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Let ρf,λ be the residual Galois representation attached to a newform f and a prime
ideal λ in the integer ring of its coefficient field. In this paper, we prove explicit bounds
for the residue characteristic of the prime ideals λ such that ρf,λ is exceptional, that
is reducible, of projective dihedral image, or of projective image isomorphic to A4, S4

or A5. We also develop explicit criteria to check the reducibility of ρf,λ, leading to an
algorithm that computes the exact set of such λ’s. We have implemented this algorithm
in PARI/GP. Along the way, we construct lifts of Katz’ θ operator in characteristic zero,
and we prove a new Sturm bound theorem.
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0. Introduction

0.1. The setup

Let f be a newform of weight k ≥ 2, level N ≥ 1, and character ε : (Z/NZ)× → C×.
We denote by Kf the number field generated by the Fourier coefficients of f , and
by Of its ring of integers. Given a prime number �, let us write ρf,� for the �-adic
representation attached to f by Deligne

ρf,� : GQ → GL2(Kf ⊗ Q�),

where GQ denotes the Galois group of an algebraic closure Q of Q. Choosing a
stable lattice for ρf,�, we can assume it takes values in GL2(Of ⊗ Z�). For a
prime ideal λ of Of , let us denote by Of,λ the completion of Of at λ.
The decomposition Of ⊗ Z� =

∏
λ|� Of,λ, where the product runs over all the

prime ideals in Of above �, gives rise to a Galois representation ρf,λ with val-
ues in GL2(Of,λ). Reducing ρf,λ modulo the maximal ideal of Of,λ and taking the
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semi-simplification, we finally get a residual representation ρf,λ : GQ → GL2(Fλ)
where Fλ denotes the residue field of Of,λ. Notice that ρf,λ does not depend on
the choice of the stable lattice. In this paper, we will be interested in the following
result which has been proved by Ribet in 1985 [29]:

Theorem 0.1 ([29]). For all but finitely many λ the representation ρf,λ is
irreducible. Furthermore, if f is not a form with complex multiplication (see
Definition 5.2), then for all but finitely many λ, the order of the image of
ρf,λ is divisible by the residue characteristic of λ.

For simplicity, we shall say that λ is exceptional if one of the conclusions of
Ribet’s theorem does not hold. Let us denote by Pρf,λ the projectivization of ρf,λ,
that is the composition of ρf,λ with the canonical projection map from GL2(Fλ)
to PGL2(Fλ). According to the classification of the subgroups of PGL2(Fλ) and
PSL2(Fλ) [14, II.8.27], if λ is exceptional, then one of the following is true:

(1) the representation ρf,λ is reducible;
(2) the image of Pρf,λ is a dihedral group D2n with � � n;
(3) the image of Pρf,λ is isomorphic to A4, S4 or A5.

Therefore, Ribet’s theorem is equivalent to show that the above three cases occur
finitely many times (under the assumption that f is non-CM in the second case).

The theorem generalized results of Ribet from 1975 for N = 1 [27], which already
extended those of Serre and Swinnerton-Dyer from 1973 for N = 1 and Kf = Q

[32, 35]. Although the first result of Ribet from 1975 gave an explicit description
of the prime ideals for which the associated representation is reducible, it was no
more the case in 1985. The second part of the theorem was already ineffective in
1975. The first step in making Ribet’s result effective has been accomplished by
Billerey and Dieulefait in 2014 [3]. Assuming the character of f is trivial, they gave
explicit criteria for the residue characteristics � of λ in terms of k and N , for ρf,λ to
be reducible. In the two other cases, they gave explicit bounds for �, in terms of k
and N .

0.2. Statement of results

In this paper, we extend the results of [3] to all newforms of arbitrary weight, level
and character. The argument used to deal with the third case given in [3] can be
applied without modifications to a form with non-trivial character. We recall their
result for the sake of completeness.

Theorem 0.2. If the image of Pρf,λ is isomorphic to A4, S4 or A5, then either
� |N or � ≤ 4k − 3.

We now focus on the reducible and dihedral cases. The main idea to deal with
these cases is to translate them into congruences between modular forms. In the
dihedral case, we get a congruence between twists of f , while in the reducible case
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we deal with congruences involving Eisenstein series. To deduce a bound from a
congruence between two modular forms, the so-called Sturm bounds are usually
used. We generalize them to deal with modular forms of arbitrary weight, level and
character (see Proposition 3.17). In the dihedral projective image case, the bound
we get for the residue characteristic is the following.

Theorem 0.3 (Theorem 5.10). Assume ρf,λ has dihedral projective image. If
N = 1 then we have � ≤ k or � ∈ {2k − 1, 2k − 3}. Else, if N ≥ 2 and f does not
have complex multiplication, then we have

� ≤ (2N
k−1
2 )[Kf :Q] × max

((
k

3
(2 log log(N) + 2.4)

) k−1
2

,

(
5
2
N

k−1
2

))[Kf :Q]

.

This result gives us indeed an upper bound for � in terms of N and k because
[Kf : Q] can be bounded by the dimension of the C-vector space generated by the
newforms of weight k, level N and character ε (see for example [22]).

The most challenging case is when ρf,λ is reducible. In this situation, we gener-
alize the results of [3, Sec. 2] to newforms of arbitrary character. The restriction on
the character in [3] was mainly due to a partial knowledge of the constant term of
Eisenstein series at arbitrary cusps. This computation has been done in full general-
ity in [4], allowing us to generalize their result. The following theorem then follows
from combining this technical result with a detailed study of modular reducible rep-
resentations, hence extending the strategy used for the proof of [3, Theorem 2.7].

Theorem 0.4 (Theorem 4.22). Assume ρf,λ to be reducible. Then one of follow-
ing holds :

(1) � ≤ k + 1;
(2) � |Nϕ(N);
(3) there exists a prime-to-� primitive Dirichlet character η of conductor c0 |N and

such that η(−1) = (−1)k and � divides the algebraic norm of one of the nonzero
following quantities :

(a) pk − η(p) for a prime number p |N ;
(b) the kth Bernoulli number Bk,η attached to η (see Definition 2.1).

The precise study of reducible modular representations used in the proof of the
previous theorem is the main novelty of the present paper. The basic question we
consider is as follows: How to characterize the reducibility of ρf,λ by a finite number
of explicit congruences? We give two answers to this question. A general one that
applies without any restriction on � or f , and, under some assumptions on �, a
second one for which the number of congruences to check is independent from �. A
weaker form of our first main result in this direction is the following.

Theorem 0.5 (Theorem 4.15). The following are equivalent :

(1) ρf,λ is reducible;
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(2) Let L be a place of Q above λ. There exist two primitive Dirichlet characters
ε1, ε2 of conductor c1, c2, respectively, such that c1c2 |N, and two integers m1,

m2 such that 0 ≤ m1 ≤ m2 ≤ � − 2 and χm1+m2
� ε1ε2 ≡ χk−1

� ε (mod L).
Define

k̃ =

{
3 + max(k,m2 + 2m1 + 1) if � |N,
�+ 5 + max(k,m2 + �m1 + 1) if � � N.

For every prime number p ≤ Nek
3

∏
q prime

q|2N

(1 + 1
q ) and not dividing 2�, we have

• p � N and ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L);
• or, p |N and ap(f) ≡ pm1bp (mod L) for some bp in the set

{0, ε1(p), pm2−m1ε2(p)}.

When this holds, we moreover have ρf,λ
∼= χm1

� ε1 ⊕ χm2
� ε2.

Notice that this result applies with no assumption on f and �. In particular,
it can be used to check the reducibility of ρf,λ for any given λ, including the ones
which residue characteristic is small compared to the weight, or divides the level.
Such restrictions appear for instance in the work of Anni [1, Algorithm 7.2.4], where
the author develops a different, bottom-up approach, toward these questions in the
context of modular forms à la Katz.

In the previous statement, the number of congruences to be satisfied in order to
prove the reducibility of ρf,λ depends not only on N , k and ε, but also on �. Under
some assumptions on �, we have been able to remove this dependency in the bound.
A weaker form of our second main result can be stated as follows.

Theorem 0.6 (Theorem 4.20). Assume � > k + 1 and � � Nϕ(N), where ϕ

denotes the Euler totient function. The following are equivalent :

(1) ρf,λ is reducible.
(2) Let L be a place of Q above λ. There exist two primitive Dirichlet characters

ε1, ε2 of conductor c1, c2 respectively, such that c1c2 |N, and ε1ε2 = ε. For all
odd primes p ≤ Nk

3

∏
q prime

q|2N

(1 + 1
q ), we have

• p � N and ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L);
• p |N and ap(f) ≡ bp (mod L) for some bp ∈ {0, ε1(p), pk−1ε2(p)}.

When this holds, we moreover have ρf,λ
∼= ε1 ⊕ χk−1

� ε2.

We stress the fact that according to these latter two results, proving the
reducibility of ρf,λ requires checking almost Nk2 log log(N) congruences (and
even Nk log log(N) for the primes � satisfying the assumptions � > k + 1 and
� � Nϕ(N)). Notice that the log log(N) part comes from the upper bound we prove
in Lemma 3.22.
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To achieve such bound, we extensively use the local description of ρf,λ at the
bad prime numbers (i.e. the prime numbers dividing N), together with generalized
Sturm bounds theorems and an appropriate use of degeneracy maps between mod-
ular forms spaces of various levels. Having a sharp bound is especially important
from a computational point of view. Indeed, those results also provide us with an
algorithm that explicitly computes the exact set of λ such that ρf,λ is reducible.
We have implemented such an algorithm in PARI/GP [36].

0.3. Organization of the paper

In Sec. 1, we collect various results on the local description of residual modular
representations. Section 2 is devoted to recall basic facts about Dirichlet characters
and Eisenstein series. In Sec. 3, we develop various tools that will play a central
role in the proof of the main results. In Sec. 3.1, we construct the so-called theta
operators in characteristic zero, that we then use to generalize Sturm bounds results
in Sec. 3.2. In Sec. 3.3, we introduce various other operators acting on modular forms
spaces that allow us to modify some Fourier coefficients of a given form. The next
two sections are devoted to prove the results involving reducible residual modular
representations and dihedral representations, respectively. Finally, we explain in the
last section how to translate our theoretic results on reducibility into an algorithm
that takes a modular form as input, and outputs the exact list of prime ideals λ such
that ρf,λ is reducible. We then illustrate this algorithm on numerical examples.

0.4. General notations

In the whole paper, for two positive integers k and N , and a Dirichlet character ε
modulo N , the notations Mk(N, ε), Sk(N, ε) and Snew

k (N, ε) stand for the complex
vector spaces of modular forms, cuspidal modular forms, and new modular forms
of weight k, level N , and character ε, respectively. We also denote by M(N) the
graded algebra of modular forms of level N . For any modular form g in M(N), we
always write

∑∞
n=0 an(g)qn for its q-expansion at infinity, with q = e2iπz and z in

the complex upper-half plane.

1. Background on Newforms and Residual Modular Galois
Representations

We fix for this section a newform f of weight k ≥ 2, level N ≥ 1, and character ε.
Let � be a prime number and let λ be a prime ideal of Of above �. We first recall
a result on the expression of the pth coefficient of f for a prime p dividing N that
we will be using intensively.

Proposition 1.1 ([24, Theorem 4.6.17]). Let p be a prime dividing N . Write c

for the conductor of ε.

(1) If vp(N) = vp(c), then |ap(f)|2 = pk−1.
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(2) If vp(N) = 1 and vp(c) = 0, then ap(f)2 = ε′p(p)pk−2, where ε′p is the prime-to-p
component of ε (in particular ε′p(p) 
= 0).

(3) If vp(N) ≥ 2 and vp(N) > vp(c), then ap(f) = 0.

We now recall some results about the shape of ρf,λ restricted to a decomposition
subgroup. In the following, given a prime number p we denote byGp a decomposition
subgroup of GQ at p, and by Ip its inertia subgroup. For some λ-integer x, μp(x)
stands for the unique unramified character of Gp sending a Frobenius element at p
to the reduction of x modulo λ. We will simply write μ(x) when no confusion on p
can arise. We finally write χ� for the cyclotomic character modulo �.

We begin by the local description of ρf,λ at � that has been established by
Deligne and Fontaine. Their result is the following.

Proposition 1.2 (Deligne–Fontaine, [13, Theorems 2.5 and 2.6]). Assume
2 ≤ k ≤ �+ 1 and � � N .

• If f is ordinary at λ (that is if a�(f) 
≡ 0 (mod λ)), then ρf,λ|G�
is reducible, and

we have

ρf,λ|G�
∼=

⎛⎜⎜⎝χk−1
� μ

(
ε(�)
a�(f)

)
	

0 μ(a�(f))

⎞⎟⎟⎠.
• If not, then ρf,λ|G�

is irreducible, and we have

ρf,λ|I�
∼=
(
ψk−1 0

0 ψ′k−1

)
.

Here {ψ, ψ′} = {ψ, ψ�} stands for the set of fundamental characters of level 2 (see
[13, 2.4]).

For the primes p different from � and dividing N , the shape of ρf,λ|Gp
has been

computed by Langlands and compiled in [20, Proposition 2.8].

Proposition 1.3. Let p 
= � be a prime dividing N and let c be the conductor of ε.
We denote by vp the p-adic valuation.

• If vp(N) = 1 and vp(c) = 0, then we have

ρf,λ|Gp
∼=
(
μ(ap(f))χ� 	

0 μ(ap(f))

)
.

• If vp(N) = vp(c), then ap(f) is a unit in Of,λ and we have

ρf,λ|Gp
∼= μ(ap(f)) ⊕ μ(ap(f)−1)χk−1

� ε|Gp
,

where ε|Gp
stands for the reduction modulo λ of the restriction of ε to Gp.
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Proof. From the first case of Proposition 1.1, we have |ap(f)|2 = pk−1 in the second
case. Therefore, ap(f) is indeed invertible in Of,λ because p 
= �.

The only thing to prove is that the hypothesis of [20, Proposition 2.8] holds in
our cases, namely that f is p-primitive in the terminology of [20, Definition 2.7]. To
do so, we use [21, Theorem]. We recall a direct consequence of this result: Define
u = min(� vp(N)

2 �, vp(N) − vp(c)). If u = 0, then f is p-primitive. We easily check
that in our two cases we have u = 0.

Since the work of Carayol [5, Théorème (A)], it is well known that the value of
the prime-to-� part of the Artin conductor of ρf,λ is equal to the prime-to-� part
of N . The study of the behavior of the Artin conductor after reduction (i.e. the
one of ρf,λ) has then been established independently by Carayol [6] and Livné [19].
Here is their result.

Proposition 1.4 (Carayol–Livné). Let N(ρf,λ) be the prime-to-� part of the
Artin conductor of ρf,λ. We then have

N(ρf,λ) |N.
Moreover, write ep := vp(N) − vp(N(ρf,λ)) for a prime p 
= �. If ep > 0, then we
have vp(N) − vp(N(ρf,λ)) ∈ {1, 2}.

2. Background on Dirichlet Characters and Eisenstein Series

2.1. Generalized Bernoulli numbers and Gauß sums

Let ε be a primitive Dirichlet character of conductor c. We recall the definition and
properties of the Gauß sums and generalized Bernoulli numbers attached to ε.

Definition 2.1. The Bernoulli numbers (Bm,ε)m≥0 attached to ε are defined by
the following generating series:

c∑
n=1

ε(n)
tent

ect − 1
=

∞∑
m=0

Bm,ε
tm

m!
.

In particular, when ε is odd, we have B1,ε = 1
c

∑c−1
n=1 nε(n), and when ε is both

even and non-trivial, we have B2,ε = 1
c

∑c−1
n=1 n

2ε(n).

Remark 2.2. If ε = 1 is the trivial character modulo 1, we get the classical
Bernoulli numbers except when m = 1, in which case we have B1,1 = 1

2 = −B1.

We state below the main properties of the Bernoulli numbers. First, we exactly
know when the Bernoulli numbers vanish (see [24, Theorem 3.3.4] for a proof).

Proposition 2.3. We have Bm,ε = 0 if and only if ε(−1) 
= (−1)m.

Second, the behavior of the Bernoulli numbers after reduction modulo a prime
ideal has been studied by Van-Staudt [33] in the case ε = 1, and by Carlitz [7, The-
orem 1] in the case ε 
= 1. We summarize their results in the following proposition.
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Proposition 2.4. Let m be a positive integer.

(1) Let � be a prime number. If � − 1 divides m, then we have the congruence
�Bm,1 ≡ −1 (mod �). Otherwise, Bm,1

m is �-integral and its reduction modulo
� only depends on m modulo � − 1. In particular, the denominator of Bm,1 is
equal to

∏
�−1|m
� prime

�.

(2) For ε 
= 1, write Bm,ε

m = ND−1, with N and D two coprime ideals of Z[ε],
the ring spanned by the image of ε. If the conductor of ε admits at least two
distinct prime factors, then D = 1. Otherwise, if the conductor of ε is a power
of a prime number �, then D contains only prime ideals above �.

Another classical quantity attached to Dirichlet characters is the Gauß sum. We
recall its definition and properties below.

Definition 2.5. The Gauß sum attached to ε is

W (ε) =
c∑

n=1

ε(n)e
2iπn

c .

One can find the following result in [3, Lemma 2.1].

Proposition 2.6. The prime divisors of the algebraic norm of W (ε) are those
of c.

2.2. Teichmüller lifts

We present here the behavior of roots of unity after reduction modulo L.

Lemma 2.7. Let n be a positive integer and let ζ be a primitive nth root of unity
in Q. Let � be a prime number and let L be a place of Q above �. We have ζ ≡ 1
(mod L) if and only if n is a power of �. In particular, a Dirichlet character is
trivial modulo L if and only if it has order a power of �.

Proof. According to [9, Proposition 3.5.4], the algebraic norm of 1 − ζ over Q(ζ)
is equal to ⎧⎪⎪⎨⎪⎪⎩

0 if n = 1;

q if n = qr with q prime and r ≥ 1;

1 otherwise.

Thus, if n is not an �-power, then � does not divide the norm of ζ − 1 and we have
ζ 
≡ 1 (mod L). Assume n = �r, r ≥ 1. We then have

�Z[ζ] = (1 − ζ)�r−1(�−1)Z[ζ].

Thus, the only prime ideal above � in Z[ζ] is (1−ζ)Z[ζ], and we therefore have ζ ≡ 1
(mod L).
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For the second part of the lemma, let ε be a Dirichlet character modulo N .
From above, ε is trivial modulo L if and only if ε(x) is a root of unity of order a
power of � for every x ∈ (Z/NZ)×. This can happen if and only if ε has order a
power of �.

