν). Then
by (102), by triangular inequality and by lemma B.29, the random sequence (− log(d(E+(γn), u∞)) satisfies
large deviations inequalities below the speed σ(ν).

Proof of Theorems 1.2 and 1.3. Consider ν a strongly irreducible probability distribution on Γ := End(E).
Let (γn)n∈N ∼ ν⊗N. If ν has rank 0, then by lemma 3.29, we have two constants C, β > 0 such that
P(γn ̸= 0) ≤ C exp(−βn). By convention, we have sqz(0) = +∞ so we have Theorem 1.2 for σ(ν) = +∞
and Theorem 1.3 doesn’t apply. If ν is not proximal then we write σ(ν) := 0 and then by Lemma 3.38, the
sequences (sqz (γn))n∈N is bounded and prox (γn) = 0 for all n ∈ N so (3) and (4) are trivial. When ν is
proximal, (3) is a reformulation of Theorem 5.8 and (4) is a reformulation of Theorem 5.13. To show Theorem
1.3, we simply need to show that the limit u∞ ∈ P(E) defined in Theorem 5.9 can be expressed as the image
of the sequence (γn)n∈N by a measurable, shift-invariant map ΓN → P(E). We simply define U∞((gn)n∈N)
to be the limit point of U+(gn) when for all sequences xn ∈ U+(gn), the sequence (Kxn) converges to the
same limit and when the same is true for all the shifted sequences (gn+m)n∈N for m ∈ N.

5.3 Limit flag for absolutely strongly irreducible distributions
Now we can give the following corollary which is a reformulation of the former results made to look like the
stable and unstable spaces decomposition in Oseledets’ Theorem with large deviations from below.

Definition 5.14. Let ν be a distribution on End(E) that is absolutely strongly irreducible in the sense of
Definition 3.34. For all 1 ≤ k < dim(E), we write σk(ν) := σ

(∧k
ν
)

as in Theorem 5.8. We write:

Θ(ν) := {1 ≤ k < dim(E) |σk(ν) ̸= 0} (103)

We call Θ the set of spectral gaps of ν.
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Theorem 5.15 (Convergence of the Cartan projection with large deviations). Let E be a standard vector
spaces and ν be an absolutely strongly irreducible probability distribution on End(E) of rank at least dim(E)−
1. Let (γn) ∼ ν⊗N. For σ̃(ν) := (σj(ν))1≤j≤d−1 ∈ [0,+∞]dim(E)−1, we have almost surely (

sqzj(γn)

n )j → σ̃(ν).
Moreover, for all α̃ < σ̃(ν) i.e,αk < σk(nu) for all k, we have constants C, β > 0 such that:

∀n ∈ N,∀1 ≤ j < d, P
(
sqzj(γn) ≤ αjn

)
≤ C exp(−βn). (104)

∀n ∈ N, P (p̃rox(γn) ≤ αn) ≤ C exp(−βn). (105)

If we moreover assume that N(ν) has finite first moment, then we have almost surely proxj(γn)

n j
→ σj(ν) for

all j.

Proof. Line (104) is a reformulation of Theorem 5.8 for
∧j

(ν). Line 105 is a reformulation of Theorem
5.13. Now assume that N(ν) has finite first moment. It means that EN(γn)

n is bounded. Moreover, we have
N =

∑
sqzj so N(γn)

n → L :=
∑
σj(ν) < +∞ so all the σj(ν) are finite. Then note that

∑
proxj ≤ N

so lim sup
∑ proxj(γn)

n ≤ L. Moreover, by (105), we have lim inf
proxj(γn)

n = σj(ν) for all j. Now take
k ∈ {1, . . . ,dim(E)− 1}. We have:

proxk(γn) ≤ N(γn)−
∑
j ̸=k

proxj(γn)

lim sup
proxk(γn)

n
≤ lim sup

N(γn)

n
−
∑

lim inf
proxj(γn)

n

≤ L−
∑
j ̸=k

σj(ν)

≤ σk(ν).

It implies that proxk(γn)
n → σk(ν) for all j.

Theorem 5.16 (Convergence to the limit flag). Let E be a standard vector space and Θ ⊂ {1, . . . ,dim(E)−
1}. There is a partially defined measurable map:

F∞ : End(E)N −→ FlΘ(E) ⊔ {undefined}

Such that for all absolutely strongly irreducible probability distribution ν on End(E) such that Θ(ν) ⊃ Θ, the
map F is ν⊗N almost surely defined. Moreover F∞ is shift-equivariant, in the sense that for all sequence
(γn)n∈N such that F∞ ((γn)n∈N) is defined, we have:

F∞ ((γn)n∈N) = γ0F
∞ ((γn+1)n∈N) (106)

Moreover, for an absolutely strongly irreducible probability distribution ν and for a generic flag F ∈ FlΘ(ν),
for all k ∈ Θ(ν), the random sequence:

− log (d (F∞
k ((γn)n∈N), γnFk))

satisfies large deviations inequalities below the speed σk(ν).

Proof. Let (γn) ∈ End(E)N be any sequence and k < dim(E). For all g ∈ End(E), we write:

U+
k (g) :=

{
V ∈ Grk(E)

∣∣∣∧k V ⊂ U+
(∧k

g
)}

.

If U+
k (γn) converges to a point and sqzk (γn) → ∞, we write F∞

k ((γn)n∈N) for the value of this point,
otherwise, F∞

k ((γn)n∈N) is undefined. Then for all Θ ⊂ {1, . . . ,dim(E) − 1}, if there is an integer k ∈ Θ
and m ∈ N such that F∞

k ((γn+m)n∈N) is undefined or F∞
k ((γn+m)n∈N)∩ ker (γm) ̸= {0}, then F∞((γn)n∈N)

is undefined, otherwise, we write F∞((γn)n∈N) = (F∞
k ((γn)n∈N))k∈Θ. Now assume that F∞((γn)n∈N) is

defined, then F∞((γn+1)n∈N) also is. Moreover ker(γ0) is closed so after a time n0 and for some ε > 0, for
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all n ≥ n0 and all x ∈
⋃
U+
k (γ1 · · · γn−1), we have ∥γ0(x)∥ ≥ ε∥γ0∥∥x∥ so for all unitary v ∈ V +

(∧k
γn

)
,

we have ∥γ1 · · · γn−1v∥ ≥ εµk (γ1 · · · γn−1) so by Lemma 2.13, we have:

d
(
γ1 · · · γn−1v, U

+
k (γ1 · · · γn−1)

)
≤ exp(−sqz(γ1 · · · γn−1))/ε.

Then for all ε′ > 0 there is an integer n1 ≥ n0 such that for all n ≥ n1, we have:

d
(
γ1 · · · γn−1v, U

+
k (γ1 · · · γn−1)

)
≤ εε′.

Then by triangular inequality, we have

d
(
γ0 · · · γn−1v, γ0U

+
k (γ1 · · · γn−1)

)
≤ 2ε′/ε.

If we go to the limit ε′ → 0, this proves that F∞
k is shift-equivariant.

Now assume that (γn) ∼ ν⊗N for some absolutely strongly irreducible ν. then for all k such that
σk(ν) > 0, the space F∞

k ((γn)n∈N) is almost surely well defined and we have the large deviations inequalities
by Theorem 5.9 applied to

∧k
ν. Moreover, the distribution of F∞

k ((γn+m)n∈N) gives measure 0 to ker
(∧k

ν
)

by Corollary 5.10. It means that P (F∞
k ((γn+m)n∈N) ∩ ker(γm) ̸= 0) = 0 so F∞((γn)n∈N) is almost surely

defined.

Note that in the case of ν an absolutely strongly irreducible probability distribution on SL(E), one can
actually take the pivotal extraction to be aligned in all Cartan projections. With a correct adaptation of the
works of [CFFT22], one should be able to prove the following.

Conjecture 5.17 (Poisson boundary). Let ν be an absolutely strongly irreducible probability distribution
on SL(E). Assume that ν has finite entropy, then the Poisson boundary of ν is isomorphic to FlΘ(ν)(E)
endowed with the ν-invariant probability distribution.

5.4 Law of large numbers for the coefficients
In this section we give a proof of Theorem 5.18. We consider the map N(γ) := log ∥γ∥ + log ∥γ−1∥ defined
on the group Γ = GL(E).

Theorem 5.18 (Strong law of large numbers for the coefficients). Let ν be a probability measure on GL(E)
that is strongly irreducible and proximal. There are constants C, β such that for all unitary w ∈ E∗ and
u ∈ E, for all n and for γn a random matrix of distribution ν∗n, we have for all t ≥ 0:

P
(
log

∥γn∥
|wγnu|

> t

)
≤ C exp(−βn) +

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
,+∞

)
. (107)

P
(
log

∥γn∥∥u∥
∥γnu∥

> t

)
≤

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
,+∞

)
(108)

Proof. Let 0 < ρ < 1
3 , consider 0 < ε ≤ 1 and (X, κ̃) the ping-pong extraction as constructed in Theorem

4.9. Write A := Aε. Consider (γn) ∼ ν⊗N a random sequence and (wn) a random sequence of positive
integers such that (γwn ) is an ornamented Markov chain in (X, κ̃) and (τn) an independent sequence taken
uniformly in [0, 1]N. Consider C ∈ R≥0 large enough so that :

∀t ≥ C, ∀k ∈ N, P (N(γk) > t | (wn)) ≤ CN(ν)(t,+∞). (109)

Such a C exists by Theorem 4.9, C exists (take C the maximum of C and B as defined in the Theorem).
Now consider γ′ ∼ Πκ̃a, we define the function:

F (f, g, h) :=
1(fAgAh)
P(fAγ′Ah))

(1− 2ρ). (110)

Now consider g, h ∈ End(E) \ {0} and n any integer and write mn for the only integer such that w2mn ≤
n < w2mn+2. Then by Lemma B.23, the distribution of the random integer n − wmn

is bounded in law by
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an exponentially integrable distribution. By Lemma 5.1, the random sequence mn satisfies large deviations
inequalities below the speed L(X, κ̃)−1/2. Write α := 1

6L(X, κ̃)
−1. Then for C large enough and for β > 0

small enough, we have:
P(mn < 2⌊αn⌋+ 2) ≤ C exp(−βn) (111)

When mn > 2⌊αn⌋+ 2 write ln for the smallest integer such that ln = ⌊αn⌋+ 1 or:

τln < F
(
gγw2ln , γ

w
2ln+1, γ

w
2ln+2

)
.

Write rn for the largest integer such that either mn − rn = ⌊αn⌋+ 1 or :

τrn < F
(
γw2rn−2, γ

w
2rn−1, γw2rn · · · γn−1h

)
.

Note that γw2k+1 has the same distribution as γ′ for all k so knowing (γ̃w2k)k∈N, so the integers ln and
mn − rn follow geometric distributions of scale factor 2ρ stopped at ⌊αn⌋ + 1. Moreover, ln and mn − rn
are independent because the intervals {2k + 1 | k ≤ ⌊αn⌋} and {2k − 1 |mn − k ≤ ⌊αn⌋} are disjoint when
mn > 2⌊αn⌋+ 2. So we have:

P

either


ln = ⌊αn⌋+ 1 or
mn − rn = ⌊αn⌋+ 1 or
mn < 2⌊αn⌋+ 2

 ≤ 2(2ρ)⌊αn⌋+1 + C exp(−βn)

P((gγw2ln+1)Aγw2ln+1A . . .Aγw2rn−1A(γw2rn
· · · γn−1h)) ≥ 1− 2(2ρ)αn − C exp(−βn)

Up to replacing β by min{β, α log(2ρ)} and replacing C by C + 2, we have for β > 0 small enough and for
C large enough:

P((gγw2ln)Aγ
w
2ln+1A . . .Aγw2rn−1A(γw2rn · · · γn−1h)) ≥ 1− C exp(−βn) (112)

Then by Lemma B.24, and because (X, κ̃) is exponentially integrable, for C large enough and β > 0 small
enough, we have:

∀k ∈ N, P (w2ln+1 + n− w2rn = k | (γ̃w2k)k∈N) ≤ C exp(−βk). (113)

Moreover, by independence, by (109) and because all the letters of γ̃w2k+1 have norm at most C, we have:

∀t ≥ C, ∀k ∈ N, P (N(γk) > t | (wn), ln, rn) ≤ CN(ν)(t,+∞). (114)

Then by (113), (112) and Lemma B.40 we have for C large enough, for all t ≥ 0 and for all n ∈ N:

P

w2ln−1∑
k=0

N(γk) +
n−1∑

k=w2rn

N(γk) > t

 ≤ C exp(−βn)

+

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
− C,+∞

)
. (115)

Now write D := 2| log(ε)|+ 2 log(2) and:

∆n :=

w2ln−1∑
k=0

N(γk) +

n−1∑
k=w2rn

N(γk) +D. (116)

Then write C := C ′C ′′. By Lemma B.40, we have for all t ≥ 0:

P (∆n > t) =

∞∑
k=0

P(w2ln + n− w2rn = k)P (∆n > t |w2ln + n− w2rn = k)

≤
+∞∑
k=1

C exp(−βk)(B ∧N(ν))⋆k(t− 2| log(ε)| − 2 log(2),+∞).
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Moreover, we have:
gγwlnAγ

w
2ln+1A · · ·Aγw2rn−1Aγw2rn · · · γn−1h, (117)

So by Lemma 2.18, and (13) in Lemma 2.13 we have:

∥gγnh∥ ≥ ∥gγwln∥
ε

2
∥γw2ln+1 · · · γw2rn−1∥

ε

2
∥γw2rn · · · γn−1h∥

Moreover, by sub-multiplicativity, we have:

∥γn∥ ≤
w2ln−1∏
k=0

∥γk∥ · ∥γw2ln+1 · · · γw2rn−1∥
n−1∏

k=w2rn

∥γk∥ (118)

and

∥g∥ = ∥gγwln(γ
w
ln)

−1∥

∥g∥ ≤ ∥gγwln∥
w2ln−1∏
k=0

∥γ−1
k ∥ (119)

∥h∥ ≤ ∥γw2rn
· · · γn−1h∥

n−1∏
k=w2rn

∥γ−1
k ∥ (120)

Now write for g = ew and h := ue′ with e ∈ E and e′ ∈ E∗ unitary. Note that ∥g∥ = ∥w∥ and ∥h∥ = ∥u∥
and ∥gγnh∥ = |wγn|. We combine log (118)+ log (119)+ log (120)− log (117), for g = ew and h := ue′ with
e ∈ E and e′ ∈ E∗ unitary, we get:

log ∥γn∥+ log ∥u∥+ log ∥w∥ − log |wγnu| ≤ ∆n. (121)

This is true as long as ln and rn are well defined, then we apply Remark B.41 and Lemma B.40 to ∆n to
get (107). To get (108), we remove the condition mn − rn ≤ ⌊αn⌋+ 1 and simply impose that rn ≥ 0. That
way, we have:

γw2rnA
ε
2 γw2rn · · · γn−1h.

