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English introduction

In number theory, Diophantine equations have always motivated the search of new tools, new
methods, and new theorems to resolve them. One of the most famous is with no doubt Fermat’s
last theorem. In the 1630s, Pierre de Fermat wrote that the equation

X" +Y"r=2" (0.1)

in non-zero integers had no solution (X,Y,Z) if n is greater than 2. In 1995 — almost four
centuries — many mathematicians, and a lot of new tools later, Andrew Wiles brought the last
piece of mathematics to solve Fermat’s last theorem. This approach is now known as the modular
method. It uses elliptic curves, modular forms, and their Galois representations, in order to
prove that no solution to (0.1) can exist. Since Wiles’ proof, this approach has been developed
and generalised to be applied to other Diophantine equations. For example, in [Dar00|, Darmon
proposed an ambitious program in order to tackle generalised Fermat equations using abelian
varieties of GLo-type, Hilbert modular forms, and their Galois representations.

Another example of theory which can be applied to the resolution of Diophantine equations is
the theory of linear forms in logarithms. Briefly, it deals with questions about linear independence
of logarithms of algebraic numbers, and more generally of logarithms of rational points in
commutative algebraic groups. An example of resolution of Diophantine equation in which this
theory has played a key role is Catalan’s conjecture. Catalan proposed in 1844 [Cat44| that the
only integer solution to the equation

XP—y?=1

was (p,q, X,Y) = (2,3,3,2). This conjecture has been resolved 160 years later by Mihailescu
[Mih04] using among other things a bound coming from the theory of linear forms in logarithms
of algebraic numbers. Another Diophantine tool that has been developed from the theory of
linear forms in logarithms is the method of the elliptic logarithm. It was conceptualised by
Stroeker and Tzanakis [ST94] and Gebel, Pethd, and Zimmer [GPZ94] in 1994, and a major step
in the theory, done by David [Dav95|, made possible the applicability of the method.

More recently, a work of Bugeaud, Mignotte, and Siksek [BMS06a] combined the forces of
both the modular method, and results from the theory of linear forms in logarithms to prove
Diophantine results about perfect powers in Fibonacci and Lucas sequences. They proved that
the only Fibonacci and Lucas numbers that are integer powers are 0, 1, 8, and 144, and 1 and
4 respectively. Building on these ideas they manage to prove similar results in later articles
[BMS06b; Bug+07; Bug+08].
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The goal of this thesis is to bring new results on the modular forms and linear forms in
logarithms sides. Our work focuses on giving explicit results. In particular, we describe several
algorithms we have implemented in the number theory system PARI/GP. This manuscript is split
in two parts. In the first one we work purely on the linear forms in logarithms side. We develop
new, totally explicit theorems in the context of logarithms in abelian varieties over number fields.
Our results are similar in nature to those of David [Dav95] for elliptic curves, and improve and
generalise the work of [Gau06]. In the second part of the thesis, we go on the side of modular
forms and their Galois representations. We again prove explicit and algorithmic results in the
context of small images of residual Galois representations of modular forms. Our work generalises
the one of Billerey and Dieulefait [BD14], and the one of Ribet [Rib75; Rib85] before them. We
redirect the interested reader to chapters 1 and 8 for more details on the two parts of the thesis.



Introduction

En théorie des nombres, les équations diophantiennes ont toujours été un moteur dans la recherche
de nouveaux outils, de nouvelles méthodes, et de nouveaux résultats pour les résoudre. Sans
doute le plus célébre exemple de telle équation est le Grand théoréme de Fermat. Dans les années
1630, Pierre de Fermat écrivit dans la marge de son exemplaire d’Arithmetica de Diophante que
I’équation

X"+ynr=27" (0.2)

n’avait pas de solution entiére non-nulle (X, Y, Z), si n est supérieur ou égal a 3. En 1995 — presque
4 siécles plus tard — et suite aux efforts de nombreux mathématiciens et au développement de
nombreuses nouvelles mathématiques, Andrew Wiles apporta la derniére pierre & la démonstration
du Grand théoréme de Fermat. La stratégie de cette preuve est maintenant connue sous le nom
de méthode modulaire. Elle utilise des courbes elliptiques, des formes modulaires, et leurs
représentations galoisiennes pour démontrer qu’aucune solution non triviale a I’équation (0.2)
n’existe. Depuis la preuve de Wiles, cette méthode a été approfondie et généralisée afin d’étre
appliquée a d’autres équations diophantiennes. En particulier, depuis [Dar00], Henri Darmon
a développé un programme pour aborder les équations de Fermat généralisées en utilisant des
variétés abéliennes de type GLo, des formes modulaires de Hilbert, et leurs représentations
galoisiennes.

Un autre exemple de mathématiques dont les progrés ont été appliquées dans le but de résoudre
des équations diophantiennes est la théorie des formes linéaires de logarithmes. Cette théorie
s’intéresse aux questions d’indépendance linéaire de logarithmes de nombres algébriques (et plus
généralement aux logarithmes de points rationnels dans des groupes algébriques commutatifs).
Un exemple célébre d’équation diophantienne pour laquelle cette théorie a joué un réle important
est I'équation de Catalan. En 1844, Catalan proposa dans [Cat44] que la seule solution entiére a
I’équation

XP-Yi=1

était (p,q, X,Y) = (2,3,3,2). Cette conjecture resta elle aussi ouverte durant de nombreuses
années et c’est seulement en 2004 que Mihiilescu la démontra en utilisant, entre autres, la
théorie des formes linéaires de logarithmes de nombres algébriques. Parmi les outils diophantiens
développés a partir de la théorie des formes linéaires de logarithmes, on peut aussi citer la
méthode du logarithme elliptique. Elle fut originellement imaginée d’une part par Stroeker et
Tzanakis dans [ST94], et d’autre part par Gebel, Pethd, and Zimmer dans [GPZ94]. Les avancées
majeures de David [Dav95| permirent a partir de 1995 a cette méthode d’étre mise en ceuvre.
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Plus récemment, le travail commun de Bugeaud, Mignotte, et Siksek [BMS06a] combina les
forces a la fois de la méthode modulaire et de la théorie des formes linéaires de logarithmes pour
résoudre de nouveaux problémes diophantiens concernant des puissances parfaites dans les suites
de Fibonacci et de Lucas. Ils prouvérent que les seuls nombres de la forme a™ avec a et n entiers
sont 0, 1, 8 et 144 dans la suite de Fibonacci, et 1 et 4 dans la suite de Lucas. En réutilisant les
idées de leur méthode, ils parvinrent a démontrer des résultats du méme ordre dans leurs articles
suivants [BMS06b ; Bug+07; Bug+08|.

Le but de cette thése est d’apporter de nouveaux résultats a la fois a la théorie des formes
modulaires, et a celle des formes linéaires de logarithmes. Notre travail se concentre sur les
aspects effectifs des deux théories. En particulier, nous développons plusieurs algorithmes que
nous avons implémentés dans le logiciel de calcul formel PARI/GP. Le présent manuscrit est
séparé en deux parties. La premiére traite uniquement de formes linéaires de logarithmes. Nous y
prouvons de nouveaux résultats d’indépendance linéaires de logarithmes dans le contexte des
variétés abéliennes. Nos résultats sont comparables a ceux de David [Dav95] pour les courbes
elliptiques, et améliorent et généralisent ceux de Gaudron [Gau06]. La seconde partie s’intéresse
aux formes modulaires et & leurs représentations galoisiennes résiduelles. Nous y prouvons des
résultats explicites et algorithmiques de petite image résiduelle. Nous prolongeons le travail de
Billerey et Dieulefait [BD14], et ceux de Ribet [Rib75; Rib85] avant eux. Nous renvoyons le
lecteur intéressé aux chapitres 2 et 9 pour plus de détails sur les deux parties de la thése.
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Chapter 1

English introduction

1.1 Linear forms in logarithms

In this part of the present manuscript we present our new results in the theory of linear forms
in logarithms. A logarithm of an algebraic number « is any number u € C such that e* = a.
The theory of linear forms in logarithms is interested in linear relations between logarithms of
algebraic numbers (and more generally between logarithms of points in commutative algebraic
groups). One can pin down the starting point of the theory to the work of Lindemann |Lin82| and
Weierstraf [Wei85| that proved one of the first result about linear independence of exponentials
and logarithms of algebraic numbers. It states the following.

Theorem 1.1 (Lindemann—Weierstrak). Let v, ..., a, be distinct algebraic numbers. Then, the
numbers e®t, ..., e are linearly independent over Q.

Lindemann and Weierstraft’ result proves the transcendence of any non-zero logarithm of an
algebraic number «, because €l°2® — - e? = 0. As i7 is a logarithm of —1, it also establishes the
transcendence of m. These results lead Hilbert to formulate its seventh problem in 1900 about
the transcendence of algebraic powers of algebraic numbers.

Hilbert’s seventh problem (1900). Let a be an algebraic number different from 0 and 1, and
let B be an irrational algebraic number. Write o = e*. The number o = " is transcendental.

This problem had soon be resolved independently by Gelfond and Schneider in 1934 and
1935 respectively and is now known as Gelfond—Schneider’s theorem. For our interests, we can
restate it as a problem about linear independence of logarithms of algebraic numbers. It is indeed
equivalent to the following result.

Theorem 1.2 (Gelfond-Schneider [Gel34; Sch35]). Let ui, ug be two complex numbers such
that et and e"? are algebraic. If uy and us are linearly independent over Q, they are linearly
independent over Q.

Until now, all these statements were qualitative results about linear independence of expo-
nentials of algebraic numbers in the case of Lindemann—Weierstrafs’ theorem, and of logarithms
in the case of Gelfond—Schneider’s result. The next big step in the theory of linear forms in
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18 CHAPTER 1. ENGLISH INTRODUCTION

logarithms had been made by Baker in 1966. He proved the first fully explicit quantitative
statement about linear independence of logarithms of algebraic numbers. His theorem can be
stated as follows.

Theorem 1.3 (|[Bak66]). Let a1, ..., a, be algebraic numbers not 0 or 1, and let u; be a logarithm
of ;. If uy,...,u, are linearly independent over Q, then 1, uq,...,u, are linearly independent
over Q.

More precisely, for d > 0, there exists an effective constant C depending on aq, ..., an, and d
such that for all algebraic numbers B1, ..., B, of degree at most d, we have

’/81“1 + o+ Bnun| > Cei(n+2) logH’
where H denotes the maximum of the heights of the [3;’s.

To prove theorem 1.3 Baker developed what is now known as Baker’s method. Our results
will use a generalisation of this method in the context of abelian varieties. To better understand
their nature, let us take a more general point of view on the theory.

Let G be a commutative algebraic group defined over a number field ¥ C C, and let p € G(C).
The group G(C) is a complex Lie group and its tangent space t¢(C) is a complex vector space.
A logarithm of p is a preimage u € tg(C) by the exponential application exp : t¢(C) — G(C).
Let Wy be vector subspace of t¢(C) defined over k (this means that Wy can be described with
linear equations with coefficients in k). The general theory of linear forms in logarithms mainly

try to answer two questions:
1. Can u lie in Wy, and if yes for what reasons?

2. When u ¢ Wy, can we give a lower-bound for the distance between v and Wy in terms of

G, u, and Wy?
The reason we still call this “linear forms in logarithms” can be seen in the following way. Consider
a basis (eq,...,e,) of tg(k), and a basis (¢1,..., ) of the dual space Wy of linear forms of
tc(k) vanishing on Wy. Let us write u = uje; + -+ + ugey and @; = a; €] + - - aige,. The
distance d(u, Wp) is then comparable to the quantity
max |uy a1+ glig,
and the maps (uq,... ,Ug) — a;1ul + - + a; gug are linear forms in the coordinates of the

logarithm wu.

Historically, the most explored case of commutative algebraic group G has been the case of the
group G = G, x G}},. In this context, we have G(C) = C x (C*)™ and the exponential application
is equal to Id x exp™ : (ug, u1,...,up) — (ug, €, ..., e"). If we take ug = 0, uy,...,u, to be
logarithms of elements of Q, and Wy := ker(B8121 + - - - + B,7,) a hyperplane, we recover Baker’s
question to find a lower-bound for the linear form

’ﬁlul + -+ ﬁnun|

It also encompasses all previous results as Baker’s theorem already generalises Lindemann—
Weierstral’ and Gelfond—Schneider’s theorems.
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To question 1, the first general answer had been given by Wiistholz in 1989. His result states
the obstruction to u to be rational is the tangent space of an algebraic subgroup of G.

Theorem 1.4 ([Wiis89]). The smallest vector subspace of t(C) defined over Q that contains u
18 the tangent space of a connected algebraic subgroup G of G.
In particular, if u € Wo, then Wy 2 t5(C).

Although this statement is only qualitative, one can in fact give explicit upper-bounds for
the degree of the subgroup G. For example, a bound for the degree deg G of a subgroup whose
tangent space contains u appear in the work of David [Dav95, Théoréme 2.1] in the case of G a
product of elliptic curves over a number field.

Let us now look at question 2. Research about it can be divided in several categories. First,
the general ones dealing with an arbitrary commutative algebraic group G over a number field.
One can for example cite the results of Philippon and Waldschmidt in 1988 [PW88| and the ones
of Gaudron in 2005 |[Gau05]. Then, estimations for the linear group G, x G}, — extending the work
of Baker. See for example [Gaul4]. Finally, — and this is the case we will be interested in — the
case of G an elliptic curve and more generally an abelian variety. One of the most famous results
in this case is the one of David [Dav95, Théoréme 2.1]. For a product of elliptic curves Fy x - - - E,
defined over an arbitrary number field k, and u1, ..., u, such that p; := expg, (u;) € E;(k), he
gave a totally explicit lower bound for a linear form By + Bius + - - - Butin, with (8;); € k*T!
under the assumption that the logarithm (1,uy,...,u,) does not lie in the tangent space of an
algebraic subgroup of G, x E; X --- E, of degree less than an explicit constant. By explicit
in this context we mean a lower-bound depending on n, [k : Q], the Weil heights h(3;) of the
coeflicients of the linear form, the Néron—Tate heights E(p,) of the rationals points p;, the heights
h(E;) of the elliptic curves, the absolute values |u;| of the logarithms, and Im(7;) with 7; € C
such that E; = C?/(Z @ Zr;) and Im(7;) > 0. This theorem leads to the applicability of the
so-called elliptic logarithm method, developed by independently by Stroeker and Tzanakis [ST94|
and Gebel, Petho, and Zimmer [GPZ94]|. This method results to many Diophantine applications.
See for example [SAW99; Tza02; KR18|.

In the same vein of David’s result, Gaudron |[Gau06] proved a similar result in the context of
abelian varieties defined over a number field. For a principally polarised abelian variety (A, L)
defined over a number field k, a logarithm u such that p := expy(u) € A(k), and a k-vector
subspace Wy of t4 of codimension ¢, he gave — under some technical assumption — an explicit
lower-bound for the distance between u and Wy in terms of the degree [k : Q], the Néron-Tate
height 7y, (p) of p, the Faltings height of A, the norm ||u|| relative the polarisation L, and the
height of Wy. It was the first result of this kind in the level of generality. The results of this part
of the thesis exactly fit in this framework.

1.2 Statement of results

Let A be an abelian variety of dimension g defined over a number field k. Let o : kK — C be
a complex embedding of k, and let L be a polarisation on A. The Riemann form of L, gives
a Hermitian structure || - ||, to the tangent space t4,. Consider a vector subspace Wy of t4,
defined over k. Let p € A(k) be k-rational point of A, and let u € t4, be a logarithm of p,
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that is exp4_(u) = p. Our goal in all this part of this manuscript is to give a lower-bound for
the distance d(u, W), assuming that it is not zero. We seek for an explicit bound, in terms
of the classical invariants of our data such that the degree [k : Q] of the field of definition of
A, the Faltings height hp(A) of A, the degree deg; A of A relative to the polarisation L, the
Néron—Tate height Ay (p) of p, the norm ||u|, of u, or the height h(Wp) of Wy (this height will
be defined precisely in chapter 4). We give two answers to this question: a first one under some
assumption on the pair (A, u), and a second, unconditional one. A simplified version of our first
lower-bound can be stated as follows.

Theorem 1.5 (theorem 4.3). Consider the above notations and define

~ e?||ul|2
log a := max (h,;(p), [k:H (gc]’

> , log b := max(1, h(Wy)),

and a > [k : Q) max (1, hp(A), logh®(A4, L), log[k : Q], log loga) .
If u does not lie in the tangent space of a proper subvariety of A, then

log d(u, Wo,) > ~Ca'/* (1 + [k : Qlaloga)” (a + [k : Q] log b)(degy, A)’,

with C = (5(g + t))w

The method used to prove theorem 1.5 can be seen as a generalisation of Baker’s method.
However, we used all the most recent tools available in the literature, such as Hirata-Khono’s
reduction method, a new multiplicity lemma due to Nakamaye, and Chudnovsky’s change of
variables. Our result is totally explicit in the classical invariants of the abelian variety (A, L),
the point p, the logarithm u, and the subspace Wy. It is very comparable to [Gau06, Théoréme

1] in the case of a principally polarised abelian variety, but improves their constant ¢; from
(10(g + t))l?’% to (5(g + t))4w. Moreover, as Gaudron’s result — and previously in the
work of David and Hirata-Kohno [DH02, Theorem 1| — our result is linear in the parameter log b,
and is therefore optimal for this parameter. Looking at the hypothesis of the theorem, it is again
similar to Gaudron’s Théoréme 1 hypothesis.

After proving theorem 1.5, we prove a more general result, removing its assumption on (A, u).

A special case of this second main result goes as follows.

Theorem 1.6 (theorem 4.6). Consider the above notations and define

~ 2
My := max <1,log[k‘ @, hp(4), log™ hi(p), log [Qu’go ’

and log b := max(1, h(Wy)).
If u ¢ Wy, then

R 2 \ 9°+9
log d(u, Wos) > —Clk : @D+ M max(My, log b) max <1, hi(p). [2%]) ’

with C' = (2650009)%° .
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If g =1, we have

log d(u, Wy) > —2 - 10% D> M2 max (1,EL(pA), ”7“‘3”‘%> :

This result is the main novelty of this part of the manuscript, because it is the first one of this
kind in the context of abelian varieties. Indeed, our result can be used without any restriction
on the abelian variety A, and on the point u other than the fact that it does not lie in Wy,
which was not the case in [Gau06]. The proof of theorem 1.6 comes back to theorem 1.5 applied
to the smallest abelian subvariety A, which tangent space contains u. The heart of the proof
is then to compare the invariants of the new setting to the ones of the original context of the
theorem. It uses in a crucial way the work of Bosser and Gaudron [BG19], who proved a bound
for the degree of A, in terms of A, u, and p. We also use the recent Rémond [Rém22] who gave
a new bound the Faltings height of any subvariety of A. As in theorem 1.5, the dependence in
the height of the subspace Wy is linear, and therefore optimal.
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Chapitre 2

Introduction en francais

2.1 Formes linéaires de logarithmes

Dans cette partie, nous présentons nos contributions a la théorie des formes linéaires de logarithmes.
Un logarithme d’un nombre algébrique «, est n’importe quel nombre complexe u € C tel que

% = «. La théorie des formes linéaires de logarithmes s’intéresse aux relations linéaires qui

e
existent entre ces logarithmes (et plus généralement, aux logarithmes de points rationnels dans
des groupes algébriques commutatifs). On peut retracer l'origine de cette théorie aux travaux
de Lindemann [Lin82] d’une part, et de Weierstrafs [Wei85] d’autre part, qui prouvérent un
des premiers résultats d’indépendance linéaire d’exponentielles et de logarithmes de nombres

algébriques. Leur résultat est le suivant

Théoréme 2.1 (Lindemann—Weierstrak). Soient aq,...,q, des nombres algébriques distincts.
Alors, les nombres €', ... e sont linéairement indépendants sur le corps Q.

Ce théoréme prouve en particulier la transcendance de n’importe que logarithme non-nul d’un

loga_aeo =0

nombre algébrique «. En effet, la famille (elogo‘, %) est linéairement li¢e sur Q car e
et donc loga ne peut étre algébrique. Il découle aussi la transcendance de 7 car iw est un
logarithme de —1, et i est algébrique. Tous ces résultats menérent Hilbert en 1900 & énoncer un
probléme de transcendance de puissances algébriques de nombres algébriques dans sa fameuse

liste des 23. Son probléme peut s’énoncer comme suit.

Septiéme probléme de Hilbert (1900). Soit o un nombre algébrique différent de 0 et de 1, et
soit B un nombre algébrique irrationnel. On note o = e* avec u € C. Alors le nombre o = Pt
est transcendant.

Ce probléme fut rapidement résolu suite aux travaux indépendants de Gelfond [Gel34] et
Schneider [Sch35] en 1934 et 1935 respectivement. Leur résultat est maintenant connu sous le nom
de théoréme de Gelfond—Schneider et peut étre reformulé comme un probléme d’indépendance
linéaire entre des logarithmes de nombres algébriques. En effet, on peut montrer que le Septiéme
probléme de Hilbert est équivalent au résultat suivant.

Théoréme 2.2 (Gelfond—Schneider [Gel34 ; Sch35]). Soient uy, ug deux nombres complezxes tels
que e™ et €“2 sont algébriques. Si uy et ug sont linéairement indépendants sur Q, alors ils le sont

sur Q.

23
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Jusqu’a maintenant, tous les résultats que nous avons évoqués étaient des énoncés qualitatifs
d’indépendance linéaire d’exponentielles de nombres algébriques dans le cas du théoréme de
Lindemann—Weierstrafs, et de logarithmes de nombres algébriques dans le cas de Gelfond—
Schneider. C’est & Baker que 'on doit une avancée majeure sur ces questions. En 1966, il prouva
le premier résultat entiérement explicite d’indépendance linéaire de logarithmes. Une version de
son théoréme est la suivante.

Théoréme 2.3 (|[Bak66]). Soient aq, ..., o des nombres algébriques distincts de 0 ou 1, et soit
u; un logarithme de «;. St uq, ..., u, sont linéairement indépendants sur Q, alors 1, uq,...,u,
sont linéairement indépendants sur Q.

Plus précisément, pour tout d > 0, il existe une constante effective C' dépendant de o, . .., ay,
et d telle que pour tous nombres algébriques B, ..., Bn de degré au plus d, on ait

’/81“1 +---+ Bnun| > Cei(n+2) logH’
ou H désigne le maximum des hauteurs des [3;.

Pour démontrer le théoréme 2.3 Baker développa une méthode maintenant connue sous le
nom de méthode de Baker. Pour démontrer nos résultats nous utiliserons une généralisation de
cette méthode dans le contexte des variétés abéliennes. Pour mieux comprendre la nature de ces
résultats, nous allons prendre un point de vue plus général sur la théorie.

Soit G un groupe algébrique commutatif défini sur un corps de nombre k C C, et soit
p € G(C). Le groupe G(C) est un groupe de Lie complexe et son espace tangent ¢G(C) est un
espace vectoriel complexe. Un logarithme du point p est un antécédent de p par 'exponentielle
de G, exps : t¢(C) — G(C). Soit Wy un sous-espace de t(C) défini sur k, c’est-a-dire que W)
peut étre décrit par des équations linéaires & coefficients dans k. La théorie des formes linéaires
de logarithmes s’intéresse alors principalement aux deux questions suivantes :

1. Est-ce que u peut appartenir & I’espace Wy, et si oui pour quelles raisons ?

2. Quand u n’appartient pas & Wy, peut-on donner une borne inférieure pour la distance de u
a Wy en fonction du groupe G, du point u, et de Wy ?

On peut expliquer pourquoi ces questions traitent toujours de « formes linéaires de logarithmes »
de la facon suivante. Soit (eq,. .., eq) une base de tg(k), et soit (¢1,...,¢:) une base de 'espace
dual VVOL des formes linéaires sur tg(k) qui s’annulent sur Wy. On peut décomposer u en
u=ujer + - +ugeg et ; en p; = a;1ej + - a;ge;. La distance d(u, Wp) est alors comparable
a

max |u1a;1 + - UgQ;
1<Z.<t| (A g 1,g|a

et les applications (u1,...,ug) = aj1u1 + - - - + aj gug sont des formes linéaires en les coordonnées
du logarithme u.

Historiquement, le cas de groupe algébrique commutatif G le plus étudié a été le cas G =
Gq x GJ,. Dans ce cas on a G(C) = C x (C*)™ et I'exponentielle de G est I'application Id x exp™ :
(ug, U1y« up) — (ug, €, ..., e"). Sion prend ug =0, uy,...,u, des logarithmes d’éléments
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de Q, et Wy := ker(B121 + - - - + Bnxy,) un hyperplan, on retrouve le probléme de Baker de minorer
la forme linéaire

’Blul +--+ Bnun|

Ces questions englobent aussi tous les résultats antérieurs au théoréme de Baker qui les générali-
saient déja.

La premiére réponse générale a la question 1 a été apportée par Wiistholz in 1989. Son
résultat énonce que la seule obstruction & u d’étre rationnel est ’espace tangent d’un sous-groupe
algébrique de G.

Théoréme 2.4 ([Wiis89]). Le plus petit espace vectoriel de t(C) défini sur Q qui contient u est
lespace tangent d’un sous-groupe algébrique connere G de G.
En particulier, si u € Wy, alors Wy 2 t5(C).

Malgré le fait que cet énoncé soit seulement qualitatif, on peut énoncer des bornes effectives
sur le degré du sous-groupe G. Par exemple, on peut trouver dans le travail de David [Dav95,
Théoréme 2.1|, une borne sur le degré d’un sous-groupe dont ’espace tangent contient u dans le
cas ol G est un produit de courbes elliptiques définies sur un corps de nombres.

Intéressons-nous maintenant a la question 2. On peut découper les travaux sur ces questions en
plusieurs catégories. Tout d’abord, les énoncés concernant un sous-groupe algébrique commutatif
G arbitraire. On peut citer entre autres les travaux importants de Philippon et Waldschmidt de
1988 [PW8S], et ceux de Gaudron de 2005 [Gau05]. Ensuite, les estimations pour le groupe linéaire
Gqo X G, — qui généralisent les travaux de Baker. Voir par exemple le travail [Gaul4]. Enfin, — et
c’est le cas qui nous intéressera par la suite — le cas de G une courbe elliptique ou plus généralement
une variété abélienne. L'un des résultats les plus connus sur ce sujet est celui de David [Dav95,
Théoréme 2.1]. Pour G un produit de courbes elliptiques Fj X --- x E, toutes définies sur un
méme corps de nombres k, et des logarithmes u1, ..., uy, tels que p; := expg, (u;) € E;(k), il donne
une borne inférieure entiérement effective pour la forme linéaire By 4+ Siu1 + - - - + By, avec
(Bi); € k™*1, sous I'hypothése que le logarithme (1,u,...,u,) n’appartiennent pas & I’espace
tangent d’un sous-groupe algébrique de G, X E1 X --- X E,, de degré inférieur & une constante
effective. Par effectif dans ce contexte, nous entendons une borne ne dépendant que n, du degré
[k : Q], des hauteurs de Weil h(3;) des coefficients de la forme linéaire, des hauteurs de Néron—Tate
ﬁ(pz) des points rationels p;, des hauteurs de Faltings h(E;) des courbes elliptiques, de la valeur
absolue |u;| des logarithmes, et enfin de Im(7;) avec 7; € C tel que E; = C?/(Z®7;Z). Ce théoréme
mena a la mise en ceuvre de la méthode du logarithme elliptique, imaginée indépendamment par
Stroeker et Tzanakis [ST94], et Gebel, Pethd, et Zimmer [GPZ94|. Cette méthode déboucha sur
de nombreux résultats diophantiens. Voir par exemple [SAW99; Tza02 ; KR18|.

Dans la méme lignée des résultats de David, Gaudron prouva en 2006 [Gau06| un résultat
similaire dans le cadre des variétés abéliennes définies sur des corps de nombres. Pour une variété
abélienne principalement polarisée (A, L) définie sur un corps de nombres k, un logarithme u d’un
point rationnel p € A(k), et un sous-k-espace vectoriel Wy de ¢ A(c) de codimension ¢, Gaudron
donne — sous certaines hypothéses techniques — une borne inférieure effective pour la distance de
u & Wy en fonction du degré [k : Q], de la hauteur de Néron—Tate hr, (p) de p, de la hauteur de
Faltings de A, de la norme ||u|| relative a la polarisation L, et de la hauteur de Wy. Ce résultat
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était a ’époque le premier résultat totalement explicite de ce genre, dans ce niveau de généralité.
Les résultats de cette partie de la thése s’intégrent dans ce contexte et généralisent les résultats
de Gaudron.

2.2 Reésultats

Soit A une variété abélienne de dimension g définie sur un corps de nombres k. Soit ¢ : k — C
un plongement complexe de k, et soit L une polarisation de A. La forme de Riemann de L,
munit Iespace tangent ¢4, d’une structure hermitienne || - ||,. Soit Wy un sous-espace vectoriel
k-rationnel de t4. On considére enfin un point rationnel p € A(k) et un logarithme u € t4, de
p, c’est-a-dire tel que exp4_(u) = p. Notre but est de minorer la distance d(u, Wp ) relative a
la structure hermitienne de ¢4, donnée par L,. Nous cherchons une borne aussi explicite que
possible, fonction des invariants algébriques et analytiques de nos données, tels que le degré
[k : Q] du corps de définition de A, la hauteur de Faltings hp(A) de A, le degré deg; A de A
relatif a la polarisation L, la hauteur de Néron-Tate hy, (p) du point p, la norme ||ul|, de u, ou la
hauteur h(Wp) de Wy (cette hauteur sera définie précisément dans le chapitre 4). Nous donnons
deux minorations pour cette distance. Une premiére sous une hypothése sur la paire (A, u), et
une seconde totalement inconditionnelle. Un énoncé simplifié de notre premier résultat est le

suivant.
Théoréme 2.5 (Theorem 4.3). Awvec les notations ci-dessus, définissons

e||ull?

[k: Q]

log a := max (ﬁL(p), > , log b := max(1, h(Wy)),

et a > [k:Qmax (1, hp(A),logh®(A, L), log[k : Q],logloga) .
St u n’appartient a lespace tangent d’aucune sous-variété stricte de A, alors

log d(u, Wo,) > ~Ca'/* (1 + [k : Qlaloga)” (a + [k : Q] log b)(degy, A’

avec C = (5(g + t))w

La méthode utilisée pour prouver le théoréme 2.5 peut étre vue comme une généralisation
de la méthode de Baker. Cependant, nous utilisons les outils les plus récents existant dans la
littérature, tels que la méthode de réduction d’Hirata-Khono, un nouveau lemme de multiplicité
dit & Nakamaye, ou le principe de changement de variables de Chudnovsky. Nos résultats sont
totalement effectifs en les invariants classiques de la variété abélienne (A, L), du point p, du

logarithme u, et du sous-espace Wj. Ils sont comparables au [Gau06, Théoréme 1] dans le cas d'une
(9+t)2
variété abélienne principalement polarisée, mais améliorent leur constante ¢; de (10(g+1))*? =

(g+t+1)? .
a (5(g+1)*"% . De plus, comme chez Gaudron — et comme précédemment dans le travail

de David et Hirata-Kohono [DHO02, Theorem 1| — notre minoration est linéaire en log b, et donc
optimal pour ce paramétre. En comparant I’hypothése de notre théoréme et I’hypothése du
résultat |Gau06, Théoréme 1|, on peut voir qu’elles sont similaires.
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Une fois le théoréme 2.5 démontré, nous prouvons un second résultat plus général, supprimant
) )
I’hypotheése sur la paire (A, ). Un cas particulier de notre énoncé s’énonce de la maniére suivante.

Théoréme 2.6 (Theorem 4.6). Awvec les notations ci-dessus, on définit

~ 2
M, := max <l,log[k @), hp(A), log™ ha(p), log [Qu%]) 7

et log b := max(1, h(Wp)).
Siu ¢ Woys et g=>2, alors

R 2 \ 9 +g
log d(u, Wo,) > —Clk : Q](29+1)(9+1)MﬁlgH)2 max(My, log b) max (1, hi(p), [/!Mg]) ,
avec C = (2650009)%° .
Sig=1, ona

log d(u, W) > —2- 103 D3 M3 max <1,iALL(pA), ||Ug||g> .

Ce résultat est la principale nouveauté de cette partie du manuscrit. C’est le premier résultat
de ce type dans le cadre des variétés abéliennes. En effet, étant totalement inconditionnel, il peut
étre utilisé sans aucune restriction sur la variété abélienne A, ni sur logarithme w autre qu’il
n’appartienne pas a l'espace Wy 5, ce qui n’était par exemple pas le cas dans [Gau06|. La preuve
du théoréme 2.6 se base sur le théoréme 2.5 appliqué a la plus petite sous-variété abélienne A,
dont I’espace tangent contient u. Le coeur de notre preuve est alors de comparer les invariants
de nos nouvelles données, en fonction des données initiales. Cette partie de la preuve utilise
de maniére essentielle les travaux de Bosser et Gaudron [BG19] qui ont donné une majoration
du degré de A, en fonction de A, u, et p. Nous utilisons aussi les résultats récents de Rémond
[Rém22] qui a donné une nouvelle borne pour la hauteur de Faltings d’une sous-variété de A.
Comme pour le théoréme 2.5, la dépendance en la hauteur du sous-espace Wy est linéaire et ainsi
optimale.
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Chapter 3

Preliminaries

This chapter is devoted to introduce the tools we will use in this part of the thesis and their
main properties. The content of this chapter is contain no original result and we will refer to the

existing literature for further developments of these topics.

3.1 Hermitian adelic vector bundles

3.1.1 Definitions

We present here the main concepts of the theory of Hermitian adelic vector bundles. We restrict
our exposition to Hermitian adelic vector bundles over the spectrum of the integer ring of a
number field, even though a more general theory of adelic vector bundles over the spectrum of a
number field exists. The content of this section comes essentially from [Gau08], [GR13], [Gaul4,
83|, and [Gau2l|. We fix a number field k of degree D, and we write Oy, for its ring of integers.
For any place v of k, let k, be the v-adic completion of k, and C, be the v-adic completion of an

algebraic closure of k.

Definition 3.1 (|[Gau08, 3. Fibré vectoriel adélique|). A Hermitian adelic fiber bundle € over
Spec Oy, is the data of a Op-projective module of finite type € together with, for every Archimedean
place v of k, a norm || - ||, on the Cy-vector space E, := &€ ®p, C, that is Euclidean if v is real,
and Hermitian and invariant under complex conjugation if v is complex.

Remark 3.2. Any Hermitian adelic vector bundle € over Spec Oy naturally comes with an
integral structure. Indeed, for a finite place v of k and © € E,, the quantity

|||y := inf {|a|y,a € Cy, such that z € a- (E® Oc,)}

defines an ultrametric norm on E,. Moreover, choosing a minimal spanning family (e1, ..., ey)
of £, we have for any A, ..., \, € Cy,

n
E i€
i=1

The classical operations of linear algebra naturally transfer to Hermitian adelic vector bundles.

= max |Ajy.
1<i<n

v

We present below the main constructions we will use in the upcoming chapters.

29
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Definition 3.3 (|Gau2l, 2.2 Rigid Adelic Spaces|). Let & and F be two Hermitian adelic vector
bundles over Spec O. The following spaces are Hermitian adelic vector bundles over Spec Oy.

e The induced space F, for a submodule F of £, with the induced norms.

e The Hermitian sum € ® F with norms ||z @ y||2 == ||z||2 + ||lyl|2, for all Archimedean place
vandx ®y € E, B F,.

e The quotient E/F, for a submodule F, with the quotient norms defined by

|z 4+ Fyllo == inf {||y|lv,z —y € F,}, Vzxe E,.

e The tensor product £ ®p, F with the tensor norms constructed as follows. Let v be a
Archimedean place of k. Let (e1,...,en), (f1,..., fm) be orthonormal bases of E, and F,

respectively. The norm of an element x =Y \; je; ® f; of (€ ®o, F)v = Ey @c, Fy is
i?j

213 =Y (il
i’j

This indeed defines a norm on (€ ®op, F), which is independent of the choice of the
orthonormal bases.

e The space Hom(E, F) with the operator norms defined by

. 1f (@)l
» = inf , Vf € Hom(E,, F,).
I =t S vt € Hom(E,, 7,

In particular the dual space £V is a Hermitian adelic vector bundle.

e For a positive integer i, the i-th symmetric power Sym®(E) of € with the quotient norm
coming from the natural surjection E®" — Sym'(E,). If (e1,...,e,) is an orthonormal

basis of By, then the family (eil o€ o4y —i is orthogonal and we have

, A
.. ( 2 _ 7/[/‘
Hel ennHU - Zl'Zn'

e For a positive integer i, the i-th exterior power N'E of £ with the quotient norms coming
from the natural surjection E®* — N'E,. For i vectors eq,...,e; in E,, one has

[ WARERNA eiH% = det({en, em)v)1<nm<i

)

where (-,-), denotes the inner product on E, associated to || - ||,.

In particular the determinant det £ := N'X€E is a Hermitian adelic vector bundle.
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3.1.2 Slopes and heights
Definition 3.4 ([Gaul4, Définition 3.3]). Let € be a Hermitian adelic vector bundle over Spec O,.

o IftkE = 1, the (normalised) Arakelov degree of € is defined as
— 1
deg, £ =~ > [k : Q] log ][z,
where the sum ranges over all places v of k (Archimedean or not), and z is any non-zero
element of £. This definition is independent of the choice of x.
o Iftk& > 1, the Arakelov degree of € is the Arakelov degree of det E.
e The height of € is defined by h(E) = —d/e%ng.
e The Arakelov slope [i(E) of € is the number
deg, £

) = k&

o Let x € (€ ®o, k) \ {0}, the Arakelov height of x is defined as

~

1
h(z) = ) Zv:[kv : Qu]log ||z ]]y.
These notions nicely behave with respect to the constructions we gave in definition 3.3, as
stated in the following proposition.

Proposition 3.5 (|Gau2l, Proposition 5]). Let £, F be two Hermitian adelic vector bundles
over Spec Or. We have

o deg, (E&F) = deg, (€) + deg, (F);

o If F is a submodule of £, d/eTgn (5/7]:) = d/e\gn (€) - d/e\gn (F);

e More generally j1 (Wé’,f)) = ﬁ(?) - ﬁ(?);

Finally, for two submodules F and G of a Hermitian adelic vector bundle £ over Spec Oy, we
can compare the degrees of F,G, F+Gand FNG.

Proposition 3.6 ([Gau2l, Proposition 6]). We have
deg, (F) + deg, (G) < deg, (F+G) +deg, (FNG).

A natural way Hermitian adelic vector bundles arise is through ample invertible sheaves on
schemes over Spec O.
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Definition 3.7. A Hermitian line bundle L on a scheme X over Spec Oy, is an invertible sheaf
L over X together with, for all x € X(O) and all Archimedean place v of k, a norm || - ||z
on the fiber (x*L), which is Fuclidean if v is real, and Hermitian and invariant under complex
conjugation if v is complex.

Given a Hermitian line bundle £, on X'/ Spec Ok, the Ogx-module 2*L is thus given a structure
of Hermitian adelic vector bundle of rank one. This leads to the following notion of height.

Definition 3.8. Let £ be a Hermitian line bundle on a scheme X over Spec Oy, and let
x € X(O). The height of x relative to L is defined as

1

he(w) = deg, (1°L) = —5 D

ky Qv] log H3<x)H$,v7
where the sum ranges over all the places v of k, and s is a local section of L that does not vanish

at x.

The final tool of Arakelov theory of Hermitian adelic vector bundles we will need is the
maximal slope of a bundle. It is a fact that, for a Hermitian adelic vector bundle &, there is a
constant ¢(€), depending only on &, such that for any submodule F of £, we have

f(F) < c(8).

See [Gau08, Proposition 5.3| or [Gau2l, Lemma 12] for a proof of this result. This legitimises
the following definition.

Definition 3.9. Let £ be a Hermitian adelic vector bundle over Spec Oy. The mazimal slope of

& is the real number
fimax (&) 1= sup {ﬁ(f), F submodule of S} )

A direct consequence of this definition is that the maximal slope of £ is always at least as big
as the Arakelov degree of any line of £. The opposite of the degree of a line being the height of
one its non-zero elements, we get the following result.

Proposition 3.10. Let £ be a Hermitian adelic vector bundle over Spec Oy. For any non-zero
element x of &€ ®p, k, we have
—Hmax(€) < h(z).

This seemingly trivial result will in fact play a key role in our study.

The maximal slope behaves less nicely with the natural operations on Hermitian adelic vector
bundles than the Arakelov slope. We will still need estimates for the maximal slope of tensor
products and symmetric powers. We have the following results.

Proposition 3.11 (|Gau08, Propriétés 5.7|). Let £, F be two Hermitian adelic fiber bundles
over Spec O with rk F = 1. We have

I/Zmax (5 X ]:) = ﬁmax(g) + ﬁmax (7:)

Proposition 3.12 (|[GR13, Proposition 8.4]). Let €& be a Hermitian adelic fiber bundle over
Spec O. For any positive integer £, we have

Fimas (Sym’ ) <€ (fimas (€) + 2logrk )
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3.2 Complex abelian varieties

In this section, we recall some of the theory of abelian varieties defined over the field of complex
numbers. We will only scratch the surface of this very rich theory. For many more details on this
subject, see |BLOA4].

3.2.1 Line bundles and factors of automorphy

Let A be an abelian variety over C and let t4 denotes the tangent space of A at 04. The group
A(C) of C-points of A is naturally given the structure of a connected compact complex Lie
group. This ensures (see [BL04, Lemma 1.1.1]) that A(C) is a complex torus and comes with its
exponential function

expy :ta — A(C).

The map exp 4 is surjective and its kernel denoted €24 is called the period lattice of A. In order
to relate holomorphic function on ¢4, and holomorphic line bundles on A, we define the notion
of factor of automorphy on A.

Definition 3.13. Let Z'(Q4, H(Of,)) denotes the group holomorphic maps a : Q4 x t4 — C*
satisfying the cocycle relation

a(wy + wa, ) = a(wi,ws + x)a(ws, x), Ywi,ws € Qa, VY € ta.