Lemma 2.7 implies that the kernel of the reduction modulo L from the group of
all roots of unity to F

×
� , is the subgroup of primitive roots of unity of order a power

of �. In particular, the restriction of this map to the subgroup of roots of unity of
order prime to � is injective. Moreover, because the subgroup of roots of unity of
order �n − 1 maps to F×

�n , it is onto and therefore an isomorphism. The inverse map

TL : F
×
� → {ζ ∈ C×, gcd(�, ord(ζ)) = 1},

is the so-called Teichmüller lift with respect to the place L. It will allow us to lift
multiplicatively characters modulo L to Dirichlet characters of prime-to-� order.
Moreover, the Dirichlet characters that arise this way are exactly the ones that
have the same conductor as a Dirichlet character and as a character modulo L.

2.3. Eisenstein series

Let k be a positive integer and let ε1, ε2 be two Dirichlet characters modulo c1 and
c2, respectively, such that ε1ε2(−1) = (−1)k. Moreover, if k = 2 and ε1, ε2 are both
trivial, then assume c1 = 1 and c2 is a prime number, otherwise, assume ε1 and ε2
are primitive. For a complex number z in the complex upper-half plane H, consider
the following q-expansion:

Eε1,ε2
k (z) := C +

∞∑
n=1

σε1,ε2
k−1 (n)qn, (2.1)

with σε1,ε2
r (n) =

∑
0<d|n d

rε1(n
d )ε2(d) for any r ≥ 0 and

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

∣∣∣∣∣ if k ≥ 2 and ε1 
= 1,

or if k = 1 and ε1, ε2 are both non-trivial;

1
24

(c2 − 1) if k = 2 and ε1, ε2 both trivial;

−Bk,ε1ε2

2k
otherwise.

The following result is proved in [24, Theorem 4.7.1] and [24, (4.7.16)].

Proposition 2.8. The q-series Eε1,ε2
k defines a modular form of weight k, level

c1c2 and character ε1ε2. It is a normalized eigenform for all the Hecke operators at
level c1c2.

For ε1 = ε2 = 1, the definition of the series E1,1
k agrees with the definition

of the classical Eisenstein series of weight k. We simply write it Ek in this case.
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For k = 2, we denote by E2 the q-series

E2(z) = − 1
24

+
∞∑

n=1

⎛⎝ ∑
0<d|n

d

⎞⎠ qn.

Note that this formula defines a holomorphic function on H, but E2 is not
modular.

In the case k ≥ 2 and ε1, ε2 primitive, the behavior of the constant coefficient
of Eε1,ε2

k at a cusp of Γ1(N) has been computed in [4, Proposition 4]. It states the
following:

Proposition 2.9. Assume k ≥ 2 and ε1, ε2 are primitive. Let M be a positive
integer and let γ =

(
u β
v δ

)
∈ SL2(Z). Put ṽ := v

gcd(v,M) and M̃ := M
gcd(v,M) . We

define

Υε1,ε2
k (γ,M) := lim

Im(z)→+∞
(Eε1,ε2

k (M ·)|kγ)(z),

where we denote by |k the classical slash action of weight k.
If c2 � ṽ then Υε1,ε2

k (γ,M) = 0. Otherwise, if c2 | ṽ then Υε1,ε2
k (γ,M) 
= 0 ⇔

gcd(c1, ev
c2

) = 1. In this case, we moreover have

Υε1,ε2
k (γ,M) = −ε−1

2 (M̃u)ε1

(
− ṽ

c2

)
W ((ε1ε−1

2 )0)
W (ε−1

2 )

×
Bk,(ε−1

1 ε2)0

2k

(
c2

M̃c0

)k ∏
p|c1c2

(
1 − (ε1ε−1

2 )0(p)
pk

)
,

where χ0 denotes the primitive character associated to a Dirichlet character χ, and
c0 the conductor of ε−1

1 ε2.

The proof of [4] is only given in the cases k ≥ 3, and k = 2 and ε1, ε2 non-trivial.
We give a proof of the result in the case k = 2, ε1 = ε2 = 1, based on the techniques
used in [4].

Proof. As in [4, §1.3], we write for Re(ε) > 0 and z ∈ H,

G2,ε(z) :=
∑

(m,n)∈Z2\{(0,0)}

1
(mz + n)2|mz + n|2ε

.

By [24, Corollary 7.2.10 and Theorem 7.2.12], the function ε �→ G2,ε(z) is holomor-
phically continued to Re(ε) > − 1

2 and we have

lim
ε→0

G2,ε(z) = −8π2E2(z) − π

Im(z)
.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

ap
tis

te
 P

ea
uc

el
le

 o
n 

12
/2

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 23, 2021 11:54 WSPC/S1793-0421 203-IJNT 2250060

Explicit small image theorems for residual modular representations 11

Now, because Im(M uz+β
vz+δ ) = MIm(z)

|vz+δ|2 , we get that

Υ1,1
2 (γ,M)

= lim
Im(z)→+∞

lim
ε→0

⎛⎜⎜⎝− 1
8π2

G2,ε(M ·)|2γ(z) +
1

(vz + δ)2
1

8πIm
(
M
uz + β

vz + δ

)
⎞⎟⎟⎠

= − 1
8π2

lim
Im(z)→+∞

lim
ε→0

G2,ε(M ·)|2γ(z) + lim
Im(z)→+∞

|vz + δ|2
8πM(vz + δ)2Im(z)

= − 1
8π2

lim
Im(z)→+∞

lim
ε→0

G2,ε(M ·)|2γ(z).

From this identity the proof of [4] still applies. Let us write z2,ε := z2|z|2ε. The
function G2,ε(M ·)|2γ(z) writes as Tε(z) +Rε(z), with

Tε(z) =
∑

mMu+nv=0
(m,n)∈Z2\{(0,0)}

1
(mMβ + nδ)2,ε

and

Rε(z) =
∑

mMu+nv �=0
(m,n)∈Z2\{(0,0)}

1
((mMu+ nv)z + (mMβ + nδ))2,ε

.

The function Tε is independent of z and the series obtained by setting ε to 0 is
absolutely convergent. Therefore, we have

lim
Im(z)→+∞

lim
ε→0

Tε(z) =
∑

mMu+nv=0
(m,n)∈Z2\{(0,0)}

1
(mMβ + nδ)2

.

Finally, writing n in Rε(z) as Mn′ + ρ, with ρ between 0 and M − 1, we have

Rε(z) =
∑

(m,n′)∈Z2

∑
M(mu+n′v)+vρ�=0

0≤ρ≤M−1

1
(z(M(mu+ n′v) + vρ) +M(mβ + n′δ) + ρδ)2,ε

=
M−1∑
ρ=0

∑
Mp+vρ�=0
(p,q)∈Z2

1
(z(Mp+ vρ) +Mq + δρ)2,ε

.

The last equation is justified by the fact that (mu + n′v,mβ + n′δ) = (m,n′)γ.
Applying [4, Lemma 9] with a1 = vρ, a2 = δρ and D = M , we get

lim
Im(z)→+∞

lim
ε→0

Rε(z) = 0.

Lemma 6 of [4] therefore still applies in the case (k, ε1, ε2) = (2,1,1) and one easily
checks that the proof of Lemma 7 and Proposition 4 of [4] only uses the fact that
ε1 and ε2 are Dirichlet characters satisfying ε1ε2(−1) = (−1)k.
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3. Preliminary Results on Modular Forms

3.1. Theta operators

We fix for this paragraph a place L of Q. Consider the operator θ acting on the
space of holomorphic functions on H by 1

2iπ
d
dz = q d

dq . On q-expansions, this operator
maps

∑
n≥0 anq

n to
∑

n≥0 nanq
n. It is well known that if g is a modular form, then

θg is no longer modular (see for example [37, Chap. 5]). However, Swinnerton–Dyer
and Serre [35, §3] have proved that for � ≥ 5 and a level 1 modular form g with L-
integral Fourier coefficients, one can construct a level 1 form with L-integral Fourier
coefficients and which Fourier coefficients are congruent modulo L to the one of θg.
More generally, Katz [16] has proved using his geometric theory of modular forms
that there is an operator on the space of modular forms with coefficients in an
algebraic closure of F�, which action on the q-expansions is the same as the one
of θ. For our purposes, the main drawbacks of this latter approach is that Katz’
modular forms modulo L do not always lift in characteristic 0, and have by essence
a prime-to-� level. To remedy this, we will construct for any given level N ≥ 1 and
place L, an operator θ̃ acting on M(N), stabilizing the subspace of modular forms
with L-integral Fourier coefficients, and such that for every modular form g with
L-integral coefficients we have

θ̃g ≡ θg (mod L),

meaning that an(θ̃g) and nan(g) are congruent modulo L for all n.
The main tool we will use in the construction of θ̃ is the Rankin–Cohen bracket,

introduced by Cohen in [8, Corollary 7.2]. We recall its definition and properties in
what follows.

Proposition 3.1 (Rankin–Cohen bracket). Let g and h be two modular forms
of weight kg and kh, level Ng and Nh, and character εg and εh, respectively. The
Rankin–Cohen bracket of g and h is

[g, h] := kggθh− khhθg.

It is a modular form of weight kg + kh + 2, level lcm(Ng, Nh) and character εgεh.
Moreover, if both g and h have their Fourier coefficients in a ring R, then so
has [g, h].

Let N be a positive integer. For a prime number p, we denote by TN
p the pth

Hecke operator acting on M(N). Recall that a modular form g ∈ Mk(N, ε) is an
eigenform for TN

p modulo L with eigenvalue ap ∈ F� in the sense of [11, §6(b)] if g
has L-integral Fourier coefficients, and if TN

p g is congruent to apg modulo L. If g is
moreover normalized modulo L, that is if a1(g) ≡ 1 (mod L), then g is an eigenform
for TN

p modulo L if and only if for all integer n ≥ 0 prime to p, and all α ≥ 1, we
have {

anpα(g) ≡ an(g)apα(g) (mod L);

apα+1(g) ≡ ap(g)apα(g) − pk−1ε(p)apα−1(g) (mod L).
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The eigenvalue is then moreover the reduction of ap(g) modulo L. The following
lemma is the central result that shows how to construct an operator θ̃ satisfying
the properties described above, using Rankin–Cohen brackets.

Lemma 3.2. Let kA be a positive integer, and let χA be a Dirichlet character
modulo N . Let A ∈ MkA(N,χA) be such that A and 1

kA
θA have L-integral Fourier

coefficients and satisfy

A ≡ 1 (mod L),
1
kA
θA ≡ 0 (mod L), and χA ≡ χ−kA

� (mod L).

Then, we have a well-defined operator θ̃A on M(N) given by θ̃Ag = − 1
kA

[g,A]. For
every g ∈ Mk(N, ε) with L-integral Fourier coefficients, this operator satisfies the
following properties :

• θ̃Ag ∈ Mk+kA+2(N, εχA) and has L-integral Fourier coefficients;
• θ̃Ag ≡ θg (mod L);
• Moreover, if for some prime number p, g is a normalized eigenform for TN

p modulo
L then θ̃Ag is also a normalized eigenform for TN

p modulo L, with eigenvalue
pap(g).

In the following, when there will be no confusion on the form A, we shall write θ̃
for the operator θ̃A.

Proof. According to Proposition 3.1 above, this is clear that θ̃A is a well-defined
operator and that θ̃Ag has the announced weight, level, and character. Furthermore,
we have θ̃Ag = − k

kA
gθA+Aθg. Therefore, from the assumption, if g has L-integral

Fourier coefficients, then so does θ̃Ag and we have

θ̃Ag = Aθg − k

kA
gθA ≡ θg (mod L).

Assume g is a normalized eigenform for TN
p modulo L. Then, θ̃Ag is also normalized

modulo L because we have a1(θ̃Ag) ≡ 1 × a1(g) ≡ 1 (mod L). Let n ≥ 0 be prime
to p, and α ≥ 1. We have

anpα(θ̃Ag) ≡ npαanpα(g) (mod L)

≡ (nan(g))(pαapα(g)) (mod L)

≡ an(θ̃Ag)apα(θ̃Ag) (mod L)

and

apα+1(θ̃Ag) ≡ pα+1apα+1(g) (mod L)

≡ pα+1(ap(g)apα(g) − pk−1ε(p)apα−1(g)) (mod L)

≡ ap(θ̃Ag)apα(θ̃Ag) − pk+1ε(p)apα−1(θ̃Ag) (mod L).
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If p |N�, we have pk+1ε(p) ≡ 0 ≡ p(k+kA+2)−1εχA(p) (mod L). Otherwise, we
have pkAχA(p) ≡ 1 (mod L) by assumption, and we again have pk+1ε(p) ≡
p(k+kA+2)−1εχA(p) (mod L). As desired, we get

apα+1(θ̃Ag) ≡ ap(θ̃Ag)apα(θ̃Ag) − p(k+kA+2)−1εχA(p)apα−1(θ̃Ag) (mod L),

and the form θ̃Ag is thus a normalized eigenform modulo L.

Remark 3.3. When � does not divide N , the reduction of A modulo L is the
so-called Katz’ Hasse invariant.

The rest of this paragraph is devoted to construct, for each level N and place L,
a form A that satisfies the hypotheses of Lemma 3.2 that we will constantly use.
Among all possible forms, the ones presented in Table 1 are those we found with
the smallest weight. Notice that if we have a form A of level M satisfying the
hypotheses of Lemma 3.2 for a given place L, this form also satisfies the hypotheses
of Lemma 3.2 at the multiple-of-M levels. We will use this fact to consider the
smallest set of level possible.

3.1.1. Theta operators in characteristic greater than 3

The following proposition was already known to Swinnerton-Dyer in [35,
Theorem 2].

Proposition 3.4. Assume � ≥ 5. The form A := −2�E�−1 ∈ M�−1(1,1) satisfies
the hypotheses of Lemma 3.2 for any level N .

Proof. Since � ≥ 5, A is well defined and the constant coefficient of A is equal
to �B�−1,1

�−1 . From Proposition 2.4, it is L-integral and congruent to 1 modulo L.
Moreover, because E�−1 has integral coefficients, away from the constant one, it fol-
lows thatA and − 1

kA
θA have L-integral Fourier coefficients and thatA ≡ 1 (mod L)

and 1
kA
θA ≡ 0 (mod L). Finally, we have χ−kA

� = χ1−�
� ≡ 1 (mod L).

If the level N is divisible by �, the situation is in fact much more pleasant for us,
in the sense that we can find a form with kA = 1. We find a record of the following
fact in [30, (2.1) Theorem].

Proposition 3.5. Assume � ≥ 5 and � |N . Let χL be the Teichmüller lift of χ�

with respect to the place L, viewed as a primitive character Dirichlet modulo �. The

form A := 2�E1,χ−1
L

1 ∈ M1(�, χ−1
L ) satisfies the hypotheses of Lemma 3.2.

Proof. The form A is well defined because χ−1
L is an odd character. Indeed, we

have χ−1
L (−1) ≡ χ−1

� (−1) ≡ −1 (mod L), and because � is odd, this lifts to
χ−1

L (−1) = −1. The constant term of A is equal to −�B1,χ−1
L

= −∑�−1
i=1 iχ

−1
L (i)

which is L-integral. Therefore, because χL induces the identity modulo L, this
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coefficient is congruent to 1 modulo L, and because E
1,χ−1

L
1 has integral coeffi-

cients away from the constant one, A and 1
kA
θA have L-integral Fourier coeffi-

cients. Moreover, we also get A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, by

definition we have χ−kA

� = χ−1
� ≡ χA (mod L). Thus, A satisfies the hypotheses of

Lemma 3.2.

This finishes the case � ≥ 5. For � ≤ 3, the two previous constructions do not
always give well-defined modular forms. We present in the next two paragraphs
specific constructions in the cases � = 2 and � = 3.

3.1.2. Theta operators in characteristic 2

For � = 2, the most favorable case is when 4 |N . The following construction is very
analogous to the one of Proposition 3.5.

Proposition 3.6. Assume � = 2 and N is divisible by 4. Let χ4 be the only non-
trivial Dirichlet character modulo 4. The form A := 4E1,χ4

1 ∈ M1(4, χ4) satisfies
the hypotheses of Lemma 3.2.

Proof. The form A is well defined because χ4 is odd. Moreover, the constant
coefficient of A is equal to −2B1,χ4 = − 1

2 (1χ4(1) + 3χ4(3)) = 1. Therefore, the
constant coefficient of A is equal to 1 and because E1,χ4

1 has integral coefficients
away from the constant one, A and 1

kA
θA have L-integral coefficients. Moreover, we

also get A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, it is straightforward that

χ4 is trivial modulo L, as is the cyclotomic character modulo 2.

The next favorable case is when N admits at least one odd prime divisor. The
following result was inspired by [23, Appendix A]. As it has never been published,
we prove it for the sake of completeness.

Proposition 3.7. Assume � = 2 and N has an odd prime divisor. Let p be the
least odd prime divisor of N, and let χN be a Dirichlet character modulo p of order
2m, the greatest power of 2 dividing p−1. Let ζ be any 2mth root of unity. The form
A := (ζ − 1)E1,χN

1 ∈ M1(p, χN ) satisfies the hypotheses of Lemma 3.2.

Proof. Let g be an integer generating (Z/pZ)× and such that χN (g) = ζ. Because
ζ is a root of unity of order 2m, we have χN (−1) = χN (g)

p−1
2 = −1. Therefore, χN

is odd and A is well defined and its constant coefficient is equal to

1 − ζ

2
B1,χN =

1 − ζ

2p

p−1∑
a=1

aχN (a).

For i between 0 and 2m−1 − 1, we have χN(gi) = ζi, and

χN (−gi) = −ζi = ζi+2m−1
= χN (gi+2m−1

).
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Therefore, the set {±gi, 0 ≤ i ≤ 2m−1 − 1} is a set of representatives of
(Z/pZ)×/Ker(χN ). For an integer x, we write [x] for the only integer between 0
and p− 1 that is congruent to x modulo p. We then have

1 − ζ

2
B1,χN =

1 − ζ

2p

∑
e∈Ker(χN )

2m−1−1∑
i=0

([egi]χN (gi) + [−egi]χN (−gi))

=
1 − ζ

2p

2m−1−1∑
i=0

∑
e∈Ker(χN )

([egi]ζi − (p− [egi])ζi)

=
1 − ζ

2p

2m−1∑
i=0

ζi

⎛⎝−p · #Ker(χN ) + 2
∑

e∈Ker(χN )

[egi]

⎞⎠
= −p− 1

2m
+ (1 − ζ)

⎛⎝1
p

2m−1−1∑
i=0

ζi
∑

e∈Ker(χN )

[egi]

⎞⎠.
The term inside the parentheses is L-integral and p−1

2m is odd. Moreover, the only
prime ideal above 2 in the ring OQ(ζ) = Z[ζ] is (1 − ζ)Z[ζ]. Therefore, we have
1−ζ
2 B1,χN ≡ 1 (mod L). Because the non-constant Fourier coefficients of E1,χN

1 are
integral, A and 1

kA
θA have L-integral coefficients, and we get A ≡ 1 (mod L) and

1
kA
θA ≡ 0 (mod L). Finally, from Lemma 2.7, because χN has order a power of 2,

it is trivial modulo L as well as the cyclotomic character modulo 2. This finishes
the proof.

