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Let pg » be the residual Galois representation attached to a newform f and a prime
ideal A in the integer ring of its coefficient field. In this paper, we prove explicit bounds
for the residue characteristic of the prime ideals A such that p; \ is exceptional, that
is reducible, of projective dihedral image, or of projective image isomorphic to sy, Sa
or As. We also develop explicit criteria to check the reducibility of py y, leading to an
algorithm that computes the exact set of such \’s. We have implemented this algorithm
in PARI/GP. Along the way, we construct lifts of Katz’ 6 operator in characteristic zero,
and we prove a new Sturm bound theorem.
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0. Introduction
0.1. The setup

Let f be a newform of weight k > 2, level N > 1, and character ¢ : (Z/NZ)* — C*.
We denote by K; the number field generated by the Fourier coefficients of f, and
by Oy its ring of integers. Given a prime number ¢, let us write py , for the f-adic
representation attached to f by Deligne

¢:Gg — GLa (K5 ® Qy),

where Gg denotes the Galois group of an algebraic closure Q of Q. Choosing a
stable lattice for py,, we can assume it takes values in GL2(Of ® Z;). For a
prime ideal A of Oy, let us denote by Oy the completion of Oy at A
The decomposition Oy ® Zy = HM@ O¢.x, where the product runs over all the
prime ideals in Oy above ¢, gives rise to a Galois representation py with val-
ues in GL2(Oy,»). Reducing ps » modulo the maximal ideal of Oy \ and taking the
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semi-simplification, we finally get a residual representation p; \ : Gg — GLa(F»)
where IF\ denotes the residue field of Oy x. Notice that Pra does not depend on
the choice of the stable lattice. In this paper, we will be interested in the following
result which has been proved by Ribet in 1985 [29]:

Theorem 0.1 ([29]). For all but finitely many X\ the representation Py, is
irreducible. Furthermore, if [ is not a form with complex multiplication (see
Definition B.2), then for all but finitely many N, the order of the image of
Py is divisible by the residue characteristic of A.

For simplicity, we shall say that A is exceptional if one of the conclusions of
Ribet’s theorem does not hold. Let us denote by Pp; , the projectivization of py ,,
that is the composition of p; , with the canonical projection map from GLa(IF»)
to PGL2(F»). According to the classification of the subgroups of PGLy(Fy) and
PSLy(Fy) [I4, I1.8.27], if A is exceptional, then one of the following is true:

(1) the representation py ) is reducible;
(2) the image of Pp; , is a dihedral group Da, with £{n;
(3) the image of Pp; , is isomorphic to A4, &4 or As.

Therefore, Ribet’s theorem is equivalent to show that the above three cases occur
finitely many times (under the assumption that f is non-CM in the second case).

The theorem generalized results of Ribet from 1975 for N = 1 [27], which already
extended those of Serre and Swinnerton-Dyer from 1973 for N =1 and Ky = Q
[32] B5]. Although the first result of Ribet from 1975 gave an explicit description
of the prime ideals for which the associated representation is reducible, it was no
more the case in 1985. The second part of the theorem was already ineffective in
1975. The first step in making Ribet’s result effective has been accomplished by
Billerey and Dieulefait in 2014 [3]. Assuming the character of f is trivial, they gave
explicit criteria for the residue characteristics £ of A in terms of k and N, for p; \ to
be reducible. In the two other cases, they gave explicit bounds for ¢, in terms of k
and N.

0.2. Statement of results

In this paper, we extend the results of [3] to all newforms of arbitrary weight, level
and character. The argument used to deal with the third case given in [3] can be
applied without modifications to a form with non-trivial character. We recall their
result for the sake of completeness.

Theorem 0.2. If the image of Ppy \ is isomorphic to Uy, &4 or AUs, then either
C|N ort <4k — 3.

We now focus on the reducible and dihedral cases. The main idea to deal with
these cases is to translate them into congruences between modular forms. In the
dihedral case, we get a congruence between twists of f, while in the reducible case
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we deal with congruences involving Eisenstein series. To deduce a bound from a
congruence between two modular forms, the so-called Sturm bounds are usually
used. We generalize them to deal with modular forms of arbitrary weight, level and
character (see Proposition BI7T). In the dihedral projective image case, the bound
we get for the residue characteristic is the following.

Theorem 0.3 (Theorem [B.I0Q). Assume py, has dihedral projective image. If
N =1 then we have £ < k or ¢ € {2k — 1,2k — 3}. Else, if N > 2 and f does not
have complex multiplication, then we have

k=1 (K:Q
TN k (5 e
< (2N 2 ) x max 5(2 loglog(N) +2.4) , §N 2 .

This result gives us indeed an upper bound for ¢ in terms of N and k because
[K; : Q] can be bounded by the dimension of the C-vector space generated by the
newforms of weight k, level N and character ¢ (see for example [22]).

The most challenging case is when py ) is reducible. In this situation, we gener-
alize the results of [3 Sec. 2] to newforms of arbitrary character. The restriction on
the character in [3] was mainly due to a partial knowledge of the constant term of
FEisenstein series at arbitrary cusps. This computation has been done in full general-
ity in [4], allowing us to generalize their result. The following theorem then follows
from combining this technical result with a detailed study of modular reducible rep-
resentations, hence extending the strategy used for the proof of [3| Theorem 2.7].

Theorem 0.4 (Theorem [£.22)). Assume p; , to be reducible. Then one of follow-
ing holds:

(1) L<k+1,

(2) (| Ne(N);

(3) there exists a prime-to-£ primitive Dirichlet character n of conductor ¢ | N and
such that n(—1) = (—=1)* and ¢ divides the algebraic norm of one of the nonzero
following quantities:

(a) p* —n(p) for a prime number p| N;
(b) the kth Bernoulli number By, attached to n (see Definition 2.1]).

The precise study of reducible modular representations used in the proof of the
previous theorem is the main novelty of the present paper. The basic question we
consider is as follows: How to characterize the reducibility of p; y by a finite number
of explicit congruences? We give two answers to this question. A general one that
applies without any restriction on ¢ or f, and, under some assumptions on ¢, a
second one for which the number of congruences to check is independent from /. A
weaker form of our first main result in this direction is the following.

Theorem 0.5 (Theorem [A.T8]). The following are equivalent:

(1) Py is reducible;
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(2) Let £ be a place of Q above \. There exist two primitive Dirichlet characters
€1, g2 of conductor ¢1, ca, respectively, such that ¢ico | N, and two integers my,
meo such that 0 < m; < mg < € —2 and X;nlerzElEg = Xéf_lzs (mod £).
Define

- 3 4+ max(k, ma + 2my + 1) if ¢| N,
L+ 5+ max(k,mg +mqy +1) if £ N.

For every prime number p < N?% [1q prime(1+ é) and not dividing 20, we have

ql2N
o pt N and ap(f) = p™e1(p) +p™2ea2(p) (mod L);
e or, p|N and ay(f) = p™b, (mod L) for some b, in the set

{0,e1(p), p"2 "™ e2(p) }-
When this holds, we moreover have Py 5 = X" 1 © X, 2.

Notice that this result applies with no assumption on f and ¢. In particular,
it can be used to check the reducibility of p; \ for any given A, including the ones
which residue characteristic is small compared to the weight, or divides the level.
Such restrictions appear for instance in the work of Anni [Il, Algorithm 7.2.4], where
the author develops a different, bottom-up approach, toward these questions in the
context of modular forms a la Katz.

In the previous statement, the number of congruences to be satisfied in order to
prove the reducibility of p; \ depends not only on N, k and ¢, but also on £. Under
some assumptions on ¢, we have been able to remove this dependency in the bound.
A weaker form of our second main result can be stated as follows.

Theorem 0.6 (Theorem [A.20). Assume £ > k + 1 and £ t Np(N), where ¢
denotes the Euler totient function. The following are equivalent:

(1) Py is reducible.

(2) Let £ be a place of Q above \. There exist two primitive Dirichlet characters
€1, €9 of conductor ¢1, co respectively, such that ¢ico | N, and e169 = €. For all
odd primes p < 2ETT, p‘;%ne(l + %), we have

q

o p{ N and ay(f) = ei(p) +p*'e2(p) (mod L);
e p|N and a,(f) = b, (mod £) for some b, € {0,e1(p), p*Lea(p)}.

When this holds, we moreover have py \ = &1 @ X?‘ls_g,

We stress the fact that according to these latter two results, proving the
reducibility of p; ) requires checking almost N k?loglog(N) congruences (and
even Nkloglog(N) for the primes ¢ satisfying the assumptions ¢ > k + 1 and
1 Np(N)). Notice that the loglog(/N) part comes from the upper bound we prove
in Lemma
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To achieve such bound, we extensively use the local description of py , at the
bad prime numbers (i.e. the prime numbers dividing N), together with generalized
Sturm bounds theorems and an appropriate use of degeneracy maps between mod-
ular forms spaces of various levels. Having a sharp bound is especially important
from a computational point of view. Indeed, those results also provide us with an
algorithm that explicitly computes the exact set of A such that p; ) is reducible.
We have implemented such an algorithm in PARI/GP [36].

0.3. Organization of the paper

In Sec. [ we collect various results on the local description of residual modular
representations. Section [2is devoted to recall basic facts about Dirichlet characters
and Eisenstein series. In Sec. B, we develop various tools that will play a central
role in the proof of the main results. In Sec. 3. we construct the so-called theta
operators in characteristic zero, that we then use to generalize Sturm bounds results
in Sec. In Sec.[3:3] we introduce various other operators acting on modular forms
spaces that allow us to modify some Fourier coefficients of a given form. The next
two sections are devoted to prove the results involving reducible residual modular
representations and dihedral representations, respectively. Finally, we explain in the
last section how to translate our theoretic results on reducibility into an algorithm
that takes a modular form as input, and outputs the exact list of prime ideals A\ such
that p; \ is reducible. We then illustrate this algorithm on numerical examples.

0.4. General notations

In the whole paper, for two positive integers £ and N, and a Dirichlet character
modulo N, the notations My (N, e), Si(N,e) and SEV(N, ¢) stand for the complex
vector spaces of modular forms, cuspidal modular forms, and new modular forms
of weight k, level N, and character &, respectively. We also denote by M(N) the
graded algebra of modular forms of level N. For any modular form g in M(N), we
always write Y-, an(g)q™ for its g-expansion at infinity, with ¢ = e
the complex upper-half plane.

2itz and z in

1. Background on Newforms and Residual Modular Galois
Representations

We fix for this section a newform f of weight k > 2, level N > 1, and character €.
Let ¢ be a prime number and let A be a prime ideal of O; above ¢. We first recall
a result on the expression of the pth coefficient of f for a prime p dividing N that
we will be using intensively.

Proposition 1.1 ([24, Theorem 4.6.17]). Let p be a prime dividing N. Write ¢
for the conductor of €.

(1) If vp(N) = vp(c), then lay(f)[? = p*1.
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(2) Ifv,(N) =1 andv,(c) = 0, then ap(f)? = },(p)p*~2, where ), is the prime-to-p
component of € (in particular €,(p) # 0).
(3) If vp(N) > 2 and v,(N) > vp(c), then ay(f) = 0.

We now recall some results about the shape of p; , restricted to a decomposition
subgroup. In the following, given a prime number p we denote by GG;, a decomposition
subgroup of Gg at p, and by I, its inertia subgroup. For some A-integer z, pu,(x)
stands for the unique unramified character of GG}, sending a Frobenius element at p
to the reduction of  modulo A\. We will simply write x(z) when no confusion on p
can arise. We finally write %, for the cyclotomic character modulo .

We begin by the local description of py, at £ that has been established by
Deligne and Fontaine. Their result is the following.

Proposition 1.2 (Deligne—Fontaine, [13, Theorems 2.5 and 2.6]). Assume
2<k<{+1andltN.

e If f is ordinary at A (that is if ar(f) #Z0 (mod N)), then py (¢, is reducible, and

we have
—k—1 e(?)
17 ~ | (ae(f))
f:/\lGK -

0 wae(f))

e If not, then py |, is irreducible, and we have

u)kfl 0
pf)\\fi. = ( 0 1p/k—l)'

Here {1,¢'} = {¢,9*} stands for the set of fundamental characters of level 2 (see
13, 2.4]).

For the primes p different from ¢ and dividing N, the shape of p; 5, has been

computed by Langlands and compiled in [20, Proposition 2.8].

Proposition 1.3. Let p # ¢ be a prime dividing N and let ¢ be the conductor of .
We denote by v, the p-adic valuation.

o Ifvy,(N) =1 and v,(c) =0, then we have

o (aDxe x
PG, = 0 ulap(f))

o If v,(N) = vp(c), then ap(f) is a unit in Oy x and we have

Prag, = map(f) ® wlap(H)™HXE ™ Ea,

where g|g, stands for the reduction modulo A of the restriction of € to Gy.
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k=1 in the second

Proof. From the first case of Proposition [l we have |a,(f)|> = p
case. Therefore, a,(f) is indeed invertible in Oy \ because p # £.
The only thing to prove is that the hypothesis of [20, Proposition 2.8] holds in
our cases, namely that f is p-primitive in the terminology of [20], Definition 2.7]. To
do so, we use [2I] Theorem]. We recall a direct consequence of this result: Define
UP(QN)J,UP(N) —vp(c)). If w = 0, then f is p-primitive. We easily check
that in our two cases we have u = 0. a

u = min(|

Since the work of Carayol [5 Théoréme (A)], it is well known that the value of
the prime-to-f part of the Artin conductor of p¢ ) is equal to the prime-to-¢ part
of N. The study of the behavior of the Artin conductor after reduction (i.e. the
one of p; ,) has then been established independently by Carayol [6] and Livné [19].
Here is their result.

Proposition 1.4 (Carayol-Livné). Let N(p; ) be the prime-to- part of the
Artin conductor of py . We then have

NP N
Moreover, write e, := vy,(N) — vp(N(py \)) for a prime p # L. If e, > 0, then we
have up(N) — 0y (N (5,.,)) € {1,2).

2. Background on Dirichlet Characters and Eisenstein Series
2.1. Generalized Bernoulli numbers and Gaujf$ sums

Let e be a primitive Dirichlet character of conductor ¢. We recall the definition and
properties of the Gaufl sums and generalized Bernoulli numbers attached to €.

Definition 2.1. The Bernoulli numbers (B, c)m>0 attached to e are defined by
the following generating series:

n=1 m=0
In particular, when ¢ is odd, we have By . = %Z;;ll ne(n), and when ¢ is both

.. —1
even and non-trivial, we have By . = % S nPe(n).

Remark 2.2. If ¢ = 1 is the trivial character modulo 1, we get the classical
Bernoulli numbers except when m = 1, in which case we have B; 1 = % = —Bj.

We state below the main properties of the Bernoulli numbers. First, we exactly
know when the Bernoulli numbers vanish (see [24, Theorem 3.3.4] for a proof).
Proposition 2.3. We have By, . =0 if and only if e(—1) # (—1)™.

Second, the behavior of the Bernoulli numbers after reduction modulo a prime
ideal has been studied by Van-Staudt [33] in the case ¢ = 1, and by Carlitz [7, The-
orem 1] in the case ¢ # 1. We summarize their results in the following proposition.
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Proposition 2.4. Let m be a positive integer.

(1) Let ¢ be a prime number. If £ — 1 divides m, then we have the congruence

m, 1

(B,,1 = —1 (mod {). Otherwise, BT" is L-integral and its reduction modulo
¢ only depends on m modulo £ — 1. In particular, the denominator of By 1 is

equal to [T ¢—1jm .

¢ prime
(2) For e # 1, write % = ND~L, with M and D two coprime ideals of Z|e],
the ring spanned by the image of €. If the conductor of € admits at least two
distinct prime factors, then © = 1. Otherwise, if the conductor of € is a power
of a prime number £, then © contains only prime ideals above £.

Another classical quantity attached to Dirichlet characters is the Gaufl sum. We
recall its definition and properties below.

Definition 2.5. The Gaufl sum attached to ¢ is

c

W(e) =Y e(n)e .

n=1

One can find the following result in [3, Lemma 2.1].

Proposition 2.6. The prime divisors of the algebraic norm of W(e) are those

of c.

2.2. Teichmdiiller lifts

We present here the behavior of roots of unity after reduction modulo £.

Lemma 2.7. Let n be a positive integer and let ( be a primitive nth root of unity
in Q. Let £ be a prime number and let £ be a place of Q above £. We have ( = 1

(mod £) if and only if n is a power of L. In particular, a Dirichlet character is
trivial modulo £ if and only if it has order a power of £.