Because the identity is aligned with everyone in the case rn = 0 and because of Lemma 2.18 in the case
rn ≥ 0, then we can apply the above reasoning without the error term C exp(−βn) from (112) in (115).

Definition 5.19. Let ν be a probability measure on GL(E) that is strongly irreducible and proximal. Let
C, β be as in Theorem 5.18. We define the distribution ζν as:

∀t ≥ 0, ζν(t,+∞) = min

{
1,

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
− C,+∞

)}
. (122)

Remark 5.20 (What about exponential moment). Note that when N(ν) has a finite exponential moment,
one can not conclude that ζν also has using (107) alone. It is however a known result, written in [BQ16a,
p 231]. It is also possible to prove it using the pivotal method (ant the proof in actually less technical than
the one of Theorem 5.18). For that, note that (121) still holds for ∆n as defined in (116). Moreover, by
Lemma B.24, if we assume that the N(γk) are i.i.d and have finite exponential moment then ∆n also has
because the size of the sum has finite exponential moment.

Corollary 5.21 (Qualitative convergence). Let ν be a probability measure on GL(E) that is strongly irre-
ducible, proximal. Assume moreover that for γ ∼ ν, the random variables log ∥γ∥ and log ∥γ−1∥ both have
finite expectation. Then for every w ∈ E∗\{0}, and every u ∈ E\{0} we have almost surely log |wγnu|

n → ρ(ν)

for ρ(ν) := lim log ∥γn∥
n .
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Proof. By Theorem 2 in [Fur63], the quantity ρ(ν) := lim log ∥γn∥
n is well defined and it is a finite constant.

Moreover, we have ρ(ν) ≥ E(log |det(ν)|). Moreover, we have lim sup log |wγnu|
n ≤ ρ(ν) by definition of the

operator norm. Then note that we have:(
lim inf

log |wγnu|
n

< σ(ν)

)
=
⋃
t>0

⋂
m∈N

⋃
n≥m

(
log

(
|uγnv|
∥γn∥

)
≤ −t

)
.

Then by homogeneity, one may assume that x and y are unitary. Indeed, the term log ∥x∥+log ∥y∥
n goes to 0.

Then, we have:

P
(
lim inf

log |uγnv|
n

< σ(ν)

)
≤ sup

t>0
lim
m→∞

∑
n≥m

ζν (tn,+∞) + C exp(−βn). (123)

Then by B.39, the distribution ζν has finite expectation. So we have:∑
n≥m

ζν (tn,+∞) ≤ E(ζν1[tm,+∞])

t
−→
m→∞

0.

Corollary 5.22 (Central limit theorem for the coefficients). Let ν be a probability measure on GL(E) that is
strongly irreducible, proximal. Assume moreover that for γ ∼ ν, the random variables log ∥γ∥ and log ∥γ−1∥
both have finite L2 moment. Then for every w ∈ E∗ \ {0}, and every u ∈ E \ {0}, we have:

log |wγnu| − nρ(ν)√
n

−→ N (0, V ). (124)

Proof. We know from [BQ16b] that log ∥γn∥−nρ(ν)√
n

converges in law to a centred Gaussian distribution of

variance V . Then by Theorem 1.5, ζν has finite L2 moment so log ∥γn∥−log |wγnu|√
n

converges to 0 almost surely
and as a consequence it converges in law to the Dirac mass at 0.

Corollary 5.23 (Regularity of the measure). Let ν be a probability measure on GL(E) that is strongly
irreducible and proximal. Let p be such that N(ν) is weakly Lp. Then the ν-invariant distribution ξ∞ on
P(E) satisfies for some constant C ≥ 0:

∀x ∈ P(E),∀r > 0, ξ∞(B(x, r)) ≤ C

| log(r)|p
. (125)

Proof. Write (γn) a random sequence of distribution ν⊗N and y ∈ E. By (80), in Theorem 5.9, there is a
random line u∞ ∈ P(E) such that almost surely and for all y, we have u∞ = limKγny and some constants
α > 0, β > 0, C ′, such that P(d(γny, l∞) ≥ exp(−αn)) ≤ C ′ exp(−βn). As a consequence, we have for
all r > 0, d(γny, l∞) ≤ r after a random time n0(r) who is bounded in law by a geometric law whose
expectation is proportional to | log(r)|. Then take some unitary vector v ∈ y and a non-trivial linear form w
such w(x) = 0 and a number r > 0, we have for all n ≥ n0(r):

(d(l∞, x) ≤ r) ⊂ (d(γny, x) ≤ 2r) ⊂
(
|wγnv|
∥γn∥

≤ 2r

)
. (126)

Then by Theorem 5.18, we have P(d(l∞, x) ≤ r) ≤ ζν(| log(2r)|,+∞), and by Lemma B.39, ζν is weakly Lp

so there is a constant C = 2Wp(ζν) + log(2) such that ζν(t− log(2),+∞) ≤ Ct−p for all t ≥ 0.

We said in the introduction that 5.23 is an amelioration of a result by Benoist and Quint in [BQ16b].
We show that the inequality in Corollary 5.23 is actually optimal by considering ν := νA ∗ νK where νK is
the Haar measure on the (compact) group of isometries O(E) and A is the distribution of the matrix

M :=


exp(T ) 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 ,
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where T is a random variable that is not weakly Lp. Then ν is strongly irreducible and proximal and it
actually has full support in PGL(E). Then write ξ∞ for the invariant distribution on P(E) and for x the
first base vector. Then we have ξ∞ := νA ∗ ξK for ξK the Lebesgue measure on P(E). Indeed νK ∗ ξ = ξK
for all ξ, by property of the Haar measure. As a consequence, we have for all r ≥ 0:

ξ∞(B(x, r)) ≥ 1

d
P(T ≥ log(d)− log(r)).

Where 1
d is the probability that a random variable of distribution law ξK has dominant first coordinate.

Another interesting question that is asked in [BQ16a, p 231] is to ask whether Theorem 5.18 still works
if we drop the proximality assumption and replace it by an absolute string irreducibility assumption. Indeed
theorem 5.16 tells us that if we take a distribution ν and write p(ν) its proximality rank i.e, p(ν) := minΘ(ν),
then we have a limit space of dimension p(ν). Then with the same trick as in the proof of 5.18, we show
that the coefficient wγnu is up to an exponentially small error the product of a linear form w′ and a vector
u′ whose norms are controlled in law by the same ζν . However, the fact that the kernel of w′ is orthogonal
to a p(ν)-dimensional space that contains u′ does not give a lower bound on the product |w′(u′)|. For
example in dimension 2, we can take ν to be the law of a random rotation of angle 2−nπ with probability
exp(− exp(exp(n))). Then the random walk (γn) is recurrent so if we take w, u such that w(u) = 0, then we
almost surely have |wγnu| = 0 for infinitely many times n ∈ N.

Remark 5.24. Using the same trick as in Theorem 5.18 to create the cyclically aligned decomposition in
5.13 and with the setting of Theorem 5.18, we can show that:

P
(
log

(
µ(γn)

|λ1(γn)|

)
> t

)
≤

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
− C,+∞

)
.

We only need to introduce an auxiliary function so that the distribution of cn as in Lemma 5.12 is explicit
conditionally to the even γ̃wn and scroll down the proof of Theorem 5.18 using Corollary 2.27 to get a lower
bound on |λ1(γn)|. This is stronger than 5.15 because we do not need to assume absolute strong irreducibility.
This result can also be proven using Theorem 1.5 and Theorem 5.8 as a black box to conclude with corollary
2.27.

Theorem 5.25. Let ν be a probability measure on GL(E) that is strongly irreducible and proximal. There
are constants C, β such that for all n ∈ N and all t ≥ 0:

P
(
log

(
∥γn∥

|λ1(γn)|

)
> t

)
≤

∞∑
k=1

C exp(−βk)N(ν)

(
t

k
− C,+∞

)
. (127)

Proof. Take (X, κ̃) the ping-pong extraction as constructed in Theorem 4.9. Write A for Aε the associated
alignment relation and A′ for A ε

2 . Consider (γ, γ′) ∼ κ⊗2
a . We write:

F (g, h, g′) :=
1(gAh ∧ (gh)Ag′)
P(γAh ∧ (γh)Aγ′)

(1− 2ρ). (128)

Now we consider (γn) ∼ ν⊗N and (wn) a random sequence such that (γ̃wn ) is an ornamented Markov chain
in (X, κ̃). Fix an integer n ∈ N and write mn for the largest odd integer such that wmn

≤ n. Now for all
0 ≤ c ≤ mn−1

2 , we write :

hc := γwmn−2c+1 · · · γwmn
γwmn+1

· · · γn−1γ
w
0 · · · γw2c

gc := γwmn−2c

g′c := γw2c+1.

Then consider (τc)c∈N independent, uniform in [0, 1] and independent of (γ̃wk )k∈N. Now take cn to be the
smallest integer such that cn = mn−1

2 or:

τc ≤ F (gc, hc, g
′
c). (129)
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The integer cn is a stopping time for the filtration (Fc) generated by (γ̃w2k)k∈N and by (τc′ , gc′ , g
′
c′)c′<c.

Moreover, we have P(cn = c | Fc, cn ≥ c) = 1− 2ρ because the distribution of (gc, g′c) knowing Fc is precisely
κ⊗2
a . This means that cn is independent of (γ̃w2k)k∈N and has finite exponential moment. Then by Lemma

B.40 and Remark B.41, we have for some C and some β > 0:

P

 n−1,w2cn−1∑
k=wmn−2c+1,0

N(γk) > t

 ≤
∞∑
k=1

C exp(−βk)N(ν)

(
t

k
− C,+∞

)
. (130)

Moreover, we have hcnA′(γw2c+1 · · · γwmn−2c)A′hcn . Then by Corollary 2.27, we have:

|λ1(γn)| ≥ µ1(γ
w
2c+1 · · · γwmn−2c)µ1 (hcn)

ε2

4

≥ µ1(γ
w
2c+1 · · · γwmn−2c)

ε2

4

n−1,w2cn−1∏
k=wmn−2c+1,0

µd(γk).

And by sum-multiplicativity, we have:

µ1(γn) ≤ µ1(γ
w
2c+1 · · · γwmn−2c)

n−1,w2cn−1∏
k=wmn−2c+1,0

µ1(γk).

Then we conclude using (130).

5.5 About modelization
Definition 5.26 (Wasserstein distance). Let η, ν be probability distributions on a metric space (X, d). We
define the L1 Wasserstein distance Wd,1(η, ν) as the minimum of E(d(g, h)) where g ∼ ν and h ∼ η are
defined on the same probability space but not necessarily independent.

In the proof of the main results, all constants are constructed explicitly. In fact they can be measured with
an algorithm. Moreover, in the invertible case, we can construct the constants C and β of each Theorems
can be taken continuous with respect to the Wasserstein distance associated to d the distance in PEnd(E)
for Theorems 1.2 and 1.3 and to the metric induced by N +d for Theorem 1.5. It is possible to give explicit
bounds on the constants C and β that depend on Wasserstein continuous quantities. Now the principal issue
is that a generic probability distribution ν on End(E) tends to have rank 0. Indeed, if we take any nontrivial
weighted barycenter of ν and any rank 0 distribution like δ0 for example, we get a rank 0 distribution. In fact
a satisfying result would be to prove that for any strongly irreducible and proximal probability distribution,
we have Theorems 5.8 and 5.9 with the conditional probability P(·|γn ̸= 0) of P(·|γnu ̸= 0). These results
seem to be true and a similar proof strategy should work. The main ingredient is to note that the extractions
constructed in Section 4 do not depend on whether the partial products γa · · · γb are 0 or not for all pair
a < b.
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A Basics in Finite dimensional geometry
In this section we will consider K a local field i.e, a field endowed with an absolute value that makes it locally
compact. We will also consider normed K-vector spaces i.e, vector spaces endowed with a sub-additive norm
∥ · ∥ that takes non negative real values and such that for all λ ∈ K, x ∈ E, we have ∥λx∥ = |λ|∥x∥. We
call unitary a vector or a scalar that has norm one, we will also make sure that the ultra-metric norms we
introduce are good norms in the sense that all vector line contains at least one unitary vector.

In this section we will introduce a vocabulary between local fields that allows us to prove the results of
the article without having to distinguish cases for every lemma. This appendix is interesting for two reasons,
the first is that we construct the Cartan decomposition on locally compact fields, the second reason is that
the intuition that one needs to have to understand proximal and strongly irreducible random walks is a mix
of the Euclidean and ultra-metric views.

A.1 Real and complex Euclidean spaces
In this section we assume K to be an Archimedean locally compact field i.e,K = R or K = C. Given z ∈ C,
we write re(z) and im(z) for the real and imaginary parts of z, we write z for the complex conjugate of z
and |z| for the modulus of z.

Definition A.1 (Scalar product). Let E be a K-vector space. We call scalar product on E a left-anti-linear
and right-linear map ⟨·, ·⟩ : E × E → K that satisfies:

• symmetry: for all x, y ∈ E, we have ⟨x, y⟩ = ⟨y, x⟩,

• separability: for all x ∈ E \ {0}, ⟨x, x⟩ ∈ R>0.

We call Euclidean (or standard Archimedean) vector space a finite dimensional vector space endowed with a
scalar product.

Remark A.2. One can also see a scalar product as an anti-linear8 bijection E → E∗;x 7→ x⊤ where
x⊤ : y 7→ ⟨x, y⟩ and the separability condition becomes x⊤(x) ∈ R>0 for all x ̸= 0. In physics, the map ·⊤ is
sometimes written ·† in the complex case to distinguish both cases but this is not our aim to distinguish local
fields.

Definition A.3 (Euclidean norm). Let E be a Euclidean vector space and x ∈ E. We call norm of x and
write ∥x∥ the quantity:

∥x∥ :=
√
⟨x, x⟩.

Remark A.4. Let E be a Euclidean space and x, y ∈ E. We have |⟨x, y⟩| ≤ ∥x∥∥y∥.