The elements of Z1 (4, HO((’);A)) are called factors of automorphy of A.
For any non-vanishing holomorphic function g : t4 — C*, the map ag : Q@ x t4 — C* given

by
g(w+ x)

9(x)
is a factor of automorphy. The group of such factors of automorphy is denoted B (4, HO(OE‘A)).
We let H'(Qa, HO(Of))) to be the group Z'(Qa, HY(O},))/B'(Q4, HY(O},)).

ap(w,x) =

Theorem 3.14 (|BL04, Proposition B.1|). There is a group isomorphism between the Picard
group Pic(A) of holomorphic line bundles on A and H'(Q4, H(O},)).

Sketch of proof. Let L be a holomorphic line bundle on A. One can pull back L(C) by expy to
get the holomorphic line bundle exp* L(C) on t4. This bundle is necessarily trivial because there
is no non-trivial holomorphic line bundle on a complex vector space (see [BL0O4, Lemma 2.1.1.]).
Given a trivialisation « : exp* L(C) — t4 x C, we get the following diagram.

ta x C 22— expt L(C) —25 L(C)

~

tg ——— A(C)

The action of Q4 on t4 by translation can be pulled back on exp% L(C), and then on t4 x C using
a. It can be shown that this action of Q4 on t4 x C is of the shape w - (z,2) = (z + w, a(w, x)z)
for a factor of automorphy a which class in H* (4, H°(0f,)) is independent of a.
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Conversely, given a factor of automorphy a one can construct a holomorphic line bundle
L:=(taxC)/Qy where Q4 actson t4 X C by w- (z,2) = (w+ x,a(w, x)z). One shows that this
construction factors through B'(Q4, H°(O},)) and is the inverse of the previous construction. M

From theorem 3.14, we can deduce a correspondence between sections of (4, L) and some
holomorphic functions on 4.

Theorem 3.15 (|[BL04, Appendix B, p.574]). Let L be a holomorphic line bundle on A and let
a be a factor of automorphy corresponding to L € Pic(A). Define the C-vector space

O(a) := {19:t,4—>(C

¥ is holomorphic and
Yz + w) = a(w, x)¥(x), Y(w,x) € Q4 Xty

We have an isomorphism of C-vector spaces H°(A, L) = O(a).

Sketch of proof. Similarly to the proof of theorem 3.14, given a holomorphic line bundle L, its
pull-back by exp, is a trivial line bundle on ¢4, and the choice of a trivialisation « give rise
to the factor of automorphy a. Given a section s € H°(A, L) of L, we then get the following
diagram.

From the definition of a, one see that we have a o exp’ s(x) = (x,¥(z)) for some holomorphic
function ¥ satisfying ¥(z 4+ w) = a(w, x)9(x). This yields a map H°(A, L) — ©(a) which can be
shown to be an isomorphism. |

3.2.2 The Riemann form of a line bundle

Let L be a holomorphic line bundle on A. It can be viewed as an element of the group H' (X, Ox).
From the exact sequence

exp(2im-)
0 ——=Z —— Oycc) —— OE(C) — 0,

one gets a morphism H1(A, (’)Z(C)) — H?(A, 7). Define the Néron-Severi group NS(A) to be
the image of this morphism. The following theorem states that it corresponds to a class of
Hermitian forms on ¢ 4.

Theorem 3.16 ([BL04, Theorem 2.1.2, Proposition 2.1.6 and Lemma 2.1.7]). There is an
isomorphism between NS(A) and the group of Hermitian forms H : ty x ta4 — C satisfying
Im H(Qy4,04) CZ.

Given a holomorphic line bundle L over A, the Hermitian form H corresponding to the image
of L in NS(A) is called its Riemann form.
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For our purposes, the interest of the Riemann form of a holomorphic line bundle L is twofold.
It gives a canonical factor of automorphy corresponding to L, and it defines a hermitian structure
onta.

Definition 3.17. Let H : t4 x t4 — C be a Hermitian form such that Im H(24,Q4) CZ. A
semi-character for H is a map x : Q4 — U (where U is the group of complex numbers of module

1) satisfying x(w1 + w2) = x(w1)x(w2) exp(iTH (w1, w2)).

Theorem 3.18 (|[BL04, 2.2]). Let H € NS(A) and let x be a semi-character for H. Let ap, be
the map defined by

a ) Qaxty — C*
Hox - (w,x) —  x(w)exp (WH(x,w) + %H(w,w)) '

The map apy is a factor of automorphy for A and the associated holomorphic line bundle L(H, x)
admits H as its Riemann form. Moreover, the mapping (H,x) — L(H,x) is an isomorphism
onto the group of holomorphic line bundles. Given L, the associated pair (H,x) is called the
Appel-Humbert data of L.

Remark 3.19. For a holomorphic line bundle L, the factor of automorphy ay, coming from
the Appel-Humbert data of L is canonically attached to L. We will therefore usually denote by
O©(A, L) the space ©(ar, ) of theorem 3.15.

Consider now ¥ € O(A, L). Notice that the map

ta2 — C
z > [9(z)exp (—FH(z 2))

is invariant under translations by elements of €2 4. Moreover, if L is ample then its Riemann form
is a positive definite Hermitian form (see [BL04, Proposition 4.5.2.]). Hence, given z € t4 and
x = exp(z), we can endow the fiber L, with the Hermitian metric

Is@)l, = B()|exp (<3 l12I3) Vs € H(A,L), (3.1)

where ¥ € (A, L) is the theta function associated to s by theorem 3.15, and ||z||1 := H(z, 2).
This definition is independent of the choice of the section s. This defines two norms on HY(A, L):

Islloc := sup |[ls(z)]|z, and |s|3 ::/ Is(2)]|7, .
z€A(C) A(C)

3.2.3 Injectivity diameter and covering radius

We conclude this section with two metric properties of complex abelian varieties: the injectivity
diameter and the covering radius.

Definition 3.20. Let (A, L) be a polarised complex abelian variety. The injectivity diameter
p(A, L) of (A, L) is the diameter of the biggest ball of t4 such that exp 4 is injective, namely

A L):= inf .
pAL) = _inf el
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The covering radius r(A, L) of (A, L) is the maximum distance of a point of ta to the period
lattice:
r(A,L):= sup |z—w|L.
2€Et4, WENA
The injectivity diameter is a special case of minima associated to a lattice. It is the first
minimum of Q4. In fact, the study of minima of a lattice allows one to compare p(A, L) and
r(A, L).

Proposition 3.21 ([BG19, 3.11.1, p. 28|). Let (A, L) be a polarised complex abelian variety of

dimension g. We have
gh’(A, L)

p(As, Lo)’
where h°(A, L) denote the dimension of HO(A, L).

r(A,L) <

3.3 Abelian varieties over number fields

3.3.1 Faltings height

We recall the definition of the Faltings height of an abelian variety over a number field. For
a reference, see for example [GR14b, 2.3 Hauteur de Faltings| . Notice however that the
normalisation they choose for their Faltings height is slightly different from ours.

Let A be an abelian variety over a number field k. Let K/k be a finite extension such that
Af is semi-stable. We have a semi-stable model 7 : A — Spec Ok of generic fiber Ax. Let
e : Spec O — A be the zero section of . We denote by ©4/gpec 0, the sheaf of first order
differentials over A, and by Qf’4 /SpecOx = det 2 4/spec 0 1ts maximal exterior power. Define
WA/ Spec O as the sheaf

WA/ Spec O *= E*Qil/ Spec Ok *
It is an invertible sheaf over Spec O and for any embedding o : K — C, the line bundle
WA/ SpecOx ®c C= H Y(A,, Qil / Spec OK) can be given the following Hermitian structure:
.2

2 _ ¥ = 0 g
||S||wA/SpeC(9K70 - 27 A ((C) s /\ 8’ vs € H (AU’Q.A/SPGCOK)'

This gives a structure of Hermitian adelic vector bundle to w4/ spec 0 Over Spec Of.
Definition 3.22. The Fultings height hr(A) of A is the Arakelov degree of W4/ Spec Oy -

Remark 3.23. The Faltings height depends neither on the extension K/k, nor on the semi-stable
model T.

The Faltings height is not always positive, however Bost have proven the following lower
bound for the Faltings height of an abelian variety.

Proposition 3.24 ([GR14b, Corollaire 8.4.]). For any abelian variety A of dimension g over a
number field, we have
he(4) > =% log(2n?).
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3.3.2 Moret-Bailly models

In order to apply the theory of Hermitian adelic vector bundle we exposed in section 3.1 to
polarised abelian varieties defined over a number field, we need some integral structure associated
to them. This was achieved by Moret-Bailly and Bost in [Mor85] and [Bos96a| thought the notion
of Moret-Bailly models.

Definition 3.25. Let (A, L) be a polarised abelian variety over a number field k, and let F' be a
finite subset of A(k). A Moret-Bailly model (A, L, (ep)per) of (A, L, F) over a number field K
containing k is composed of

e a semi-stable group scheme w : A — Spec Ok with generic fiber isomorphic to Ak ;

e a Hermitian line bundle £ over A with generic fiber Ly, such that for any complex embedding
o : K — C, the metric on L ®, C coincides with the one coming from the Riemann form

of L ®, C;

o for any P € F, a section ep : Spec O — A of m, such that the corresponding geometric
point epz € A (7) ~A (F) cotncides with P.

The existence and properties of Moret-Bailly models have been studied by Bost in [Bos96a,
§4.3]. We state his results.

Theorem 3.26 ([Bos96a, Theorem 4.10]). Let (A, L) be a polarised abelian variety of dimension
g over a number field k, and let F be a finite subset of A(k).

1. There exists a finite extension K/k of k such that (A, L, F) admits a Moret-Bailly model
over K.

2. For any Moret-Bailly model (A, L, (sp)per) and any P € F, the normalised height
deg, (epL) coincide with the Néron—Tate height hi(P) of P.

3. If (A, L, (ep)per) is a Moret-Bailly model of (A,L,F) over K, and K'/K is a finite
extension of number fields, then (A xo, Ok, L X0, Ok, (ep @0, Ok')per) is a Moret-
Bailly model of (Agr, Lx', F) over K'. In other words, Moret-Bailly models are compatible

with extension of scalars.

4. Let (A, L, (ep)per) be a Moret-Bailly model of (A,L,F) over K. The space of global
sections H'(A, L) @ K of (Ak, L) inherits a structure of Hermitian adelic vector bundle
over Spec Ok with H°(A, L) as underlying space and the Hermitian structure coming from
L as metrics at the Archimedean places of K. Its Arakelov slope is given by

1 1
m <H0(A,£)) = —3hr(A4) + 7 logh(4, L) - %10g(27r2).

The existence of a Moret-Bailly model (A, £, () over K of a polarised abelian variety (4, L, )
also gives the tangent space t4, a structure of Hermitian adelic vector bundle over Spec Ok Its
underlying space is the tangent space at the origin ¢4 of A and the metrics at the Archimedean
places are given by the metrics || - ||1,. The Arakelov slope of ¢4 has also been computed by
Bost.
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Proposition 3.27 (|Bos96b, Proposition D.1]). Let (A, L) be a polarised abelian variety of
dimension g over a number field k. Let (A,L,0) be a Moret-Bailly model of (A, L,() over K.
The Arakelov slope of t4 is equal to

A(f) = _; <hF(A) + ;loghO(A,L)) .

To conclude on that topic, we give an estimation of the maximal slope of ¢4 and a that has
been computed by Gaudron.

Proposition 3.28 (|Gaul9, Corollary 4.5 & p. 447]). Let (A, L) be a polarised abelian variety
of dimension g over a number field, and let (A, L,)) be Moret-Bailly model of (A, L,0). We have

max (fimax (£4) ,0) < 12hp(A) + 16glog(24g),

and
D 1
fimax () < (0.69 + 1) <hF(A) +5log ho(A, L)) + g% log(10g).

3.4 Projective spaces

Besides abelian varieties, we will also deal with affine and projective spaces associated to a vector
space or a module. Let us first recall how one can define an affine or projective scheme from a

module.

Definition 3.29 ([Mum99, §4|,[Har77, Proposition I1.2.5]). Let € be a module over a commutative
ring R. We denote ¥ := Hompg(E, R) the dual of €.

e The affine group scheme V(EY) over Spec R associated to & is defined as
V(EY) := Spec (Sym &) .
The scheme V(EY) represents the functor S +— £ Qg S.
e The projective scheme P(EY) over Spec R associated to £ is

P(EY) := Proj (Sym¢&Y).

The Hermitian ample line bundles on projective spaces are very well known: they are the
tensor powers of the canonical bundle O(1). We recall here a way to describe it.

Let R be a commutative ring and n be a positive integer. The tautological bundle O(—1) on
P is defined as A%H \ {0} with the canonical map (zo,...,zn) — [zo : ---: zp]. The fiber of a
point [xg : - : xy] is the line spanned by (zo,...,x,). Taking the dual bundle, we get O(1).

Definition 3.30. The line bundle O(1) on P}, is the dual of the tautological bundle O(—1).
For a positive integer D, the line bundle O(D) is the D-th tensor power of O(1), that is
O(D) := 0(1)®P.

The R-module of global sections HO(P%, O(D)) is isomorphic to the R-module of homogeneous
polynomials P € R[Xy,...,X,] of degree D.
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Let k be a number field and write Oy its ring of integers. The line bundle O(—1) on P5, has
a natural structure of Hermitian adelic line bundle coming from the one of (9,?“. Passing to
the dual and the tensor power, we get such a structure on O(D). Let o : k < C be a complex
embedding of k. For a section s € H(P?, O(D)) corresponding to a homogeneous polynomial
P € k[Xo,...,X,] of degree D, and a point x := [zg : - - - : x,] € P}, the norm of s(x) is given by

|P(z0,...,Zn)|o
(lzol2 4 - - + |za|2)P/2

Is(2)[les.o := (3.2)
This is the so-called Fubini-Study metric of P . We can do the same construction for E with & a
general Hermitian adelic fiber bundle £ it comes with a Hermitian structure at the Archimedean
places. We can then compute the Arakelov heights and slopes associated to this Hermitian adelic
vector bundle structure. They are given in the following propositions.

Proposition 3.31 ([Bos91, 1.2. Degré arakelovien|). Let k be a number field and let n be a

positive integer. The height of a point x :=[xg:---: xy] € P? relative to the line bundle 0(1) is
equal to
h (x):l E log " lo(2:)]? | — log Norm (29O, + - - - + 2, 0p)
o(1) 2 . E . ) 0k nOk),
g: 1=

where Norm denotes the ideal norm on the group the fractional ideals of Oy.
Remark 3.32. For x := (z1,...,2,) € k", we denote by hp)(v) the height of [1: 21 1+ @ xy]
relative to O(1). For any non-zero integer m and x € k™, we have
1
hweil(7) < hoy(®) < hwei () + 5 log(n+1) and hogy(mz) < hogy(x) + log |m,
where hwei the classical Weil logarithmic height on Py

Proposition 3.33 (|Gau06, Proposition 4.2]). Let D be a positive integer. Let k be a number field
and let € be a Hermitian adelic fiber bundle of dimension N + 1 over Spec O. The normalised
Arakelov slope of HO(P(E),O(D)) is equal to

. 1 N+D =1
7 (0@, 000) = g0z (" 3, ) + DAlE) + oz,
where lo = log —2—.
g YN,D D) TeNzNH, & AN !
|7|=D
3.5 Comparison of norms
A compact complex variety with a Hermitian line bundle (X, L, || - ||) is composed of the data
of a compact complex variety X, together with line bundle L equipped for any x € X with a
Hermitian norm || - ||, of the fiber L,.
Given two compact complex varieties with a Hermitian line bundle (Xy, L1, || - ||x,) and

(X2, La, || - || x,), one can construct a new one (X1 x Xo, L1 X La, || - || x,xx,) in the following way.
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The underlying variety is the product variety X; x Xs. The line bundle one puts on X; x Xo
is the external tensor product Ly X Ly := pjL; ® p5Ls (with p; the projection X7 x Xo — X;).
For (z1,22) € X1 x Xy, the fiber (L; K LQ)(xth) is isomorphic to the tensor product of the
fibers (L1)g, ® (L2)z, which has a canonical Hermitian structure || - || x, xx, coming from the
ones on (L1),, and (L2),,. Notice that the group of global of (X; x Xo, L1 X Lg) is isomorphic
to HY(X1, L1) ® H(Xs, Ly) by the Kiinneth formula (see [Kem93, Proposition 9.2.4]).

Let (X, L, -||) be a compact complex variety with a Hermitian line bundle. We can define
two metrics on the group of global sections H°(X, L) of (X, L). First, we have the sup norm
given by

Vs € HOX,L), |l = sup [ls(2)]l-
z€X(C)
This is well-defined since X is compact. Next, the normalised measure dz on X (C) induces a
Hermitian metric on H%(X, L) given by

Vs e HOX,L), |[s|3:= / () 2.
X(C)

We call this norm the L? norm on H°(X, L).

We would like to compare the sup norm and the Lo norm for the compact complex varieties
with a Hermitian line bundle we will be dealing with — namely (A, L) for a complex polarised
abelian variety, and (P(E), O(D)) for a complex projective variety P(E). Let us define the ratio

S
R(X,L,| - = sup I HOO
sero(x,0\{o} [I8]l2

The following proposition shows that R is compatible with the notion of product defined above.

Proposition 3.34. Let (X1, L1, || - |x,), (X2, Lo, | - |lx,) be two compact complex varieties with
a Hermatian line bundle. We have

R(X1 x Xo, L1 X Lo, || - [ x,x x,) = R(X1, L, || - [|x,) R(Xa2, La, || - | x,)-

PT’OOf. Let us R, Rl, and R2 for R(Xl X Xg,Ll X LQ,H : ||X1><X2)7 R(Xl,Ll,H : ||X1)7 and
R(Xa, Lo, | - |lx,) respectively. For (z1,22) € X7 X X5, we have

151 (21) | x1 21 [152(72) [| x50 = [[(51 @ 52) (71, ¥2) || x, x X, (w1,22) < B+ [[851 @ s2ll2 = R - [|s1]]2]|s2]]2-

Taking the supremum over (z1,x2) we get ||s1]|collS2]|co < R-||s1]|2]|S2]|2 and therefore Ry Re < R.

Conversely, let s € HY(X] x X3, L1 X Ls) \ {0}. We can write s = 3 sijei @ f; where (e;);
i,J
and (fj); are orthonormal bases of HY(X1, L1) and H°(X2, Ly). The L? norm of s is then equal

to
Islz = lsijl*
i)j

For any (z1,z2) € X7 x Xg, we have

s(r1,x2) = Z sijei(r1) @ fj(w2).

ihj
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Let e € (L1)s, be an element of norm 1. As (L1),, is a one dimensional C-vector space, for every

i we can write e;(z1) = aje with «; € C such that |a;| = ||e;(x1)]|z,. Therefore,

5(21, 22) ||y x X (1 ,00) = [|€® D 81 f(w2)
b X1 xXo,(z1,22)

= 1> sijoif(az)
iy

X2,T2

<Ry Z sij0q fj

irj )
2 2 2
Notice now that ||> s; ;e fi|| =D (> sijou| =D |2 sijei(x1) . We thus get
i , 717 X121
2
(21, 22) ||, x X (1,0) < BaR2y| D ‘ > sijeil| KRRy Y lsij? = RiRs|s2.
PRI 2 i

Taking the supremum for (z1,z2) € X1 x X2, we get the converse inequality R < Rj Ra. [ ]

We now state an upper-bound for R(X, L, || || x) in the two special cases we will be interested

in: the case of complex polarised abelian varieties, and the case of complex projective spaces.

Proposition 3.35 (|Gaul9, Theorem 3.2]). Let (A, L) be a complex polarised abelian variety of
dimension g. We have

[[s]lo 0 1/2 ( 1 >g/2 /2
sup <h’(A, L)*max |1, ———— 3.99)9/°.
i Talz < AP warn) %

Remark 3.36. The constant 3.9 instead of the 5 in [Gaul9, Theorem 3.2] is justified just before
Remark 3.2.4 of [Gaul9].

Proposition 3.37 (|Gau06, Proposition 4.14|). Let E be a complex vector space of dimension
N, and let D be an integer. We have

[ (N +D-— 1)1/2
seHO(B(E),0(D)\{o} lIs[l2 N-—-1 .

3.6 Some combinatorial identities

To conclude this chapter, we prove here some combinatorial identities that will be useful in the
rest of this part of the thesis.
For a tuple 7 € N”, we will denote by

|T| =114+ + 7
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the length of 7, and by

Thi=m7l -1l

the factorial of 7.

Lemma 3.38. Let n, N1 and Ny be three non-negative integers. We have

1. #{r e N" |7| =N} = (NlJF"*l);

n—1

2. #{reN" |7| < N1} = (Nlrj'”);

3. #{r e N" |7| < Ny and 1, < Na} = (N1+n) - (N17N2+"71).

n n

Proof. 1. Forany N > 1,let S(N) := {r e N"||7| = N} and S'(N) := {7 € S(N),; > 1,Vi}.

The set S’(N) is in one-to-one correspondence with the set of increasing maps from
i
{1,...,n—1} to {1,..., N — 1}, a tuple 7 corresponding to the map ¢ — ) 7;. This latter
j=1
N-1
n—l)'

set has cardinality (

Notice now that S(INV) is in bijection with S’(N + n) via the map 7 — (7; + 1);. Applying
the argument above with N = N3 + n, allows us to conclude.

2. We have a bijection {7 € N, |7| < N1} — {7” e NvHL |7/ = Nl} sending 7 to (7, N1 —|]).

The result then follows from the previous one.

3. We have a bijection between {7 € N", |7| < Ny, 7, > No} and {7 € N*,|7| < N} — Np — 1}

given by 7 = (7/,7,) = (7', Ny — |7]). The result then follows from the second one.
]

Lemma 3.39. Let n, N1, Na be three non-negative integers with No < Ni. We have

<N1+n>_ (Nl—N2+n—1

n n

) < (Np +1)(Ny +1)" 7L

In particular with No = N1, we have (ngrn) < (N +1)™

Proof. From lemma 3.38, the left-hand side is the cardinality of the set S of tuples 7 € N such
that |7] < N7 and 7, < No. We have an injection of S into {0,..., N1}"7! x {0,..., N2}, and
the result follows. n



Chapter 4

The setup

4.1 Data

Let k£ be a number field of degree D over Q. We fix an embedding og : £ — C of k into C.
Consider a polarised abelian variety (A, L) of dimension g, defined over k. Let p4 be a k-rational
point of A and u4 a logarithm of py4 in ta,,, that is

eXPAUO(UA) = pa.
Let Wy be a k-vector subspace of t4 of codimension ¢ > 1 and define
Go :=V ((ta/Wp)")

the group scheme over Spec k associated to the vector space t4/Wy (see definition 3.29). Let pg
be a k-rational point of Gy. We define the algebraic group G over k to be

G := Gy XSpeck A,

and we let p := (po,pa) € G(k). The group G4, (C) has a structure of complex Lie group and an
exponential map expg, = Id x exp Aoy Denote by u := (up,u4) the logarithm of p in Gy ()
coming from ug and u 4. Notice that the point ug correspond bijectively to the point pg.
Consider the canonical projection A : t4 — t4/Wy. We denote by W the graph of A in
tqg = (tA/Wo) X ta, that is
W={(\z),z),z €ta)} C tg.

In order to consider ample line bundles attached to the group G, let G be the compactification
of GG defined by

G = Proj Sym (k S (tA/WO)V) XSpeck A=P ((k > (tA/WO))V) XSpec k A.

We put the ample line bundle
M:=01)XL

on G.

43
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For a complex embedding o : k — C, we will denote by || - || the Hermitian norm on t¢,
defined as the Hermitian sum of the Fubini-Study metric on t¢, , induced by the quotient norm
on t4/Wy and the one coming from L, on t4,. For x = (xg,24) € tg, we have

117 = lzollfs o + lzallZ,

When there will be no ambiguity on the norm, we will also denote by || - ||5 the norms || - ||rs »
and |- |1,

Our goal is to find a lower-bound for the distance d(u, Wy,) in terms of the invariants of
(A,L,pa,un) on the one hand, and of (Wy,ug) on the other hand. We group these invariants in
three constants. Let E > e be a real number. Define

wall3, £

5 ) , logb := max (hoq)(po), (Wo)) .

log a := max (ﬁL(pA),
(4.1)

D
and a:= { max <1,hF(A),loghO(A,L),log,logloga>-‘ ,

D
log B log B
where [z] denotes the ceiling of x. The numbers log a and log b measure the arithmetic complexity
of the data relative to (pa,ua), and (pg, Wo) respectively. The term a considers the invariants
related to (A, L). Beside these three quantities, another invariant related to A will naturally

appear in the proofs and had already been considered in [GR14a]. Let y be the real number
< degy A )

where the infimum is taken over all the strict subvarieties B of A. It compares to the degree of

= inf
y BCA

9

(A, L) in the following way.

. 1
Proposition 4.1. We have deg, A <y < W.
Proof. By definition of y we have
)< deg; (0) 1/(g—0) _ 1
= degLA (degL A)l/g'

1 b 1
(degy A)9—dimB Y deg, A’

Moreover, we can bound from below deg; B by 1 and then |

During the proof we will need a technical hypothesis on A and w4 in order to obtain our first
result. From now on and until section 7.2, we assume the following.

Hypothesis 4.2. For all embeddings o : k — C dividing oo, and all strict abelian subvarieties
B of A,, the tangent space of B, does not contain u,.

Under hypothesis 4.2 our result is the following.

Theorem 4.3. Assume hypothesis 4.2. Then, we have

4(g+t+1)° Dal 9t
logd(u W) > ~(5(g+1) "+ al/ (14 BEL)

1

log E+ Dloghb .
X (Cl 0og + og ) y1+g/t(degL A)l/t
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Remark 4.4. Notice that theorem 1.5 follows indeed from theorem 4.3 by taking E =e, ug =0,
and bounding y~'=9/t(deg; A)~Y* by (deg; A)9 using proposition 4.1.

This result compares to [Gau06, Corollaire 3.2| (taking B = {0} in their result). Besides the
better constant of g and ¢, our hypothesis 4.2 is weaker than their hypotheses (1) and (2).

Remark 4.5. Hypothesis 4.2 implies that w does not lie in Wy, as a consequence of Wiistholz’
analytic subgroup theorem 1.4. Indeed, if u € Wy, , then there exists a connected algebraic subgroup
G of Gy such that u € té(C) C Wg,. We can decompose G as Hy X Spec® B with Hy a subgroup
of Gy and B an abelian subvariety of A. We then get us € tp and therefore B = A because of
hypothesis 4.2. It follows that t5(C) = ty,(C) x ta(C) € Wo,, which is impossible.

Once theorem 4.3 is proved, we shall reduce hypothesis 4.2 to the weakest hypothesis possible,
namely that us does not belong to Wy . This will be our second main result.

Theorem 4.6. Let A’ be the smallest abelian subvariety of Ay, such that ua € tar o,. Assume
that ug & Wo.q and that ug € (tar + Wy) /Wo. Write

2
M4 := max <1,10g D, hp(A),log" hr(pa),log HUAD”UO> ,
and log b := max (hO(1)£p0)7 h(Wp)).
Let o be a place of k above og. If g > 2, we have

2\ 9°+9
log d(u, W) > —(265000g)49° D@o+De+D) pax <1,hL(pA), HMDH@) MYV max(Ma, logb).

If g =1, we have

. 2
g (0. W) = o~ walle > ~2+ 107 D03 max(8, gy (o)) s (1.7 (), 517 )

Remark 4.7. We deduce theorem 1.6 from theorem 4.6 by taking ug = 0.

The main achievement of this result is the absence of any supplementary hypothesis on the
logarithm w 4. It is to our knowledge the first result of this kind.

4.2 Overview of the proof

We will now begin the proof of theorem 4.3. Let us describe its main steps and the tools we will
be using. Our proof is an application of Baker’s method, using the technique of the auxiliary
section.

In a first time, we modify slightly our data in order to control the parameters of the problem.
This is the use of the quantities Dy and Dy defined below in section 4.3. We then make use of
a Siegel lemma due to Gaudron [Gaul4, Lemme de Siegel approché absolu, p.24] in order to
construct a section s of small height, and small derivatives at the multiples of the point p (see
chapter 5). The choice of our constants, combined with a multiplicity lemma due to Nakamaye
[Nak07, Theorem 1] ensure that the jet of the section s does not vanish at a controlled order and
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at a controlled multiple of p. We then estimate the norm of this jet at every Archimedean and
non-Archimedean place in chapter 6. The non-Archimedean estimates make use of a theorem of
Gaudron based on Chudnovsky’s change of variables [Gau06, Proposition 5.10]. The Archimedean
estimates are split between the places that lie above og, and the ones that do not. For the second
ones, we use only elementary analysis. For the first ones, we make use of an interpolation lemma
developed by Bosser and Gaudron [BG19, Proposition 2.1|. This is where the distance from u to
W, appear, and is the most delicate part of the proof. Finally, in the last chapter 7 we combine
all these estimates with the Siegel lemma of chapter 5, and an estimation of the maximal slope
of the adelic bundle of jets to finally get our lower-bound for the distance.

4.3 Parameters

Let
Co= (5(g+1)> and C;=(5(g+1)%". (4.2)

We define two real numbers S and ) by
25 +1:=Coa and 28 +1:=C1(25+1) = CxCha, (4.3)

and S := | S|, and S; = |S1]. Let T} be a positive real number. We put

~ ~ ~ ~ —1
B - yT1(2S +1)log B yTy (1 D(log S1 + log b))
0-= — — = =~
Co ((251 +1)log E + D(log 8; + log b)) CoCh (251 +1)log E
(4.4)
~ ~ ~ ~ —1
~ 2
and D i NyTl(ZS +1) log B _ D <1 D5} loga ) |
Co ((251 +1)log E + DS?log a) CoCh (251 + 1)log E

Remark 4.8. These parameters will be used to control the quantities that will arise during the
proofs and their shape has been motivated for that purpose. All the numbers with a capital T will
represent some order of derivation, the numbers with a capital S, some number of multiples of
our point p, and the numbers Dy and Dy, some power of the line bundles O(1) and L.

Let H be a connected subgroup scheme of G defined over k. It decomposes as Hy X Speck B,
where Hj is a subgroup scheme of Gy (in fact the group scheme associated to some vector
subspace of t4/Wy ® k), and B is an abelian subvariety of A, both defined over k. Let ¢’ be the
dimension of B, ¢’ be the dimension of Hy, and put ¢y (H) := codimWE(WE Ntr).

Lemma 4.9. One has an exact sequence of vector spaces

0 . WE f tGJ g tGo,E
ty N Wy ti tr, + A(tp)

where f(w +tg NWy) =w +ty and g((xo,x4) +tg) = xo — Mza) + (tH, + A(tB).
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Proof. Tt is clear that f is injective, g is surjective, and that Im(f) C ker(g). Let (xg,x4) + tg
be in the kernel of ¢g. This means that zo — A(z4) € tm, + A(tB). Therefore, there exist yo € tx,
and xzp € tp such that z9 = yo + AM(r4 + ), and thus

(xo,x4) +tg = (NMxa+2xB),24+2B)+tH € We+tg = Im(f).

Corollary 4.10. We have max(g —¢',t —t') <ew(H) < g+t — (¢ +t') = codimg_(H).
Moreover, if Wy +tg = tg, then cy (H) = codimg H, and if Wi +ty # tg, then t — >0
and g — g > 0.

Proof. From lemma 4.9 we have
ew (H) = codimg,_ H — dim (t% /(t, + )\(tB))) .

Therefore, cy(H) < dimG — dimH = (g +t) — (¢ + t'). Moreover, from the surjections
tAE/tB — tGog/(tHo + A(tB)), and tGog/tHO — tGog/(tHo + A(tp)) it follows that

dim <tGO’E/(tHO + )\(tB))> <min(g —¢',t —t).

For the second part of the corollary, notice that we have an isomorphism Wy/(tg N Wy) =
(Wg + tu)/tu. Therefore, if Wi +ty = tg, then W¢/(ty N W) = i /tg and we have
ew(H) = codimg, (H). Moreover, from lemma 4.9 we have W + tg = t¢,_ if and only if
tGO; = ty, + A(tg). In particular, this is satisfied if either ta, =tp, or tGo,E =tm,. [ |

Corollary 4.10 implies that under the assumption Wg + ¢y # e we have ¢ — t' >0, and we
can define
~ / IN =g = 1/(t_t/)
T, (Sy) + H\ TewH) (9 37) Dy DY degy, B

H):= ——= 4.
ot = | (PR B B e , (15

where I',(S1) := {np, =51 <n < 51}

Remark 4.11. For two positive integers ng, ni, the degree of H relative to the line bundle O(ng)X
L®™ s equal to (gl;t/)ngni’ degr B. As the parameters Dy and Dy are not integers in general,
(glgﬁtl)ﬁf)lﬁfl deg;, B
(g;t)ﬁéﬁf deg; A
non-integer values of ng and n.

deg ong H
the term % for

that appear in the definition of x(H) interpolates Tz -
O(ng)RLE™M

Remark 4.12. The somewhat complicated shape of x(H) will be motivated by the upcoming
lemma 4.16. It will allow us to get rid of some subgroup of G that will measure the obstruction

of sections to vanish up to a certain order.

From the definition of Dy and Dy, the quantity Tl(COdimG(H)ch(H))/ (tftl)x(H ) is independent
of T1. We can therefore fix T} such that z({0}) is equal to 1. Notice indeed that we have
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W +t0y = W # tg, and that z({0}) is thus well-defined. From the definition of Do, Dy and Sy,

we have

& ~ 1/t
ott (14 _SiDloga \? (| | Dllogi+logh) '
7 #I'p(S1)(CoCh) (1 + (251+1)10gE> (1 + Ot 1) g B ) s
29(9 1) yott degy A ' '

Let x be the infimum of the z(H)’s over all the subgroups H satisfying Wi +ty # tg,, and fix a

subgroup H satisfying x(H) = x. This is well-defined because z:(H) takes values in a finite set.

From the definition of T} we moreover have z < z({0}) = 1. Along the proof we will need to
. . . L T, (S1)+H

distinguish two different cases depending on the cardinality of the group —==F"—.

Definition 4.13. We say that we are in the periodic case if # (W) s not maximal, that

is less than 251 + 1. Otherwise, we say that we are in the non-periodic case.
We finally define

~ iJ in the periodic case;
T = I_le, Ty := 2(9 + t)Tl -1, Ty:= \‘Cl P ’
Ty in the non-periodic case, (4.7)
~ ~ (g +1t)S1 in the periodic case; .
Dy :=|xDy|, Di:=1|D1|, 8So:= . .
0 Do) ! D1 0 { S in the non-periodic case,
and we equip G with the line bundle M (Dy, D1) := O(Dg) X L®P1,
The following proposition contains a lot of inequalities we will be using constantly in the rest
of the part. The proof is quite technical and uses intensively the definition (4.2), (4.3), (4.4),

(4.5), (4.6), and (4.7).

Proposition 4.14. The following inequalities hold.

1. Ty = (2(g + 1)*7246 > 107 and Ty > 1;

Sy _
’ 0001\0001’

3. D1 = (2(g +1)29%%3 and Do > (2(g +1))3;

25+ 1)log E log 5

4. (51_‘_Dc)1oog > max <1, %a hF(A)alOghO(A, L),log @,logloga, ]_Og HUA’UO>,'
2(2§—|— 1)log E
Cloga < 7.
o loga DCo
Ti(2S +1)log E
6. (1+ HESl)‘(UA)Hgo)DO/Q < exp (1.01- it E )log )}.
0

~ (254 1D)10gE _ qgenp
7. log Dy < DeL X gt).
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Proof. 1. For the lower bound of Tl, we use its value (4.6). The quantities

§%Dloga 14 D(log Si + log b)
(251 + 1) log E’ (25, 4+ 1)log E

are bigger than or equal to 1. As a consequence

1/t
T, > (CoCr)o™*
1=\ 9 (g;rt)ngrt deg; A :

From proposition 4.1, we have m > (deg; A)Y/9 > 1, and therefore

1/t 1/t

- g+t (g+t)(29+t+3)

Ty > ((g(;(cgljt) ) > ((5(9 - t)2)2g+t ) > (2(g +1))220HH3),
g

and  #I',(51)

For the lower bound of 75 we have Ty > L%J The previous lower for Tl being greater
than the value of (', it leads to the wanted bound.

2. This is straightforward from the definition (4.4) of Dy and D;.

3. From the value (4.6) of T} and the definition (4.4) of Dy, we have

1/t

S2Dloga 9=t D(log S1+log b) t
HT(S1)(CoC? (14 Garoase ) (1+ Digadiries))

29 (gjt) y9deg; A

Dy =

From proposition 4.1, we have y9 deg; A < 1. Bounding again

g%Dloga - D(log Si+ log )
(251 + 1) log E’ (25, 4+ 1)log E

and  #I',(51)

by 1 leads to

1/t 1/t
~ g 9(2g+t+3)

21 (77 2

For the bound for Dy, let us compute the value of xf)g:

Doy = Dy i (Fp(Sl) + H) rflcw(H) (g/;t,)l:?g{)f' deg, B 1/(t—t')
" 29 (DD degy, A
— <# (FP(SI) + H) Tiw(ﬁt) deg, B (g’;t') )1/(t—t/).
H Dy deg; A 29 (g;rt)
We can bound from below the cardinality of W and (9’;1&’) by 1. Furthermore, from

the definition of y, we have gzii]j > y99'. Therefore,

B TfW(H)yQ*g/ 1/(t—t") fch(H)ygfg’ 1/(t—t")
o DY 929 (55 DY9 92+t
g
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To conclude, from corollary 4.10 we have ¢y (H) > g — ¢’ > 1. Because Ty is greater than
1 we deduce that TfW(H) > TY79 . Using proposition 4.14.2 and the values of Cy and C4,
we finally get

g g\ ) g\ M) 1t
5o [Ty (CoC1)7™* CoCh ,
xDgy > (5?_9,229_” P W P 92g+1 > (2(9+t)) .

Applying the floor function on both sides gives Do > (2(g + t))3.

. From (4.1), we have

D D
a > max <1, @max (1, hp(A),logh%(A, L), log 1OgE,logloga>> .

The announced lower bound for (2543%(1)%]5 = akj)ng is then clear except maybe for

25 + 1) log E
G5 DI0BE ) luallos.

DC(Cy
> 2 2
On the one hand, from the value of log a, we have % > log M. On the other
hand we have (25—2}(}# > log 105 - Therefore,
1 uwall? E2 D 1((25+1)logE (2S+1)logE
1 =—|log——=2>—+1log— | < = :
og Jualloy = 5 (1040 tog 1 ) < 5 (25 i
We have alogE > log ; O’gj =, and therefore
alog E D 2alogE 2(25+1)logE
1 =1 1 < = .
oga=log T8 D DCo

We have
2 \Do/2 + Dy
(1 + 1ESAA)2,) ™" < exp ( Dolog™ [uallo, + Do log 2+ Dy log 81 + 22 log(2) ).
Using the previous estimates, we can bound Dy by C?ICI, log™ ||uallsg, log E, and 1 by

7(25+é)010g E, and Dglog S7 by 7%(252? log B 1, get

(1+ [ ES1Awa)2)™ < exp (Tl(QS tDlog B < 2 i1+ log(2) >> _

Co CoC1 2CyC1
From the values of Cy and C we deduce the result.

From the values (4.4) and (4.6) of Dy and T}, we have

1/t

I g
#Fp(Sl)(CoCl)g <1 + 5’%7[) log a)
Dy =

(251+1) log E

29 (g'gH) y9deg; A
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As #I',(51) is less than CyCa, and 255;?#1 is bounded by % < %, we have
2g+1\ /t 1
5 < (C()Cl) g+ 1+ Dloga g a(9+ )/t
05\ o (9‘;t) log E (y9 deg;, A)V/t

To bound log 507 we need to bound the logarithm of each term. Because log* loga,
log™t &, and log 2 are bounded by %, we have

g Dloga\ _g (. . . D 25+ 1logE 3¢

=1 1 < = [ log™ 1 1 —— +log2 | < ————— x —=.

t og< + log £ ) t <og ogat+log logE+ ©8 DCy % t

To bound g—il log a, we use the point 5 of the proof:

g+1 (25 +1)logE  2(g+1)
LA | <
PG DCy ¢

Finally, because ydeg; A > 1, we have m < (deg; A)971. Hence,

1 g g—1

—1 g—1 0
< logdeg; A = 1 ! logh”(A, L
(25 +1)1og E [ (g — 1) g—1
< 1 — .
DC, ;8T
We deduce that log Dy is bounded by ¢(g, t)@%, with

1 (CoCr)* ™\ 39 2(g+1)  (9—1) g—1

)= -log | 22V} 4 1 g—2

c(g,t) = - ( 2 (077) T oy +

Recall that we have CoCy = (5(g + t))297t+3. Therefore, we get

te(g.t) _ (29+1)(29+t+3)log(5(g+1))  6g9+1  (9—1)*log(g)

(g+1) (9+1)° (g+1)3 (g+1)3
c 29+ 1D)2g+4)log(B(g+1))  69+1  (9—1)*log(g)
h (g+1)3 (9+1)3 (9+1)3
—_—
< 3:6:log(10) <z <0.5
X 8 8

<7

We conclude that log Dy < 7(*‘7?03 X (QSJE();:)OgE.

|
Remark 4.15. The inequalities 4.14.3 ensure that the line bundle M (Dy, D1) is in fact ample.

Before we switch to the actual heart of the proof, we state a result that will ensure that
the global sections of (G, M (Dy, D1)) will not vanish too many along W at some multiples of p.
Such statement is known as a multiplicity lemma.
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Lemma 4.16 (multiplicity lemma). Let s € HY(G, M (Do, D1)) ® k. If 55, vanishes to order at
least (g+t)T1 + 1 at T'p((g + t)S1) along Wy, then s = 0.

In order to prove lemma 4.16 we use the following theorem of Nakamaye.