Proof. According to [9, Proposition 3.5.4], the algebraic norm of 1 — ¢ over Q(¢)
is equal to

0 ifn=1,;

q if n=¢q" with ¢ prime and r > 1;

1 otherwise.

Thus, if n is not an ¢-power, then ¢ does not divide the norm of { — 1 and we have
¢ #1 (mod £). Assume n = ¢", r > 1. We then have

0zl = (1— ) =Dz,

Thus, the only prime ideal above ¢ in Z[(] is (1 —¢)Z[(], and we therefore have { = 1
(mod £).
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For the second part of the lemma, let € be a Dirichlet character modulo N.
From above, ¢ is trivial modulo £ if and only if e(x) is a root of unity of order a
power of ¢ for every x € (Z/NZ)*. This can happen if and only if £ has order a
power of £. O

Lemma [Z7] implies that the kernel of the reduction modulo £ from the group of
all roots of unity to FZ , is the subgroup of primitive roots of unity of order a power
of £. In particular, the restriction of this map to the subgroup of roots of unity of
order prime to ¢ is injective. Moreover, because the subgroup of roots of unity of
order £™ — 1 maps to F;,, it is onto and therefore an isomorphism. The inverse map

Te : T, — {¢ € C*,ged(¢,0rd(¢)) = 1},

is the so-called Teichmiiller lift with respect to the place £. It will allow us to lift
multiplicatively characters modulo £ to Dirichlet characters of prime-to-¢ order.
Moreover, the Dirichlet characters that arise this way are exactly the ones that
have the same conductor as a Dirichlet character and as a character modulo £.

2.3. FEisenstein series

Let k£ be a positive integer and let €1, €2 be two Dirichlet characters modulo ¢; and
ca, respectively, such that e1e2(—1) = (—1)*. Moreover, if k = 2 and ¢1, €2 are both
trivial, then assume ¢; = 1 and ¢s is a prime number, otherwise, assume e; and &5
are primitive. For a complex number z in the complex upper-half plane H, consider
the following g-expansion:

BT (2) = C+ Y oi P (n)g", (2.1)
n=1

with 07152 (n) = 3, _ 4, d"€1(%)e2(d) for any r > 0 and

0 ifk>2and ey #1,
or if k=1 and &1, &5 are both non-trivial;
1
C= ﬂ(CQ —1) if k=2 and e1,e2 both trivial;
B E1€ .
_Zha&ie2 therwise.
2k

The following result is proved in [24) Theorem 4.7.1] and [24} (4.7.16)].

Proposition 2.8. The g-series E;"%* defines a modular form of weight k, level
¢1¢o and character e1e5. It is a normalized eigenform for all the Hecke operators at
level cicq.

For €1 = g5 = 1, the definition of the series E,ll’]l agrees with the definition
of the classical Eisenstein series of weight k. We simply write it Ej in this case.
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For k = 2, we denote by Fs the g-series

EQ(Z)z—iJFZ > d) g

n=1 \0<d|n

Note that this formula defines a holomorphic function on H, but Es is not
modular.

In the case k > 2 and &1, &2 primitive, the behavior of the constant coefficient
of By at a cusp of I'y (V) has been computed in [4, Proposition 4]. It states the
following:

Proposition 2.9. Assume k > 2 and €1, €9 are primitive. Let M be a positive

integer and let v = (Z ’g) € SLy(Z). Put v := zeaean ond M := m. We
define
TR M) = b BEEAO)()

where we denote by |, the classical slash action of weight k.
If ¢a 4 U then Y7 (v, M) = 0. Otherwise, if ca|v then Y} (y, M) # 0 <
ged(eq, %) = 1. In this case, we moreover have

T (y, M) = —5 ' (Mu)ey (_§> W((e1g3)o)

©) W)
< Brertea <Nc2 >k 1 (1 (61@1)0(29))7
2k MC() p
Z)\HCQ

where xo denotes the primitive character associated to a Dirichlet character x, and
¢o the conductor of 51_152.

The proof of [4] is only given in the cases k > 3, and k = 2 and €1, €3 non-trivial.
We give a proof of the result in the case k = 2, £ = ¢ = 1, based on the techniques
used in [4].

Proof. Asin [ §1.3], we write for Re(¢) > 0 and z € H,

1

G = .
2¢(2) (mz 4+ n)?|mz + n|?®

(m,n)€Z2\{(0,0)}

By [24] Corollary 7.2.10 and Theorem 7.2.12], the function € — G2 .(z) is holomor-
phically continued to Re(¢) > —% and we have

. _ 2 -
gli%Gg,e(z) = -8 Es(2) Tm(e)
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Now, because Im (M 32 i’? )= J“ﬁ‘jg‘i) , we get that
TL (3, M)
lim L G (M) (2) + — !
= im im | —— .
Im(z)—+o0 €0 Y i 2% (vz +0)2 uz + 3
8rIm | M
vz+46
1 ) _ i lvz + d]2
=—— 1 lim Go (M- 1
82 Im(z%ril-‘,—oo 61—>I% 2’5( )|2,Y(Z) + Im(z%ril-i-oo 8’/TM(’UZ + 6)QIIH(Z)

= ! lim  lim Go(M-)]27(2).

872 Im(z)—+o00e—0

From this identity the proof of [4] still applies. Let us write 22¢ := 22|z|?¢. The
function G o(M-)|27y(2) writes as T, (z) + R.(z), with

1

Tele) = Z 5 and
mMu4nv=0 (mMp + no)?
(m,n)EZQ\{(Q,O)}
1
R.(z) = Z ((mMu+nv)Z+(mMﬂ+n§))2>€'

mMu+nv#£0
(m,n)eZ®\{(0,0)}
The function 7T; is independent of z and the series obtained by setting € to 0 is
absolutely convergent. Therefore, we have

1
lim lim7.(z) = -_— .
Im(z)— 400 e—0 (2) mM;y:o (mMp + nd)?
(m,n)€Z>\{(0,0)}

Finally, writing n in R.(z) as Mn' + p, with p between 0 and M — 1, we have

1
R.(2) = Z Z ; / 2,
(a2 M (s ey g0 G (Mt 00) +vp) + M(mf5 +n/0) + po)*
0<p<M—1
M-1

1
:Z Z (2(Mp+wvp) + Mg+ 6p)>=’

p=0 Mp+up#0
(p,q)€Z*
The last equation is justified by the fact that (mu + n'v,mfg + n’é) = (m,n’)y.
Applying [4] Lemma 9] with a; = vp, az = dp and D = M, we get
lim  lim R.(z) = 0.

Im(z)—+o00 e—0

Lemma 6 of [4] therefore still applies in the case (k,£1,¢2) = (2,1, 1) and one easily
checks that the proof of Lemma 7 and Proposition 4 of [4] only uses the fact that
g1 and g9 are Dirichlet characters satisfying e1e2(—1) = (—1)k. O
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3. Preliminary Results on Modular Forms
3.1. Theta operators

We fix for this paragraph a place £ of Q. Consider the operator # acting on the
1d

space of holomorphic functions on H by 57— 1> = q%. On g-expansions, this operator
maps Y. <, anq" to Y, <o napq". It is well known that if g is a modular form, then
0g is no longer modular (_see for example [37, Chap. 5]). However, Swinnerton-Dyer
and Serre [35] §3] have proved that for £ > 5 and a level 1 modular form g with £-
integral Fourier coefficients, one can construct a level 1 form with £-integral Fourier
coefficients and which Fourier coefficients are congruent modulo £ to the one of g.
More generally, Katz [16] has proved using his geometric theory of modular forms
that there is an operator on the space of modular forms with coefficients in an
algebraic closure of Iy, which action on the g-expansions is the same as the one
of 0. For our purposes, the main drawbacks of this latter approach is that Katz’
modular forms modulo £ do not always lift in characteristic 0, and have by essence
a prime-to-¢ level. To remedy this, we will construct for any given level N > 1 and
place £, an operator ] acting on M(N), stabilizing the subspace of modular forms
with £-integral Fourier coefficients, and such that for every modular form g with
L-integral coefficients we have

g = 0g (mod £),

meaning that an(gg) and nay(g) are congruent modulo £ for all n.

The main tool we will use in the construction of @ is the Rankin-Cohen bracket,
introduced by Cohen in [8, Corollary 7.2]. We recall its definition and properties in
what follows.

Proposition 3.1 (Rankin—Cohen bracket). Let g and h be two modular forms
of weight kq and ky, level Ny and Ny, and character €, and e, respectively. The
Rankin—Cohen bracket of g and h is

l9,h] :== kgg0h — khbg.

It is a modular form of weight kq + kp, + 2, level lem(Ny, Ny) and character € gep,.
Moreover, if both g and h have their Fourier coefficients in a ring R, then so
has [g,h].

Let N be a positive integer. For a prime number p, we denote by Tzfv the pth
Hecke operator acting on M(N). Recall that a modular form g € My(N,¢) is an
cigenform for T modulo £ with eigenvalue a,, € Fy in the sense of [IT} §6(b)] if g
has £-integral Fourier coefficients, and if Tzfv g is congruent to a,g modulo £. If g is
moreover normalized modulo £, that is if a1(g) =1 (mod £), then g is an eigenform
for Tlfv modulo £ if and only if for all integer n > 0 prime to p, and all a > 1, we
have

{anpa (9) = an(g)ape(g9) (mod £);
g (9) = ap(@)age (9) — P e(p)ager(g) (mod ©).



Int. J. Number Theory Downloaded from www.worldscientific.com
by Baptiste Peaucelle on 12/28/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Ezplicit small image theorems for residual modular representations 13

The eigenvalue is then moreover the reduction of a,(g) modulo £. The following
lemma is the central result that shows how to construct an operator 6 satisfying
the properties described above, using Rankin—Cohen brackets.

Lemma 3.2. Let ks be a positive integer, and let x4 be a Dirichlet character
modulo N. Let A € My, (N, xa) be such that A and %OA have £-integral Fourier
coefficients and satisfy

1
A=1 (mod £), k—@AEO (mod £), and xa=%x," (mod £).
A

Then, we have a well-defined operator 04 on M(N) given by aAg = fi[g, A]. For
every g € Mg(N,¢e) with £-integral Fourier coefficients, this operator satisfies the
following properties:

° aAg € Mytk,+2(N,exa) and has £-integral Fourier coefficients;

e 0ag=10g (mod £);

e Moreover, if for some prime number p, g is a normalized eigenform for Tév modulo
£ then aAg is also a normalized eigenform for Tév modulo £, with eigenvalue
pap(g).

In the following, when there will be no confusion on the form A, we shall write ]
for the operator 0 4.

Proof. AccordingNto Proposition B.1] above, this is clear that ] 4 1s a well-defined
operator and that 6 4g has the announced weight, level, and character. Furthermore,
we have 649 = 7% g0 A+ Afg. Therefore, from the assumption, if g has £-integral

Fourier coefficients, then so does 0 49 and we have
~ k
Oag = Abg — k—g@A =0g (mod £).
A

Assume g is a normalized eigenform for Tzfv modulo £. Then, §A g is also normalized
modulo £ because we have a1(649) = 1 X ai(g) =1 (mod £). Let n > 0 be prime
to p, and a > 1. We have

@npe (0.49) = npanpe (9)  (mod £)
= (nan(9))(p"ap=(g)) (mod £)
= an(gAg)apa (fag) (mod &)

and

apair(0ag) apati(g) (mod £)

pa+1
pa+1 k—1

e(pape—(g)) (mod £)

= a,(0a9)ap (0a9) — p" ' e(p)aye—(0ag) (mod £).

(ap(g9)ap=(g) —p
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If p| N¢, we have p*tle(p) = 0 = pFtrkat2)=loy 4 (p) (mod £). Otherwise, we
have p*4ya(p) = 1 (mod £) by assumption, and we again have p**le(p) =
pktkat2)=1cy 4 (p) (mod £). As desired, we get

_ plktka+2)-1

a1 (049) = ap(0a9)ap-(049) exa(p)aye-1(0ag) (mod £),

and the form 6. 49 is thus a normalized eigenform modulo £. O

Remark 3.3. When /¢ does not divide N, the reduction of A modulo £ is the
so-called Katz’ Hasse invariant.

The rest of this paragraph is devoted to construct, for each level N and place £,
a form A that satisfies the hypotheses of Lemma that we will constantly use.
Among all possible forms, the ones presented in Table [I] are those we found with
the smallest weight. Notice that if we have a form A of level M satisfying the
hypotheses of Lemma[3.2] for a given place £, this form also satisfies the hypotheses
of Lemma at the multiple-of-M levels. We will use this fact to consider the
smallest set of level possible.

3.1.1. Theta operators in characteristic greater than 3

The following proposition was already known to Swinnerton-Dyer in [35]
Theorem 2].

Proposition 3.4. Assume ¢ > 5. The form A := —20E,_1 € My_1(1,1) satisfies
the hypotheses of Lemma B2 for any level N.

Proof. Since ¢ > 5, A is well defined and the constant coefficient of A is equal
to 63;:11,1. From Proposition [Z4] it is £-integral and congruent to 1 modulo £.
Moreover, because F,_1 has integral coefficients, away from the constant one, it fol-

lows that A and —ﬁ@A have £-integral Fourier coefficients and that A = 1 (mod £)
and éﬂA =0 (mod £). Finally, we have y;’“ = _é% =1 (mod £). |

If the level N is divisible by ¢, the situation is in fact much more pleasant for us,
in the sense that we can find a form with k4 = 1. We find a record of the following
fact in [30, (2.1) Theorem).

Proposition 3.5. Assume ¢ > 5 and {|N. Let x¢ be the Teichmdiiller lift of X,
with respect to the place £, viewed as a primitive character Dirichlet modulo ¢. The

form A := ZEET’XE € My (¢, xgl) satisfies the hypotheses of Lemma 3.2

Proof. The form A is well defined because Xgl is an odd character. Indeed, we
have x3'(—=1) = ¥, '(~=1) = —1 (mod £), and because ¢ is odd, this lifts to
Xg'(—1) = —1. The constant term of A is equal to 7£Bl’xi—:l = 725:11 ixg (i)
which is £-integral. Therefore, because yg¢ induces the identity modulo £, this
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coefficient is congruent to 1 modulo £, and because Ef X! has integral coeffi-
cients away from the constant one, A and %HA have L-integral Fourier coeffi-
cients. Moreover, we also get A =1 (mod £) and %HA =0 (mod £). Finally, by
definition we have X;Im = le = x4 (mod £). Thus, A satisfies the hypotheses of

Lemma O

This finishes the case £ > 5. For £ < 3, the two previous constructions do not
always give well-defined modular forms. We present in the next two paragraphs
specific constructions in the cases £ =2 and ¢ = 3.

3.1.2. Theta operators in characteristic 2

For ¢ = 2, the most favorable case is when 4 | N. The following construction is very
analogous to the one of Proposition 3.5

Proposition 3.6. Assume £ = 2 and N is divisible by 4. Let x4 be the only non-
trivial Dirichlet character modulo 4. The form A := 4E}]"X* € M, (4, x4) satisfies
the hypotheses of Lemma 3.2l

Proof. The form A is well defined because x4 is odd. Moreover, the constant
coefficient of A is equal to —2B;,, = —2(1xa(1) + 3x4(3)) = 1. Therefore, the

X4 has integral coefficients

constant coefficient of A is equal to 1 and because E]
away from the constant one, A and %HA have £-integral coefficients. Moreover, we
also get A =1 (mod £) and %GA =0 (mod £). Finally, it is straightforward that

X4 is trivial modulo £, as is the cyclotomic character modulo 2. O

The next favorable case is when N admits at least one odd prime divisor. The
following result was inspired by [23, Appendix A]. As it has never been published,
we prove it for the sake of completeness.