Proof. Take two unitary vectors x, y ∈ E, take λ ∈ C a unitary complex number such that ⟨x, y⟩ is in the
same half line as λ. Then we have λ⟨x, y⟩ = |⟨x, y⟩| ∈ R and

0 ≤ ⟨λx− y, λx− y⟩
0 ≤ ⟨λx, λx⟩+ ⟨y, y⟩ − ⟨λx, y⟩ − ⟨y, λx⟩

0 ≤ |λ|2∥x∥2 + ∥y∥2 − λ⟨x, y⟩ − λ⟨x, y⟩
0 ≤ ∥x∥2 + ∥y∥2 − 2|⟨x, y⟩|

|⟨x, y⟩| ≤ 1

Then when x and y are not unitary, we have by linearity, x = ∥x∥a and y = ∥y∥b for some a, b ∈ E unitary
and then ⟨x, y⟩ = ∥x∥∥y∥⟨a, b⟩. Moreover by the above reasoning we have |⟨a, b⟩| ≤ 1 so ⟨x, y⟩ ≤ ∥x∥∥y∥.

Proposition A.5. Let E be a Euclidean vector space. There is a metric d on E defined by d(x, y) = ∥x−y∥
and this metric makes E locally compact i.e, the unit ball is compact.

8a map f is said to be anti-linear if it is an additive group morphism and if for all λ ∈ K, we have f(λx) = λf(x). Note that
real anti-linear maps are linear.
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Proof. The distance is symmetric by bi-linearity of the scalar product. The distance between two distinct
points is never zero by separability of the scalar product. The distance satisfies the triangular inequality
because for all x, y ∈ E, we have:

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2re⟨x, y⟩.

Moreover, by Remark A.4, we have 2re⟨x, y⟩ ≤ 2|⟨x, y⟩| ≤ 2∥x∥∥y∥ so ∥x + y∥2 ≤ (∥x∥+ ∥y∥)2 and the
square root of that is the triangular inequality for d. Then note that if we take an orthonormal basis of E,
we have an identification between E and Rd for d = dimR (E) = dimK (E)[K : R], note that the unit ball

is included in [−1, 1]d and contains
[
−d− 1

2 ,+d−
1
2

]d
so the topology of the norm is the product topology.

Moreover, the unit ball is closed in [−1, 1]d because the norm is continuous for its own topology and [−1, 1]d

is compact for the product topology by Tychonoff’s theorem and Weierstrass’ lemma.

Definition A.6 (Orthogonality). Let E be a K-vector space endowed with a scalar product. We say that
two vectors x, y ∈ E are orthogonal and write x⊥y when ⟨x, y⟩ = 0. Given an arbitrary subset A ⊂ E, we
write A⊥ the set {x ∈ E;∀y ∈ A, x⊥y}. Given another arbitrary subset B ⊂ E, we write B⊥A if x⊥y for
all x ∈ A and all y ∈ B, note that it means that B ⊂ A⊥.

Note that the binary relation ⊥ determines the scalar product ⟨·, ·⟩ up to multiplication y a positive real
number.

Definition A.7 (Orthogonal sum). Let E be a Euclidean space. We say that a given family of subspaces
(Vi)i∈I is in orthogonal sum if for all J ⊂ I, we have:⊕

j∈J
Vj

⊥

(⊕
i/∈J

Vi

)
.

Proposition A.8. Let E be a Euclidean vector space and (Vi)i∈I a family of vector subspaces. Then (Vi)i∈I
is in orthogonal sum if and only if we have Vi⊥Vj for all i ̸= j.

Proof. One sense is trivial, just take J = {j} and Vj⊥
(⊕

i ̸=j Vi

)
directly implies that Vi⊥Vj for all i ̸= j.

Then if we take an arbitrary J ⊂ I and two vector x ∈
⊕

j∈J Vj and y ∈
⊕

i/∈J Vi, we may write x =
∑
j∈J xj

with xj ∈ Vj for all j and y =
∑
i/∈J yi with yi ∈ Vi for all i. Then for all i, j, we have ⟨xj , yi⟩ = 0 and

⟨x, y⟩ =
∑
j∈J

∑
i/∈J⟨xj , yi⟩ = 0.

Definition A.9 (Orthonormal basis). Let E be a Euclidean vector space. We call orthonormal basis of E a
basis (e1, . . . , ed) such that for all i, j, we have ⟨ei, ej⟩ = δi,j.

Lemma A.10. Let E be a Euclidean vector space. There exists an orthonormal basis (e1, . . . , ed) and for
all x ∈ E, if we write xi = ⟨ei, x⟩, we have x =

∑
xiei and for all x, y ∈ E, we have ⟨x, y⟩ =

∑
i xiyi.

Proof. We construct the orthonormal basis inductively. For all k ∈ {1, . . . , d}, we take ek to be any unitary
vector in {e1, . . . , ek}⊥. Then note that (e⊤i ) form a basis of E∗ so a vector x is characterized by the family
(x1, . . . , xd) where xi = e⊤i x then since ·⊤ is anti-linear, we have x⊤ =

∑
xie

⊤
i and ⟨x, y⟩ =

∑
i,j xiyj⟨ei, ej⟩ =∑

i xiyi.

Lemma A.11 (Contraction property). Let V ⊂ E be a vector subspace. We have E = V ⊕ V ⊥ and write
πV the projection onto V along V ⊥. Then πV is contracting. Moreover, given a decomposition E = V ⊕W ,
we have W⊥V if and only if the projection onto V along W is contracting.

Proof. Write k = dim (V ) and d = dim (E). Take (e1, . . . ek) an orthonormal basis of V and (ek+1, . . . , ed)
an orthonormal basis of V ⊥. Then (e1, . . . , ed) is an orthonormal basis of E, indeed for all 0 ≤ i, j ≤ k,
such that i ≤ k < j or j ≤ k < i we have ⟨ei, ej⟩ = 0 = δi,j because V⊥V ⊥ and if i, j ≤ k of k < i, j
then ⟨ei, ej⟩ = δi,j because we have taken orthonormal bases. As a consequence, for all x ∈ E, we have
∥x∥2 =

∑d
i=1 |xi|2 ≥

∑k
i=1 |xi|2 = ∥πV (x)∥2 so πv is contracting. Conversely, take V,W two vector spaces

that are not orthogonal, then there are two vectors x ∈ V, y ∈ W such that ⟨x, y⟩ ̸= 0 and up to a scalar
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multiplication, we may assume that ⟨x, y⟩ > 0, then for all t > 0, we have ∥x− ty∥2 = ∥x∥+ t2∥y∥2−2t⟨x, y⟩
so for t = ⟨x,y⟩

∥y∥2 , we have ∥x − ty∥2 = ∥x∥ − ⟨x,y⟩2
∥y∥2 < ∥x∥ but x is the projection of x − ty along W so this

projection is not contracting.

Corollary A.12. Let E be a Euclidean vector space and (e1, . . . , ed) a basis of E composed of unitary
vectors. Then (ei) is an orthonormal basis if and only if for all x =

∑
xiei we have ∥x∥ ≥ max |xi|.

A.2 Standard ultra-metric vector spaces and orthogonality
In this section, we assume K to be a non-Archimedean local field. That means that K is a field endowed
with an absolute value | · | = K → R≥0 that satisfies:

(S) for all a ∈ K, |a| = 0R if and only if a = 0K,

(M) for all a, b ∈ K, |a · b| = |a| · |b|,

(UM) for all a, b ∈ K, |a+ b| ≤ max{|a|, |b|},

(LC) the distance d : (a, b) 7→ |a− b| makes the unit ring R(K) := B (0K, 1R) = {a ∈ K; |a| ≤ 1} compact.

Remark A.13. Let d be an ultra-metric distance on a space X. That means that d is a distance map
such that for all x, y, z ∈ X, we have d(x, z) ≤ max{d(x, y),d(y, z)}. Then for all x, y, z ∈ X such that
d(x, z) < max{d(x, y),d(y, z)}, we have d(x, y) = d(y, z). In other words all triangle has two sides of equal
length.

Proof. Consider three points x, y, z ∈ X and assume that d(x, z) < max{d(x, y),d(y, z)}. Then by symmetry
and up to exchanging x with z, one may assume that d(y, x) ≥ d(y, z). Then by triangular inequality
applied to the triple y, x, z, we have d(y, x) ≤ max{d(y, z),d(z, x)} but by assumption d(z, x) < d(y, z) so
we necessarily have d(y, x) ≤ d(y, z) and by double inequality d(y, x) = d(y, z).

Remark A.14. Let (ai)i∈I and (bi)i∈I be two finite families of non-negative real numbers. Then we have:

max
i∈I

aibi ≤ max
i∈I

aimax
i∈I

bi

It is known that an ultra-metric field K is either finite or a finite extension of one of the following: Qp
for p a prime number; or F((t)) for F a finite field. For the study of random walks one does not need to have
the full classification in mind, the following proposition is enough. We write K∗ for the multiplicative group
K \ {0}.

Proposition A.15. Let (K, | · |) be an ultra-metric locally compact field. The image of K∗ by | · | is a discrete
sub-group of R>0, i.e, there is a real number r > 0 and a group morphism v : K∗ → Z such that |x| = rv(x)

for all x ∈ K∗.

Proof. First note that by (LC), the unit group U(K) := R(K)
×

:= {a ∈ K; |a| = 1} is compact, indeed is
is closed because | · | is trivially continuous and it is included in the ring of integers R which is compact.
Then note that for all ϕ ̸= 0, the map a 7→ ϕa is continuous and bijective. Then take a real r ∈ |K∗|
and a scalar ρ ∈ K such that |ρ| = r. Then the r-sphere {a ∈ K; |a| = r} is the image of the unit
group by the multiplication by ρ so it is compact. Moreover, if we assume that r ≥ 1

2 , then the ball
B
(
ρ, 12

)
:=
{
a ∈ K; |a− ρ| < 1

2

}
is included in the r-sphere. Indeed, if we take a ∈ B

(
ρ, 12

)
, we have

|a| ≤ min{|a − ρ|, |ρ|} = |ρ| ≤ min{|a|, |ρ − a|} so |a| = r. Now note that for all x ∈ K, x ∈ B
(
x, 12

)
so we

have:
R =

⋃
x∈R

B
(
x,

1

2

)
= B

(
0K,

1

2

) ⋃
x∈R;|x|≥ 1

2

B
(
x,

1

2

)
.

Since R is compact, there is a finite family 0K =: x0, x1, . . . , xN such that 1
2 ≤ |xi| ≤ 1 for all i ∈ {1, . . . , N}

and:

R =

N⋃
i=0

B
(
xi,

1

2

)
.
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So for all ρ ∈ K such that 1
2 ≤ |ρ| ≤ 1 we have |ρ| ∈ B

(
xi,

1
2

)
for some i, as a consequence, we have |ρ| = |xi|

so the multiplicative group |K∗| has only finitely many elements in
[
1
2 , 1
]
, so it is discrete.

Then we want to study the monoid Γ := EndK(E) for E = Kd for d ≥ 2 an integer. Note that when K is
finite, Γ also is so random walks on Γ are simply random walks on a finite set. From now on, we will assume
that K is not finite. We endow E with a norm ∥ · ∥ : E → R defined by:

∥(x1, . . . , xd)∥ := max
i∈{1,...,d}

|xi|. (131)

Note that the values that the norm ∥ · ∥ may take are the same as the absolute value | · | may take, so by
Proposition A.15, the norm ∥ · ∥ takes values in a discrete group.

Proposition A.16. The norm ∥ · ∥ defined above satisfies the following properties.

(S) For all x ∈ E, we have ∥x∥ = 0 if and only if x = 0.

(H) For all x ∈ E and a ∈ K, we have ∥ax∥ = |a|∥x∥.

(UM) For all x, y ∈ E, we have ∥x+ y∥ ≤ max{∥x∥+ ∥y∥}.

(LC) The distance d : (x, y) 7→ ∥x − y∥ makes K second-countable and the unit ball B(1){x ∈ E; ∥x∥ ≤ 1}
compact.

Proof. Take a ∈ K, x = (x1, . . . , xd) ∈ E and y = (y1, . . . , yd) ∈ E. If ∥x∥ = 0 then |xi| = 0 for
all i ∈ {1, . . . , d} so x = (0, . . . , 0) = 0E . Then ∥ax∥ = max |a||xi| = |a|max |xi|. Then ∥x + y∥ =
maxi ∥xi + yi∥ ≤ maximax{|xi|, |yi|} = max{maxi xi,maxi yi}. Then we have B(1) = Rd and R is compact
by (LC) so B(1) also is.

Definition A.17 (Ultra-metric norm). Let E be a K-vector space. We say that a map ∥ · ∥ : E → R≥0 is
an ultra-metric norm if all the following conditions hold:

1. For all x ∈ E, we have ∥x∥ = 0 if and only if x = 0.

2. For all x ∈ E and all a ∈ K, we have ∥ax∥ = |a|∥x∥.

3. For all x, y ∈ E, we have ∥x+ y∥ ≤ max{∥x∥+ ∥y∥}.

Definition A.18 (Standard ultra-metric space). Let E be a K vector space endowed with an ultra-metric
norm ∥ · ∥. We say that a given basis (e1, . . . , ed) of E is standard for ∥ · · · ∥ if:

∀(x1, . . . , xd) ∈ Kd,

∥∥∥∥∥
d∑
k=1

xkek

∥∥∥∥∥ = max
1≤k≤d

|xk|. (132)

We call standard ultra-metric vector space the data (E, ∥ · ∥) of a finite dimensional K-vector space E and
of an ultra-metric norm ∥ · ∥ that admits a standard basis.

Remark A.19. Note that just like Euclidean and Hermitian spaces, standard ultra-metric spaces are char-
acterized, up to an isometry, by their dimension. Indeed (132) means that a standard basis of a vector
space E induces an isometry between (E, ∥ · ∥) and (Kd, ∥ · ∥). Moreover, we can characterize the prop-
erty of being an orthonormal basis with Corollary A.12, indeed, by ultra-metric inequality, we always have∥∥∥∑d

k=1 xkek

∥∥∥ ≤ max1≤k≤d |xk| when the (ei)’s are unitary so assuming only
∥∥∥∑d

k=1 xkek

∥∥∥ ≥ max1≤k≤d |xk|
for all x ∈ Kd implies (132).

Now we do a little warm up to get familiar with standard ultra-metric vector spaces.

Proposition A.20 (Sub-spaces). Let (E, ∥ · ∥) be a standard vector space and F a subspace of E. Then F
endowed with the restriction of ∥ · ∥ to F is also a standard ultra-metric vector space.