Theorem 4.17 (|[Nak07, Theorem 1|). Let G be a complex algebraic commutative group of
dimension d. Let L be an ample line bundle on G. Let A C tg be a non-zero vector subspace of
the tangent space of G. Assume T,S > 1, let 0 # o € H°(G, L), and p € G(C). If o vanishes at
order at least dT + 1 along A at T',(dS), then there exists a proper connected subgroup G’ of G
such that

/

Proof of lemma, 4.16. Let s € H°(G, M(Dy, D1)) @ k be non-zero and assume by contradiction
that s5, vanishes at order at least (¢ +¢)71 + 1 at I',((g + t)S1) along Wy,. From theorem 4.17,
there exists a proper connected subgroup G, of G, such that

ew(Ghy), (Tp(S1) + G ——

le 0 # (pGIUO degM(DoyDl)o—O (GZTO) < degM(D07D1)00 (GUO)' (48)
g0

The subgroup G, comes from a subgroup G’ defined on k and G’ splits into G}, X Spec; C With

G, a subgroup scheme of Gy of dimension #” and C' an abelian subvariety of A of dimension ¢”.

We consider two possible cases:

1. If ter + Wy # tay, then by the very definition of z, we have x(G") = x. We can express the
degree of G’ relative to the ample line bundle M (Dy, D1)y. in terms of degy (C):

degM(DO,Dl)(CTE) X Spec;. C)
dim(G)!
degO(Do)(@) » deg e, (C)
dim(Gy)! dim(C)!

1 1
g +t " "
:< . ) DYDY deg, (C).

degM(Dle)(@) = dlm(G,)' X

= dim(G")! x

Replacing C by A, g” by g, t" by t, the same formula holds for the degree of G relative to
M (Dy, D). Therefore, using the definition (4.5) of 2(G’), we have

~c el ”-i-t” ~t” ~g//
x(G/)tft” — (FP(SI) + G/) T1W( s g" ) Dy DY deg,(C)

¢ 29 (93 DyDf degy, A
- <W> pew (@) 4¢8a1 (D, 01) (&)
_ ¢ il

G' degM(DO,Dl)(G)

~ G/ 1 1
oo (D) )<D0>H (=)
Tl DO D1
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As ﬁ > 2, we can bound % by % We also have D; < D1, Dy < ng, and ey (G') < g.
Therefore,

(G <279 (3)gajtt” <zt
~ 2 .

This case is therefore impossible.

2. If tgr + Wy =t By corollary 4.10, we have ey (G') = g+t — (9" +t"). Therefore,

1" " ”
- <1W> Tlg+t7(g”+t”) (g g" )D(t) D? degL(C) <1
¢ (%" DE DY deg,, A

However, the cardinality of % is positive, from proposmon 4.14 the quotients T—t

and are both greater than or equal to COCI , and %() > y9 9", We can further bound
the bmomlal quotient:

(9 g—&,-,t ) (g// —l—t") 1£! . (g”—l—t”)! B 1 - 1
@) gDl T (gl (gt (¢ H 1) T (g4 )t

We then get

4 <IW> o= +) (") D DY deg, (C) ! < CoCr >g+t(g//+t//)
“ 1 (T)DSD‘{ degy A Y=t \2(g +1)

> 1.

This case is thus also impossible and the section s has to be zero.

4.4 Adelic structures

In order to use the theory of Hermitian adelic vector bundles we introduced in section 3.1,
we need to associate a structure of projective module to the k-vector space of global sections
of (G,M(Dy,Dy)). First, consider a Moret-Bailly model (A, Lp,, (Empa)—(g+1)S1<m<(g+£)S1)
defined over some finite extension K/k of the triplet (A, L¥Pt, (mpa)_ (g8 <m<(g+1)s:) (see
theorem 3.26). The space H%(A, Lp, ) has a structure of Hermitian adelic vector bundle compatible
with the Riemann form of (A4, L®P1), as well as the tangent space t4. Let Wy be the Og-
submodule t4 N (Wy @ K) coming from the vector space Wy and define

g() = V((t.A/WO)V) and G := gO XSpec Ok A.
The generic fibers of Gy and G are Gy and G respectively. We now put the invertible sheaf
M(Do, Dl) = O(Do) X £D17

on the scheme G := P (Ok Xgpecoy (ta/W0)") Xspec 0y A over Spec Of. It is equipped with
Hermitian metrics at the Archimedean places of K obtained by Hermitian sum of the Fubini-
Study metrics on O(Dy) coming from ¢4 and the cubist metrics on Lp,. The Og-module
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HO (?, M(Dy, Dl)) is locally free and following section 3.5, for a complex embedding o : K — C,
we have a Hermitian metric on H° (é, M(Dy, Dl)) ®s C = HO (CTU, M(Dy, Dl)g) given by

lsliZ, = /G(C) I5(2)[2 ,dz, Vs € HO (Gy, M(Do, D))

This defined a Hermitian adelic vector bundle H9 (?, M(Dy, Dl)), allowing us to use Arakelov
theory with the sections of (G, M(Dg, D1)). Let us describe more precisely this Hermitian
structure. There is a canonical way to attach a holomorphic function on tg, to a section s.
Indeed, we have an isomorphism H° (Go, M (Do, D)) = HY (A5, LEP') ® H® (Go,», O(Dy)),
and therefore s decomposes as

5= Z SA,j © 80,55
j

with s4; € HO (AU,L?Dl) and sg; € HY (@,O(Dg)). From theorem 3.15, the s4 ;’s corre-
spond to holomorphic functions ¥; on t4,, and from definition 3.30 the sg ;’s correspond to
homogeneous polynomials of degree at most Dy on Gy . Embedding LGy, I Gy by sending g
to [1 : xq], the sq;’s correspond to polynomials P; of degree at most Dy on tg, . Therefore, the
section s corresponds to the function

s = Zﬁij. (4.9)
J

Moreover, from (3.1) and (3.2), we get a structure of compact complex variety with a Hermitian
line bundle on (G, M(Dg, D1),) defined by

oxp (— 5Dy |lzall2)
(1+ [Jzo)|2) P/

Is([1 : zo], za)llo = |7 (2)] , V(zo,4) € Go, (4.10)

with z € tg, such that (zo,24) = expg,_ (). In the following, we will also use a lot the sup norm

[8llcc,0 == sup [|s()l|o-
CBEGO‘

Applying the results of section 3.5, together with the values of our parameters we can compare
the Hermitian norm and the sup-norm.

Lemma 4.18. Let K'/k be a finite extension of k, let o : K — C be a complex embedding of
K', and let s € H(G,, M(Dg, D1),). We have

2
py2 (Tt 1/2h0(A 1)Y/2(3.99)%/2 max (1, — !
2P ’ 7 (A, LGP )

I8llc,0 < lls

In particular,

I8lloc.0 < lls]

~ ~ 2
o (Ti2S 4+ D10gEY ([ 1 &
2,0 €XP DC()Cl ) p(Ao.i, L?Dl) .
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Proof. The first result follows from propositions 3.34, 3.35 and 3.37. We then bound Di]/ 2
(t+Do 1/2
:)

and using proposition 4.14. The function z bggcx is decreasing for x > e, and

Dy > (2(g +1))29++3 > e from proposition 4.14.3. Therefore,

o2 g (29 +t+3)log(2(g+1)) < Ti
DY* = exp (G log D1 ) < exp ( 2 Qo P SO 16,0 )

<1/10

Similarly, we have (HtD 0)1/2 < (Do + 1)Y/? from lemma 3.39, and because the map z — 71%(?'1)

is decreasing for > 0, and Dy > (2(g + t))® from proposition 4.14.3, we have

t 4+ Do\ /2 " t 3log(2(g + 1)) T,
< 12 < oI T ) < .
< ; > Sexp | 5 log(Do + 1) | < exp 27 (2(g + )3 Do | < exp 10CyC1

<1/10

Moreover, from proposition 4.14.4 we have h%(A, L)Y/? < exp ((QS;lé)clggE> and 51l 5 4

DCy
Therefore,
T (2§+ )logE [ 1 glog(3.99)
ho A,L 1/2 3.9 g/Q < exX L —_— .
(A P399 < oxp | TS ZIOEE (L glo8td
From proposition 4.14.1, 277 > 2 - (2(g + 1))*1246 > 10C) (1 + glog(3.9¢)), and therefore

2
ol < 5]l @ Ti( 2s+ logE 3 Yoy 1 &
00,0 X o €X X )
s 2, p 1001 ,O(AU,L?DI)

2
< ollane T1(25 + 1)log E e 1 9/
< o €X x|1, ————— )
2, p DC()Cl p(AU,Lng)

4.5 Autissier matrix lemma

Autissier matrix lemma [Aut13, Corollary 1.4] gives an upper-bound for the mean of the numbers
WIL)Q over all the complex embeddings of (A, L). The following result of [Gaul9] is a direct
application of it using the value e =1 — %.

Proposition 4.19 (|Gaul9, Matrix lemma, p. 443|). Let (A, L) be a polarised abelian variety of
dimension g over a number field k. We have

1 1 1
— — < (2. . 1,hr(A)+ =logh®(A, L)) .

The quantity we will have to bound during the proof is not the mean of (W) by the
mean of the positive part of the logarithm of it. In order to switch between these two means we
have the following lemma is extracted from [BG19, Lemme 3.19].
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Lemma 4.20. Let z1,...,x, be positive real numbers. We have

R 1o
-~ ZIOgﬂxi) < max (1,log (n sz>> .
i=1 i=1
Combining proposition 4.19 and lemma 4.20 we get the following.

Proposition 4.21. Let K'/k be a finite extension of k. For any positive integer n, we have

1 1 1 (25 +1)log E 9(g+1t)
logm ——— < = 1,222 208 (] b log 22T )
K Q) G.KZ% %8 (A, e 2max< " DGy < e

Proof. First notice that for any positive real number x, we have log* z = %logJr x2. Combining
this with lemma 4.20 we get

1 L1 1 1 1
7, 2 m<2m“<1’1"g<u<':@1 2 <AL®>>>

o:K'—C o:K'—C p

From the definition of the injectivity diameter we have p(A4,, L2™)? = np(A,, Ls)?. Applying
proposition 4.19, we deduce that

1 L1
w2 ¢ e

1 1 1
< 5 max <1,log ([K’ Q] Z np(AJ,LU)2>>

o:K'—C
(2.3 + 5.5g) max (1, hp(A) + L logh®(4, L)))

1
< = max (1,log+
2 n

From proposition 4.14.4, 1, hp(A), and logh®(A, L) are all bounded by @gg%. Therefore,

(2.3 + 5.59) max (1, hp(A) + §logh®(4, L)) _ log ((2§+ DlogE  3(2.3+ 5.59))

1
o8 n DC{) . 2n
(25 +1)log E 3(2.3 4 5.59)
——— | 1+1 _ .
DC() + 8 2n
We conclude using the inequalities w <3.5+839<9(g+1). |

We will need proposition 4.21 for both n = 1 and n = D;. We state hereafter the results we
will use during the proof.

Corollary 4.22. Let K'/k be a finite extension of k and let o : K" < C be a complex embedding

of K'. We have

n 1 < (25 +1)logE
p(Acr; LO’) C10

log x (g+1),
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and
,1' T logt 1 o (25 + log £
[K':Q] &= 7 p(Aqs, L3 2DCy
In particular
log* 1 _ (25 + Dlog B

p(Aq, LGP~ 2Cy

Proof. Because p(A,, L) depends only on |z, we can bound log™ m by > log* p(AleLT).

T:k—C

Using proposition 4.21 with n = 1, we get

1 D (25 +1)log E
logt ——— < = 1, — 7 °- 1+1 t .
og AT S 2 m ( , DCy X (1 +1og(9(g + ))))

As @SEDIRE 5 and 14 1og(9(g + 1)) < 1+9(g + 1)/ < 2(g + 1), we deduce

1 D (25 +1)log E

log™ <= 1,22 20 (14 1og(9(g + ¢
D (25 +1)log E
< 1,22 TP i 9(g+t
max ( DCo x 2(g + ))

gwx(g+@_
Co

For the second result, we apply proposition 4.21 with n = D;. From the lower-bound of

proposition 4.14.3, we have D1 > (2(g + t))29"+3 > 9(g + t). Therefore, because % >1

from proposition 4.14.4, we have

1 1 1 (25 + 1) log E 9(g +1)
> logt————p < - 1,2 2007 (141
o, 2 ey < (T )
o: | ———

<1
(25 + 1) log E
h 2DCy

Finally, we will also deal with means of functions involving the covering radii of (A, L). Using
the previous results and proposition 3.21 we prove the result we will need.

Proposition 4.23.

1 o 2(2S + 1) log E
: _Z 1og< r(Ag,Lg)+1>< D
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Proof. From proposition 3.21, we have r(Ay, Ly) < f}(}iiAL’g_ Using lemma 4.20 we have

[K/1: g > s (0301 (Ao, Lo) + >

o:K'—C

1 2rgh%(A, L) 1 )
< lo +1
K" Q) JZKZ,_)C 8 ( CoCr p(Ag, Ly)

1 2mg hO(Aa L) 1
< max (1,log ([K’Q] Z < CoCr p(Ag, Ly) ! 1>>) .

o:K'—C

(Aj o) is bounded by

From the convexity of the function z +— 22, the sum ﬁ 5
o K'C

1/2
(m > (AIL)Q> . Applying proposition 4.19, we get
' U:K"—)(Cp e

1 2
K Q Z log <COClT(AU,LJ) + 1>

o K'—C

2mgh0(A, L),/(2.3 + 5.59) max(1, hr(A) + § logh®(4, L))
<max | 1,log | 1+ .

CoCh

Finally, from proposition 4.14.4, 1, hr(A), and logh®(A, L) are bounded by M Using

the values of Cy and C1, 2mgy/3(2:3+5.59) 4 W is less than 1. It follows that

g, 2, (G e+

o:K'—C

27gh0(A, L)\/(2.3 + 5.59) max(1, hi(4) + § logh*(A, L)
<max | 1,log | 1+

CoCh
< ma (110g (4, ) +1og (14 ZVETE T w1, ) + 5 o4, 1)) )
0C1
2S+1 )log E ng\/m
<max | 1,logh%(A4, L) +log [ 1+ (
X( gh’(4, L) g( DCy V2C,Ch

<1

(2§ +1)logE (2§ +1)logE
< ~ 7 2 ~ 7 <2
< max (1, DCy +log | 1+ a5

< 2(25 +1)log E
h DCy '




Chapter 5

Siegel lemma

The goal of this chapter is to construct a section s € H(G, M (D, D1)) of controlled height. More
precisely, we want a section of small height with respect to the adelic Hermitian vector bundle
structure of HO(G, M (Dy, D1)) defined in section 4.4, and with small derivatives at multiples of
the point p. In order to do this, we define a twisted Hermitian metric on HO(G, M (Dy, D1)).

5.1 Adelic vector bundle of global sections

All along the proof we will be using a lot the theory of holomorphic functions over a complex vector
space. Given a finite dimensional complex vector space V', a holomorphic function f: V — C,
and a vector subspace W of V| the Taylor coefficients (%D‘T,Vf(:c))TeNg of f at x € V along the
basis w := (w1, ..., wy) of W are the coefficients of the following Taylor expansion

g
1 T
f(:z;—l-g hiwi>: E ;D‘T,Vf(:v)h?-uhg", Vhi,...,hg € C.
i=1 ’

TENY
The Taylor coefficients of a function are highly dependent of the chosen basis w. We therefore
need to fix a basis of W, for every embedding o.
Let 0 : K < C be an embedding of K, where K is the field of definition of the group G (see
section 4.4). We define a basis Wo = (W4,1,...,Weqq) of W, in the following way:

e If 0 divides neither oy nor gj, we choose any orthonormal basis of W.

e If ¢ divides oy and we are in the non-periodic case, we again choose any orthonormal
basis of W.

e If v divides 0y and we are in the periodic case, we first choose an orthonormal basis
of ty, N W,. We then complete it so that it is an orthonormal basis of W, with w4
unitary and colinear to the orthogonal projection of (A(u),ua) onto (tg, NW,)+. This is
well-defined because of hypothesis 4.2. Indeed, we know that u4 does not lie inside tp, .
Thus, if (AM(ua),u4) is contained in tg, N W,, then in particular ug € tp, .

o If o divides o7, we define w, to be the basis corresponding to wg via the morphism
ta, — tg, induced by the complex conjugation. More precisely, the complex conjugation
on C induces a morphism 7 : Spec(C) — Spec(C) that leads to the following diagram.

99
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A > A < Az

l o | =& |

Spec(C) —Z— Spec(K) +Z— Spec(C)

W
\) Spec(R) /

The arrow A, — Az is an isomorphism of R-schemes but not of C-schemes. Taking the

C-points, we get an anti-linear isomorphism of real Lie groups A,(C) — Az(C), and we
have the following result.

Proposition 5.1 (|GR14b, §2.6]). The isomorphism f : Ay — Az lifts into an isomorphism
df :ta, — ta, such that df (Qa,) = Qa,. It is an isometry with respect to the Hermitian
metrics coming from L, and Lg.

The isometry df then induces an isometry dfy : tg,, — tg,, that leads to the isometry
tg, — ta,-

Remark 5.2. Through this construction, many invariants are conserved. For example, we
have p(Az, Lz) = p(As, L) and r(Az, Lz) = r(Ay, Ly). We will therefore usually prove
results in the case o | 0g, the case o | @y following from this construction.

We now define a new adelic structure on the space H°(G, M(Dg, D)) that take into account the
derivatives of the sections at the multiples of the point p.

Definition 5.3. Define
T :={(m,7) € Zx N, |m| < Sy, |7| <Tp, and 74 < T>}.

Recall that Sy, Ty, and T have been defined after definition 4.13. For an embedding o : K — C
of K extending o we define a linear map U, from H°(G, M(Dy, D1)) ®, C to CT by

1 —TD 2
Uy(s) = <'D3VUS*(mu)exp( 2 1\\771?2?)’/;)) 7
T. (1 + Hmuoﬂg) (m,T)ET

where s* is the holomorphic function of tg, defined in (4.9). For o : k — C extending oq, we
define U, to be the corresponding linear map, as discussed in remark 5.2.

We finally twist the Hermitian adelic vector bundle structure on HO(G, M(Dg, D1)) we defined
in section 4.4. For a >0, we define for 0 : K < C and s € H*(G,, M(Dg, D1),),

Is]

9 Isl|2 + a?||U,s|]3 if o extends oo or Ty;
o = (5.1)

l|s]12 otherwise.

This define a Hermitian adelic structure on HO(G, M(Dg, D1)). We will denote by hy, the height
relative to this adelic bundle.
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To construct the wanted section, we will use the following Siegel lemma applied to the vector
bundles HO(G, M(Dyg, D1)) and CY, together with the linear maps (Us) (s, 75-

Lemma 5.4 (|Gaul4, Lemme de Siegel approché absolu, p. 24|). Let k be a number field of
degree D and let S be a finite set of embedding of k. Let & and F be two Hermitian adelic vector
bundles over Spec O. For all o € S, let ay : E; — F, be a C-linear map of rank py, norm ||as |,
and such that ||a,|| = ||az||. Let & be the Hermitian adelic vector bundle with £ as base space
and metrics
) Maezlle ifo €S,
#]lo := {

||| & otherwise.

There ezists s € E, ®o, k \ {0} such that

T < — 2 ° ]

The rest of this chapter is devoted to estimate the quantities that appear in the lemma.

5.2 Estimation of the rank of U,

We give in this section an upper bound for the rank of the linear maps (Uy),. As the matrices U,
and Uz have always the same rank, we will only focus on the embeddings ¢ : K < C extending
09. To do so we will change our basis w, to a basis that will be adapted to the subgroup H.
The following lemma ensures that this change of basis will not change the rank of U,,.

Lemma 5.5. Let V' be a C-vector space and W be a vector subspace of V' of dimension g. Let
wi = (wi1,...,Wig), W2 1= (Wa1,...,way) be two bases of W such that

Span(c(wl,l, e ,ng_l) = Spanc(wg,l, e ,’wg’g_l). (5.2)

Let us denote by O(V') the C-vector space of holomorphic functions on V', and let T' be the number
of g-tuples T such that |7| < Ty and 7y < Ta. Then for any x € V' and integers Ty, Ty, the kernel
of the linear maps

owVv) — CT

f — (%Dz’—vif(x))‘TKTo

Tg<T>

for i € {1,2} are the same. Moreover, if To = Ty, then this is true even without the assumption
(5.2).

Proof. We begin by computing the derivatives of a holomorphic function f:V — C along wy in

terms of the ones along wi. For i between 1 and g write wy; = Z a; jwi ; with a; ; € C, and let
=1

hi,...hg € C. From the definition of the Taylor coefficients of f we have for z € V,

!

g g g T.
f (33 + Z hiw2,i> Z D z)hi - hy = Z %D;ﬁl (z) H (Z ai,jhi> J .
i=1 1=1

reNg | ' T'eNg j=1
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From the multinomial formula we have
!
g 7j
7
J ; -
(jE:‘leh¢> = D e (ah) ™ (aghg)
Z:l Tl,j+"'+Tg,j:TJl' ' :

Identifying the coefficient of AT' - - - hy’, we finally get

1 v\
aDw@ = ) [I | pa s, (5.3)
. (74,5)1<i,5<g 1<ij<g W7

Ti, 1Ty, g=Ti
for all 1<i<g

where the components of 7/ € N are 7 Z Tij-

We now prove the result. From the Symmetry of the setup, it is enough to prove that if
%D;,,lf( ) = 0 for all 7" € N9 such that |7'| < Tp and 7, < T3, then this is also true for the
iDT/ ,f(x)’s. Assume that LDT f(x) =0 for all 7/ € Ng such that |7'| < Tp and 7y < T, and
let 7 € N9 be such that |7| < To and 7, < Tb. Let us prove that all the terms in the sum of (5.3)
vanish. Let (7'”)1<”<g be such that 71 + -+ + 74 = 7; for all 1 <i < g, and let 7/ € N9 with

components 7; = Z Tij
If T = Ty, then all the derivatives of f along w1 of order less or equal to Ty vanish. Therefore,

Ti,j

@i -/
II =5 | D5 f@) =0

TG 44
1<ij<g

and we are done. In the general case, under the assumption (5.2) we have a; 4, = 0 for all i < g.

le

Thus, either ] Tfj, =0, or 734 = 0 for all i < g. In this second case, we have
1<i,j<g "’
/
Tg=Tlg T T Tgg=Tgg STy < T
Therefore, 7’ satisfies |7/| < Tp and 7, < T and ng/l f(z) = 0. In all cases we again have
Tz J ,
( it ) Dy, f(@) = 0. -
1<ij<g

Let 0 : K — C extending og. We outline the strategy we use to estimate the rank of U,. It
mimics the method of [BG19, §3.5] adapted in our more general context. We construct a filtration
(Fy)e=—1 of H*(G4, M (D, D1),) adapted to our distinguished subgroup H of Gy defined before
definition 4.13. This filtration will be such that

F 1= H%G,,M(Dy,D1),) and Fr, =ker(U,).

Using the rank-nullity theorem, we get

To
rk(Uy) = dim(F_1) — dim(Fp,) = »_ (dim(F,_y) — dim(F})).
£=0
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An estimation of the dimension of the quotients Fy_;/Fy will lead to an estimation of rk(Uy,).

Consider a basis w of W, such that the first g — ¢y (H) = dim(WzNty) elements of w form
a basis of tg, N W,. For any £ > —1, let X, be the set of 7 € N9 such that || < ¢, 7, < T, and
T = =Ty cp(m) = 0. We define the vector subspace Fy of H°(G,, M(Dy, D1),) by

. 1
Fy = {S S HO(GU,M(DQ,Dl)J),th‘ < SQ,Vf € tHU,VT € Xy, ;D;s*(mu + f) = 0} .

Notice that the spaces (Fy), form a descending filtration of F_1 = H°(G,, M (Dy, D1)s). More-
over, we claim that Fr, lies in the kernel of U,. Indeed, if s € Fr,, then %D;s*(mu +¢&) =0 for
all £ € ty, and (m,7) € T such that 7 € X7,. As the vectors (w1, ..., wg_c, (g)) form a basis
of tg, N Wy, we get that 4 D7, s*(mu) = 0 for all (m,7) € Y. Finally, from the way the bases
w, and w have been constructed lemma 5.5 applies and thus s € ker(U,). From the rank-nullity

theorem we get

To
rk(Uy) < h%(G, M(Dyo, D1)) — dim(Fr,) = dim(F_1) — dim(Fr,) = ) _ (dim Fy_y — dim Fy) .
=0
(5.4)
Our goal is now to give an upper-bound for the codimension of Fy in Fy_1. We begin by relaxing
the definition of Fy. Consider now aq, ..., ap a system of representatives of
{mu, Im| < So} +tu, +Qa,
t, +Qa, '
As expg, is a bijection between {mu’lmltif(fgf":”+QA” and FP(S;)I)JFH, we have h = # (W)

Let us define a seemingly different filtration (Gy)¢>_1 of H*(G,, M(Dyg, D1)s) by
— 1
Gy = {S € HO(GU,M(D(), D1)y), Vi< h, Y€ €ty , VT € Xy, ;D;s*(ai +¢) = 0} .

The following result tells us that it is in fact the same filtration as (Fy),.
Proposition 5.6. For all £ > —1, we have Fy = Gy.

Proof. Let s € Fy. From (4.9), s corresponds to a function
s =) 9P
J

on tg,, where P; is a polynomial on t4, /Wy , of degree less or equal to Dy and ¥; is holomorphic
onty,. Let i be an integer between 1 and h, and let & € tg,. Thereis m € Z, |m| < Sy, & € tu,,
and w € Qa, such that a; +& = mu + & +w. Write £ 1= (§,¢)) € th,, x ta,. Consider the
factor of automorphy a coming from the Appel-Humbert data of LEP! (see theorem 3.18). As

the functions ¥, lies in the space ©(a), we have

s* (i + &) = 9j(mua + &4 + w)Pj(muo + &)
J
=Y a(w,mua + §4)0;(mua + ) Py(mug + &)
J

= a(w,muy + &4)s* (mu + ).
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Therefore, from Leibniz derivation formula we have for 7 € X,

1 1 1
DL (i) = Y s DRalw,mua +€4) —Ds mu +€) =0,
) Ti+me=T i

=0 because s€Fy

the derivative D} a(w, muy +&/4) being understood as the derivative of the holomorphic function
of te, sending (xo,z4) to a(w,z4). Therefore, s lies in Gy.

Conversely, let s € Gy and writes s* = ) ¥;P;. For m € Z, |/m| < Sy, and & € ty,, there are
J
ie€{l,...,h}, £ €ty,, and w € Q4 such that mu + & = a; + £ + w, and we similarly have

s*(mu+§) = a(w, 054 +&4)s*(a; +&'). For 7 € Xy, we deduce that

1 1 1
;D;s*(mu +¢) = g p D a(w, aia + &) :2|D133*(04i +&)=0.
’ Ti+Te=T i

=0 because s€Gy

Therefore, s € Fy. |

We now work with the filtration (Gy),. First, let us impose some constraints on our represen-
tatives o, ..., ap. For any = € tg,_, the orthogonal projection of x onto tﬁg differs from x by an
element of ¢ty . Therefore, it lies in the same class modulo ¢y, + €24, as . Replacing the o;’s
by their orthogonal projection onto tﬁa, we can assume they all lie in tﬁa.

Let (x, H) be the Appel-Humbert data for (A, L®P1) (see theorem 3.18). For wp € Qp,
(where B is the abelian part of H, see the discussion before lemma 4.9) and z € t4_, we have

T
a(wp, ;A + z) = x(wp) exp (WH(Z,WB) + 7mH (o4, wB) + §H(WB,WB)>
T
= x(wp) exp <7TH(z,wB) + §H(w3,w3)>
= a(wp, 2).

Therefore, given a section s € Gy, an integer ¢ between 1 and h, a period wp € Qp,, and an
element & := (£0,¢B) € tHo =tH,, X tB,, we have

s*(a; + € +wp) = a(wp, a4 +EB)s™ (a; + &)
= a(wp,§B)s™ (@i + §).

Thus, for 7 € X, the map

In tB(,— — C
B ¢ — ADTs (i + &+ )

satisfies ¥5(ép + wp) = a(wp, 5)Ip(E) and comes from a section of (B, LEP1).

Proposition 5.7. For any £ > 0, we have

dim(Gy_1) — dim(Gy) < # <W> (t/ ?D 0) h(B, L¥P)4X,.
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Proof. Let & 1,-..,&,~n be points of tg, ., with N := (t/t/DO) such that the map

HY(Hy,,O(Dg)) — CN
P — (P(fO,i))igN’

is an isomorphism of C-vector spaces. This is possible as the vector space H°(Hy, O(Dy))
corresponds to polynomials on tg, , of degree at most Dy. Let us define a linear map

| Geer — O(Bg, LYPH)hN#X
els — (ép > 5D, (i + &0 +E€B))1<ich, rex,,
1<j<N

From the discussion above iy is well-defined and its kernel is exactly Gy. We therefore get an
injection Gy_1/Gy < O(B,, LEP1)MN#Xe and

dim(Gy_;) — dim(Gy) < dim (@(Ba, L@D1)hN #Xz> — hN#X,hO(B, L&D,

The result follows as h = # (M) and N = (t/t,D °). n

We can finally get a first upper-bound for the rank of U,. From (5.4) and proposition 5.6, it
follows that

To

rk(Uy) < ) (dim(Ge—1) — dim(Gy))
=0

Z#< »(50) +H> <t/ ‘:/D()) hO(B, L¥PY)#X,

< (rp(52+ H> <t’+th

)Dg h'(B, L)# {T e NewlH) 17| < 10, Tey, () < T2 }

<4 (Fp(so)+H> <t’—|—D0

H t!

) -

The last line follows from lemma 3.38.

)Dg h'(B, L)

Proposition 5.8. For any embedding o : K — C extending og or og, we have

rk(U,) L 203 229-1
hW(G,M(Dy,Dy)) ~ 5%t

Proof. From remark 5.2, we only need to consider the case o | og. Taking back the upper-bound
we just got and using lemma 3.39, we deduce that

rk(U,) T,(S0) + H\ (") D{ (B, L)
y < < )

G Ty + 1)(Ty + 1)ew (-1,
h'(G, M (Do, Dy H (P DILO(A, L) (T +1)(To + 1)
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Because g!h°(A, L) = deg(A), we can rewrite the fraction in the middle using the definition
(4.5) of z(H), as

!

’ ’ TN _ _g
(“tP)gIDY deg, B [ (7)) D DY degy(B) . pp-v 9+ Ot + Do)! <D1>g

("P0)g'Dideg, A\ (7DD deg(A) 0O (g + )t + Do)l \ Dy
~ \ 99
~ \t—t 29 (g+t)!(t’+D0)! Dl
= IE(H)DO ~ X ; ) ' — .
( ) #(W) le(H) (¢ +t\(t + Do)! \ Dy

The fractions ((g,i?), and (éigo)), are bounded by (g + ¢)9Tt=@"+1) and

As z(H)Dy < |#(H)Do| +1 =1+ Dy, we get

W respectively.

(g + )\t + Dy)!
(g + )t + Do)!

(x(H)Do)" < (g + t)9Ht=9'+t),

Finally, from proposition 4.14.3 we have 151 <Di+1< Dy (1 + W) Therefore,

T'p(So)+H
rk(U,) 7 (7"( 7 ) Tr +1 (To + 1)‘3W(H)1
hO(G, M(Do,Dy)) ~ 4 (%) T Ty

/

1 9—9
)

From the definition (4.7) of Ty the fraction % is less than 2(g + t). Because g — ¢’ and t — ¢/
are positive by corollary 4.10, and ¢y < g, we are left with

x 29(g + 1)+ (1 +

1 g
(2(g + t))29+t+3)
1+(1/Z)r‘3<1.001

K (U,) #(5)
h'(G, M(Do,Dl)) ( +H)
)7+

X 229_1(g+t)29+t_1 (1 +

( 0)+H
< —— x 2297 g+ )1 . 1.001.

To conclude, from the values (4.3) and (4.7), we have 25; + 1 > 105 and therefore 23tL <

C 101 25 =
oa
09990, Cra < ===. We deduce that

I'y(So)+H 2(g+t)T: 2.02(g+t . ..
# (%) Ty +1 225"1111 (gﬁ) L < c(;? ) in the non-periodic case;

# (W) fl X ({ J 4 1) 7 Cl in the periodic case,

1

and using the value C7 = (5(g + t))?9*" we finally get

k(U,) L 203 2291
hO(G,M(Dy,Dy)) —  52tt
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5.3 Estimation of the norm of U,

In this section we give a bound for the norm of U,. As in the previous section, for an embedding
o dividing gg, the norms of U, and Uz are the same. We will therefore only consider the case
o | oo. We begin by a general lemma that we will use extensively throughout the rest of this
part of the thesis. It applies with no assumption on the embedding.

Lemma 5.9. Let K'/k be a finite extension of k and let o : K' < C be any embedding of
K'. Consider a basis w = (wi,...,wg) of Wy such that all the w; are unitary. Let s €
H(G,,M (Do, D1),), let (zo,74) € tg,, and let T € N9. For any r > 0, we have

exp (=3 Dillzall3) _ sl
~
(1 + [Jzo][2) 072 i

1 m
ELATERS exp (S Dur(gllealy +rg?))

X (1 +rg+ T2g2)D0/2 .

Proof. By Cauchy’s inequality, we have for any r > 0,

g
1 1
‘T'vas*(xo,xA) < m( | sup s ((xo,xA) + Z%M)
: 2i)1<i<g€CY i=1
|2 =r ‘

Furthermore, applying (4.10), we get

2
1 D’T * < HSHOO#T 7Tl) 4
—Days (xo,A) ST sup exp 5D xA+§ ZiW; A
T r (2i)1<i<g€CY i—1 -
|zi|=r
o\ Do/2

x |1+

g
To + E ZiW; 0
i=1

The w;’s are all of norm 1 and therefore ||w; alls, ||wiolle < 1. Using the triangle inequality, we

ez

have

2
< (lzallo +gr)* < llzall? + r(2gllealls +rg®).
g

g
rA+ Z ZiWj A
i=1

Similarly, and using 2|z, < 1+ [|7ol2, we get

g 2
L |lzo + Y zwip| < 1+ [lwolls + 2rgllwolle +r7¢° < (1+ zoll3) (1 +rg +7°¢) .
i=1 o
This gives the result. n

Corollary 5.10. With the same notations as lemma 5.9, for T > |1|, we have

exp (= 2Dy |z a2)
(1 + [|zo][2) P02

2 D1g|zal|ls + Dog
’ 2T

T
+\/7TD192 + Dog?
2T

1
’T'D,Tus*(xo,x,q)

< ||8]|oo.ce” max <1
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Proof. Bounding (1 + rg + r2¢?)P0/2 by exp (%(rg + 7‘292)), lemma 5.9 gives

exp (~3D112al2) _ lsles

< exp (ar + br?),
(1+ [Jo)|2) P72 ri7l ( )

1 T
7_'D s*(zg,z4)

. _ Dog _ wD1g*+Dog? ._ 2T : 2 _
with a = mD1gllzallc + 52, and b = =209 Set r = T 1t satisfies ar +br® =T

Therefore,

T

kd T
iear-i-br? _ <a+ va2+4bT> 6 max <1 %+ b) .

rl7l 2T T
In the last inequality we have bounded /z +y by /z + /. |

We will use corollary 5.10 in several cases during the proofs of our results. The most annoying
term to bound is the one in the max function. The following result gives an upper-bound in the

cases we will need.

Lemma 5.11. For (S",T") € {(So,Tv), ((g +¢)S1, (g +t)T1),(E((g +t)S1+ 1),(g + t)T1)}, we

have
2wgD1S’ H“AHU + Dgg /7rD1g + Dyg? 25’ +1) logE
CoCq ’

Proof. Recall that we have Ty = 2(g +¢)11 — 1, and Sy < (g + ¢)S; from the definition (4.7).
Therefore, in every case we have T' > (g+1t)T1 > 9"; Ty and S’ < E((g+1)S1+1) < ES;(g+t+1).
Therefore, it is enough to bound

27T91~)1(9+75+1)}351”%4“07L gDy n 7D g2 +D09
(g+t)Ty (g+t)Ty (g+ )T}

Let us begin with the first fraction. From proposition 4.14.2, we have Dy < C:‘)% and

D E2S2|juy|? < 25'271)1%]2 Therefore,

27rgD1(g+t+1)E51HuAHU < or 1+ D1E252 ’uAHQ D1
(g+t)Th +t \ V T

< 3mg (25+ 1)logE
VG CoChy
v
<1/V2

(25 +1)log E
h 2C0C1

On the other hand, we have Do C C and thus

ng leg —I—Dgg (m+1)g
(g+1) T1 (g + )T 0001 CoCy

Using the inequality a + b < 1/2(a? + b?) finally gives the result. [ |
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Let us use corollary 5.10 and lemma 5.9 to estimate the norm of U,. First recall a simple

lemma on norms of linear maps.

Lemma 5.12. Let (E, | -||) be a Hermitian vector space and let U : E — C™ be a linear map.
We have
Us):
o< v s KoM
1<i<n sl
seE\{0}

where (Us); denotes the i-th component of Us in C™.

Proof. Let s € E. We have

Us]3 = [(Us)il* <n sup |(Us)il*.
i=1

1<i<n
The result then follows directly from the definition of the norm of ||U||. [

Let 0 : K — C extending og. Applying lemma 5.12, the norm of U, is therefore bounded by

exp (—§D1||mu,4||g)

V#Y sup | ——Dg, s*(mu)
()T l|sllo,e " (1 + ||mug||2)P/?
S

The following bounds the supremum
Proposition 5.13. We have

1 exp (=5 D1llmually)

sup | ————Dg, s*(mu)
moyer | Tsl2e ™ (1 + |lmug||2)P/?

s#0

x 2.01(g + t))

<o <T1(2S +1)logE
Co

1 9/2
xmax [ 1, ————=— .
( P(AavL§D1)>

Proof. Let us write C' the quantity we want to bound. We first apply corollary 5.10 with 7' = Tj:

To

27 D1g||mual|le + Dog N 7D192% + Dog?

C < HSHOO7O' To
= 2Ty 2T

sup e "max | 1,
meZ,m|<So ||8||27U
s#0

To

< [ su [1sllo0.0 1o max 1727TD1950||UAH0+D09+ wD1g% + Dog?
s20 |I8ll2,0 2Ty 2T,

Lemma 5.11 gives a bound for the max, and the inequalities log(1 + ) < z, and 1 < W
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from proposition 4.14.4 give

2T0 2TO

< exp (Tg <1+;log <1+W>>)

~ (25 +1)log E
< -~ 20 =
< exp (2(9 +¢)Th (1 + 5CoCh

< exp <T1(2S zl)logE X 2(g+1) (1 + 22,)) .
0 1

Ty
10 mhas (1’ mD19So0||ualle + Dog m19* + Dog )

On the other hand, lemma 4.18 allows us to bound the term sup ”HZIIT;U We deduce with the
s#0 i

2
1 > max | 1 1 ’
x|[1, —————=— .
DC]‘ p(AO'7 L?Dl)

value (4.2) of C; that

+2(g+1) +

C < exp <T1<2S 201) log E (2@5 )

<2.01(g+t)

To conclude this section, we have to bound the remaining term /#7Y.
T1(25 + 1) log E)

Proposition 5.14. We have v#7Y < exp ( 3C
0

Proof. From lemma 3.38 and lemma 3.39, we have
To + To—Tr+g—1 _
47T = (25 + 1) <( Og g) - ( 0 29 g )) < (280 4 1)(Ta 4+ 1)(Tp + 1)97 1.
We check that in both the periodic and the non-periodic case, the right-hand side is bounded by
(2(g 4+ t))9T7(2S + 1) log E. From the inequality (25 + 1)log E > Cj of proposition 4.14.4, we
then have

#T < (2(g +1))9T7(25 +1)log E
1 <T1(2§+ 1) logE>g+1 L (2g+1)9(g + 1M+ Co

<
(g+ 1)' 400 T1
7. (25 3g+2 g g
< exp <T1<2s+1>logE> L 2929 + 1)9(g + 1)7C).

4C’O T1

From the lower bound of proposition 4.14.1 and the value of Cy, we finally bound the fraction:

239+2(g+t)g(g+ 1)900 - 23g+253(g+t)2g+3
T NICEDIEE
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Combining proposition 5.13 and proposition 5.14, we get

Proposition 5.15. For any o : K — C extending og or g, we have

~ o~ 9/2
T1(2S 4+ 1)log E 1

U, | < ex % 2.1(g+1) |max [1,——— | .

1Us | p< Co (9+1) (AL L8P

5.4 Estimation of the slopes

We bound here the term %log tk E — 7i(E) that appear in lemma 5.4.

Proposition 5.16. We have

]_ 0/~ ~ 0(¢ _ 1 DO } 0
 log (G, M (Do, 1)) — i (HOE, M(Do, Dv))) = (2 -2 1) (hF<A> + 5 logh'(4, 1)
g 29\ L Doh(Wo)
+ 1 log(27°Dy) 5 log v¢.p, + a1

In particular,

Ti1(2S +1)log B
DCo ‘

%log W(@, M(Do. D1)) ~ i (HOG, M(Do. D)) <

Proof. Using theorem 3.26.4, proposition 3.33, and the fact that normalised Arakelov slope turns
tensor products into sums (see proposition 3.5), we have

. = 1 1 972 1
M (HO(Q,M(Dle))) = _th(AH_Z logh'(A, L) — %log <gl> +3 log <

deg, (2) — deg, (Wp)
t+1

t+ Do
t

1
— Dy t5 log v¢,Dg -

Moreover,

_ t+ D
logh®(G, M (D, Dy)) = log < +t °> + glog Dy +logh%(A, L),
and from proposition 3.27
— 1
deg, (t4) = — <hp(A) + 3 logh®(A, L)) .