Proposition 3.7. Assume { = 2 and N has an odd prime divisor. Let p be the
least odd prime divisor of N, and let xn be a Dirichlet character modulo p of order
2™ the greatest power of 2 dividing p— 1. Let  be any 2™ th root of unity. The form
A:=((—1)EXN € My(p, xn) satisfies the hypotheses of Lemma B2

Proof. Let g be an integer generating (Z/pZ)* and such that xn(g) = . Because
p-1

¢ is a root of unity of order 2™, we have yny(—1) = xn(g9) 2 = —1. Therefore, xn
is odd and A is well defined and its constant coefficient is equal to

—1

1-¢ 1-¢X

B, =2 .
5 B ==, a§:1aXN(a)

For i between 0 and 2™~ — 1, we have yn(g*) = (%, and

xn(=g") = ¢ =" =xn(g™ ).
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Therefore, the set {+¢®,0 < i < 2™~ 1 — 1} is a set of representatives of
(Z/pZ)* /Ker(xn). For an integer x, we write [z] for the only integer between 0
and p — 1 that is congruent to  modulo p. We then have

gm—1_1

1;2CBLXN -5 Y. D (leg'lxn(g") + [~eglxn(~g")

2p eeKer(xn) =0

4 Z S (el — (o — [eg )

=0 eeKer(xn)
gm—1
L5 o[ #Ker(xw) +2 > led]
2p 4 N
i=0 ecKer(xn)
p—1 2T" -1
=7 t( Z ¢ X el
ecKer(xn)

The term inside the parentheses is £-integral and 7= is odd. Moreover, the only
prime ideal above 2 in the ring Og) = Z[(] is (1 — (:)Z[(:]. Therefore, we have
I%CBI,XN =1 (mod £). Because the non-constant Fourier coefficients of Ej ™™
integral, A and %HA have £-integral coefficients, and we get A =1 (mod £) and

%HA =0 (mod £). Finally, from Lemma 27 because xn has order a power of 2,

are

it is trivial modulo £ as well as the cyclotomic character modulo 2. This finishes
the proof. O

We are left with the cases N = 1 and N = 2. There is no modular form of
weight 1 of these levels, so we have to look at bigger weights in order to construct
the form A. For level 2, we show that weight 2 suffices.

Proposition 3.8. Assume that { =2 and N = 2. Let 19 be the trivial character

modulo 2. The modular form A := 24EIL e € Ma(2,1(2)) satisfies the hypotheses
of Lemma 321

Proof. The constant coefficient of A is equal to 1 and Eﬂ’n(z) has integral coef-
ficients away from the constant one. Therefore, the forms A and 1 —0A have both
C-integral Fourier coefficients, and we have A =1 (mod £) and 2 HA =0 (mod £).
Finally, the character of A is trivial modulo £ as well as the cyclotomlc character
modulo 2. O

For N =1, the weight needs to be at least 4, and we have the following result.

Proposition 3.9. Assume ¢ = 2 and N = 1. The form A := 240E, € My(1,1)
satisfies the hypotheses of Lemma [3.2l
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Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier
coefficients of FE, are integers. Therefore, A and ﬁ@A have integer coefficients, and
we have A = 1 (mod £), and ﬁ@A = 0 (mod £). The character of A is again
trivial, as well as the cyclotomic character modulo 2. O

3.1.3. Theta operators in characteristic 3

For N divisible by 3, the form of Proposition 3.5l is still appropriate.

Proposition 3.10. Assumel = 3 and N is divisible by 3. Let x3 be the unique non-
trivial Dirichlet character modulo 3. The form A := 6E}"X* € M, (3, x3) satisfies
the hypotheses of Lemma 3.2l

Proof. We have y3 = Xe_l (mod £) and the proof is exactly the same as the one
of Proposition 3.0 |

For the levels containing a prime divisor congruent to 2 modulo 3, we can still
consider an Eisenstein series for the form A.

Proposition 3.11. Assume ¢ =3 and N has a prime divisor congruent to 2 mod-
ulo 3. Let p be the least such prime divisor, and let 1,y be the trivial Dirichlet
character modulo p. The form A := %E;l’ﬂ(m € Ma(p, 1)) satisfies the hypothe-
ses of Lemma 3.2l

Proof. The constant coefficient of A is equal to 1. Moreover, E;l 1) has integral
Fourier coefficients away from the constant one. Because, p is congruent to 2 mod-
ulo 3, % is 0 modulo £. Therefore, A and i@A have £-integral Fourier coefficients,
and we have A =1 (mod £) and é@A =0 (mod £). Finally, the character of A is

trivial, and we have X5 2-1. a

The remaining cases are the levels containing only prime factors that are con-
gruent to 1 modulo 3. For the levels divisible by a prime p congruent to 4 modulo
9 (that is if 3 divides p — 1 only once), we found the following construction.

Proposition 3.12. Assumel = 3 and N has a prime divisor congruent to 4 modulo

9. Let p be the least such prime divisor of N, and let xV be a Dirichlet character
N N

modulo p of order 3. The modular form A := I%I(E;LX —EX Y e My(p,xN)

satisfies the hypotheses of Lemma 3.2

Proof. First notice that x" indeed exists as (Z/pZ)* is a cyclic group of order

p— 1 that is divisible by 3. Moreover, ¥V has order 3. Therefore, it is trivial modulo
N N

£ and even, and the two Eisenstein series E;l X and EX 1 exist.
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The constant coefficient of A is equal to ﬁBQ’Xw which is L-integral by
Proposition 2:4l We have

3 3 =
——— Byon=———) *x"(a
41—p) 2 ap(l—p) ; (@

3 =
=— a’? (mod £
T—p 2 ( )
_ 3 plp—1(2p-1)
=1, G (mod £)
=1 (mod £).

Therefore, the constant coefficient of A is 1 modulo £, and because the non-constant
Fourier coefficients of E;l X" and E%N’]l are integral, A and ﬁ@A have £-integral
coefficients. The weight k4 is invertible modulo 3, it consequently suffices to prove
that A =1 (mod £) to conclude.

The forms E;l X and E;CN’H are both normalized eigenforms for all the Hecke
operators at level p, and have the same weight and character. Thus, it is enough
to prove that a, (E;LXN) = aT(EQCN’H) (mod £) for all prime numbers r. This last
congruence is straightforward, because we have

ar (B3 ) =14 mN(r) = XN () +r = a, (EX ) (mod ). O

It only remains the levels containing only primes congruent to 1 modulo 9. We
found no general way to express the modular form A as form of weight 2. Using
computations in PARI/GP, we look for a modular form of level p = 1 (mod 9)
satisfying the hypotheses of Lemma for p up to 1000. We always find a form
except for p € {307,379, 433,487, 523,613,631, 757,811, 829,991}, i.e. we found 16
forms out of the 27 we were looking for. It can be proved that such a modular
form cannot be expressed as a linear combination of forms in the Eisenstein space,
meaning that one has necessarily to consider cusp forms to construct A. To fill this
gap anyway, we can still consider the modular form A := 240F, as in the case of
Proposition

Proposition 3.13. Assume ¢ = 3, and N contains only prime factors congruent to
1 modulo 9. The modular form A := 240E, satisfies the hypotheses of Lemma[3.2]

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier
coefficients of F, are integral. Therefore, the forms A and ﬁﬂA have both £-
integral Fourier coefficients, and we have A =1 (mod £) and ﬁ@A =0 (mod £).

Finally, the character of A is trivial, and we have X;Im = X;‘l =1 (mod £). O

We have compiled in Table [I] the definition of A depending on ¢ and N. When
multiple definitions were possible, we have taken the one with the least weight
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Table 1. Various modular forms A used to construct the operator 0

{>5 Form A Proposition
LfN | —20E, B4
Ixg!
CIN | 2B ks
=2 Form A Proposition
4N VIORES
N>3and 41N | (¢ —1)E*N B2
Ll
N=2 2E,
N=1 240FE4 5.9
=3 Form A Proposition
any 6E; X3 3100
¢4 N and N has a prime 24 L1
factor ¢ = 2 (mod 3) -1 B.I0
Vd|N,d=1 (mod 3) and N has 3 1N N1
a prime factor p = 4 (mod 9) o1 (B2 — By ) e
Vp|N,p=1 (mod9) 240F4 313

among all the possible forms. The third column corresponds to the proposition
where the properties of the form have been proved.

Looking at the various results above, we state the following definition that will
be useful in the proofs of the next paragraph.

Definition 3.14. We say a pair (¢, N) is bad, if we have one of the following.

e /=2and N =1;
e / = 3 and all the prime factors of N are congruent to 1 modulo 9.

Remark 3.15. When (¢, N) is bad, the modular form —504E; is also congruent
to 1 modulo £. Its weight is greater than the one of Table [l but we will have to
use it in the proof of Proposition [3.I7 in the next section.

3.2. Sturm bounds

A Sturm bound for a space of modular forms is an upper bound on the number
of leading coeflicients that characterize a form of this space. Equivalently, it is the
maximal number of zero leading coefficients that a nonzero form of this space can
have. The study of such bounds has first been made by Sturm [34] and was later
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generalized among others by Murty [25]. The same kind of bounds exists if we look
at modular forms modulo a prime ideal — and are in fact the same as the first
one. In the next lemma, we give a slight improvement of Murty’s result for modular
forms of same weight. We then state a more general result for modular forms of any
weight and level.

For all the subsection, we fix a prime number ¢ and a place £ of Q above Z.

Lemma 3.16. Let f, g be two modular forms of same weight k > 0, level Nf, N,
and character €¢, €4, respectively. Let N be the lem of Ny and N,. Assume that f
and g have both £-integral Fourier coefficients and that 5 = e, (mod £).

If

kN 1
an(f) = an(g) (mod £), for every integer n < 1o H <1 + —>,
rime p
"IN

then f =g (mod £).

Proof. Let us write B := 2 T, prime(1 4 2 ) We follow substantially the proof of
pIN
Murty of [25] §4]. Consider ¢ = f — g and suppose that the vanishing order modulo

£ at infinity of ¢ is at least equal to B, that is a,(¢) =0 (mod £) for all n < B. If
¢ = 0, there is nothing to prove. Otherwise, as explained in [25] §4], for v € SL2(Z)
there is an element A, € @X such that the modular form A,¢[;y has £-integral
coefficients and is not congruent to 0 modulo £.

We write m := [SL2(Z) : T'o(N)] = N[, ~(1+ %) and consider a system of
representatives (7;)1<i<m of right cosets of I'g(IN) in SL2(Z). We can further assume
y1 = I, the identity matrix. Also choose a set (7j)1<j<,(n) of representatives of
T'y(N) in To(N) with 71 = Io. We then have

m

SLy(Z) = | JTo(N

i=1

@(N)
U T]’W.

Taking the norm function of ¢ according to this system of representatives, we define

||
T Cg

o(N) m p(N)
F = H ¢|k7—j H H ATJ%.Qﬁ KTV € Mkmga(N)(SLQ(Z))'
j=1 i=2 j=1

For i = 1 and j between 1 and ¢(N), we have
Ol = OleT; = (e4(75)f —€4(75)9) = €4(75)¢  (mod L).

Therefore, the forms ¢|;7; have £-integral Fourier coefficients, and thereby the form
F too by the construction of the coefficients A, ... Moreover, by assumption the
vanishing order at infinity of ¢ modulo £ is at least equal to m . Therefore, the one
= ]f) P|i; is at least equal to kme(N)

true for F. Applying Sturm’s theorem for level 1 modular forms [25, Theorem 5],

of the modular form ® := , and the same is
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F must vanish modulo £ and by construction of the coefficients A, ,,, the modular
forms A; ., @|x7jv: are not trivial modulo £. Thus ® and hence ¢ must be trivial
modulo £. o

The following proposition generalizes the previous lemma to modular forms of
arbitrary weights and levels. The proof uses extensively the construction of theta
operators given in Sec. 3.1l We warn the reader that we will write 0° = 1.

Proposition 3.17. Let f, g be two modular forms of weight k¢, kg > 0, level
Ny, Ng > 1 and character €¢, €4, respectively. Let my, mg be two non-negative

integers. Assume that f and g have both L-integral Fourier coefficients and that

ka+2mfgf = Yifg*nggg (mod £). Let N be the lem of Ny and Ny, and define

L ky+2ms=ky+2my+2 (mod 4)

a = and (¢, N) is bad

0 otherwise

4 if 0 =2 and N =2

3 if £| N and (¢,N) # (2,2)

b= ) ) and k=a+ max(ky+bmy, kg +bmy),
6 if (0,N) is bad

{41 otherwise

where “bad” refers to Definition 314l

If
. Nk 1
n™ an(f) =n"va,(g9) (mod L), for every integer n < — H 1+-,
12 , p
p prime
pIN

then this holds for all integers n > 0.

Proof. For the whole proof, we write A for the modular form associated with £
and N constructed in Sec. 3l According to Table[I] it has weight b — 2 and level

N. We write x4 for the character of A and B(N, k) := &£ 7], p‘rime(l + %)
p|N
Assume without loss of generality that ky + bmy < kg, + bmg,. We first prove
that, assuming b — 2 divides k; — kf + b(mg — my), we have n™ a,(f) = n"va,(g)
(mod £) for all non-negative integers n if these congruences hold for n < B(N,
kg + bmg). Applying Lemma B2 recursively, we have

0™ f € My vbm, (N, EanA@f) and 0"9g € Mg, 1pm, (N, ngglg).

We cannot apply Lemma [B.16] to gms f and gma g directly since they do not have
kg—Fk +b(m\ —m) ~ ~
the same weight. However, the functions A L f and 0™9g are well-

defined modular forms by assumption. They have the same weight &k, + bmy,
k,g—kf-%—b(m,g—mjc)
my+————p—5

the same level N and characters x4 and 5ngL9 , respectively.
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Moreover, by Lemma [3.2] again, we have x4 = Y?ib (mod £). By the assumption
on the characters we get

o I Ckptb(mg—my)
kg mhpbmg —my) -2 (m L B kptblng—my
Eflef b2 = eX, ( ! e ) (mod £)
= —];ermeEf ) Y;(ngrbmg) (mod 2)
= X?"ngeg -X;(k"%mg) =¢g,x¢ (mod £).

Therefore, the assumptions of Lemma[3.16 are satisfied for these two modular forms.
Since A reduces to 1 modulo £, we get that if the coefficients of oms f and gms g
are congruent up to the B(N, kg + bmg)th one, then gmff and 9~"ng are congruent
modulo £ by Lemma

We now look at the hypothesis b — 2|k, — ky + b(mgy — my). We claim that if
(¢, N) is not bad, then it is always satisfied. We have three cases: (i) £ = N = 2,
(ii) ¢| N and (¢,N) # (2,2), (iii) £ N and (¢, N) is not bad.

(i) f¢=N=2,thenb—2=2, and ky = k; =0 (mod 2), because the weight of
a modular form of level 2 is necessarily even. Thus, k; — ky + 4(my — my) is
divisible by b — 2.

(ii) If £| N, then b — 2 = 1 and there is nothing to prove.

(iii) If £ 1 N and (¢, N) is not bad, we have b—2 = ¢—1. Because £ { N, 5 and ¢ are
unramified at ¢. From the assumption Yiff s r = X?g +2mg gg (mod £), we
get that kg—kr+2(mg—my) =0 (mod £—1), hence b—2| kg—ks+b(mg—my).

Therefore, when (¢, N) is not bad, the proposition is proved because we have a = 0
and k = kg + bmy.

From now on, assume that (¢, V) is bad. By definition, we have b = 6, and either
(¢,N)=(2,1),or £ =3 and ¢t N. Let us first prove that we have k, — ks +6(m, —
my) =0 (mod 2) (i.e. kg = ks (mod 2)). When (¢, N) = (2,1), it is true because
the weights ky and k, are both even. When ¢ = 3 and ¢ { N, the hypothesis on the
characters again implies that ky + 2m; = k, + 2my (mod 2) and the conclusion
follows.

If the even number kg — ky + 6(mgy — my) is divisible by 4 = b — 2, then by
definition we have a = 0 and k = k4 + bmg. The result follows as before in this case.
Otherwise, we have 4| kg — ks +6(my —mys) — 2 and a = 4. Write A4 := 240E, and
Ag := —504Fs. We have seen in Proposition B.13] and Remark B.15], that both Ay
and Ag are congruent to 1 modulo £. We set

fi=Asf and ¢ = Aug.

Then [ and ¢’ are modular forms with £-integral Fourier coefficients of weight
kpr =ky+6, kg = kg +4, level N and character ¢, €4, respectively. Since Xf is
trivial for ¢ = 2, 3, the congruence

_ko+bm _k_/+bm
f f — 9
X¢ EF=%X,° gy (mod £)
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is satisfied. Moreover, we have kg + bmys < kg + bmg, and b — 2 = 4 divides
kg — ky +b(mg —my). According to the discussion at the beginning of the proof,
we therefore get the desired result since f’, ¢’ reduce to f, g, respectively and
kg +bmg =a+ kg +bmg = k. O

Remark 3.18. Notice that Lemma [3.10] corresponds to the special case my =
mg = 0 and ky = k, = k. Moreover, in practice we can always take my € {0,1}
and 0 <mgy <0 —1.

In Sec. [ we will mainly deal with eigenforms. It is well known that the knowl-
edge of the Fourier coefficients of prime index and of the constant coefficient charac-
terizes such forms. We can therefore simplify Proposition 317 and get the following
corollary.