54



Proof. We prove it only for F of co-dimension 1 and conclude by induction. Take d an integer and F an
hyperplane in E = Kd. Then there is a linear form f ∈ E∗ \ {0} such that F = ker (f), we write fi = f(ei)
for all i ∈ {1, . . . , d}. Then take i0 such that |fi0 | = max |fi| =: ∥f∥. Then if we replace f by f

fi0
we may

assume that fi0 = 1 without changing the kernel of f . Then for all i ∈ {1, . . . , d}, we write e′i the projection
of ei to F along ei0 . Now take x ∈ F any vector, one has x =

∑d
i=1 xiei in the basis (ei)1≤i≤d but x ∈ F

so x =
∑d
i=1 xie

′
i =

∑
i ̸=i0 xie

′
i because e′i0 = 0 by definition. Then one has f(x) = 0 so

∑d
i=1 xifi = 0

and fi0 = 1 so
∑
i ̸=i0 fixi = xi0 , then by (UM), one has maxi<d |xifi| ≥ |xi0 | and |fi| ≤ 1 for all i so

maxi̸=i0 |xi| ≥ |xd| so we have ∥x∥ = maxi ̸=i0 |xi| so (e′i)i ̸=i0 is a standard basis of F .

Proposition A.21 (Dual space). Let (E, ∥ · ∥) be a standard ultra-metric vector space. The dual space
E∗ := HomK(E,K) is a standard ultra-metric vector space for the norm ∥ · ∥ : f 7→ maxx∈E\{0}

|f(x)|
∥x∥ .

Proof. Take (e1, . . . , ed) a standard basis of E. Note that since (ei) is a basis, a linear form f in E∗

is characterized by coordinates (f1, . . . , fd) ∈ Kd with fi = f(ei) for all i. With this notation we have
∥f∥ ≥ max |fi| because the ei’s are unitary and then if we take x any vector, we have |f(x)| = max |fixi| ≤
max |fi|max |xi| so ∥f∥ = max |fi|. Note that we also have f =

∑
fie

′
i with e′i characterized by e′i(ej) = δi,j

for all 1 ≤ i, j ≤ d. So the family (e′i) is a standard basis of E∗.

Proposition A.22 (Homomorphisms). Let E,F be two standard ultra-metric vector spaces over the same
field K. The space Hom(E,F ) endowed with the operator norm:

∥h∥ := max
x∈E\{0}

∥h(x)∥
∥x∥

is a standard ultra-metric vector space.

Proof. Consider (ei) a standard basis of E and (fi) a standard basis of F . Then for every pair (i, j) write
fje

′
i ∈ Hom(E,F ) the map that sends ei to fj and ek to 0 for all k ̸= i. Note that fje′i is unitary for all

(i, j), we want to show that the family (fje
′
i)i,j is actually a standard basis of Hom(E,F ). Consider an

arbitrary h ∈ End(E). For all i, one has h(ei) ∈ F so one may write h(ei) =
∑
j hi,jfj . Then we have

h =
∑
i,j hi,jfje

′
i so (fje

′
i) is indeed a basis of Hom(E,F ). Then if we take x =

∑
i xiei ∈ E any vector, we

have by ultra-metric inequality and by Remark A.14:

∥h(x)∥ = max
j

∣∣∣∣∣∑
i

hi,jxi

∣∣∣∣∣ ≤ max
i,j

|hi,jxi| ≤ max
i,j

|hi,j |max
i

|xi|.

The above is true for all x so ∥h∥ ≤ maxi,j |hi,j |. Now if we take two indices i0, j0 such that |hi0,j0 | is
maximal we have ∥h(ei0)∥ = |hi0,j0 | and ei0 is unitary so ∥h∥ ≥ maxi,j |hi,j |. By double inequality, we have
∥h∥ = maxi,j |hi,j | so (fje

′
i) is indeed a standard basis of Hom(E,F ) and as a consequence ∥ · ∥ is a standard

ultra-metric norm on Hom(E,F ).

Note that this is false for standard Archimedean vector spaces. For example if we take a =

(
1 0
0 1

)
and

b =

(
2 0
0 1

)
then a and b are not co-linear, yet ∥a∥+ ∥b∥ = ∥a+ b∥ = 3 so the operator norm is not strictly

convex and therefore not Euclidean.

Definition A.23 (Orthogonal spaces and projections). Let (E, ∥ · ∥) be an ultra-metric vector space and
V,W two subspaces of E. We say that V,W are orthogonal and write V⊥W if V ∩W = {0} and if the
projections πV and πW of V +W to V along W and to W along V respectively are contracting. In general,
we way that a projection π on E (i.e, a linear map such that π ◦ π = π) is orthogonal if it is contracting for
the norm ∥ · ∥.

Remark A.24. Let V,W be two supplementary spaces. Then the projection πV is contracting if and only
πW is.
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Proof. Take x a vector such that ∥πV (x)∥ > ∥x∥. Then note that x = πV (x) + πW (x), and ∥x∥ <
max{∥πV (x)∥, ∥πW (x)∥} so by Remark A.13, we have ∥πV (x)∥ = ∥πW (x)∥.

Definition A.25. We say that a family of vector space (Vi)i∈I is orthogonal if for all i ∈ I, Vi is orthogonal
to
∑
j ̸=i Vj. We say that a family of vectors (x1, . . . , xk) is orthogonal if the family (Kx1, . . . ,Kxk) is

orthogonal. We say that (x1, . . . , xk) is orthonormal if moreover the xk’s are unitary.

Proposition A.26. Let E be a standard vector space of dimension d and e1, . . . , ed ∈ E. The family
(e1, . . . , ed) is a standard basis of E if and only if it is orthonormal.

Proposition A.27 (Orthogonal decomposition). Let (E, ∥ · ∥) be a standard ultra-metric vector space and
V,W two orthogonal subspaces of E. For all x ∈ V +W , we have ∥x∥ = max{∥πV (x)∥, ∥πW (x)∥}.

Proof. By (UM), we have ∥x∥ ≤ max{∥πV (x)∥, ∥πW (x)∥}, but by orthogonality, we also have ∥πV (x)∥ ≤ ∥x∥
and ∥πW (x)∥ ≤ ∥x∥.

Corollary A.28 (Incomplete orthonormal basis). Let E be a standard ultra-metric vector space and V,W be
two orthogonal supplementary spaces in E. Let (e1, . . . , ek) be an orthonormal basis of V and (ek+1, . . . , ed)
an orthonormal basis of W . Then (e1, . . . , ek) is an orthonormal basis of E.

Proof. Then if we take a vector x ∈ E, we may write x =
∑
xiei because V and W are supplementary spaces.

Then we have ∥πV (x)∥ = max{|xi| 1 ≤ i ≤ k} and ∥πW (x)∥ = max{|xi| k < i ≤ d}| so by Proposition A.27
∥x∥ = max{|xi| 1 ≤ i ≤ d} and (e1, . . . , ek) is indeed an orthonormal basis of E.

Proposition A.29 (Orthogonal supplementary). Let E be a standard ultra-metric vector space and V a
subspace of E. Then there exists subspace W ⊂ E such that V⊥W and V +W = E. However V is not
unique in general.

Proof. Write c := dim (E)− dim (V ) for the co-dimension of V and take (e1, . . . , ed) a standard basis of E.
Then take f : E → Kc a linear map such that V = ker (f). Then write (fi,j)1≤i≤c,1≤j≤d, the coordinates of
f , and take j1 ∈ {1, . . . , d} the index such that |f1,j1 | is maximal, it is not 0 because f is invertible, then for
all j, replace f1,j with f1,j

f1,j1
for all i > 1, replace fi,j with fi,j−

fi,j1
f1,j1

f1,j , this does not change the kernel of f .
Then we construct a sequence j1, . . . , jc all distinct and such that fi,ji = 1 for all i and |fi,j | < 1 for all i, j.
Then up to rearranging the line of f (this does not change the kernel), we may assume that j1 < · · · < jc
and write W = ⟨ej1 , . . . , ejc⟩, then for all x, we have πW (x) =

∑
fi,jxjeji which is contracting because

max fi,j = 1 and πV (x) = x−
∑
fi,jxjeji which is also contracting by the ultra-metric inequality. We have

πW (x) ∈ W and x = πV (x) + πW (x) directly and to show that πV (x) ∈ V , we simply do the computation,
f(πV (x)) = (

∑
fi,jxj(1− fi,ji))1≤i≤c = 0 because fi,ji = 1 by definition.

Lemma A.30. Let E be a standard K-vector space. Let w ∈ E∗ and v ∈ E be unitary vectors. Then
|w(v)| = 1 if and only if v⊥ ker (w).

Proof. First assume that |w(v)| = 1. Take x ∈ E, one has x = w(x)
w(v)v +

(
x− w(x)

w(v)v
)

and w
(
x− w(x)

w(v)v
)
= 0

so w(x)
w(v)v is the projection of x onto Kv along ker (w). Moreover w is unitary so we have

∣∣∣w(x)
w(v)

∣∣∣ = |w(x)| ≤ ∥x∥

and v is unitary so we have
∥∥∥w(x)
w(v)v

∥∥∥ =
∣∣∣w(x)
w(v)

∣∣∣ ≤ ∥x∥. This means that the projection onto Kv is contracting
and by Remark A.24, v⊥ ker (w).

Now we assume that v⊥ ker (w). Then take x a unitary vector such that |w(x)| = 1. By orthogonality
the projection of x onto Kv along ker (w) is contracting so

∥∥∥w(x)
w(v)v

∥∥∥ ≤ 1 and therefore |w(v)| ≥ 1. Moreover,
we always have |w(v)| ≤ 1 because w and v are unitary so |w(v)| = 1.

Lemma A.31. Let E be a standard ultra-metric vector space, there is a contracting, norm-preserving map
E → E∗, v 7→ v⊤ such that:

∀v ∈ E, ∥v⊤(v)∥ = ∥v∥2.
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Proof. Take (e1, . . . , ed) a standard basis of E and (e∗1, . . . , e
∗
d) the associated basis of E∗ (i.e, such that

e∗i (ej) = δi,j). Then for all v =
∑
viei ∈ E, write j the smallest index such that |vj | = ∥v∥ and define

v⊤ := vje
∗j. Note that with this definition, ∥v⊤∥ = ∥v∥. Then take x, y ∈ E, if ∥x − y∥ = max{∥x∥, ∥y∥}

then this is direct, otherwise ∥x∥ = ∥y∥ and for all index j such that |xj | = ∥x∥, we also have |yj | = ∥x∥ = ∥y∥
(otherwise |xj−yj | = ∥x∥ which contradicts the hypothesis ∥x−y∥ < max{∥x∥, ∥y∥}). So we have x⊤ = xje

∗
j

and y⊤ = yje
j for the same j and ∥x⊤ − y⊤∥ = |xj − yj | ≤ ∥x− y∥.

A.3 Exterior algebra and Cartan decomposition
In this section (K, | · |) is an Archimedean or Ultra-metric local field and (E, ∥ · ∥) is a standard K- vector
space of dimension d.

Definition A.32. Let E be a K vector space. For all k ∈ N, we define
⊗k

E′ to be the space of k-linear forms
i.e, the set of maps ϕ : Ek → K such that for all index i ∈ {1, . . . , k} and for all family (xj)j∈{1,...,k}\{i} ∈
Ek−1, the map xi 7→ ϕ(x1, . . . , xk) is in E∗. Then

⊗k
E′ is a vector space and we define

⊗k
E to be the

dual space of
⊗k

E′. Given a family (x1, . . . , xk) ∈ Ek, we write x1 ⊗ · · · ⊗ xk : ϕ 7→ ϕ(x1, . . . , xk).

Proposition A.33. Let E be a standard vector space with standard basis (e1, . . . , ed). Then (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d
is a basis of

⊗k
E and the norm induced on

⊗k
E by the basis (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d does not depend

on the choice of the basis (e1, . . . , ed).

Proof. First we prove that (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d generates
⊗k

E as a vector space. Consider ϕ a k-
linear form such that ϕ = 0 on the vector space generated by (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d. Then we have
ϕ(ei1 , · · · , eik) = 0 for all 1 ≤ j1, . . . , jk ≤ d. Consider a family (x1, . . . , xk) ∈ Ek and for all indices
i ∈ {1, . . . , d}, j ∈ {1, . . . , k}, write xi,j for the i-th coordinate of xj in the basis (e1, . . . , ed). Then we have:

ϕ(x1, . . . , xk) =

d∑
i1=1

xi1,1ϕ(ei1 , x2, . . . , xk)

...

ϕ(x1, . . . , xk) =

d∑
i1=1

· · ·
d∑

ik=1

xi1,1 · · ·xik,kϕ(ei1 , . . . , eik)

ϕ(x1, . . . , xk) = 0.

This means that ϕ = 0 so (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d generates
⊗k

E as a vector space.
Now consider a family of indices 1 ≤ i1, . . . , ik ≤ d and write ϕi1,...,ik : (x1, . . . , xk) 7→ xi1,1 · · ·xik,k. Then

ϕ = 0 on the space generated by all the (ei′1 ⊗ · · · ⊗ ei′k) but ei1 ⊗ · · · ⊗ eik so (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d is
a minimal generating family and therefore a basis.

Now we want to show that the norm induced by (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d on
⊗k

E does not depend on
(e1, . . . , ed). Consider α = x1⊗· · ·⊗xk ∈

⊗k
E a pure k-vector. For all pair i, j of indices, write xi,j for the

i-th coordinate of xj in the basis (e1, . . . , ed). For all family 1 ≤ i1, . . . , ik ≤ d write αi1,...,ik := xi1,1 · · ·xik,k.
First assume that K is ultra-metric. Then by by Remark A.14, we have:

α =
∑

αi1,...,ikei1 ⊗ · · · ⊗ eik

∥α∥ = max |αi1,...,ik |
∥α∥ = ∥x1∥ · · · ∥xk∥.

As a consequence, the norm of a pure k-vector does not depend on the choice of the basis. Then for all
a ∈

⊗k
E, the norm ∥a∥ is the minimum for all path a = α1 + · · ·+αN (where the αn’s are pure k-vectors)

of the quantity max ∥αn∥.
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In the euclidean case, take β : y1 ⊗ · · · ⊗ yk another pure k-vector. Then for ⟨·, ·⟩ the scalar product
induced by the basis (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d, we have

⟨α, β⟩ =
d∑

i1=1

· · ·
d∑

ik=1

αi1,...,jkβi1,...,jk

⟨α, β⟩ =
d∑

i1=1

· · ·
d∑

ik=1

k∏
j=1

xij ,jyij ,j

⟨α, β⟩ =
k∏
j=1

(
d∑
i=1

xi,jyi,j

)

⟨α, β⟩ =
k∏
j=1

⟨xj , yj⟩.

It means that the scalar product of pure k-vectors does not depend on the choice of the basis of E. If we
take (e′1, . . . , e

′
d) another orthonormal basis, then the basis (e′i1 ⊗ · · · ⊗ e′ik)1≤i1,...,ik≤d

is orthonormal for the
scalar product induced by the basis (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d, which means that they both induce the same
norm on

⊗k
E.