Combining these identities, we get

3 08 1(@ M (Do, D)~ 1 (G M(Da D)) = (3 - 72 ) () + ot 1))
g 1 Doh(Wy
—1—1 log(27r2D1) — §log'yt7D0 + —~ a1 _E 1 )

This gives the first part of the proposition. We then have from proposition 4.14.2, D < %,

Doh(Wy) < 71(253;#’ and v, p, = 1. Because 1 < % from proposition 4.14.4, we
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have

Dy deg,,(Wp) _ 29Ty N Ty(25 + 1) log E
t+1 = 20,C (t+1)DCy
<T1(2§+1)logE( 1 n m2g )
DCy t+1 ' 2C,Cy
<3/4

1
%10g(27f2171) -3 log vt,py —

Next, we use propositions 4.14.3 and 4.14.2 to get

Tl < DO
CoC1(t+1) 2 t+1

—_

<0.

On the other hand, using Bost’s bound of proposition 3.24, we have
1 0 9 2
hrp(A) + ilogh (A, L) > D) log(27).
Therefore,

1 Do 1. ., glog(2n?)T}
- =Y | < Lo oo
(2 t+1> (hF(A)+ 5 logh (A’L)> 2(t+ 1)CoCy

Ti(2S +1)log E " glog(2n?)

h DCyC 2(t+1)Cy
o Ti(2S +1)log E
h DCyCh

Combining this with the other upper-bound, we finally get

1 _ R _
5 logh°(G. M(Do, Dv))~ji (HO(G, M(Dy, D))
_ Ti(25 4+ 1)log E N 3T1(25 +1)log E

= DC[)Cl 4DC’O
o Ti(2S +1)log E
A DCy '

5.5 Construction of the auxiliary section
We are now ready to apply the lemma 5.4.

Proposition 5.17. Let a > 1 be such that loga = Ty (25 + 1) log E x 3(g +t)®. There exists a
section s € HY(G, M(Dy, D1)) ® K, s # 0 such that

T1(28 + 1) log E
1(25 + 1) log + 9 Jogt

ha(s) < 1.6 x 1
D 2D p(Age, LGP
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Proof. We apply lemma 5.4 to & = HY(G, M(Dy, D1)), F = (’)7}(, S={o:K—C,o|00,00},
and a, = aU,. There exists a non-zero section s € H'(G, M(Dy, D1)) ® K such that

[kao : R] rk(Ua)
hals) < RG] 2 TG 31 (Do D] (108" 1Us | + log  + og v2)

oloo

+% logh®(G, M(Dy, D)) — i (HO(G, M(Dy, Dl))) .

We have [k, : R] < 2. Combining propositions 5.8, 5.15 and 5.16, we get

hals) < D 529+ Co

2.03-22971 g 1

——log"m ———.
22D 7 p(Agy, L3 )

Ty(25 +1)log E ( 2.03 . 22011 <2.1(g—|—t)
Co

1
+3(g+t)3+1og\/§> +)
+2-

To conclude, the term in the first pair of brackets is maximal at ¢ =t = 1 and is smaller than
1.6, and we also have 2‘50239259 < 2.03- gis < 1. (]
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Chapter 6

Jets of sections

6.1 The jets hermitian vector bundle

Consider the section s constructed in the previous chapter. It is defined over some extension K’
of K. The degree of this extension will again not matter as it will disappear in the computation
some height function. By lemma 4.16, there exists some pair (m,¢) € Z x N with |m| < (g +1t)5S1
and ¢ < (g + )Ty such that the section s does not vanish at mp at order £ + 1 along W. Let
(m, £) be minimal for the lexicographic order on {—(g +¢)S1,...,(g +¢)S1} x{0,...,(¢+t)T1}
and such that s does not vanish at mp at order £ + 1. We consider the ¢-th jet of s at the point
mp. We refer to [Gau06, §5.6. Choix de 1’espace des jets et de sa filtration| for the algebraic
definition of the space Jetf,v(mp) of jets of order ¢ at the point mp along W. Let us recall the
main properties of it.

Proposition 6.1 (|Gau06, §5.6]).

e The Hermitian adelic vector bundle Jetf,v(mp) 1s isometrically isomorphic to the one given

by Sym"(W") @ (mp)*M(Do, D1).

o We have a morphism s + jeth, s(mp) from the space of sections s € H°(G, M(Dy, D1))
that vanishes at order £ at the point mp along W, to Jet{,v(mp).

e For any such section s defined over K', any Archimedean place o of K', any basis w =
(w1, ..., w,) of Wy, and any logarithm v = (vo,va) of mp in tg,, the norm of jety, s(mp)
s equal to

exp (—ZDilval2)
Do /2
(1 + [Juo]|2)"

1 T % V\T VT,
S D)) ()
TENY |7|=( Syme(WL‘;)
6.1)

ljetiy s(mp)llo =

This definition is independent of the basis w and the logarithm v.

The crucial point of the rest of the proof is the inequality of proposition 3.10. In our context
it states

h(jetly s(mp)) = —Fimax (Jetfw(mp)) . (6.2)

The following result gives an upper-bound for the maximal slope of the jet bundle.

75
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Proposition 6.2. The mazimal slope of Jetty,(mp) is bounded by

Ti(2S +1)log E

4
DC X (g+1)".

Proof. From proposition 3.11, we have
Fima (Jethy(mp) ) = fimas (Sym‘OVY)) + deg, ((mp)"M(Dy, D)) (6.3)

From theorem 3.26.2, proposition 3.31, and remark 3.32, the Arakelov degree of (mp)* M (Dy, D1)
is equal to

d/e\gn ((mp)*M(Do, Dl)) = Doho(l)(mp()) + D1EL(mpA)

R (6.4)
< Doho(l)(po) + Dylog |m| + D1m2hL(pA).
Moreover, by proposition 3.12 we have the upper-bound
Limax <Sym€(W")) </ (ﬂmax(W) + 2log g) ) (6.5)

To estimate the maximal slope of WV, let i¥ be the dual application of the inclusion t4 — W
defined by = — (A(z),z). By [Gau08, Lemme 6.3] we have

fimax (W) < fimax (£%) + h(i¥), (6.6)

where the height of iV is equal to h(i¥) :== 5 [k, : Qy]log[|iV[|,. By definition, we have
v

e s sp PO@D 0@

PEWY\{0} z€t 4, \{0} lellollz]lo b x€ta,\{0} [l
If v is Archimedean we have ||(A(z), )|, < V2|2, and thus ||i¥]|, < v/2. If v is non-Archimedean
we have [|[(A(z), x)|y < max(||A(2)||v, |z|ls) < ||z|l, and therefore ||7¥]], < 1. We thus get

h(z"’)g% > [k:v:(@v]logl—l—% > [k : R]log v2 < log V2. (6.7)

v non-Arch. v Arch.

Combining (6.3), (6.4), (6.5), (6.6), and (6.7), we get
fimas (Jethy(mp) ) < £ (Jimax (%) + log V2 + 210g 9) + Doho() (po) + Dolog [m| + Dym?h (pa).

From proposition 3.28, we can bound the maximal slope of ﬂ by
~ — 1
o (75) < (069 + 1) (1 (4) + 5 log (A, 1)) + ¢ og(10g)

We have ¢ < (g + )T}, and using proposition 4.14.4, 1, hp(A), and logh®(A, L) are bounded by
(25+1)log E

DGy Therefore,

Ti(2S +1)log B
DCy

SR 3
4 (umax (t7) +log V2 + 2log g) < (9+1) (2(0-69 + 1) + g log(10g)

+log\/§+2logg>.
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Dividing the term in parentheses by (g + t)3, we see that it is less than 0. 64(g +1)3.
Finally, we have |m| < (g + ¢)S1. Therefore, from the definition (4.4) of D, and Do, we have

Dulhors (o) + g ) < DEEAEE (14 BE250) and Dunp(p) < (9 + )2 DEGBSE,

Therefore,

Ti(2S 4+ 1)log E (1 , log(g+1)

2
Dy c +(g+t)>.

<1.26(g+1)2

Dohoy(po) + Dolog [m| + Dym?hy,(pa) <

Thus, the maximal slope of Jetf/v(mp) is bounded by

T1(25 +1)log E
DC

T1(25 +1)log E
DCy

(0.64(g + t)* + 1.26(g + 1)) < x (g +t)t

Now that we have bounded the maximal slope, we are going to estimate the height of the jet
of the section s. We split the computation in three distinct parts. We first bound the norm of
the jet with respect to the non-Archimedean places. Next we look at the norm of the jet at an
Archimedean place dividing neither og, nor . Finally — and this will be the more tedious and
important part — we estimate the norm of the jet with respect to an Archimedean place dividing

op Or 0y.
6.2 Non-Archimedean estimates
For two integers ¢ and h, we define the integer
¢(h) ==1lem {iy - ip, 1 <K < hyin, ... yip 2 1,004 +ip <L}
The following estimate has been obtained by Gaudron using Chudnovsky change of variables.
Proposition 6.3 ([Gau06, Proposition 5.10]). Let P be a finite place of K'. We have

16e(Do) jetiy s(mp)llgy < lIsllgs = lIslap-

At the end of the proof we will need an upper-bound for the (real) absolute value of d;(Dy).
A theorem of Bruiltet gives us such a bound.

Proposition 6.4 (|[Bru02, Proposition 1|). Let ¢, h be two non-negative integers. We have
log d¢(h) < ¢log(4h).

Lemma 6.5. We have

7125 +1)log E
D

log [0¢(Do)| < % 0.06(g + t).
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Proof. From proposition 4.14.7, we have log Dy < 7(g + t>3%' Therefore, using proposi-

tion 6.4 we get
log [0¢(Do)| < ¢log(4Do)
_ Ty (25 +1)log E . (gt t)(log(4) + 7(g +1)*)
= D Cy '
Using the value Cy = (5(g + t))3, we can bound the constant:

(g+t)log(4) +7(g+t)* B log(4) 7
Co (g+1) ((5(9+t))3+53> < 0.06(g +1t).

6.3 Archimedean estimates at the places o { 0g, 7g

We bound here the norm of jetf;[, s(mp) corresponding to an Archimedean place o of K’ not
dividing g nor 5. Let o : K’ < C be an embedding dividing neither g, nor 5. The basis
w, of W, defined in section 5.1 is an orthonormal basis of W,,. Let v := (vg,v4) € tg, be any
logarithm of mp. From the definition (6.1) of || jett, s(mp)||, and because w, is orthonormal,

we have
. exp (=5 D1|vall2 1 2o
Jjeth stmp)l, = “PCEOIAl) |5 Dy s5(0)| T
(L+[[voll3) reNg r|=t! :
(6.8)
exp (=2 Dq||lval?) | 1 /-1
reNs fri=¢ (1 + [looll3)™" 17 g-1

Note that the binomial coefficient comes from the upper-bound Tl!éfg! < 1, together with

lemma 3.38.1. Using lemma 3.39 and the lower bounds T} > (2(g+1))%+2+6 and 1 < %

from proposition 4.14.1 and proposition 4.14.4, we have

A N A s
g J—
T 29(g 4t DGl

~1/2
I (6.9)

< ef1/27 X \/269(9(9 +t+ 1))9_1

(g + 0o+

<o <T1(2S +1)log E) |

27DCy

We now treat the derivative part of (6.8). As we can choose any logarithm of mp in (6.8), we
take v := (vp,v4) of norm as small as possible. As Q4, is the kernel of exp4_, the norm of v4
satisfies

lvalle < 7(As, Ly) := sup d(z,Q4,).

TELA,
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Using corollary 5.10 we get the following result.

Proposition 6.6. Let 7 € N9 be such that |T| = . We have

™D 2 Ti(2S 4+ 1)log E
exp (=5 D1f[vally) HSH2,UeXp< e x 1.005(g + 1)

(1 + [lo][2)P0/?

1
gDQU s5(v)| <

DCo

27T (.‘]+t)Tl 1 9
(aaranta ) w1 A Le )

Proof. We apply corollary 5.10 with w = w,, (x0,24) = v, and T = (g + )11, to get

exp (—ZDival2)
Do /2
(1+ [Jvol[2)P

7!

2w D D
£330 Dol et##7 e (1, 222280l
1

(g+t)
mD1g% + Dog?
2(g +1)T1

The upper-bound 4.14.2 gives % < 21% < COC , for i =0, 1, and leads to

exp (—Z D1 |vall2)
(1+ [lvo][2)P0/?

D5, 550)

(g+1)
(ot 2mgllvalls + g g2(m+ 1)
< |8l max | 1
" (g +1)CoCh (g +t)CoCy

27_[_ VA (g+t)T1
< [slloooe® T max (1, C’,’OCJ’“ + 1)

We finally use lemma 4.18 to bound ||s||«,s in terms of ||s||2,, and proposition 4.14.4 to get

exp (—ZDi[val2)
Do /2
(1 + [Jvol|2)™/

< llsllz,

] xT;vd 5;(1)0)

Ti(2S +1)log B
exp ( DCoCh +(g+t)T

1t (g+t)T1 1 9/2
Ay, L max [ 1, ————=—
(0001 ( o)+ > p(Ag, LEPT)

T1(25 +1)log E
, exp( DCy 01 +g+t

2T (g+t)T1 1 9
Ay Ly)+1 max (1, —— | .
<C’oC’1 ( ) > p(AJ,L?Dl)

Bounding C% by 0.005(g + t) gives the result. [ |

we deduce an upper-bound for the norm

As for an embedding o 1 09, or @y, ||s||2,c = [|$]
the jet.
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Proposition 6.7. For o : K' < C not dividing o¢ and cg we have

Ti(25 + 1 log E
Il jetty s(mp)lle < [|5]|a.c exp ( ( DCO) x 1.01(g +t)>

271’ (9+t)T1 1 9
<C()01 (A, Ly) + ) max | 1, 7;)(/10,[/?[)1) .

6.4 Archimedean estimates at the places o | oy or 7,

We now focus on bounding the Archimedean norm of the jet of s at the places above o¢ and
0. As before we only need to consider the case o | 09, the other one being exactly the same by
remark 5.2. In order for the distance of the point u to W, to appear, we shift our jet from the
point p to the point w = (A(ua),us) € W,.

6.4.1 Change of point

Proposition 6.8. Let 0 : K' < C be a complex embedding of K' dividing o9 or 9. Let
w = (Mua),ua) € W,. Let (§,7) € Zx NI, let T > |7|, and assume |j|Dod(u, Wy, )vV/2 < 1. We
have

exp (—5D1lljual)
(1 + [luoll3)Po/?

T
279 D1 ||jualls + Dog \/wa? + Dog?
T
1
X e’ max ( , 5T + 5T

DQ(, 55 (Ju) = *DQG sy (jw

) < 3.8d(u, Woq) |7 Do|5] 00,0

Proof. If j = 0, there is nothing to prove. Therefore, assume j # 0. Let us first compare the
distance between u and w to the distance from u to W,. Let wg = (A(z9),z0) € Wy, be the
point of W,, minimising the distance between v and a point of W,,. We then have

lu —wlle = [|A(ua) —uollo < IA(wa) = Azo)llo + [[A(z0) — uollo
< JJua — zolle + [[A(z0) — uollo
< \/ﬁd(% W)
We define the holomorphic function
C — C
F 1L ox (4 w—u .
z  — HDWUSU (]u + z”w_u”a)
F(0)— F(Z)

The function z +— is holomorphic on C and from the maximum modulus principle we

deduce that for any real number X > |j||lu — w||o,

F0) = F(llu = wllo)
jllu = wlio

F(0) - F(2)

z

D% shu) — D% s U<aw>‘ — il - wll,

< V2[jld(u, W) s

|z|=X
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Using corollary 5.10 with w = wy, (zg,z4) = (juo + z%,ﬁm) and T > |7| to bound
|F(z)] for any z € C, we get
1 : Alua) —uo
F(2)| = |=Dx, 5;<u +2———— jua
I O =t
Aua) —uo

Juo + 20—
A (wa) = wollo

2>D0/2

T
T <1 27TD19||J'UA\U+D09+\/WD192+D092)

™ .
< sllocio exp (5 D1 lual2) (1 +

X e max oT oT

By the triangle inequality, we have

2
<1+ [lguolly + 2lljuollo|2] + |2 < (1 + [ljuoll3) (1 + X + X?).

g

AMua) — ug

1+ —_——
[A(uwa) = uolls

Jug + 2

. 2\Dq/2 .
To conclude, we just have to bound H(HX}X ) for some X > |7]/]u — w||s. Let us choose

X = Dio. It is indeed bigger than |j|||u — w||; under the assumption d(u, Wy, )|j|Dov2 < 1.
With this value of X we have

1+ (14 X + X2)Po/2 11\
=Dy |1+ (14+—=—+—=
X 0 + +D0+Dg

Dy 1 1
=Dg(1 — 1 14+ —+ —
0( +€Xp<2 Og( +D0+D3>>>
1 1
<Dg(1 -+ — .
0< +eXp<2+2Do>>

Using the lower bound Dy > (2(g +t))® > 64 from proposition 4.14.3, we get the comparison
1+(1+X;X2)D0/2 < 2.67Dgy. The result follows from the inequality 2.67/2 < 3.8. |

Due to the hypothesis d(u, W,,)|7|Dov/2 < 1 in the statement of proposition 6.8 we need to
make a further assumption in what follows. From now on we assume that d(u, W, ) is sufficiently

small, more precisely.

: 1
Hypothesis 6.9. Assume that d(u, W) < NPT

We will explicitly specify when we use this hypothesis in the following. We now specialise
the proposition 6.8 in the two main cases we will need it. First with 7 € N9 such that
|7| =€> (g +1t)Th, j € Z such that |j| < (¢ +1)S1, and T = (g + t)T1. Next with 7 € N9 such
that |7| < Ty, m € Z such that |j| < Sp, and T = Tj.

Proposition 6.10. Let 7 € N9 be such that |7| < (94 t)Th and j € Z such that |j] < (g +t)S1.
Under hypothesis 6.9 we have
exp (=5 D1ljuall3)
. Do/2
(L+ ljuoli2)™/

1 1
D%, 55(u) — 5Dy, 55 (jw) < llsllz,od(u, Woy)
T.

Wo 20 717 We o

Ti(2S +1)log E
Xexp<1<s+>og

1.01(g+1) | .
o ><0(g+)>
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Proof. We apply proposition 6.8 with (j,7) and T' = (g + t)T1. Notice that from hypothesis 6.9,
the hypothesis of proposition 6.8 is indeed satisfied. First, from proposition 4.14.2 we have

8T t 8T £)(28; + 1
3.80jDo| < 3.8T1(g + t)51 < 3.8T1(g +t)(251 + 1)

C[)Cl = 2COCI
~ ~ 2
< 1 Ty (2S + 1) log £ 3.8(9 + t)CoCl
2 CoCh T '

Because % < e* for all real number z, and 3.8(g 4+ t)CoC1 < Tl from proposition 4.14.1, we get
T1(25+1)log E

CoC1 :
Next, from lemma 4.18 and corollary 4.22 we have

~ ~ 2
s < sl exp [ ACS + D108 BN () 1 &
00,0 X o €X X )
) 2, P Cocl p(AO—,L?Dl)

T12S +1)logE [ 1
<ty (RS (51 ) ).
1

Finally from lemma 5.11 we have

the inequality 3.8|7Dg| < exp (

2wgD1||jualle + Dog 7TD192—|—D092 (25 +1) (28 +1)log B
2(g+ )T 2(g+ )T CoCr 7

and therefore

) (g+t)Th
ot o [ 1 2mg D1 || jualls + Dog mD1g* + Dog?
’ 2(g +t)Th 2(g +t)Th

T1(2S + 1) 1og E t
gexp<1(5+)og (g—l—t+g+>>.

Co 204

<1.001(g+t)

D7, si(ju) — 4D3, st(jw)| eXp(ifDlHJZgyz ) is bounded by

wo 5o wo 5o (1+l5uoll3)

T1(2S + 1 1ogE [ 1 1
||5||2,ad(u,Wao)eXp< 1(25 + 1) log (C’1+ = +1001(g+t)>>

Co Ch

<1.01(g+t)

Proposition 6.11. Let 7 € N9 be such that |7| < Ty and j € Z such that |j| < So. Under
hypothesis 6.9 we have
exp (—5D1lljuall?)
. Do/2
(L+ ljuoli2)™/

1 .
Divc, so(ju) = D%, 55 (jw) < llsllz,od(u, Woy)

Ti(2S +1)log E
Xexp<1<s+>og

2.01(g+1) | .
o ><0(g+)>
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Proof. The proof is exactly the same as the previous one. Because Sy < (g+t)S1, the upper-bound
for 3.8|j| Dy is the same as the previous one, as well as the bound for ||s||cc,:

Ti(2S +1)log B
3.8\;‘\D0<exp< 1(25 +1)log );

CoC1

T1(25 +1)log B ( L )
Slloc,0 < [|5]|2,0 €X o))
[8lloc.c < llsll2, P( Co C1 4

The only inequality that changes is the last one. From lemma 5.11, we have

27rgD1H]uAHJ+Dog 7rDlg +Dog 2S—|—1 logE
CoC1 ’

and therefore from the value Ty = 2(g + )77 — 1 we have

To
2wgD1||jualle + Dog n mD1g% + Dyg?
2T, 2T,

o 52

<2.001(g+t)

eT0 max 1,

exp(— 3 D1lljuall?)
(1+]|juo|2)P0/?

We can thus bound ‘%DQO sk (ju) — DT *(jw)‘

WUO'

Ti(2S 4+ 1)log E ( 1 1 g )
— +t = —|' — + 2.001(g + 1

<2.01(g+t)

||s||2,gd(u, Wao) €xp <

6.4.2 The interpolation lemma

We are now down to bound the derivatives of s} at the point mw. In order to do this appropriately
(and this is in fact the heart of the Baker’s method), we use an interpolation lemma. By that we
mean bounding the value of a holomorphic function at a point in terms of the supremum of the
function on a disc containing the point, and of the derivatives of the function at some chosen
points.

For a holomorphic function f on an open subset of C containing a closed disc D(0, R), we
denote by || f||r the sup norm of f on D(0, R). The interpolation lemma we will use to estimate
the norm of jetf/v s(mp) at the Archimedean places dividing oy is the following one, coming from
[BG19).

Proposition 6.12 (|[BG19, Proposition 2.1]). Let S be a non-negative integer, let r, R be two
real numbers such that R >r > S+ 3 5, and let € € ]0 [ Let f be a holomorphic function on an
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open subset of C containing the closed disc D(0, R). Then, for every non-negative integer T, and

every real number a > 0, we have

L~

R2 (7«2 + w> S(T+1)

R4+T2M X HfHR

17l < = (%)

o= o

1 FARI6 r e 29T+ T+1
E m 1, - h .
* o — 2hh! a cos(me) ax( ’a) (sh(ma))

lil<

0<h<T

In order to make this proposition more usable for our purposes, we optimise the values of ¢
and a in the following lemma.

Lemma 6.13. Let T be a positive integer and let S be a non-negative integer. We have

T+1 25(T+1
inf 1 M max 1,z (+)<exp T+1)(25+1)lo rme .
a g

0<e<} 2¢ \acos(me) 25 +1
a>0
_ 1 1 _ mV/T+1 a2
Proof. Let us take € = py We have Sz cos(re)THT = 777 Because cosz > 1 — %5

(V]
Q
o
@
~~
N~
p
~—

for x € [0, ], we have for T > 1,

1 T+l 1 T+l 1\? o9
>(1- >(1-=) ==,
COS(\/TH) ( 2(T+1)> < 4> 16

Therefore, we get

VT +1 8
/T + o < ?ﬁ T+1<28VT +1. (6.10)
1
2 cos (m)

On the other hand let a = @ From the assumption r > S + 2, we have r > a. Therefore,
since sh(z) < &, we get

r T+1 r QS(T+1) 741 T11 rT

< 2T1+1 exp <(T+ 1)(25 +1) (1 +log (2;1 1>>>

1 rmwe
< .
oTFT €XP ((T+ 1)(25 +1)log (2S+ 1))

> (T+1)(25+1)

Combining (6.10) and (6.11), we get

1 [ rsh(ma) \* 25(T+1) 28T +1 rme
2 (acos(7r5)> e (1 E) S Torn P (T'+ 125+ 1)log 25+1))°
2.8y/T+1

and because T' > 1, we have =5y37—= < 1. This finishes the proof. |
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We can now simplify a bit proposition 6.12 using lemma 6.13.

Lemma 6.14. Let S be a non-negative integer, let r be a real number such that r > S + %, and
let E > e be a real number. Let f be an holomorphic function on an open subset of C containing
the closed disc D(0, R). Then, for every positive integer T', we have

2 (S +1)(25 4 1)\ *T+Y
191l < s (1+ - <1l
+ Z f(h x exp ( (T +1)(25 +1)log [ =
P ®\2s+1))
l7l<S
0<hLT

Proof. Let us take R = Er in the statement of proposition 6.12. Using lemma 6.13 we are
reduced to prove the inequality

—~

S(T+1)
S+1)(25+1
n (R (7’2—1-7( ) )> 2 <1+ (S+1)(2S+1)>5(T“>

<
R—r RA 4 p2(8+D@5+D = E2S(T+1) 612

=]

o~

= % < =% < 2. Next, bounding the denominator

First, recall that we have £ > e. Thus, ﬂ =

RY+ ﬁ%ﬁsﬂ) from below by R?* we get

R2 ( (S+1>(2S+1))

2 (S+1)(25+1)
<7 + <1<1+(S+1)(25+1)>‘
RY 4 g2 (s+1)(2s+1) E2p2 E2 612

We are going to use lemma 6.14 to bound the ¢-th jet of s at the point mw in two different
ways depending on if we are in the periodic or the non-periodic case (see definition 4.13). From

now on we split the proof according to these two cases.

6.4.3 The non-periodic case

We assume in this paragraph that we are in the non-periodic case. Recall that in this case we
have T = {(m,7) € Z x N9, |m| < So,|7| < Tp}.
First, if |m| < Sp, then for any 7 € N9 such that |7| = ¢ < (g+1t)T1 < Tp, we have (m,7) € T.
Therefore, from the definition (5.1) we have
1/2
2ol T,! /

¢!

1
— D7, six(mu)

| T We o

exp (—5D1[mua|?) 3

(1 + [Jmag|2)P0/2
< ||Uss|

jetiy s(mp)llo =

TENY |7|=¢ (612)

1
< —Isllao-
o

In the end, this upper-bound will be smaller than the one we will obtain without the assumption
|m| < Sp. We thus assume from now on that |m| > Sy and we fix 7 € NY such that |7| = £. Our
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goal is to bound | LD, st(m )‘ Define the holomorphic function

CcC — C
z — LD si(zw)

waa

[

We thus want to bound | f(m)| < || f|l(g4+)s,- In order to do this we are going to apply lemma 6.14.
We will want to use the value of ||s||o,, during the proof. Notice that it involves the derivatives
of sk at order up to Ty at the points ju for |j| < Sp. This leads us naturally to the values
r=(g+t)S1,S=5Sand T =Ty — (¢g+1t)11 = (g +t)T1 — 1 in lemma 6.14 (the “—(g +¢)T1”
comes from the fact that the definition of f already involve a derivative at order ¢ < (g + t)T1).

In this case, the interpolation lemma becomes

2 (So +1)(25p + 1))\ T
1flg+)51 <E(g+t)(2so+1)T1 (1 6(g +1)252 X[ £l B(g+e)s,
F @) (g +1)Syme
+ Z Sy < XD (g+1t)T1(250 + 1) log 550 1 1 .

|71<S0
0<h<(g+)T1—1

Let us first deal with the terms that are easy to bound. From the definition (4.3) of Sy and S}
we have S1 > ClS and Sp = S < S. Therefore,

> ~ ST
(1 N (So 4+ 1)(2S0 + 1))(g+t)SOT1 i (G+1)25+1) (g+t)ST)
6(g +1)257 = 6(g + )20252

< (1 6 (g+0)T1 252
<(* 5 ) 619
~ 1
< 7125+ 1)logE x —— |.
exp(“ s X2<g+t>0%>
—_———
<10-6
Similarly we have
g+1)Sime
log ( 25+ 1 > log (2me(g +t)C1) . (6.14)

Finally, from proposition 4.14.1, we have Ti > 107 . Writing 77 as T, — e with e € [0, 1], we get

T = Tl—s—T1< T (1-1077) > 0.999T.

€

Ty

Similarly, we have 25 +1 > Cy = (5(g+1))® > 10®. Writing S as S — ¢ with ¢’ € [0, 1] we deduce
2¢’

25 +1=25+1-2=(25+1) (1— > (2S+1) (1 —2-107%) = 0.998(25 + 1).

25 +1

This allows us to bound 2E~6T)T1 (2541 - SQince 1 < W from proposition 4.14.4, and
COT1 > 10'°, we have

p
- GromEs) S P

= o log 2
<T1(25 +1)log E x (—0.999 L0.998(g + ) + —22 >>
ol (6.15)

<exp (—0.996(g +)T1(25 + 1) log E) .
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Combining (6.13), (6.14), and (6.15), we get

1 fllg+0)5: < I fll Bg+t)s: €xP (—0-99(9 +1)T1(25 + 1) log E)

(h) (; ~
+ Z |f2h}(l‘!])‘ exp <T1(2S +1)log E % (g +t)log(2me(g + t)Cl)) . (6.16)
jl<S

0<h<(g4+t)T1—1

We are essentially left with bounding || f||g(g++)s, and > G We first look at
ljl<s
0<h<(gtt)Ti—1

”f”E(g—i—t)S1'

Proposition 6.15. The sup norm of f on the disc D(0, E(g +t)S1) is bounded by

Ti(2S+1)logE 5
|s|a,gexp( e x<g+t>2>.

\V)

Proof. We use corollary 5.10 with w = w,, (2o, 24) = zw with z € C such that |z| < E(g+1t)5h,
and T' = (g +t)T1 to get

™ Do/2
108 <exp (5D1IEG+DS1ual2) (1+1E(g +OSAwa)l) ™" sl

(g+)T1
w olotOT e (1 ZFPYIE(G + O)S1ualle + Dog | [7D1g? + Dog?
’ 2(9 + )T 2(g + )11 '

From the value (4.4) of Dy, we have D ||ESiu? < W and therefore

T1(25 +1)log E
Co

exp (ngﬂE(g + t)SluA]ﬁ) < exp ( X g(g + t)2> ) (6.17)

Moreover, from proposition 4.14.6 and proposition 4.14.2 we have

(14 [ E(g + £)SiAwa)[2) 7 < (g + 62 (1+ [|ESiA(ua)]|2) ™

Ty(25 +1)log E (log(g +t)
< 1.01
exp ( Co o " (6.18)

< exp (1‘02‘ Ti(2S + 1)10gE> |

Co

From lemma 4.18 and corollary 4.22, we have

~ ~ 2

tolloes < [5] neS+ DB ([ 1 g
S NNIE ex TS T
00,0 2,0 P DC()Cl p(Ag,L?Dl)

= o 6.19)
Ti2S+DlogE (1 g (
gHSHMeXP( : Co) == x (Cﬁ+4f>>'
—_—

<1/2
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From lemma 5.11 we have

2nDag||E(g + t)S1ualls + Dog M (25 +1)log E
209+ t)Ty 2(g+t)Th C()Cl

and with the inequality 1 < W from proposition 4.14.4, we deduce

(g+)Ty
(0T [ 1. 27P1INE( + 1) S1ualls + Dog mD1g* + Dog?
2(g +t)Th 2(g + )T

<o T1(2S +1)log E ( +t)+g+t (6.20)
< ex .
P Co g 201
<1.01(g+t)
Combining (6.17), (6.18), (6.19), (6.20), we finally get
Ti(25 +1 log &
1l E@g+e)s: < lls ||agexp< i Co) (2( + )2 +1.02+0.5+1.01(g+t))).
The upper-bound Z(g +¢)? + 1.02 + 0.5+ 1.01(g + t) < 3(g +t)? gives the result. [ |

g
Let us now look at the derivatives of f. Let w = ) w;w,; be the decomposition of w in the
i=1
basis w,. By Leibniz formula, the h-th derivative of f is equal to

1 1 J /
(h) _ T+7 * 75

o (2) = g 7_/!T!D sy (zw) | | w;".

T'eN9, |/ |=h i=1

To bound this sum, we change back to the point u. We have

1

4|f(h)(j)‘ 1 T+T s* 1 T+T * T
2 . S 2 g o(jw) = Ty P 85w) H|wz|
l71<S l71<S, 7/€N9,
0<h<(g+t)T1—1 IT'|<(g+1)T1—1
+ Z 1 1 D’T-‘FT *( ) ﬁ| |TZ/
2071 | 717! Ju il
lj|<S, T'eN, o i=1
|7 |<(g+t)T1—1
We have (TTT*TT,I,)' < 2T+l 50 that S ,‘ T < (T+ZT) We now treat the two sums separately. We

warn the reader that the proof of the followmg result is quite technical.
Proposition 6.16. Under hypothesis 6.9 we have
2>

|J'|<S, 7' ENY,
[T |<(g+6)T1—1

™ Do/2
< Nsllao exp (5 Drlmaali2) (1 -+ Imuoll2) ™" d(u, W)

X exp <T1(2S +1Dlog B x 4.2(g + t)) .

1 DT-‘rT *

7'+7' *
= u
(1) o

H\w i

>(jw) —

T

Co
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Proof. As we have |7 + 7/| < Tj and |j| < Sy < |m|, we can apply proposition 6.11 to get
T 2
1 T+7! *(]w) 1 ‘r+‘r’8*(ju) eXp (_§D1||mux4||cr)
(r+ 7)1 e (T ) e e (1 + [lmag]|2) P/

Ty (25 + 1)log E
<Hs\2,ad<u,wao>exp<1( e x2-01<g+t>>.

Moreover, from the multinomial formula and the upper-bound 7! < h!, for 7/ € N9 such that
|7'| = h, we can bound the remaining part of the sum using the Cauchy—Schwarz inequality and
lemma 3.39 (recall also that ||w]le = v/[[A(ua)|2 + Jual2 < V2|ualls):

3 H|w1|7 s+1) Y 1x ’T"Hmm

|71<S, 7'eNy, =1 7/eNY,
I7'|<(g+t) Ty —1 |7 |<(g+t) Ty —1
|7'“ 2 /
SCCESVR D SENECH D SRS | (0
T'eNY, T'eNY, i=1
|7’ |<(g+t)T1—1 [ |<(g+t)T1—1
1/2 | (g+)Ti—1
g+ (g+t)T —1
< <2s+1>( ) S 2t

h=0

< (28 + 1)((g + O)T1)?* /(g + ) T1 max(L, e]|) T+
< @S +1) (g + T (VZmax(l, HuA”U))(g”)Tl‘l .

As [|s|l2,0 < [|S]|a,0, the sum we want to bound is therefore less than or equal to

T Ti(2S + 1)log E
IIs]la,0 €xp <§D1HmuAH3> (1 + Hmung)Do/2 d(u,WaO)exp< it C'o) & X 2.01(g+t)>
(g+t)T1—1
% 225 +1) (g + 1) (V2max(L, fuallo)) "
(6.21)

Asl<(g+t)T1 < (g+ t)fl and 1 < % from proposition 4.14.4, we have

7125 +1)log B
2 = exp (£log 2) < exp ( 1 —2’ )log X (g +1t)log 2) . (6.22)
0
Moreover, because log™ ||u]|, is also less than or equal to W from proposition 4.14.4,

(g+1)T1—1 ~
(V2max(1, fluall, ) <exp ((g+6)Ti(log V2 + log" [luall,))

o <T1(25—21)10gE ‘(g1 t) <1+1og\/§)) |
0

(6.23)
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Finally, by the inequality T} > (2(g + t))*9+246 from proposition 4.14.1, we deduce that

= (93 (9+3)/2 3043)/2( (g41)/
(25 + 1) ((g + t)Ty)9HD/2 < 1 (T1(2S + 1) log E> 2 (g+1) 2 /(g1 3)1Co

(g+3)! 23Co T
<o Ty (25 4+ 1)log E y 200+3)/2(g 4 1)(9tD/2(g 4 3)(9+2)/2(5(g 4 1))3
<ex
b 8Co (2(g + 1)) 19725
Ti(2S +1)log E
< .
o (5522
(6.24)
The inequalities (6.21), (6.22), (6.23), (6.24) lead to the upper-bound
1
2€ T4+7! s* ‘r+‘r *
DI e A O Rl ey o7v) H‘“"
\JKS, 7' ENY,
I |<(g+t)T1—1
T Do /2
< lslla exp (5 Dullmual2) (1 + llmuol2) ™" d(u, Woy)
Ti(2S +1)log E 1
X exp 1(25 + 1)log X | (g+1) 3.01+§log2 +-].
Co 2 8
The inequality (g + t) (3.01 + %log 2) + % < 4.2(g + t) finishes the proof. [ |
We now bound the second sum.
Proposition 6.17.
2! - _ s Haa T1(25 4+ 1)log E
- T T/ * T 21 t
| Z i s H\w! exp G x 2.1(g + 1)
|]|g507 T eNgv
I7|<(g+t)T1—1
T Do /2
x exp (5 Dallmuall2) (1 + o 2) ™",

Proof. Using the Cauchy—Schwarz inequality, the sum is less than

1/2 1/2
2 g
¢ 1 ot
2 Z (r + 7_/)|D€vt7 s"(ju) Z H |w; [*7 . (6.25)
|j|<So, 7'€NT ’ lj|<So, 7'EN9 i=1
IT'|<(g+t)T1—1 |71 (g+)T1—1

From the assumption |m| > Sy, it follows that the first square root of (6.25) is bounded by
Lis]la,0 exp (3 D1|lmuall?) (1 + ||mu0H(2,)DO/2, and as in the proof of proposition 6.16 we can
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bound the second square root:

1/2 12
g 2! ’7'/|! g o
S Il <vesrt| Y e
7|<So, T'€N9 =1 T/ eN9 Ti=1
I7<(g+0)T1 -1 7 <(g+t)T1~1
(g+0)T1—1 1/2
<VRSHI[ YD (w2
h=0
(g+)T1—-1
<VES+ D)o+ T1 (V2max(1, [lual)) .

From (6.22), we have

T1(2S + 1) 1og E
2£§exp< 1(54&0)05—’;

x (g +1)log 2> , (6.26)
from (6.23), we have

(g+)T1-1 Ty (25 +1)log E
(\@max(l,HuAHg)> T exp( 1 Sz Nos B ot p) (1+1og\f2)> o (6.27)
0

and from (6.24), we have

(6.28)

VST )G T < (25 + 1) (g + T2 < exp <T1(2§+ 1) logE> |

8Ch

Combining (6.26), (6.27), and (6.28), we get

>

l7]<S, T'ENY,
|7/ |<(g+t)T1—1

2¢ i
T+7T" k([
gy e 500w

g !
[T lwil™
=1

11 (25 E
sllao (ms +1)log

3 1
o o ><(g+t)<210g2+1>—|—8>.

The inequality (g + t) (% log2+1) + % < 2.2(g + t) gives the result. |
Combining propositions 6.16 and 6.17 we get the following result.

Proposition 6.18. We have under hypothesis 6.9,

—_TD 2 (h)( T (9Q
0 (SEDilmuall) YO  lshs o, <T1<2s+01>logE
(1 + HmUOHU) ¢ lil<s 2%h! 0

0<h<(g+t)T1—1

x2.2(g+ t)>

T1(25 + 1) log E
+|Is]|a,0d(uw, Wy, ) exp ( i e )log X 4.2(g+t)> .
0
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The equation (6.16), and propositions 6.15 and 6.18 give us a bound for ’%Dags*(mw)‘.

Proposition 6.19. Let 7 € N9 be such that |t| = €. If |m| > Sp, then we have under
hypothesis 6.9,
1

" D, s*(mw)

exp (—%DlﬂmuAHg)

(1+ [[muo|2)P/?

< 2[|8]| oo €xP <—0.98(g +)T1(25 + 1) log E)

+ ||8]|a,0d(u, Wy, ) exp (2.7(g + )3Ty (25 + 1) log E) :

D FARI)]

Yl oiven by proposi-
lil<S

Proof. Let us replace the bounds for || f||g(g+s)s, and ST
0<h<(g+t)T1—1

1

tions 6.15 and 6.18 respectively in (6.16):

exp (—gD1||muAH(2,)

(1 + [[mauo )P0/

-~ - £)2
< |80 €xp (Tl(QS +1)log E x (—0.99(9 +1t) + 5(922)>>
0

1 T

AP

s*(muw)

+ HS‘.LOW exp (Tv1(2§ +1)logE ((g +t)log(2me(g + t)C1) + W))

+ [|8|la,cd(u, We, ) exp <f1(2§+ 1)log B <(g + t)log(2me(g + t)C1) + 42(9*‘@)) .

Co
(6.29)
First, from the value C; = (5(g + t))?9*!, we have
log(2me(g +t)C1)  log(2me) (29 +1t)logh (29 +t+ 1)log(g+1)
(g +1)° (g+1)° (g +1)? (g +1)°
< log(2me) N 3logh N 2log(g +t)
4 4 g+t
< log(2me) n 3logb +g
4 4 e
< 2.66.
Therefore, the inner parenthesis of the third exponential of (6.29) is bounded by
4.2(g+1) 3 4.2 3
t) log(2 t)C —= < 2.66 t - < 2.7 t)°.
(g + 1) log(2me(g +1)C1) + o (g+1) +53(g+t)2 (g+1)
Next, from the value Cy = (5(g + t))3, we have
5(g +t)? 5
—0.99 t ——— < t) —0.99 4+ ——— | < —-0.98 t).
(g+1)+ 5o (g+1) +2.53(g+t) (g+1)
Finally, we have
22(g+1t .

Co
< —0.3(g+1)?
< —0.98(g + ).
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Thus, as loga = T1(25 + 1)log E x 3(g + t)3, we finally get from (6.29) that

1
;DTNO s*(mu)

exp (=5 Dillmua?)

(1 + [lmugl|2)°/?

< 2[|$||a,0 exp <—O.98(g +)T1(25 + 1) log E)

4[| ad(u, Wiy ) exp (2.7(g +1°T1(28 + 1) log E) .
n

We finally obtain an upper-bound for the norm of the jet in the non-periodic case.