Corollary 3.19. Let f, g be as in Proposition B.17 and define also N and k simi-
larly. Assume further that f and g are normalized eigenforms for the Hecke opera-

tors at level N modulo £ of prime index less than 52 [Ty prime(1+ %) (and different
pIN

from £ if my, mg > 1).

If 0™7ag(f) = 0Maag(g) (mod £) (with 0° = 1) and if for every prime number

p < ZETTp prime(1 + %) we have p™ay(f) = p™rap(g) (mod L), then we have
pIN
n™ an(f) =n"va,(g) (mod £) for every non-negative integer n.

We finally state a Sturm bound result in characteristic zero that we will be used
in the proof of Theorem [B.I0 It is a well-known result, but we do not find a suitable
reference for it. For the sake of completeness, we give a proof of it essentially due
to Buzzard.

Proposition 3.20. Let f, g be two modular forms of same weight k > 0, level

N and character €. If an(f) = an(g) for every integer n < % p pr]i\;ne(l + %)’
P

then f =g.

Proof. We reduce to the case of trivial character. Let s be the order of the character
e, and define

¢:=(f —9)" € Mps(N, ).
By assumption, the first s - % II» pr]ivme(l + %) Fourier coefficients of ¢ vanish.
P

Applying [25, Theorem 1], we get ¢ = 0 and therefore f = g. a

Remark 3.21. We can in fact deduce Proposition 320 from Lemma 316 Indeed,
it is well known that the denominators of the Fourier coefficients of a modular form
are bounded. Therefore, we can reduce f and g modulo infinitely many places £.
Applying Lemma B.16, f and g are congruent modulo infinitely many places £ and
are thus equal.
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We now give an upper-bound for the product appearing in the Sturm bound. We
use a technique of Kraus [I7] to get a slightly better bound than the one suggested
by Serre in Kraus’ paper.

Lemma 3.22. Let n be an integer greater than or equal to 2, we have

1
H (1 + 2;) < 2loglog(n) + 2.4.

p prime
pln

Proof. We first split the product in two parts: [[p prime(l + %) = P(n)Q(n)

pln
with
1 1
P(n) = H (1 + —) and Q(n)= H (1 + —).
p>1‘ogn p p§1|0g7L p
pin pin

Let m be the number of primes p dividing n and being greater than logn. As

1
n > log(n)™, we get m < logolgogn. Thus,

logn 1 1
P(n) < ———log| 1 < — ). 1
(n) =< eXp(log logn Og( * logn)) - eXp<1oglogn> (3:1)

Applying [31l (3.27)], we get an upper bound for @:

Qm) < ] <1 — %)1 < € loglog(n) <1 — m)l, (3.2)

where v is the Euler—-Mascheroni constant.
Putting (B1)) and [B.2]) together, we have

1 1 1 -
14+ =) <elogl V1) .
11 ( +p> = Og(n)eXp<1oglogn>< (loglogn)2>

p prime
pln

The function x +— e¥7%(1 — 22)~! is bounded by 2 for x € [0,0.1]. Therefore, the
lemma holds for all integers n > exp(exp(10)). For n between 2 and exp exp(10),

we first notice that we only have to deal with square-free integers. Then, among the
square-free integers having k prime factors, it suffices to only check the lemma
for np = Hle pi, p; being the ith prime number. The greatest k such that
ni < expexp(10) is 2486, and we have checked the lemma with a computer for
all those ny. O

3.3. Modifying modular forms

In this section, we discuss a way to construct from a given eigenform, another
eigenform with slightly different Fourier coefficients but with a bigger level. It will
be crucial in Sec. @
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Let O(H) be the space of holomorphic functions on the complex upper-half
plane. For an integer n > 1 and a complex number b, we define two operators V,,
and S,,(b) on O(H) by

JO(H) — O(H) o JO(H) — O(R)
Y { h+— (z — h(nz)) d Sn(®): { h+— h —bV,h.

For a prime number p, we denote by U, the operator which action on Fourier
expansions is given by

o0 (o]

U, (Z anq”> = Z Anpq".
n=0 n=0

We recall the following facts about the operators U, and Vj: for any primes p

and r, the operators V, and V, commute and the image of My(M,e) by V,, is

My (Mp,e). Letting V, act on g-expansions, it commutes with U, for r # p and

satisfies U,V,, = Id. Moreover, Tlfw decomposes on the space My (M, ¢e) as

TIfVI =U,+ pkile(p)Vp.

From now on, consider a modular form ¢ of weight £ > 1, level M > 1 and
character € that is a normalized eigenform for all the Hecke operators at level M.
For any prime number p, we denote by «,, B, the roots of the Hecke polynomial
X2 = ay(9)X +p*e(p).

Lemma 3.23. Let p be a prime number and let b € {ay, B,}. The function S,(b)g
is a modular form of same weight and character as g and of level Mp™r with

1 b0,
A

It is a normalized eigenform for all the Hecke operators at level Mp™», and for any
prime r, we have

ar(g) if 7 # p,

ar(Sp(b)g) = '
R s

Moreover, if g has Fourier coefficients in a ring R, then those of S,(b)g lie in the
ring R(b).

Proof. If b = 0, then there is nothing to prove as S,(0)g = g. Assume b # 0.
Because both g and V¢ are modular forms of weight £, level Mp and character e,
it is also the case for S,(b)g. Let us compute the action of the Hecke operators at
level Mp on S,(b)g.

Let 7 be a prime number different from p. The operator TP has the same action
as T ,M . Thus, because the operators V,, and Tﬁw commute, we have

TypSp(b)g = T,Mg - bV},T,Mg = ar(9)g — ba,(9)Vpg = ar(9)Sp(b)g.
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For r = p, we have T)MPg = U,g = T g — p"Le(p)Vog = ap(9)g — p"e(p)Vpyg.
It gives
T8, (0)g = (ap(9)g — P~ e(p)Vy) = bUpVog = (ap(9) = b)g = p" e (p)Vyg.
As b is a root of X2 — a,(g9)X + pF~te(p), it satisfies b(a,(g) — b) = p*~Le(p). We
finally get
1,77 8,(b)g = (ap(9) — b)g — (ap(g) — D)bVpg = (ap(g) — b)S,(b)g.

The form S, (b)g is thus a normalized eigenform for the all Hecke operators at level

Mp. The fact about the ring of Fourier coefficients of S, (b)g is straightforward.
O

We now apply this result to construct from the eigenform g, an eigenform which
pth Fourier coefficient is a chosen number b in {ay, 5p,0}.

Proposition 3.24. Let p be a prime number and let b € {ay, Bp,0}. Define
ggzg and n, =0, if b=ap(g),
9p = Splap(g) —b)g and n, =1, ifb# ap(g) and b € {ay, B, },
9p = Sp(p) 0 Sp(Bp)g and ny =2, if b# ay(g) and b ¢ {ap, By}

Then, gg 18 a modular form of same weight and character as g and of level Mp™».

It is a normalized eigenform for all the Hecke operators at level Mp™, and for any
prime r we have

() = {ZT(Q) Z:: 7:?

Moreover, if g has Fourier coefficients in a ring R, then those of gg lie in the
ring R(b).

Proof. In the first two cases, we have g} = Sp(a,(g) — b)g. Lemma gives
directly the result. In the third case, we necessarily have b = 0 and ¢, 3, non-
zero. From Lemma B:23 apply to g and (3, the pth Hecke polynomial of S,(5,)g is
X? — a, X, which a,, is a root. We can then apply Lemma B.23 to S,(8,)g and «,
to conclude. Finally, the calculation

Splap) 0 Sp(Bp)g = (9 — BpVog) — V(g — BpVig)
=9—- (ap + ﬁp)%g + apﬁpvgg
=g —ay(9)Vpg + 0" 'e(p) Vg,

proves that the Fourier coefficients of gg lie in the same ring as g, because the
values of the character of an eigenform always lie in the ring of coefficients of it (see

[28, Corollary (3.1)]). m|
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Remark 3.25. Notice that the modular form gg is always of the shape P(V})g
with P =1 — ELDX + 5LDX2 and (5177 617) € {(apv O)a (617; 0)7 (ap(g)vpkilg(p))}'

For any prime number p and b, € {0, o, 5, }, define
Id if by, = ap(g),
Sgp =< Id — (ap(9) — bp)Vp if b, # a,(g) and b, € {ay, Bp},
Id — a,(9)V, + p"te(p)V;} if by # ay(g) and b, ¢ {ayp, By},

so that we have ggp = Sgp g. By Proposition 3241 applying Sg‘“ to g only modifies
the Fourier coefficients of index divisible by p. Moreover, it gives us a modular form
that is still a normalized eigenform for the whole Hecke algebra at its level. It means

that for another prime r and b, € {0, o, 8, }, the modular forms (gzp)i"‘ and (g’r’r)f,”

are well defined and equal to SS”S&"g = Sbr Sgpg.

For any finite set of primes P and any b € Hpep{O, ap, Bp}, we define
9B = H Sgp qg.
peP
With the notations of Proposition [3:224], we deduce the following result.
Corollary 3.26. The function g3 is a modular form of same weight and charac-

ter as g and of level MHpeP p"r. It is a mormalized eigenform for all the Hecke
operators at level MHpeP p"r, and for any prime v we have

by _ G’T(g) Zf’/’ ¢ Pv
o) = {br if r eP.

Moreover, if g has Fourier coefficients in a ring R, then those of gll?, lie in the
ring R(b).

Since the beginning of this section, our results were about “true” modular forms.
There is another function that we can modify with the operator S,(b) and get a
modular form: the Eisenstein series Es.

Proposition 3.27. Let p be any prime number and b € {1,0}. Define
(E2)b = Sp(p)Ey and ny =1 ifb=1,
{(Eg)g = 5p(1) 0 Sp(p)E2 andny, =2 if b=0.
The function (Eg)g is a modular form of weight 2, level p™», and trivial character.

It is a normalized eigenform for all the Hecke operators at level p™», and for any

prime r we have
r+1 afr#p,
ar((B2)p) = .
b if r =p.

Moreover, all the Fourier coefficients of (Eg)g are integers, except maybe the con-
stant one that is rational.
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Proof. An easy computation shows that for any prime p, we have S,(p)E2 =
E;l’ﬂ(p). In particular, the form S,(p)E2 = Sp(ap(E2) — 1)Es is a normalized eigen-
form of weight 2, level p, trivial character, and for any prime r, its rth Fourier
coefficient is equal to r + 1 = a,(FEs) if » # p, and 1 if » = p. Moreover, the
Hecke polynomial at p of E;Ml(p) is X(X —1). Thus, Sp(l)E;l’n“” = S,(1) 0 S, (p)Ea
is a normalized eigenform of weight 2, trivial character and level p? and we have

ap(Sp(1) 0 Sy(p)Es) = 0. m|
We can then state a result of the shape of Corollary 320 for Es.

Corollary 3.28. Let P be a finite set of primes and let b € HPGP{O, Lp\(P)pep-
There is a modular form (E2)B of weight 2, level HpeP p"r, and trivial character.
It is a mormalized eigenform for all the Hecke operators at its level, and for any
prime number r we have

r+1 ifré¢P,

by _
ar((E2)P) = {b,. ifreP.

Moreover, all the Fourier coefficients of (FE2)B are integers, except maybe the con-
stant one that is rational.

We finally give a result on the constant coefficient of an Eisenstein series that
has been modified with Corollary [3.26]

Proposition 3.29. Letk > 2, let €1, eo be two primitive Dirichlet characters. Let P
be a finite set of prime numbers and let b := (b,) € HPGP{O, e1(p), p*tea(p)}, dif-
ferent from (p)pep if (k,e1,e2) = (2,1,1). Then the constant coefficient of (E;***)8
s equal to

0 Z'f{‘:l?éﬂv

Bk,e — }
*72 H by (by —p 152(]3)) ifer = 1.
peP

Proof. First, if &1 # 1, then the constant coefficient of E;"* is trivial by (21]).
Assume g1 = 1. Then the modular form (E;"**)B is equal to

H (Id —&pVp + (5,,‘/;,2)E,?’62,
peP

where
(1+p"tea(p),p*tea(p)) if b, =0,
(ep; 0p) = ¢ (1,0) if b, = p*~ea(p), (3-3)
(p*~Lea(p),0) if b, = 1.

Therefore, the constant coefficient is equal to 73'2"—;2 HpEP(]' —ep+9p). A straight-
forward computation gives that 1 — ¢, + 6, is equal to 0 if b, € {0, p*~lea(p)}, and
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to 1 — p*~Lea(p) if b, = 1. Therefore, if one of the b,’s is equal to 0 or pF=tey(p),
then the constant coefficient is equal to
Bkﬁ _
0= *Tz H by(by — p* " ea(p)).
peP
Else, if all the b,’s are equal to 1, then the constant coefficient is equal to
By.e, k—1 Bl k—1
—r LA =p" ) = ——= 11 oot — 2" 22 (p)). -
peEP peP

Proposition 3.30. Let k, €1, €2, P and b be as in Proposition [329. Let c1, ¢o be
the conductors of €1 and &3, respectively. Then the constant coefficient of (EZI’”)'I?,

at the cusp é s equal to

W((51571)0)Bk7(6f162)0 €2 * (51571)0(]3)

Z)\HCQ

-1

€155 () 1
< 11 (1 P ) 1 (15'
by e (p) by 1ea(p)

Proof. Let v := (1 (1)) be an element of SLy(Z) such that yoo = L. Write the

[ [

modular form (E;"*)% as
H (Id —¢epVp + 6pr2)EZI’62,
peP
with ¢, and 0,, defined by ([B3). By Proposition 2] for an integer M, the constant

coefficient of (VarE}""*?)|k is nonzero if and only if M and ¢y are coprime. Under
this assumption, we have, with the notations of Proposition 2.9,

-1 - \B, -1
T (y, M) = 62]\/‘%\4) —51(—1)W$f(1;_21))0) k}(;k =
e\" (€165 )o(p)
(@) I (- =) @9

pleics

The expression in brackets is independent of M, let write it D. Notice that if M is
not coprime to cg, the formula still holds, as eo(M) = 0. Define

P .= H (1—epXp +0,X;) € C[(Xy)pep]-
peP

As (33) is fully multiplicative in M, the constant coefficient of (E;"?)% is then
equal to

1
lim  P((V,)pep)E k() =D - P <<52—"(p)> P>'
peE

Im(z)—+o0 p
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We just have to compute the value of P((Egzjk(p) Jpep) to conclude. Let P,(X,) =
1—e,X,+0,X}, so that we have P =[] .p P,(X,). A straightforward calculation

shows that the value of P, (w) is
P\ op

(1 - %k(p» <1 - ;_19) if (ep,0p) = (e1(p) + " tea(p), P terea(p));
1_ ElE]ij (p) if (Ep75p) = (El(p),());
- 11) if (5, 0,) = (0" 'e2(p), 0). 0

4. Reducible Galois Representations
4.1. Reducible Galois representations and Eisenstein series

Before dealing with the reducibility of a residual representation attached to a new-
form, we examine the general case of a reducible, residual, semi-simple, odd Galois
representation. We begin by a definition that will be enlightened in the following
proposition. Throughout this section, we fix a prime number ¢ and a place £ of Q
above /.

Definition 4.1. Define R(¢) as the set of quadruplets (¢1,e2,m1,m2) consisting
of two primitive Dirichlet characters 1 and ey that are of prime-to-f order and
unramified at ¢, and of two integers mq, mo such that 0 < m; < my < £ —1,
and g162(—1) = (—=1)™+m2+1 (mod /).

Proposition 4.2. Let p : Gg — GLo(Fy) be a semi-simple, odd representation.
Then, p is reducible if and only if there exists (£1,€2,m1,ma) € R({) such that
P X;’“ﬁ @ X;’L?E_g, where 1 and 5 correspond to the reduction modulo £ of €1
and es, Tespectively.

Proof. If p is reducible, then we can decompose it as ¢1X,"" @ @2X,"?, with ¢,
2 two characters modulo £ unramified at ¢, and 0 < m; < mg < £ — 1. Let ¢;
be the Teichmiiller lift of ¢; with respect to £ (see Sec. 2Z2). By construction, the
characters €1, €2 are primitive and have prime-to-¢ order. Finally, if ¢ is a complex
conjugation, then we have

—1 =det(p(c)) = m(,l)yé(c)ml-&-mfz — (71)m1+m2m(71)'

Therefore, we have (e1,e2, m1, m2) € R({). O

Our goal is now to construct from an element (e1,e2,m1,ma) of R({), various
modular forms that correspond to the representation X;"'&1 & X, ?gz. By this we
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mean, in the spirit of [T1, Théoreme 6.7], modular forms g € My, (Ny,g,) such
that

e ¢ has £-integral Fourier coefficients;

e ¢ is a normalized eigenform for the Hecke operators Tzfv ¢ modulo £ of prime index
p not dividing £Ng;

o det(XET B XYUE) =X T EE = X By

o Tr((, g1 & X, "*z)(Froby)) = p™&i(p) + p"*82(p) = a,(g), for all primes p not
dividing £N,.