We are left with the cases N = 1 and N = 2. There is no modular form of
weight 1 of these levels, so we have to look at bigger weights in order to construct
the form A. For level 2, we show that weight 2 suffices.

Proposition 3.8. Assume that � = 2 and N = 2. Let 1(2) be the trivial character
modulo 2. The modular form A := 24E

1,1(2)
2 ∈ M2(2,1(2)) satisfies the hypotheses

of Lemma 3.2.

Proof. The constant coefficient of A is equal to 1 and E
1,1(2)
2 has integral coef-

ficients away from the constant one. Therefore, the forms A and 1
kA
θA have both

L-integral Fourier coefficients, and we haveA ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L).

Finally, the character of A is trivial modulo L as well as the cyclotomic character
modulo 2.

For N = 1, the weight needs to be at least 4, and we have the following result.

Proposition 3.9. Assume � = 2 and N = 1. The form A := 240E4 ∈ M4(1,1)
satisfies the hypotheses of Lemma 3.2.
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Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier
coefficients of E4 are integers. Therefore, A and 1

kA
θA have integer coefficients, and

we have A ≡ 1 (mod L), and 1
kA
θA ≡ 0 (mod L). The character of A is again

trivial, as well as the cyclotomic character modulo 2.

3.1.3. Theta operators in characteristic 3

For N divisible by 3, the form of Proposition 3.5 is still appropriate.

Proposition 3.10. Assume � = 3 and N is divisible by 3. Let χ3 be the unique non-
trivial Dirichlet character modulo 3. The form A := 6E1,χ3

1 ∈ M1(3, χ3) satisfies
the hypotheses of Lemma 3.2.

Proof. We have χ3 ≡ χ−1
� (mod L) and the proof is exactly the same as the one

of Proposition 3.5.

For the levels containing a prime divisor congruent to 2 modulo 3, we can still
consider an Eisenstein series for the form A.

Proposition 3.11. Assume � = 3 and N has a prime divisor congruent to 2 mod-
ulo 3. Let p be the least such prime divisor, and let 1(p) be the trivial Dirichlet
character modulo p. The form A := 24

p−1E
1,1(p)
2 ∈ M2(p,1(p)) satisfies the hypothe-

ses of Lemma 3.2.

Proof. The constant coefficient of A is equal to 1. Moreover, E1,1(p)
2 has integral

Fourier coefficients away from the constant one. Because, p is congruent to 2 mod-
ulo 3, 24

p−1 is 0 modulo L. Therefore,A and 1
kA
θA have L-integral Fourier coefficients,

and we have A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, the character of A is

trivial, and we have χ−2
3 = 1.

The remaining cases are the levels containing only prime factors that are con-
gruent to 1 modulo 3. For the levels divisible by a prime p congruent to 4 modulo
9 (that is if 3 divides p− 1 only once), we found the following construction.

Proposition 3.12. Assume � = 3 and N has a prime divisor congruent to 4 modulo
9. Let p be the least such prime divisor of N, and let χN be a Dirichlet character
modulo p of order 3. The modular form A := 3

p−1 (E1,χN

2 − EχN ,1
2 ) ∈ M2(p, χN)

satisfies the hypotheses of Lemma 3.2.

Proof. First notice that χN indeed exists as (Z/pZ)× is a cyclic group of order
p−1 that is divisible by 3. Moreover, χN has order 3. Therefore, it is trivial modulo
L and even, and the two Eisenstein series E1,χN

2 and EχN ,1
2 exist.
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The constant coefficient of A is equal to 3
4(1−p)B2,χN which is L-integral by

Proposition 2.4. We have

3
4(1 − p)

B2,χN =
3

4p(1 − p)

p−1∑
a=1

a2χN (a)

≡ 3
1 − p

p−1∑
a=1

a2 (mod L)

≡ 3
1 − p

p(p− 1)(2p− 1)
6

(mod L)

≡ 1 (mod L).

Therefore, the constant coefficient of A is 1 modulo L, and because the non-constant
Fourier coefficients of E1,χN

2 and EχN ,1
2 are integral, A and 1

kA
θA have L-integral

coefficients. The weight kA is invertible modulo 3, it consequently suffices to prove
that A ≡ 1 (mod L) to conclude.

The forms E1,χN

2 and EχN ,1
2 are both normalized eigenforms for all the Hecke

operators at level p, and have the same weight and character. Thus, it is enough
to prove that ar(E

1,χN

2 ) ≡ ar(E
χN ,1
2 ) (mod L) for all prime numbers r. This last

congruence is straightforward, because we have

ar(E
1,χN

2 ) = 1 + rχN (r) ≡ χN (r) + r = ar(E
χN ,1
2 ) (mod L).

It only remains the levels containing only primes congruent to 1 modulo 9. We
found no general way to express the modular form A as form of weight 2. Using
computations in PARI/GP, we look for a modular form of level p ≡ 1 (mod 9)
satisfying the hypotheses of Lemma 3.2 for p up to 1000. We always find a form
except for p ∈ {307, 379, 433, 487, 523, 613, 631, 757, 811, 829, 991}, i.e. we found 16
forms out of the 27 we were looking for. It can be proved that such a modular
form cannot be expressed as a linear combination of forms in the Eisenstein space,
meaning that one has necessarily to consider cusp forms to construct A. To fill this
gap anyway, we can still consider the modular form A := 240E4 as in the case of
Proposition 3.9.

Proposition 3.13. Assume � = 3, and N contains only prime factors congruent to
1 modulo 9. The modular form A := 240E4 satisfies the hypotheses of Lemma 3.2.

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier
coefficients of E4 are integral. Therefore, the forms A and 1

kA
θA have both L-

integral Fourier coefficients, and we have A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L).

Finally, the character of A is trivial, and we have χ−kA

� = χ−4
� ≡ 1 (mod L).

We have compiled in Table 1 the definition of A depending on � and N . When
multiple definitions were possible, we have taken the one with the least weight
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Table 1. Various modular forms A used to construct the operator θ̃

� ≥ 5 Form A Proposition

� � N −2�E�−1 3.4

� |N 2�E
1,χ−1

L
1 3.5

� = 2 Form A Proposition

4 |N 4E1,χ4
1 3.6

N ≥ 3 and 4 � N (ζ − 1)E
1,χN
1 3.7

N = 2 24E
1,1(2)
2 3.8

N = 1 240E4 3.9

� = 3 Form A Proposition

� |N 6E1,χ3
1 3.10

� � N and N has a prime 24
p−1

E
1,1(p)
2

3.11
factor q ≡ 2 (mod 3)

∀ d |N , d ≡ 1 (mod 3) and N has 3
p−1

(E1,χN

2 − EχN ,1
2 ) 3.12

a prime factor p ≡ 4 (mod 9)

∀ p |N , p ≡ 1 (mod 9) 240E4 3.13

among all the possible forms. The third column corresponds to the proposition
where the properties of the form have been proved.

Looking at the various results above, we state the following definition that will
be useful in the proofs of the next paragraph.

Definition 3.14. We say a pair (�,N) is bad, if we have one of the following.

• � = 2 and N = 1;
• � = 3 and all the prime factors of N are congruent to 1 modulo 9.

Remark 3.15. When (�,N) is bad, the modular form −504E6 is also congruent
to 1 modulo L. Its weight is greater than the one of Table 1, but we will have to
use it in the proof of Proposition 3.17 in the next section.

3.2. Sturm bounds

A Sturm bound for a space of modular forms is an upper bound on the number
of leading coefficients that characterize a form of this space. Equivalently, it is the
maximal number of zero leading coefficients that a nonzero form of this space can
have. The study of such bounds has first been made by Sturm [34] and was later
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generalized among others by Murty [25]. The same kind of bounds exists if we look
at modular forms modulo a prime ideal — and are in fact the same as the first
one. In the next lemma, we give a slight improvement of Murty’s result for modular
forms of same weight. We then state a more general result for modular forms of any
weight and level.

For all the subsection, we fix a prime number � and a place L of Q above �.

Lemma 3.16. Let f, g be two modular forms of same weight k ≥ 0, level Nf , Ng

and character εf , εg, respectively. Let N be the lcm of Nf and Ng. Assume that f
and g have both L-integral Fourier coefficients and that εf ≡ εg (mod L).

If

an(f) ≡ an(g) (mod L), for every integer n ≤ kN

12

∏
p prime

p|N

(
1 +

1
p

)
,

then f ≡ g (mod L).

Proof. Let us write B := kN
12

∏
p prime

p|N
(1 + 1

p ). We follow substantially the proof of

Murty of [25, §4]. Consider φ = f − g and suppose that the vanishing order modulo
L at infinity of φ is at least equal to B, that is an(φ) ≡ 0 (mod L) for all n ≤ B. If
φ = 0, there is nothing to prove. Otherwise, as explained in [25, §4], for γ ∈ SL2(Z)
there is an element Aγ ∈ Q

×
such that the modular form Aγφ|kγ has L-integral

coefficients and is not congruent to 0 modulo L.
We write m := [SL2(Z) : Γ0(N)] = N

∏
p|N (1 + 1

p ) and consider a system of
representatives (γi)1≤i≤m of right cosets of Γ0(N) in SL2(Z). We can further assume
γ1 = I2, the identity matrix. Also choose a set (τj)1≤j≤ϕ(N) of representatives of
Γ1(N) in Γ0(N) with τ1 = I2. We then have

SL2(Z) =
m⋃

i=1

Γ0(N)γi =
m⋃

i=1

ϕ(N)⋃
j=1

Γ1(N)τjγi.

Taking the norm function of φ according to this system of representatives, we define

F :=

⎛⎝ϕ(N)∏
j=1

φ|kτj
⎞⎠ m∏

i=2

ϕ(N)∏
j=1

Aτjγiφ|kτjγi ∈ Mkmϕ(N)(SL2(Z)).

For i = 1 and j between 1 and ϕ(N), we have

φ|kτjγ1 = φ|kτj = (εf (τj)f − εg(τj)g) ≡ εf (τj)φ (mod L).

Therefore, the forms φ|kτj have L-integral Fourier coefficients, and thereby the form
F too by the construction of the coefficients Aτjγi . Moreover, by assumption the
vanishing order at infinity of φ modulo L is at least equal to km

12 . Therefore, the one
of the modular form Φ :=

∏ϕ(N)
j=1 φ|kτj is at least equal to kmϕ(N)

12 , and the same is
true for F . Applying Sturm’s theorem for level 1 modular forms [25, Theorem 5],
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F must vanish modulo L and by construction of the coefficients Aτjγi , the modular
forms Aτjγiφ|kτjγi are not trivial modulo L. Thus Φ and hence φ must be trivial
modulo L.

The following proposition generalizes the previous lemma to modular forms of
arbitrary weights and levels. The proof uses extensively the construction of theta
operators given in Sec. 3.1. We warn the reader that we will write 00 = 1.

Proposition 3.17. Let f, g be two modular forms of weight kf , kg ≥ 0, level
Nf , Ng ≥ 1 and character εf , εg, respectively. Let mf , mg be two non-negative
integers. Assume that f and g have both L-integral Fourier coefficients and that
χ

kf+2mf

� εf ≡ χ
kg+2mg

� εg (mod L). Let N be the lcm of Nf and Ng, and define

a =

⎧⎪⎪⎨⎪⎪⎩
4 if

∣∣∣∣∣kf + 2mf ≡ kg + 2mg + 2 (mod 4)

and (�,N) is bad

0 otherwise

b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4 if � = 2 and N = 2

3 if � |N and (�,N) 
= (2, 2)

6 if (�,N) is bad

�+ 1 otherwise

and k= a+ max(kf + bmf , kg + bmg),

where “bad” refers to Definition 3.14.
If

nmfan(f) ≡ nmgan(g) (mod L), for every integer n ≤ Nk

12

∏
p prime

p|N

(
1 +

1
p

)
,

then this holds for all integers n ≥ 0.

Proof. For the whole proof, we write A for the modular form associated with L

and N constructed in Sec. 3.1. According to Table 1, it has weight b − 2 and level
N . We write χA for the character of A and B(N, k) := Nk

12

∏
p prime

p|N
(1 + 1

p ).

Assume without loss of generality that kf + bmf ≤ kg + bmg. We first prove
that, assuming b− 2 divides kg − kf + b(mg −mf ), we have nmfan(f) ≡ nmgan(g)
(mod L) for all non-negative integers n if these congruences hold for n ≤ B(N,
kg + bmg). Applying Lemma 3.2 recursively, we have

θ̃mf f ∈ Mkf +bmf
(N, εfχ

mf

A ) and θ̃mgg ∈ Mkg+bmg (N, εgχ
mg

A ).

We cannot apply Lemma 3.16 to θ̃mf f and θ̃mgg directly since they do not have

the same weight. However, the functions A
kg−kf +b(mg−mf )

b−2 θ̃mf f and θ̃mgg are well-
defined modular forms by assumption. They have the same weight kg + bmg,

the same level N and characters εfχ
mf+

kg−kf +b(mg−mf )
b−2

A and εgχ
mg

A , respectively.
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Moreover, by Lemma 3.2 again, we have χA ≡ χ2−b
� (mod L). By the assumption

on the characters we get

εfχ
mf+

kg−kf +b(mg−mf )
b−2

A ≡ εfχ
−(b−2)

“
mf+

kg−kf +b(mg−mf )
b−2

”
� (mod L)

≡ χ
kf+2mf

� εf · χ−(kg+bmg)
� (mod L)

≡ χ
kg+2mg

� εg · χ−(kg+bmg)
� ≡ εgχ

mg

A (mod L).

Therefore, the assumptions of Lemma 3.16 are satisfied for these two modular forms.
Since A reduces to 1 modulo L, we get that if the coefficients of θ̃mf f and θ̃mgg

are congruent up to the B(N, kg + bmg)th one, then θ̃mf f and θ̃mgg are congruent
modulo L by Lemma 3.16.

We now look at the hypothesis b − 2 | kg − kf + b(mg −mf ). We claim that if
(�,N) is not bad, then it is always satisfied. We have three cases: (i) � = N = 2,
(ii) � |N and (�,N) 
= (2, 2), (iii) � � N and (�,N) is not bad.

(i) If � = N = 2, then b− 2 = 2, and kf ≡ kg ≡ 0 (mod 2), because the weight of
a modular form of level 2 is necessarily even. Thus, kg − kf + 4(mg −mf ) is
divisible by b− 2.

(ii) If � |N , then b− 2 = 1 and there is nothing to prove.
(iii) If � � N and (�,N) is not bad, we have b−2 = �−1. Because � � N , εf and εg are

unramified at �. From the assumption χ
kf+2mf

� εf ≡ χ
kg+2mg

� εg (mod L), we
get that kg−kf +2(mg−mf ) ≡ 0 (mod �−1), hence b−2 | kg−kf +b(mg−mf ).

Therefore, when (�,N) is not bad, the proposition is proved because we have a = 0
and k = kg + bmg.

From now on, assume that (�,N) is bad. By definition, we have b = 6, and either
(�,N) = (2, 1), or � = 3 and � � N . Let us first prove that we have kg − kf + 6(mg −
mf ) ≡ 0 (mod 2) (i.e. kg ≡ kf (mod 2)). When (�,N) = (2, 1), it is true because
the weights kf and kg are both even. When � = 3 and � � N , the hypothesis on the
characters again implies that kf + 2mf ≡ kg + 2mg (mod 2) and the conclusion
follows.

If the even number kg − kf + 6(mg − mf ) is divisible by 4 = b − 2, then by
definition we have a = 0 and k = kg + bmg. The result follows as before in this case.
Otherwise, we have 4 | kg − kf + 6(mg −mf )− 2 and a = 4. Write A4 := 240E4 and
A6 := −504E6. We have seen in Proposition 3.13 and Remark 3.15, that both A4

and A6 are congruent to 1 modulo L. We set

f ′ := A6f and g′ = A4g.

Then f ′ and g′ are modular forms with L-integral Fourier coefficients of weight
kf ′ = kf + 6, kg′ = kg + 4, level N and character εf , εg, respectively. Since χ2

� is
trivial for � = 2, 3, the congruence

χ
kf′+bmf

� εf ≡ χ
kg′+bmg

� εg (mod L)
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is satisfied. Moreover, we have kf ′ + bmf ≤ kg′ + bmg, and b − 2 = 4 divides
kg′ − kf ′ + b(mg −mf ). According to the discussion at the beginning of the proof,
we therefore get the desired result since f ′, g′ reduce to f , g, respectively and
kg′ + bmg = a+ kg + bmg = k.

Remark 3.18. Notice that Lemma 3.16 corresponds to the special case mf =
mg = 0 and kf = kg = k. Moreover, in practice we can always take mf ∈ {0, 1}
and 0 ≤ mg ≤ �− 1.

In Sec. 4, we will mainly deal with eigenforms. It is well known that the knowl-
edge of the Fourier coefficients of prime index and of the constant coefficient charac-
terizes such forms. We can therefore simplify Proposition 3.17 and get the following
corollary.

Corollary 3.19. Let f, g be as in Proposition 3.17 and define also N and k simi-
larly. Assume further that f and g are normalized eigenforms for the Hecke opera-
tors at level N modulo L of prime index less than Nk

12

∏
p prime

p|N
(1+ 1

p ) (and different

from � if mf , mg ≥ 1).
If 0mfa0(f) ≡ 0mga0(g) (mod L) (with 00 = 1) and if for every prime number

p ≤ Nk
12

∏
p prime

p|N
(1 + 1

p ) we have pmfap(f) ≡ pmgap(g) (mod L), then we have

nmfan(f) ≡ nmgan(g) (mod L) for every non-negative integer n.

We finally state a Sturm bound result in characteristic zero that we will be used
in the proof of Theorem 5.10. It is a well-known result, but we do not find a suitable
reference for it. For the sake of completeness, we give a proof of it essentially due
to Buzzard.

Proposition 3.20. Let f, g be two modular forms of same weight k ≥ 0, level
N and character ε. If an(f) = an(g) for every integer n ≤ kN

12

∏
p prime

p|N
(1 + 1

p ),

then f = g.

Proof. We reduce to the case of trivial character. Let s be the order of the character
ε, and define

φ := (f − g)s ∈ Mks(N,1).

By assumption, the first s · kN
12

∏
p prime

p|N
(1 + 1

p ) Fourier coefficients of φ vanish.

Applying [25, Theorem 1], we get φ = 0 and therefore f = g.

Remark 3.21. We can in fact deduce Proposition 3.20 from Lemma 3.16. Indeed,
it is well known that the denominators of the Fourier coefficients of a modular form
are bounded. Therefore, we can reduce f and g modulo infinitely many places L.
Applying Lemma 3.16, f and g are congruent modulo infinitely many places L and
are thus equal.
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We now give an upper-bound for the product appearing in the Sturm bound. We
use a technique of Kraus [17] to get a slightly better bound than the one suggested
by Serre in Kraus’ paper.