Proposition 6.20. For an embedding o : K' — C dividing o¢ or o5 and under hypothesis 6.9,
the norm | jety, s(mp)||, s bounded in the non-periodic case by

lietly smp)lls < s]la.0 exp (~0.96(g +)T1(28 + 1) log )
+ |Is]la,od(w, W, ) exp <3(g +1)3T1(25 + 1) log E) :

Proof. First, if |m| < Sp, we have seen in (6.12), that

. 1 ~ 0T
liethy smp)lls < ~lslla = lsllao exp (=3(g + 7125 + 1) log E) . (6:30)
Assume now that [m| > Sp. The norm of jet;, s(mp) is given by
1/2
) exp (—ngﬂmqu) 1 . 27'1!---7'9!
ljetiy s(mp)llo = =Dy, s5(mu)
(1 + [jmugl|2) reZNg, | Wee 14
|7I=¢

_ exp (=3 Dy lmul?)

T (1 [lmug|2)P07? ren,

1 1 -1
D3, sy(mu)— — D3, s*(mw)’ <g+ )

Tl We'a Tl We g g—1

1 -1
—D7J, s;(mw)‘ <g+ >
7! v g—1

exp (—§D1||mu||g)

p
(L limuoll3)™" reris
T|=

As in (6.9), the term (g;“le) is bounded by exp (%) Using propositions 6.10
and 6.19, and the value Cy = (5(g + t))3, we get

~ =~ 1.01 t 1
ety s(mp)lle < lIslla,ed(u, Way) exp | T1(25 +1)log B x ot 7
Co 27C)

~ o~ 1
+2[|s[la,0 exp | T1(2S + 1) log B | —0.98(g +t) + -
27Cy

I 1
+ [|$||la,0d(u, Wg, ) exp <T1(25 +1)logE <2.7(g + )3 + 570 ))
0

< 2||s]la,0 exp <—0.97(g +1)T1(25 + 1) log E)

+ 2||8{|aod(u, Wiy) exp (2.8(9 F1)3T1(25 + 1) log E) .
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Notice that this upper bound is always larger than (6.30), this is thus the only case we have to con-
sider. To finish we have 2 = explog 2 < exp (W X %) < exp (0.0l X W)
1

The norm of the jet is therefore bounded by
Isllao (exp (—0.96(g +1)T1(25 + 1) log E) + d(u, W,y ) exp (3(9 +1)371(25 + 1) log E)) .

6.4.4 The periodic case

Let us now look at the periodic case. The proof of the non-periodic case almost works in the
periodic case, except at the very end of the proof of proposition 6.18: because of the condition
7y < To we imposed in the periodic case, we cannot bound the first square root of (6.25) in terms
of ||S¢||la,o. However, we will still proceed in a similar manner.

Let 7 € NY be such that |7| = ¢, and write 7 = 7/ + (0, 7,) with 7" € N9 such that 7, = 0.
Let us define the holomorphic function

£ cC — C
2 o 5Dy si(zw)
The derivatives of f are equal to
L 1 740h) &
a (Z) = WDU; SU(Z’IU), (631)
where w := (Ws.1,...,Wgg—1,w). This family is indeed a basis of W, because by construction

L £ (m)|

we will have bounded all derivatives of s} at mw at order ¢ along the basis w. As jetf/vo sk (mw)

of the basis w, (see section 5.1) the last coordinate of w in non-zero. If we bound

does not depend on the basis of W, we choose, this will not matter. To bound % £ (m) we
first use Cauchy’s inequality:

1 T
17 m)] < sup | fm o+ 2) < [ llpmger < W Fllgroysier
!

|z|=1

Now, as in the non-periodic case, we use the interpolation lemma 6.14 to bound || f|| g4+, +1-

Let us choose T'= Ty = L%J and S =Sy = (¢ +¢)S] in lemma 6.14. We get

£l < 2 (So+1)(2Sp+1) (So+1)(T2+1)
(g+)S1+1 N (T 41)(250+1) 6(S0 + 1)2

Ly |FM ()] % exp <(T2 +1)(2Sp + 1) log <(So—i—1)7re>> ‘

X [ fl B(g+t)51+1)

I
lil<(g+t)S1 2! 250 +1
0<h<T

Let us again bound some terms. From definition (4.3) we have 2§1 +1 > CyCq > 10°. Writing
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S; =5, — e with € € [0, 1], we get
2504+ 1=2(g+1)S1 +1 > 2(g+1)S; — 2(g + t)e

> (g+1)(25 + 1) (1_ 25“)

251 +1
~ 3
> 2 H({1-—
(g+1)(251 +1) ( 106)

> 0.999(g + )C1 (25 +1).
We moreover have g;ll < T5 + 1. Therefore, from the inequality 1 < % and the value of
Cy, we have

2 ~ o~ log 2

< exp (—0.99(9 +8)T1(25 + 1) log E) .

Similarly, we have Ty + 1 < % So+1< (9468 +1 < W) _ )GESH) g
25041 < 2(So+ 1) < (g + t)C1(25 + 1). We deduce that

(So 4+ 1)(28g + 1)\ DT+ 250 + 1
1 = Ty +1 Dlog (14 221
< + 6(So + 1)2 exp | (T2 +1)(So + 1) log +6(So—|—1)

= 4
< exp <(g +1)T1(25 + 1) log E x log 3) (6.33)

< exp (ﬁ(?g—i— 1)log E x 0.3(g + t)) ,

and

(So + 1)me

o P
exp ((Tg +1)(250+ 1) log ( >> < exp (2(9 +t)T1(2S + 1) log E x log ;re)

< exp (3.5(9 +1)T1(25 + 1) log E> :

(6.34)

Combining (6.32), (6.33), and (6.34) the interpolation lemma now writes

7 lsysien < larns o exp (~0.69(g+ O (25 + 1) log E)
YD (5 o 6.35
+ ) Sipy OXP <T1(2S +1)log E x 3.5(g + t)) . (6.35)
31<(g+t)S1
0<h<Ty
(h) (4
We now bound ||f||E((g+t)Sl+1) and > %

l71<(g+1) 51
0<h<Ty

Proposition 6.21. The sup norm of f on the disc D(0, E((g+t)S1 + 1)) is bounded by

T1(2S +1)log E
|wmpwp<1( e xzag+wﬁ.
0
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Proof. We proceed in the exact same way as proposition 6.15. We use corollary 5.10 with w = wy,,
(z9,x4) = zw with z € C such that |z| < E((g+¢)S1+ 1) and T = (g + )T} to get

™ Do /2
[ lstso 1) < exp (FD1IE(g + )81+ Dual2) (1+ 1E((g + 81+ DA@A)[2)”" [lslloc.o

(g+t) T
9T o [ 1 21 D1 g||E((g +t)S1 + )ualle + Dog wD19? + Dog? '
’ 209+ )11 2(g+0)T)
From the value (4.4) of Dy we have Di||ESju4l? < W. Moreover, S; > 151 0001

and we deduce that

2
s T _ 1
exp <§D1||E((9 +1)51 + 1)u,4\|§) < exp <2D1||E51u,4||§ (g +t+ §> )
1

Ty(25 +1)logE = 2 \?
< — .
\exp< x5 g—l—t—l—Cocl (6.36)

Co

T1(25 + 1) log E
<exp< 125+ 1) log ><1.6(g—|—t)2>.

Co

From proposition 4.14.2 and proposition 4.14.6 we have

(14 1B (g + 08+ DA )™ < (g + 1+ 1P (14 [ESiawa)2) ™

< o <T1(25 +1)logE <log(g tttl) 1.01) )

Co C1
<1.02
(6.37)
From lemma 4.18 and corollary 4.22,
~ o~ g/2
Il <llslaoe T1(2S+1)logE ax [ 1 1
s < |ls X max | 1, ————
00,0 2,0 €XP Cocl p(AJ,L?Dl)
el T1(25 + 1) log E ( L > (6.38)
NIE] exX —_ — .
oo P Co Ci 41y
|
<0.01
Finally, from lemma 5.11 we have
2mD1g||E((g +t)S1 + 1)ualle + Dog 7TD192+D092 25+1 (28 +1)log &
29+ )Ty 2(g+ )Ty CoCl
and therefore, because 1 < (25%,% by proposition 4.14.4, we get
5 5 (g+1)
ST o [ 2nD1g||E((g +t)S1 + Dualls + Dog L mD1g* + Doy
’ 209+ )T 2(9+ )T
e T](2§+1)logE>< Ly 9t (6.39)
X €X .
P Co g 20,

<1.01(g+t)
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Combining (6.36), (6.37), (6.38), and (6.39), we thus get

Ti(2S +1)log E
HfHE«gH)slH)éHSHa,aexp( i Co) s (1-6<g+t>2+1-03+1~01<g+t>)>~

The result follows from the inequality 1.6(g + t) + 1.03 + 1.01(g + t) < 2.4(g + t)2. [ |

g
We now look at the derivatives of f. Writing again w = ) w;w,;, from Leibniz’ derivation
i=1
formula we have for any integer h > 0

1 1 i, S
ﬁf(h)(z) = Z - /‘Dw: SO'(Zw> Hwil :

T ENY |7 |=h o i=1
As before, for 7/, 7 € N¥ we can bound 57— by (72_‘;‘,,) and we therefore have
1f M ()] 2 e oo,
Z 2hp! < Z (7_/ 4 7_//>!D (]u) H ‘wz| !
l7<(g+1) 51 lil<(g+)S1, i=1
0<h<T 1 ENd x| < T
2é /Jr 1" 2é /Jr // //
——— =D W) — ———— 4 u) w;
bY DR s — DR S H! K

lil<(g+t)S1,
T//ENQ, |7‘"|§TQ

Proposition 6.22. Under hypothests 6.9, we have

1 1o 1 ”
2 Y ‘(D@f s5(jw) — = Dal 5 (ju)

/ 1"\ 1"\

) T 4+ 77)! T 4+ 77)!

l71<(g+1)S1, ) ( )
T"ENI, |T"|<Ty

™ Do/2
< exp (5 Dalmuall?) (1+ Imaoll2) ™" 15]la.od(u, Wor)

e <T1(25+ DiogE 2 +t)2) |

Co

Proof. First, from (6.22), we have

2! Cexp (Tl(QS zl) log ¥ X (g +t)log 2) . (6.40)
0

Then, using proposition 6.11 we have for j € Z such that |j| < (g +¢)51,

exp (—ZD1lljuall?)
. Do /2
(1 + [ljuol2)Pe/

x 2.01(g +t)>

1 i . 1 i .
(T/+T//>! :v:—T SZ(]’LU) - (7—,+7—”>! :V:—T S:.( u)
T1(2S +1)log E

Co

< Islla,od(u, Wo,) x exp (
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From the definition (4.4) of D;, we have for |j| < (g + t)S1,
4 2 )2
exp (5 Dulljuall?) < exp (59 + 17D fual2)
v

<o <T1(2S +)log B o+ t)2>' (6.41)

Cy 2
e e
<0.22(g+t)2

Do/2

To bound term (1 + [|juo||2) notice that

luolle < lluo = Awa)lle + M wA) o < V20 (u, Wory) + [Mua)llo < v/ 4d(u, Wo)? + 2[|A(wa) |2

1

V2(g+t)S1 Do and from propositions

Using the assumption hypothesis 6.9 we have d(u, Wy,) <
4.14.6 and 4.14.3 we get

(1+ [uol2) % < (14 (g + )2S7 (4d(u, Wog)? + 2/[A(ua)|2)) 7/

9 Do /2
< (14 go + 2o+ 0SNG )

< (209 + 2™ (1 + S ua)|2) ™

T1(2S +1)log E
Co

Ti(2S+1)logE  (log(2(g +t)?)
< . .
< exp < Co X 20 +1.01

<1.02

(6.42)

D
< exp <20 log(2(g + t)?) + 1.01 -

Next, we have

//|;

g9
> [l <@o+nsi+n Y ,,!H\ wil

lil<(g+)51 =1 TENS, |7V|<Te
T"eN9, |7 |<Ts

T g h
<(g+H2%+1)) (Z !wl)

h=0 \i=1
< (g+ 008+ DT+ 1) (Vagmax(l, fuall))

Because we have Th = L%J and 251 +1 < 01(2§+ 1), we deduce that Tp < C—l and Th+1 <
We thus get

(g+1) (251 + 1)(Ty + 1) < 2(g + )(2S + )T}

2
o 1 Ty (25 + 1)log B\~ 16(g 4 t)Co
=2 2C) T

<1

Ty(25 + 1) log E
< exp< 1 S;CO) o8 ) , (6.43)
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and

T Ty(2S + 1) log E
(@maxu,uuw)kexp(?( T x(1+log@))

Ti25 + Dlog E 1+ log+/2g (6.44)
< exp o X o .
—_————
<0.01

The equations (6.40), (6.41), (6.42), (6.43), and (6.44) give
1

V4
2 Z '+ 7!

T"eNY, | |<T>

g

[T lwil™

=1

1 1 1
+ '+
T i (]w) (T/ + T//)!DT !

sy (ju)

Ti(2S +1)log E
Co

< ||8]la,od(w, W, ) exp < X ((g+t) log2+2.01(g +t)

+0.22(g+1)2+1.02+0.5+ 0.01))

s Do /2
< exp (S0 muall ) (1+ muo2) ™

 exp <T1(2S El)ng < 2g +t)2) |
0

sd(u, Woo)

the last inequality coming from the fact that

log2 + 2.01 1.
g+ 1)10g2+2.01(g+ 1) +0.22(g + )2 + 1.53 < (g + ) [ B2E20L 499 193
2 4

< 2g+1)2

Proposition 6.23. Under hypothesis hypothesis 6.9, we have

4
S fer s H|w|”

T"eNI, |T"|<Th

s Do/2 1 Ti(2S +1)log E
<exp (GDlmual2) (1 + g 2) ™% s ||wexp< 25 Dloe x<g+t>2>.

Co
Proof. We proceed roughly as in the proof of proposition 6.17. Using the Cauchy—Schwarz
inequality, the sum is less than
1/2 1/2

9
2t > ‘MDT“” 5 (ju) > Il | . (6.45)

l71<(g+t)S, l71<(g+t)S1, i=1
TTENS, |7 |<T; T EN9, | |<T
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From the definition (5.1) of ||s||q,s, the first square root of (6.45) is bounded by the quantity
M exp (5D1|(g + t)S1uall2) (1+ (g + t)51u0||(2,)D0/2, and as in the proof of proposition 6.16

we have
1/2

//|'

. 1/2
Z H ‘wi|27—i” <V2(g+1)S +1 ( Z oy H‘ l|TH

lil<(g+t)S1, i=1 T ENY, |71 |<T,

T"eNI | |<Ts
T, 1/2
2(g+1)51 +1 ( HwH?,h>
0

< Vg + DS T DT 1 1) (max(1, [u],))"
< V20 05+ DT+ 1) (Vamax(L uall)

From (6.22),
T1(2S +1)log E
2t < exp( i Sg )log X (g+t)log2) , (6.46)
0
from (6.41),
T1(2S +1)log E
exp (SD1ll(g + )S1uall2) < exp 125 D108 E 00112 (6.47)
2 Co
and from (6.42), we again have
T1(2S +1)log E
(14 (g + )25 uo||2) ™ < exp( i 2 Jlog B 1.02) . (6.48)
0
Moreover, as in (6.43) and (6.44), we have the two following inequalities.
T T1(25+1)log E 1+ logy/2
<ﬂmax(1,\|uAHU)) ’ < exp 125+ 1)log x = 08 V2 , (6.49)
Co Ch
—_————
<0.01
T1(25+1)log E
V2@ +1)S1 +1)(Ta +1) < (g +1)(251 + 1)(To + 1) < exp ( i 200) & ) . (6.50)

Combining (6.46), (6.47), (6.48), (6.49), and (6.50), we get
26 /+T”

Z T+ 7! ) H|wZ‘TN

‘( !
l71<(g+t) S,
T"eNY, |7V |<Ts

j'u

1 T1(2S +1)log E
<5H Ha,gexp< 1 G ) log ((g+t)log2+0.22(g+t)2+1.53))
0
1 T Do/2
< ~slla exp (5 Dallmuall2) (1 + lmo]2) ™

e <T1(28 —gl)logE . (gH)Q) |
0
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the last inequality coming from the fact that

log 2 1.53
(g+1t)log2+0.22(g + )2 + 1.53 < (g +1)? <§ +0.22+ 4) <(g+1)2

Combining proposition 6.22 and proposition 6.23, we finally get a bound for the derivative
term of (6.35).

Proposition 6.24.

exp (=5 D1 [[mualz) FM )]

Do/2 hp
(U Imuolle) ™™ iclrps, 2™
0<h<T2

1 T1(2S + 1) log E
<a’\81a,aexp< i )log ><(g+t)2>

Co

Ti(25 + Dlog B g+ t)2> |
Co

+ HSHa,Ud(u7 Wo,) exp (

We can now apply the interpolation lemma to get a upper-bound for derivatives of s*(mu)

along the basis w = (Wo,1,. .., Wog—1,W).
Proposition 6.25. Let 7 € NY be such that |T| = £. We have

exp (—ngHmuAHg)

D7, s*(muw)
(1 + [[muo|2)P/? “

= < 2[|s|a,0 exp (—0.68(9 +)T1(2S + 1) log E)

+ [|$||la,0d(u, Wg,) exp (3.6(g +)T1(2S 4 1) log E) .
Proof. By (6.31), (6.35), propositions 6.21 and 6.24, we get

exp (—gD1||muA||(2,)
(1 + [Jmug|2) 2072

exp (—%DlﬂmuAHg)
Do /2
(1+ [[muo|2)P/

- L 24+ 2
< ||8la,o exp <T1(2S +1)logE <—0.69(g +t) g + ))

1
D;s*(mw)‘ <

71 ||f||(g+t)51+1

+||S|O|éa’gexp <'T](2§+ 1)log E x (3 5(g+t)+ (ggt ))
0

~ 2(g +t)?
+ [|$|la,0d(u, We,) exp <T1(2S +1)log E x (3.5(9 +1t)+ (gc-l-)>) .
0

From the value Cy = (5(g + 1)), we have

2.4(g + t)? :
—0.69(g+t)+ 2 = _069(g+1t) + - < —0.68(g +1),
(g+1t)+ o (g+)+53(g+t) (g+1)
3.5(g+1t)+ (g +1)° —3(g4+1)? =35(g+t)+————3(g+1)> < —2(g+1)% < —0.68(g+1),
Co 53(g+1t)



102 CHAPTER 6. JETS OF SECTIONS

and ( 2
2(g+t
35(g+t)+ ——"—=35g+1t)+ —— < 3.6(g+17).
(9+1) Co (g+1) 5+ 0) (9+1)
Therefore, with the value log v = T1(25 + 1) log E x 3(g +t), we get the result. [ |

Now that we have a bound for the derivatives of s* at mp, we can bound the norm of the jet.

As the derivatives we have considered are along the basis w, we need to consider this basis in the
g

expression (6.1) of the norm of the jet. Write again w = ) w;w,; the decomposition of w in the

i=1
basis w, of W, and let us express the dual basis of w in terms of the dual basis of w,. We have

w; fl<i<g—1;
Wo,i =

)

g—1

— ) Y+ 1w, otherwise.
i=1 g g

Therefore, it follows that

v __
1 1 v

Wy g,9

Vv W; Vv M - .
Wayi—w—;wgvg fl1<ei<g—1;
otherwise.

To bound the norm of an element (wy)™ ---(wy)™ of Sym‘(WY) recall that the Hermitian
structure on Sym!(WY) is the quotient metric from the one on the tensor product (WY)®*.

Therefore, given ¢ elements ¢1, ..., e in WY, we have
o1 - ellsymew,y < Nle1 @+ @ @ellgyyyoe = llpall - - lloel]-
We thus get,
wV g—1 Wi ¢
o, )
5wl < (222 4 - 2wy,
TENY, |T|=¢ 9 o =1 g g
1 o w; |? ‘
<=+ 1+|—
|wg| izl Wq
¢
o (gmaX(LHMIa))
|wg|

|wg|

< <mmax<1, ||uA||g>)€_

In order to bound the jet, we therefore need to bound ﬁ appropriately. This is achieved by the
following proposition.

Proposition 6.26. We have ﬁ < %ﬁiiﬁ))ﬁ' In particular

Ti(2S + 1) log E
> il <exp< nent s ><15<g+t>4>.
TENY, |T|=¢
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Proof. By the way the basis w, has been constructed (see section 5.1) we have |wgy| = d(w, tg, N
W,). Because we are in the periodic case, there exists an integer mg such that |mg| < S; and
mou € tg, + Qa,. Therefore, we have

moug = W + up,
for some period w € Q4,, up € tp,. From inclusion tg, N W, C tg,, X tp,, we get

1 d(w,t
L dmow, trr, N W) = ——d(Mmoua),w + ug), trr, N W,y) > W2l
Imo S
By the assumption hypothesis 4.2, mou4 does not lie in tp_, hence w € Q4 \ Qp,. By [GR14b,
Proposition 4.3] we get

1 < Si < S1(degy, B)2.
‘wg‘ d(wv tBa) p(Ag, Lo)

To prove the second upper-bound we need to bound deg; B. Let us use the definition (4.5) of x
and the fact that z < 1. We have

929D DI deg; A Pt o9 "
(g)~ p— = <=L 1 <g+ >29degLA.
(Q/th/)TICW(H)# <FP(S[1[)+H> Tch(H)

gl

deg;, B <

From proposition 4.14.2 we have

~ g~ —d 4! cw (H
DYDY _(y N Dy Y st —-o)
fch(H) S\ CyCy ffW(H)_(g_g/) S\ CoCh 0 .

We have (g —¢')+ (t —t') —ew(H) < t, and ey (H) > max(g—g¢',t —t') > 1 from corollary 4.10.
Moreover, we have S1 < 2571 + 1 = CyCra and we deduce that
1 S, D2 (g;rt)2229
fwy] S Py, L) (CoCr)Pew

929+2(g+t) aﬁgt
CoC1  p(Aq, Lo)
N——

<1

(y ) deg;, A)? < (v degy, A)%.

We now have

e loga <2x % from proposition 4.14.5;

e 2tlog Dy < w x 14(g +t)® from proposition 4.14.7;

e y9deg; A <1 from proposition 4.1;

o p(Agl 7o) S exp (%(9 + t)) from corollary 4.22,

and we deduce that

1 25 +1)log E
Coxp [ BEF DI E
‘wg|

G x(2+14(g+t)3+(g+t))>.
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(25+1)log E
Co

Finally, using the inequality max(1, ||luall,) < eXp(
deduce that

l ~ ~
<g\/§max(1, ||uA||U)> < exp (Tl(QS +1)logE

) from proposition 4.14.4, we

x (g +1t)(log(gv2) +3

|wg| Co

+14(g+ )3 + (g + t)))

< exp (Tl(QS 21) log x 15(g + t)4> .
0

Putting together propositions 6.10, 6.25 and 6.26, we can finally bound the norm of the jet in
the periodic case.

Proposition 6.27. For an embedding o : K' — C dividing og or o9 and hypothesis 6.9, the
norm || jetty s(mp)||, is bounded in the periodic case by

|56 |la,0 €xp (—0.56(9 + t)f1(2§ + 1) log E)

150 laod(u, Wy ) exp (3.9(9 +T1(25 + 1) log E) .

Proof. For 7 = (11,...,75) € N9, let us write (w")" for (w})™ --- (wy)™. From the definition
(6.1) of | jetl s(mp)||, and its independence from the basis of W, we have

exp (— 2 Dy [lmua2)
(1 + [[muol|2)0/?

1 1 T * V\T
| ety s(mp)|lo = > DL, (mu)(wy)

TENY, |T|=( o

exp (—ZD1|mual|?) 1 1
< LRIl 5 (L g, s mu) — D7, st mw) ) (w2
(1 + ||mu0H0‘) TENY |7|=¢ ’ ' "
exp (—5D1||mual?) 1 .
+ ‘ 9 Do/g Z ijs*(mw)(wa)
(1 + ||mu0”cr) TeN9, |r|=¢
exp (—5D1|mu 1 /-1
< p (5D DAU2) sup | — D3, s5(mu) — fD\TNU o ‘F
(1 + [[muo||3)7" Ir1=¢ 17" -1
exp (—5D1|mu 1
pCEDImal) oy L psin| Y w7
(1 + [lmuoll3) TENS, |r|=¢ reNo Jr=t

From (6.9) the square root of the binomial coefficient is bounded by exp (%) Applying
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propositions 6.10, 6.24 and 6.26, we get that || jetf,v s(mp)||s is bounded by

~ 1.01(g+t 1
I|s||a,0d(u, W, ) exp <T1(25+ 1)log E x < (C'o ) + 2700))

T (28 16 )4
+2[5]la,0 €x <T1(25 +1)log B (0.68(g 1)+ (5JC+)>)
0

~ 15 )4
+||8|la,0d(u, Wo, ) exp <T1(2S +1)log E x (3.6(g +t) + (gC-i- ) )) )
0

From the value Cp = (5(g +t))?, we have

LOLg+1) , 1
Co 27C)

< 0.01,

15(g +t)*

—0. t
0.68(9+) + — ¢

= —0.56(g + 1),
and
15(g +t)*

. t
3.6(g+1t)+ Co

< 3.8(g+1).
The norm of the jet is therefore bounded by
2[5l exD (-0.56(9 +T1(25 + 1) log E)
42|58 (11, Wiy, ) exp (3.8(9 +4)T1(28 + 1) log E) .

To conclude we have 2 = explog?2 < exp W X %) < exp (0.01 X W)
1

The norm of the jet is therefore bounded by
Illccor (exp (—0.55(9 +OT1(25 + 1) log E) + d(u, Way) exp (3.9(9 +OT1(2S + 1) log E)) .
|

If we compare the results of proposition 6.20 and proposition 6.27, we notice that the term
in d(u, Ws,) is larger in the non-periodic case than in the periodic case, and the other term is
smaller in the non-periodic case than in the periodic case. We therefore get

Proposition 6.28. For an embedding o : K' — C dividing og or g and under hypothesis 6.9,

the norm | jety, s(mp)||, is bounded in every case by

||s]|a,0 €XP (—0.55(9 +)T1(2S 4 1) log E)

18 llaod(u, W) exp (3(g +1°T1(25 + 1) log E) .
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Chapter 7

End of the proof

7.1 Proof of theorem 4.3

Now that we have bounded the norm of jetf/v s(mp) at all the places of K’ we are finally ready
to prove our two main results, namely theorems 4.3 and 4.6. From the definition of height of
jetty s(mp) we have

K}, :Q,
plett s = 3 B B g etk stmlla + Y oo ity st

Blp o:K'—C
P prime Ufo’o and o0
1 .
+ ) ———log | jetiy s(mp)|l,.
oL K Q)
og:K'—C
oloo or oo

Using the results of sections 6.2 to 6.4 let us bound each of the three sums. First, we use
proposition 6.3 to bound the sum over the non-Archimedean places.

Proposition 7.1. We have

!/

Ky :Q T1(25 +1)log E Ky :Q
> w10g||Jet€v3(mp)||m<0-06(9+t) > wlog“S“am

K': D K':
T Ql i Ql
p prime p prime
Proof. Applying proposition 6.3, we have
[Kg © Q] . [Kg : Q]
> g loslietly stmp)ly < Y o (oglsllag — log|8:(Do)ly)
[K': Q) [K': Q]
Blp Blp
p prime p prime
Ky Q]
<log[6(Do)| + D 5o logllsllap-
[K": Q]
Plp
p prime
We now use lemma 6.5 to bound log |0,(Dg)| by 0.06(g + t) x W. [ |

We now turn to the sum ranging over the Archimedean places dividing neither oy, nor 7.

To bound it we use proposition 6.7.

107
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Proposition 7.2. We have

1 1 g 1
Y = log ety s(mp)|lo < Y ——e <IOgHSHM+ = log* )
/. /. ) ®D
0:K'—C [K ’ Q] o:K'—C [K ’ Q] 2 p(Am Lo 1)
ofoo and oo ofoo and oo

T1(25 +1)log E

+3.01(g+1t)- e
0

Proof. By proposition 6.7, we have

1 1 g 1
> mloglietiy stmp)llo <Y e <10g 8lla, + 3 log™ )
! . /. 5 QD
0:K'—C [K Q] o K'—C [K Q] 2 p(AaaLa 1)

ofop and o0 ofoo and g
+ ) ! (9+ )T} log < o 7(Ag, Lo) + 1)
o:K'—C [K/ : Q] COCl

ofoo and oo
N Ti(2S +1)log B
DCy

x 1.01(g +t).

Moreover, from proposition 4.23 we deduce that

(g+ )T Z ( 2m ) (9+t)Th 27
T . 10g 77"(1407 LO’) +1 < T . Z IOg 7T(A07 La) +1
(K- Q) oK' C Coh (K" Q] 0:K'C CoCl

otoo and oo
o T1(2S +1)log E
h DCy

X 2(g +1).
The result follows. |

The final step toward a bound of the height of jetf,v s(mp) is to bound the sum ranging over
the Archimedean places dividing o or dg. To do this we use proposition 6.28. Recall that the
proof uses hypothesis 6.9.

Proposition 7.3. Under hypothesis 6.9, we have

1

Y o logl jetiy s(mp)l
/.

o:K'—C [K @]

olog or oo

2
D

1
+ ———log ||s|la.o-
> gl
o:K'—C

oloo or oo

< Zlog (d(u, W00)€3(9+t)3ﬁ(2§+1)1ogE +6—0.55(g+t)ﬁ(2§+1)1ogE)

Proof. This is a direct consequence of proposition 6.28. Indeed, it follows from this proposition
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that

1
——log jetg s(mp)||s
> g el st
o:K'—C
olog or oo

1 37 (98 7 (93
< 3(g+t)3T1(25+1)log E —0.55(g+t)T1(25+1) log E
< E K Q log (d(u, W, )e +e )

o:K'—C
olog or oo

1
+ > gagrlesls
o:K'—C [K Q]
olog or oo

o,

The summand of the first sum is independent of o and the sum is therefore equal to

#{o: K’ ‘[—> (C’U]‘ g or oy} log (d(u 147 0)83(g+t)3ﬁ(2§+1)1ogE + 6—0.55(g+t)T1(2§+1)1ogE)
K, . Q Y (o
(koo : R|[K” : K]
(K" : Q]

log <d(u, Wao)e3(g+t)3ﬁ(2§+1)1ogE n 6—0.55(g+t)T1(2§+1)1ogE>

< %log (d(u, Wgo)e3(g+t)3ﬁ(2§+1)1ogE + 6—0.55(g+t)fl(2§+1)1ogE> ‘

|
We now bound the height of jet?;, s(mp). Combining propositions 5.17 and 7.1 to 7.3 we have
w

Ti(2S +1)log E
D
3.01(g+t) T1(2S+1)logE g 1 N 1
+ : + 3 lo
Co D : 2 K0 oA, L")

o:K'—C
ofop and oo

h(jetly s(mp)) < ha(s) + 0.06(g + t)

4 2 log (d(u, Wao)es(g+t)3ﬁ(2§+1)1ogE i 6—0.55(g+t)ﬁ(2§+1)1ogE)

D

T1(2§+1)1ogE< 3.01(g+t)> g 1. 1
< 1.64+0.06(g +1t) + ——2—2 ) + 2 —logt ———
D TG 20;%@9 ® (A, 157

i %log (d(u, Wao)e3(g+t)3ﬁ(2§+1)1ogE T 6—0.55(g+t)ﬁ(2§+1)1ogE) _

Corollary 4.22 gives us an upper-bound for the remaining sum over the embedding of &k, and we
get

, Ty (25 4+ 1)log E ( 3.01(g + 1) g )
h(jett, s(mp)) < 1.6 +0.06(g +t) + + - 7.1
(jety s(mp)) D (g+1) o O, (7.1)

<0.9(g+t)

4 %log (d(% Wgo)es(g+t)3fl(2§+1)1og}3 i 670.55(g+t)7~“1(2§+1)10gE> '
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On the other hand the inequality (6.1) and proposition 6.2 give us a lower-bound for the height.

Ti(2S + 1)log E 4 Ti(2S + 1)log E
hjetly s(mp)) > — L1 SE) 85 (ggt) i SJ;)) O X 0.008(g +1). (7.2)
0

Combining (7.1) and (7.2), we get a first lower-bound involving d(u, Wy, ):

\Y4

log (d(u, W00)€3(g+t)3T1 (25+1) log E+870.55(g+t)fl (25+1) log E)

0.008(g +t) +0.9(g + )
2

> -T1(25 +1)log E x
> —0.5(g + t)T1(25 + 1) log E.
We therefore deduce a lower bound for the distance d(u, Wy, ) in terms of f1(2§ +1)log E:

d(u, Wy = o—3(g+1)>T1(25+1) log E (670A5(g+t)7~"1(2§+1)10gE _ 670.55(g+t)7~"1(2§+1)10gE>

> 67T1(2§+1) log B(3(g+t)?+0.5(g+t)) (1 _ 6—0.05(g+t)ﬁ(2§+1)1og13) ‘

Computing the derivative of the function z — 2~ ! log (1 — 6_0'05(9‘”)@’), we see that it is increasing
on R% . Therefore, because Ti(25 +1)1og E > (2(g+1))*+246C) > 100 from proposition 4.14.1
and proposition 4.14.4, we get

o log (1 _ ¢—0.05(g+)T (25+1) log E>
log d(u, Wyy) > —T1(2S + 1) log E [ 3(g +1)> + 0.5(g + t) +

T1(25 4+ 1)log E
> T1(25 + 1) log E (3(9 )34 0.5(g +t) + 10" log (1 - e*0~05(9+t)'10‘l°))
> —4(g+t)*T1(25 + 1) log E.
Let us now remove hypothesis 6.9. Assume that it does not hold. This means that
log d(u, Wo,) > —log (\/i(g + t)SlD()) :

From the definition (4.3), we have S; < %(2§ + 1), and from proposition 4.14.2 we have

Dy < % Therefore, we have

V2(g +1t)

log d(u, W) > —log < 5C
0

Ty (25 + 1)> > —4(g+)*T1(25 + 1) log E.

We deduce that in any case we have

log d(u, W,,) = —4(g + t)°T1(2S + 1) log E.
To get the lower bound of theorem 4.3, let us replace T; and 25 + 1 by their values (4.6) and
(4.3).

4(g + )3T (25 + 1) log E = 4( )3(0001)(g+t)/t#r (S)Mt (1 Siploga\""
+t +1)logE =4(g +t)*—"——F 4+ 157
g 1 g g 1/t 7Pt (251 4+ 1)log E

(29 (Q;t))

x (28 +1)log E <1+

D(log Si + log b) 1
(25, + 1) log E ] ytD/t(degy, A)1/¢
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The set I'p(S1) has cardinality at most 257 +1 < CoCra. Moreover, we have S < 2512“ <

Therefore,

CoCh
D) a.

g%Dloga <1 CoCraDloga < CoCh <1 aDloga)
(25 + 1)log E dlogE 4 logE )

Then, using the inequalities Dloga < 2alog E and D < alog F from proposition 4.14.5 and
4.14.4, we have

D(log S; + log b)

CoC1 n Dloga n Dlogb
(251 +1)log E

2 Cq Ch

log “oc1 | 2alogE  Dlogb
C()Cl CoCl COCI

D
> = Cpalog F + — log
Cy

(25 +1)log E (1 +

< Cy (alogE+ alog B

log $o&1 2 Dloghb
< logE| 1 2
Cy (a og < + CoCy + CoC > + o

<2

< 2Cy (alog E + Dlogh) .

We thus get

3 (CoCy) P2/t | <1 + Daloga>g/t
939/t (g;rt) 1/7501 log E
1
y(g'i‘t)/t(degL A)l/t '

log d(u, Wao) > _8(9 + t)

x (alog E + Dlogb)

3 (Cocl)(2g+2t+1>/t

239/15(9;%)1”01 . It is equal to

To conclude, we look at the constant 8(g + t)

3
(5(g + 1)) 2oTt+3Ca+26+1)/t 8(97+16)101 |
239/t (9F1) /t

As we have (2g+t+3)(2g+2t+1) = 4(g+t+1)2— (22 +2gt +t+1) < 4(g+t+1)2—t(2t+2g+1),
the constant is bounded by

8(g +t)°
" ((5(9 + t))2t+29+1239/t (g;&H) 1/t01) < (5(g )

A(g+t+1)? 4(g+t+1)?
t t .

(5(g +1))

We finally deduce theorem 4.3:

« 2 Dal g/t
g d(u, W) > ~(5(g + )5 ot (14 BEEEL)
1

logE + Dloghb .
X (a og + og ) y1+g/t degL(A)l/t
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7.2 Proof of theorem 4.6

Our final goal is to prove theorem 4.6, removing the hypothesis 4.2 of theorem 4.3. Let again
(A, L) be a polarised abelian variety over a number field k of degree D. Let og : k < C be an
embedding of k into C. Let pa € A(k) be a k-rational point of A, ua € ta, be a logarithm of
p4, and consider Wy < t4 a k-vector subspace of 4.

Define A’ to be the smallest subvariety of A,, whose tangent subspace contains u 4. From
[BG19, Proposition 4.2] (which follows from [Rém20, Théoréme 1.1]) A’ is defined over some Galois
extension k4 /k of degree at most f(g) := 2a(g)69 1g!, with a(2) =2, a(4) = 5, a(5) = 7/6, and
a(g) = 1 otherwise. The following lemma gives an upper-bound for [k, : k] that will be simpler
to use.

Lemma 7.4. For all integer g, we have [k4 : k] < f(g) < (3.89)9.
Proof. Using the upper-bound g! < 2 (%)g, we have

2a(g)
3

flg) =2a(g) x 697 1g! < (39)7.

For every value of g except ¢ = 2 and 4, we have 2a(g) < 3. This gives the announced
result in these cases. For g = 2, we have f(g) = 48 < (3.8 - 2)?, and for g = 4, we have
f(g) = 51840 < (3.8 - 4)%. [ |

Let ug € (tar + Wo @ ka)/(Wo @ ka) C ta/Wo @y ka and let
W= {(Ax),z),z €ta} Cta/Wpy x ty,

where A : t4 — t4/Wj is the canonical projection. We want to find a lower bound for the distance
d((uo,ua), Wy) for o : kg < C extending og. We fix such o and we define W(, := (W ®pka)Ntar.
Let ¢ be the linear map

tar /W) — (tar+Wo®pka)/(Wo @k ka)
r+ W, — x+ Wy

We let ufy := @~ (ug) € tar/W{. Our strategy to bound d((ug,ua), W) is to transpose our setup
in a situation where theorem 4.3 applies, and to compare the quantities that will appear in terms
of A, ua, pa, Wy, and ug. The abelian variety A’ satisfies hypothesis 4.2. Therefore, to apply
theorem 4.3 to A’, W{j, ua, and u(, we have to ensure that the vector space W{ is a strict vector

subspace of t 4. To do so we make the following assumption.
Hypothesis 7.5. Assume that ua doesn’t lie in Wy ®g, C.

Hypothesis 7.5 implies that W is distinct from ¢ 4/. Indeed, if W = ¢4/ then W@k contains
tar, but uy lies in tar s but not in Woﬂ. Letting W' = {(X(x),x),x S tA/} - tA//W(/) X tyr, with
X i tar — ta /W the canonical projection, theorem 4.3 gives us a lower-bound for d((ug, wa), W7,).
The following result allows us to compare d((ug,ua), W) and d((ug, ua), W7).
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Proposition 7.6. We have
d((ug, ua), W)
V2l

Proof. First, we have [Jug — A(ua)l|le < v2d((uo,ua), Wy). Indeed, let (A(z),z) € (ta/Wo X ta),
be such that d((ug,us), Wo)? = |lua — z||% + |Juo — A(x)||2. We then have

IX(wa)) = uollz < (IA(wa) = A@)llo + [luo — A@)l5)?

<2(fJua — 23 + [luo — A@)|7)

< 2d((ug, wp), Wy)2.

d((uo,uns), Ws) =

Then, define W= {(A\(z),z),z € t4} CW. By definition, we have

o = Mwa)l2 > inf (o = A@IE + 1z = wal?) = dl(uo,0a). Wor)®.

Finally, notice that the image of w by o~ x Id is equal to W’. Therefore,
d((up,wa), Wy) = d((¢~" x 1d)(ug, ua), (¢~ x 1d)(W,))
<™t x 1d o d((uo, wa), Wo).

To conclude, the norm ! x1Id is smaller than max(|l¢~!||s, || Id ||s) = max(|¢~!|,,1). Moreover,
the norm ||¢||, is smaller or equal to 1 because for z € t4//W( ®, ko, we have

Iz +Wo,)lle = inf lz+wolle < inf = [lz+wollo = |z + Wo,llo,
woEWp, o wOEW&U ’

meaning that |¢||, < 1 for any place o. Finally, we get ||¢ 7!, = 1 because 1 < ||1d ||, <

lellolle™ o < lle™ - n

From the lower-bound of proposition 7.6, let us apply theorem 4.3. Indeed, (A’,u4) satisfies
hypothesis 4.2 by construction, we can apply the theorem to A’, W{, o, ua, and ug to get a lower
bound for d((uf,ua), W,). Taking E = e in the theorem we get

(g’ +t'+1
7

2 Yy
d((ug,ua), Wh) = —(5(g +t') " v =g (1+[kA:Q}a’1oga')g/t

1 (7.3)
x (a' + [ka : Q]logd’)
A8 Y) TG T deg, (AN

with

2 2
/ = dimA/, lo CL/ = max <71, ’HUAHJO€> ,

t':= codimy ,, (Wp), log b’ := max (ho(l)(pé), h(Wp)) ,

o = [[ka : QJmax (1, hp(A"),logh®(A’, L),loglka : Q],logloga’)],

d B 1/(dim A’—dim B)
and ¢’ := in 8L .
BcA \ degy, A’



114 CHAPTER 7. END OF THE PROOF

The strategy to prove theorem 4.6 from proposition 7.6 and (7.3) is to compare the quantities
lo~ o, loga’, logl/, @, and deg; A’, in terms of invariants depending on A, pa, ua, Wy, and
ug. This is achieved by the following lemmas 7.7 to 7.12, 7.14 and 7.15. Let us define

2
M, := max <1,logD, hr(A),loghr(pa),log HUADHJO> :

Before going into the heart of the proof, we first treat the case g = 1 which is much simpler. In
this case, the polarisation L is some tensor power L{j of the unique principal polarisation Lg on
A. We have A" = A, Wy = {0} and therefore

dL((u07uA)7W0) = \/ﬁdLo((umuA)v WU) > dLo((u(]vuA)7W0)'

We can directly apply theorem 4.3 to (A, Lo, pa,ua, Wo,ug) as an elliptic curve always satisfies
hypothesis 4.2. Taking F = e we get

log dr, ((uo,us), Wy) = —10%%ag (1 4+ Daglog ag) (ap + Dlogby),

where we have denoted ag, log ag, and log by the quantities a, loga, and log b corresponding to
the datum (A, Lo, pa, ua, Wo, ug). We then have

2
ap < 2D max (1,hF(A),logD,10g+ hiy(pa), 2+ log HIH;JJO>

= Jul?.,
< 6D max 1,hF(A),10gD,log hL(pA),IOg D )

~ 2 —~ 2
logap < e?max (hLO(pA),”uA'll;’LO> < e?max <l,hL(pA), uAD"’L>, and logby = logb. We

therefore conclude that

36 2 o HUAH%;,L
logdy ((ug,ua), Wy) = —10°° X 6DM 4 X (1 + 6e“)DMamax | 1,hr(pa), —

x 7D max (M4, logb)

2
~ uA
> —2-10% D3 M3 max (M4, log b) max <1, hr(pa), H#) .