The motivation to seek such forms comes from the fact that if f € Sp*V(N,¢e) is a
newform such that p; ¢ = X" 1 © X;"*€2, then for any g as above, we will have

X, = Y?"AQ and  a,(f) =ap(g) (mod L), for all primes p t {NN,.

For (e1,e9,m1,m2) in R({), define

and Fy:= E}®2. 4.1
2 if 0 =2, 0 ¥ (4D

v {m2m1+1 if £ > 2;
Proposition 4.3. We have e169(—1) = (—1)¥'. In particular, Ey is well defined
and modular if and only if (k' e1,e2) # (2,1,1), in which case Ey is a normalized
eigenform of weight k', level ci¢o, and character e1eo. Moreover, for any prime
number p we have a,(Eo) = e1(p) + p* ~ea(p) in any case.

Proof. If £ = 2, then &; and e, are even, and we have 1g9(—1) = 1 = (=1)¥".
Otherwise, we have

6182(—1) _ (_1)m2+m1+1 _ (_1)m2—m1+1 _ (_1)15.

The rest of the proposition follows from Proposition 2.8 and (ZT]). |

To be sure that we can associate a Galois representation modulo £ to EFy, we
study the integrality of its Fourier coefficients. The following lemma states when
the coeflicients of Ey may not be £-integral.

Lemma 4.4. Assume (k',e1,e2) # (2,1,1). The Fourier coefficients of Ey are
L-integral unless perhaps in the following cases:

o (=21 =1 and g5 # 1;
e /[ >5 e =e92=1, and (my,mz) = (0,£ —2).

Proof. Apart from the constant one, the coefficients of Ej are all algebraic integers.
We therefore only need to focus on the constant Fourier coefficient ag of Ey.

In the case £ # 2, if (e1,e2) # (1,1), then ag is always £-integral by Proposi-
tion [Z4] because €1 and e are unramified at £. If 61 = 5 = 1, then ag = 72+€,Bk/.
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By Proposition [Z4] again, if (m1,ms2) # (0,£ — 2), then ag is always £-integral. If

(my,ma) = (0, — 2), then ag is always not £-integral. Notice moreover that we

must have £ # 3, because otherwise kK’ = 2 and &7 = &5 = 1, which is excluded.
Assume £ = 2, hence k' = 2. If g1 # 1, then as before we have a9 = 0. Else, if

B2,62

g1 = 1, then ag = — which may not be £-integral. Moreover, we must have

g2 # 1 because otherwise we would have (k' e1,e2) = (2,1,1). O

We can now construct from (g1,e2,m1,m2) € Ry (and hence ko and Ep), a
modular form with the properties discussed above. With the notations of Proposi-
tions and B.27] we define

we are in one of the cases listed in Lemma [4.4]

ri=4and F = (Ey)y if
or (k/7517€2) = (27171)7

r:=1and FE := Ej otherwise.
(4.2)

The following proposition sums up the properties of E.

Proposition 4.5. The function E is a modular form of weight k', level M :=
lem(cyco,7), and character e1e5. It is a normalized eigenform for all the Hecke
operators at level M, all its Fourier coefficients are L-integral, and for any prime
ptr, we have a,(E) = e1(p) + p* ~tea(p).

Proof. The only thing to prove is that M is indeed the level of E. The rest of
the proposition then follows from Propositions B.24], .27, Lemma 4] and Propo-
sition If » = 1, the level of E is equal to ¢ic2 = lem(ciea, 7). Assume r = 4.
We then always have ¢; = 1 and either es = 1 or £ = 2. In the first case, ¢coc = 1
and €2(2) = 1 # 0. In the second case, ¢o is odd because prime to £. Thus, we have
£9(2) # 0. In every case, the level of F is equal to 4cica = lem(cqco, 4). O

The final step to have a modular form that has a Galois representation modulo
£ that is isomorphic to X;"'&1 @ X,"°g2 is to apply the operator § that we have
constructed in Sec. 11

Proposition 4.6. Let p : Gg — GLa(F,) be a residual, semi-simple, odd Galois
representation. Then p is reducible if and only if there exist (e1,£2,m1,m2) € R({)
such that p = Pami g o> where E is the Eisenstein series associated to (€1,€2,m1,M2)

Moreover, if P is a finite set of primes, and b € Hpep{O,el(p),pklflsg(p)},
then we also have p = ﬁ@’”lE};’,,E’ where EB is defined in Corollary [3.28]

Proof. From Proposition 2] we only have to prove that for a quadruplet
(€1,€2,m1,m2) € R({), we have Pomip o = X, e @ X, 2. It follows from Proposi-
tion and Lemma [3.2] that the representation pg., ;; o is well defined. Moreover,
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from Lemma agaln the form GmlE is of weight k' + mq(ka + 2), level M,
and character e1e2x"y", the value of k4 and x4 depending on the level M and the
place £ (see Table [)). Recall that in any case we have ya = X, " (mod £) and
k' =mg—mi+1 (mod ¢ — 1). Therefore, we have

(k' k 2))—1 — — 1 k 2)—1— k
XE +mi(ka+2)) XZLIEIEQ = X2n2 my+14+mi(ka+2) my A5152 (mod 2)
= Ym1+m26162 (mod S)

Finally, from Lemma[3.2] PropositionL5l and again the congruence k' = mo—mq+1
(mod ¢ — 1), we have for any prime number p 1t 1/,

ay(0™E) = p™ay(E) (mod £)
= p™er(p) + "™ es(p)  (mod £)
=p"e1(p) + p™e2(p) (mod L).

By the discussion at the beginning of the section, we get
pg””lE,E >~ yzrns—l fany Y;”LZE

By Corollary [3:26 and Lemma [3.2] the modular form amlEB still has £-integral
Fourier coefficients, and is again an eigenform for all the Hecke operators modulo £
at its level. Moreover, by the same computations as above, the determinant of
ﬁgmlEb is still equal to Xm1+m25152, and for any prime number pt ¢, p ¢ P, we

have ap(ﬂmlEP) p™a,(ER) = p™ei(p) + p™2ea(p) (mod L£). Therefore, we also
have p = pe""lEg,):' O

Remark 4.7. Be careful that the operator 0 we apply to EB is not strictly the
same as the one we apply to F, the levels of these two forms not being the same.

4.2. General study of modular reducible representations

Let f = g+ Y.,° 5an(f)g"™ be a newform of weight k& > 2, level N > 1, and
character ¢ of conductor ¢. Let K be the number field generated by (a,(f))n>2
and let A be a prime ideal of the ring of integers of Ky above a prime number /.
As in the previous section, we begin with the definition of a set that corresponds
to the possible reductions of py .

Definition 4.8. Let £ be a place of Q above . Define the set Ry (L) as the
subset of R(¢) (see Deﬁnition [L1)) consisting of the quadruples (e, 52, mq,mg) such
that ;"' T2 z1Es = Xe 1z, and for every prime p # ¢, we have vp( -) €{0,1,2},
where * denotes the reduction modulo £, and ¢; is the conductor of 51

Notice that in particular if (e1,e2,m1,m2) € Ry k.(£), then cieo | N. The set
Ry 1,c(£) is therefore finite.
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Remark 4.9. We will see later that the set Ry (£) depends in fact only on
£NQ(e) (and obviously on N, k and ¢). For now, this dependency will not matter,
and we postpone this proof to Sec.

From now on, assume that £ is a place of Q extending \.

Proposition 4.10. The representation py 5 is reducible if and only if there exists
(e1,€2,m1,m2) € Ry (L) such that Dra = X, €1 & X, *€2, where & denotes the
reduction of €; modulo £.

Proof. The representation p;, is semi-simple and odd. Therefore, by Propo-
sition 2] it is reducible if and only if there exist a place £ above £ and
(e1,€2,m1,m2) € R({) such that p,, = X,"'&1 ® X, 2. We just have to check
that in this case we have (1,2, m1,m2) € Ry k,(£). The determinant of P is
X’Zﬁlé Therefore, we have X’Z“erzm = X?ilg. Moreover, the prime-to-¢ part
of the Artin conductor of X;"'&7 @ X,z is equal to cjca. By Proposition [[4] we

necessarily have vp(%) € {0,1,2} for all primes pt N, p # ¢. O

In regard of Proposition [£.6] this result is equivalent to saying that the prime
index coefficients of f are all but finitely many congruent modulo £ to those of any
of the forms §m1E}; described in Sec. L1l We will prove that there exist in fact P
and b such that f is congruent to §m1EB except maybe at the primes dividing ¢
and r. The following result is the key step in this direction. It uses in a crucial way
the local description of p; , at the bad prime numbers (see Sec. [I]).

Lemma 4.11. If the representation py, is reducible, then there exists
(e1,€2,m1,M2) € RN k(L) such that for any prime number p # {, we have

“wf) = p™by, (mod £) if p| N,

{pmlsl(p) +p™2ez(p) (mod £) ifpfN,
Jor some by, € {0,1(p), p™* " e2(p)}-

Conversely, if for some (£1,€2,m1,m2) € Ry (L), those congruences hold for
every prime p in a set of density 1, then we have py \ = X, 'E1 DX, *E2-

Proof. Let us first prove the second statement. Write p := X, &1 ® X,"*&2. By
construction, the determinants of p; y and p agree. Moreover, by assumption for
any prime number p{ N/ in a set of density 1, we have

Tr(py 5 (Froby)) = a,(f) = p™e1(p) + p"ea(p) = Te(p(Frob,)) (mod £).

By Brauer—Nesbitt theorem [IT, Lemma 3.2], p; , must be isomorphic to p and is
thus reducible.
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We now prove the first statement. Assume p;, to be reducible. Proposi-

tion [LI0] gives us the existence of (e1,e2,m1,Mm2) € Ry k(£), such that Pra =
X, €1 @ X, 2. For any prime p t N/, taking the trace at a Frobenuis at p gives

the

congruence a,(f) = p"™e1(p) +p"e2(p) (mod £). Let us now consider a prime

p| N and different from ¢. We treat three cases separately:

(i)
(i)

If v,(N) > 2 and v,(N) > v,(c), we know from Proposition [Tl that a,(f) = 0.
Hence, we have a,(f) = p™'b, (mod £) with b, = 0.

If v,(N) = 1 and v,(c) = 0, then ¢ is unramified at p. Moreover, by the
congruence X5 'e = X" e1e9 (mod £), the character e1eq is then also
unramified at p. Therefore, p|c¢; if and only if p| ¢z, and because v,(N) = 1
and cyco | N, we deduce that p does not divide ¢jco. Thus, we are in the first

case of Proposition [[3] and we get an equality of sets of characters of G,

{nlap(f)), mlap(f))xe} = {X; &1, X, * 82}
There are two cases to look at:

o If p(ay(f)) = X, ""&1, then ay(f) = e1(p)p™ (mod £). In this case, we define

bp = El(p)'
o If p(ay(f)) = X,"*&2, then we have a,(f) = e2(p)p™> (mod £), and we put

by = p™*" " es(p).
In both cases we have a,(f) = p™'b, (mod £) with b, € {e1(p),p™> "' e2(p)}.

(iii) Finally, if v,(N) = v,(c), we are in the second case of Proposition [[3, and we

get the equality

{ulap()); plap(H) " EIG, X} = (X 21 X e )
We again have two cases to consider:

o If u(ay(f)) = x;"" €1, then a, (f) = e1(p)p™* (mod £). Let us put b, = £1(p).

o If p(ay(f)) = X,"%2, then a,(f) = ea(p)p™ (mod £). We put b, =
pm2—7rL1 52 (p) .

In both cases, we again have the congruence a,(f) = p™b, (mod £) with

by € {e1(p), P> e2(p)} a|

Let (1,2, m1,m2) € Ry k(L) and consider k', r and E as defined in (£1]) and

([£2), respectively. With the notations of Proposition 324 we define

N if 2| N and ax(f) = 0;
fri=fYand N':={ 2N if 2| N and as(f) #0; ifr=4;

4N if 21 N,
f':=fand N':= N, ifr=1.

(4.3)

Proposition 4.12. The form [’ is a normalized eigenform of weight k, level N,
and character €. Its Fourier coefficients are £-integral and if a prime p divides r,
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then a,(f’) = ap(E) = 0. Moreover, the level M = lcm(cica,7) of E (see Proposi-
tion[L3) always divides N', and if £ =2, then N’ > 3.

Proof. The only facts that do not follow directly from Proposition 324 are those
on the level N'. First recall that c¢jcy always divide N. For M = lem(cica,r) to
divide N’ we thus need to prove that r divides N'. If » = 1 this is straightforward.
Assume r = 4. If 2 4 N, then N’ = 4N is divisible by r. If 2| N and ax(f) # 0,
then 4 divides N’ = 2N. Finally, if 2| N and as(f) = 0, then by Proposition [IT]
we necessarily have va(N) > 2. Therefore N’ = N is again divisible by r. In every
case, we have M | N'.

Finally, assume ¢ = 2. If ¢ = 1, then we necessarily have r = 4 and N’ > 4.
Otherwise, if €1 # 1, we then have N’ > ¢; > 3 because there is no non-trivial
primitive character of conductor less than 3. O

It follows from Lemma [LTT] that if 5 , is reducible, then there exist P and b
such that for all primes p, we have pa,(f’) = p™ *la,(FEB) (mod £). In order to
use Corollary and make these infinite set of congruences equivalent to a finite
one, we now need to control the level of Ellg.

Proposition 4.13. Let (e1,£2, m1,ms2) € Ry k.(£), let p # £ be any prime number
dividing N, and let b, € {O,El(p),pk/_IEQ(p)}.
If we have a congruence a,(f) =p™'b, (mod £), then we have

1 < wp(erez) +np < vp(N),

where n,, is defined as in PropositionB24 with respect to g = E and by. In particular,
those inequalities are independent of the choice of by.

Proof. First, we always have v,(c1¢2)+n, > 1, because n, = 0 only if b, = a,(E) =
e1(p) + p'=1gy (p), which implies that v,(cic0) > 1.
Next, we claim the following:

b, = 0 if and only if v,(¢) < v,(N) and v,(N) > 2.

Indeed, we have b, = 0 if and only if a,(f) = 0 (mod £). Moreover, by Proposi-
tion [T we have either v,(c) < vy(N), v,(N) > 2 and a,(f) = 0, or |a,(f)* = p*
with s > 0. Therefore, we have a,(f) =0 (mod £) if and only if v,(¢) < v,(N) and
vp(N) > 2.

We now prove that wv,(cic2) + n, < v,(N). If n, = 0, it follows from
the fact that cico|N. If n, = 2, then from Proposition B24] we must have
b, =0 ¢ {1(p),p* ~'ea(p)}. Therefore, p f cico and from the discussion above we
have v,(N) > 2 = vp(cic2) + Ny

Assume finally that n, = 1. We then have b, # &1(p) + p¥ 'ea(p) and
b, € {e1(p), ¥ ~'ea(p)}. Therefore, p does not divide both ¢; and co. If p t ¢jco,
we have v,(c1e2) +np = 1 < v,(N). Otherwise, assume that p|e; and p { co. We
then necessarily have b, = 0 and from the discussion above we get v, (c) < v,(N).
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Looking at the p-part of the Artin conductor of both sides of the equality
X, e =) T EE, we get v,(€) = v,(c7) where T and 7 denote the conduc-

tors of € and &7, respectively. Because €1 has prime-to-£ order, we have ¢ = ¢;. On

the other side we always have ©|c¢. Therefore, we have v,(c1c2) = vp(c1) < vp(c).
Hence, we get vp(c1¢2) +np, < v,(N). The case p| e and pt ¢y is treated in exactly
the same way. O

Corollary 4.14. Let (¢1,e2,m1,m2) € Ry k(). Define k', r and E as in [@I)
and ([E2), respectively. Consider P C {p prime, p|N,p t r¢} and b := (by)pep €
HPGP{O,El(p),pkLlsg(p)} such that for all p € P, we have p™b, = ap(f)
(mod £).

The modular form E' := EB is of weight k', character €12, and its level
divides N'. It has £-integral Fourier coefficients and for every prime p such that
either p t NC or p € P U {r}, E' is a normalized eigenform for the Hecke
operator TZfV'.