Definition A.34 (Exterior algebra). Let k be an integer and E be a vector space. We write
∧k

E the quotient
of
⊗k

E by the relation ∼∧ which is the minimal linear relation such that for all map σ : {1, . . . , k} →
{1, . . . , k}, and for all x1, . . . , xk ∈ E, we have:

x1 ⊗ · · · ⊗ xk ∼∧ εK(σ)xσ(1) ⊗ · · · ⊗ xσ(k).

Where εK is the image of the signature morphism on Sk and 0 on the set of non invertible maps. Given
x1, . . . , xk ∈ Ek, we write x1 ∧ · · · ∧ xk ∈

∧k
E for the ∼∧-equivalence class of x1 ⊗ · · · ⊗ xk.

Proposition A.35. Let E be a vector space, let j, k be two integers. Let x, x′ ∈
⊗j

E and y, y′ ∈
⊗k

E. If
x ∼∧ x

′ and y ∼∧ y
′ then x⊗ y ∼∧ x

′ ⊗ y′. Moreover, x⊗ y ∼∧ y⊗ x. In other words, if we write v ∈
∧j

E

for the ∼∧ class of x and w ∈
∧k

E for the ∼∧ class of y, then the product v ∧w defined as the ∼∧ class of
x⊗ y is well defined and the operation ∧ defined that way is commutative.

Remark A.36. Definition A.34 gives a natural metric to
∧k

E which is the distance between sheets, it is
well defined because the relation ∼∧ is linear and closed. However this metric is not the one we want to use
in the Archimedean case because we do not have ∥e1 ∧ · · · ∧ ek∥ = 1 for an orthonormal family (e1, . . . , ek).

Definition A.37 (Norm on the exterior product). Let E be a standard vector space and let 1 ≤ k ≤ d. We
define the norm ∥ · ∥ on

∧k
E to be equal to a constant C times the distance between sheets in

⊗k
E. Where

C = 1 in the ultra-metric case and C =
√
k! in the Archimedean case.

Proposition A.38. Let E be a standard vector space and 1 ≤ k ≤ d and (e1, . . . , ek) be an orthonormal
family. We have ∥e1 ∧ · · · ∧ ek∥ = 1.

Proof. The norm on
⊗k

E is standard so the distance between the sheet of 0 and the sheet of x := e1⊗· · ·⊗ek
is the distance between 0 and its orthogonal projection on the sheet of x. In the ultra-metric case, we claim
that x is an orthogonal projection of 0. Consider (e1, . . . , ed) a completion of (e1, . . . , ek) into an orthonormal
basis. Take y ∼∧ x, we want to show that ∥y∥ ≥ ∥x∥. We write y in the basis (ei1 ⊗ · · · ⊗ eik):

y =

d∑
i1=1

· · ·
d∑

ik=1

yi1,...,ikei1 . . . eik (133)

The fact that y ∼ ∧x implies that: ∑
(i1,...,ik)∈Sk

σ(i1, . . . , ik)yi1,...,ik = 1 (134)
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By the ultra-metric inequality, at least one of the yi1,...,ik has absolute value 1 so ∥y∥ ≥ 1. Now in the
Euclidean case, (134) still holds and implies that:∑

(i1,...,ik)∈Sk

y2i1,...,ik ≥ 1

k!
(135)

It means that ∥y∥ ≥
√

1
k! . Moreover, for y = 1

k!

∑
(i1,...,ik)∈Sk

σ(i1, . . . , ik)ei1 . . . eik , we have y ∼∧ x and

∥y∥ =
√

1
k! so the distance between the sheets of x and 0 is

√
1
k! . In both cases, the sheets of x and 0 are at

distance 1/C with C as in Definition A.37 so ∥e1 ∧ · · · ∧ ek∥ = 1.

Definition A.39. Let E be a vector space, let j, k be two integers. Let V ⊂
∧j

E and W ⊂
∧k

E be two
vector subspaces. We define V ∧W ⊂

∧j+k
E to be the vector space spanned by {v ∧ w | v ∈ V,w ∈W}.

Lemma A.40. Let E be a standard vector space of dimension d. Let 1 ≤ k ≤ d and x1, . . . , xk ∈ E \ {0}.
We have:

∥x1 ∧ · · · ∧ xk∥ ≤ ∥x1∥ · · · ∥xk∥ (136)

with equality if and only if (x1, . . . , xk) is an orthogonal family.

Proof. Consider a family x1, . . . , xk ∈ E such that x1 ∧ · · · ∧ xk ̸= 0, otherwise (136) is trivial. First note
that by a Graham-Schmidt algorithm, there is an orthonormal basis (e1, . . . , ed) such that for all 1 ≤ i ≤ k,
we have xi ∈

⊕i
j=1 Kej . For all 1 ≤ i ≤ k, write ai for the i-th coefficient of xi in the basis (e1, . . . , ed).

Then we have ∥x1 ∧ · · · ∧ xk∥ = |a1| · · · |ak| by Proposition A.38. Moreover, we have |ai| ≤ ∥xi∥ for all i
because (e1, . . . , ed) is an orthonormal family and |ai| = ∥xi∥ if and only if xi⊥

⊕i
j=0 ei. Then note that if

x1 ∧ · · · ∧ xk ̸= 0, then for all i, we have
⊕i

j=0 ei =
⊕i

j=0 xi for all i ≤ k so |ai| = ∥xi∥ for all i if and only
if (x1, . . . , xk) is orthogonal.

Lemma A.41. Let E be a standard vector space and h ∈ End(E). There is a unitary vector v ∈ E such
that ∥h(v)∥ = ∥h∥ and for all such v,there is a unitary linear form w ∈ E∗ such that |w(v)| = 1 and
h(ker (w))⊥h(v).

Proof. Note that this is trivial when h = 0. Otherwise, ∥h∥ is in the image of the valuation | · |, which
is a multiplicative group so there is a scalar λ such that |λ| = ∥h∥−1 and λh is unitary. Take v a vector
such that ∥h(v)∥ = ∥h∥∥v∥, by the same argument as above, one may assume that v is unitary. Then take
w := (h(v))

⊤◦h, (with ⊤ as in Lemma A.31 in the ultra-metric case and as in Remark A.2 in the Archimedean
case). Then one has |w(v)| = 1. Moreover, w is unitary because h is and h(ker (w)) = ker (h(v)

⊤
) is

orthogonal to v by Lemma A.30.

Definition A.42 (Singular values). Let h ∈ End(E). We call singular values of h the non-increasing (by
Proposition A.40) sequence of non-negative real numbers (µk(h))k≥0 such that:∥∥∥∧k h∥∥∥ = µ1(h) · · ·µk(h).

Proposition A.43 (Cartan decomposition). Let E be a standard vector space and h ∈ End(E). There an
orthonormal family (v1, . . . , vd) of E such that (h(v1), . . . , h(vd)) is orthogonal and ∥h(v1)∥ ≥ · · · ≥ ∥h(vd)∥.

Proof. We define (v1, . . . , vd) by induction using an auxiliary sequence (w1, . . . , wd). Assume that for some
k ∈ {1, . . . , d} we have constructed an orthonormal family (v1, . . . , vk−1) in E and an orthonormal family
(w1, . . . , wk−1) in E∗ such that |wj(vj)| = 1 for all j ∈ {1, . . . , k − 1} and wj(vi) = 0 for all j ̸= i. Write
for all j, Vj the vector space spanned by (v1, . . . , vj) and wj :=

⋂
i≤j ker (w

j). Then one has Vj⊥wj for
all j, assume also that h(Vj)⊥h(wj) and that ∥h|wj∥ ≤ ∥h(vj)∥. Then take (vk, w

′
k) ∈ Wk−1 ×W ∗

k−1 as in
Lemma A.41, and set wk to be w′

k on Wk−1 and 0 on Vk−1. Then one has: ∥h|Wk
∥ ≤ ∥h|Wk−1

∥ = ∥h(vk)∥;
h(Wk)⊥h(vk) by Lemma A.41 and h(Wk)⊥Vk−1 because h(Wk) ⊂ h(Wk−1).

Lemma A.44. Let h ∈ End(E) and (v1, . . . , vd) be as in Proposition A.43. Then one has for all i ∈
{1, . . . , d} ∥h(vi)∥ = µi(h).
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Proof. We prove this by induction on k = 1, . . . , d. Since (v1, . . . , vd) is an orthonormal basis, we have a
family of indices 1 ≤ i1 < · · · < ik ≤ d such that h(vi1 ∧ · · · ∧ vik) = µ1(h) . . . µk(h) and by proposition
A.40, we have h(vi1 ∧ · · · ∧ vik) ≤ ∥h(vi1)∥ · · · ∥h(vik)∥ but the h(vi) are decreasing so µ1(h) . . . µk(h) ≤
∥h(v1)∥ · · · ∥h(vk)∥. Then to have the other inequality, note that by orthogonality ∥h(v1)∥ · · · ∥h(vk)∥ =
h(v1 ∧ · · · ∧ vk) ≤ µ1(h) . . . µk(h) and by induction hypothesis µ1(h) . . . µk−1(h) ≤ ∥h(v1)∥ · · · ∥h(vk−1)∥ and
if this product is 0 then we have µk(h) = ∥h(vk)∥ = 0 because the sequences are non-increasing and otherwise,
we can simplify and we have µk(h) = ∥h(vk)∥.

A.4 Projective space and Grassmanian variety
Lemma A.45. Let E be a Euclidean or Hermitian vector space. Let x, y, z be unitary vectors in E and w
be a unitary linear form, we have:

∥x ∧ z∥ ≤ ∥x ∧ y∥+ ∥y ∧ z∥ (137)
||wy| − |wz|| ≤ ∥y ∧ z∥. (138)

Proof. Take (e1, . . . , ed) and orthonormal basis of E such that e1 = y. Then we write (x1, . . . , xd) and
(z1, . . . , zd) the coordinates of x and z respectively and write x′ = x − x1e1 and y′ := y − y1e1. Then we
have ∥x ∧ y∥ = ∥x′∥ and ∥y ∧ z∥ = ∥z′∥ but x ∧ z = x1e1 ∧ z′ − z1e1 ∧ x′ + x′ ∧ z′ and all three terms are
orthogonal so:

∥x ∧ z∥2 = |x1|2∥z′∥2 + |z1|2∥x′∥2 + ∥x′ ∧ z′∥2 ∥x ∧ z∥ = max{x1∥z′∥, z1∥x′∥, ∥x′ ∧ z′∥}
≤ ∥z′∥2∥x∥2 + |z1|2∥x′∥2 ∥x ∧ z∥ ≤ max{x1∥z′∥, z1∥x′∥}
≤ ∥x′∥2 + ∥z′∥2 ∥x ∧ z∥ ≤ max{∥z′∥, ∥x′∥}
≤ ∥x′∥2 + ∥z′∥2 + 2∥x′∥∥z′∥ ∥x ∧ z∥ ≤ max{∥z ∧ y∥, ∥x ∧ y∥}.

Then taking the square root, we have ∥x∧ z∥ ≤ ∥x∧ y∥+ ∥y ∧ z∥. Now to prove (138), consider a basis such
that w(e1) = 1 and w(ej) = 0 for all j > 1, then note that

y ∧ z = (y − z) ∧ z

=

d∑
j=1

zj(y − z) ∧ ej

=

d∑
j=1

d∑
i=1

zj(yi − zi)ei ∧ ej

Moreover, this sum is orthogonal so we have:

∥y ∧ z∥ ≥

∥∥∥∥∥∥
d∑
j=1

|zj |(y1 − z1)e1 ∧ ej

∥∥∥∥∥∥
∥y ∧ z∥ ≥ |w(y)− w(z)|∥z∥
∥y ∧ z∥ ≥ ||w(y)| − |w(z)||.

Lemma A.46. If E is a standard ultra-metric vector space then d on P(E) defined by d(Kx,Ky) := ∥x∧y∥
∥x∥·∥y∥

is ultra-metric. Moreover, the metric space (P(E),d) is compact.

Proof. Take three unitary vectors x, y, z, take πy an orthogonal projection onto Ky, then we have z ∧ y =
(z − πy(z)) ∧ y and by Lemma A.40 ∥(z − πy(z)) ∧ y∥ = ∥z − πy(z)∥, then by linearity, we have x ∧ z =
x ∧ (z − πy(z)) + x ∧ πy(z) and πy(z) = ay for some |a| ≤ 1 so ∥x ∧ πy(z)∥ ≤ ∥x ∧ y∥ and by Lemma
A.40 we have ∥x ∧ (z − πy(z))∥ ≤ ∥z − πy(z)∥ = ∥y ∧ z∥, then by ultra-metric inequality on

∧k
E, we

have ∥x ∧ z∥ ≤ max{∥x ∧ y∥, ∥y ∧ z∥}. Then we claim that P(E) is the quotient of the unit sphere of E
(which is compact by (LC)) by the closed equivalence relation x ∼ y if there is a ∈ K unitary such that
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x = ay. The equivalence relation is closed because for all unitary x, Kx is closed in E and isometric to
K and the unit group U(K) is closed in K. Moreover, by the above reasoning, for all x, y ∈ P(E), we
have ∥x ∧ y∥ = ∥x − πy(x)∥ and by ultra-metric inequality, we either have ∥πy(x)∥ = 1, in which case or
πy(x) ∼ y or ∥x − πy(x)∥ = 1 in which case ∥x − y∥ ≥ 1 because the projection is contracting but x and y
are unitary so ∥x− y∥ = 1 = ∥x ∧ y∥. So ∥x ∧ y∥ is indeed the distance between the image of x by the unit
group and the image of y by the unit group. Then it is straightforward that the quotient of a compact by a
closed equivalence relation is compact. Indeed a covering of P(E) by open sets lifts to a covering of the unit
sphere which is invariant by the action of the unit group U(K), such a covering has a finite sub-covering by
compactness and the latter projects back to a finite sub-covering of P(E).

Note that this implies that the distance map on P(E) gives an ordered family of partitions by the
following Lemma. Note that we already know by Proposition A.15 that the distance takes values in a set of
type {exp (−βn)|n ∈ N}.

Lemma A.47 (Ball coverings of ultra-metric spaces). Let (X,d) be a compact ultra-metric space i.e, such
that for all x, y, z ∈ X, we have d(x, z) ≤ max{d(x, y),d(y, z)}. Then for all ε > 0, the relation ∼ε:= (d < ε)
is an equivalence relation that has finitely many equivalence classes and as a consequence d takes its non-zero
values in a discrete subset of R>0.