Let us now assume that g > 2. A recent result of Rémond gives a very good comparison between
hF(A/) and hF(A)
Lemma 7.7 ([Rém22]). We have hp(A') < hp(A) + glog(nv/2).

The quantity log a’ is also not so difficult to estimate.

~ 2
Lemma 7.8. We have loga’ < €2 max (hL(pA), ”“ADHUO>.

To compare deg; A" with invariants depending only on A and u 4, we use a result of Bosser

and Gaudron.
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Lemma 7.9. If g > 2, we have

. U 2 g
dog 4 < (1320)/ D0 s (R o). 1020 ) i

Proof. |[BG19, Théoréme 1.1] states that for g > 2, we have

/

’ ~ g
degy, A’ < (1009)'9" (Dhi(pa) + luall?,)
~ g'+1
X (Dmax (1,1og (D), hi(A),log (DhL(pA) " ||uA||§O))) .
‘We now have

2
~ ~ uAlls
Div(pa) + ual, < 20w (B o), 012 )

and

~ ~ wall?
log (DhL(pA) + HuAH§0> < log D + log <2max (hL(pA), HADHUO>>

2
< (2 + log(2)) max (1, log D,log hr,(pa),log HUAD|UO> .

As ¢ is bounded by g, we get

2 g
deg; A’ < (1009)%9°29(2 + log )97 D2+ max <hL(pA), ”“AD””O> M4

We finally bound the constant. We have
29(2 +1og 2)7+! = (2/149)(2 4 log 2) 71/ (492>)4g2 .
The terms in the brackets is bounded by 1.32 if ¢ > 2. Therefore, if g > 2, then
(1009)*9°29(2 + log 2)9! < (1329)%".
Lemma 7.9 allows us immediately to bound the quantity 3/~(1+9'/t) (deg; A"~/ v
Lemma 7.10. If g > 2, then

1
Y9/t (deg,, A

: ~ 2 \ 9
< (1329)%° D99+ Y max (hL(pA)a HU?DHUO> Mgy,

Proof. As 3y’ deg; A’ > 1 from proposition 4.1 we have

1
y/1+g’/t’ (degL A/)l/t’

< (degy AYHI DY < (degy A

We then bound ¢’ by ¢g and use lemma 7.9 to conclude. |
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The result of lemma 7.9 also leads to an estimation for logh®(A’, L).

Lemma 7.11. If g > 2, then
logh®(A’, L) < 13¢g3M 4.

Proof. We have logh®(A’, L) = logdeg; A’ —log ¢'! < logdeg; A’. Therefore, using lemma 7.9
we have
logh®(A’, L) < 4¢%log(132g) + (29 + 1) log D

lwall3,

+ glog max <EL(A), ) +(g+1)log M4y

< (4¢°log(1329) + (29 + 1) + g + (g + 1)) Ma.

To conclude, if g > 2 we have

4log(132 4 2
4% 10g(1329) + 49 +2 = ¢* ( 0g(1329) + 9 + >

g g3
< 13¢5

We deduce that logh®(A’, L) < 13¢°M 4. [ |

We can use this result to bound the quantity a’.

Lemma 7.12. If g > 2, then
a < (599)YDM 4.

Proof. Recall that we have
o« = [[ka : Q) max (1, hp(A’),logh®(A’, L),log[ks : Q],logloga’)] .
Using lemmas 7.7, 7.8 and 7.11, we deduce that

a < 2f(g9)D max (1, hp(A) + glog(ﬂ\/i), 13¢3M4,1log D + log f(g),

2
2 + max (log hi(pa),log HUADHUO)>

2
< 269°f(9) - Dmax (Llog D, hp(A),loghy(pa),log ”“g") .

The last inequality is justified by the fact that 13¢% is always bigger than 1 + %log(wﬂ),
1+log f(g) <14 glog(3.8¢g), and 3. To conclude, we have f(g) < (3.8¢)¢ from lemma 7.4 and if
g = 2, we have

266%f(g) < (3.89) (261/993/9)9 < (3.89) (261/2 : 3)9 < (599)°.
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The remaining quantities to bound are log ||¢ ||, and log®’. Until now, all the estimations
only involved quantities related to our abelian variety A but the upcoming ones will also have to
take into account Wy and ug. We define

log b = max (ho()(po), H(Wo)) -

We first prove a general result about norms of linear applications that we will use to bound
I~ o

Lemma 7.13. Let K be a number field and let £, F be two Hermitian adelic vector bundles over
Spec Ok of dimension n. Let ¢ : £ — F be an isomorphism. For any place v of K, we have

Il < o=~ det .,

for the operator norm induced by the structure of K,-normed spaces on E, and F.

Proof. First assume that v is non-Archimedean. Let (eg,...,e,) be a basis of £ such for any
ai,...,an € K, we have

n

E aie;|| = max |a;y.

‘ 1<i<n

=1 )

Similarly, consider a basis (fi, ..., fn) of F, such that for all by, ..., b, € K,, we have

ijfj = Imax ‘bj’v-
7=1

1<j<n
v

We get the following diagram of K,-normed vector spaces.

B, —Y 4 R,

[l

Kp 2 K7
where P and @ are the applications induced by the bases (e1,...,e,) and (f1,..., fn), and ¥ is
the matrix Q¢ P~! corresponding to 1. By construction, we have |||, = || ¥||,. Moreover, the

inverse of U1 is equal to det(¥)CT, where C is the cofactor matrix of ¥~1. As the coefficients

of C' consist of minors of ¥~ of size n — 1, we have ||C||, < [[¢~}||?~!. Therefore, we get
1llo = 9]l < [ det W[, | Cllo < | det @l wHET = [~ |57 det vl

If v is Archimedean, the v-norm of v is equal to the square root of the norm of the biggest
eigenvalue of @T”L/J. Let us denote A1, Aa..., A\, the spectrum of @Td} with 0 < [A]y <+ < | Ao
We then have ||¢|2 = [An|o and [[1o7 1|2 = |Aq|; L. This leads to

v
_ —T n _ _
902 = Prale = A1 Al ¢ Aa - ducal < et (379 LA = 92 207D det 2.
This proves that |[¢, < || ~Y|?~!|det |, in the Archimedean case too. [ |

We now apply lemma 5.12 to ¢~ L.
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Lemma 7.14. If g > 2, we have
log |l o < (949)9 D max(My,logh).

Proof. Take ¥ := ¢~ in lemma 5.12 and any place v of k4. We get [lo ||, < ||lo||£ 1| det ..
We claim that the v-norm of ¢ is always less or equal to 1. Indeed, for x € ta /W ®y, ky, we
have
lo(z + Wy )llo = inf flz+wolls < inf [z +wollo = [z + W,
’ woEWD v woEW/, ’

0,v

meaning that |¢l|, < 1 for any place v. We deduce that for our embedding o, we have
log ||l < log|det oY, < D[ka : k]h(det o~ 1). Moreover, from [Gau2l, Proposition 42| we
can express the height of det ¢ in terms of Arakelov degrees in the following way:

h(det o) = deg, ((ta + W @0, On,)/ Mo B0, Ok,)) — deg, (Lar /W)

Using the inequalities d/(%n (W(’)) ,d/e\gI1 (t;l + Wh ®0, Ok:A) < gmax (0, Imax (ﬂ)) coming from
the very definition of the maximal slope, we deduce a first estimation for the norm of ¢ relative

to o | 09.

1og |~ s < [ka : k1D (deg, (Lar W B0, O, ) — deg, (W) — deg, (L) + deg, 04) )

< f(9)D <2g max (0, fimax(t4)) + R(Wo) + hp(A) + %log ho(4’, L)) .

From proposition 3.28, the maximal slope of ¢4 is bounded by 12hr(A) + 16g log(24¢g). Applying
lemmas 7.7 and 7.11, we get

- 13¢°
gl < F(9)D (3207 08(219) + (249 + V() + glog(xvE) + A(W0) + 2114 )

< (3.8¢9)Y (3292 log(24g) + 249 + 1 + glog(nv2) + 1 + 6.5g3> D max(My,logb)
< (949)Y D max(Ma,logb).
|

To conclude, we look at the term logh’ = max (hoq)(ph), h(W)). The following result
bounds it in terms of M4 and logb := max (ho(1)(po), H(Wo)).

Lemma 7.15. If g > 2, we have
log b < 42¢° max(M 4, logb).

Proof. First, applying the inequality deg,(F) + deg,(G) < deg,(F + G) + deg,(FNG) from
proposition 3.6 with F = W, ®o, Ok, and G =1y, we get

_ECEH <W6> < _d/e\gn (WO) - d/e\gn(m) + d/'e\gn (WO ®Ok OkA + t.A')

1 _
< h(Wy) + hp(A") + 5 log hO(A/, L) 4+ gmax (O,ﬁmax (tA)) .
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Using the upper bound g max (O, Imax (ﬁ)) < 12ghp(A) + 16g% log(24g) from proposition 3.28,
and lemmas 7.7 and 7.11, we deduce

. 13
—deg, (W}) < h(Wo) + hp(A) + glog(mv/2) + —QMA +12ghp(A) + 16¢% log(24g)

1414 glog(mv/2) + 6.5¢° + 12g + 1642 10g(24g)> max (M4, logb)
42g3 max(My,logb).

/N

Let us now bound he1y(pg). From the definition uy = ¢~ (ug) we deduce using [Gau06, §4.4.3]
that ho1)(po) < h(w) + hoa)y(po). As we have already seen, for any place v, the v-norm of ¢ is
less than or equal to 1 and therefore h(¢p) is non-positive. We finally get

logb" < max (ho(1)(pp), (W) < 423 max(Ma, log b).

We are finally ready to prove theorem 4.6. Recall that from proposition 7.6 and (7.3), we
have
A(g"+t' +1)2

logd(u, W,) > —(5(g/ + )" 7 "/ (14 [ka: Qla'loga’)*""

1
/ . / o _ —1
< (o ka: Qllog ) x T deg, (AP 108 V2 —log |l s-

Moreover, we have proved that

e o' < (599)9DM, (lemma 7.12);
u 2
e loga’ < e?max (hL( A)s ”AD”"O> (lemma 7.8);

e logt’ < 42¢3 max(My,logh) (lemma 7.15);

1
° Y1+ (deg, ALY S

e log |l s < (949)9D max(Ma,logb) (lemma 7.14).

wal|? g
(132¢)%9° D9(29+1) max <hL( A), ”AD”(’O> Mfl(gﬂ) (lemma 7.10);

Using lemmas 7.8 and 7.12 we can bound the term 1+ [k4 : Q]a’loga’:

2
+[ka: Qa'loga’ < (14 f(9)(599)%%) max (1, D x DMy x max (MpA), Hu?;”»

2
—~ UA|| 5
< (1+ (3.89)9(599)%?) D* M 4 max <1, hi(pa), ”D”o)

< 29 12 -~ ||UA||¢270
X (259) D MA max 17h’L(pA)7T .

Similarly, we can bound the term a’ + [k4 : Q]log b’ using lemmas 7.12 and 7.15:

o + [ka: Qllogh’ < (599)IDM4 + f(g) x 42¢° D max(Ma, logb)
((599)7 + (3.89)7 x 42¢*) D max(Ma,logb)

<
< (92¢9)9D max(Ma,logb).
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Using these inequalities together with lemmas 7.10 and 7.14, we get

4(gl+t/+1>2

log d(u, W) > (5<g’ Ty <59g>9/t’<25g>299’/“<929>9<132g>493) (DM

2 g’/t’
x D max(Ma,logb) (DQMA max (1, hi(pa), HUADHUO>>

2\ 9
x DI+ max (ﬁL(pA)’ ”“;‘)”oo> Mfl(gﬂ)

—log V2 — (949)9.D max(M4, log b)

2 \ 9°tyg
> —c(g)D(29+1)(9+1) max (17 hi(pa), HUADHUO) Mﬁlg—l-l)z max(Ms, logh).

with
clg) = (10g)*+D” (599)7 (259)%" (929)7 (1329)*" + log V2 + (949)? < (2650009)*".

Notice that we have bounded w by 4(g + 2)? because x — W is decreasing for

x € [1,¢], therefore maximal at x = 1 with value 4(g' + 2)? < 4(g + 2)%. We are finally done in
the case g > 2.
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Chapter 8

English introduction

This part of the thesis mainly comes from the article [Pea2l]|. Chapters 8 and 10 have been
lengthened a bit, slight changes have been made in chapters 11 and 13 and sections 15.1 and 15.1.2,
and chapter 14 and section 15.2 are mainly new and the corresponding section [Pea21, 5. Dihedral
Representations| has been augmented with new results.

8.1 Residual modular representations

Among all modular forms, the most famous one is with no doubt the Ramanujan Delta function.
Considered and first studied by Ramanujan in 1916 in [Ram00, §15-19], it can be defined as

A=q[J(1—g"* =" r(n)q"
n=1 n=0

Since this seminal article, many mathematicians have studied the properties of the tau and delta
functions. Apart from being the Fourier coefficients of a modular newform for the whole modular
group, the coefficients (7(n)),en satisfy the following surprising congruence relations.

7(p) =1+ p'! (mod 2°),  for all primes p # 2;

7(p) = p? + p° (mod 3%),  for all primes p;

7(p) =p + p*° (mod 5%),  for all primes p; (8.1)
7(p) = p + p* (mod 7), for all primes p; '
7(p) = (&) 7(p) (mod 23), for all primes p # 23;

7(p) =1+ pht (mod 691), for all primes p,

where (2%) denotes the Legendre symbol at p and 23. Note the one can prove more general
relations modulo higher powers of 2, 3, 5, 7, 23 and 691. See the beginning of [Swi73] for a
statement and references for those congruences.

For long, no geometric setup had been given to explain the congruences (8.1). In his Delange—
Pisot—Poitou lecture in 1968 [Ser69], Jean-Pierre Serre proposed a conjecture relative to the
existence of a certain Galois representation attached to A. It states the following.
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Conjecture 8.1 ([Ser69, 3.2. Conjecture|). Let £ be a prime number and denote by K, the
mazimal extension of Q unramified outside £. There exists a continuous linear representation

pe + Gal(K,/Q) — GL(V}),
where Vy is a Qg-vector space of dimension 2, satisfying the following condition:

(C) For every prime number p # £, the characteristic polynomial of a Frobenius element at p is
equal to X? — 7(p) X + p'l.

As explained by Serre, this conjecture gives a Galois theoretic explanation for the congruences
(8.1). Indeed, there is always a lattice in V; that is stable under the action of Galois induced by
pe- A choice of basis for this lattice induces a representation Gal(K,;/Q) — GL2(Z,) that has
the same trace and determinant as py. One can then reduce this representation modulo ¢" to get

a representation

pen : Gal(K,/Q) — GLo(Z/0"Z).

In this setup, the previous congruences can be reformulated, up to semi-simplification, as

p2,5 = 1 & Yok P11 = X7 B XH
P32 = Xas B Xas; p231 = (53) © p23; (8.2)
P52 = Xs2 B X595 P91 = 1 D Xgh,

where X, is the cyclotomic character modulo ¢". With this reformulation arise several questions.
Are the primes 2, 3, 5, 7, 23, and 691 the only primes for which isomorphisms as in (8.2) appear?
Is there a way to predict and compute these isomorphisms? Is conjecture 8.1 true and does it
generalise to other modular newforms?

The answer to the last question is in fact affirmative since Deligne in 1969 and Deligne—Serre
in 1974 proved the following result for all modular forms of weight £ > 2 and k = 1 respectively.

Theorem 8.2 ([Del71], [DS74, Théoréme 4.1]). Let k, N be two positive integers, and let € be a
Dirichlet character modulo N. Let f be a newform of weight k, level N, and character €. Denote
by Ky the number field generated by the Fourier coefficients of f.

For every prime ideal X in the ring of integers of Ky of residue characteristic ¢, there exists
a continuous Galois representation

s Gal(Q/Q) — GLao(F),

where F' = Ky ) is the A\-adic completion of Ky if k > 2, and ' = C if k = 1, satisfying the
following conditions:

1. The representation py\ is unramified outside N/;

2. For every prime number p{ N{, the characteristic polynomial of a Frobenius element at p
is equal to X% — a,(f)X + pF~le(p), where a,(f) denotes the p-th Fourier coefficient of f.
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Theorem 8.2 is the starting point of many theorems and conjectures of the second half of the
twentieth century and many are still active today. Among others, one can cite Serre’s conjecture
[Ser87], Wiles” modularity theorem [Wil95, Theorem 0.4], the questions of level raising [DT94]
and lowering [Rib90, Theorem 1.1], and so on.

As explained by Ribet in [Rib77, Theorem (2.3)], the conditions 1 and 2 characterise entirely
pf. up to isomorphism and ensure that it is always irreducible.

Let us now focus on the case k > 2 — the case of modular forms of weight 1 being a whole
story on its own. We fix a newform f of weight & > 2, level N > 1, and character €. Let A
be a prime ideal of the ring of integers Ok, of Ky. As before, one can construct a lattice of
KJ% , that is stable under the action of Gal(Q/Q). This leads to a representation with values in
the local ring of Ky ) that we can reduce modulo A. Writing IF) the residue field of A, we get a
representation

,Bf,)\ : Gal(@/@) — GLQ(]F)\)

This representation depends on the lattice used to reduce py . However, the Brauer-Nesbitt
theorem ensures that semi-simplifying pyx leads to a representation py ) with values in Fy
uniquely characterised up to isomorphism by the following properties:

1. The representation py , is semi-simple;
2. The represenattion py 5 is unramified outside N/

3. For every prime number p { N/, the characteristic polynomial of a Frobenius element at p
is equal to X2 — a,(f)X +p*le(p) (mod ).

Remark 8.3. Notice that the reduction modulo X indeed makes sense for ay(f) and (p) because
it is a fact that the coefficients of f are all algebraic integers and that Ky contains the values of
the character of f. See [Rib77, Corollary (53.1)] for a proof of this fact.

Again Cebotarev density theorem and Brauer—Nesbitt theorem ensure that P is entirely
determined by the conditions 1, 2, and 3. However, p; \ may no longer be irreducible. The
starting point of this part of the present thesis is the following theorem proved by Ribet in 1975
for modular forms of level 1 and in 1985 for modular forms of arbitrary level, and generalising
results of Serre and Swinnerton-Dyer of 1973 for N =1 and Ky = Q [Ser73; Swi73].

Theorem 8.4 (|Rib85, Theorem 2.1|). For all but finitely many A the representation Py s
irreducible. Furthermore, if f is not a form with complex multiplication (see definition 14.3),
then for all but finitely many A, the order of the image of py 5 is divisible by L.

Theorem 8.4 gives a first answer to Serre’s questions about the congruences of the tau function:
there is indeed a finite number of primes ¢ such that for some integers a and b, 7(p) is congruent
modulo £ to p® + p® for all but finitely many primes (and they in fact appear only for £ = 2, 3, 5,
7, and 691). Indeed, this kind of congruences corresponds exactly to the primes for which Py is
reducible. To understand how the congruences of tau modulo 23 is related to Ribet’s theorem,
we need to make it more precise. The classification of the subgroups of PSLy of a finite field is
known since Dickson |Dic01, Chapter XII|. It goes as follows.
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Theorem 8.5 ([Hup67, Hauptsatz 8.27]). Let q := pf be a power of a prime number p. A
subgroup of PSLa(IF,) is isomorphic to one the following groups.

q£l

1. A cyclic group of order z dividing Fd(g=13)

2. A dihedral group of order 2z with z dividing m;

3. The alternating group Ay, only if p > 2 or q¢ = 2°";

4. The symmetric group &4, only if ¢*> =1 (mod 16);

5. The alternating group As, only if p=>5, or ¢*> =1 (mod 5);

6. (Z/pZ)" for some non-negative integers n;

7. A semi-direct product (Z/pZ)" x Z/mZ for some non-negative integer n and m dividing
p" — 1 and g — 1 respectively;

8. PSLa(Fyn) for some integer n dividing f;
9. PGLa(IFpn) for some integer n dividing 2f .

Using theorem 8.5 and the fact that we can always embed PGL2(F,) into PSLy(F;2), we can
reformulate Ribet’s theorem.

Corollary 8.6. Let f be a newform. There are only finitely many prime ideals A that satisfy
one of the following properties.

1. The representation py 5 is reducible;

2. The form f is not CM and the projective image of pyy in PGLy(FFy) is isomorphic to a
dihedral group Da, with €1 2n, where £ is the residue characteristic of \;

3. The projective image of py\ in PGLa(FFy) is isomorphic to 2y, &4, or As.
We call a prime ideal that satisfies one of these properties an “exceptional ideal”.

Remark 8.7. Despite the fact that the hypothesis f not CM appears in the second part of
theorem 8./, the proof of [Rib85, Theorem 2.1] used it only in the dihedral case.

The isomorphism modulo 23 in (8.2) falls in the second case of corollary 8.6. From this point
two natural questions arise.

I) For each case of corollary 8.6, can we bound the residue characteristic of the “exceptional
ideals” in terms of invariants of the modular f (such as the weight, the level, or the
character)?

IT) For each case of corollary 8.6, can we compute the exceptional ideals?
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For modular forms of level 1, the result of Ribet from 1975 gives an explicit description of the
prime ideals for which the associated representation is reducible. However, it was no more the
case in 1985. For the second and third cases of corollary 8.6, even the 1975’s proof was not
effective. The first step in making Ribet’s result effective has been accomplished by Billerey and
Dieulefait in 2014 [BD14]. Assuming that the character of f is trivial, they gave explicit criteria
for the residue characteristics £ of A in terms of k and N, for p; \ to be reducible. In the two
other cases, they gave explicit bounds for ¢, in terms of k and N. The goal of this part of the
thesis is to pursue this work and to give as many answers as possible to questions I and II.

8.2 Overview of the results

o0
Let f =q+ > an(f)q"™ be a newform of weight k, level N, and character € of conductor ¢. Let
n=2

K¢ := Q(an(f))n>2 be the coefficients’ field of f, and let X be a prime ideal in the ring of integers
of Ky above a rational prime number ¢. The contributions of this part of the thesis are twofold.
On the one hand they extend the results of [BD14] to all newforms of arbitrary weight, level,
and character, giving an explicit bound in all three cases of corollary 8.6 in terms of k, NV, and
€. On the other hand, we give in the reducible and dihedral cases an algorithm that, given the
level, the weight, the character, and a finite number of Fourier coefficients of f, computes all the
reducible prime ideals and all the dihedral prime ideals.

The general ideas we use to prove our results come back to Serre and Swinnerton-Dyer
[Ser73; Swi73]. The three special cases of corollary 8.6 can be formulated in terms of congruences
satisfied by a set of Fourier coeflicients of f of density 1 — namely the ones of index coprime to
N{. From these congruences we deduce necessary conditions that need to be satisfied by the
residue characteristic, and with some extra work a bound in all three cases. To get an algorithm
in the dihedral and reducible cases, we work with necessary and sufficient conditions that lead,
with the use of a new Sturm bound, to a finite set of congruences verified by the coefficients of f
that are equivalent to the reducibility or dihedrality of p y. Let us review in more details our
approach in each case of corollary 8.6.

In the third case, we use the fact that 24, &4, and 25 contain only elements of order at most
3, 4, and 5 respectively. Given the shape of the local representations attached to py 5, this gives
huge restrictions for the possible residue characteristics that fall into this case. The argument
given in [BD14] can be applied almost without modification to the case of a form with non-trivial
character. The bound in this case in given by the following result.

Theorem 8.8 (theorem 10.15). If the projective image of Py is isomorphic to Ay, Sy or As,
then either ¢ | N or £ < 5k — 4.

Remark 8.9. The proof of the corresponding result in [Pea21, Theorem 0.2] is not correct because
it uses [BD1/, Lemma 1.2] that assumes that the weight k is even. This assumption (which comes
from the fact that the character of the forms in [BD1}] is trivial) is not true in our general case.
This has been corrected in the proof of theorem 10.15.

In the dihedral case, we get congruences between twists of f. The strategy is then to use a
Sturm bound in characteristic zero and Deligne bound for the coefficients of a modular form to
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get a bound for ¢. Our result is the following.

Theorem 8.10 (theorem 14.17). Assume Py has dihedral projective image of prime-to-C order.
If N =1 then we have £ < k or £ € {2k — 1,2k — 3}. Else, if N > 2 and f does not have complex
multiplication, then we have

k-1 .
Nk 5K Q)
¢ < max (3 (2loglog(N) +2.4) ,25N2> .

This result gives us indeed an upper bound for ¢ in terms of N and k because Ky : Q] can
be bounded by the dimension of the C-vector space generated by the newforms of weight &, level
N and character ¢ (see for example [Mar(5]).

In the reducible case, we deal instead with congruences involving Eisenstein series. Our
approach in comparable to the one of Billerey and Dieulefait in [BD14, Section 2|. The restriction
on the character in [BD14] was mainly due to a partial knowledge of the constant term of
Eisenstein series at arbitrary cusps. This computation has been done in full generality in [BM18§],
allowing us to generalise their result. The following theorem then follows from combining this
technical result with a detailed study of modular reducible representations, hence extending the
strategy used for the proof of [BD14, Theorem 2.7].

Theorem 8.11 (theorem 13.19). Assume py 5 to be reducible. Then one of the following holds:
1. 0<k+1;
2. | Np(N), where ¢ denotes the Euler totient function;

3. there exists a prime-to-¢ order primitive Dirichlet character n of conductor ¢o | N such that
n(=1) = (=1)* and ¢ divides the algebraic norm of one of the following non-zero quantities:

(a) p* —n(p) for a prime number p | N;
(b) the k-th Bernoulli number By, attached to n (see definition 11.1).

The precise study of reducible and dihedral modular representations used in the proof of the
two previous theorems is the main novelty of our results. The basic question we consider is as
follows: How to characterise the reducibility and dihedrality of p; y by a finite number of explicit
congruences? In both the reducible and the dihedral case we give two answers to this question.
A general one that applies without any restriction on £ or f, and, under some assumptions on £,
a second one for which the number of congruences to check is independent of £. A weaker form
of our two unconditional results state as follows.

Theorem 8.12 (theorem 13.12). The following are equivalent:
1. py 5 1s reducible;

2. Let £ be a place of Q above \. There exist two primitive Dirichlet characters €1, €3 of
conductor ¢1, co respectively, unramified at £ and such that cicy | N, and two integers my,
ma such that 0 <mq < mg </ —2 and Yzlﬁm%leg = X’Zﬁle (mod £). Define

T 3 + max(k, ma +2my + 1) if | N
] 445+ max(k,me +my +1) if LN
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For every prime number p < N%; I (1 + é) and not dividing 20, we have
2N

q prime

o p1 N and ay(f) = p™e1(p) +p™2e2(p) (mod £);
e or, p| N and ay(f) = p™b, (mod £) for some b, in the set {0,e1(p),p™* "ea(p)}.

When this holds, we moreover have py \ = Xy €1 ® X, *€2, where €1 and g3 are the reductions of
€1 and €9 modulo £ respectively.

Theorem 8.13 (theorem 14.12). The following are equivalent.
1. The representation py 5 has dihedral projective image of prime-to-{ order;

2. There exist an integer e € {0,1} and a primitive Dirichlet character 1 of conductor ¢y | N,
unramified at £, and such that for a prime p dividing N .

o if u,(N) =1, vp(c) =0, and p # £, then p{cy;
o if v,(N) = v,(c) and p # ¢, then either pt ¢y or the p-parts of 1 and €' are equal
modulo \;

o if va(N) € {2,3}, and va(c) < v2(N), then va(cy) < 2.

Define

= Jk+4+3(1+e5 if £ N;
k+4++1)(1+e5L) if¢fN.

N ged(2, N)%k
M I1 (p+1), the following congruences hold:

For every prime p < B
pIN

o ap(f) =97 Y(p)ay(f) (mod A) if pt NE;

-1 . .
o ap(f)? = p° 7 (), (p) (mod A) if p | N, p # £, vp(N) = wp(c), and 4 is
ramified at p. Here (we); denotes the prime-to-p part of the Dirichlet character ie.

Notice that these two results apply with no assumption on f and ¢. In particular, they can
be used to check the reducibility and the dihedrality of p \ for any given A, including the ones
with small residue characteristic compared to the weight, or divides the level. Such restrictions
appear for instance in the work of Anni [Annl13, Algorithms 7.2.4 and 10.1.3|, where the author
develops a different, “bottom-up” approach, towards these questions in the context of modular
forms “a la Katz”.

In theorems 8.12 and 8.13, the number of congruences to be satisfied depends not only on
N, k and €, but also on £. Under some assumptions on ¢, we have been able to remove this
dependency in the bound. A weaker form of these two “big” characteristic results can be stated

as follows.

Theorem 8.14 (theorem 13.17). Assume £ > k+1 and {1 Np(N), where ¢ denotes the Euler

totient function. The following are equivalent:

1. Py y 1s reducible;
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2. Let £ be a place of Q above A\. There exist two primitive Dirichlet characters €1, €3
of conductor ¢y, ¢o respectively such that ¢ica | N, and €169 = €. For all odd primes

pg% II (1+%>, we have
q|2N

q prime

o PN and ay(f) = e1(p) +p*'ea(p) (mod £);
e p| N and ay(f) =b, (mod £) for some b, € {0,e1(p),p" Lea(p)}.

When this holds, we moreover have Py =E1D X’Zﬁlﬁ, where €1 and €5 are the reductions of &1
and €2 modulo £ respectively.

Theorem 8.15 (theorem 14.16). Assume £ >k —1, £ ¢ {2k — 1,2k — 3}, L+ N, Ltp £ 1 for all
primes p dividing N. The following are equivalent.

1. ps\ has dihedral projective image of prime-to-€ order.

2. There exists a primitive Dirichlet character 1 of conductor ¢y | N such that for a prime p
dividing N
o if u,(N) =1 and vy(c) =0, then p{ cy;
o if u,(N) = v,(c), then either pt ¢y, or the p-parts of 1 and e~ are equal;
o if va(N) € {2,3}, and va(c) < v2(N), then va(cy) < 2.

N ged(N,2)%k I

Moreover, for every prime p < 5 (1 + %), the following congruences hold.

p|N

o ap(f) =1(pap(f) (mod A) if pt N;
e a,(f)? =p" H(e)o(p) (mod N) if p | N, vy(N) = vp(c) and 1 is ramified at p, where
(e)o denotes the primitive character associated to e.

We stress the fact that according to theorems 8.12 and 8.14, proving the reducibility of p 5
requires checking around N max(k?, N)loglog(N) congruences (and even Nk loglog(N) for the
primes ¢ satisfying the assumptions £ > k + 1 and £+ Np(N)). Notice that the loglog(N) part
comes from the upper-bound we prove in lemma 12.23. Similarly, it follows from theorems 8.13
and 8.15 that proving the dihedrality of p; y needs around N max(k?, N)loglog N congruences
to check (and around Nkloglog N when the assumptions of theorem 8.15 hold).

To achieve such bounds, we extensively use the local description of p \ at the bad prime
numbers (i.e. the prime numbers dividing N), together with generalised Sturm bounds theorems
and an appropriate use of degeneracy maps between modular forms spaces of various levels.
Having a sharp bound is especially important from a computational point of view. Indeed, those
four results also provide us two algorithms: one that explicitly computes the exact set of A such
that py y is reducible, and one that explicitly computes the exact set of A’s such that p; , has
dihedral projective image. We have implemented these algorithms in PARI/GP [21].



Chapitre 9

Introduction en francais

Cette partie de la thése vient principalement de l'article [Pea2l]. Les chapitres 9 et 10 ont été
rallongés 1égérement. Quelques changements ont été effectués dans les chapitres 11, 13, et les
sections 15.1, 15.1.2. Enfin, le chapitre 14, et la section 15.2 sont en grande partie nouveaux.

9.1 Représentations résiduelles modulaires

Parmi toutes les formes modulaires, la plus célébre est sans nul doute la fonction Delta de
Ramanujan. Définie et étudiée par Ramanujan en 1916 dans 'ouvrage [Ram00, §15-19], elle est
définie par la série génératrice

A=q =gy =D 7(n)q"
n=1 n=0

Depuis cet article fondateur de nombreux mathématiciens ont étudié les propriétés des fonctions
tau et delta. Outre étre les coefficients d’une forme modulaire nouvelle pour le tout le groupe
modulaire, les coefficients (7(n)),en satisfont les surprenantes congruences suivantes.

7(p) =1+ p't (mod 2°),  pour tout nombre premier p # 2 ;
7(p) = p? + p° (mod 3%),  pour tout nombre premier p ;
7(p) =p + p*° (mod 52),  pour tout nombre premier p ; (9.1)
7(p) = p + p* (mod 7), pour tout nombre premier p ; '
7(p) = (&) 7(p) (mod 23), pour tout nombre premier p # 23 ;
7(p) =1+ ptt (mod 691), pour tout nombre premier p,

ol (2%) est le symbole de Legendre modulo 23 en p. Des congruences plus générales modulo des

puissances plus grandes de 2, 3, 5, 7, 23 et 691 existent aussi. Nous renvoyons le lecteur a [Swi73]
pour les énoncés et des références pour ces congruences.

Pendant de nombreuses années, les congruences (9.1) n’étaient expliquée par aucun cadre
géométrique plus général. C’est en 1968 que Jean-Pierre Serre proposa une conjecture relative
a lexistence d’une famille de représentations galoisiennes associée & A dans son Séminaire
Delange-Pisot—Poitou de 1968 [Ser69|. Sa conjecture était la suivante.

135
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Conjecture 9.1 ([Ser69, 3.2. Conjecture|). Pour nombre premier ¢, il existe une représentation

linéaire continue
pe : Gal(K;/Q) — GL(V,),

ot Ky est l’extension maximale non ramifiée en £ de Q, et V; est un Qp-espace vectoriel de

dimension 2, satisfaisant o la condition suivante :

(C) Pour tout nombre premier p # £, le polynome caractéristique de pe(Frob,) est égale a
X2 —7(p)X +p't.

Serre explique que cette conjecture donne une interprétation galoisienne des congruences
(8.1). En effet, considérons un réseau Ay stable par Gal(K,/Q) dans V; (un tel réseau existe
toujours). Le choix d’un tel réseau induit une représentation Gal(K;/Q) — GL2(Z¢) ayant la
méme trace et le méme déterminant que p;. En réduisant cette représentation modulo ¢", on
obtient une représentation

pon : Gal(K;/Q) — GLo(Z/0"Z).

On peut alors reformuler les congruences précédentes (& semi-simplification prés) par les isomor-

phismes suivants.

p25 =1 B X P11 = X7 D X7 ;
P32 = X5 © Xas 5 p231 = (53) @ pasi ; (9.2)
P52 = X2 DX 3 peor1 = 1B X,

ol X, est le caractére cyclotomique modulo . De ces isomorphismes émergent plusieurs
questions : Est-ce que ce type d’isomorphismes apparait uniquement pour les nombres premiers
2,3,5,7, 23, et 6917 Y a-t-il une procédure pour prédire et calculer ces isomorphismes? La
conjecture 9.1 est-elle vraie et se généralise-t-elle pour d’autres newform ?

La réponse a la derniére question est positive et a été apportée par Deligne en 1969 pour des
formes de poids supérieur ou égal a 2, et par Deligne et Serre en 1974 pour des formes modulaires
de poids 1. Leurs énoncés sont les suivants.

Théoréme 9.1 (|Del71], [DS74, Théoréme 4.1]). Soient k et N deux entiers strictement positifs,
et soit € un caractére de Dirichlet modulo N. Soit f une newform de poids k, niveau N, et de
caractére €. On désigne par Ky le corps de nombres engendré par les coefficients de Fourier de f.

Soit X un idéal premier de l’anneau des entiers de Ky de caractéristique résiduelle £. Il existe
une représentation galoisienne linéaire continue

psa Gal(Q/Q) — GLa(F),

ot F' := Ky ) est la complétion M\-adique de Ky si k > 2, et F':= C si k = 1, qui satisfait les
conditions suitvantes :

1. La représentation py \ est non ramifiée en dehors de N ;

2. Pour tout nombre premier p{ NZ, le polynome caractéristique de ps .y en un Frobenuis en p
est égal @ X2 — ap(f)X + p*te(p), ot ap(f) est le p¢ coefficient de Fourier de f.
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La démonstration du théoréme 9.1 marque le point de départ de nombreux théorémes et
conjectures de la seconde moitié du XX¢ siécle — et beaucoup sont ouvertes encore aujourd’hui.
Parmi eux on peut citer la conjecture de modularité de Serre [Ser87], le théoréme de modularité
de Wiles [Wil95, Theorem 0.4], les questions d’augmentations du niveau [DT94]| et d’abaissement
du niveau [Rib90, Theorem 1.1].

Comme l'explique Ken Ribet dans [Rib77, Theorem (2.3)], les conditions 1 et 2 caractérisent
entierement la représentation py\ a isomorphisme pres, et imposent qu’elle soit irréductible.

Concentrons-nous désormais sur le cas du poids supérieur & 2 — le cas des formes modulaires
de poids 1 étant toute une autre histoire. Soit f une newform de poids k > 2, niveau N > 1, et
caracteére de e. Soit A un idéal premier de 'anneau des entiers Ok, du corps Ky des coeflicients
de f. Comme précédemment, on peut construire un réseau Galois-stable de KJ%, et en conjuguant
par ce réseau on obtient une représentation a valeurs dans I’anneau local de Ky. Notons Iy le
corps résiduel de A. On peut alors réduire modulo A la représentation obtenue et on trouve

i : Gal(Q/Q) — GLa(Fy).

Cette représentation dépend du choix du réseau utilisé pour réduire py 5. Cependant, le théoréme
de Brauer-Nesbitt nous assure que la semi-simplifiée de py \ est unique a isomorphisme preés et

est caractérisée par les propriétés suivantes.
1. La représentation P est semi-simple ;
2. La représentation py y est non ramifiée en dehors de N/;

3. Pour tout nombre premier p t N/, le polynome caractéristique de P en un Frobenius en
pest égal & X2 — a,(f)X + pF~te(p) (mod N).

Remarque 9.2. La réduction modulo \ de a,(f) et e(p) est effectivement bien définie car les
coefficients d’une newform sont toujours des entiers algébriques et que le corps Ky contient
toujours les valeurs du caractére de la forme f. Nous renvoyons a [Rib77, Corollary (3.1)] pour
une démonstration de ces résultats.

De nouveau grace au théoréme de Brauer—Nesbitt et par le théoréme de densité de Cebotarev,
la représentation p; \ est entierement déterminée par les propriétés 1, 2, et 3. Cependant, elle
peut ne plus étre irréductible — contrairement a ps . Le point de départ de cette partie de la
thése est un théoréme démontré par Ribet en 1975 pour les formes de niveau 1, et en 1985 pour
n’importe quelle forme modulaire. Il généralise les travaux de Swinnerton-Dyer et Serre de 1973
pour N =1et Ky =Q [Ser73; Swi73].

Théoréme 9.3 ([Rib85, Theorem 2.1]). Pour tout idéal premier \ en dehors d’un ensemble
fini, la représentation py y irréductible. De plus, si f n’est pas a multiplication complexe (voir
la définition 14.3), alors pour tout A sauf un nombre fini, l’ordre de l’image de Pp nest pas
divisible par L.

Le théoréme 9.3 apporte une premiére réponse aux questions de Serre sur les congruences
vérifiées par la fonction tau : il n’existe effectivement qu’un nombre fini de nombres premiers ¢

pour lesquels 7(p) est congruent modulo £ & p® + p® pour tout p sauf un nombre fini, avec a, b
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deux entiers (et on peut démontrer que ce phénomeéne se produit uniquement pour ¢ = 2, 3, 5,
7, et 691 dans le cas de A). En effet, ces congruences correspondent exactement aux nombres
premiers pour lesquels pp , est réductible. Pour mieux comprendre les congruences vérifiées par
7 modulo 23, nous avons besoin d’étre plus précis quant au théoréme de Ribet. La classification
des sous-groupes de PSLy d’un corps fini est bien connue depuis Dickson [Dic01, Chapter XIIJ.
Elle peut s’énoncée comme suit.

Théoréme 9.4 (|Hup67, Hauptsatz 8.27|). Soit q := p! une puissance d’un nombre premier p.
Un sous-groupe de PSLa(F,) est isomorphe a un des groupes suivants.

1. Un groupe cyclique d’ordre z divisant ﬁ_lm) ;
2. Un groupe dihédral d’ordre 2z avec z divisant ﬁ ;

3. Le groupe alterné Ay, uniquement si p > 2 ou q = 2°";

4. Le groupe symétrique Sy, uniquement si ¢ = 1 (mod 16) ;

5. Le groupe alterné As, seulement sip=>5, ou ¢> =1 (mod 5) ;
6. (Z/pZ)" pour un entier positif n ;

7. Un produit semi-direct (Z/pZ)" x Z/mZ pour des entiers n et m divisant p" — 1 et ¢ — 1

respectivement ;
8. PSLy(Fyn) pour un entier n divisant f ;
9. PGLy(Fyn) pour un entier n divisant 2f.