Proof. From Corollary[3.26] the form E’ is a normalized eigenform for all the Hecke
operators at its level Npr := M [[ .p p"». Moreover, the action of Tzfvl and TéVE'
on E’ are the same if p divides both N’ and Ng/ or none of them. If p { N¢, then
pt Np. If p € PU{r}, by Proposition LT3} we have

1 <v,(Npgr) < vp(N').

Therefore, Ng: divides N’ and E’ is a normalized eigenform for the announced
Hecke operators. The rest of the corollary follows from Corollary 3.2 O

We now state the first main result of this section. It gives for a given A, an
explicit algorithm to check the reducibility of the representation py .

Theorem 4.15. Let f be a newform of weight k > 2, level N > 1, and character
€. Let X be a prime ideal of K¢ above a prime number . The following assertions
are equivalent:

(1) Py is reducible;

(2) Let £ be a place of Q above \. There exists (1,62, m1,m2) € Ry k(L) (see
Definition [L8) such that the following holds. Let k', v, and N’ be as in (@),

HE2) and [@3)), respectively. Define
kE=mi+ma+3 (mod4),

4 if
a = (=3 andVp|N',p=1 (mod 9);
0 otherwise,
3 if 0| N';
b=16 E=3andVp|N' b koK b
= p=1 (mod9): an =a+ b+ max(k, k" + bmy).

{+1 otherwise.
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Nk

For every prime p < B := q‘N/(l + ) not dividing r¢, we have

e pt N and ay(f) = pmlel(p)erm?sg( ) (mod £);
e or, p| N and ay(f) = p™b, (mod £) for some b, in the set {0,e1(p),
pm M es(p)}

When this holds, we moreover have py 5 = X" &1 © X, 2.

Proof. Assertion (2) is weaker than the second part of Lemma [LI1l Therefore,
(1) implies (2).

Assume that (2) holds. Consider again &/, r, E, N’, and f’ defined in (1), (£2)
and ([@3), respectively. Define P := {p prime, p| N,p1{ ¢r,p < B}, and b := (b,)pep-
Finally, with the notation of Corollary B:26 consider the form E’ := EB.

We wish to apply Corollary B 19 with f = f', g = E', my =1 and my = mq + 1.
By Corollary T4 we have B’ € My, (N',£122), it has £-integral Fourier coefficients,
and it is an eigenform for all the Hecke operators at level N’ of index less than B,

except maybe at £. Moreover, from the identity ;" ""*z723 = yﬁ‘lg, we have

k' +2 e 1)42 1) k42—
X +2(mi1+ )5 = = (m2 mi+1)+2(m1+ ) X77L1+mz+3€1€2 X§+2

Let p be a prime number less than B. If p| ¢r, then we have
p™a,(E) =0 =pa,(f) (mod £).

Otherwise, by Corollary 28] we have p™*'a,(E’) = p™ b, = pa,(f’) (mod £).
The definitions of a, b and k correspond to those of a, b and k in Proposition 317
(the case £ = 2 and N’ < 2 never occurs as proved in Proposition f12)). By Corol-
lary BI9 we therefore obtain the congruence na,(f') = n™*la,(E’) (mod £) for

—mo—

every non-negative integer n. By LemmaLTT} we thus have p, \ = X, E1 © X, &2
O

Remark 4.16. From this theorem, we can deduce an algorithm that takes a prime
ideal A as input and decides whether the representation p; , is reducible or not,
and computes the representation if it is reducible. In particular, it justifies the
reducibility modulo 11 of the representation treated in [3, 5.1.2]. We give further
details on how to explicitly do this in PARI/GP in Sec. [fl Moreover, the theorem
extends the case m = 1 of [I8, Proposition 2.].

The previous theorem holds without any restriction on ¢, but the result depends
on ¢ through

(1) the set Ry (L);
(2) the integer B that bounds the number of congruences to check.

We first remove the dependency in ¢ in the set Ry i -(£).

Definition 4.17. Define Ry . as the set of pairs (1, ¢2) of primitive Dirichlet char-
acters such that 169 = ¢ and for every prime number p, we have vp( ) € {0,1,2},
where ¢; is the conductor of ¢;.
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Proposition 4.18. Assume { > k —1 and £ { No(N). The representation py \ is
reducible if and only if there exists (€1,e2) € Ry, such that Py ZELD X?fls_g,
We moreover have as(f) = e1(£) + €5 1ea(€) (mod £).

Proof. From Proposition EI0] if Py is reducible, then there exists a quadruple
(€1,€2,m1,m2) € Ry k(L) such that p; \ = X" &1 @ X, "*2. By the assumptions
¢4 N and ¢ > k — 1, together with Proposition [[L2] f must be ordinary at A, and
we have an equality of sets

{tanxs (20} = e e

It follows that (mq,ma) = (0,k—1) and a,(f) = e1(¢) = e1(£) + £ e5(¢) (mod £).
Finally, the character e(g12)~! reduces to the trivial character modulo £, and
because £ 1 ¢(N), it must have prime-to-¢ order. Using Lemma 27 it must be
trivial, and we get € = €1£9. O

The following result will allow us to both remove the dependency in ¢ in the
bound B of Theorem [T and bound the set of £ such that p; , is reducible.

Proposition 4.19. Assume ¢ > k + 1 and ¢ 1 No(N). The representation
Pra is reducible if and only if there ewist a pair (e1,62) € Rye, and b €
HPGP{O,El(p),pk_lsg(p)}, with P := {p prime,p|N,p 1 lr}, such that f' = F’
(mod &), with ' defined as in E3) and E' := EB.

Proof. If we have f/ = E’ (mod £), then in particular for all primes p { Nér, we
have

ap(f) = ap(f) = ap(E') =e1(p) + p" 'ea(p) (mod £).

By Lemma LT} 7, , is therefore reducible.

Assume that Pra is reducible. The existence of (e1,e3) is granted by Proposi-
tion[LT8 Moreover, by LemmafL.TTlthere exists b € [[ {0, e1(p), p*~tea(p)} such
that for every prime number p, we have a congruence a,(f’) = a,(E’) (mod £). B
Corollary 14] E’ € My (N’,¢) has L-integral Fourier coefficients and is an eigen-
form for all the Hecke operators at level N’. By Proposition £12] f’ has the same
properties and therefore the modular form f/ — E’ is constant modulo £.

By the assumptions ¢ > k+1 and £ No(N), we have £ > 5 and £ 1 N. Therefore,
we know from [I2] Theorem 12.3.7] that Katz’ modular form spaces with coefficients
in Fy are isomorphic to the spaces of reduction modulo £ of modular forms with £-
integral coefficients. Therefore, from [I5], Corollary 4.4.2], for f'— E’ to be congruent
to a non-zero constant we must have k = 0 (mod ¢ — 1). This cannot hold under
the assumption ¢ > k + 1, and we get [/ = E’ (mod £). a

We now state our second main result. It is analogous to Theorem for the
prime numbers £ >k + 1 and £ { Np(N).
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Theorem 4.20. Let f be a newform of weight k > 2, level N > 1, and character
€. Let X be a prime ideal of Ky above a prime number £. Assume £ > k + 1 and
L1 No(N). The following assertions are equivalent.

(1) Py is reducible.
(2) Let £ be a place of Q above \. There exists (e1,e2) € Ry e such that the following
holds. Let r be as is [E2) (recall that (mi,mg) = (0,k — 1)) and let N' be as

in [E3). Define
0 ifr>1ore #1;

C= _Breo ap(f)(ap(f) — p"eo(p))  otherwise,

p|N

where g 1s the primitive character associated to c.
We have C = 0 (mod £), and for all primes p < B := % q|N’(1 + %),
we have either p|r or

e a,(f)=ce1(p) +pFtea(p) (mod L), if pt N;
o ay(f) =b, (mod £) for some by, € {0,e1(p), p*'e2(p)}, f p| N.

When this holds, we moreover have Py ZE1® Xif_ls_g.

Proof. Assumey , to be reducible. Introduce f" and E’ as in Proposition[£T9 The
congruences for a,(f) follow from the congruence f' = E’ (mod £). It only remains
to prove that C' = 0 (mod £). Because f’ is cuspidal, its constant coefficient at
infinity is equal to 0. Therefore, the one of ' must be congruent to 0 modulo £.

The congruence C' = 0 (mod £) is non-trivial only if » = 1 and £; = 1. In this
case, we have €9 = g¢, the set P of Proposition[£.19is the set of prime divisors of N
and for all p € P we have b, = a,(f) (mod £). Therefore, the constant coefficient
of E' is equal to

7Ble7<:€2 H bp(by — " ea(p)) = B;;O H ap(f)(ap(f) — " teo(p)) (mod £)
peP DIN
=C (mod £).

This proves that (1) implies (2).

Assume now that the second part of the theorem holds. Consider again the
modular forms E and f’, and define P<p := {p prime, p| N,p < B} and b<p :=
(bp)pep .y, and let B’ := Ellgi];. By Corollary EET4], we have E' € My (N, ¢), it has
L-integral coefficients, and it is an eigenform for all the Hecke operators at level
N’ of index less than B. The form f’ has moreover the same properties and for
all prime numbers p < B, we have by assumption a,(f’) = a,(E’) (mod £). In
order to apply Corollary BI9to f = f', g = E', my = my = 0, we need to have
ap(E’) =0 (mod £). From Proposition 3229, we have ag(E’) =0if ey # L or r > 1.
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Else, if e1 = 1 and r» = 1, we have g5 = g¢ and

aO(E/) = _% H bp(bp - pk_l‘EQ(p))
p|N,p<B
= _BQk—k [T @) =p " eo(p)  (mod £).
p|N,p<B

mod £), or there

By the assumption C' = 0 (mod £), we have elther ao( =0 (
= 0 (mod £). Define

exists po | N, po > B, such that ap, (f)(ap, (f) — so(po))
then
E’ if ag(E') =0 (mod £);
E" .= b o) ( ) with
B 0 otherwise
0 if ap,(f) =0 (mod L£);
b;Do = k1 . _ k-1
poco(po) if ap,(f) =po co(po) (mod £).

By Corollary T4, E” still lies in Mg (N, €), has L-integral Fourier coefficients, is
an eigenform for the Hecke operators at level N/ of index less than B, for any prime

p < B, we have a,(E"”) = a,(f’') (mod £), and its constant Fourier coefficient
vanishes modulo £. By Corollary BI9, we finally get E” = f’ (mod £), and we
therefore have Pra =1 D X?fls_g. O

Remark 4.21. Notice that we could have always taken r = 4 from the start (i.e.
from ([£2)) without modifying any of the results of Sec. @ The version of Theo-
rems and we exposed in the introduction assumed that. The coefficient
C is then equal to zero, and we get back the results announced previously.

From Theorem [£.20] we also deduce a bound for the reducible primes in terms
of N, k and ¢ only.

Theorem 4.22. Assume that py \ is reducible, then one of the following conditions
holds.

o / <k+1;

o [|Ng(N);

o there exists (g1, €2) € Rn . such that ¢ divides the algebraic norm of one the
following nonzero quantities

(1) Bk (e7'e ;
LA 2)0

(2) p* — (e1e5M)o(p) for a prime p such that p|cica, p1co with ¢o the conductor
Of (51551)0.

Proof. Assume ¢ > k+1and £{ Np(N). From Proposition[LT9 if p; , is reducible,
we have a congruence modulo £ between the cuspidal modular form f’, and the
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Eisenstein series E’. Therefore, by Katz’ g-expansion principle (see [I5]) the con-
stant coefficient of E’ must be congruent to 0 modulo £ at every cusp. By Propo-
sition B30 the constant coefficient of E’ at the cusp é divides the quantity

—1 B —1 k
_El(_l)W«ElEQ )O) k(g7 “e2)o (C_Q)

WD 2k \o

<1l (1(51%30@> 11 (1%5_1(]@) (1%),

pleice p|N’
Let us look at the prime factors of the norm of this coefficient.

e The number —e1(—1) is a unit. Its norm has no prime factor.

W((e1e5 M )o) (2
W(zz2) o
powers of prime factors of N. By assumption, ¢ does not divide them.

e For p| N’, we have 1 —% = prl. By the assumption £ 1 No(N), this cannot vanish
modulo £.

e By Proposition 2.6, the prime factors of the norm of )k are only

e For p|N’ again, let us prove that the prime factors of the norm of (1 —

%ﬁ_l@) are redundant with the ones of N and (p* — (165 ")0(p)). Note

that we either have p = 2 and (k,e1,22) = (2,1,1), or N’ = N. In the first

ei(p)es t(p)
2 —

case we have 1 — %. This cannot vanish modulo £ by assump-

tion because 2 and 3 are less or equal to kK + 1 = 3. Otherwise, we have
p| N, then either p|c¢y and 1 — w =1 % 0 (mod £), or p { ¢y and

1_ El(p)s;?_l(p)

Y CERNE)

. Therefore, ¢ must divide the algebraic norm
of p¥ — (185 1o (p)-

e Finally ¢ divides either the norm of W and thus By erlea)o
is nonzero modulo £ by assumption, or p¥ — (165 )o(p) for p|cico. This final

because 2k

quantity contains only prime factors of N if p|co. We can therefore consider only
the primes p 1 ¢p. O

5. Dihedral Representations

Let £ > 2, N > 1 be two integers, and ¢ be a Dirichlet character modulo N
of conductor ¢. Let f € SE®V(IV,e) be a newform. We study in this section the
case where pg \ has projective dihedral image. The main result of this section is
Theorem The strategy used to prove this result is similar to the one of [3]
Theorem 3.2] but several technicalities arise when dealing with forms with non-
trivial characters. However, our method is based on a more refined use of the local
description of p; \ at the prime dividing the level, leading to an improved bound in
the trivial character case.
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5.1. CM forms

Let ¢ be a Dirichlet character of modulus M. We define the twist of f by ¢ as
the only newform f ® ¢ such that a,(f ® ¢) = ¢(p)a,(f) for all but finitely many
primes p. We have the following result from [2] §§1-3].

Proposition 5.1. With the above notations f ® ¢ € Si(lem(N, M?,cM), o%c). For
all primes pf M, we have a,(f @ ) = @(p)ay(f) and the p-part of the level of f® ¢
is equal to pv»(N)

Moreover, if v,(N) = vp(c) and ¢, = e,', where @, and e, denote the p-parts
of ¢ and e, respectively, then the p-parts of the levels of f ® ¢ and f are equal, and
we have ay(f @ ) = €,(p)¢,(p)ay(f), with a,(f) the complex conjugate of ay(f)
and 5; and 30; are the prime-to-p part of € and ¢, respectively.

We take this definition of CM forms from [28] p. 34].

Definition 5.2. Suppose ¢ is not the trivial character. The form f is said to have
complex multiplication by ¢ if ¢(p)a,(f) = a,(f) for all primes p in a set of primes
of density 1.

5.2. Study of the ramification of a character

Let ¢ be a prime number and let A be a prime ideal of O; above £. We assume for
the rest of the section that ¢ # 2. Consider the projectivization

Ph; st Gg 23 GLo(Fy) — PGLy(F))

and assume that Pp, \ (Gg) is a dihedral group Dy, of order 2n with £ { n. Let C be
the unique cyclic subgroup of order n in Pp; , (Gg). It is a normal subgroup, and
we get a quadratic character

-
Orx:Go 222 Doy — Dsy, /C = 7,)2.

Recall that the elements in D, \C are of order 2 and hence have all trace 0. Let us
focus on the ramification of the character 6y x. Let ¢ » be the conductor of 6 x seen
as a Dirichlet character. Because py , is unramified outside N/, the prime factors
of ¢y \ are among the ones of N¢. Let Ky x be the number field fixed by the kernel
of 5 5. It is a quadratic extension of Q, and we can write Ky = Q(,/dy,\) with
dy\ € Z square-free. By the conductor-discriminant formula [26, VIL. (11.9)], we
have

|df7)\| ifdepy=1 (mod 4),
C =
P27\ 4ldgal ifdpa=2,3 (mod 4).

We thus have the following result.
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Proposition 5.3. Let p be a prime number dividing c¢ . Then we have either
p#2, p|NLand v,(cpr) =1, orp=2, p| N and vy(csn) € {2,3}.

We now prove the following lemma.

Lemma 5.4. Let G be a finite group and let K be a field of positive characteristic
0. Let p: G — GLo(K) be a morphism with values in the subgroup of GLa(K) of

upper triangular matrices. Put p = ()E)l XC2) If the order of Pp is prime to £, then

Im(Pp) = Im(x1x; ')

Proof. From the isomorphisms G/ker(x1x5 ") = Im(x1xy ') and G/ker(Pp) =
Im(Pp), it suffices to prove that ker(Pp) = ker(x1x3 ).