Proof. Let x, y, z ∈ X be such that d(x, y) < ε and d(y, z) < ε, then by ultra-metric inequality we have
d(x, z) < ε, the reflexivity comes from the fact that the distance is symmetric. Then the covering of X
by balls of radius ε has no non-trivial sub-covering since the balls are disjoint so there are only finitely
many balls by compactness. Moreover, for all α ≥ ε the relation ∼α is coarser that d > ε so if we write
X =

⊔N
i=1 Ci where the Ci’s are the balls or radius ε then we have a non decreasing map [ε,+∞] → pN where

pN is the set of equivalence relations on (a-k-a partitions of) {1, . . . , N} endowed with the order relation
∼≤∼′:= ∀i, j, i ∼ j ⇒ i ∼′ j. Since pN is a finite partially ordered set, ∼α takes only finitely many values for
α > ε and for all α < α′, we have ∼α<∼α′ if and only if there is a pair x, y ∈ X such that α ≤ d(x, y) < α′

therefore, there are only finitely many possible values taken by the distance map d in [ε,+∞] so they are all
isolated except maybe ε, but this is true for all ε > 0 so all the non-zero values taken by d are isolated.

Definition A.48 (Grassmannian variety). Let E be a standard vector space over a local field K. Let
1 ≤ k ≤ dim (E). We define the Grassmannian variety Grk(E) to be the set of subspaces of E that have
dimension k. We endow V with the metric induced by the embedding:

Grk(E) −→ P
(∧i

E
)

⊕k
i=1 Kxi 7−→ K

∧k
i=1 xi.

(139)

We write Gr0(E) := {{0}} and Gr(E) :=
⊔dim (E)
k=0 Grk(E) for the general Grassmannian variety.

Definition A.49 (Flag variety). Let E be a standard vector space. Let Θ ⊂ {1, . . . ,dim (E)}. We define
the flag variety:

FlΘ(E) :=

{
(Fi)i∈θ ∈

∏
i∈Θ

Gri(E)

∣∣∣∣∣ ∀i ≤ j, Fi ⊂ Fj

}
. (140)

We write Fl(E) :=
⊔

Θ FlΘ(E) for the general flag variety and Fl(E) := Fl{1,...,d}(E) for the total flag variety.

Note that the data of a general flag is simply the data of a completely ordered subset of the general
Grassmannian variety.

Definition A.50. Let E be a standard vector space. Let γ ∈ End(E) and F ∈ Fl(E). We define the product
γ · F as the collection {γf | f ∈ F}.

Proposition A.51. Let E be a standard vector space. Let Θ ⊂ {1, . . . ,dim (E)}. The flag variety FlΘ(E)
is compact.
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Proof. Let d := dim (E), let k ≤ d and let ϕ ∈
∧k

E. Write:

ϕ =
∑

1≤i1<···<ik≤d

ϕi1,...,idei1 ∧ · · · ∧ eik .

Then ϕ is a pure k-vector if and only if for all 1 ≤ i1 < · · · < ik ≤ d, we have ϕi1,...,ik = xi1,1 · · ·xik,k, for
some (xi,j)i≤d,j≤k ∈ Kdk. This means that The set of pure k-vectors is closed.

A.5 Spectral radius and real spectrum
More details about this construction can be found in [Die54]

Lemma A.52. Let E be a standard vector space and let h ∈ End(E). The sequence
(
∥hn∥ 1

n

)
converges.

Moreover, for all k ∈ {1, . . . ,dim (E)}, the sequence
(
µk(h

n)
1
n

)
also does.

Proof. Let m,n ∈ N. We have ∥hn+m∥ ≤ ∥hn∥ · ∥hm∥ so by sub-multiplicativity the sequence
(
∥hn∥ 1

n

)
converges. Write ρ its limit, we claim that ρ = 0 if and only if h is nilpotent. Let d := dim (E), then hd is
a bijection on its image, write r the norm of its inverse, then we have ∥hnd∥ ≥ r−n so ρ ≥ r−d > 0. Then
by the same argument, the sequence

(
∥
∧k

hn∥ 1
n

)
converges for all k ∈ {1, . . . ,dim (E)}. Moreover, for

all k ∈ {2, . . . ,dim (E)}, if
∧k

h is nilpotent, then
∧k−1

h also is. As a consequence
(
µk(h

n)
1
n

)
converges

because it is either the quotient of two convergent sequences that have positive limit or stationary to 0.

Definition A.53 (Real spectrum). Let E be a standard vector space and let h ∈ End(E) and let k ∈
{1, . . . ,dim (E)}. We define the k-th absolute eigenvalue of h as:

ρk(h) := lim
n→∞

µk (h
n)

1
n .

Theorem A.54 (Jordan-Dunford decomposition). Let K be a field, d ≥ 2 an integer and E be a d-
dimensional K-vector space. Let h ∈ End(E). Let:

χh(X) := det (h−Xid).

Let K′ be the smallest extension of K on which χh(X) is a product of linear factors and let E′ := K′ ⊗ E.
For all λ ∈ K′, we define the eigenspace:

Eλ(h) := ker
(
(h− λid)

d
)
.

Then for all λ ∈ K′, the vector space Eλ(h) is stable by h and the dimension of Eλ(h) is the multiplicity of
λ as a root of χh(X). Moreover, we have:

E′ =
⊕
λ∈K′

Eλ(h).

Moreover, for all factor R(X)|χh(X) in K[X], we have ER(h) ⊂ E a h-stable subspace such that:⊕
λ∈K′,R(λ)=0

Eλ(h) = K′ ⊗ ER(h).

Lemma A.55. Let K be a local field and P (X) be irreducible in K[X]. let K′ be an algebraic extension of
K. Then there is only one absolute value on K′ that matches with the absolute value on K and all the roots
of P (X) in K′ have the same absolute value.

Definition A.56 (Ordered spectrum). Let K be a field, d ≥ 2 an integer and E be a d-dimensional K-vector
space. Let h ∈ End(E). We call ordered spectrum of h a family (λ1, . . . , λd) ∈ Kd such that:

χh(X) =

d∏
i=1

(λi −X).
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Lemma A.57 (Jordan-Dunford decomposition of the exterior product). Let K be a field, d ≥ 2 an integer
and E be a d-dimensional K-vector space. Let h ∈ End(E). Let K′ be the smallest extension of K on which
χh(X) is a product of linear factors. Let 2 ≤ k ≤ d. Then the characteristic polynomial χ∧k h(X) is a
product of linear factors on K′ moreover, we have for all λ ∈ K′:

Eλ

(∧k
h
)
=

⊕
λ1···λk=λ

k∧
i=1

Eλi(h).

As a consequence, if (λi)1≤i≤d is an ordered spectrum of h, then (λi1 · · ·λik)1≤i1<···<ik≤d is an ordered
spectrum of

∧k
h.

Proposition A.58. Let E be a standard vector space and let h ∈ End(E). For all r ≥ 0, the number of
indices k ∈ {1, . . . ,dim (E)} such that ρk = r is equal to the dimension of:

Er(h) :=
⊕
|λ|=r

Eλ(h).

Proof. Let (λ1, . . . , λd) be an ordered spectrum of h such that |λ1| ≥ · · · ≥ |λd|. Then for all vector x in, we
write x =

∑
λ∈K′ xλ. Then we have ∥hnxλ∥

1
n → |λ| for all λ so ∥hn∥ 1

n → |λ1|. Then by taking the exterior
product for all k ∈ {1, . . . , d}, we get that:

ρ1(h) · · · ρk(h) = |λ1 · · ·λk|.

As a consequence ρk(h) = |λk| for all k.

Definition A.59. Let E be a standard vector space and let h ∈ End(E). We define:

E+(h) := Eρ1(h)(h).

B About probabilities
In this appendix, we prove basic results in the study of stochastic processes. More details about the following
results can be found in [Sen06, p. 11-24] page 11.

B.1 Definitions and preliminaries
Definition B.1 (σ-Algebra). Let Ω be a set. We call algebra in Ω a collection A of parts of Ω that is
stable by union, by intersection and by complementary i.e, a sub-algebra of (P(E),∪,∩). We say that A is a
σ-algebra if it moreover satisfies the following equivalent conditions:

1. A is stable by countable union,

2. A is stable by disjoint countable union,

3. A is stable by countable intersection,

4. A is stable by taking the limit of monotonous (resp. increasing; resp. decreasing) sequences.

We call measurable space the data (Ω,A) where Ω is a set and A a is σ-algebra on Ω. We sometimes omit
the σ-algebra and simply call elements of A measurable subsets of Ω.

Definition B.2 (Probability space). We call probability space a triple (Ω,A,P) where Ω is a set, A is a
σ-algebra and P : A → [0, 1] a σ-additive map i.e, a map P such that P(Ω) = 1 and that satisfies one of the
following equivalent conditions:

1. for all sequence (An) ∈ AN, that are pairwise disjoint, we have P(
⋃
An) =

∑
P(An)
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2. for all monotonous sequence (An) ∈ AN, we have limP(An) = P(limAn) and for all A,B disjoint,
P(A ⊔B) = P(A) + P(B).

Just like for measurable spaces, we will simply write (Ω,P) to specify a probability space.

Definition B.3 (Basis). We say that a σ-algebra A has basis B (or is generated by B) if B ⊂ A and no
proper sub-algebra of A contains B or equivalently, if A is the intersection of all σ-algebras that contain B.

Proposition B.4 (Carathéodory’s theorem). Let A be a σ-algebra and B a countable basis of A that is
stable by finite union and by complementary i.e, a ∩,∪-sub-algebra. Assume that there is an additive map
P : B → [0, 1] such that P(Ω) = 1. Then P extends uniquely to a probability distribution on A.

Definition B.5 (Random variable). Let (Ω,AΩ) and (Γ,AΓ) be two Measurable spaces. We say that a
function γ : Ω → Γ is measurable if γ−1(AΓ) ⊂ AΩ. We call random variable the joint data of a measurable
map γ : Ω → Γ and a probability measure P on Ω. We then say that γ is defined on (Ω,P) and valued in
(Γ,AΓ).

Definition B.6 (Filtered probability spaces). Let (Ω,A,P) be a probability space. We call filtration on Ω a
non-decreasing sequence (Fn)n∈N of sub-algebras of A. We call the data of the triple (Ω, (Fn),P) a filtered
probability space. Note that the data of the σ-algebra A is encoded in P.

Definition B.7. Let (Ω, (Fn),P) be a filtered probability space and X a measurable space. We say that a
random sequence (xn) : Ω → XN respects the filtration (Fn)n∈N if for all n ∈ N, the data of (x0, . . . , xn−1)
is Fn-measurable.

Definition B.8 (Stopping time). Let (Ω, (Fn),P) be a filtered probability space. Let t ∈ N be a random
integer, we say that t is a stopping time for (Fn)n∈N if for all n ∈ N, the event (t ≥ n) is Fn-measurable.

Definition B.9 (Extracted filtration). Let (tm)m∈N be a sequence of stopping times such that tm ≤ tm+1

for all m ∈ N. We write (Ftm)m∈N for the extracted filtration generated by:

Ftm := ⟨F ∩ (tm ≥ n) ; n ∈ N, F ∈ Fn⟩ .

It is characterized by the property that for all sequence (xn)n∈N that respects Fn and for all m, the data of
(x0, . . . , xtm−1) is Ftm-measurable.

Definition B.10 (Conditional probability). Let (Ω,A,P) be a probability space. For two measurable events
A,B ⊂ Ω, we define the conditional probability P(A|B) := P(A∩B)

P(B) . And for B a sub-algebra of A, we define
P(A|B) as the only (up to equivalence) B-measurable function valued in [0, 1] such that P(A|B) =

∫
B
P(A|B)dP

for every B ∈ B.

Definition B.11 (Distribution). Let (Ω,P) be a probability space and X a measurable space. Let xΩ → X
be a random variable. We call distribution of x the probability distribution on X defined by A 7→ P(x ∈ A)
for all measurable A ⊂ X.

Let X,Y be two measurable spaces and f : X → Y be a measurable map. Let x be a random variable
valued in X. Let ν be a probability measure on X. We write x ∼ ν to say that x has distribution ν and in
this case, we write f(ν) for the distribution of f(x).

Definition B.12 (Expectation). Let (Ω,P) be a probability space. Let x : Ω → R≥0 be a real random variable
of distribution ν. We define:

E(ν) :=
∫ +∞

t=0

ν(t,+∞)dt = E(x) :=
∫ +∞

t=0

P(x > t)dt.

Definition B.13 (Conditional expectation). Let (Ω,A,P) be a probability space and B a sub-algebra of A.
Let x be a non negative real A-measurable random variable. We define the non negative (but possibly infinite)
B-measurable random variable:

E(X | B) :=
∫ ∞

t=0

P(x ≥ t | B)dt.

The random variable E(x | B) is (up to equivalence) the only B-measurable random variable that satisfies
E(yE(x|B)) = E(XY ) for all B-measurable random variable y.
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B.2 Markov chains
Definition B.14 (Markov chain). We call finite Markov space the data of a finite set X and a transition
kernel p i.e,map p : X × X → [0, 1] such that

∑
y∈X p(x, y) = 1 for all x ∈ X. We say that a random

sequence (xn) ∈ XN defined over a probability space (Ω,P) is a Markov chain in (X, p) if for every index
n ≥ 1, we have P(xn = y|x0, · · · , xn−1) = p(xn−1, y). If X is a singleton, we say that the Markov space
(X, p) is trivial and if there is a point y0 ∈ X such that p(x, y0) = 1 for all x ∈ X, we say that (X, p) is
semi-trivial.

Remark B.15. The distribution law of a Markov chain (xn) is encoded in the data of a Markov space (X, p)
and a starting law ξ0, that is the distribution law of x0.

Definition B.16 (Admissible paths). One can see a finite or countable Markov space (X, p) as an oriented
graph with weighted vertices. We call edge of X a pair (x, y) ∈ X × X such that p(x, y) > 0 and write
E(X, p) := {(x, y) ∈ X|p(x, y) > 0}. We say that a sequence (xi)i∈I for an interval I ⊂ Z is p-admissible if
for every consecutive pair i, i+ 1 ∈ I, we have (xi, xi+1)E(X, p).

Definition B.17 (Image of a distribution and iterated Markov chain). Let (X, p) be a Markov space. Given
a measure ξ on X (i.e, a function ξ : X → R) and a subset A ⊂ X, we write p(ξ, A) :=

∑
x∈X,y∈A ξ(x)p(x, y),

that way, one has p(x, y) = p(δx, {y}). We say that a measure ξ is p-stationary if p(ξ) = ξ. For every integer
n, we write pn the iterated Markov kernel associated to p i.e, such that pn(x, y) = P(xn = y) for (xn) a
Markov chain in (X, p) with x0 = x. This is equivalent to saying that pn+m(x, z) =

∑
y∈X p

n(x, y)+pm(y, z)

for all x, y ∈ X and p1 = p.