Lemma 3.22. Let n be an integer greater than or equal to 2, we have∏
p prime

p|n

(
1 +

1
p

)
≤ 2 log log(n) + 2.4.

Proof. We first split the product in two parts:
∏

p prime
p|n

(1 + 1
p ) = P (n)Q(n)

with

P (n) =
∏

p>log n
p|n

(
1 +

1
p

)
and Q(n) =

∏
p≤log n

p|n

(
1 +

1
p

)
.

Let m be the number of primes p dividing n and being greater than logn. As
n ≥ log(n)m, we get m ≤ log n

log log n . Thus,

P (n) ≤ exp
(

logn
log logn

log
(

1 +
1

logn

))
≤ exp

(
1

log log n

)
. (3.1)

Applying [31, (3.27)], we get an upper bound for Q:

Q(n) ≤
∏

p≤log n

(
1 − 1

p

)−1

< eγ log log(n)
(

1 − 1
(log logn)2

)−1

, (3.2)

where γ is the Euler–Mascheroni constant.
Putting (3.1) and (3.2) together, we have∏

p prime
p|n

(
1 +

1
p

)
≤ eγ log log(n) exp

(
1

log logn

)(
1 − 1

(log logn)2

)−1

.

The function x �→ eγ+x(1 − x2)−1 is bounded by 2 for x ∈ [0, 0.1]. Therefore, the
lemma holds for all integers n ≥ exp(exp(10)). For n between 2 and exp exp(10),
we first notice that we only have to deal with square-free integers. Then, among the
square-free integers having k prime factors, it suffices to only check the lemma
for nk =

∏k
i=1 pi, pi being the ith prime number. The greatest k such that

nk ≤ exp exp(10) is 2486, and we have checked the lemma with a computer for
all those nk.

3.3. Modifying modular forms

In this section, we discuss a way to construct from a given eigenform, another
eigenform with slightly different Fourier coefficients but with a bigger level. It will
be crucial in Sec. 4.
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Let O(H) be the space of holomorphic functions on the complex upper-half
plane. For an integer n ≥ 1 and a complex number b, we define two operators Vn

and Sn(b) on O(H) by

Vn :

{O(H) → O(H)

h �→ (z �→ h(nz))
and Sn(b) :

{O(H) → O(H)
h �→ h− bVnh.

For a prime number p, we denote by Up the operator which action on Fourier
expansions is given by

Up

( ∞∑
n=0

anq
n

)
:=

∞∑
n=0

anpq
n.

We recall the following facts about the operators Up and Vp: for any primes p
and r, the operators Vp and Vr commute and the image of Mk(M, ε) by Vp is
Mk(Mp, ε). Letting Vp act on q-expansions, it commutes with Ur for r 
= p and
satisfies UpVp = Id. Moreover, TM

p decomposes on the space Mk(M, ε) as

TM
p = Up + pk−1ε(p)Vp.

From now on, consider a modular form g of weight k ≥ 1, level M ≥ 1 and
character ε that is a normalized eigenform for all the Hecke operators at level M .
For any prime number p, we denote by αp, βp the roots of the Hecke polynomial
X2 − ap(g)X + pk−1ε(p).

Lemma 3.23. Let p be a prime number and let b ∈ {αp, βp}. The function Sp(b)g
is a modular form of same weight and character as g and of level Mpnp with

np =

{
1 if b 
= 0,

0 if b = 0.

It is a normalized eigenform for all the Hecke operators at level Mpnp , and for any
prime r, we have

ar(Sp(b)g) =

{
ar(g) if r 
= p,

ap(g) − b if r = p.

Moreover, if g has Fourier coefficients in a ring R, then those of Sp(b)g lie in the
ring R(b).

Proof. If b = 0, then there is nothing to prove as Sp(0)g = g. Assume b 
= 0.
Because both g and Vpg are modular forms of weight k, level Mp and character ε,
it is also the case for Sp(b)g. Let us compute the action of the Hecke operators at
level Mp on Sp(b)g.

Let r be a prime number different from p. The operator TMp
r has the same action

as TM
r . Thus, because the operators Vp and TM

r commute, we have

TMp
r Sp(b)g = TM

r g − bVpT
M
r g = ar(g)g − bar(g)Vpg = ar(g)Sp(b)g.
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For r = p, we have TMp
p g = Upg = TM

p g − pk−1ε(p)Vpg = ap(g)g − pk−1ε(p)Vpg.
It gives

TMp
p Sp(b)g = (ap(g)g − pk−1ε(p)Vpg) − bUpVpg = (ap(g) − b)g − pk−1ε(p)Vpg.

As b is a root of X2 − ap(g)X + pk−1ε(p), it satisfies b(ap(g) − b) = pk−1ε(p). We
finally get

TMp
p Sp(b)g = (ap(g) − b)g − (ap(g) − b)bVpg = (ap(g) − b)Sp(b)g.

The form Sp(b)g is thus a normalized eigenform for the all Hecke operators at level
Mp. The fact about the ring of Fourier coefficients of Sp(b)g is straightforward.

We now apply this result to construct from the eigenform g, an eigenform which
pth Fourier coefficient is a chosen number b in {αp, βp, 0}.
Proposition 3.24. Let p be a prime number and let b ∈ {αp, βp, 0}. Define⎧⎪⎪⎨⎪⎪⎩

gb
p = g and np = 0, if b = ap(g),

gb
p = Sp(ap(g) − b)g and np = 1, if b 
= ap(g) and b ∈ {αp, βp},
gb

p = Sp(αp) ◦ Sp(βp)g and np = 2, if b 
= ap(g) and b /∈ {αp, βp}.

Then, gb
p is a modular form of same weight and character as g and of level Mpnp.

It is a normalized eigenform for all the Hecke operators at level Mpnp , and for any
prime r we have

ar(gb
p) =

{
ar(g) if r 
= p,

b if r = p.

Moreover, if g has Fourier coefficients in a ring R, then those of gb
p lie in the

ring R(b).

Proof. In the first two cases, we have gb
p = Sp(ap(g) − b)g. Lemma 3.23 gives

directly the result. In the third case, we necessarily have b = 0 and αp, βp non-
zero. From Lemma 3.23 apply to g and βp, the pth Hecke polynomial of Sp(βp)g is
X2 − αpX , which αp is a root. We can then apply Lemma 3.23 to Sp(βp)g and αp

to conclude. Finally, the calculation

Sp(αp) ◦ Sp(βp)g = (g − βpVpg) − αpVp(g − βpVpg)

= g − (αp + βp)Vpg + αpβpV
2
p g

= g − ap(g)Vpg + pk−1ε(p)V 2
p g,

proves that the Fourier coefficients of gb
p lie in the same ring as g, because the

values of the character of an eigenform always lie in the ring of coefficients of it (see
[28, Corollary (3.1)]).
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Remark 3.25. Notice that the modular form gb
p is always of the shape P (Vp)g

with P = 1 − εpX + δpX
2 and (εp, δp) ∈ {(αp, 0), (βp, 0), (ap(g), pk−1ε(p))}.

For any prime number p and bp ∈ {0, αp, βp}, define

Sbp
p =

⎧⎪⎪⎨⎪⎪⎩
Id if bp = ap(g),

Id − (ap(g) − bp)Vp if bp 
= ap(g) and bp ∈ {αp, βp},
Id − ap(g)Vp + pk−1ε(p)V 2

p if bp 
= ap(g) and bp /∈ {αp, βp},
so that we have gbp

p = S
bp
p g. By Proposition 3.24, applying Sbp

p to g only modifies
the Fourier coefficients of index divisible by p. Moreover, it gives us a modular form
that is still a normalized eigenform for the whole Hecke algebra at its level. It means
that for another prime r and br ∈ {0, αr, βr}, the modular forms

(
g

bp
p

)br

r
and (gbr

r )bp
p

are well defined and equal to Sbp
p Sbr

r g = Sbr
r S

bp
p g.

For any finite set of primes P and any b ∈∏p∈P{0, αp, βp}, we define

gbP :=
∏
p∈P

Sbp
p g.

With the notations of Proposition 3.24, we deduce the following result.

Corollary 3.26. The function gbP is a modular form of same weight and charac-
ter as g and of level M

∏
p∈P p

np . It is a normalized eigenform for all the Hecke
operators at level M

∏
p∈P p

np , and for any prime r we have

ar(gbP) =

{
ar(g) if r /∈ P,

br if r ∈ P.

Moreover, if g has Fourier coefficients in a ring R, then those of gbP lie in the
ring R(b).

Since the beginning of this section, our results were about “true” modular forms.
There is another function that we can modify with the operator Sp(b) and get a
modular form: the Eisenstein series E2.

Proposition 3.27. Let p be any prime number and b ∈ {1, 0}. Define{
(E2)b

p = Sp(p)E2 and np = 1 if b = 1,

(E2)b
p = Sp(1) ◦ Sp(p)E2 and np = 2 if b = 0.

The function (E2)b
p is a modular form of weight 2, level pnp , and trivial character.

It is a normalized eigenform for all the Hecke operators at level pnp , and for any
prime r we have

ar((E2)b
p) =

{
r + 1 if r 
= p,

b if r = p.

Moreover, all the Fourier coefficients of (E2)b
p are integers, except maybe the con-

stant one that is rational.
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Proof. An easy computation shows that for any prime p, we have Sp(p)E2 =
E

1,1(p)
2 . In particular, the form Sp(p)E2 = Sp(ap(E2)− 1)E2 is a normalized eigen-

form of weight 2, level p, trivial character, and for any prime r, its rth Fourier
coefficient is equal to r + 1 = ar(E2) if r 
= p, and 1 if r = p. Moreover, the
Hecke polynomial at p of E1,1(p)

2 is X(X−1). Thus, Sp(1)E1,1(p)
2 = Sp(1)◦Sp(p)E2

is a normalized eigenform of weight 2, trivial character and level p2 and we have
ap(Sp(1) ◦ Sp(p)E2) = 0.

We can then state a result of the shape of Corollary 3.26 for E2.

Corollary 3.28. Let P be a finite set of primes and let b ∈ ∏p∈P{0, 1, p}\(p)p∈P.
There is a modular form (E2)bP of weight 2, level

∏
p∈P p

np , and trivial character.
It is a normalized eigenform for all the Hecke operators at its level, and for any
prime number r we have

ar((E2)bP) =

{
r + 1 if r /∈ P,

br if r ∈ P.

Moreover, all the Fourier coefficients of (E2)bP are integers, except maybe the con-
stant one that is rational.

We finally give a result on the constant coefficient of an Eisenstein series that
has been modified with Corollary 3.26.

Proposition 3.29. Let k ≥ 2, let ε1, ε2 be two primitive Dirichlet characters. Let P
be a finite set of prime numbers and let b := (bp) ∈

∏
p∈P{0, ε1(p), pk−1ε2(p)}, dif-

ferent from (p)p∈P if (k, ε1, ε2) = (2,1,1). Then the constant coefficient of (Eε1,ε2
k )bP

is equal to ⎧⎪⎪⎨⎪⎪⎩
0 if ε1 
= 1,

−Bk,ε2

2k

∏
p∈P

bp(bp − pk−1ε2(p)) if ε1 = 1.

Proof. First, if ε1 
= 1, then the constant coefficient of Eε1,ε2
k is trivial by (2.1).

Assume ε1 = 1. Then the modular form (Eε1,ε2
k )bP is equal to∏

p∈P

(Id − εpVp + δpV
2
p )Eε1,ε2

k ,

where

(εp, δp) =

⎧⎪⎪⎨⎪⎪⎩
(1 + pk−1ε2(p), pk−1ε2(p)) if bp = 0,

(1, 0) if bp = pk−1ε2(p),

(pk−1ε2(p), 0) if bp = 1.

(3.3)

Therefore, the constant coefficient is equal to −Bk,ε2
2k

∏
p∈P(1− εp + δp). A straight-

forward computation gives that 1− εp + δp is equal to 0 if bp ∈ {0, pk−1ε2(p)}, and
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to 1 − pk−1ε2(p) if bp = 1. Therefore, if one of the bp’s is equal to 0 or pk−1ε2(p),
then the constant coefficient is equal to

0 = −Bk,ε2

2k

∏
p∈P

bp(bp − pk−1ε2(p)).

Else, if all the bp’s are equal to 1, then the constant coefficient is equal to

−Bk,ε2

2k

∏
p∈P

(1 − pk−1ε2(p)) = −Bk,ε2

2k

∏
p∈P

bp(bp − pk−1ε2(p)).

Proposition 3.30. Let k, ε1, ε2, P and b be as in Proposition 3.29. Let c1, c2 be
the conductors of ε1 and ε2, respectively. Then the constant coefficient of (Eε1,ε2

k )bP
at the cusp 1

c2
is equal to

−ε1(−1)
W ((ε1ε−1

2 )0)
W (ε−1

2 )

Bk,(ε−1
1 ε2)0

2k

(
c2

c0

)k ∏
p|c1c2

(
1 − (ε1ε−1

2 )0(p)
pk

)

×
∏

bp �=ε1(p)

(
1 − ε1ε

−1
2 (p)
pk

) ∏
bp �=pk−1ε2(p)

(
1 − 1

p

)
.

Proof. Let γ :=
(

1 0
c2 1

)
be an element of SL2(Z) such that γ∞ = 1

c2
. Write the

modular form (Eε1,ε2
k )bP as∏

p∈P

(Id − εpVp + δpV
2
p )Eε1,ε2

k ,

with εp and δp defined by (3.3). By Proposition 2.9, for an integer M , the constant
coefficient of (VMEε1,ε2

k )|kγ is nonzero if and only if M and c2 are coprime. Under
this assumption, we have, with the notations of Proposition 2.9,

Υε1,ε2
k (γ,M) =

ε−1
2 (M)
Mk

⎡⎣−ε1(−1)
W ((ε1ε−1

2 )0)
W (ε−1

2 )

Bk,(ε−1
1 ε2)0

2k

×
(

c2

c0

)k ∏
p|c1c2

(
1 − (ε1ε−1

2 )0(p)
pk

)⎤⎦. (3.4)

The expression in brackets is independent of M , let write it D. Notice that if M is
not coprime to c2, the formula still holds, as ε2(M) = 0. Define

P :=
∏
p∈P

(1 − εpXp + δpX
2
p ) ∈ C[(Xp)p∈P].

As (3.4) is fully multiplicative in M , the constant coefficient of (Eε1,ε2
k )bP is then

equal to

lim
Im(z)→+∞

P ((Vp)p∈P)Eε1,ε2
k |kγ(z) = D · P

((
ε−1
2 (p)
pk

)
p∈P

)
.
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We just have to compute the value of P (( ε−1
2 (p)

pk )p∈P) to conclude. Let Pp(Xp) =
1− εpXp + δpX

2
p , so that we have P =

∏
p∈P Pp(Xp). A straightforward calculation

shows that the value of Pp(
ε−1
2 (p)

pk ) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − ε1ε

−1
2 (p)
pk

)(
1 − 1

p

)
if (εp, δp) = (ε1(p) + pk−1ε2(p), pk−1ε1ε2(p));

1 − ε1ε
−1
2 (p)
pk

if (εp, δp) = (ε1(p), 0);

1 − 1
p

if (εp, δp) = (pk−1ε2(p), 0).

4. Reducible Galois Representations

4.1. Reducible Galois representations and Eisenstein series

Before dealing with the reducibility of a residual representation attached to a new-
form, we examine the general case of a reducible, residual, semi-simple, odd Galois
representation. We begin by a definition that will be enlightened in the following
proposition. Throughout this section, we fix a prime number � and a place L of Q

above �.

Definition 4.1. Define R(�) as the set of quadruplets (ε1, ε2,m1,m2) consisting
of two primitive Dirichlet characters ε1 and ε2 that are of prime-to-� order and
unramified at �, and of two integers m1, m2 such that 0 ≤ m1 ≤ m2 < � − 1,
and ε1ε2(−1) ≡ (−1)m1+m2+1 (mod �).

Proposition 4.2. Let ρ : GQ → GL2(F�) be a semi-simple, odd representation.
Then, ρ is reducible if and only if there exists (ε1, ε2,m1,m2) ∈ R(�) such that
ρ ∼= χm1

� ε1 ⊕ χm2
� ε2, where ε1 and ε2 correspond to the reduction modulo L of ε1

and ε2, respectively.

Proof. If ρ is reducible, then we can decompose it as ϕ1χ
m1
� ⊕ ϕ2χ

m2
� , with ϕ1,

ϕ2 two characters modulo L unramified at �, and 0 ≤ m1 ≤ m2 < � − 1. Let εi

be the Teichmüller lift of ϕi with respect to L (see Sec. 2.2). By construction, the
characters ε1, ε2 are primitive and have prime-to-� order. Finally, if c is a complex
conjugation, then we have

−1 = det(ρ(c)) = ε1ε2(−1)χ�(c)
m1+m2 = (−1)m1+m2ε1ε2(−1).

Therefore, we have (ε1, ε2,m1,m2) ∈ R(�).

Our goal is now to construct from an element (ε1, ε2,m1,m2) of R(�), various
modular forms that correspond to the representation χm1

� ε1 ⊕ χm2
� ε2. By this we
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mean, in the spirit of [11, Théorème 6.7], modular forms g ∈ Mkg (Ng, εg) such
that

• g has L-integral Fourier coefficients;
• g is a normalized eigenform for the Hecke operators TNg

p modulo L of prime index
p not dividing �Ng;

• det(χm1
� ε1 ⊕ χm2

� ε2) = χm1+m2
� ε1ε2 = χ

kg−1
� εg;

• Tr((χm1
� ε1 ⊕χm2

� ε2)(Frobp)) = pm1ε1(p) + pm2ε2(p) = ap(g), for all primes p not
dividing �Ng.

The motivation to seek such forms comes from the fact that if f ∈ Snew
k (N, ε) is a

newform such that ρf,L
∼= χm1

� ε1 ⊕ χm2
� ε2, then for any g as above, we will have

χk−1
� ε = χ

kg−1
� εg and ap(f) ≡ ap(g) (mod L), for all primes p � �NNg.

For (ε1, ε2,m1,m2) in R(�), define

k′ :=

{
m2 −m1 + 1 if � > 2;

2 if � = 2,
and E0 := Eε1,ε2

k′ . (4.1)

Proposition 4.3. We have ε1ε2(−1) = (−1)k′
. In particular, E0 is well defined

and modular if and only if (k′, ε1, ε2) 
= (2,1,1), in which case E0 is a normalized
eigenform of weight k′, level c1c2, and character ε1ε2. Moreover, for any prime
number p we have ap(E0) = ε1(p) + pk′−1ε2(p) in any case.

Proof. If � = 2, then ε1 and ε2 are even, and we have ε1ε2(−1) = 1 = (−1)k′
.

Otherwise, we have

ε1ε2(−1) = (−1)m2+m1+1 = (−1)m2−m1+1 = (−1)k′
.

The rest of the proposition follows from Proposition 2.8 and (2.1).