En utilisant le théoreme 9.4 et le fait que I’on peut toujours plonger PGL2(F;) dans PSLa(FF2),
nous pouvons reformuler le théoréme de Ribet de la maniére suivante.

Corollaire 9.5. Soit f une newform. Il existe seulement un nombre fini d’idéaur premiers \ qui

satisfont a au moins une des propriétés suivantes.
1. La représentation py 5 est réductible ;

2. La forme f n’est pas CM et l'image projective de py , dans PGLa(FFy) est isomorphe a un
groupe dihédral Dayy, avec €1 2n, ot £ est la caractéristique résiduelle de X ;

3. L’image projective de py  dans PGLy(Fy) est isomorphe a Ag, Sy, ou AUs.

On appellera par la suite « idéaux exceptionnels », les idéaux qui vérifient une des propriétés
ct-dessus.

Remarque 9.6. Malgré le fait que Uhypothése f non-CM apparait dans la seconde moitié du
théoreme 9.3, la preuve de [Rib85, Theorem 2.1] ne 'utilise que dans le cas dihédral.

L’isomorphisme modulo 23 dans (9.2) correspond alors au deuxiéme cas du corollaire 9.5. A

partir de la, deux questions se posent.
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I) Pour chaque cas du corollaire 9.5, peut-on borner la caractéristique résiduelle des idéaux
exceptionnels en fonction des invariants de la forme f tels que son poids, son niveau, ou
son caractére ?

IT) Pour chaque cas du corollaire 9.5, peut-on calculer les idéaux exceptionnels ?

Pour des formes de niveau 1 les résultats de Ribet de 1975 donnent une description explicite des
idéaux premiers pour lesquels la représentation résiduelle associée est réductible. Cependant, cela
n’est plus le cas dans sa preuve générale de 1985, et cela n’était déja pas le cas pour les deux
autres cas en 1975. Le premier pas pour rendre les résultats de Ribet effectifs a été accompli
par Billerey et Dieulefait en 2014 [BD14]. Dans le cas ou le caractére de la forme f est trivial,
ils donnent des critéres explicites sur la caractéristique résiduelle £ de A en fonction de k et N
pour que la représentation py y soit réductible. Dans les deux autres cas ils donnent des bornes
explicites sur £ en fonction de k et N. Le but de cette partie de la thése est de continuer leur
travail et de donner autant de réponses que possible aux questions I et II.

9.2 Résultats

o0
Soit f =g+ Y. an(f)q" une newform de poids k, niveau N, et de caractére € de conducteur c.

Soit Ky := Q?an( f))n>2 le corps des coefficients de f, et soit A un idéal premier de 'anneau des
entiers de K, au-dessus d’un nombre premier /. Les contributions de cette partie de la thése
sont doubles. D’une part, nous généralisons les résultats de [BD14] & n’importe quelle forme
modulaire de poids, niveau, et caractére quelconque, et nous donnons une borne effective pour
chacun des trois cas du corollaire 9.5 en fonction de k, N, et . D’autre part, nous développons
un algorithme qui, étant donné le poids, le niveau, le caractére, et un nombre fini de coefficients
de f, calcule tous les idéaux réductibles, et tous les idéaux dihédraux.

La stratégie que nous adoptons se base sur les idées de Serre et Swinnerton-Dyer [Ser73;
Swi73]. Les trois cas du théoréme de Ribet peuvent étre reformulées en termes de congruences
satisfaites par un ensemble de densité 1 de coefficients de Fourier de f — ceux d’indice premier
a N{. A partir de ces congruences, nous déduisons des conditions nécessaires que doit vérifier
la caractéristique résiduelle de A, puis des bornes dans chacun des trois cas. Pour obtenir un
algorithme dans les cas dihédraux et réductibles, nous travaillons par conditions nécessaires et
suffisantes. Celles-ci nous conduisent, en utilisant des bornes de Sturm, & un ensemble fini de
congruences que doivent satisfaire les coefficients de Fourier de f, équivalentes a la réductibilité
de py , d’une part, et a sa dihédralité d’autre part. Nous détaillons notre approche pour chacun
des trois cas ci-dessous.

Dans le troisiéme cas, nous utilisons le fait que les groupes 204, &4, et A5 ne contiennent
respectivement que des éléments d’ordre 3, 4, et 5. En connaissant la forme locale en ¢ de la
représentation py 5, cela nous donne des contraintes sur les caractéristiques résiduelles possibles
dans ce cas. L’argument donné dans [BD14| s’applique presque sans modification au cas général
d’une forme de caractére non trivial, et nous déduisons la borne suivante.

Théoréme 9.7 (10.15). Si l'image projective de py , est isomorphe a 2y, &4 ou ™Us, alors soit
¢ | N, soit £ < 5k —4.
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Remarque 9.8. La preuve du résultat correspondant dans [Pea21, Theorem 0.2] était fausse
car elle utilisait le résultat [BD1/, Lemma 1.2] qui supposait que le poids de f était pair. Cette
hypothése — qui venait du fait que le caractére dans [BD1/] était trivial — n’est pas vrai dans notre
cadre plus général. Nous avons corrigé cela dans la démonstration du théoréme 10.15.

Dans le cas dihédral, nous utilisons des congruences entre des tordues de la forme f. Notre
stratégie est d’utiliser une borne de Sturm en caractéristique nulle et les bornes de Deligne pour
les coefficients d’une forme modulaire pour obtenir un majorant de . Notre résultat est le suivant.

Théoréme 9.9 (14.17). Supposons que py 5 est d’image projective dihédrale d’ordre premier a
. Si N =1, alors{ <k, oul € {2k —1,2k —3}. Si N > 2, et que f n'est pas a multiplication
complezxe, alors

Nk KrQ]
¢ < max (3 (2loglog(N) +2.4) ,25N2> .

Ce résultat nous donne effectivement une borne sur ¢ en fonction de N et k car le degré
[K : Q] peut étre borné par la dimension du C-espace vectoriel engendré par les newform de
poids k, niveau N et de caractére € (voir par exemple [Mar05]).

Dans le cas réductible, nous travaillons avec des congruences faisant intervenir des séries
d’Eisenstein. Notre méthode est comparable a celle de Billerey et Dieulefait dans [BD14, Section
2]. Leur restriction sur le caractére de f venait principalement du manque de connaissance
a I’époque sur le terme constant des séries d’Eisenstein en une pointe quelconque. Ce calcul
a été effectué en toute généralité par [BM18], nous permettant de généraliser les calculs de
[BD14]. Le résultat suivant est la combinaison de ce résultat technique et de I’étude détaillée
des représentations modulaires résiduelles réductibles, généralisant ainsi la preuve de [BD14,
Theorem 2.7|.

Théoréme 9.10 (13.19). Supposons que Py est réductible. Au moins une des propriétés suivantes
est alors vraie.

1. 0<k+1;
2. L | No(N), ou ¢ désigne la fonction caractéristique d’Euler;

3. il existe un caractére de Dirichlet primitif n d’ordre premier a £, de conducteur ¢y | N tel que
n(—1) = (=1)k, et ¢ divise la norme algébrique d’une des quantités non-nulles suivantes :

(a) p* —n(p) pour un nombre premier p | N ;
(b) le k¢ nombre de Bernoulli By, den (voir la définition 11.1).

L’étude détaillée des représentations modulaires réductibles et dihédrales qui sont faites dans
la thése sont les principales nouveautés de nos résultats. La question que nous nous posons est la
suivante : Comment caractériser la réductibilité (resp. la dihédralité) de p; \ par un nombre fini
de congruences effectives 7 Dans ces deux cas, nous donnons deux réponses a cette question. Une
réponse générale, sans restriction sur la caractéristique résiduelle de I'idéal A, ni sur la forme f.
Et une seconde réponse qui, sous certaines hypothéses sur £, donne un ensemble de congruences
a satisfaire qui est indépendant de £. Nous énoncons une version affaiblie de nos deux résultats

inconditionnels ci-dessous.
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Théoréme 9.11 (Theorem 13.12). Les énoncés suivant sont équivalents.
1. La représentation py 5 est réductible ;

2. Soit £ une place de Q au-dessus de \. Il existe deux caractéres de Dirichlet primitifs €1, ea,
de conducteur ¢1, co respectivement, non ramifiés en £, et tels que cico | N. Il existe deux

entiers my, ma tels que 0 <my <mo <€ —2 et y;nﬁm%lz—:g = X’Z*ls (mod £). Soit

T 3 4+ max(k,m2 + 2m; + 1) sil|N;
¢+ 5+ max(k,my+¢my +1) sil{N.

Pour tout nombre premier p < % II (1 + l) et ne divisant pas 20, on a

q
q|2N

q premier

e PN etay(f) =p™eip) +p"ez(p) (mod £);
e ou, p| N eta,(f)=p™b, (mod £) pour un nombre b, € {0,e1(p),p"> ™ ea(p)}.

Quand ces propriétés sont satisfaites, on a de plus py\ = X, €1 D X, €2, ou €1 et &5 sont les
réductions de €1 et e modulo L.

Théoréme 9.12 (Theorem 14.12). Les énoncés suivants sont équivalents.
1. La représentation py y est d’image projective dihédrale d’ordre premier a £ ;

2. Il existe un entier e € {0,1} et un caractére de Dirichlet primitif ¢ de conducteur ¢y | N,
non ramifié en £, et tel que pour tout nombre premier p divisant N,

o siv,(N)=1,v,(c) =0, et pF# L, alors p{cy;
o sivp(N) =wp(c) et p# L, alors soit pt ¢y, soit les p-parties de 1 et e~ sont égales
modulo X ;

o siva(N) € {2,3}, et va(c) < va(N), alors va(cy) < 2.

Soit
T Era43(1+eF) sil| N ;
| k+4+(C+ 1) (1+e5E) sitfN.

N ged(2, N)2%k
M I[1 (p+1), les congruences suivantes sont

Pour tout nombre premier p <
12 IN

satisfaites :

o ap(f) =" T U(P)ay(f) (mod X) si pt NE;
e a)(f)’ = pee%”rk_l (Wf); (p) (mod \) sip | N, p#{, v,(N)=wvy(c), et ¢ est ramifié

en p, ou (¢z€)£7 désigne la partie premiere a p du caractére de Dirichlet ve.

On notera que ces deux résultats s’appliquent quelques soient la forme f et le nombre premier
¢. En particulier, ils peuvent étre utilisés pour tester la réductibilité et la dihédralité de p; \ pour

n’importe quel idéal premier A, y compris ceux dont la caractéristique résiduelle est petite devant
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le poids, ou divise le niveau. De telles hypothéses étaient par exemple présentes dans le travail
d’Anni [Ann13, Algorithms 7.2.4 et 10.1.3|, on 'auteur développait une approche différente —
utilisant des connaissances sur les formes de petit poids pour en déduire pour des formes de poids
supérieur — dans le contexte des formes modulaires de Katz.

Dans les théorémes 9.11 and 9.12, le nombre de congruences a satisfaire ne dépendent pas
seulement de N, k, et &, mais aussi de la caractéristique £. Sous des hypothéses sur ¢, nous
sommes parvenus a supprimer cette dépendance dans la borne. Nous énongons ci-dessous une
forme affaiblie de nos résultats « en grande caractéristique » pour les cas réductibles et dihédraux.

Théoréme 9.13 (Theorem 13.17). Supposons £ > k+ 1 et L1 No(N), ou ¢ désigne la fonction
caractéristique d’Euler. Les propriétés suivantes sont équivalentes.

1. La représentation py 5 est réductible ;

2. Soit £ une place de Q au-dessus de \. Il existe deux caractéres de Dirichlet primitifs 1,
g9, de conducteur ¢y, co respectivement, tels que ¢ico | N, et e169 = €. Pour tout nombre
premier impair p < % I (1 + %),

q|2N

q premier

on a

o ptN et ap(f) =ei(p) +p* 'ea(p) (mod £);
e p| N etay(f)=b, (mod £) pour un b, € {0,e1(p), p* tea(p)}.

Quand ces propriétés sont vérifices, on a de plus py 5 = a@ilz_lﬁ, ou &1 et €5 sont les réductions
de €1 et €9 modulo L.

Théoréme 9.14 (Theorem 14.16). Supposons ¢ >k —1, £ ¢ {2k — 1,2k — 3}, et L4 N, Ltp+1
pour tout nombre premier p divisant N. Les énoncés suivants sont équivalents.

1. La représentation py y est d’image projective dihédrale d’ordre premier a £ ;

2. Il existe un caractére de Dirichlet primitif ¢ de conducteur ¢y, | N tel que pour tout nombre

premier p divisant N

o sivp(IN) =1 etvy(c) =0, alors pfcy;
e siv,(N) = v,(c), alors soit ptcy, soit les p-parties de ¢ et e~1 sont égales;

o siva(N) € {2,3}, et va(c) < va(N), alors va(cy) < 2.

N ged(N,2)%k 11

De plus, pour tout nombre premier p < 5 (1 + %), les congruences suivantes

pIN
sont satisfaites.

o ap(f) = P(plap(f) (mod A) sipf N,

e a,(f)? = pF 1 (we)o(p) (mod ) sip | N, v,(N) = vy(c) et @ est ramifié en p, ou
(e)o désigne le caractere primitif associé a e.
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Nous insistons sur le fait que selon les théoremes 8.12 et 8.14, certifier la réductibilité de py 5
nécessite environ N max(k?, N)loglog(N) congruences (et méme Nk loglog(N) pour les nombres
premiers ¢ tels que £ > k+ 1 et £1 Np(N)). Le terme loglog(N) provenant de la majoration
donnée dans le lemme 12.23. De méme, il suit des théorémes 8.13 et 8.15 que prouver la dihédralité
de py 5 requiert vérifier de I'ordre de N max(k?, N)loglog N congruences (et Nkloglog N quand
les hypothéses du théoréme 8.15 sont satisfaites).

Pour obtenir de telles bornes, nous utilisons de maniére cruciale la description locale de
la représentation py, aux mauvais nombres premiers (c’est-a-dire les nombres premiers qui
divisent le niveau N). Les autres ingrédients importants que sont de nouveaux théorémes de
type bornes de Sturm que nous démontrons, ainsi qu'une utilisation judicieuse des applications
de dégénérescences entre les espaces de formes modulaires. Avoir des bornes aussi petites que
possible est extrémement important dans une optique algorithmique. En effet, nos résultats nous
ont permis de développer deux algorithmes : un premier qui, étant donné une forme f, calcule
I'ensemble exact des idéaux premiers A tels que py 5 est réductible; et un second qui calcule les A
tels que py \ est d’image projective dihédrale d’ordre premier a £. Nous avons de plus implémenté
ces deux algorithmes dans PARI/GP [21].
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Chapter 10

Background on (Galois representations

We fix once and for all algebraic closures Q of Q, @ of Qp, and Fp of F,, for all prime numbers p.
We denote by Z and Z,, the rings of integers of Q and Q, respectively.

10.1 Generalities on Galois representations

We begin by recalling general notions of the theory of Galois representations we will be using. A
Galois representation is a continuous morphism from the group Gg = Gal(Q/Q) to GL,(F),
for a positive integer n and some field F'. The group G is endowed with the Krull topology,
a basis of open subsets of Id consisting of the subgroups Gal(Q/K) for all number fields K/Q.
The topology on GL,(F) depends on the field F. For F' = C or a subfield of F,, for a prime p it
is the discrete one, and for F' a subfield of Q,, it is the p-adic topology. A result we will be using
extensively to prove isomorphism between Galois representations is the so-called Brauer—Nesbitt
theorem.

Theorem 10.1 (Brauer—Nesbitt [CR06, (30.16) and (30.14)]). Let p, p' : Gg — GLy(F) be two
semi-simple Galois representations. If p and p' have the same characteristic polynomials, then
they are isomorphic. If F has characteristic zero, then p and p' are isomorphic if and only if for
all o € Go, the traces of p(o) and p'(o) are equal.

The study of a Galois representation usually passes through the investigation of the rami-
fication and the restriction of the representation to decomposition and inertia subgroups. We
recall what they are. For a place v of Q (Archimedean or not), the decomposition subgroup of
Gq associated to v is defined as

Gy :={0 € Gg,voo =v}.

For a place p of Q, all the decomposition subgroups G, for v | p are conjugated under Galois.
We will denote by G, an element of this conjugacy class of subgroups of Gg.

In the Archimedean case, G corresponds to a copy of Gal(C/R) inside Gg. A complex
conjugation is the non-trivial element of such a subgroup, and any two complex conjugations are
conjugated under Gg. A Galois representation p : Gg — GL2(F) is said to be odd if for any
complex conjugation ¢, we have

det p(c) = —1.

145
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In particular if F' C [y, every Galois representation is odd.

In the non-Archimedean case, let G, be a decomposition subgroup of Gg at a prime number
p. The inertia subgroup I, of G, is the kernel of the projection G, — Gal(F,/F,). A Galois
representation p : Gg — GLy,(F) is said to be unramified at p if for any inertia subgroup I, at p,
we have I, C ker p. Otherwise, we say that p is ramified at p.

A Frobenius element Frob,, is any preimage in G, of the Frobenius of Gal(F,/F,). Two
Frobenius elements of a fixed decomposition subgroup differ by an element of the inertia, and the
sets of Frobenii of two decomposition subgroups are conjugated. Therefore, if a representation p
is unramified at p, it makes sense to define the trace, the determinant, and the characteristic
polynomial of p at a Frobenius element at p. The main reason we will use Frobenius elements in
the rest of this part is the so-called Cebotarev theorem, which we now state.

Theorem 10.2 (Cebotarev). Let K/Q be a Galois extension (possibly infinite) that is unramified
outside a finite set of primes S. Let P be a set of primes of density one not containing any
element of S. The union of the conjugacy classes of Frobenius elements at p € P is dense in

Gal(K/Q).

Combining Cebotarev density theorem with Brauer—Nesbitt theorem 10.1, we get the following
result.

Corollary 10.3 ([DS74, Lemme 3.2|). Let p, p' : Gg — GL,(F) be two semi-simple Galois
representations both unramified outside a finite set of primes S. If p and p' have the same
characteristic polynomials (or the same traces if F has characteristic zero) at the Frobenius
elements at p ¢ S, then they are isomorphic.

We conclude this section by recalling some facts on the Artin conductor. For a reference
about this material, see [Ser68, Chapitres IV & VI|. Let u > —1 be a real number, and let v be a
non-Archimedean place of Q above a prime number p. Write G¥ the u-th ramification subgroup
of Gg at the place v in upper-notation. For a Galois representation p : Gg — GL(V') acting on a
F-vector space, with F' = Qy, Fy, or C, the number

+oo
np = / dim V/V% du,
-1

is an integer if p # £. If p is unramified outside a finite number of places, the Artin conductor of
p is defined as

N(p):=]]r™,

where the product ranges over the primes p # £ if F' # C, and over all the primes if F = C.

10.2 One dimensional Galois representations

10.2.1 Cyclotomic characters

Let ¢ be a prime number and n a positive integer. The group Gg acts naturally on the group
pen of £M-th roots of unity. This gives rise to the cyclotomic character modulo £":

Xen : Go — Aut(uem) = (Z/0"Z) .
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This action is moreover compatible with the projection maps Aut(um) — Aut(pem) for n > m,
giving a character

Xe = @1 Xen -
n>1

This is the ¢-adic cyclotomic character. As Jim (Z)0"Z)* =Z this is an -adic character.
n>1
Let us compute the ramification of x, and X,. The action of Gg on psm factors through

Gal(Q(¢m)/Q) where (gn is a primitive £"-th root of unity, and the only prime that ramifies in
Q(¢gn) is £. Therefore, the inertia subgroup of Gal(Q({s)/Q) at a prime p # £ is trivial, and all
the cyclotomic characters are unramified outside . Furthermore, for a prime p the action of a
Frobenius element Frob, on (4~ is given by Frob, (;» = Cfn, and the one of a complex conjugation
cis cCpm = Cg_nl. We get the following result.

Proposition 10.4. Let £ be a prime number. The £-adic and modulo £ cyclotomic characters
are unramified outside £. In particular, we have

N(xe) = N(xe) = 1.
Moreover, for all primes p # £ and complex conjugation ¢, we have

x¢(Froby,) =p and xe(c) = —1,;
X¢(Froby) =p (mod ¢) and X,(c)=—1 (mod ).

10.2.2 Dirichlet characters

Recall that a Dirichlet character of modulus N > 1 is a morphism ¢ : (Z/NZ)* — C*. Changing
the field C to Fy, we get what we will call a residual Dirichlet character ¢ : (Z/NZ)* — F, . The
conductor of a Dirichlet character (residual or not), is the smallest divisor of d of N such that
the character factorises through (Z/dZ)*.

We can go from one type of character to the other in the following way. As any Dirichlet
character € of modulus N has order at most p(IV), its image lies in the ring of integers of Q((y(n))-
Choosing a prime ideal A in this field above a prime number ¢, we can reduce € modulo A to get
a residual Dirichlet character  : (Z/NZ)* — F, . Note that the conductor of the character may
decrease through this operation. In the other way, let us look at the behaviour of the roots of
unity after reduction modulo some place £ of Q above /.

Lemma 10.5. Let n be a positive integer and let ¢ be a primitive n-th root of unity in Q. Let ¢
be a prime number and let £ be a place of Q above £. We have ( =1 (mod £) if and only if n is
a power of £. In particular, a Dirichlet character is trivial modulo £ if and only if it has order a
power of £.

Proof. According to [Coh07, Proposition 3.5.4|, the algebraic norm of 1 — ¢ over Q(() is equal to:

0 ifn=1;
q if n=q" with ¢ prime and r > 1;
1 otherwise.
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Thus, if n is not an ¢-power, then ¢ does not divide the norm of ( — 1 and we have ( Z 1 (mod £).
Assume n =/, r > 1. We then have

ezl = (1 - O)F Dz,

Thus, the only prime ideal above ¢ in Z[(] is (1 — ¢)Z[(], and we therefore have ( =1 (mod £).

For the second part of the lemma, let € be a Dirichlet character modulo N. From above, ¢ is
trivial modulo £ if and only if £(z) is a root of unity of order a power of ¢ for every z € (Z/NZ)™.
This happens if and only if € has order a power of /. |

Lemma 10.5 implies that the kernel of the reduction modulo £ from the group of all roots of
unity to EX , is the subgroup of primitive roots of unity of order a power of £. In particular, the
restriction of this map to the subgroup of roots of unity of order prime to ¢ is injective. Moreover,
because the subgroup of roots of unity of order " — 1 maps to Fy,, it is onto and therefore an

isomorphism. Denoting p, the group of complex roots of unity, the inverse map

Te : F, = {C € pioo, ged(¢,0rd(¢)) = 1},

is the so-called Teichmiiller lift with respect to the place £. Therefore, given a residual Dirichlet
character 1 : (Z/NZ)* — F, , we can lift it to a Dirichlet character T o 7 of prime-to-£ order.
Moreover, the conductor of the character does not change during this process. Therefore, there is a
correspondence between Dirichlet characters of modulus N (and of conductor ¢ respectively) with
prime-to-¢ order, and residual Dirichlet characters of modulus N (and of conductor ¢ respectively).
Note that, there may be several ways to lift a residual Dirichlet characters depending on the
place of Q above ¢ we choose.

Next, we can see any Dirichlet character as a Galois representation of dimension one in the
following way. For (N a primitive root of unity, the Galois group of the cyclotomic extension
Q(¢n)/Q is isomorphic to (Z/NZ)™. Therefore, we have the following diagram.

Go ———— Z[¢m)]”

Gal(Q(¢n)/Q) —— (Z/NZ)*

We will denote by p. the Galois representation Gg — Z[(,(n)] corresponding to €. Conversely,
given a one-dimensional complex representation p : Gg — C*, it has finite image and factors
through a finite abelian extension of Q. From Kronecker-Weber theorem, such extension is
contained in a cyclotomic extension of QQ, and thus p comes from a Dirichlet character. Moreover,
we have the following result.

Proposition 10.6 ([Ser68, Chapitres IV & VI]). Let e : (Z/NZ)* — C* be a Dirichlet character
of modulus N and conductor ¢. Denote by p. the associated Galois representation.

The Artin conductor of p. is equal to c. Moreover, for a complex conjugation ¢ and a Frobenius
element Frob,, at a prime p{ ¢ we have

pe(c) = e(—1) and pe(Froby,) = eo(p),

where €q is the primitive Dirichlet character associated to €. Finally, for a prime p | ¢, the
representation pe|r, corresponds to the p-part &, of €.



10.3. MODULAR GALOIS REPRESENTATIONS 149

Remark 10.7. In the rest of the thesis Dirichlet characters of modulus N will also be regarded
as totally multiplicative N -periodic functions e from Z to C such that e(m) = 0 if ged(m, N) > 1.
This is indeed equivalent to the previous definition of Dirichlet characters because if € : 7 — C

satisfies these properties, the function T — €(n) is well-defined and a group homomorphism from
(Z/NZ)* to C*. Conversely, if ¢ € Hom ((Z/NZ)X ,(CX), then one get a function

7Z — C
o {0 if ged(n, N) > 1

e(m) otherwise

that satisfies the wanted properties.

10.3 Modular Galois representations

The main protagonists of the following chapters are the modular Galois representations, which
have been of major interest in number theory in the last 50 years. The following theorem is the
fundamental theorem of Deligne that states the existence of these objects.

Theorem 10.8 (|Del71|). Let f be a newform of weight k > 2, level N > 1, and character ¢.
Denote by Ky the number field generated by the Fourier coefficients of f, and let X be a prime
ideal in the ring of integers of Ky with residue characteristic £. There exists a unique (up to
isomorphism) odd Galois representation

pra: Go = GLa(Kya)
with values in the A-adic completion Ky ) of Ky, such that
1. pya ts unramified outside N¥;

2. For every prime number pt N¢, the characteristic polynomial of psx at Frob,, is equal to
X2 —ap(f)X +p*'e(p).

Remark 10.9. Using the Cebotarev density theorem, the condition on the characteristic polyno-
mial at the Frobenius elements can be reformulated as follows. For any prime pt N¢, we have
Tr(psa(Froby)) = a,(f) and the determinant of pgx is equal to Xffls.

We have seen in the introduction that any ¢-adic Galois representation gives rise to a unique

semi-simple residual Galois representation. This gives the following result.

Theorem 10.10. Let f := > a,(f)q™ be a newform of weight k > 2, level N > 1, and character
n>1

. Denote by Ky the number field generated by the Fourier coefficients of f, and let X be a prime
ideal in the ring of integers of Ky with residue characteristic £ and denote by Fy the residue field
of A. There exists a unique (up to isomorphism) semi-simple, odd Galois representation

ﬁf)\ : GQ — GLQ(]F)\)

such that
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1. Py is unramified outside N;

2. For every prime number pt N, the characteristic polynomial of P at Froby, is equal to
X2 = ap(f)X +p*e(p) (mod A).

Remark 10.11. Again, the second condition is equivalent to the fact that the trace ofﬁﬁ/\(Frobp)
is equal to ap(f) (mod A) and that the determinant of py  is Ylg_le (mod \).

Given f and A, one can ask what are the Galois theoretical invariants of py and p;\ we
discussed in section 10.1 such as their ramification, their Artin conductors, and their shape at
the decompositions subgroups. The answer to these questions are now well-known but are in
general difficult results. First, the Artin conductor of py ) has been computed by Carayol in
[Car86, Théoreme (A)], and the study of the behaviour the Artin conductor of p; y has been
independently obtained by Carayol in [Car89, Proposition 2| and Livné [Liv89, 2.3 Proposition].

Proposition 10.12 (Carayol-Livné). The Artin conductor of pgx is equal to the prime-to-¢ part
of the level N of f. The Artin conductor of py y satisfies

N(psa) | N.
Moreover, for a prime number p # £, we have
0p(V) = up(N(57.)) € {0,1,2}.

Next, the local behaviour of p \ has been also well studied. First at a decomposition subgroup
at ¢, the following result has been obtained by Deligne when ay(f) # 0 (mod ), and by Fontaine
when a;(f) =0 (mod \). Before stating their result, we make the following definition.

Definition 10.13. Let p be any prime number, and let x € Z,. We denote by p,(z) (or simply
w(z)), the unique unramified character of G, that send Frob, to x.

Proposition 10.14 (Deligne-Fontaine, [Edi92, Theorem 2.5 and Theorem 2.6]). Assume that
2<k<{l+1andl{N.

e If f is ordinary at A (that is if ag(f) Z 0 (mod \)), then py,|q, is reducible, and we have

—k—1 e(0) %
e (T -

0 p(a(f))

o If f is not ordinary at X\, then ﬁf,)\’Gg 1s wrreducible, and we have

(bkfl 0
ﬁf,A’Ie = 0 (b/kfl :

Here {¢,¢'} = {6, ¢} stands for the set of fundamental characters of level 2 (see [Edi92, §2.4]).

Using only proposition 10.14, we can prove a bound for the prime ideals A of O; for which
the projective image of p; y is isomorphic to 2y, G4, or ™As. As mentioned in the introduction,
the statement and the proof given in [Pea2l| were not correct as mentioned in remark 8.9. We
fix it here and give a more precise result.
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Theorem 10.15. Let f be a newform of weight k, level N, and character €.
e If the projective image of py 5 is isomorphic to U4, then either ¢ | N, or £ < 3k — 2.
e If the projective image of py 5 is isomorphic to &y, then either ¢ | N, or £ < 4k — 3.
e If the projective image of py 5 is isomorphic to ™Us, then either ¢ | N, or £ < 5k — 4.

Proof. Assume the order of the projective of image of p; , is prime-to-¢ and that £{ N and that
£>k—1.1If fis ordinary at ¢, by proposition 10.14, we have

oo (X
pf,)\’IZ_ 0 1 :

b
As the projective order of the matrix (g 1), for a, b € Fy, is equal to £ if a £ 1 and b # 0,

we necessarily have x = 0 because the order of the projective image of py , is prime-to-¢ by
assumption. We deduce that the projective image of I, is isomorphic to X’Zil(lg), which is a
cyclic group of order

(-1
ged(d — 1,k —1)°
Similarly, if f is not ordinary at ¢, by proposition 10.14 we have

¢k71 0
Pyaln, = 0 gl

Therefore, the projective image of I, is isomorphic to (b(k_l)(ﬁ_l)(lg), which is a cyclic group of

#Pps\(Le) =

order
2 -1 041

ged(@—1,(k—1)(l—1)) ged(l+1,k—1)

Assume that we are in the 24 case. As 2d4 contains only elements of order less or equal to 3, the

#Pps\(1e) =

projective image of Iy must be of order at most 3. In the ordinary case we get

(-1
ged( — 1,k —1)

<3 = (-1<3ged({—1,k—1)<3(k—1)
= (< 3k-2.

Similarly, in the non-ordinary case, we get

+1
ged(l+1,k—1)

<3 = (+1<3ged(l+1,k—1)<3(k—-1)
— (< 3k—-4.

Therefore, in the 24 case, we necessarily have £ < 3k — 2.

Similarly, the group &4 contains only elements of order less or equal to 4. With same
calculations as above, we deduce that ¢ must be less or equal to 4k — 3. Finally, 2[5 contains only
elements of order less or equal to 5, and we get ¢ < 5k — 4 in this case. |
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Finally, the shape of the local residual representation at the primes dividing the level but
different from ¢ is also essentially known. It has been derived by Langlands and compiled in
[LW12, Proposition 2.8|. In order to justify some details about it, we first need a result coming

purely from the theory of modular forms.

Proposition 10.16 (|Miy06, Theorem 4.6.17|). Let p be a prime dividing N and write ¢ for the

conductor of €.
L. Ifvp(N) = vp(c), then |a,(f)|* = p"".
2. If vp,(N) =1 and v,(c) = 0, then a,(f)? = sg(p)pk_Q, where €, is the prime-to-p component
of € (in particular ¢,(p) # 0).
3. If vp(N) = 2 and v,(N) > vp(c), then ay(f) =0.

Proposition 10.17. Let p # £ be a prime dividing N and let ¢ be the conductor of €. We denote

by vp the p-adic valuation.

o Ifv,(N) =1 and vy(c) = 0, then we have

e (Mt Y
PGy 0 plap(h)

o Ifv,(N) = vy(c), then ay(f) is a unit in Oy )\ and we have

Prale, = plap(f) @ p(ap(f)~ ) X5 ele,,

where €|g, stands for the reduction modulo X of the restriction of € to Gy.

Proof. From the first case of proposition 10.16, we have |a,(f)|? = pF~! in the second case.
Therefore, a,(f) is indeed invertible in Oy ) because p # /.

The only thing to prove is that the hypothesis of [LW12, Proposition 2.8] holds in our cases,
namely that f is p-primitive in the terminology of [LW12, Definition 2.7]. To do so, we use [LW15,
Theorem|. We recall a direct consequence of this result. Let v = min (Vp (QN)J ,Up(N) — vp(c)).

]

If w =0, then f is p-primitive. We easily check that in our two cases we have u = 0.




Chapter 11

Background on Eisenstein series

11.1 Generalised Bernoulli numbers and Gaufs sums

Let € be a primitive Dirichlet character of conductor ¢. We recall the definition and properties of
the Gaufs sums and generalised Bernoulli numbers attached to €.

Definition 11.1. The Bernoulli numbers (B, c)m>0 attached to € are defined by the following

generating series:
c

> tm tem
Z Bmvaﬁ = Z€(n) et —1°
m=0

n=1

Remark 11.2. Ife =1 is the trivial character modulo 1, we get the classical Bernoulli numbers

except when m = 1, in which case we have By 1 = % = —Bj.

Proposition 11.3. When ¢ is odd, we have

1 c—1
Bl,s — ; ZI’I"LE(’N,),
n=

and when ¢ is both even and non-trivial, we have

1 c—1
3275 = E zjln%(n).
n=

Proof. Let us compute the Taylor expansion of etf[itl for some positive integer n.
t@nt tent
=1 ot S+ GF +o(t?)
ent

c(1+%+%+o(t2)>

1 n2t? ot c2t? 22
= (14+nt+ — 12 1— =4+ == M 12
c(+n+2+o( ))( <2+6>+4+0( )>

L (P h B (™ i) o
= - ——= —|——-n+- o(t?).
c ¢ 2 2 \ ¢ 6
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[y
It follows that for any primitive Dirichlet character ¢, we have By = Y e(n) (2 — 1) and

n=1 ‘
[
Bye= 3> e(m) (2 -n+§).

n=1

[
Assume that ¢ is odd. As it is not the trivial character we have ) ¢(n) = 0 and therefore

n=1
c
By = Zs(n) ( — ) Zns
n=1
c—1
Assume that € is even and non-trivial. We have ) e(n) = 0. Moreover,
n=0
¢ c—1 c—1
> ne(n) =" (e—m)e(c—m) = (e > me
n=1 m=0 m=0

This sum is therefore equal to zero and we get

BZEZXC:»;( )<6+n>: Zns

n=1

We state below the main properties of the Bernoulli numbers. First, we exactly know when
the Bernoulli numbers vanish (see [Miy06, Theorem 3.3.4] for a proof).

Proposition 11.4. We have By, . = 0 if and only if e(—1) # (—1)™.

Secondly, the behaviour of the Bernoulli numbers after reduction modulo a prime ideal has
been studied by Van-Staudt [Sta40] in the case ¢ = 1, and by Carlitz [Car59, Theorem 1| in the
case £ # 1. We summarise their results in the following proposition.

Proposition 11.5. Let m be a positive integer.

1. Let ¢ be a prime number. If { —1 divides m, then we have By, 1 = —1 (mod ¢). Otherwise,
Bmt g L-integral and its reduction modulo £ depends only on the residue class of m modulo
¢ —1. In particular, the denominator of By, 1 is equal to [ ¢.

? prime
{—1|m

B;';’E = ND L, with M and D two coprime ideals of Z[e], the ring
spanned by the image of €. If the conductor of € admits at least two distinct prime factors,
then ® = 1. Otherwise, if the conductor of € is a power of a prime number £, then ©
contains only prime ideals above £.

Another classical quantity attached to Dirichlet characters is its Gauft sum. We recall its
definition and properties below.
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Definition 11.6. The Gauf$ sum attached to € is defined as

¢

W(e) = Z 5(n)e%cm .

n=1

One can find the following result in [BD14, Lemma 2.1].

Proposition 11.7. The prime divisors of the algebraic norm of W (e) are those of c.

11.2 Eisenstein series

Let k be a positive integer and let €1, €2 be two Dirichlet characters modulo ¢; and ¢o respectively,
and such that e1eo(—1) = (—=1)¥. Moreover, if k = 2 and €1, £5 are both trivial, then assume ¢; = 1
and co is a prime number. Otherwise, assume that €1 and 9 are primitive. For a complex number
z in the upper-half plane H, consider the following g-expansion:

oo
B (z)i= Ot 3 o P (), (11.1)
n=1
with 071%*(n) := > d"e1 (%) e2(d) for any r > 0 and
0<d|n
0 ifk>2ande; #1,
or if k=1 and €1, &9 are both non-trivial;
¢ ﬂ(CQ —1) if k=2 and €1,y both trivial;
—Zke1e Gtherwise.
L 2k

The following result is proved in [Miy06, Theorem 4.7.1] and [Miy06, (4.7.16)].

Proposition 11.8. The g-series EZ“EQ defines a modular form of weight k, level ¢ico and
character e1eo. It is a normalised eigenform for all the Hecke operators at level ¢ics.

For £ = €9 = 1, the definition of the series E,IJ’IL agrees with the definition of the classical
Eisenstein series of weight k. We simply write it Ej in this case. For k = 2, we denote by FEs

Es(z) = —i +Z ( Z d>qn.

n=1 \0<d|n

the g-series

Note that this formula defines a holomorphic function on H, but E5 is not modular.
In the case k > 2 and &1, g2 primitive, the behaviour of the constant coefficient of E;l"” at a
cusp of I'1(N) has been computed in [BM18, Proposition 4]. It states the following:

Proposition 11.9. Assume k > 2 and €1, €2 are primitive. Let M be a positive integer and

N B N oe— v A — M
let v :== (v 5) € SLy(Z). Putv = sed(oan ond M = 5 We define

Yooy, M) = lim  (ES2%2(M-)|)(2),

Im(z)—+o00
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where we denote by | the classical slash action of weight k.
If ¢2 1 0 then, Y% (, M) = 0. Otherwise, if ¢ca | U then Y;."%*(y, M) # 0 < ged (cl, %) =1.
In this case, we moreover have

T (g, M) = —e5 (M) ey (ﬁ) W((er")o)

©2) W)
" By (erea)o ( €2 )k I1 <1 — (51551)0(2?))
2k ]\/ZCO pk ’
pleics

where xo denotes the primitive character associated to a Dirichlet character x, and c¢qo the
conductor of e *ea.

The proof of [BM18| is only given in the cases k > 3, and k = 2 and ¢1, €2 non-trivial. We
give a proof of the result in the case k = 2, 1 = €9 = 1, based on the techniques used in [BM18|.

Proof. As in [BM18, §1.3], we write for Re(¢) > 0 and z € H,

1
G2,5(Z) = Z : y
(m,n)€Z2\{(0,0)} (mz +n)?[mz + n|*

By [Miy06, Corollary 7.2.10 and Theorem 7.2.12], the function € — G2 (z) is holomorphically
continued to Re(g) > —4 and we have

2
lim Gae(2) = —872Fs(2) — —°
e~ 2e\E) = e R Im(z)
Now, because Im (M Z’zig ) = %;fé‘é), we get
Tol(y,M)= lim lim g (M)|ay(z) + ! !
2 7 - Im(2) =400 £0 ]2 2, 27 (’UZ + 5)2 87 Im (Muzj__?)
1 ) ) . lvz + 62
=— 1 lim G . (M- 1
82 Im(z%gl+oo EI—I}% 276( )’27(2) + Im(z;rLlJroo 87TM(1)Z + (5)2 III](Z)

1
[ 1‘ 1. M. .
872 Im(z§r£+oo o G2, (M-)|27(2)

From this identity the proof of [BM18] still applies. Let us write z2¢ := 22|2|?¢. The function

Gac(M-)|2y(z) writes as T (z) + Re(2), with

1
TE(Z) - Z 2¢)
(mmyezA o)y (MMB F o)
mMu+nv=0
1
and R.(z) = Z 5o
() eT(0.0)) ((mMu+ nv)z + (mMpS + nd))>e

mMu+nv#0
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The function 7; is independent of z and the series is absolutely convergent for £ > % Therefore,

h
we have 1

lim  lm7T.(z) = 3 e
Im(z)—+o00 =0 () e Z2\{(0.0)} (mMB + né)
mMu+nv=0

Finally, writing n in R.(z) as Mn' + p, with p between 0 and M — 1, we have

1

R(z)= Y > : : -
(ma)ez?  0<p<M—1 (z(M (mu + n'v) +vp) + M(mpB + n'd) + pd)*
M (mu-+n'v)+vp#£0

p=mu+n'v pr_1 1
TETY Y
- 2,c"
0 (pmere FMp+vp) + Mg+ 0p)
Mp+vp#0

The last equality is justified by the fact that (p,q) = (m,n’)y, and v € SLa(Z). Applying [BM18,
Lemma 9| with a1 = vp, ag = dp and D = M, we get
lim lim R.(z) =0.
Im(z)—+4o00e—0
Lemma 6 of [BM18] therefore still applies in the case (k,e1,e2) = (2,1, 1) and one easily checks
that the proof of lemma 7 and proposition 4 of [BM18| only uses the fact that €1 and ey are

Dirichlet characters satisfying e1e2(—1) = (—1). [
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Chapter 12

Preliminary results on modular forms

12.1 Theta operators

We fix for this paragraph a place £ of Q. Consider the operator # acting on the space of

1 d

holomorphic functions on H by 5~ = qd%. On g-expansions, this operator maps > a,g" to

n=0
> napg™. It is well-known that if g is a modular form, then g is no longer modular (see for
n=0

example [Zag08, Chapter 5]). However, Swinnerton-Dyer and Serre [Swi73, § 3| have proved that
for £ > 5 and a level 1 modular form g with £-integral Fourier coefficients, one can construct
a level 1 form with £-integral Fourier coefficients and which Fourier coefficients are congruent
modulo £ to the one of #g. More generally, Katz [Kat77] has proved using his geometric theory
of modular forms that there is an operator on the space of modular forms with coefficients in an
algebraic closure of Fy, whose action on the g-expansions is the same as the one of 6. For our
purposes, the main drawbacks of this latter approach is that Katz’ modular forms modulo £ do
not always lift in characteristic 0, and have by essence a prime-to-¢ level. To remedy this, we
will construct for any given level N > 1 and place £, an operator 0 acting on M(N) — the graded
algebra of modular forms of level N —, stabilising the subspace of modular forms with £-integral
Fourier coefficients, and such that for every modular form g with £-integral coefficients we have

0g =6g (mod £),

meaning that a, (gg) and nay,(g) are congruent modulo £ for all n.
The main tool we will use in the construction of  is the Rankin—Cohen bracket, introduced
by Cohen in [Coh75, Corollary 7.2]. We recall its definition and properties below.