Let o € ker(Pp). There exists A € K such that p(o) = A2, and we immediately
have x1(o) = x2(0). Therefore, o € ker(x1x3 ).

Let o € ker(x1x5 ) and let A := x;(0) = xa(o). We then have

(A c(o)
p(o)—<0 A)-

The order of p(c) in PGLy(K) is equal to 1 if ¢(0) = 0 and to £ if not. By assumption,
the image of Pp is of order prime to £. Thus ¢(o) = 0 and o € ker(Pp). m|

We first study the ramification of 0y 5 at £.

Proposition 5.5. Assume ¢+ N and ¢ > k. Then, with the terminology of Propo-
sition [L2 we have the following.

(1) If f is ordinary at A and £ # 2k — 1, then 0y 5 is unramified at ¢;
(2) If f is not ordinary at A and £ # 2k — 3, then 0y x is unramified at (.

Proof. We are under the hypotheses of Proposition [[L2

e If f is ordinary at A, then we have

(o
PN = 0 1)

The order of the image of Ppy , is prime to £. Therefore, so is the one of py 7,
By Lemma 5.4 we have Im(Pp; ) = Im(yﬁ_l). The image of Xéf_l is a cyclic
group of order W. If ¢ > k and £ # 2k —1, it is greater than 2. Therefore,
the image of Pp , is necessarily included in C' and 6y, is unramified at ¢.

e If f is not ordinary at A, then we have

wk‘—l 0
PEAIL g< 0 we(km)'
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By LemmaB.4, Tm(Pp; ,) is isomorphic to the image of PpE=DE=1) Tt is of order
W which is again greater than 2 if we assume ¢ > k and ¢ # 2k — 3. We
conclude as before. m|

We now look at the ramification at the primes p| N, p # £.
Proposition 5.6. Let p be a prime number dividing N and different from £.

(1) If vp(N) =1 and v,(c) = 0, then by x is unramified at p.
(2) Assume vp(N) = vp(c). If 05\ is ramified at p, then the p-parts of € and 65 x
are equal modulo X (in particular, €, has order 2 modulo \).

Proof. (1) By Proposition [[3] the restriction of Py, at an inertia subgroup I;, at

p, is given by
_ 1 =
P = .
fv)“lp 0 :ﬂ_

By assumption, the order of image of Pp;, is prime to f. Therefore, by
Lemma B4 Im(Ppy ) is trivial, and Pp;  is unramified at p, as well as 0y ».
(2) By Proposition[[3] we have

pfv)‘up =1 ® gup'

As a character of Gg, € factors through the group Gal(Q({nx)/Q). More-
over, an inertia subgroup at p in Gal(Q({y)/Q) is given by the group
Gal(Q(Cn)/Q(Crpm)) = (Z)p»(N)Z)*. Thus, as a Dirichlet character, the
restriction of ¢ to I, is &,. By Lemma 5.4 we thus have Pp; (I,) = ,(1,). If
O¢ x is ramified at p, then its image must have a non-trivial intersection with
Dy, \C'. Therefore, it is isomorphic to Z/2Z. We deduce that the reduction of €,
modulo A is of order 2, and that the p-part of 07 \ corresponds to the reduction
of gp. O

5.3. Proof of the main result
In order to prove the main result of this section, consider the form
g=f@0fx.

It is by construction a newform of weight k, character €, and we have the following.

Proposition 5.7. The Galois representations py 5 and p,  are isomorphic.

Proof. Because f and g have same weight and character, the determinants of py
and p, , are the same. Let p be a prime not dividing N/. By PropositionsEIland [£.3]
the representations are both unramified at p and their traces at a Frobenius element
at p are the reductions modulo A of a,(f) and a,(g) = 0¢x(p)ay(f), respectively.
If 62(p) = 1, then the traces agree. Else, if ¢ x(p) = —1, then by definition of
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0 we have Tr(p; ,(Frob,)) = 0 and the traces agree again. By Brauer—Nesbitt
theorem [IT, Lemme 3.2}, we have p; \ =7, ). |

From now on, let assume that ¢ > k, £ ¢ {2k—1,2k—3}. From Proposition[5.1] it
means that the character 0¢ ) is unramified at £. The following proposition contains
many information about the level and the Fourier coefficients of g.

Proposition 5.8. Assume that { { No(N). Write Ny for the level of g and let p
be a prime number.

(1) If either p ¥ N, or v,(N) = 1 and vy(c) = 0, then v,(Ny) = vp(N) and
ap(9) = 05Dy ().

(i) IF 0p(V) = 0(6) = 1, then 0,(N,) = 0p(N) and a(g) = Oy A(P)an(F) if Opn
is unramified at p, and ay(g) = ap(f)ey,(p)(0.2),(p) otherwise, where &), and
(0f.)), are the prime-to-p parts of € and 0 x, respectively.

(iii) If’up(?\f) > 2 and vy(c) < vp(N), then vy(Ny) < vp(N) + 2min(v,(N), v,(2)).

In particular, we have Ny | N ged(N, 2)2.

Proof. (i) If p { N then 6;  is unramified at p by construction if p # ¢, and by
Proposition B8 if p = £. If v,(N) =1 and v,(c) = 0, then by Proposition [5.6]
0. is also unramified at p. By Proposition ] we therefore have v,(N,) =
vp(N) and ap(g) = O (p)ap(f)-

(ii) If vp(N) = wvp(c). Then either ¢, is unramified at p, and we again have
Up(Ng) = vp(N) and ap(g) = ¢ x(p)ap(f), or it is ramified. In this latter case,
by Proposition[5.6, we have €, = (0f,1), (mod X). As we assumed £ { ¢(N), by
Lemma 27, we get that ), has order 2 and that (0f,x), = €, = €, !. Therefore,
by Proposition 5.} we have v,(Ng) = v, (V) and a,(g9) = a,(f)e,(p)(0r.1),(0)-

(iii) Finally assume v,(N) > 2 and vp(c) < vp(N). If p # 2, then we have
vp(cg ) =1 and by Proposition Bl we find that v,(Ny) < vp(N). Assume
that p = 2 and let us look at the Artin conductors of ; , and p, 5. By Propo-
sition [2.7] they are equal. Moreover, by Proposition [[L4] the difference between
the 2-adic valuations of N and N(py ), and of Ny and N(p,, ), respectively,
cannot be greater than 2. Therefore, we have

0a(Ny) < va(N(By2)) +2 = va(N(By 5)) +2 < va(N) +2. o

Finally, consider the set P = {p prime, v,(N) > 2 and v,(c) < v,(N)}, and with
the notations of Corollary B.26] define

h:= gg))‘“ep.

Proposition 5.9. Assume that 1 Np(N). The form h is of weight k, character €,
and level dividing N ged(N,2)2. Moreover, it is a normalized eigenform for all the
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Hecke operators at level N ged(N,2)? and for all prime numbers p, we have

ap 1 P,
ap(h)_{ (9) fp¢
0 ifpeP.

Proof. The computation of the weight and the character of h follows from Corol-
lary as well as Fourier coefficients of h. Write IV}, for the level of h and N, for
the level of g. With the notations of Corollary we have N, = N, HpEP pre
and h is an eigenform for all the Hecke operators at level Nj,. Let us prove that Nj,
divides N ged(N,2)2.

If n, = 0, there is nothing to do. If n, = 2, then p does not divide the level
of g. By definition of P we have v,(Np) = vp(Ng) +2 = 2 < v,(N). If n, = 1,
then we have p| N, and a,(g) # 0. Moreover, the character of g is . Therefore,
by Proposition [T we cannot have v,(Ngy) > 2 and v,(Ng) > vp(c). However,
by assumption we have v,(N) > 2 and v,(N) > v,(c). We conclude that either
Up(Ng) = vp(c) < vp(N), or vyp(Ng) <1 < vp(N). In every case we have v,(Ny) =
Up(Ng) +1 < vp(N).

Finally, to prove that h is an eigenform for all the Hecke operators at level
N ged(N,2)2, we just have to prove that the prime divisors of N, and N ged(N, 2)?
are the same. This is clear from Proposition (.8 for the prime numbers outside P. If
p € P, then the p-adic valuation of the level of h is also positive by Corollary 3.261
This finishes the proof. O

We now prove our main result.

Theorem 5.10. Assume py has dihedral projective image. If N = 1, then we
have ¢ < k or ¢ € {2k — 1,2k — 3}. Else, if N > 2 and f does not have complex
multiplication, then we have

[K;:Q] k 5 s [Ks:Ql
(< (QN%) " % max ((g(Qloglog(N) + 2.4)) ) (iNfbl)) .

Proof. Assume that ¢ >k, ¢ ¢ {2k —1;2k—3} and £ { Np(N). If N =1, then 0y 5
is unramified everywhere and thus trivial, which is a contradiction. Assume now
that N > 2. Because f does not have complex multiplication, there exists some
prime number p such that a,(f) # a,(h). Moreover, from Proposition[5.9], f and h
are both modular forms of weight &, level N ged(NV,2)?, and character ¢, that are
eigenforms for all the Hecke operators at this level. Therefore, p must be less than

B = %2(1\772)2 I, p‘r[i\l/'ne(l + %) Indeed, because f and h are cusp eigenforms of
q
the same weight, level and character, if a,(f) = aq4(h) for all primes ¢ < B, then we

would get a,,(f) = a,(h) for all integers n < B, and by Proposition B20, f = h.
We treat various cases for p.

e If p =/, then we have ¢ < B.
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If p t N4, then from Propositions and B9 we have a,(h) = a,(g) =
0 A(p)ay(f). This implies that 67 x(p) = —1 and by Proposition (7, we get
ap(f) =0 (mod A).
If v,(N) > 2 and v,(N) > v,(c), then by Propositions [[1] and (9, we have
ap(f) = 0= ap(h). We cannot have a,(f) # a,(h) in this situation.
If v,(N) =1 and v,(c) = 0, then by Propositions and 59, we have a,(h) =
ap(g) = ¢ x(p)ay(f) and v,(Ny) = 1. Therefore, we have 0 x(p) = —1 and by
Propositions [[L3 and B.7], we get

~ (pap(f) * )

0 —ap(f)

(pap(f) * )
0 ap(f)

Hence, we either have a,(f) =0 (mod A), or p+1=0 (mod ¢).

Finally, assume that v,(N) = v,(c). By Propositions[5.§ and 5.9, we have a,(h) =
ap(g) and v,(Ny) = vp(IN). Therefore, by Propositions 5.7 and [[3], we have an
isomorphism of representations of G,:

wap(f) @ wlap ()X, 'El, = mlap(h) ® play(h)XE ™G,

The second character of each representation is ramified at p, while the first is not.
We deduce that we have a,(f) = ap(h) (mod £).

If 0 » is unramified at p, we have by Proposition B8 a,(h) = ¢ x(p)ap(f),
and therefore 64 \(p) = —1 and a,(f) =0 (mod \).

If Oy x is ramified at p, we have from Propositions and [(£.9]

ap(h) = &, (D) (052)p()ap(f) = ap(f)  (mod ).

We moreover know from Proposition [Tl that a,(f)a,(f) = p*~!. Therefore, we
get that a,(f)? = ),(p)(07.1),(p)p" " (mod X).

To sum up, we have either £ < B, or a,(f) = 0 (mod A), or p| N and p+ 1 =

0

(mod £), or p| N and a,(f)* = €, (p)(0.2),(p)p" " (mod X). Using Deligne’s

bounds for the coefficients of a newform (see [10, Théoreme 8.2]) and Lemma 322
this means that either / < N + 1, or

or

¢ INorm(ap(F)l =TT lo(ap(h))]

0:Ky—C
< (2p7 )0

k—1 X
k—1 . k Kl
< (2N 7 )EsU <§(210g log(N) + 2.4)> ,

¢ [Norm(ay(f)? — £, (p)*(05.2), ()" )]

< [ Uo(aH)®l+p)

0:K5—C
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IN

(5pk‘—1)[Kf:Q]

< (5Nk‘—1)[Kf:Q]

[Kf:Q]
< 2N <2Nk)

We therefore get the wanted result. O

6. Numerical Applications
6.1. Checking the reducibility

We explain here how to use Theorems .15 and 20l to explicitly compute the prime
ideals A for which the representation py , is reducible. We begin by discussing the
dependency of the set Ry (L) (see Definition L])) in the place £.

Proposition 6.1. Let N > 1 and k > 2 be integers, and let € be a Dirichlet
character modulo N. Let € be a prime number and let £ be a place of Q above /.
The set Ry k.- (£) depends only on £NQ(e) (and on N, k and ¢).

Proof. Write ¢ for the projection modulo £, and T’e for the associated Teichmiiller
lift (see Sec. [22)). Recall that for = € F:, Tg¢(x) is the only root of unity of order
prime to ¢ and such that ¢ (Te(z)) = x.

We first prove that the map T'¢ o mg depends only on £. Let ¢ be a root of unity
of order n = ¢{™q with m > 0 and ¢ t g. We can then write { = ¢tre . ¢eb with
¢4 b and a prime to ¢. Because ¢ is a root of unity of order n, ¢*"¢ is a root of
unity of order ¢ and ¢ is a root of unity of order £™. From Lemma 27 we get
¢=¢"" (mod £), and Te o me(¢) = ¢*"@. Therefore, it depends only on /.

Let (e1,€2,m1,m2) € Ry e(L). The only dependency on the place £ is the
congruence

X, e =x)"T"e1e0 (mod £).

Decompose ¢ as g,¢’, where g, is the f-part of €, and &’ is unramified at ¢. Looking
at the f-part of the congruence in one hand, and at the prime-to-¢ part in another
hand, the congruence is equivalent to

X} lee =X ™ (mod £) and & =eg1e9 (mod £). (6.1)

Applying Te to the second equation, we get Tg o me(e') = Te o me(e162). We have
seen that this depends only on £. Let us look at the first equation. The projection
of £, modulo £ depends only on £NQ(g). Moreover, me(e¢) is a character modulo £
of conductor ¢. Therefore, there exists an integer ky between 0 and ¢ — 1, depending
only on £NQ(¢), such that mg(er) = Xfe. The equation Y5 e, = X"t (mod £)
is therefore equivalent to k + k¢ — 1 = mq + ma (mod ¢ — 1) and depends only
on £NQ(e). O
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Notice that we have in fact proved that Ry i .(£) depends only on £NQ(Tg o
ma(eg)) but we will only use what we have stated. A practical application of this
result is that we can compute the set Ry k.- (£) while knowing only a prime ideal A
below £ in a finite extension of Q(¢), like Ky for example. For A a prime ideal in an
extension of Q(e), we will freely write Ry i (\) for the set Ry (L) for any place
£ above A\. We also deduce from Proposition[6.I] a procedure to compute Ry g(\):

Algorithm 6.2. Input: Two integers N > 1, k > 2, a Dirichlet character £ mod-
ulo N, and a prime ideal A in a finite extension of Q(¢) above a prime number £.
Output: The set Ry c(N).

(1) Compute ¢, and &', the £-part and prime-to-¢ part of €, respectively.

(2) Compute the unique Dirichlet character ¢’ modulo N such that ” has prime-
to-¢ order, is unramified at £ and £’s”~! has order a power of £. This corresponds
to the character Tg o mg(e’) for any place £ above A.

(3) Compute the integers k¢ such that 0 < ky < £ —2 and for all integer 1 <n < N
prime to N, g¢(n) = n* (mod \). We then have g, = yéff (mod \).

(4) Compute the set My re(A) of pairs of integers (mi,msa) such that
0<mi<mg<fl—landmi+mo=k+ky—1 (mod?¢—1).

(5) Compute the set En () of pairs of Dirichlet characters (1, e3) of conductor
(¢1,¢2) and such that e; and e3 have prime-to-¢ order, are unramified at ¢,
satisfy e1e9 = €’ and for all primes p # ¢, we have vp(%) € {0,1,2}.

(6) Return the set En k(X)) X My ke(A) = Ry g.e(N).

We now give the two main algorithms that follows from Theorems 20 and [£.15]
respectively. The first algorithm computes the prime ideals A of Oy, of residual
characteristic £ such that £ > &k + 1 and £ { N¢(N), for which p, , is reducible,
together with the description of p; . The correctness of the algorithm is granted
by Theorem 201

Algorithm 6.3. Input: A newform f, described by its Fourier coefficients
(an(f))n>0 as elements of the number field K, together with its level N, weight k,
and character €.

Output: The set of prime ideals A of Oy of residual characteristic £ such that
¢ > k+1and £ { Np(N), for which p; , is reducible, together with the shape

of ps a-
(1) Set Red(f) = 0.