To be sure that we can associate a Galois representation modulo L to E0, we
study the integrality of its Fourier coefficients. The following lemma states when
the coefficients of E0 may not be L-integral.

Lemma 4.4. Assume (k′, ε1, ε2) 
= (2,1,1). The Fourier coefficients of E0 are
L-integral unless perhaps in the following cases:

• � = 2, ε1 = 1 and ε2 
= 1;
• � ≥ 5, ε1 = ε2 = 1, and (m1,m2) = (0, �− 2).

Proof. Apart from the constant one, the coefficients of E0 are all algebraic integers.
We therefore only need to focus on the constant Fourier coefficient a0 of E0.

In the case � 
= 2, if (ε1, ε2) 
= (1,1), then a0 is always L-integral by Proposi-
tion 2.4, because ε1 and ε2 are unramified at �. If ε1 = ε2 = 1, then a0 = − 1

2k′Bk′ .
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By Proposition 2.4 again, if (m1,m2) 
= (0, �− 2), then a0 is always L-integral. If
(m1,m2) = (0, � − 2), then a0 is always not L-integral. Notice moreover that we
must have � 
= 3, because otherwise k′ = 2 and ε1 = ε2 = 1, which is excluded.

Assume � = 2, hence k′ = 2. If ε1 
= 1, then as before we have a0 = 0. Else, if
ε1 = 1, then a0 = −B2,ε2

4 which may not be L-integral. Moreover, we must have
ε2 
= 1 because otherwise we would have (k′, ε1, ε2) = (2,1,1).

We can now construct from (ε1, ε2,m1,m2) ∈ R� (and hence k0 and E0), a
modular form with the properties discussed above. With the notations of Proposi-
tions 3.24 and 3.27, we define⎧⎪⎪⎨⎪⎪⎩
r := 4 and E := (E0)02 if

∣∣∣∣∣ we are in one of the cases listed in Lemma 4.4

or (k′, ε1, ε2) = (2,1,1);

r := 1 and E := E0 otherwise.

(4.2)

The following proposition sums up the properties of E.

Proposition 4.5. The function E is a modular form of weight k′, level M :=
lcm(c1c2, r), and character ε1ε2. It is a normalized eigenform for all the Hecke
operators at level M, all its Fourier coefficients are L-integral, and for any prime
p � r, we have ap(E) = ε1(p) + pk′−1ε2(p).

Proof. The only thing to prove is that M is indeed the level of E. The rest of
the proposition then follows from Propositions 3.24, 3.27, Lemma 4.4 and Propo-
sition 4.3. If r = 1, the level of E is equal to c1c2 = lcm(c1c2, r). Assume r = 4.
We then always have c1 = 1 and either ε2 = 1 or � = 2. In the first case, c2 = 1
and ε2(2) = 1 
= 0. In the second case, c2 is odd because prime to �. Thus, we have
ε2(2) 
= 0. In every case, the level of E is equal to 4c1c2 = lcm(c1c2, 4).

The final step to have a modular form that has a Galois representation modulo
L that is isomorphic to χm1

� ε1 ⊕ χm2
� ε2 is to apply the operator θ̃ that we have

constructed in Sec. 3.1.

Proposition 4.6. Let ρ : GQ → GL2(F�) be a residual, semi-simple, odd Galois
representation. Then ρ is reducible if and only if there exist (ε1, ε2,m1,m2) ∈ R(�)
such that ρ ∼= ρeθm1E,L, where E is the Eisenstein series associated to (ε1, ε2,m1,m2)
in (4.2).

Moreover, if P is a finite set of primes, and b ∈ ∏
p∈P{0, ε1(p), pk′−1ε2(p)},

then we also have ρ ∼= ρeθm1Eb
P,L, where Eb

P is defined in Corollary 3.26.

Proof. From Proposition 4.2, we only have to prove that for a quadruplet
(ε1, ε2,m1,m2) ∈ R(�), we have ρeθm1E,L

∼= χm1
� ε1⊕χm2

� ε2. It follows from Proposi-
tion 4.5 and Lemma 3.2 that the representation ρeθm1E,L is well defined. Moreover,
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from Lemma 3.2 again, the form θ̃m1
A E is of weight k′ + m1(kA + 2), level M ,

and character ε1ε2χm1
A , the value of kA and χA depending on the level M and the

place L (see Table 1). Recall that in any case we have χA ≡ χ−kA

� (mod L) and
k′ ≡ m2 −m1 + 1 (mod �− 1). Therefore, we have

χ
(k′+m1(kA+2))−1
� χm1

A ε1ε2 ≡ χ
m2−m1+1+m1(kA+2)−1−m1kA

� ε1ε2 (mod L)

≡ χm1+m2
� ε1ε2 (mod L).

Finally, from Lemma 3.2, Proposition 4.5, and again the congruence k′ ≡ m2−m1+1
(mod �− 1), we have for any prime number p � r�,

ap(θ̃m1E) ≡ pm1ap(E) (mod L)

≡ pm1ε1(p) + pk′+m1−1ε2(p) (mod L)

≡ pm1ε1(p) + pm2ε2(p) (mod L).

By the discussion at the beginning of the section, we get

ρeθm1E,L
∼= χm1

� ε1 ⊕ χm2
� ε2.

By Corollary 3.26 and Lemma 3.2, the modular form θ̃m1Eb
P still has L-integral

Fourier coefficients, and is again an eigenform for all the Hecke operators modulo L

at its level. Moreover, by the same computations as above, the determinant of
ρeθm1Eb

P,L is still equal to χm1+m2
� ε1ε2, and for any prime number p � r�, p /∈ P, we

have ap(θ̃m1Eb
P) ≡ pm1ap(Eb

P) ≡ pm1ε1(p) + pm2ε2(p) (mod L). Therefore, we also
have ρ ∼= ρeθm1Eb

P,L.

Remark 4.7. Be careful that the operator θ̃ we apply to Eb
P is not strictly the

same as the one we apply to E, the levels of these two forms not being the same.

4.2. General study of modular reducible representations

Let f = q +
∑∞

n=2 an(f)qn be a newform of weight k ≥ 2, level N ≥ 1, and
character ε of conductor c. Let Kf be the number field generated by (an(f))n≥2

and let λ be a prime ideal of the ring of integers of Kf above a prime number �.
As in the previous section, we begin with the definition of a set that corresponds
to the possible reductions of ρf,λ.

Definition 4.8. Let L be a place of Q above �. Define the set RN,k,ε(L) as the
subset of R(�) (see Definition 4.1) consisting of the quadruples (ε1, ε2,m1,m2) such
that χm1+m2

� ε1ε2 = χk−1
� ε, and for every prime p 
= �, we have vp( N

c1c2
) ∈ {0, 1, 2},

where · denotes the reduction modulo L, and ci is the conductor of εi.
Notice that in particular if (ε1, ε2,m1,m2) ∈ RN,k,ε(L), then c1c2 |N . The set

RN,k,ε(L) is therefore finite.
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Remark 4.9. We will see later that the set RN,k,ε(L) depends in fact only on
L∩Q(ε) (and obviously on N , k and ε). For now, this dependency will not matter,
and we postpone this proof to Sec. 6.

From now on, assume that L is a place of Q extending λ.

Proposition 4.10. The representation ρf,λ is reducible if and only if there exists
(ε1, ε2,m1,m2) ∈ RN,k,ε(L) such that ρf,λ

∼= χm1
� ε1 ⊕ χm2

� ε2, where εi denotes the
reduction of εi modulo L.

Proof. The representation ρf,λ is semi-simple and odd. Therefore, by Propo-
sition 4.2, it is reducible if and only if there exist a place L above � and
(ε1, ε2,m1,m2) ∈ R(�) such that ρf,λ

∼= χm1
� ε1 ⊕ χm2

� ε2. We just have to check
that in this case we have (ε1, ε2,m1,m2) ∈ RN,k,ε(L). The determinant of ρf,λ is
χk−1

� ε. Therefore, we have χm1+m2
� ε1ε2 = χk−1

� ε. Moreover, the prime-to-� part
of the Artin conductor of χm1

� ε1 ⊕ χm2
� ε2 is equal to c1c2. By Proposition 1.4, we

necessarily have vp( N
c1c2

) ∈ {0, 1, 2} for all primes p � N , p 
= �.

In regard of Proposition 4.6, this result is equivalent to saying that the prime
index coefficients of f are all but finitely many congruent modulo L to those of any
of the forms θ̃m1Eb

P described in Sec. 4.1. We will prove that there exist in fact P
and b such that f is congruent to θ̃m1Eb

P except maybe at the primes dividing �
and r. The following result is the key step in this direction. It uses in a crucial way
the local description of ρf,λ at the bad prime numbers (see Sec. 1).

Lemma 4.11. If the representation ρf,λ is reducible, then there exists
(ε1, ε2,m1,m2) ∈ RN,k,ε(L) such that for any prime number p 
= �, we have

ap(f) ≡
{
pm1ε1(p) + pm2ε2(p) (mod L) if p � N,

pm1bp (mod L) if p |N,

for some bp ∈ {0, ε1(p), pm2−m1ε2(p)}.
Conversely, if for some (ε1, ε2,m1,m2) ∈ RN,k,ε(L), those congruences hold for

every prime p in a set of density 1, then we have ρf,λ
∼= χm1

� ε1 ⊕ χm2
� ε2.

Proof. Let us first prove the second statement. Write ρ := χm1
� ε1 ⊕ χm2

� ε2. By
construction, the determinants of ρf,λ and ρ agree. Moreover, by assumption for
any prime number p � N� in a set of density 1, we have

Tr(ρf,λ(Frobp)) ≡ ap(f) ≡ pm1ε1(p) + pm2ε2(p) ≡ Tr(ρ(Frobp)) (mod L).

By Brauer–Nesbitt theorem [11, Lemma 3.2], ρf,λ must be isomorphic to ρ and is
thus reducible.
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We now prove the first statement. Assume ρf,λ to be reducible. Proposi-
tion 4.10 gives us the existence of (ε1, ε2,m1,m2) ∈ RN,k,ε(L), such that ρf,λ

∼=
χm1

� ε1 ⊕ χm2
� ε2. For any prime p � N�, taking the trace at a Frobenuis at p gives

the congruence ap(f) ≡ pm1ε1(p)+pm2ε2(p) (mod L). Let us now consider a prime
p |N and different from �. We treat three cases separately:

(i) If vp(N) ≥ 2 and vp(N) > vp(c), we know from Proposition 1.1 that ap(f) = 0.
Hence, we have ap(f) ≡ pm1bp (mod L) with bp = 0.

(ii) If vp(N) = 1 and vp(c) = 0, then ε is unramified at p. Moreover, by the
congruence χk−1

� ε ≡ χm1+m2
� ε1ε2 (mod L), the character ε1ε2 is then also

unramified at p. Therefore, p | c1 if and only if p | c2, and because vp(N) = 1
and c1c2 |N , we deduce that p does not divide c1c2. Thus, we are in the first
case of Proposition 1.3, and we get an equality of sets of characters of Gp

{μ(ap(f)), μ(ap(f))χ�} = {χm1
� ε1, χ

m2
� ε2}.

There are two cases to look at:

• If μ(ap(f)) = χm1
� ε1, then ap(f) ≡ ε1(p)pm1 (mod L). In this case, we define

bp = ε1(p).
• If μ(ap(f)) = χm2

� ε2, then we have ap(f) ≡ ε2(p)pm2 (mod L), and we put
bp = pm2−m1ε2(p).

In both cases we have ap(f) ≡ pm1bp (mod L) with bp ∈ {ε1(p), pm2−m1ε2(p)}.
(iii) Finally, if vp(N) = vp(c), we are in the second case of Proposition 1.3, and we

get the equality

{μ(ap(f)), μ(ap(f)−1)ε|Gp
χk−1

� } = {χm1
� ε1, χ

m2
� ε2}.

We again have two cases to consider:

• If μ(ap(f)) = χm1
� ε1, then ap(f) ≡ ε1(p)pm1 (mod L). Let us put bp = ε1(p).

• If μ(ap(f)) = χm2
� ε2, then ap(f) ≡ ε2(p)pm2 (mod L). We put bp =

pm2−m1ε2(p).

In both cases, we again have the congruence ap(f) ≡ pm1bp (mod L) with
bp ∈ {ε1(p), pm2−m1ε2(p)}.

Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L) and consider k′, r and E as defined in (4.1) and
(4.2), respectively. With the notations of Proposition 3.24, we define⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f ′ := f0
2 and N ′ :=

⎧⎪⎪⎨⎪⎪⎩
N if 2 |N and a2(f) = 0;

2N if 2 |N and a2(f) 
= 0;

4N if 2 � N,

if r = 4;

f ′ := f and N ′ := N, if r = 1.

(4.3)

Proposition 4.12. The form f ′ is a normalized eigenform of weight k, level N ′,
and character ε. Its Fourier coefficients are L-integral and if a prime p divides r,
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then ap(f ′) = ap(E) = 0. Moreover, the level M := lcm(c1c2, r) of E (see Proposi-
tion 4.5) always divides N ′, and if � = 2, then N ′ ≥ 3.

Proof. The only facts that do not follow directly from Proposition 3.24 are those
on the level N ′. First recall that c1c2 always divide N . For M = lcm(c1c2, r) to
divide N ′ we thus need to prove that r divides N ′. If r = 1 this is straightforward.
Assume r = 4. If 2 � N , then N ′ = 4N is divisible by r. If 2 |N and a2(f) 
= 0,
then 4 divides N ′ = 2N . Finally, if 2 |N and a2(f) = 0, then by Proposition 1.1
we necessarily have v2(N) ≥ 2. Therefore N ′ = N is again divisible by r. In every
case, we have M |N ′.

Finally, assume � = 2. If ε1 = 1, then we necessarily have r = 4 and N ′ ≥ 4.
Otherwise, if ε1 
= 1, we then have N ′ ≥ c1 ≥ 3 because there is no non-trivial
primitive character of conductor less than 3.

It follows from Lemma 4.11 that if ρf,λ is reducible, then there exist P and b
such that for all primes p, we have pap(f ′) ≡ pm1+1ap(Eb

P) (mod L). In order to
use Corollary 3.19 and make these infinite set of congruences equivalent to a finite
one, we now need to control the level of Eb

P.

Proposition 4.13. Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L), let p 
= � be any prime number
dividing N, and let bp ∈ {0, ε1(p), pk′−1ε2(p)}.

If we have a congruence ap(f) ≡ pm1bp (mod L), then we have

1 ≤ vp(c1c2) + np ≤ vp(N),

where np is defined as in Proposition 3.24 with respect to g = E and bp. In particular,
those inequalities are independent of the choice of bp.

Proof. First, we always have vp(c1c2)+np ≥ 1, because np = 0 only if bp = ap(E) =
ε1(p) + pk′−1ε2(p), which implies that vp(c1c2) ≥ 1.

Next, we claim the following:

bp = 0 if and only if vp(c) < vp(N) and vp(N) ≥ 2.

Indeed, we have bp = 0 if and only if ap(f) ≡ 0 (mod L). Moreover, by Proposi-
tion 1.1 we have either vp(c) < vp(N), vp(N) ≥ 2 and ap(f) = 0, or |ap(f)|2 = ps

with s ≥ 0. Therefore, we have ap(f) ≡ 0 (mod L) if and only if vp(c) < vp(N) and
vp(N) ≥ 2.

We now prove that vp(c1c2) + np ≤ vp(N). If np = 0, it follows from
the fact that c1c2 |N . If np = 2, then from Proposition 3.24, we must have
bp = 0 /∈ {ε1(p), pk′−1ε2(p)}. Therefore, p � c1c2 and from the discussion above we
have vp(N) ≥ 2 = vp(c1c2) + np.

Assume finally that np = 1. We then have bp 
= ε1(p) + pk′−1ε2(p) and
bp ∈ {ε1(p), pk′−1ε2(p)}. Therefore, p does not divide both c1 and c2. If p � c1c2,
we have vp(c1c2) + np = 1 ≤ vp(N). Otherwise, assume that p | c1 and p � c2. We
then necessarily have bp = 0 and from the discussion above we get vp(c) < vp(N).
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Looking at the p-part of the Artin conductor of both sides of the equality
χk−1

� ε = χm1+m2
� ε1ε2, we get vp(c) = vp(c1) where c and c1 denote the conduc-

tors of ε and ε1, respectively. Because ε1 has prime-to-� order, we have c1 = c1. On
the other side we always have c | c. Therefore, we have vp(c1c2) = vp(c1) ≤ vp(c).
Hence, we get vp(c1c2) + np ≤ vp(N). The case p | c2 and p � c1 is treated in exactly
the same way.

Corollary 4.14. Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L). Define k′, r and E as in (4.1)
and (4.2), respectively. Consider P ⊆ {p prime, p |N, p � r�} and b := (bp)p∈P ∈∏

p∈P{0, ε1(p), pk′−1ε2(p)} such that for all p ∈ P, we have pm1bp ≡ ap(f)
(mod L).

The modular form E′ := Eb
P is of weight k′, character ε1ε2, and its level

divides N ′. It has L-integral Fourier coefficients and for every prime p such that
either p � N� or p ∈ P ∪ {r}, E′ is a normalized eigenform for the Hecke
operator TN ′

p .

Proof. From Corollary 3.26, the form E′ is a normalized eigenform for all the Hecke
operators at its level NE′ := M

∏
p∈P p

np . Moreover, the action of TN ′
p and T

NE′
p

on E′ are the same if p divides both N ′ and NE′ or none of them. If p � N�, then
p � NE′ . If p ∈ P ∪ {r}, by Proposition 4.13, we have

1 ≤ vp(NE′) ≤ vp(N ′).

Therefore, NE′ divides N ′ and E′ is a normalized eigenform for the announced
Hecke operators. The rest of the corollary follows from Corollary 3.26.

We now state the first main result of this section. It gives for a given λ, an
explicit algorithm to check the reducibility of the representation ρf,λ.

Theorem 4.15. Let f be a newform of weight k ≥ 2, level N ≥ 1, and character
ε. Let λ be a prime ideal of Kf above a prime number �. The following assertions
are equivalent :

(1) ρf,λ is reducible;
(2) Let L be a place of Q above λ. There exists (ε1, ε2,m1,m2) ∈ RN,k,ε(L) (see

Definition 4.8) such that the following holds. Let k′, r, and N ′ be as in (4.1),
(4.2) and (4.3), respectively. Define

a =

⎧⎪⎪⎨⎪⎪⎩
4 if

∣∣∣∣∣k ≡ m1 +m2 + 3 (mod 4),
� = 3 and ∀ p |N ′, p ≡ 1 (mod 9);

0 otherwise,

b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 if � |N ′;

6 if

∣∣∣∣∣� = 3 and ∀ p |N ′,
p ≡ 1 (mod 9);

�+ 1 otherwise.

and k̃ = a+ b+ max(k, k′ + bm1).
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For every prime p ≤ B := N ′ek
12

∏
q|N ′(1 + 1

q ) not dividing r�, we have

• p � N and ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L);
• or, p |N and ap(f) ≡ pm1bp (mod L) for some bp in the set {0, ε1(p),
pm2−m1ε2(p)}.