Now we define the notions of irreducible, aperiodic irreducible, eventually irreducible and eventually
aperiodic irreducible Markov chains. Note that even though the definitions and demonstrations rely on
probability theory, these notions are purely properties of the oriented graph (X, E). The only purely proba-
bilistic quantity is the spectral gap.

Definition B.18 (Aperiodic and irreducible Markov spaces). We say that a Markov space is irreducible if for
every x, y ∈ X, there exists an integer n > 0 such that pn(x, y) > 0 i.e, if the oriented graph (X, E(X, p)) is
strongly connected. We say that (X, p) is aperiodic irreducible if for every x, y ∈ X the set {n ∈ N|pn(x, y) =
0} is finite. We call irreducible components of a Markov space a p-invariant subset that is irreducible.

Remark B.19. Note that if we assume a given Markov space (X, p) to be aperiodic irreducible, then for any
given integer n ≥ 1, the Markov space (X, pn) is also aperiodic irreducible.

Lemma B.20. Let (X, p) be an irreducible Markov space. There is a unique probability distribution ξp on X
that is p-stationary and has full support. If moreover (X, p) is aperiodic then for every probability distribution
ξ on X, pn ∗ ξ → ξp exponentially fast.

Proof. For every point x ∈ X, write g(x, y) := limm→∞
∑m
n=1

pn(x,y)
m , the limit exists and is in [0, 1] because

0 ≤ pn(x, y) ≤ 1 for all n, x, y. Then write gm(x, y) :=
∑m
n=1

pn(x,y)
m , then we decompose each path of length

n ≥ 1 into the concatenation of a prefix of length n− 1 and a last step and we have:

m∑
n=0

pn(x, y)

m
=

1

m
+
∑
z∈X

m∑
n=1

pn−1(x, z)

m
p(z, y)

gm(x, y) =
1

m
+
m− 1

m

∑
z∈X

gm−1(x, z)p(z, y)

g(x, y) =
∑
z∈X

g(x, z)p(z, y)

So y 7→ g(x, y) is a p-stationary distribution on X. Now assume that we have two p-stationary distributions
ξ1 and ξ2 on X. Then one has for all y ∈ X, and all n ∈ N,

∑
x∈X (ξ1(x)− ξ2(x))p(x, y) = ξ1(y)−ξ2(y). Now

take y such that ξ1(y)−ξ2(y) is maximal. Then for every x ∈ X we have either (ξ1 − ξ2)(x) = (ξ1 − ξ2)(y) or
pn(x, y) = 0 for every n ∈ N. If we assume that (X, p) is irreducible, then (ξ1 − ξ2) is constant on X. So there
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is a unique p-stationary distribution ξp. Moreover if there is a point x such that ξp(x) = 0, then for every
n ∈ N, one would have

∑
y p

n(y, x)ξp(y) = 0, and then by irreducibility ξp = 0 which is absurd. Now assume
that (X, p) is aperiodic. Take m, ε > 0 such that pm(x, y) ≥ ε for all x, y. Then take a function f ∈ RX such
that

∑
f(x) = 0 and take y such that f(y) is maximal. Then one has for all z,

∑
f(x)pm(x, z) ≤ f(y)(1− ε)

and so if we write fn = pnm+k ∗ ξ − ξp then fn → 0 so pn(ξ) → ξp exponentially fast.

Lemma B.21. Let (X, p) be an eventually irreducible Markov space. Then there exists a unique p-stationary
distribution on X. If it is moreover aperiodic, then for every probability distribution ξ on X, the image pn(ξ)
converges to the p-stationary distribution.

Proof. We simply need to show that for every x ∈ Xw and every probability distribution ξ, we have pn(ξ, x) →
0. Therefore take an integer m such that pm(x,Xs) > 0 for every x ∈ Xw, such an m exists because (X, p)
is eventually irreducible. Then we have pm(x,Xw) ≤ ρ1 for every x ∈ Xw and since there is no admissible
path from Xs to Xw, we have:

pm+k(x,Xw) =
∑
y∈Xw

pk(x, y)pm(y,Xw)

So for every n ∈ N and every probability distribution ξ, we have pn(ξ,Xw) ≤ ρ⌊
n
m⌋ → 0.

Lemma B.22. Let (X, p) be an eventually irreducible Markov space. Let ξ be the p-invariant probability
distribution. There are constants C, β > 0 such that for all b ∈ X such that ξ(b) > 0 and for all Markov
chain (xn) in (X, p), if we write n0 for the first time such that xn0

= b then:

P(n0 ≥ k) ≤ C exp (−βk). (141)

Proof. Let l0 be the Diameter of X i.e, the smallest integer such that for all x, y ∈ X such that ξ(y) > 0, we
have an admissible path of length at most l0 from x to y. Then Write ε := minp(x,y>0) p(x, y). Then for all
n ∈ N, we have:

P(n0 ≥ n+ l0 |n0 ≥ l) ≤ 1− εl0 .

So if we write β := − log (1−εl0 )
l0

and C := exp (βl0), then we have (141).

B.3 About exponential large deviations inequalities
Lemma B.23 (Distribution of the current step). Let (wk)k∈N be a random sequence of positive integers that
respects a filtration (Fk). For all n ≥ 0, we write rn for the largest integer such that w0 + · · ·+ wrn−1 < n.
Assume that for some η : N → R≥0, we have:

∀t ≥ 0,∀k ≥ 0,P (wk > t | Fk) ≤ η(t).

Then we have:
∀t ∈ N, ∀n ∈ N, P (wrn = t) ≤ tη(t) (142)

In particular if there are constants C, β > 0 such that η(t) ≤ C exp (−βt) for all integer t, then we have:

∀t ≥ 0,∀n ≥ 0,P (wrn > t | Fk) ≤
C(1 + tβ)

β2
exp (−βt). (143)

Proof. First have a look at the green function G : y 7→ E(#{r ∈ N;wr = y}). One has G(y) ≤ 1 for all y ∈ N
because the (wk)’s are positive so there is at most one index r such that wr = y. It means that we have
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∑∞
r=0 P(wr = y) ≤ 1 for all y ∈ N. Now consider 0 ≤ t, n two integers.

P(wrn = t) =

+∞∑
r=0

P((r = rn) ∧ (wr = t))

=

+∞∑
r=0

P((n− t ≤ wr < n) ∧ (wr = t))

=

+∞∑
r=0

+∞∑
u=t

P(wr = n− u)P(wr = t |wr = n− u)

≤
t∑

u=1

∞∑
r=0

P(wr = n− u)η(t)

≤ tη(t).

This proves (142). Now assume that η(t,+∞) ≤ C exp (−βt) for some C, β > 0 and for all t ∈ N. Then for
all t, n ∈ N, we have:

P (wrn > t) =
∑
u>t

P (wrn = u)

≤
∑
u>t

uη(u)

≤
∑
u>t

uC exp (−βu)

≤ C(1 + tβ)

β2
exp (−βt)

We now give some standard large deviations inequalities for sums of random variables guided by a finite
Markov chain.

Lemma B.24 (Sum of random variables that have finite exponential moment). Let (Ω,P) be a probability
space endowed with a filtration (Fn)n∈N. Let w be a random integer that is exponentially integrable (i.e, such
that E(λw) < +∞ for some constant λ > 1) and let (Xn) be a random sequence of (Fn−1)-measurable real
non-negative random variables that are uniformly relatively exponentially integrable i.e, there exists constants
C, β > 0 such that:

∀n ∈ N,E(exp (βXn)|Fn) ≤ C. (144)

Then
∑w
k=0Xn is exponentially integrable. Moreover there are some constants C ′, β′ > 0 that can be expressed

as functions of C, β,E(λw), λ and such that E (exp (β′∑w
k=0Xn) | Fn−1) ≤ C ′.

Proof. Take some 0 < ε. Write Y :=
∑w
k=0Xn and for every j, write Zj :=

∑j−1
k=0Xn. Then for all constant

t, one has:
P(Y ≥ t) ≤ P(w ≥ tε) + P

(
Z⌊tε⌋ ≥ t

)
. (145)

Then write ζj := exp (βZj), by equation (144), and by induction on j, one has E(ζj) ≤ Cj . Indeed, ζ0 = 1
and for all j ≥ 0, ζj is Fj measurable, so by Definition B.13, one has:

E(ζj+1) = E(E(ζj+1|Fj))
= E(ζjE(exp (βXj)|Fj))
≤ CE(ζj−1).
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So for all j ∈ N, t ∈ R≥0, one has by Markov’s inequality: P(ζj ≥ exp (βt)) ≤ Cj

exp (βt) , and taking j = ⌊tε⌋,
we get:

P
(
Z⌊tε⌋ ≥ t

)
≤ exp (−(β − ε log (C))t).

Note that C ≥ 1 because the Xn’s are non-negative. Moreover for ε small enough, one has β− ε log (C) > 0.
Since w is exponentially integrable and by Markov’s inequality, there are constants C ′, β′ > 0 such that
P(w ≥ tε) ≤ C ′ exp (−β′t) (namely C ′ := E(λw) and β′ := ε log (λ)). So if we write β′′ := min{β′, β −
ε log (C)} > 0 and C ′′ := C ′ + 1 then we have P(Y ≥ t) ≤ C ′′ exp (−β′′t).

Lemma B.25 (Exponential moments approximate the expectation). Let M,σ,C, β > 0. For all α < σ,
there is a constant βα > 0 that depends on (M,σ,C, β, α) such that for all random variable x that satisfies
E(min{x,M}) ≥ σ and P(x ≤ t) ≤ C exp (βt) for all t ∈ R, we have:

E(exp (−βαx)) ≤ exp (−βαα).

Proof. Let x be a random variable such that P(x ≤ t) ≤ C exp (βt) for all t ∈ R. For all β′ < β and for all
m ∈ R we have:

E(exp (−β′x)1(x ≤ m)) =

∫ +∞

m=exp (−β′m)

P(exp (−β′x) ≥ t)dt

≤
∫ +∞

t=exp (β′m)

t
− β

β′ dt

≤ β

β − β′ exp ((β − β′)m) =: F (m,β′)

Now assume moreover that E(min{x,M}) ≥ σ > 0. Write x′ for the random variable such that x′ = x when
m ≤ x ≤ M , x′ = m when x ≤ m and x′ = M when x ≥ M . Note that E(x′) ≥ σ, note also that exp is a
convex function. Therefore we have:

exp (−β′x′) ≤ x′ −m

M −m
exp (−β′M) +

M − x′

M −m
exp (−β′m)

E(exp (−βx′)) ≤ M exp (−β′m)−m exp (−β′M)

M −m

− E(x′)
(exp (−β′m)− exp (−β′M))

M −m

E(exp (−βx′)) ≤ M exp (−β′m)−m exp (−β′M)

M −m

− (exp (−β′m)− exp (−β′M))

M −m
σ =: L(m,β′)

Now if we take m′ := 2 log (β′)−2K
β for some K, then for β′ < β

2 , we get that L(m′, β′) ≤ 2 exp (−K)β′.

Moreover, β′m → 0 as β′ → 0 and exp is C1 at the neighbourhood of 0 so 1−L(m′,β′)
β → σ as β′ → 0.

Therefore for all α < α′ < σ, we can take K such that 2 exp (−K) ≤ α′ − α. Then β small enough so that
L(m′, β′) ≤ 1− βα′ and then for all random variable x that satisfies the hypothesis of Lemma B.25, we get:

E(exp (−β′x)) ≤ L(m′, β′) + F (m′, β′)

≤ 1− βα′ + (α′ − α)β′

≤ exp (−β′α).

Lemma B.26 (Classical large deviations from below). let (xn) be a sequence or real random variables
that respect a filtration Fn. Assume that there exist constants C, β such that for all n ∈ N, we have
E(exp (−βxn)|Fn) ≤ C and a non-decreasing family (σt)t∈R such that E(min{xn, t}|Fn) ≥ σt for all t, n
with. Write σ := limt→+∞ σt. Then we have:

∀α < σ, ∃βα > 0, ∀n ∈ N, P(xn ≤ αn) ≤ exp (−βαn).
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Proof. Consider a constant α0 < α < α′ < α′′ < σ. Let t ∈ R be such that E(min{xn, t}|Fn) ≥ α′′ for all
n ∈ N. Then by Lemma B.25, there is a constant β′ > 0 such that for all n ∈ N, we have:

E(exp (−β′xn)|Fn) ≤ exp (−β′α′).

Then by characterization of the conditional expectation, we get E(exp (−β′xn)) ≤ exp (−nβ′α′) for all n ∈ N.
Then by Markov’s inequality, we get P(xn ≤ αn) ≤ exp (−nβ′(α′ − α)).

Definition B.27 (Large deviations inequalities). Let (xn) be a random sequence of real numbers. We say
that (xn) satisfies some large deviations inequalities below a speed σ ∈ R ∪ {+∞} if we have:

∀α < σ, ∃C, β > 0, ∀n ∈ N, P(xn ≤ αn) ≤ exp (−βn).

We then say that (−xn) satisfies large deviations inequalities above −σ.

Remark B.28. Let (xn) be a random sequence of real numbers that satisfies large deviations inequalities
below a speed σ ∈ R ∪ {+∞}. Then we have almost surely lim inf xn

n ≥ σ. If moreover (xn) satisfies large
deviations inequalities above σ ∈ R, then lim xn

n = σ almost surely.

Proof. First assume that (xn) is a random sequence of real numbers that satisfies large deviations inequalities
below a speed σ ∈ R ∪ {+∞}. We want to show that for all α the set Aα :=

{
n ∈ N | xn

n ≤ α
}

is almost
surely finite. Consider some constants C, β > 0 such that P(xn ≤ αn) ≤ exp (−βn) for all n ∈ N, then we
get E(#Aα) ≤ C

β . In particular Aα is almost surely finite. Then consider (αk) an increasing sequence such
that αk → σ. For all k ∈ N, we have lim inf xn

n ≥ αk with probability one so the countable intersection
lim inf xn

n ≥ σ also has probability one.
If we now assume that (xn) satisfies large deviations inequalities above σ ∈ R. Then by the above

reasoning, we have almost surely lim inf xn

n ≥ σ and lim inf −xn

n ≥ −σ so σ = lim inf xn

n = lim sup xn

n =
lim xn

n .

Now we see that sequences that satisfy large deviations inequalities behave well under some compositions.