(2) Compute the set Ry . (see Definition EETT).
(3) For (e1,e2) € Ry e,

(a) Compute r, C, and B defined in ([@2)), and Theorem 20, respectively.
(b) Compute the set P(e1,e2) of prime divisors of the ged of the algebraic
norms of

o C;
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o a,(f) —e1(p) — P 'ez(p), for pt Nr, p < B;

o and a,(f)(ap(f) — e1(p))(ap(f) — p*'e2(p)), for p| N, ptr, p < B,
that are bigger than k£ + 1 and do not divide N¢(N). By Theorem E20]
these are the only prime numbers bigger than k+1 and not dividing N (V)
for which p; , can be reducible.

(4) For (81,62) S RN,E and for ¢ € P(El,Eg),

(a) Compute the prime ideals A of Of above £.

(b) For each such A, compute a prime ideal £ in the ring of integers of K (e, €2)
above A.

(¢) For each such £, check the following congruences.

e C=0 (mod £);

e a,(f) =¢e1(p) +p*tea(p) (mod £) for all pt Nr, p < B;

o ay(f)(ap(f) —e1(p))(ap(f) — p*'e2(p)) =0 (mod £) for all p| N, pfr,
p<B.

If they all hold, add (A, e1,¢€2,0,k — 1) to Red(f). By Theorem 20} 5 , is

reducible and we have p; , =& @ X, e

(5) Return Red(f).

We now turn to the computation of the reducible primes of residue characteris-
tic £ such that £ < k+ 1 or £| No(N). The correctness of the following algorithm
follows by Theorem

Algorithm 6.4. Input: A newform f, described by its Fourier coefficients
(an(f))n>0 as elements of the number field K, together with its level N, weight £,
and character €.

Output: The set of prime ideals A of Oy of residual characteristic £ such that
¢ <k+1orl|Np(N), for which 5, , is reducible, together with the shape of p; ;.

(1) Set Red(f) =190.

(2) Compute the set P of prime numbers ¢ such that £ < k+ 1 or £| No(N).

(3) For each ¢ € P, compute the set P(¢) of prime ideals A in O above £.

(4) For each ¢ € P and for each A\ € P({), compute Ry k() using Algorithm [6.2]
We can do this because we have Q(e) C K.

(5) For each £ € P, for each A € P({), and for each (e1,£2,m1,m2) € Ry k. (A),

(a) Compute a prime ideal £ in the ring of integers of Ks(g1,e2) above A.
(b) Compute r and B defined in ([@2)) and Theorem [A.15] respectively.
(¢) Check the following congruences.

e a,(f)=p™ei(p) +p™2ea(p) (mod £) for all pt Nr, p < B;

e a,(f)(ap(f) —p™ei()(ap(f) — p"2e2(p)) = 0 (mod £) for all p| N,
pf{r,p<B.
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If they all hold, add (A, e1, €2, m1, m2) to Red(f). By Theorem 13} 5 , is
reducible and we have py \ = X, BT DX, .

(6) Return Red(f).

The correctness of Algorithms and follows directly from Theorems
and [T respectively. The most time-consuming computation is step 3(b) of Algo-
rithm This depends on the size of the “big” reducible primes. We have imple-
mented these algorithms in PARI/GP [30], and we have been able to execute them
as long as the degree of K; keeps reasonable (say [Ky : Q] < 20). The second
limiting factor being the weight & that controls the size of the Fourier coefficients
of f. Our code is available on GitHub at the following address:

https://github.com/bpeaucelle/mfreducible

6.2. Numerical examples

We present here some examples of applications of the algorithms described above to
compute the reducible primes of a given newform. Throughout this section, we use
the Conrey representation (£,(b))pra=1 for the Dirichlet characters of modulus a.
This is the way they are described in the LMFDB for example (and in some extent
in PARI/GP). Notice that there would be no possible confusion with the characters
€1, €9 from the algorithms above.

6.2.1. A concrete example

Consider the space S?%(7,¢7(3)). It has dimension 6 over C and is generated by
2 newforms, f; and fa, up to conjugation by Gal(Q/Q(e7(3))). We have Ky, =
Q[t]/(#* —t + 1) and Ky, = Q[z]/(z* + 22% + 4). Notice that (1,z, %2, %) is an
integer basis of Oy,, and that €7(3) sends 3 to ¢ in Ky, and to 7% in Ky,. The
g-expansions of f; and fy are given by

fi =q+12t* + (=7t — )¢ + (80t — 80)¢* + (—105¢ + 210)¢°

+ (=168t + 84)¢® — 343¢" + O(¢®),

3 . 3
fa=q+ (5x3 + 222 +3x) q2 + <13x3 — 5:52 + 13:c+3) q3

25
+ (1527 — 242 + 30)¢* + (25x3 - ?xQ + 50z — 50) ¢° + O(q%).
The set of prime numbers less than k + 1 = 8 or dividing N¢(NN) = 42 is therefore
{2,3,5,7}. We treat those primes separately in what follows.

e ( = 2: The ideal 20y, is prime and we have 20y, = ((,2)Oy,)?. Because, the
ideal generated by 2 in Z[e7(3)] is prime, we have

R7,7,€7(3) (20f1> = R7,7,67(3)((2a 1’)sz) = {(]la 57(4)a 0, O)a (57(4)7 1,0, 0)}
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In fact, the two elements of this set give rise to the same representation. We only
study the case (e1,e2, m1,m2) = (e7(4),1,0,0). According to Theorem T8 we
have

K=2 r=1, N =7 a=0, b=3, k=10, B:6+§.
To check the reducibility of py, () and py, (2 ,) We only have to check the third
and fifth coefficients of f; and fs. The table below shows the reduction modulo
the prime ideals above of a,(fi) —1 —e7(4)(p) for i =1, 2, and p = 3, 5. From
Theorem [£TH], we know that p .. is reducible if and only if the row corresponding
to f; contains only zeros.

p 315
ap(f1) — (1 +¢e7(4)(p)) (mod 2) 010
ap(fa) — (1 +e7(4)(p)) (mod (2,2)) | 0 | 0

Therefore, we have py, o) 2 1 ®e7(4) and Py, (2, = 1L S e7(4).
¢ = 3: We have 30y, = ((3,t + 1)Op,)? and 30y, = ((3,22 + 1)Oy,)%. As for
¢ = 2, the ideal generated by 3 in Z[e7(3)] is prime. Therefore, we have

R7,7,57(3)(<37t + 1)Of1) = R7,7,€7(3)((35 $2 + 1)Of2)
= {(1,£7(6)); (¢7(6), 1)} x {(0,0); (1,1)}.

As above, we treat only the cases (g1,e29,m1,m2) = (7(6),1,0,0) and
(e7(6),1,1,1). According to Theorem [I5, we have in both cases
~ 1
K=1, r=1, N'=7, a=0 b=4, k=11, B=T+g
We have to look at the second, fifth and seventh coefficients of f; and f5. Let
look at the second and fifth first.

p 2 |5
ap(f1) — (1 +¢e7(6)(p)) (mod (3,¢+1))

ap(f1) — (p+per(6)(p)) (mod (3,¢+1)) | 2| 0O
ap(f2) — (1 +e7(6)(p)) (mod (3,2 +1)) | 2 | 0

ap(f2) = (p+pez(6)(p)) (mod (3,2° +1)) | 0 | 0

From these computations, we deduce that the only representation that can

be reducible is py, (5,21, and that it can only be isomorphic to X3 @ X3€7(6).
To confirm this isomorphism, we finally have to check that there exists some
by € {0,7,7¢7(6)(7)} = {0,7} such that az(f2) = 7by (mod (3,22 + 1)).
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We find that we have a7(f2) =7 (mod (3,22 + 1)). Therefore, the representation
Pt (3,441 is irreducible, and we have py, (3 211y = X3 © X3¢7(6).

¢ = 5: We have that 5 is prime in Oy, and 50y, = (5, 2% — 2z — 2)(5, 2 + 22 — 2).
There is again only one prime ideal above 5 in Z[e7(3)] and we have

R77.,3)(505,) = Rz 7.c,(3)(5, 2% + 22 — 2)

= {(M,e7(3)); (e7(3), 1)} x {(0,2); (1, 1)}.

Looking at the congruences at p = 3 for f; and p = 2 for f,, we have
az(fi) — (1+3%7(3)(3)) =4t +2 (mod 5),
as(f1) = (7(3)(3) +3%) =2t +4 (mod 5),

2 (mod (5,22 — 2z — 2)),
4z (mod (5,22 + 2z — 2)),

az(f2) — (1+2%:(3)(2)) =

az(f2) — (e7(3)(2) +2%)

22 +3 (mod (5,22 — 2z — 2)),
22+ 1 (mod (5,22 + 2z — 2)),

as(f2) — (2 + 2e7(3)(2)) {330 +2 (mod (5,22 — 2z — 2)),

zr (mod (5,22 + 2z — 2)).

The only candidate remaining is (e7(3),1,1,1) for py 5 (and (1,e7(3),1,1)
which gives the same representation). We have

~ 2
K=1 r=1 N=7 a=0 b=6 k=13 B=8+.

We check the second, third and seventh coefficients, and we get
az(f1) =2+ 2¢7(3)(2) (mod 5),
as(f1) =3+ 3¢7(3)(3) (mod 5),
a7(f1) =7 (mod 5).

Therefore, the representations py, (5 ,2_9,_9) and Dy, (5 ,242,—9) are irreducible,

and we have an isomorphism Py, 5) = X5 © X5€7(3).
¢ =T7: We have 705, = (7,t —5)(7,t —3) and 70y, = (7,x — 1)(7,2 — 2)(7,z +
2)(7,x + 1). This time 7 decomposes in Z[e7(3)] and we have

Rrger (7ot —3) = Rygeva)(T,z £ 1)

= {(1, 1)} x {(0,1);(2,5);(3,4)} and
Rrzer) (7ot —5) = Ryqa)(T,2 £ 2)

= {(L, 1)} x {(0,5); (1,4); (2,3)}.
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For f1, looking at p = 2 leaves us only with (e1,e9,m1,m2) = (1,1,2,5) for
the ideal (7, — 3) and (1,1,1,4) for (7, — 5). In both cases we have to look at
congruences up to p =5, and we get

Pr i3 =X2© Xy and Dy 74 5) = X7 B Xr-

For f,, looking at p = 3 leaves us with (1,1,2,5) for (7,2 + 1), (1,1,1,4) for
(7,2 +2), (1,1,2,3) for (7,2 — 2), and (1,1,3,4) for (7,2 — 1). In the first two
cases we have r = 1, and we have to look at congruences up to p = 5. In the last
two cases we have r = 4, and we have to check congruences up to p = 53 and
p = 67, respectively. In every case, Theorem shows that the corresponding
representation is reducible. To sum up we have

Phora—1) ZXt OXt,  Ppy (rot1) = X7 O Xr,
Prs (Ta—2) = Xz ® Xo, Prs (754+2) = X7 @ X7
We finally look at the prime numbers ¢ > 7. We have
Rr .3 = {(1,€7(3)), (e7(3), 1)}
Let (e1,62) € R7 ;3. Wehaver =1, N' =1, B =4+ %, and

0 if (e1,€2) = (e7(3), 1);

C(eq, = .
) —%M(ﬁf if (e1,62) = (1,€7(3)).

We first look at f;. We find that 43 is the only prime factor greater than 7 of the
ged of the algebraic norms of C(e1,e2) and a,(f1) — e1(p) — p®e2(p), for p = 2, 3.
In Oy, we have 430y, = (43,t — 7)(43,t + 6) and we get the following table.

(51;52) (1,57(3)) (57(3)’]1)
01 er(3)) | @) =12 er@)®) | ap(h) @) —p°
p=2 p=3 p=2 p=3
(43,6 —7) 0 0 0 " >
(43,t+6) 40 31 22 0 0

Therefore, we get Dy, (43,7 = 1@ Xi5e7(3) and Pr (a3,t46) Z€7(3) @ Xi3-

We now turn to fs. Computing again the ged of the algebraic norm of C'(e1,e2)
and a,(fa) — e1(p) — p“ea(p), for p = 2, 3, we find that the only possible residue
characteristics are 97 and 3919. We have the following decompositions in Oy,:

9705, = (97,2 — 19)(97, 2 — 5)(97, z + 5)(97, 2 + 19),
391905, = (3919, 2 — 934)(3919, 2 — 621)(3919, z + 621)(3919,  + 934).
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(€1,¢2) (1,e7(3)) (e7(3),1)
C(1,22(3) ap(f2) =1 =p%7(3)(p) || ap(f2) —2(3)(p) — p°
p=2 p=3 p=2 p=3
(97,2 —19) 9 33 75 30 57
(97,2 — 5) 0 0 0 8 66
(97,2 +5) 0 80 15 88 81
(97, 2+ 19) 11 3 18 0 0
(3919, 2 — 934) 3160 3231 1337 0 0
(3919, 2 — 621) 0 0 0 3042 609
(3919, z + 621) 0 1685 2010 808 2619
(3919, 2 + 934) 1455 3038 3047 3726 1710

Therefore, the representations Dy, «o7.5-10), Dfy,(97,045): Pfs,(3919,04+621) and
Py, (3019,2-+934) are irreducible, and we have

Py (97,2—5) =1 @ Xo7e7(3), Py (97,04+19) = e7(3) ® Xor,

P s, (3919,2—934) = €7(3) & X310, Py,(3919,0—621) = 1 & X3010€7(3)-

The following table sums up all the cases for which py, , is reducible.

£ fi o
2 @ (2,2)
1®er(d) 1oo@
2
3 Irreducible (3,z% +1)

X3 @ X3¢7(6)

5 B

_ Irreducible
X5 D X5€7(3)
7 (7,t —3) (7,t—=5) || (1,e=2) | T,z—1) | (T,z+1) | (7,2 +2)
X7 O X3 oxt || eoxd | XBoxt | 2ox? | % oxt
(>k+1 (97,2 —5) (97,2 + 19)
(43,t—17) (43,t+6) 1oX5,7(3) e7(3) XS
04 No(N) 1@ X35,¢7(3) | €7(3) ©X4s (3919, z — 934) (3919, z — 621)
€7(3) @ X319 1®X5919¢7(3)
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6.2.2. Irreducible everywhere representation

We present an example of a form which all residual representations are irreducible.
Fix (N, k,e) = (35,4, 1). The space S}V (35, 1) has dimension 6 over C and contains
3 newforms up to conjugation by Gal(Q/Q). Let f be the newform of this space
which g-expansion is

f=a+y+49¢ +(1-4y)g’ +0(q"),
where y is a root of X? — 2, and generates K. We have in this case
Rgs1 = {(1,1)}.

Therefore, by Theorem E.22] the only prime ideals A of Oy for which pg \ can be
reducible are of residue characteristic £ € {2, 3,5, 7} (because we have By = —35).
Let us look at each of these cases.

e ( =2: We have 20; = (2,y)? and R35.41(2,y) = {(1,1,0,0)}. However, we have
Tr(py, (2, (Frobs)) = as(f) =1 (mod (2,y)) and
Tr((1 & 1)(Frobs)) =0 (mod (2,y)).

Therefore py (5 . is irreducible.
o ( = 3: The ideal 30y is prime, and we have Rs5.41(3) = {(1,1,0,1)}. However,
we have

Tr(py,3)(Frobe)) = az2(f) =y +1 (mod 3) and
Tr((1 @ X3)(Frobs)) =0 (mod 3).
Therefore, py 3y is irreducible.
o (= 15: Again, 5 is prime in Oy, and we have R35 41(5) = {(1,1,0,3); (1,1,1,2)}.
Looking at a Frobenius element at 2, we have
Tr(py,5)(Frobz)) = a2(f) =y +4 (mod 5)
and

Tr((1 @ X:)(Froby)) =4 (mod 5),
0

Tr((X5 @ X2) (Froby)) =
Therefore, py 5 is irreducible.
o { =T7: We have 70y = (7,y — 3)(7,y +3) and Rs571(7,y £3) = {(1,1)} x
{(0,3);(1,2); (4,5)}. However, for a Frobenius element at 7 we have
{Tr(ﬁf7(7,y_3)(Frob3)) =3 (mod (7,y — 3)),
Tr(Py,(7.y+3)(Frobz)) =6 (mod (7,y + 3)),

(mod 5).

and

Tr((1 @ X3)(Frobs)) =0 (mod 7),
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Tr((X7 @ X2)(Frobz)) =5 (mod 7),
Tr((xs @ X5)(Frobs)) =2 (mod 7).

Therefore, the representations py 7 ,_3y and py (7, 3) are irreducible.

Thus, for all prime ideals A in Oy, the representation py , is irreducible.
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