When this holds, we moreover have ρf,λ
∼= χm1

� ε1 ⊕ χm2
� ε2.

Proof. Assertion (2) is weaker than the second part of Lemma 4.11. Therefore,
(1) implies (2).

Assume that (2) holds. Consider again k′, r, E, N ′, and f ′ defined in (4.1), (4.2)
and (4.3), respectively. Define P := {p prime, p |N, p � �r, p ≤ B}, and b := (bp)p∈P.
Finally, with the notation of Corollary 3.26, consider the form E′ := Eb

P.
We wish to apply Corollary 3.19 with f = f ′, g = E′, mf = 1 and mg = m1 +1.

By Corollary 4.14, we have E′ ∈ Mk′(N ′, ε1ε2), it has L-integral Fourier coefficients,
and it is an eigenform for all the Hecke operators at level N ′ of index less than B,
except maybe at �. Moreover, from the identity χm1+m2

� ε1ε2 = χk−1
� ε, we have

χ
k′+2(m1+1)
� ε1ε2 = χ

(m2−m1+1)+2(m1+1)
� ε1ε2 = χm1+m2+3

� ε1ε2 = χk+2
� ε.

Let p be a prime number less than B. If p | �r, then we have

pm1+1ap(E′) ≡ 0 ≡ pap(f ′) (mod L).

Otherwise, by Corollary 3.26 we have pm1+1ap(E′) ≡ pm1+1bp ≡ pap(f ′) (mod L).
The definitions of a, b and k̃ correspond to those of a, b and k in Proposition 3.17
(the case � = 2 and N ′ ≤ 2 never occurs as proved in Proposition 4.12). By Corol-
lary 3.19, we therefore obtain the congruence nan(f ′) ≡ nm1+1an(E′) (mod L) for
every non-negative integer n. By Lemma 4.11, we thus have ρf,λ

∼= χm1
� ε1 ⊕χm2

� ε2.

Remark 4.16. From this theorem, we can deduce an algorithm that takes a prime
ideal λ as input and decides whether the representation ρf,λ is reducible or not,
and computes the representation if it is reducible. In particular, it justifies the
reducibility modulo 11 of the representation treated in [3, 5.1.2]. We give further
details on how to explicitly do this in PARI/GP in Sec. 6. Moreover, the theorem
extends the case m = 1 of [18, Proposition 2.].

The previous theorem holds without any restriction on �, but the result depends
on � through

(1) the set RN,k,ε(L);
(2) the integer B that bounds the number of congruences to check.

We first remove the dependency in � in the set RN,k,ε(L).

Definition 4.17. Define RN,ε as the set of pairs (ε1, ε2) of primitive Dirichlet char-
acters such that ε1ε2 = ε and for every prime number p, we have vp( N

c1c2
) ∈ {0, 1, 2},

where ci is the conductor of εi.
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Proposition 4.18. Assume � ≥ k − 1 and � � Nϕ(N). The representation ρf,λ is
reducible if and only if there exists (ε1, ε2) ∈ RN,ε such that ρf,λ

∼= ε1 ⊕ χk−1
� ε2.

We moreover have a�(f) ≡ ε1(�) + �k−1ε2(�) (mod L).

Proof. From Proposition 4.10, if ρf,λ is reducible, then there exists a quadruple
(ε1, ε2,m1,m2) ∈ RN,k,ε(L) such that ρf,λ

∼= χm1
� ε1 ⊕ χm2

� ε2. By the assumptions
� � N and � ≥ k − 1, together with Proposition 1.2, f must be ordinary at λ, and
we have an equality of sets{

μ(a�(f)), χk−1
� μ

(
ε(�)
a�(f)

)}
= {χm1

� ε1, χ
m2
� ε2}.

It follows that (m1,m2) = (0, k−1) and a�(f) ≡ ε1(�) ≡ ε1(�)+�k−1ε2(�) (mod L).
Finally, the character ε(ε1ε2)−1 reduces to the trivial character modulo L, and
because � � ϕ(N), it must have prime-to-� order. Using Lemma 2.7, it must be
trivial, and we get ε = ε1ε2.

The following result will allow us to both remove the dependency in � in the
bound B of Theorem 4.15, and bound the set of � such that ρf,λ is reducible.

Proposition 4.19. Assume � > k + 1 and � � Nϕ(N). The representation
ρf,λ is reducible if and only if there exist a pair (ε1, ε2) ∈ RN,ε, and b ∈∏

p∈P{0, ε1(p), pk−1ε2(p)}, with P := {p prime, p |N, p � �r}, such that f ′ ≡ E′

(mod L), with f ′ defined as in (4.3) and E′ := Eb
P.

Proof. If we have f ′ ≡ E′ (mod L), then in particular for all primes p � N�r, we
have

ap(f) = ap(f ′) ≡ ap(E′) ≡ ε1(p) + pk−1ε2(p) (mod L).

By Lemma 4.11, ρf,λ is therefore reducible.
Assume that ρf,λ is reducible. The existence of (ε1, ε2) is granted by Proposi-

tion 4.18. Moreover, by Lemma 4.11 there exists b ∈ ∏p∈P{0, ε1(p), pk−1ε2(p)} such
that for every prime number p, we have a congruence ap(f ′) ≡ ap(E′) (mod L). By
Corollary 4.14, E′ ∈ Mk(N ′, ε) has L-integral Fourier coefficients and is an eigen-
form for all the Hecke operators at level N ′. By Proposition 4.12, f ′ has the same
properties and therefore the modular form f ′ − E′ is constant modulo L.

By the assumptions � > k+1 and � � Nϕ(N), we have � ≥ 5 and � � N . Therefore,
we know from [12, Theorem 12.3.7] that Katz’ modular form spaces with coefficients
in F� are isomorphic to the spaces of reduction modulo L of modular forms with L-
integral coefficients. Therefore, from [15, Corollary 4.4.2], for f ′−E′ to be congruent
to a non-zero constant we must have k ≡ 0 (mod � − 1). This cannot hold under
the assumption � > k + 1, and we get f ′ ≡ E′ (mod L).

We now state our second main result. It is analogous to Theorem 4.15 for the
prime numbers � > k + 1 and � � Nϕ(N).
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Theorem 4.20. Let f be a newform of weight k ≥ 2, level N ≥ 1, and character
ε. Let λ be a prime ideal of Kf above a prime number �. Assume � > k + 1 and
� � Nϕ(N). The following assertions are equivalent.

(1) ρf,λ is reducible.
(2) Let L be a place of Q above λ. There exists (ε1, ε2) ∈ RN,ε such that the following

holds. Let r be as is (4.2) (recall that (m1,m2) = (0, k − 1)) and let N ′ be as
in (4.3). Define

C =

⎧⎪⎪⎨⎪⎪⎩
0 if r > 1 or ε1 
= 1;

−Bk,ε0

2k

∏
p|N

ap(f)(ap(f) − pk−1ε0(p)) otherwise,

where ε0 is the primitive character associated to ε.
We have C ≡ 0 (mod L), and for all primes p ≤ B := N ′k

12

∏
q|N ′(1 + 1

q ),
we have either p | r or

• ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L), if p � N ;
• ap(f) ≡ bp (mod L) for some bp ∈ {0, ε1(p), pk−1ε2(p)}, if p |N .

When this holds, we moreover have ρf,λ
∼= ε1 ⊕ χk−1

� ε2.

Proof. Assume ρf,λ to be reducible. Introduce f ′ and E′ as in Proposition 4.19. The
congruences for ap(f) follow from the congruence f ′ ≡ E′ (mod L). It only remains
to prove that C ≡ 0 (mod L). Because f ′ is cuspidal, its constant coefficient at
infinity is equal to 0. Therefore, the one of E′ must be congruent to 0 modulo L.

The congruence C ≡ 0 (mod L) is non-trivial only if r = 1 and ε1 = 1. In this
case, we have ε2 = ε0, the set P of Proposition 4.19 is the set of prime divisors of N
and for all p ∈ P we have bp ≡ ap(f) (mod L). Therefore, the constant coefficient
of E′ is equal to

−Bk,ε2

2k

∏
p∈P

bp(bp − pk−1ε2(p)) ≡ −Bk,ε0

2k

∏
p|N

ap(f)(ap(f) − pk−1ε0(p)) (mod L)

≡ C (mod L).

This proves that (1) implies (2).
Assume now that the second part of the theorem holds. Consider again the

modular forms E and f ′, and define P≤B := {p prime, p |N, p ≤ B} and b≤B :=
(bp)p∈P≤B

, and let E′ := E
b≤B

P≤B
. By Corollary 4.14, we have E′ ∈ Mk(N ′, ε), it has

L-integral coefficients, and it is an eigenform for all the Hecke operators at level
N ′ of index less than B. The form f ′ has moreover the same properties and for
all prime numbers p ≤ B, we have by assumption ap(f ′) ≡ ap(E′) (mod L). In
order to apply Corollary 3.19 to f = f ′, g = E′, mf = mg = 0, we need to have
a0(E′) ≡ 0 (mod L). From Proposition 3.29, we have a0(E′) = 0 if ε1 
= 1 or r > 1.
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Else, if ε1 = 1 and r = 1, we have ε2 = ε0 and

a0(E′) = −Bk,ε2

2k

∏
p|N,p≤B

bp(bp − pk−1ε2(p))

≡ −Bk,ε0

2k

∏
p|N,p≤B

ap(f)(ap(f) − pk−1ε0(p)) (mod L).

By the assumption C ≡ 0 (mod L), we have either a0(E′) ≡ 0 (mod L), or there
exists p0 |N , p0 > B, such that ap0(f)(ap0(f) − pk−1

0 ε0(p0)) ≡ 0 (mod L). Define
then

E′′ :=

{
E′ if a0(E′) ≡ 0 (mod L);

E′bp0
p0

otherwise
with

bp0 =

{
0 if ap0(f) ≡ 0 (mod L);

pk−1
0 ε0(p0) if ap0(f) ≡ pk−1

0 ε0(p0) (mod L).

By Corollary 4.14, E′′ still lies in Mk(N ′, ε), has L-integral Fourier coefficients, is
an eigenform for the Hecke operators at level N ′ of index less than B, for any prime
p ≤ B, we have ap(E′′) ≡ ap(f ′) (mod L), and its constant Fourier coefficient
vanishes modulo L. By Corollary 3.19, we finally get E′′ ≡ f ′ (mod L), and we
therefore have ρf,λ

∼= ε1 ⊕ χk−1
� ε2.

Remark 4.21. Notice that we could have always taken r = 4 from the start (i.e.
from (4.2)) without modifying any of the results of Sec. 4. The version of Theo-
rems 4.15 and 4.20 we exposed in the introduction assumed that. The coefficient
C is then equal to zero, and we get back the results announced previously.

From Theorem 4.20 we also deduce a bound for the reducible primes in terms
of N , k and ε only.

Theorem 4.22. Assume that ρf,λ is reducible, then one of the following conditions
holds.

• � ≤ k + 1;
• � |Nϕ(N);
• there exists (ε1, ε2) ∈ RN,ε such that � divides the algebraic norm of one the

following nonzero quantities

(1) Bk,(ε−1
1 ε2)0

;
(2) pk − (ε1ε−1

2 )0(p) for a prime p such that p | c1c2, p � c0 with c0 the conductor
of (ε1ε−1

2 )0.

Proof. Assume � > k+1 and � � Nϕ(N). From Proposition 4.19, if ρf,λ is reducible,
we have a congruence modulo L between the cuspidal modular form f ′, and the
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Eisenstein series E′. Therefore, by Katz’ q-expansion principle (see [15]) the con-
stant coefficient of E′ must be congruent to 0 modulo L at every cusp. By Propo-
sition 3.30, the constant coefficient of E′ at the cusp 1

c2
divides the quantity

−ε1(−1)
W ((ε1ε−1

2 )0)
W (ε−1

2 )

Bk,(ε−1
1 ε2)0

2k

(
c2

c0

)k

×
∏

p|c1c2

(
1 − (ε1ε−1

2 )0(p)
pk

) ∏
p|N ′

(
1 − ε1(p)ε−1

2 (p)
pk

)(
1 − 1

p

)
.

Let us look at the prime factors of the norm of this coefficient.

• The number −ε1(−1) is a unit. Its norm has no prime factor.

• By Proposition 2.6, the prime factors of the norm of W ((ε1ε−1
2 )0)

W (ε2) ( c2
c0

)k are only
powers of prime factors of N . By assumption, � does not divide them.

• For p |N ′, we have 1− 1
p = p−1

p . By the assumption � � Nϕ(N), this cannot vanish
modulo L.

• For p |N ′ again, let us prove that the prime factors of the norm of (1 −
ε1(p)ε−1

2 (p)

pk ) are redundant with the ones of N and (pk − (ε1ε−1
2 )0(p)). Note

that we either have p = 2 and (k, ε1, ε2) = (2,1,1), or N ′ = N . In the first

case we have 1 − ε1(p)ε−1
2 (p)

pk = 3
4 . This cannot vanish modulo L by assump-

tion because 2 and 3 are less or equal to k + 1 = 3. Otherwise, we have
p |N , then either p | c0 and 1 − ε1(p)ε−1

2 (p)

pk = 1 
≡ 0 (mod L), or p � c0 and

1 − ε1(p)ε−1
2 (p)

pk = pk−(ε1ε−1
2 )0(p)

pk . Therefore, � must divide the algebraic norm
of pk − (ε1ε−1

2 )0(p).

• Finally � divides either the norm of
B

k,(ε−1
1 ε2)0
2k and thus Bk,(ε−1

1 ε2)0
because 2k

is nonzero modulo L by assumption, or pk − (ε1ε−1
2 )0(p) for p | c1c2. This final

quantity contains only prime factors of N if p | c0. We can therefore consider only
the primes p � c0.

5. Dihedral Representations

Let k ≥ 2, N ≥ 1 be two integers, and ε be a Dirichlet character modulo N

of conductor c. Let f ∈ Snew
k (N, ε) be a newform. We study in this section the

case where ρf,λ has projective dihedral image. The main result of this section is
Theorem 5.10. The strategy used to prove this result is similar to the one of [3,
Theorem 3.2] but several technicalities arise when dealing with forms with non-
trivial characters. However, our method is based on a more refined use of the local
description of ρf,λ at the prime dividing the level, leading to an improved bound in
the trivial character case.
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5.1. CM forms

Let ϕ be a Dirichlet character of modulus M . We define the twist of f by ϕ as
the only newform f ⊗ ϕ such that ap(f ⊗ ϕ) = ϕ(p)ap(f) for all but finitely many
primes p. We have the following result from [2, §§1–3].

Proposition 5.1. With the above notations f⊗ϕ ∈ Sk(lcm(N,M2, cM), ϕ2ε). For
all primes p � M, we have ap(f⊗ϕ) = ϕ(p)ap(f) and the p-part of the level of f ⊗ϕ
is equal to pvp(N).

Moreover, if vp(N) = vp(c) and ϕp = ε−1
p , where ϕp and εp denote the p-parts

of ϕ and ε, respectively, then the p-parts of the levels of f ⊗ϕ and f are equal, and
we have ap(f ⊗ ϕ) = ε′p(p)ϕ

′
p(p)ap(f), with ap(f) the complex conjugate of ap(f)

and ε′p and ϕ′
p are the prime-to-p part of ε and ϕ, respectively.

We take this definition of CM forms from [28, p. 34].

Definition 5.2. Suppose ϕ is not the trivial character. The form f is said to have
complex multiplication by ϕ if ϕ(p)ap(f) = ap(f) for all primes p in a set of primes
of density 1.

5.2. Study of the ramification of a character

Let � be a prime number and let λ be a prime ideal of Of above �. We assume for
the rest of the section that � 
= 2. Consider the projectivization

Pρf,λ : GQ

ρf,λ−→ GL2(Fλ) → PGL2(Fλ)

and assume that Pρf,λ(GQ) is a dihedral group D2n of order 2n with � � n. Let C be
the unique cyclic subgroup of order n in Pρf,λ(GQ). It is a normal subgroup, and
we get a quadratic character

θf,λ : GQ

Pρf,λ−→ D2n → D2n/C ∼= Z/2Z.

Recall that the elements in D2n\C are of order 2 and hence have all trace 0. Let us
focus on the ramification of the character θf,λ. Let cf,λ be the conductor of θf,λ seen
as a Dirichlet character. Because ρf,λ is unramified outside N�, the prime factors
of cf,λ are among the ones of N�. Let Kf,λ be the number field fixed by the kernel
of θf,λ. It is a quadratic extension of Q, and we can write Kf,λ = Q(

√
df,λ) with

df,λ ∈ Z square-free. By the conductor-discriminant formula [26, VII. (11.9)], we
have

cf,λ =

{|df,λ| if df,λ ≡ 1 (mod 4),

4|df,λ| if df,λ ≡ 2, 3 (mod 4).

We thus have the following result.
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Proposition 5.3. Let p be a prime number dividing cf,λ. Then we have either
p 
= 2, p |N� and vp(cf,λ) = 1, or p = 2, p |N and vp(cf,λ) ∈ {2, 3}.

We now prove the following lemma.

Lemma 5.4. Let G be a finite group and let K be a field of positive characteristic
�. Let ρ : G → GL2(K) be a morphism with values in the subgroup of GL2(K) of
upper triangular matrices. Put ρ =

(
χ1 c
0 χ2

)
. If the order of Pρ is prime to �, then

Im(Pρ) ∼= Im(χ1χ
−1
2 ).

Proof. From the isomorphisms G/ ker(χ1χ
−1
2 ) ∼= Im(χ1χ

−1
2 ) and G/ ker(Pρ) ∼=

Im(Pρ), it suffices to prove that ker(Pρ) = ker(χ1χ
−1
2 ).

Let σ ∈ ker(Pρ). There exists λ ∈ K such that ρ(σ) = λI2, and we immediately
have χ1(σ) = χ2(σ). Therefore, σ ∈ ker(χ1χ

−1
2 ).

Let σ ∈ ker(χ1χ
−1
2 ) and let λ := χ1(σ) = χ2(σ). We then have

ρ(σ) =

(
λ c(σ)

0 λ

)
.

The order of ρ(σ) in PGL2(K) is equal to 1 if c(σ) = 0 and to � if not. By assumption,
the image of Pρ is of order prime to �. Thus c(σ) = 0 and σ ∈ ker(Pρ).

We first study the ramification of θf,λ at �.

Proposition 5.5. Assume � � N and � > k. Then, with the terminology of Propo-
sition 1.2, we have the following.

(1) If f is ordinary at λ and � 
= 2k − 1, then θf,λ is unramified at �;
(2) If f is not ordinary at λ and � 
= 2k − 3, then θf,λ is unramified at �.

Proof. We are under the hypotheses of Proposition 1.2.

• If f is ordinary at λ, then we have

ρf,λ|I�
∼=
(
χk−1

� 	

0 1

)
.