Lemma B.29. Let (xn)n∈N and (x′n)n∈N be two random sequences of real numbers that satisfy large devia-
tions inequalities below speeds σ and σ′ respectively. Let (yn) be a sequence of random variables whose negative
parts have bounded exponential moment. Let (kn)n∈N be a random non-decreasing sequence of non-negative
integers. Then:

1. The shifted sequence (xn − yn)n∈N satisfies large deviations inequalities below the speed σ.

2. The minimum (min{xn, x′n})n∈N satisfies large deviations inequalities below the speed min{σ, σ′}.

3. The maximum (max{xn, x′n})n∈N satisfies large deviations inequalities below the speed max{σ, σ′}.

4. For all λ > 0, λ′ ≥ 0, the sum (λxn + λ′x′n)n∈N satisfies large deviations inequalities below the speed
λσ + λ′σ′.

5. If (kn)n∈N satisfies large deviations inequalities below a speed κ ∈ (0,+∞) then the composition
(xkn)n∈N satisfies large deviations inequalities below the speed κσ.

6. Let (rm)m∈N be the reciprocal function of κ defined by rm := max{n ∈ N; kn ≤ m} for all m ∈ N. Then
for κ > 0, the sequence (rm)m∈N satisfies large deviations inequalities above the speed κ−1 if and only
if (kn)n∈N satisfies large deviations inequalities below the speed κ.

Proof. We first prove 1 Let α < α′ < σ. By assumption, there are two constants Cx, βx such that
P(xn ≤ α′

n) ≤ C exp (−βn). Then saying that negative part of y has finite exponential moment means
that there is a constant β > 0 such that E(exp (−βyn)) =: Cy < +∞. By Markov’s inequality, we get that
P(yn ≤ (α− α′)t) ≤ Cy exp (−β(α′ − α)t) for all t ∈ R. Write βy := β(α′ − α). Then we have:

P(yn + xn ≤ αn) ≤ P(xn ≤ α′n) + P(y ≤ (α− α′)n)

P(yn + xn ≤ αn) ≤ Cx exp (−nβx) + Cy exp (−βyn)
P(yn + xn ≤ αn) ≤ (Cy + Cx) exp (−nmin {βx, βy})
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Now to prove 2 assume that σ ≤ σ′. Then we get for all α < σ, the inequality P(min{xn, x′n} ≤ αn) ≤
P(xn ≤ αn) + P(x′n ≤ αn) and both quantities are exponentially small. To prove 3, we still assume that
σ ≤ σ′. Then for all α′ < σ′, we get that P(min{xn, x′n} ≤ αn) ≤ P(x′n ≤ α′n) which is exponentially small.

Now to prove 4 consider some α+ < λσ + λ′σ′, then we have some α < σ and α′ < σ′ such that
α+ = λα+ λ′α′. Then consider C, β > 0 such that P(xn ≤ αn) ≤ C exp (−βn) for all n ∈ N and C ′, β′ > 0
such that P(x′n ≤ α′n) ≤ C ′ exp (−β′n). Then we have for all n ∈ N:

P(λxn + λ′x′n ≤ α+n) ≤ P(xn ≤ αn) + P(x′n ≤ α′n)

≤ C exp (−βn) + C ′ exp (−β′n)

≤ (C + C ′) exp (−min{β, β′}n)

Now we prove 5. Take α < κσ and write α = α′α′′ with α′ < σ and α′′ < κ. Then take some
adapted constants Cx, βx > 0 such that P(xn ≤ α′n) ≤ exp (−βn) for all n ∈ N and Ck, βk such that
P(kn ≤ α′′n) ≤ Ck exp (−βkn) for all n ∈ N. Then we have for all n ∈ N:

P(xkn ≤ αn) ≤ P(xkn ≤ α′kn|kn ≥ α′′n) + P(kn ≤ α′′n)

P(xkn ≤ αn) ≤
∑

k≥α′′n

P(xk ≤ α′k) + P(kn ≤ α′′n)

P(xkn ≤ αn) ≤
∑

k≥α′′n

Cx exp (−βxk) + Ck exp (−βkn)

P(xkn ≤ αn) ≤ Cx
βx

exp (−βxα′′n) + Ck exp (−βkn)

P(xkn ≤ αn) ≤
(
Cx
βx

+ Ck

)
exp (−min{βxα′′, βk}m0) .

To prove 6, we use a similar method. Take some α < κ and C, β > 0. First assume that P(kn ≤ αn) ≤
C exp (−βn) for all n ∈ N. Then we have for all m0 ∈ N:

P(rm0
≥ α−1m0) ≤ P(∃m ≥ m0, rm ≥ α−1m)

≤ P(∃m ≥ m0, ∃n ∈ N, (n ≥ α−1m) ∧ (kn ≤ m))

≤ P(∃n ≥ α−1m0, kn ≤ αn)

≤ C

β
exp (−βα−1m0).

Now note that for all α′ > κ−1, we have α−1 < κ. So the above tells us that (rm) satisfies large deviations
inequalities above the speed κ−1. Reciprocally, assume that P(rm ≥ α−1m) ≤ C exp (−βm) for all m ∈ N.
Then we have for all n0 ∈ N:

P(kn0
≤ αn) ≤ P(∃n ≥ n0, kn ≤ αn)

≤ P(∃n ≥ n0, kn ≤ ⌊αn⌋)
≤ P(∃m ≥ ⌊αn0⌋, rm ≥ α−1m)

≤ C exp (β)

β
exp (−βαn0).

Therefore (kn) satisfies large deviations inequalities below the speed κ. This proves 6 by double implication.

B.4 About moments
Definition B.30 (Lp-integrability). Let p ∈ (0,+∞). Let η be a probability distribution on R≥0. We say
that η is strongly Lp integrable or has moment of order p if:

Mp(η) :=

∫ +∞

t=0

tpdη (t) < +∞. (sLp)
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We say that η is weakly Lp integrable if:

Wp(η) := sup
t≥0

tpη (t,+∞) < +∞. (wLp)

Remark B.31. Note that a probability distribution η on R≥0 is characterized by the map t 7→ η(t,+∞).
Moreover for all non-increasing f : R≥0 → [0, 1] such that limt→∞ f(t) = 0. There is a probability distribution
η such that f(t) = η(t,+∞) for all t ≥ 0. Indeed, we simply have to write η({0}) = 1 − f(0) and for all
0 ≤ a < b we write η(a, b] := f(a) − f(b) ≥ 0. This is clearly an additive function on half-open intervals.
Then we only need to see that intervals of type (a, b] generate the Borel σ-algebra or R≥0.

Definition B.32 (Trunking). Let η′ be a distribution on R≥0 that has finite total mass i.e, a multiple of a
probability distribution. We call trunking of η′ the distribution η characterized by:

∀t ≥ 0, η(t,+∞) = min{1, η′(t,+∞)}.

Given a semi-norm ∥ · ∥ on the set of probability distributions on R≥0, we write ∥η′∥ := ∥η∥. Note that if η′
has total mass less that one, then η = η′ + 1− η′(R≥0)δ0.

Given η a probability distribution on R≥0 and C ∈ R≥0, Definition B.32 allows us to define a probability
distribution Cη on R≥ 0.

Definition B.33 (Push up Distribution). Let κ and η be probability distributions on R≥ 0. We define the
B-push-up κ ∨ η by:

∀t ≥ 0, κ ∧ η(t,+∞) := max{κ(t,+∞) + η(t,+∞), 1}.
In other words, κ ∨ η is the distribution of max{x(t), y(t)} for t taken uniformly in [0, 1] and x(t) ∼ κ and
y(t) ∼ η with x non-increasing and y non-decreasing. For C a constant, we write C ∨ η for the distribution
δC ∨ η

Lemma B.34. Let η be a probability distribution and B ∈ R≥ 0 and p ∈ R>0. We have:

Mp(κ ∨ η) ≤Mp(κ) +Mp(η) (146)
Wp(κ ∨ η) ≤Wp(κ) +Wp(η) (147)

Proof. We do the calculations:

Mp(κ ∨ η)
∫ ∞

t=0

tpd(κ ∨ η) (t)

=

∫ ∞

t=0

tpd(κ) (t) +

∫ ∞

t=0

tpd(η) (t)

≤Mp(κ) +Mp(η).

This proves (146). For (147), the same reasoning holds:

Mp(κ ∨ η) sup
t≥0

tp(κ ∨ η) (t,+∞)

≤ sup
t≥0

tpκ (t,+∞) + tpη (t,+∞)

≤Wp(κ) +Wp(η).

Definition B.35 (Coarse convolution). Let η be a probability distribution on R≥0. We define the coarse
convolution η↑k as:

∀t ≥ 0, η↑k(t,+∞) := min

{
1, kη

(
t

k
,+∞

)}
.

Lemma B.36. Let x1, . . . , xk be random variables such that:

∀t ≥ 0, ∀i ∈ {1, . . . , k}, P(xi > t) ≤ η(t,+∞). (148)

Then we have:
∀t ≥ 0, P(x1 + · · ·+ xk > t) ≤ η↑k(t,+∞). (149)
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Proof. Consider some t ≥ 0, we have:

P(x1 + · · ·+ xk > t) ≤ P
(
∃i ∈ {1, . . . , k}, xi >

t

k

)
≤ kη

(
t

k
,+∞

)
.

Lemma B.37. Let η, be a probability distributions on R≥0. Let k ∈ N≥1. Let ∥ · ∥∼p be ∥ · ∥Lp or ∥ · ∥Lp
∗ .

We have:

Wp(η
↑k) ≤ kp+1Wp(η) (150)

Mp(η
↑k) ≤ kp+1Mp(η) (151)

Proof. For the weak moment, we have:

Wp(η
↑k) = max tpη↑k(t,+∞)

≤ max tpkη

(
t

k
,+∞

)
≤ kp+1Wp(η).

This proves (151). For the strong moment, by integration by parts and by linear change of variables, we
have:

Mp(η
↑k) =

∫ +∞

t=0

tp−1η↑k(t,+∞)dt

≤
∫
tp−1kη

(
t

k
,+∞

)
dt

≤ kp+1Mp(η).

This proves (150).

Lemma B.38. Let η, η′ be probability distribution over R≥0 and C ∈ R≥0. We have:

Mp(η + Cη′) ≤Mp(η) + CMp(η
′) (152)

Wp(η + Cη′) ≤Wp(η) + CWp(η
′). (153)

Proof. This is a direct consequence of the linearity of the integral and sub-additivity of the supremum just
like for Lemma B.34.

Lemma B.39. Let η be a probability distribution on R≥0. Let B,C, β > 0 be constants. Consider the
distribution:

κ :=

∞∑
k=0

C exp (−βk)η↑k.

Then κ is supported on R≥0 and has finite total mass. Moreover, given p ∈ R>0, if η is strongly (resp.
weakly) Lp, then κ also is.

Proof. We first show that κ has finite total mass and is supported on R≥0. Consider some ε > 0. let k0 be such
that

∑∞
k=k0

C exp (−βk) ≤ ε
2 and t be such that for all k ∈ {0, . . . , k0−1}, we have C exp (−βk)(B ∨ η)↑k(t,+∞) ≤

ε
2k0

. Then κ(t,+∞) ≤ ε so κ(t,+∞) → 0, which means that κ has finite mass and is supported on R≥0.
Write Lp ∈ {Mp,Wp}. By Lemma B.38, we have Lp(κ) ≤ C

βp+2Lp(η).

Lemma B.40. Let n be a random integer and x1, . . . , xn be non-negative real random variables. Let B,C1

be such that:
∀t ≥ B, ∀k ∈ N, ∀m ≤ k, P(xm ≥ t | k = n) ≤ C1η(t) (154)
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Let C2, β > 0 be such that:
∀k ∈ N, P(n = k) ≤ C2 exp (−βk). (155)

Then for C := C1C2, we have:

∀t ≥ 0, P(x1 + · · ·+ xn > t) ≤
∞∑
k=0

C exp (−βk)(B ∨ η)↑k

Proof. First note that (154) with Definition B.33 and Lemma B.36 implies that for all k ∈ N, we have :

∀t ≥ 0, P(x1 + · · ·+ xk > t |n = k) ≤ C1(B ∨ η)↑k(t,+∞)

We do the computation, for all t ≥ 0:

P(x1 + · · ·+ xn > t) =

∞∑
k=0

P(n = k)P(x1 + · · ·+ xk > t |n = k)

≤
∞∑
k=0

C2 exp (−βk)C1(B ∨ η)↑k(t,+∞).

Remark B.41. Let η be a non-trivial probability distribution on R≥0 i.e, η ̸= δ0. Then, for all B,C, β > 0,
there are constants C0, β0 such that for all t ∈ R, we have:

∞∑
k=0

C exp (−βk)(B ∨ η)↑k(t,+∞) ≤
∞∑
k=0

C0 exp (−β0k)η(t/k,+∞).

Proof. First note that (B ∨ η)↑k(t,+∞) ≤ kη(t/k −B,+∞). Then for all β′′ < β, we have k << exp ((β − β′′)k)
so for C ′′ large enough, we have k exp (−βk) ≤ C ′′ exp (−β′′k) for all k. Take such a β′′ > 0 and such a C ′′.
Now we re-index the sum by taking k′ = 2k and write β′ := β/2 and C ′ = CC ′′, then we have:

∞∑
k=0

C exp (−βk)(B ∨ η)↑k(t,+∞) ≤
∞∑
k=0

CC ′′ exp (−β′′k)η(t/k −B,+∞)

≤
∞∑
k′=0

C ′ exp (−β′k′)η(2t/k′ −B,+∞)

≤
⌈t/B⌉∑
k′=0

C ′ exp (−β′k′)η(t/k′,+∞) +

∞∑
k′=⌈t/B⌉

C ′ exp (−β′k′)

≤
+∞∑
k′=0

C ′ exp (−β′k′)η(t/k′,+∞) +
C ′

β′ exp (−β
′t/B).

Now we use the fact that η ̸= δ0 and take a > 0 such that η(a,+∞) > 0. Then we have for all t ∈ R and all
C0 ≥ 0 and all β0 > 0:

+∞∑
k=0

C0 exp (−β0k)η(t/k,+∞) ≥ C0 exp (−β0⌈t/a⌉)η(a,+∞).

Now for β0 small enough, we have −β0⌈t/a⌉ ≤ β′t/B for all t ≥ 0 and β0 ≤ β′ and for C0 large enough, we
have C0 ≥ 2C ′/β′ and C0 ≥ 2C ′. Then we have:

+∞∑
k′=0

C ′ exp (−β′k′)η(t/k′,+∞) +
C ′

β′ exp (−β
′t/B) ≤

+∞∑
k=0

C0 exp (−β0k)η(t/k,+∞)

∞∑
k=0

C exp (−βk)(B ∨ η)↑k(t,+∞) ≤
+∞∑
k=0

C0 exp (−β0k)η(t/k,+∞).
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