The order of the image of Pρf,λ is prime to �. Therefore, so is the one of ρf,λ|I�
.

By Lemma 5.4, we have Im(Pρf,λ) ∼= Im(χk−1
� ). The image of χk−1

� is a cyclic
group of order �−1

gcd(�−1,k−1) . If � > k and � 
= 2k−1, it is greater than 2. Therefore,
the image of Pρf,λ is necessarily included in C and θf,λ is unramified at �.

• If f is not ordinary at λ, then we have

ρf,λ|I�

∼=
(
ψk−1 0

0 ψ�(k−1)

)
.
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By Lemma 5.4, Im(Pρf,λ) is isomorphic to the image of ψ(k−1)(�−1). It is of order
�+1

gcd(�+1,k−1) which is again greater than 2 if we assume � > k and � 
= 2k− 3. We
conclude as before.

We now look at the ramification at the primes p |N , p 
= �.

Proposition 5.6. Let p be a prime number dividing N and different from �.

(1) If vp(N) = 1 and vp(c) = 0, then θf,λ is unramified at p.
(2) Assume vp(N) = vp(c). If θf,λ is ramified at p, then the p-parts of ε and θf,λ

are equal modulo λ (in particular, εp has order 2 modulo λ).

Proof. (1) By Proposition 1.3, the restriction of ρf,λ at an inertia subgroup Ip at
p, is given by

ρf,λ|Ip
∼=
(
1 	

0 1

)
.

By assumption, the order of image of Pρf,λ is prime to �. Therefore, by
Lemma 5.4 Im(Pρf,λ) is trivial, and Pρf,λ is unramified at p, as well as θf,λ.

(2) By Proposition 1.3, we have

ρf,λ|Ip
∼= 1⊕ ε|Ip

.

As a character of GQ, ε factors through the group Gal(Q(ζN )/Q). More-
over, an inertia subgroup at p in Gal(Q(ζN )/Q) is given by the group
Gal(Q(ζN )/Q(ζpvp(N))) ∼= (Z/pvp(N)Z)×. Thus, as a Dirichlet character, the
restriction of ε to Ip is εp. By Lemma 5.4, we thus have Pρf,λ(Ip) ∼= εp(Ip). If
θf,λ is ramified at p, then its image must have a non-trivial intersection with
D2n\C. Therefore, it is isomorphic to Z/2Z. We deduce that the reduction of εp

modulo λ is of order 2, and that the p-part of θf,λ corresponds to the reduction
of εp.

5.3. Proof of the main result

In order to prove the main result of this section, consider the form

g = f ⊗ θf,λ.

It is by construction a newform of weight k, character ε, and we have the following.

Proposition 5.7. The Galois representations ρf,λ and ρg,λ are isomorphic.

Proof. Because f and g have same weight and character, the determinants of ρf,λ

and ρg,λ are the same. Let p be a prime not dividingN�. By Propositions 5.1 and 5.3,
the representations are both unramified at p and their traces at a Frobenius element
at p are the reductions modulo λ of ap(f) and ap(g) = θf,λ(p)ap(f), respectively.
If θf,λ(p) = 1, then the traces agree. Else, if θf,λ(p) = −1, then by definition of

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

ap
tis

te
 P

ea
uc

el
le

 o
n 

12
/2

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 23, 2021 11:54 WSPC/S1793-0421 203-IJNT 2250060

46 B. Peaucelle

θf,λ we have Tr(ρf,λ(Frobp)) = 0 and the traces agree again. By Brauer–Nesbitt
theorem [11, Lemme 3.2], we have ρf,λ

∼= ρg,λ.

From now on, let assume that � > k, � /∈ {2k−1, 2k−3}. From Proposition 5.5, it
means that the character θf,λ is unramified at �. The following proposition contains
many information about the level and the Fourier coefficients of g.

Proposition 5.8. Assume that � � Nϕ(N). Write Ng for the level of g and let p
be a prime number.

(i) If either p � N, or vp(N) = 1 and vp(c) = 0, then vp(Ng) = vp(N) and
ap(g) = θf,λ(p)ap(f).

(ii) If vp(N) = vp(c) ≥ 1, then vp(Ng) = vp(N) and ap(g) = θf,λ(p)ap(f) if θf,λ

is unramified at p, and ap(g) = ap(f)ε′p(p)(θf,λ)′p(p) otherwise, where ε′p and
(θf,λ)′p are the prime-to-p parts of ε and θf,λ, respectively.

(iii) If vp(N) ≥ 2 and vp(c) < vp(N), then vp(Ng) ≤ vp(N) + 2 min(vp(N), vp(2)).

In particular, we have Ng |N gcd(N, 2)2.

Proof. (i) If p � N then θf,λ is unramified at p by construction if p 
= �, and by
Proposition 5.5 if p = �. If vp(N) = 1 and vp(c) = 0, then by Proposition 5.6,
θf,λ is also unramified at p. By Proposition 5.1, we therefore have vp(Ng) =
vp(N) and ap(g) = θf,λ(p)ap(f).

(ii) If vp(N) = vp(c). Then either θf,λ is unramified at p, and we again have
vp(Ng) = vp(N) and ap(g) = θf,λ(p)ap(f), or it is ramified. In this latter case,
by Proposition 5.6, we have εp ≡ (θf,λ)p (mod λ). As we assumed � � ϕ(N), by
Lemma 2.7, we get that εp has order 2 and that (θf,λ)p = εp = ε−1

p . Therefore,
by Proposition 5.1, we have vp(Ng) = vp(N) and ap(g) = ap(f)ε′p(p)(θf,λ)′p(p).

(iii) Finally assume vp(N) ≥ 2 and vp(c) < vp(N). If p 
= 2, then we have
vp(cf,λ) = 1 and by Proposition 5.1 we find that vp(Ng) ≤ vp(N). Assume
that p = 2 and let us look at the Artin conductors of ρf,λ and ρg,λ. By Propo-
sition 5.7, they are equal. Moreover, by Proposition 1.4 the difference between
the 2-adic valuations of N and N(ρf,λ), and of Ng and N(ρg,λ), respectively,
cannot be greater than 2. Therefore, we have

v2(Ng) ≤ v2(N(ρg,λ)) + 2 = v2(N(ρf,λ)) + 2 ≤ v2(N) + 2.

Finally, consider the set P = {p prime, vp(N) ≥ 2 and vp(c) < vp(N)}, and with
the notations of Corollary 3.26, define

h := g
(0)p∈P

P .

Proposition 5.9. Assume that � � Nϕ(N). The form h is of weight k, character ε,
and level dividing N gcd(N, 2)2. Moreover, it is a normalized eigenform for all the
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Hecke operators at level N gcd(N, 2)2 and for all prime numbers p, we have

ap(h) =

{
ap(g) if p /∈ P,

0 if p ∈ P.

Proof. The computation of the weight and the character of h follows from Corol-
lary 3.26 as well as Fourier coefficients of h. Write Nh for the level of h and Ng for
the level of g. With the notations of Corollary 3.26, we have Nh = Ng

∏
p∈P p

np

and h is an eigenform for all the Hecke operators at level Nh. Let us prove that Nh

divides N gcd(N, 2)2.
If np = 0, there is nothing to do. If np = 2, then p does not divide the level

of g. By definition of P we have vp(Nh) = vp(Ng) + 2 = 2 ≤ vp(N). If np = 1,
then we have p |Ng and ap(g) 
= 0. Moreover, the character of g is ε. Therefore,
by Proposition 1.1 we cannot have vp(Ng) ≥ 2 and vp(Ng) > vp(c). However,
by assumption we have vp(N) ≥ 2 and vp(N) > vp(c). We conclude that either
vp(Ng) = vp(c) < vp(N), or vp(Ng) ≤ 1 < vp(N). In every case we have vp(Nh) =
vp(Ng) + 1 ≤ vp(N).

Finally, to prove that h is an eigenform for all the Hecke operators at level
N gcd(N, 2)2, we just have to prove that the prime divisors of Nh and N gcd(N, 2)2

are the same. This is clear from Proposition 5.8 for the prime numbers outside P. If
p ∈ P, then the p-adic valuation of the level of h is also positive by Corollary 3.26.
This finishes the proof.

We now prove our main result.

Theorem 5.10. Assume ρf,λ has dihedral projective image. If N = 1, then we
have � ≤ k or � ∈ {2k − 1, 2k − 3}. Else, if N ≥ 2 and f does not have complex
multiplication, then we have

� ≤
(
2N

k−1
2

)[Kf :Q]

× max

((
k

3
(2 log log(N) + 2.4)

) k−1
2

,

(
5
2
N

k−1
2

))[Kf :Q]

.

Proof. Assume that � > k, � /∈ {2k−1; 2k−3} and � � Nϕ(N). If N = 1, then θf,λ

is unramified everywhere and thus trivial, which is a contradiction. Assume now
that N ≥ 2. Because f does not have complex multiplication, there exists some
prime number p such that ap(f) 
= ap(h). Moreover, from Proposition 5.9, f and h
are both modular forms of weight k, level N gcd(N, 2)2, and character ε, that are
eigenforms for all the Hecke operators at this level. Therefore, p must be less than
B = kN gcd(N,2)2

12

∏
q prime

q|N
(1 + 1

q ). Indeed, because f and h are cusp eigenforms of

the same weight, level and character, if aq(f) = aq(h) for all primes q ≤ B, then we
would get an(f) = an(h) for all integers n ≤ B, and by Proposition 3.20, f = h.

We treat various cases for p.

• If p = �, then we have � ≤ B.
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• If p � N�, then from Propositions 5.8 and 5.9, we have ap(h) = ap(g) =
θf,λ(p)ap(f). This implies that θf,λ(p) = −1 and by Proposition 5.7, we get
ap(f) ≡ 0 (mod λ).

• If vp(N) ≥ 2 and vp(N) > vp(c), then by Propositions 1.1 and 5.9, we have
ap(f) = 0 = ap(h). We cannot have ap(f) 
= ap(h) in this situation.

• If vp(N) = 1 and vp(c) = 0, then by Propositions 5.8 and 5.9, we have ap(h) =
ap(g) = θf,λ(p)ap(f) and vp(Ng) = 1. Therefore, we have θf,λ(p) = −1 and by
Propositions 1.3 and 5.7, we get(

pap(f) 	

0 ap(f)

)
∼=
(−pap(f) 	

0 −ap(f)

)
.

Hence, we either have ap(f) ≡ 0 (mod λ), or p+ 1 ≡ 0 (mod �).
• Finally, assume that vp(N) = vp(c). By Propositions 5.8 and 5.9, we have ap(h) =
ap(g) and vp(Ng) = vp(N). Therefore, by Propositions 5.7 and 1.3, we have an
isomorphism of representations of Gp:

μ(ap(f)) ⊕ μ(ap(f))χk−1
� ε|Gp

∼= μ(ap(h)) ⊕ μ(ap(h))χk−1
� ε|Gp

.

The second character of each representation is ramified at p, while the first is not.
We deduce that we have ap(f) ≡ ap(h) (mod L).

If θf,λ is unramified at p, we have by Proposition 5.8, ap(h) = θf,λ(p)ap(f),
and therefore θf,λ(p) = −1 and ap(f) ≡ 0 (mod λ).

If θf,λ is ramified at p, we have from Propositions 5.8 and 5.9,

ap(h) = ε′p(p)(θf,λ)′p(p)ap(f) ≡ ap(f) (mod λ).

We moreover know from Proposition 1.1 that ap(f)ap(f) = pk−1. Therefore, we
get that ap(f)2 ≡ ε′p(p)(θf,λ)′p(p)pk−1 (mod λ).

To sum up, we have either � ≤ B, or ap(f) ≡ 0 (mod λ), or p |N and p + 1 ≡
0 (mod �), or p |N and ap(f)2 ≡ ε′p(p)2(θf,λ)′p(p)pk−1 (mod λ). Using Deligne’s
bounds for the coefficients of a newform (see [10, Théorème 8.2]) and Lemma 3.22,
this means that either � ≤ N + 1, or

� | |Norm(ap(f))| =
∏

σ:Kf ↪→C

|σ(ap(f))|

≤ (2p
k−1
2 )[Kf :Q]

≤ (2N
k−1
2 )[Kf :Q]

(
k

3
(2 log log(N) + 2.4)

) k−1
2 [Kf :Q]

,

or

� | |Norm(ap(f)2 − ε′p(p)
2(θf,λ)′p(p)p

k−1)|

≤
∏

σ:Kf ↪→C

(|σ(ap(f)2)| + pk−1)

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

ap
tis

te
 P

ea
uc

el
le

 o
n 

12
/2

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 23, 2021 11:54 WSPC/S1793-0421 203-IJNT 2250060

Explicit small image theorems for residual modular representations 49

≤ (5pk−1)[Kf :Q]

≤ (5Nk−1)[Kf :Q]

≤ (2N
k−1
2 )[Kf :Q] ×

(
5
2
N

k−1
2

)[Kf :Q]

.

We therefore get the wanted result.

6. Numerical Applications

6.1. Checking the reducibility

We explain here how to use Theorems 4.15 and 4.20 to explicitly compute the prime
ideals λ for which the representation ρf,λ is reducible. We begin by discussing the
dependency of the set RN,k,ε(L) (see Definition 4.8) in the place L.

Proposition 6.1. Let N ≥ 1 and k ≥ 2 be integers, and let ε be a Dirichlet
character modulo N . Let � be a prime number and let L be a place of Q above �.
The set RN,k,ε(L) depends only on L ∩ Q(ε) (and on N, k and ε).

Proof. Write πL for the projection modulo L, and TL for the associated Teichmüller
lift (see Sec. 2.2). Recall that for x ∈ F

×
� , TL(x) is the only root of unity of order

prime to � and such that πL(TL(x)) = x.
We first prove that the map TL ◦ πL depends only on �. Let ζ be a root of unity

of order n = �mq with m ≥ 0 and � � q. We can then write ζ = ζ�ma · ζqb, with
� � b and a prime to q. Because ζ is a root of unity of order n, ζ�ma is a root of
unity of order q and ζqb is a root of unity of order �m. From Lemma 2.7, we get
ζ ≡ ζ�ma (mod L), and TL ◦ πL(ζ) = ζ�ma. Therefore, it depends only on �.

Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L). The only dependency on the place L is the
congruence

χk−1
� ε ≡ χm1+m2

� ε1ε2 (mod L).

Decompose ε as ε�ε
′, where ε� is the �-part of ε, and ε′ is unramified at �. Looking

at the �-part of the congruence in one hand, and at the prime-to-� part in another
hand, the congruence is equivalent to

χk−1
� ε� ≡ χm1+m2

� (mod L) and ε′ ≡ ε1ε2 (mod L). (6.1)

Applying TL to the second equation, we get TL ◦ πL(ε′) = TL ◦ πL(ε1ε2). We have
seen that this depends only on �. Let us look at the first equation. The projection
of ε� modulo L depends only on L∩Q(ε). Moreover, πL(ε�) is a character modulo L

of conductor �. Therefore, there exists an integer k� between 0 and �−1, depending
only on L∩Q(ε), such that πL(ε�) = χk�

� . The equation χk−1
� ε� ≡ χm1+m2

� (mod L)
is therefore equivalent to k + k� − 1 ≡ m1 + m2 (mod � − 1) and depends only
on L ∩ Q(ε).
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Notice that we have in fact proved that RN,k,ε(L) depends only on L ∩ Q(TL ◦
πL(ε�)) but we will only use what we have stated. A practical application of this
result is that we can compute the set RN,k,ε(L) while knowing only a prime ideal λ
below L in a finite extension of Q(ε), like Kf for example. For λ a prime ideal in an
extension of Q(ε), we will freely write RN,k,ε(λ) for the set RN,k,ε(L) for any place
L above λ. We also deduce from Proposition 6.1, a procedure to compute RN,k,ε(λ):

Algorithm 6.2. Input: Two integers N ≥ 1, k ≥ 2, a Dirichlet character ε mod-
ulo N , and a prime ideal λ in a finite extension of Q(ε) above a prime number �.
Output: The set RN,k,ε(λ).

(1) Compute ε� and ε′, the �-part and prime-to-� part of ε, respectively.
(2) Compute the unique Dirichlet character ε′′ modulo N such that ε′′ has prime-

to-� order, is unramified at � and ε′ε′′−1 has order a power of �. This corresponds
to the character TL ◦ πL(ε′) for any place L above λ.

(3) Compute the integers k� such that 0 ≤ k� ≤ �− 2 and for all integer 1 ≤ n ≤ N

prime to N , ε�(n) ≡ nk� (mod λ). We then have ε� ≡ χk�

� (mod λ).
(4) Compute the set MN,k,ε(λ) of pairs of integers (m1,m2) such that

0 ≤ m1 ≤ m2 < �− 1 and m1 +m2 ≡ k + k� − 1 (mod �− 1).
(5) Compute the set EN,k,ε(λ) of pairs of Dirichlet characters (ε1, ε2) of conductor

(c1, c2) and such that ε1 and ε2 have prime-to-� order, are unramified at �,
satisfy ε1ε2 = ε′′ and for all primes p 
= �, we have vp( N

c1c2
) ∈ {0, 1, 2}.

(6) Return the set EN,k,ε(λ) ×MN,k,ε(λ) = RN,k,ε(λ).

We now give the two main algorithms that follows from Theorems 4.20 and 4.15,
respectively. The first algorithm computes the prime ideals λ of Of , of residual
characteristic � such that � > k + 1 and � � Nϕ(N), for which ρf,λ is reducible,
together with the description of ρf,λ. The correctness of the algorithm is granted
by Theorem 4.20.

Algorithm 6.3. Input: A newform f , described by its Fourier coefficients
(an(f))n≥0 as elements of the number field Kf , together with its level N , weight k,
and character ε.
Output: The set of prime ideals λ of Of of residual characteristic � such that
� > k + 1 and � � Nϕ(N), for which ρf,λ is reducible, together with the shape
of ρf,λ.

(1) Set Red(f) = ∅.
(2) Compute the set RN,ε (see Definition 4.17).
(3) For (ε1, ε2) ∈ RN,ε,

(a) Compute r, C, and B defined in (4.2), and Theorem 4.20, respectively.
(b) Compute the set P (ε1, ε2) of prime divisors of the gcd of the algebraic

norms of

• C;
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• ap(f) − ε1(p) − pk−1ε2(p), for p � Nr, p ≤ B;
• and ap(f)(ap(f) − ε1(p))(ap(f) − pk−1ε2(p)), for p |N , p � r, p ≤ B,

that are bigger than k + 1 and do not divide Nϕ(N). By Theorem 4.20,
these are the only prime numbers bigger than k+1 and not dividing Nϕ(N)
for which ρf,λ can be reducible.

(4) For (ε1, ε2) ∈ RN,ε and for � ∈ P (ε1, ε2),

(a) Compute the prime ideals λ of Of above �.
(b) For each such λ, compute a prime ideal L in the ring of integers ofKf(ε1, ε2)

above λ.
(c) For each such L, check the following congruences.

• C ≡ 0 (mod L);
• ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L) for all p � Nr, p ≤ B;
• ap(f)(ap(f) − ε1(p))(ap(f) − pk−1ε2(p)) ≡ 0 (mod L) for all p |N , p � r,
p ≤ B.

If they all hold, add (λ, ε1, ε2, 0, k− 1) to Red(f). By Theorem 4.20, ρf,λ is
reducible and we have ρf,λ

∼= ε1 ⊕ χk−1
� ε2.

(5) Return Red(f).

We now turn to the computation of the reducible primes of residue characteris-
tic � such that � ≤ k + 1 or � |Nϕ(N). The correctness of the following algorithm
follows by Theorem 4.15.

Algorithm 6.4. Input: A newform f , described by its Fourier coefficients
(an(f))n≥0 as elements of the number field Kf , together with its level N , weight k,
and character ε.
Output: The set of prime ideals λ of Of of residual characteristic � such that
� ≤ k+ 1 or � |Nϕ(N), for which ρf,λ is reducible, together with the shape of ρf,λ.

(1) Set Red(f) = ∅.
(2) Compute the set P of prime numbers � such that � ≤ k + 1 or � |Nϕ(N).
(3) For each � ∈ P , compute the set P (�) of prime ideals λ in Of above �.
(4) For each � ∈ P and for each λ ∈ P (�), compute RN,k,ε(λ) using Algorithm 6.2.

We can do this because we have Q(ε) ⊂ Kf .
(5) For each � ∈ P , for each λ ∈ P (�), and for each (ε1, ε2,m1,m2) ∈ RN,k,ε(λ),

(a) Compute a prime ideal L in the ring of integers of Kf(ε1, ε2) above λ.
(b) Compute r and B defined in (4.2) and Theorem 4.15, respectively.
(c) Check the following congruences.

• ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L) for all p � Nr, p ≤ B;
• ap(f)(ap(f) − pm1ε1(p))(ap(f) − pm2ε2(p)) ≡ 0 (mod L) for all p |N ,
p � r, p ≤ B.
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If they all hold, add (λ, ε1, ε2,m1,m2) to Red(f). By Theorem 4.15, ρf,λ is
reducible and we have ρf,λ

∼= χm1
� ε1 ⊕ χm2

� ε2.

(6) Return Red(f).

The correctness of Algorithms 6.3 and 6.4 follows directly from Theorems 4.20
and 4.15, respectively. The most time-consuming computation is step 3(b) of Algo-
rithm 6.3. This depends on the size of the “big” reducible primes. We have imple-
mented these algorithms in PARI/GP [36], and we have been able to execute them
as long as the degree of Kf keeps reasonable (say [Kf : Q] ≤ 20). The second
limiting factor being the weight k that controls the size of the Fourier coefficients
of f . Our code is available on GitHub at the following address:

https://github.com/bpeaucelle/mfreducible

6.2. Numerical examples

We present here some examples of applications of the algorithms described above to
compute the reducible primes of a given newform. Throughout this section, we use
the Conrey representation (εa(b))b∧a=1 for the Dirichlet characters of modulus a.
This is the way they are described in the LMFDB for example (and in some extent
in PARI/GP). Notice that there would be no possible confusion with the characters
ε1, ε2 from the algorithms above.

6.2.1. A concrete example

Consider the space Snew
7 (7, ε7(3)). It has dimension 6 over C and is generated by

2 newforms, f1 and f2, up to conjugation by Gal(Q/Q(ε7(3))). We have Kf1 =
Q[t]/(t2 − t + 1) and Kf2 = Q[x]/(x4 + 2x2 + 4). Notice that (1, x, x2

2 ,
x3

2 ) is an
integer basis of Of2 , and that ε7(3) sends 3 to t in Kf1 and to −x2

2 in Kf2 . The
q-expansions of f1 and f2 are given by

f1 = q + 12tq2 + (−7t− 7)q3 + (80t− 80)q4 + (−105t+ 210)q5

+ (−168t+ 84)q6 − 343q7 +O(q8),

f2 = q +
(

3
2
x3 + 2x2 + 3x

)
q2 +

(
13x3 − 3

2
x2 + 13x+ 3

)
q3

+ (15x2 − 24x+ 30)q4 +
(
−25x3 − 25

2
x2 + 50x− 50

)
q5 +O(q6).

The set of prime numbers less than k + 1 = 8 or dividing Nϕ(N) = 42 is therefore
{2, 3, 5, 7}. We treat those primes separately in what follows.

• � = 2: The ideal 2Of1 is prime and we have 2Of2 = ((x, 2)Of2)
2. Because, the

ideal generated by 2 in Z[ε7(3)] is prime, we have

R7,7,ε7(3)(2Of1) = R7,7,ε7(3)((2, x)Of2 ) = {(1, ε7(4), 0, 0); (ε7(4),1, 0, 0)}.
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In fact, the two elements of this set give rise to the same representation. We only
study the case (ε1, ε2,m1,m2) = (ε7(4),1, 0, 0). According to Theorem 4.15, we
have

k′ = 2, r = 1, N ′ = 7, a = 0, b = 3, k̃ = 10, B = 6 +
2
3
.

To check the reducibility of ρf1,(2) and ρf2,(2,x) we only have to check the third
and fifth coefficients of f1 and f2. The table below shows the reduction modulo
the prime ideals above of ap(fi) − 1 − ε7(4)(p) for i = 1, 2, and p = 3, 5. From
Theorem 4.15, we know that ρfi,λ is reducible if and only if the row corresponding
to fi contains only zeros.

p 3 5

ap(f1) − (1 + ε7(4)(p)) (mod 2) 0 0

ap(f2) − (1 + ε7(4)(p)) (mod (2, x)) 0 0

Therefore, we have ρf1,(2)
∼= 1⊕ ε7(4) and ρf2,(2,x)

∼= 1⊕ ε7(4).
• � = 3: We have 3Of1 = ((3, t + 1)Of1)2 and 3Of2 = ((3, x2 + 1)Of2)2. As for
� = 2, the ideal generated by 3 in Z[ε7(3)] is prime. Therefore, we have

R7,7,ε7(3)((3, t+ 1)Of1) = R7,7,ε7(3)((3, x
2 + 1)Of2)

= {(1, ε7(6)); (ε7(6),1)} × {(0, 0); (1, 1)}.

As above, we treat only the cases (ε1, ε2,m1,m2) = (ε7(6),1, 0, 0) and
(ε7(6),1, 1, 1). According to Theorem 4.15, we have in both cases

k′ = 1, r = 1, N ′ = 7, a = 0, b = 4, k̃ = 11, B = 7 +
1
3
.

We have to look at the second, fifth and seventh coefficients of f1 and f2. Let
look at the second and fifth first.

p 2 5

ap(f1) − (1 + ε7(6)(p)) (mod (3, t+ 1)) 1 0

ap(f1) − (p+ pε7(6)(p)) (mod (3, t+ 1)) 2 0

ap(f2) − (1 + ε7(6)(p)) (mod (3, x2 + 1)) 2 0

ap(f2) − (p+ pε7(6)(p)) (mod (3, x2 + 1)) 0 0

From these computations, we deduce that the only representation that can
be reducible is ρf2,(3,x2+1), and that it can only be isomorphic to χ3 ⊕ χ3ε7(6).
To confirm this isomorphism, we finally have to check that there exists some
b7 ∈ {0, 7, 7ε7(6)(7)} = {0, 7} such that a7(f2) ≡ 7b7 (mod (3, x2 + 1)).
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We find that we have a7(f2) ≡ 7 (mod (3, x2 +1)). Therefore, the representation
ρf1,(3,t+1) is irreducible, and we have ρf2,(3,x2+1)

∼= χ3 ⊕ χ3ε7(6).
• � = 5: We have that 5 is prime in Of1 and 5Of2 = (5, x2 −2x−2)(5, x2 +2x−2).

There is again only one prime ideal above 5 in Z[ε7(3)] and we have

R7,7,ε7(3)(5Of1) = R7,7,ε7(3)(5, x2 ± 2x− 2)

= {(1, ε7(3)); (ε7(3),1)} × {(0, 2); (1, 1)}.
Looking at the congruences at p = 3 for f1 and p = 2 for f2, we have

a3(f1) − (1 + 32ε7(3)(3)) ≡ 4t+ 2 (mod 5),

a3(f1) − (ε7(3)(3) + 32) ≡ 2t+ 4 (mod 5),

a2(f2) − (1 + 22ε7(3)(2)) ≡
{

2 (mod (5, x2 − 2x− 2)),

4x (mod (5, x2 + 2x− 2)),

a2(f2) − (ε7(3)(2) + 22) ≡
{

2x+ 3 (mod (5, x2 − 2x− 2)),

2x+ 1 (mod (5, x2 + 2x− 2)),

a2(f2) − (2 + 2ε7(3)(2)) ≡
{

3x+ 2 (mod (5, x2 − 2x− 2)),

x (mod (5, x2 + 2x− 2)).

The only candidate remaining is (ε7(3),1, 1, 1) for ρf1,(5) (and (1, ε7(3), 1, 1)
which gives the same representation). We have

k′ = 1, r = 1, N ′ = 7, a = 0, b = 6, k̃ = 13, B = 8 +
2
3
.

We check the second, third and seventh coefficients, and we get

a2(f1) ≡ 2 + 2ε7(3)(2) (mod 5),

a3(f1) ≡ 3 + 3ε7(3)(3) (mod 5),

a7(f1) ≡ 7 (mod 5).

Therefore, the representations ρf2,(5,x2−2x−2) and ρf2,(5,x2+2x−2) are irreducible,
and we have an isomorphism ρf1,(5)

∼= χ5 ⊕ χ5ε7(3).
• � = 7: We have 7Of1 = (7, t − 5)(7, t− 3) and 7Of2 = (7, x − 1)(7, x − 2)(7, x +

2)(7, x+ 1). This time 7 decomposes in Z[ε7(3)] and we have

R7,7,ε7(3)(7, t− 3) = R7,7,ε7(3)(7, x± 1)

= {(1,1)} × {(0, 1); (2, 5); (3, 4)} and

R7,7,ε7(3)(7, t− 5) = R7,7,ε7(3)(7, x± 2)

= {(1,1)} × {(0, 5); (1, 4); (2, 3)}.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

ap
tis

te
 P

ea
uc

el
le

 o
n 

12
/2

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 23, 2021 11:54 WSPC/S1793-0421 203-IJNT 2250060

Explicit small image theorems for residual modular representations 55

For f1, looking at p = 2 leaves us only with (ε1, ε2,m1,m2) = (1,1, 2, 5) for
the ideal (7, t− 3) and (1,1, 1, 4) for (7, t− 5). In both cases we have to look at
congruences up to p = 5, and we get

ρf1,(7,t−3)
∼= χ2

7 ⊕ χ5
7 and ρf1,(7,t−5)

∼= χ7 ⊕ χ4
7.

For f2, looking at p = 3 leaves us with (1,1, 2, 5) for (7, x + 1), (1,1, 1, 4) for
(7, x+ 2), (1,1, 2, 3) for (7, x − 2), and (1,1, 3, 4) for (7, x− 1). In the first two
cases we have r = 1, and we have to look at congruences up to p = 5. In the last
two cases we have r = 4, and we have to check congruences up to p = 53 and
p = 67, respectively. In every case, Theorem 4.15 shows that the corresponding
representation is reducible. To sum up we have

ρf2,(7,x−1)
∼= χ3

7 ⊕ χ4
7, ρf2,(7,x+1)

∼= χ2
7 ⊕ χ5

7,

ρf2,(7,x−2)
∼= χ2

7 ⊕ χ3
7, ρf2,(7,x+2)

∼= χ7 ⊕ χ4
7.

We finally look at the prime numbers � > 7. We have

R7,ε7(3) = {(1, ε7(3)), (ε7(3),1)}.
Let (ε1, ε2) ∈ R7,ε7(3). We have r = 1, N ′ = 1, B = 4 + 1

3 , and

C(ε1, ε2) =

⎧⎪⎪⎨⎪⎪⎩
0 if (ε1, ε2) = (ε7(3),1);

−B7,ε7(3)

14
a7(fi)2 if (ε1, ε2) = (1, ε7(3)).

We first look at f1. We find that 43 is the only prime factor greater than 7 of the
gcd of the algebraic norms of C(ε1, ε2) and ap(f1) − ε1(p) − p6ε2(p), for p = 2, 3.
In Of1 we have 43Of1 = (43, t− 7)(43, t+ 6) and we get the following table.

(ε1, ε2) (1, ε7(3)) (ε7(3),1)

C(1, ε7(3))
ap(f1) − 1 − p6ε7(3)(p) ap(f1) − ε7(3)(p) − p6

p = 2 p = 3 p = 2 p = 3

(43, t− 7) 0 0 0 14 25

(43, t+ 6) 40 31 22 0 0

Therefore, we get ρf1,(43,t−7)
∼= 1⊕ χ6

43ε7(3) and ρf1,(43,t+6)
∼= ε7(3) ⊕ χ6

43.
We now turn to f2. Computing again the gcd of the algebraic norm of C(ε1, ε2)

and ap(f2) − ε1(p) − p7ε2(p), for p = 2, 3, we find that the only possible residue
characteristics are 97 and 3919. We have the following decompositions in Of2 :

97Of2 = (97, x− 19)(97, x− 5)(97, x+ 5)(97, x+ 19),

3919Of2 = (3919, x− 934)(3919, x− 621)(3919, x+ 621)(3919, x+ 934).
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(ε1, ε2) (1, ε7(3)) (ε7(3),1)

C(1, ε7(3))
ap(f2) − 1 − p6ε7(3)(p) ap(f2) − ε7(3)(p) − p6

p = 2 p = 3 p = 2 p = 3

(97, x− 19) 9 33 75 30 57

(97, x− 5) 0 0 0 8 66

(97, x+ 5) 0 80 15 88 81

(97, x+ 19) 11 3 18 0 0

(3919, x− 934) 3160 3231 1337 0 0

(3919, x− 621) 0 0 0 3042 609

(3919, x+ 621) 0 1685 2010 808 2619

(3919, x+ 934) 1455 3038 3047 3726 1710

Therefore, the representations ρf2,(97,x−19), ρf2,(97,x+5), ρf2,(3919,x+621) and
ρf2,(3919,x+934) are irreducible, and we have

ρf2,(97,x−5)
∼= 1⊕ χ6

97ε7(3), ρf2,(97,x+19)
∼= ε7(3) ⊕ χ6

97,

ρf2,(3919,x−934)
∼= ε7(3) ⊕ χ6

3919, ρf2,(3919,x−621)
∼= 1⊕ χ6

3919ε7(3).

The following table sums up all the cases for which ρfi,λ is reducible.

� f1 f2

2
(2) (2, x)

1⊕ ε7(4) 1⊕ ε7(4)

3 Irreducible
(3, x2 + 1)

χ3 ⊕ χ3ε7(6)

5
(5)

Irreducible
χ5 ⊕ χ5ε7(3)

7
(7, t − 3) (7, t − 5) (7, x − 2) (7, x − 1) (7, x + 1) (7, x + 2)

χ2
7 ⊕ χ5

7 χ7 ⊕ χ4
7 χ2

7 ⊕ χ3
7 χ3

7 ⊕ χ4
7 χ2

7 ⊕ χ5
7 χ7 ⊕ χ4

7

� > k + 1
(97, x − 5) (97, x + 19)

(43, t − 7) (43, t + 6) 1⊕ χ6
97ε7(3) ε7(3) ⊕ χ6

97

� � Nϕ(N)
1⊕ χ6

47ε7(3) ε7(3) ⊕ χ6
43 (3919, x − 934) (3919, x − 621)

ε7(3) ⊕ χ6
3919 1⊕ χ6

3919ε7(3)
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6.2.2. Irreducible everywhere representation

We present an example of a form which all residual representations are irreducible.
Fix (N, k, ε) = (35, 4,1). The space Snew

4 (35,1) has dimension 6 over C and contains
3 newforms up to conjugation by Gal(Q/Q). Let f be the newform of this space
which q-expansion is

f = q + (y + 4)q2 + (1 − 4y)q3 +O(q4),

where y is a root of X2 − 2, and generates Kf . We have in this case

R35,1 = {(1,1)}.
Therefore, by Theorem 4.22 the only prime ideals λ of Of for which ρf,λ can be
reducible are of residue characteristic � ∈ {2, 3, 5, 7} (because we have B4,1 = − 1

30 ).
Let us look at each of these cases.

• � = 2: We have 2Of = (2, y)2 and R35,4,1(2, y) = {(1,1, 0, 0)}. However, we have

Tr(ρf,(2,y)(Frob3)) ≡ a3(f) ≡ 1 (mod (2, y)) and

Tr((1⊕ 1)(Frob3)) ≡ 0 (mod (2, y)).

Therefore ρf,(2,y) is irreducible.
• � = 3: The ideal 3Of is prime, and we have R35,4,1(3) = {(1,1, 0, 1)}. However,

we have

Tr(ρf,(3)(Frob2)) ≡ a2(f) ≡ y + 1 (mod 3) and

Tr((1⊕ χ3)(Frob2)) ≡ 0 (mod 3).

Therefore, ρf,(3) is irreducible.
• � = 5: Again, 5 is prime in Of , and we have R35,4,1(5) = {(1,1, 0, 3); (1,1, 1, 2)}.

Looking at a Frobenius element at 2, we have

Tr(ρf,(5)(Frob2)) ≡ a2(f) ≡ y + 4 (mod 5)

and

Tr((1⊕ χ3
5)(Frob2)) ≡ 4 (mod 5),

Tr((χ5 ⊕ χ2
5)(Frob2)) ≡ 0 (mod 5).

Therefore, ρf,(5) is irreducible.
• � = 7: We have 7Of = (7, y − 3)(7, y + 3) and R35,7,1(7, y ± 3) = {(1,1)} ×
{(0, 3); (1, 2); (4, 5)}. However, for a Frobenius element at 7 we have{

Tr(ρf,(7,y−3)(Frob3)) ≡ 3 (mod (7, y − 3)),

Tr(ρf,(7,y+3)(Frob3)) ≡ 6 (mod (7, y + 3)),

and

Tr((1⊕ χ3
7)(Frob3)) ≡ 0 (mod 7),

In
t. 

J.
 N

um
be

r 
T

he
or

y 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

ap
tis

te
 P

ea
uc

el
le

 o
n 

12
/2

8/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 23, 2021 11:54 WSPC/S1793-0421 203-IJNT 2250060

58 B. Peaucelle

Tr((χ7 ⊕ χ2
7)(Frob3)) ≡ 5 (mod 7),

Tr((χ4
7 ⊕ χ5

7)(Frob3)) ≡ 2 (mod 7).

Therefore, the representations ρf,(7,y−3) and ρf,(7,y+3) are irreducible.

Thus, for all prime ideals λ in Of , the representation ρf,λ is irreducible.
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