Proposition 12.1 (Rankin-Cohen bracket). Let g and h be two modular forms of weight k,
and ky, level Ny and Ny, and character €4 and ey, respectively. The Rankin—Cohen bracket of g
and h is

[9,h] := kggbh — kyhbg.

It is a cuspidal modular form of weight kq + kp, + 2, level lem(Ny, Ny) and character egep,.
Moreover, if both g and h have their Fourier coefficients in a ring R, then so has [g, h].

159
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Let N be a positive integer. For a prime number p, we denote by TZfV the p-th Hecke operator
acting on M(V). Recall that a modular form g € Mg (V,¢) is an eigenform for TIfV modulo £
with eigenvalue a, € Fy in the sense of [DS74, §6(b)] if g has £-integral Fourier coefficients, and if

Tlfvg =apg (mod £).

If g is moreover normalised modulo £, that is if a1(g) =1 (mod £), then g is an eigenform for
T, N modulo £ if and only if for all integer n > 0 prime to p, and all a > 1, we have

k—1

anpa(9) = an(g)ape(g) (mod L);
ape+1(g) = a (g)ap (9) —p"e(p)age-1(g) (mod £).

The eigenvalue is then moreover equal to the reduction of a,(g) modulo £. The following lemma
is the central result that shows how to construct an operator 6 satisfying the properties described
above, using Rankin—Cohen brackets.

Lemma 12.2. Let ka be a positive integer, and let xa be a Dirichlet character modulo N. Let
A e My, (N,xa) be such that A and i&A have L£-integral Fourier coefficients and satisfy

A=1 (mod £), k—@A—O (mod £), and XAEXZ]“A (mod £).
A

Then, we have a well-defined operator 04 on M(N) given by 5,49 = —%[g,A]. For every
g € My(N,e) with £-integral Fourier coefficients, this operator satisfies the following properties.

o Ougc Sk+ks+2(N,exa) and has L-integral Fourier coefficients;
° gAg = fg (mod £);

o If for some prime number p, g is a normalised eigenform for Tlfv modulo £ then so is gAg

with eigenvalue pay(g) (mod £).

In the following, when there will be no confusion on the form A, we shall write 5]‘07‘ the operator
04.

Pmof According to proposition 12.1 above, this is clear that 04 is a well-defined operator and that
] 49 has the announced weight, level, and character. Furthermore, we have ] A = — 7= gHA + Abg.

Therefore, from the assumptions, if g has £-integral Fourier coefficients, then so does 0 49 and
we have

~ 1
Org = Abg — HGA X kg=60g (mod £).

Assume g is a normalised eigenform for TIfV modulo £. Then, ) A9 is also normalised modulo £

because we have a; (@:49) =1xai(g) =1 (mod £). Let n > 0 be prime to p, and a > 1. We
have

Apper (5,49) = np®anpa(g) = nan(g) X papa(g) = ay, (5Ag) apo <§Ag> (mod £),
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and
ayanr (049) =" ayan(g)  (mod £)
=5 (ap(g)ape(9) = P "e(p)ayer(g))  (mod £)
= pay(g) X papa(g) — p’p"e(p) X p*ape-1(g) (mod £)
=q, (5,49) apo (5Ag) — PP e(p)ajea (5,49) (mod £).

We claim that pF+1e(p) is congruent to p:*++4+2)=1(cy 4)(p) modulo £. Indeed, if p | N¢, then
both sides are congruent to 0 modulo £. If p{ N/, we have p*4y 4(p) = 1 (mod £) by assumption,
and therefore

k+kA+1€(p) —ka

p

k:+k’A+16( =p

Fle(p) (mod £).

xa(p) =p p)p

As desired, we get
Apo+1 (§Ag) =a, (gAg) apo <§Ag> — p(k+kA+2)_1€XA(p)apa—1 (5,49) (mod £),
and the form 6. 49 is thus a normalised eigenform modulo £. |

Remark 12.3. When ¢ does not divide N, the reduction of A modulo £ is the so-called Katz’
Hasse invariant.

The rest of this paragraph is devoted to construct, for each level NV and place £, a form A
that satisfies the hypotheses of lemma 12.2. Among all possible forms, the ones presented in
table 12.1 are those we found with the smallest weight. Notice that if we have a form A of
level M satisfying the hypotheses of lemma 12.2 for a given place £, this form also satisfies
the hypotheses of lemma 12.2 at the multiple-of-M levels. We will use this fact to consider the
smallest set of level possible. We divide our study in three parts: first the places £ of residue
characteristic £ > 5, then ¢ = 2, and finally ¢ = 3.

12.1.1 Theta operators in characteristic greater than 3

The following proposition was already known to Swinnerton-Dyer in [Swi73, Theorem 2].

Proposition 12.4. Assume ¢ > 5. The form A := —2(E;_1 € My_1(1,1) satisfies the hypotheses
of lemma 12.2 for any level N.

11’1 . From

proposition 11.5, it is £-integral and congruent to 1 modulo £. Moreover, because F,_;1 has

Proof. Since £ > 5, A is well-defined and the constant coefficient of A is equal to ZBZ%

integral coefficients except for the constant one, it follows that A and —i@A have £-integral
Fourier coefficients and that A =1 (mod £) and i@A = 0 (mod £). We finally check the
condition on the character of A. We have y;’“A = y@‘e =1 (mod £). |

If the level N is divisible by £, the situation is in fact much more pleasant for us, in the sense
that we can find a form with k4 = 1. We find a record of the following fact in [Rib94, (2.1)
Theorem]|.
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Proposition 12.5. Assume ¢ > 5 and ¢ | N. Let xe be the Teichmiiller lift of X, with
respect to the place £, viewed as a primitive Dirichlet character of modulus £. The form

-1
A= 2€E3’X" e M (¢, X£1> satisfies the hypotheses of lemma 12.2.

Proof. The form A is well-defined because Xgl is an odd character. Indeed, we have Xgl(—l) =
Yf_l(—l) = —1 (mod £), and because ¢ is odd, this lifts to Xgl(—l) = —1. From proposition 11.3
and (11.1), the constant term of A is equal to

-1
~(B) 1=~ > ixg'(d),
=1

which is £-integral. Therefore, because y¢ induces the identity modulo £, this coefficient is
-1

congruent to 1 modulo £, and because E} X< has integral coefficients away from the constant
one, A and é@A have £-integral Fourier coefficients and we get A =1 (mod £) and éGA =0
(mod £). Finally, by definition we have Yé_k“ = Y;l = x4 (mod £). Thus, A satisfies the
hypotheses of lemma 12.2. |

This finishes the case £ > 5. For ¢ < 3, the two previous constructions do not always give
well-defined modular forms. We present in the next two paragraphs specific constructions in the
cases { =2 and ¢ = 3.

12.1.2 Theta operators in characteristic 2

For ¢ = 2, the most favourable case is when 4 | N. The following construction is very analogous
to the one of proposition 12.5.

Proposition 12.6. Assume £ = 2 and N is divisible by 4. Let x4 be the only non-trivial Dirichlet
character modulo 4. The form A := ZLE%L’X4 € My (4, x4) satisfies the hypotheses of lemma 12.2.

Proof. The form A is well-defined because x4 is odd. Moreover, from proposition 11.3 and (11.1)
the constant coefficient of A is equal to

1
—2B1x = =5 (Ixa(1) +3x4(3)) = 1.
Therefore, because Eil X4 has integral coefficients away from the constant one, A and é@A have
L-integral coefficients, A = 1 (mod £) and %HA = 0 (mod £). Finally, it is straightforward
that x4 is trivial modulo £, as its reduction is the cyclotomic character modulo 2. |

The next favourable case is when N admits at least one odd prime divisor. The following
result was inspired by [Meil7, Appendix A.]. As it has never been published, we prove it for the

sake of completeness.

Proposition 12.7. Assume £ = 2 and N has an odd prime divisor. Let p be the least odd prime
divisor of N, and let xn be a Dirichlet character modulo p of order 2™, the greatest power of 2
dividing p—1. Let ¢ be any primitive 2™-th root of unity. The form A := (C—l)Eil’XN € Mi(p, xn)
satisfies the hypotheses of lemma 12.2.
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Proof. First notice that xy exists because the group (Z/pZ)™ is cyclic of order divisible by 2™.
Let g be an integer which class modulo p generates (Z/pZ)*. We claim that we can choose g
such that xn(g) = ¢. Indeed, as xn has order 2™, we have xn(g) = ¢* with 21 k. Let u be an
integer such that ku =1 (mod 2™), and u =1 (mod p;l) We have yn (g%) = ¢** = ¢, and by
construction u is prime to p — 1. Therefore, g“ still generates (Z/pZ)™.

Because ( is a root of unity of order 2, we have xy(—1) = XN(Q)% = CLEI = —1. Therefore,

XN

p—1
X is odd, A is well-defined, and its constant coefficient is equal to X 31 = % > axn(a).
a=1

For i between 0 and 2™~ — 1, we have xn(g%) = (¢, and

; m—1 ; m—1

xn(=g') = ¢ = ¢ .

Therefore, the set {£g",0 <i < 2™ 1 — 1} is a set of representatives of (Z/pZ)™ /Ker(xn). For
an integer x, we write [x] for the only integer between 0 and p — 1 that is congruent to x modulo

p. We then have

=xn(g

1-¢ P . . )
——Biyy = —— > (leg'] xnlg) + [—eg'] xn(=g")
2 2p 4
=0 eeKer(xn)
12t o , .
i > (ed] ¢+ (- [eg) (=€)
=0 eeKer(xn)
1 ami-1
=5, ¢"| —p- #Ker(xn) +2
P 0 eeKer (x~)
m— 2m—1_1
1-¢ 1-¢"" p—1 1 i :
p =0 ecKer(xn)
p—1 1< ‘
=g T(1-¢ » Z ¢ [ed]
=0 ecKer(xn)
The term inside the parentheses is £-integral and L= is an odd integer. Moreover, the only prime
ideal above 2 in the ring Og¢) = Z[¢] is (1 — C)Z[C]. Therefore, we have TBLXN =1 (mod £).
17>(N

Because the non-constant Fourier coefficients of £ are integral, A and ﬁ@A have £-integral
coefficients, and we get A = 1 (mod £) and é@A = 0 (mod £). Finally, from lemma 10.5,
because yn has order a power of 2, it is trivial modulo £ as well as the cyclotomic character
modulo 2. This finishes the proof. |

Proposition 12.6 gives us a form A for all the levels divisible by 4, and proposition 12.7 gives
us a form for all the odd levels. We are thus left with the cases N = 1 and N = 2. There is
no modular form of weight 1 of these levels, so we have to look at bigger weights in order to
construct the form A. For level 2, we show that weight 2 suffices.

Proposition 12.8. Assume that { =2 and N = 2. Let 1y) be the trivial character modulo 2.
The modular form A = 24E;l’ﬂ<2> € Ma(2,1(9)) satisfies the hypotheses of lemma 12.2.
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Proof. The constant coefficient of A is equal to 1 and E;l 1) pag integral coefficients away from
the constant one. Therefore, the forms A and é@A have both £-integral Fourier coefficients, and
we have A =1 (mod £) and é@A =0 (mod £). Finally, the character of A is trivial modulo £
as well as the cyclotomic character modulo 2. |

For N =1, the weight needs to be at least 4, and we have the following result.

Proposition 12.9. Assume £ =2 and N = 1. The form A := 240E, € My(1,1) satisfies the
hypotheses of lemma 12.2.

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier coefficients of
E,4 are integers. Therefore, A and é@A have integer coefficients, and we have A =1 (mod £),
and é@A =0 (mod £). The character of A is again trivial, as well as the cyclotomic character
modulo 2. |

12.1.3 Theta operators in characteristic 3

For N divisible by 3, the form of proposition 12.5 is still valid.

Proposition 12.10. Assume £ = 3 and N is divisible by 3. Let x3 be the unique non-trivial
Dirichlet character modulo 3. The form A := 6E}’X3 € M (3, x3) satisfies the hypotheses of

lemma 12.2.

Proof. We have x3 = X[l (mod £) and the proof is exactly the same as the one of proposition 12.5.
|

For the levels containing a prime divisor congruent to 2 modulo 3, we can still consider an

Eisenstein series for the form A.

Proposition 12.11. Assume £ =3 and N has a prime divisor congruent to 2 modulo 3. Let p
be the least such prime divisor, and let 1) be the trivial Dirichlet character modulo p. The form

A= L‘HE;[’H(”) € Ma(p, 1)) satisfies the hypotheses of lemma 12.2.

. . 1,1 . .
Proof. The constant coefficient of A is equal to 1. Moreover, F, ® has integral Fourier
coefficients away from the constant one. Because p is congruent to 2 modulo 3, p2T41 is 0 modulo

£. Therefore A and i@A have £-integral Fourier coefficients, and we have A =1 (mod £) and
é&A =0 (mod £). Finally, the character of A is trivial, and we have Y32 =1 (mod £). ®

The remaining cases are the levels containing only prime factors that are congruent to 1
modulo 3. For the levels divisible by a prime p congruent to 4 modulo 9 (that is if 3 divides p — 1
only once), we found the following construction.

Proposition 12.12. Assume £ = 3 and N has a prime divisor congruent to 4 modulo 9. Let p be
the least such prime divisor of N, and let X~ be a Dirichlet character modulo p of order 3. The

modular form A := 1% (E;L’XN — E;CN’IL) e M, (p, XN) satisfies the hypotheses of lemma 12.2.
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Proof. First notice that " indeed exists as (Z/pZ)™ is a cyclic group of order p — 1 that is
divisible by 3. Moreover, because xV has order 3, it is trivial modulo £ and even, and the two
Eisenstein series E;L X and E%‘N’ﬂ exist.

The constant coefficient of A is equal to ﬁBZXN which is £-integral by proposition 11.5.
We have from proposition 11.3,

3 3 3 A=
——B = — a*N(a) = —— a? (mod £
41 —p) " 42?(1—13);1 X (@) l—pazl ( )
3 plp—1)(2p—1)
=1 G (mod £)
=1 (mod £).

Therefore, the constant coefficient of A is 1 modulo £, and because the non-constant Fourier
coefficients of E;l X and E%CN’IL are integral, A and i&A have £-integral coefficients. The weight
k4 is invertible modulo 3, it consequently suffices to prove that A =1 (mod £) to conclude.

The forms E;l X" and Eg‘N’]l are both normalised eigenforms for all the Hecke operators at
level p, and have the same weight and character. Thus, it is enough to prove that the congruence
ay (E;L’XN> = a, (E;‘N’ﬂ) (mod £) hold for all prime numbers r. This last congruence is
straightforward, because we have

a, <E§’XN) =14+ =N +r=a, (E%‘N’n> (mod £).
|

It only remains the levels containing only primes congruent to 1 modulo 9. We found no general
way to express the modular form A as form of weight 2. Using computations in PARI/GP, we
looked for a modular form of level p =1 (mod 9) satisfying the hypotheses of lemma 12.2 for p up
to 1000. We always find a form except for p € {307,379, 433, 487,523,613,631, 757,811, 829,991},
1.e. we found 16 forms out of the 27 we were looking for. It can be proved that such a modular
form cannot be expressed as a linear combination of forms in the Eisenstein space, meaning that
one has necessarily to consider cusp forms to construct A. To fill this gap anyway, we can still
consider the modular form A := 240F, as in the case of proposition 12.9.

Proposition 12.13. Assume £ =3, and N contains only prime factors congruent to 1 modulo 9.
The modular form A := 240F, satisfies the hypotheses of lemma 12.2.

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier coefficients of Ey
are integral. Therefore, the forms A and %HA have both £-integral Fourier coeflicients, and we
have A =1 (mod £) and é@A =0 (mod £). Finally, the character of A is trivial, and we have

ye_k’* =x,* =1 (mod £). [ |

We have compiled in table 12.1 the definition of A depending on ¢ and N. When multiple
definitions were possible, we have taken the one with the least weight among all the possible
forms. The third column corresponds to the proposition where the properties of the form have
been proved. Looking at the various results above, we state the following definition that will be
useful in the proofs of the next paragraph.
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Table 12.1: Various forms A used to construct the operator 7]

£>5]| Form A | Proposition
(YN | —2E,_, 12.4
—1
C|N | 2B ™ 12.5
£=2 Form A Proposition
4N 4B X 12.6
N>3and 4t N | (¢ —1)E XY 12.7
N=2 241, 12.8
N=1 240F4 12.9
=3 Form A Proposition
(| N 6B X8 12.10
¢4 N and N has a prime %E;l’ﬂ(p) 19.11
factor ¢ = 2 (mod 3) p
vd | N., d=1 (mod 3) and N has 5 (E;L’XN B E%(NJL) 1912
a prime factor p =4 (mod 9) p
Vp|N,p=1 (mod 9) 240, 12.13

Definition 12.14. We say a pair (¢, N) is bad, if we have one of the following.
e /=2and N =1;
o (=3 and all the prime factors of N are congruent to 1 modulo 9.

Remark 12.15. When (¢, N) is bad, the modular form —504Eg is also congruent to 1 modulo
£. Its weight is greater than the one of table 12.1, but we will have to use it in the proof of

proposition 12.17 in the next section.

12.2 Sturm bounds

A Sturm bound for a space of modular forms is an upper bound on the number of leading
coefficients that characterise a form of this space. Equivalently, it is the maximal number of zero
leading coefficients that a non-zero form of this space can have. The study of such bounds has
first been made by Sturm [Stu87] and was later generalised among others by Murty [Mur97].
The same kind of bounds exist if we look at modular forms modulo a prime ideal — and are in

fact the same as the first ones. In the next lemma we give a slight improvement of Murty’s result
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for modular forms of same weight. We then state a more general result for modular forms of any
weight and level.
For all this paragraph, we fix a prime number ¢ and a place £ of Q above /.

Lemma 12.16. Let f, g be two modular forms of same weight k > 0, level Ny, Ny and character
€f, €4 respectively. Let N be the least common multiple of Ny and Ngy. Assume that f and g
have both £-integral Fourier coefficients and that ey =4 (mod £).
If an(f) = an(g) (mod £) for every integer n < % (1 + %), then f =g (mod £).
pIN

p prime

: M1y : ._ kN 1
Proof. We follow substantially the proof of Murty of [Mur97, §4]. Write B := %5 1 (1 + 5).
P

Consider ¢ = f — g and suppose that the vanishing order modulo £ at infinity opfpgzb is at least
equal to B, that is a,(¢) = 0 (mod £) for all n < B. If ¢ = 0, there is nothing to prove.
Otherwise, as explained in [Mur97, §4], for v € SLa(Z) there is an element A, € Q" such that
the modular form A,¢|,y has £-integral coefficients and is not congruent to 0 modulo £.

We write m = [SLe(Z) : To(N)] = N [] (1 + %) and consider a system of representa-
p|N
tives (7i)1<i<m of right cosets of I'g(N) in SLa(Z). We can further assume y; = I, the identity

matrix. Also choose a set (7;)1<j<,(n) Of representatives of I'1(N) in ['g(N) with 71 = Iz. We

then have,
m

m @(N)
SLo(Z) = | JTo(N)vi = | | Ta(W) .
i=1 i=1 j=1

Taking the norm function of ¢ according to this system of representatives, we define

o(N o(N
F =
J

) m )
H QZ)’kT]”Yl H H ATj’Yi¢|ij7i € Mk:map(N)(SLQ(Z))'
=1 =2 j=1
For i = 1 and j between 1 and ¢(N), we have

PlrTin = dlwt = (e5(5)f — eg(75)9) = 4(7j)¢  (mod L). (12.1)

Therefore, the modular forms ¢|,7;v1 have £-integral Fourier coeflicients and thereby, the form
F too, by the construction of the coefficients A .,. Moreover, by assumption the vanishing

order at infinity of ¢ modulo £ is at least equal to kl—’; Therefore, the one of the modular
()
form ® := [[ ¢|x7j71 is at least equal to kme(N), and the same goes for F. Applying Sturm’s

j=1
theorem for level 1 modular forms [Mur97, Theorem 5|, F' must vanish modulo £ and by
construction of the coefficients ATM, the modular forms ATj%qzb| kT;7i are non-trivial modulo £
for i # 1. Thus ® — and hence ¢ by (12.1) — must be trivial modulo £. |

The following proposition generalises the previous lemma to modular forms of arbitrary
weights and levels. The proof uses extensively the construction of theta operators given in

section 12.1. We warn the reader that we will write 00 = 1.
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Proposition 12.17. Let f, g be two modular forms of weight kg, kg > 0, level Ny, Ny > 1 and
character €y, €4 respectively. Let my, my be two non-negative integers. Assume that f and g
have both £-integral Fourier coefficients and that X];ermeEf = ngﬂmg&?g (mod £). Let N be

the least common multiple of Ny and Ny, and define

4 if ki +2my =kg+2mg+2 (mod 4),
a= and (¢, N) is bad;

0 otherwise,

4 if£ =2 and N = 2;

3 if | N and (¢,N) # (2,2);
6 if (¢,N) is bad;

£+ 1 otherwise,

and k = a + max (ks + bmy, kg + bmy),

where “bad” refers to definition 12.14.

If for every n < % 11 (1 + %),
pIN
p prime

for all integers n = 0.

we have n™fa,(f) =n"va,(g) (mod L), then this holds

Proof. For the whole proof, we write A for the modular form associated with £ and N constructed
in section 12.1. According to table 12.1, it has weight b — 2 and level N. We write x4 for the

character of A and B(N, k) := % I (1 + %)
p|N

p prime

Assume without loss of generality that ks + bmy < kg + bmg. We first prove that the
proposition is true assuming b — 2 divides kg — kf + b(mg — my), that is if for all non-negative
integers n < B(N, kg + bmgy) we have n™ a,(f) = n"9a,(g) (mod £), then these congruences
hold for all non-negative integers n. Applying lemma 12.2 recursively, we have

0™ f € Mipiom, (N.epx'n’) and 6779 € My, 1y, (N, egX'1?)-

We cannot apply lemma 12.16 to gms f and gma g directly since they do not have the same weight.
kg7kf+b(’rmg7'mf),v ~ .
However, the forms A =2 0™ f and 0™ g are well-defined modular forms by assumption.
kg*kwab(mgfm]c)
: NI S Rt e it £
They have the same weight k; + bmg, the same level IV, and character € fXZ b=2
and ngzwg respectively. Moreover, from lemma 12.2 again, we have x4 = Y?‘b (mod £). By the

assumption on the characters we get

my 2 mg ) _—(6-2) mf+%W) ot ©
EfXA = ngZ mo
— 6fyész)mffngrkarb(mf7mg) (mod £)
= Y?f—l—megf ,Yg—(kgjtbmg) (mod 2)
= ﬁgﬂmg e 'Yg—(kg-&-bmg) (mod £)

=eoxs’ (mod £).
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Therefore, the assumptions of lemma 12.16 are satisfied for these two modular forms. Since A
reduces to 1 modulo £, we get that if the coefficients of ™7 f and gms g are congruent up to the
B(N, kg + bmg)-th one, then gms f and gms g are congruent modulo £ by lemma 12.16.
We now look at the hypothesis b — 2 | kg — kg + b(mg —my). We claim that if (¢, N) is not
bad, then it is always satisfied. We have three cases: (i) £ = N =2, (ii) £ | N and (¢, N) # (2,2),
(iii) £4 N and (¢, N) is not bad.

(i) f =N =2, then b—2 =2, and ky = k; = 0 (mod 2), because the weight of a level 2
modular form is necessarily even. Thus, k; — k¢ + 4(mg — my) is divisible by b — 2.

(ii) If | N, then b — 2 =1 and there is nothing to prove.

(iii) If £ { N and (¢,N) is not bad, we have b —2 = ¢ — 1. Because £ { N, ¢5 and ¢4 are
unramified at ¢. From the assumption ylzf t2amy g £ = leg +2mg g (mod £), we get that

kg —kf+2(mg—mys) =0 (mod £ — 1), hence b — 2 | kg —k:f+b(mg—mf).

Therefore, when (¢, N) is not bad, the proposition is proved because we have a = 0 and
k= kg + bmy.

From now on, assume that (¢, N) is bad. By definition, we have b = 6, and either (¢, N) =
(2,1), or £ =3 and £{ N. Let us first prove that we have ky — k¢ 4+ 6(my —mys) =0 (mod 2) (i.e.
kg =k (mod 2)). When (¢, N) = (2,1), it is true because the weights k¢ and k, are both even.
When ¢ = 3 and ¢ { N, the hypothesis on the characters again implies that ky +2ms = kg 4+ 2my
(mod 2) and the conclusion follows.

If the even number ky — k¢ 4+ 6(mg — my) is divisible by 4 = b — 2, then by definition we
have a = 0 and k = k4 + bmgy. The result follows as before in this case. Otherwise, we have
4| kg—Fks+6(mg—mys)—2and a=4. Write Ay := 240F, and Ag := —504Es. We have seen in
proposition 12.13 and remark 12.15, that both A4 and Ag are congruent to 1 modulo £. We set

fi=Agf and ¢ = Aug.

Then f" and ¢’ are modular forms with £-integral Fourier coefficients of weight kp = kf + 6,
ky = kg + 4, level N and character €, £, respectively. Since Y% is trivial for £ = 2, 3, the
congruence
E b K i+b
X, - mf&?f =x,’ " "y (mod £)

is satisfied. Moreover, we have kg +bmy < kg +bmy, and b—2 = 4 divides ky —kp +b(mg —my).
According to the discussion at the beginning of the proof, we therefore get the desired result
since f’, ¢’ reduce to f, g respectively and kg +bmgy = a + kg + bmgy = k. |

Remark 12.18. Notice that lemma 12.16 corresponds to the special case my = mg = 0 and
k¢ = kg = k. Moreover, in practice we can always take my € {0,1} and 0 < my < £ — 1.

In chapter 13 we will mainly deal with eigenforms. It is well-known that the knowledge of
the Fourier coefficients of prime index and of the constant coefficient characterises such forms.
We can therefore simplify proposition 12.17 and get the following corollary.
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Corollary 12.19. Let f, g be as in proposition 12.17 and define also N and k similarly. Assume
further that f and g are normalised eigenforms for the Hecke operators at level N modulo £ of

prime indez less than %’“ II (1 + %) (and different from £ if my, mg > 1).

pIN

P prime

If 0™ ag(f) = 0™sag(g) (mod £) (with 0° = 1) and if for every prime p < 4% 1\_1[\[ <1 + %)
P

p prime

we have p™fa,(f) = p™iap(g) (mod L), then we have n™fan(f) = n"9a,(g) (mod L) for every
non-negative integer n.

We finally state a Sturm bound result in characteristic zero that we will be used in the proof
of theorem 14.17. It is a well-known result, but we do not find a suitable reference for it. For the

sake of completeness we give a proof of it due essentially to Buzzard.

Proposition 12.20. Let f, g be two modular forms of same weight k > 0, same level N, and

same character €. If an(f) = an(g) for every integer n < %] 1 (1 + %), then f = g.
P

p prime
Proof. We reduce to the case of trivial character. Let s be the order of the character €, and
define

¢ :=(f—9)" € Mps (N, 1).

By assumption, the first s - % (1 + %) Fourier coefficients of ¢ vanish. Applying [Mur97,
N
pZ:)Lime
Theorem 1|, we get ¢ = 0 and therefore f = g. |

Remark 12.21. We can in fact deduce proposition 12.20 from lemma 12.16. Indeed, it is well
known that the denominators of the Fourier coefficients of a modular form are bounded. Therefore,
we can reduce f and g modulo infinitely many places £. Applying lemma 12.16, f and g are

congruent modulo infinitely many places £ and are thus equal.

As in the positive characteristic case, to check the equality of two eigenforms it is enough to

check only the coefficients of prime index.

Corollary 12.22. Let f, g be two modular forms of same weight k > 0, same level N, and same

character €. Assume further that f and g are normalised eigenforms for the Hecke operators Tlﬁv

of prime index less or equal to %k II (1 + %)
pIN

p prime

If ag(f) = ao(g) and ap(f) = ap(g) for every prime p < % 1\_1[\/ (1 + %), then f =g.
P

p prime

We now give an upper-bound for the product appearing in the Sturm bound. We use a
technique of Kraus [Kra95] to get a slightly better bound than the one suggested by Serre in
Kraus’ article.

Lemma 12.23. Let n be an integer greater than or equal to 2, we have:

1
H <1 + ) < 2loglog(n) + 2.4.
p

pn

p prime
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Proof. We first split the product in two parts: [] (1 + %) = P(n)Q(n) with
pln

p prime

Pn)= ][ <1+;) and Q(n)= [] <1+;).
pn p|n

Let m be the number of primes p dividing n and being greater than logn. As n > log(n)™, we
get m < 28" Thuys,

loglogn -~
logn 1 1
P(n) < —1 1 < — . 12.2
(n) < exp <log logn °8 < * log n>> P (log logn) (122)

Applying [RS62, (3.27)], we get an upper bound for Q:

Qmn) < ] <1 - ;)1 < € loglog(n) (1 - W)l : (12.3)

p<logn

where 7 is the Euler-Mascheroni constant. Putting (12.2) and (12.3) together we have

1 1 1 -1
|| 1+ =) <e¥logl SN I I [
( * p) ¢” loglog(n) exp <loglog n) < (log 1ogn)2>

pln

p prime

The function z +— €77%(1 — 22)~! is bounded by 2 for = € [0,0.1]. Therefore, the lemma holds
for all integers n > exp(exp(10)). For n between 2 and expexp(10), we first notice that it is

enough to deal with square-free integers. Then, among the square-free integers having k prime
k

factors, it suffices to only check the lemma for ny, = [] pi, pi being the i-th prime number, as it
i=1

is for this value of n that the left hand side product is the biggest and the right-hand side the

smallest. The greatest k such that nj < expexp(10) is 2486, and we have checked the lemma
with a computer for all those ny. |

12.3 Modifying modular forms

In this paragraph we discuss a way to construct from a given eigenform, another eigenform with
slightly different Fourier coefficients but with a bigger level. It will be crucial in chapters 13
and 14.

Let O(H) be the space of holomorphic functions on the complex upper-half plane. For an
integer n > 1 and a complex number b, we define two operators V,, and S, (b) on O(H) by

L fom — om
" h +— (2~ h(nz))

OH) — OFH)

and S, (b) :{ b s B bR

For a prime number p, we denote by U, the operator which action on Fourier expansions is given

by
Up (Z anq"> = Z anpq".
n=0 n=0
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We recall the following facts about the operators U, and V): for any primes p and r, the
operators V,, and V, commute and the image of My(M,¢) by V), is My(Mp, e). Letting V), act on
g-expansions, it commutes with U, for r # p and satisfies U,V,, = Id. Moreover, Tlf\/[ decomposes
on the space My (M, ¢) as
M k—1
T, =Up+p" "e(p)Vp.

We therefore have the following lemma for eigenforms of 7| Ifw .

Lemma 12.24. Let M’ be a multiple of M and assume either that p | M, or that p ¥ M'.
On q-expansions, the actions of TZfV[ and Tsz are the same. Therefore, if f € My(M,e) is an
etgenform for Tlfw, then, seeing f in level M', it is also an eigenform for Tlf\/[/.

From now on, consider a modular form g of weight k£ > 1, level M > 1, and character € that
is a normalised eigenform for all the Hecke operators at level M. For any prime number p, we
denote by o, 3, the roots of the Hecke polynomial X2 — a,(g)X + p*~1e(p).

Lemma 12.25. Let p be a prime number and let b € {ay, Bp}. The function Sy(b)g is a modular
form of same weight and character as g and of level Mp™ with

1o
”p_{o ifb=0.

It is a normalised eigenform for all the Hecke operators at level Mp™, and for any prime r we
have

S A

Moreover, if g has Fourier coefficients in a ring R, then those of Sp(b)g lie in the ring R[b].

Proof. If b = 0, then there is nothing to prove as S,(0)g = g. Assume b # 0. Because both g
and Vg are modular forms of weight k, level Mp, and character ¢, it is also the case for S,(b)g.
Let us compute the action of the Hecke operators at level Mp on S,(b)g.

Let r be a prime number different from p. From lemma 12.24, TMP g and TM g are equal.
Thus, because the operators V,, and TM commute, we have

TP Sy(b)g = T g = WV, T," g = ar(9)g — bar(9) Vg = ar(9)Sp(b)g.
For r = p, we have Tp'Pg = Upg = TM g — p*~e(p)Vpg = ay(g9)g — p"'e(p)Vpg. It gives
TY78,(b)g = (ap(9)g — P =(0)Vig) = U, Vog = (ay(9) = b) g — 1" "e(p) V).
As b is a root of X2 — a,(g)X + pF~le(p), it satisfies b(a,(g) — b) = p*~le(p). We finally get

TS, (b)g = (ap(g) — b) g — (ap(g) — b) bVpg = (ap(g) — b) Sp(b)g-

The form Sy,(b)g is thus a normalised eigenform for the all Hecke operators at level Mp. The
fact about the ring of Fourier coefficients of S,(b)g is straightforward. |
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We now apply this result to construct from the eigenform g, an eigenform which p-th Fourier
coefficient is a chosen number b in {oy, 5,,0}.

Proposition 12.26. Let p be a prime number and let b € {cy, B,,0}. Define

92 =g and np, =0, if b= ap(g);
gg = Sp(ap(g) — b)g andny, =1, if b# ay(g) and b € {ap, Bp};
gZ = Sp(ap) 0 Sp(Bp)g  and ny =2, ifb# ay(g) and b ¢ {ap, By}

Then, gf; is a modular form of same weight and character as g and of level Mp™. It is a
normalised eigenform for all the Hecke operators at level Mp™ , and for any prime r we have

()= { @ e

Moreover, if g has Fourier coefficients in a ring R, then those of gf, lie in the ring RIb].

Proof. In the first two cases, we have gf, = Sp(ap(g) — b)g and lemma 12.25 gives directly the
result. In the third case, we necessarily have b = 0 and «,, 8, non-zero. From lemma 12.25
applied to g and (3, the p-th Hecke polynomial of S,(5,)g is X2 - ap X, of which oy, is a root.
We can then apply lemma 12.25 to Sp(5,)g and «, to conclude. Finally, the calculation

Splap) 0 Sp(Bp)g = (9 — BpVpg) — oV (9 — BpV5p9)
=g—- (ap + Bp)vpg + apﬁpv;?g
=g — ap(9)Vpg + p* e(p)V) g,
proves that the Fourier coefficients of gZ lie in the same ring as g, because the values of the

character of an eigenform always lie in the ring spanned by its Fourier coefficients (see [Rib77,
Corollary (3.1)]). [ |

Remark 12.27. The form gg reads “the modular form g which p-th Fourier coefficient has been
changed to the number b”.

Remark 12.28. Notice that the modular form gf, is always of the shape P(V,)g with P =
1- er + 5PX2 CL’I’ld (€p7 617) € {(apa 0)7 (Bpa 0)7 (ap(g)apk_le(p))}'

For any prime number p and b, € {0, o, 5p}, define

1d if b, = ap(9);
b .
SpP =< Id— (ap(g) —bp)V, if b, # a,(g) and b, € {oy, Bp};
Id — ap(g)Vp +pk_15(p)VpQ if by, # ap(g) and b, & {ay, By},

so that we have gb” = Sg” g. By proposition 12.26, applying S,If” to g only modifies the Fourier
coefficients of index divisible by p. Moreover, it gives us a modular form that is still a normalised
eigenform for the whole Hecke algebra at its level. It means that for another prime r and
b, € {0, ., 5y}, the modular forms (gzp )ir and (gff’“)zp are well-defined and equal to Sgp Sbrg =

SbrSirg.
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For any finite set of primes P and any b € [] {0, o, Bp}, we define
peP

g =[] S7a

peP

With the notations of proposition 12.26, we deduce the following result.

Corollary 12.29. The function g'f, 1s a modular form of same weight and character as g and of

level M ] p™. It is a normalised eigenform for all the Hecke operators at level M [] p™, and
peP peP

for any prime r we have
ar ifr ¢ P,
a ( gg) _ (9) ¢
b, ifr e P.

Moreover, if g has Fourier coefficients in a ring R, then those of g'f, lie in the ring R[b].

Since the beginning of this section, our results were about “true” modular forms. There
is another function that we can modify with the operator S,(b) and get a modular form: the
Eisenstein series Fs.

Proposition 12.30. Let p be any prime number and b € {1,0}. Define

(EQ)Z = Sp(p) B2 andny, =1 ifb=1;
(E2)Z =Sp(1) o Sp(p)E2 andny, =2 ifb=0.

The function (Eg)g is a modular form of weight 2, level p™», and trivial character. It is a
normalised eigenform for all the Hecke operators at level p™r, and for any prime r we have

) r+1 ifr#p
ar <(E2)Z> _{ b if r=p.

Moreover, all the Fourier coefficients of (EQ)Z are integers, except maybe the constant one that is
rational.

1,1
1 (p)
9 . In

Proof. An easy computation shows that for any prime p, we have S,(p)E; = E.
particular, the form S,(p)Es = Sp(ap(E2) — 1)E> is a normalised eigenform of weight 2, level
p, trivial character, and for any prime r, its r-th Fourier coefficient is equal to r + 1 = a,(F3)
if r £ p, and 1 if r = p. Moreover, the Hecke polynomial at p of E;ll(p) is X(X —1). Thus,
Sp(l)E;l’n(p) = Sp(1) o Sp(p)E2 is a normalised eigenform of weight 2, trivial character and level

p? and we have ap(Sp(1) 0 Sp(p)E2) = 0. n
We can then state a result of the shape of corollary 12.29 for Fs.

Corollary 12.31. Let P be a finite set of primes and let b € [] {0,1,p} \ (p)pecp. There is a
peP

modular form (Ez)tf, of weight 2, level ] p™, and trivial character. It is a normalised eigenform
peP
for all the Hecke operators at its level, and for any prime number r we have

b ) r+1 ifr¢P;
()= {77 D
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Moreover, all the Fourier coefficients of (Eg)lt; are integers, except maybe the constant one that is
rational.

We finally give a result on the constant coefficient of an Eisenstein series that has been
modified with corollary 12.29.

Proposition 12.32. Let k > 2, let €1, €9 be two primitive Dirichlet characters. Let P be a
finite set of prime numbers and let b := (b,) € [ {0,e1(p), p*Lea(p)}, different from (1),ep if
peP

(k,e1,e2) = (2,1,1). Then the constant coefficient of (E;“EQ):, s equal to

0 ife1 # 15
B _ )
o gkz [I bp(bp _pk 152(29)) if e1 = 1.
peP

Proof. First, if £1 # 1, then the constant coefficient of E;""* is trivial by (11.1). Assume & = 1.
Then the modular form (Ezl’52)g is equal to

H (Id — &,V + 6,V)7) B2,

peP
where
(1+ pFtea(p),p" tea(p)) if by =0;
(ep,9p) = ¢ (1,0) if by = p*~'ea(p); (12.4)
(P*'ea(p), 0) if b, = 1.
Therefore, the constant coefficient is equal to —BS}? (1 —ep + 0p). A straightforward
peP
computation gives that 1 — g, + 6, is equal to 0 if b, € {0,p*Lea(p)}, and to 1 — pF~leg(p) if

k—1

b, = 1. Therefore, if one of the b,’s is equal to 0 or p"~"e2(p), then the constant coefficient is

equal to
Bk, k—
0= _W@ H bp(bp —p 152(}7))'
peP

Else, if all the b,’s are equal to 1, then the constant coefficient is equal to

Bk,s - Bk’g N
—p L= el = === [T ool =" 20,
peP peP

Proposition 12.33. Let k, €1, €2, P and b be as in proposition 12.32. Let ¢1, ¢ be the

conductors of €1 and €9 respectively. Then the constant coefficient of (E;l’EQ); at the cusp é 18

equal to

W15y o) Brerten (e2)* (e17)op)
B T (2) 10 (1O

pleice

LGS D)

bp#e1(p) bp#pk—lea(p)
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1
Proof. Let v := (
€2

0
1) be an element of SLa(Z) such that yoo = é Write the modular form
(B ) as

[T (d -V, +6,V7) B,

peP
with €, and §, defined by (12.4). By proposition 11.9, for an integer M, the constant coefficient
of (VME,ECI’EQ) |7y is non-zero if and only if M and ¢y are coprime. Under this assumption, we

have, with the notations of proposition 11.9,

SH(M) W ((e1651)0) Prytertes)
YE1£2 M) = €2 ( _ 1 19 )0 (&1 "€2)o

(& L -25)

pleica

(12.5)

The expression in brackets is independent of M let us write it D. Notice that if M is not coprime
to cg, the formula still holds, as e2(M) = 0. Define

P:= ] (1 —epX, +6,X;) € C[(Xp)pep].
peP

As (12.5) is fully multiplicative in M, the constant coefficient of (EZ“EQ)E is then equal to

-1
lim  P((Vp)pep) B} [kv(2) =D - P ((62’@) P> '

Im(z)—+o00 p

—1
We just have to compute the value of P ((Egpk(p))pep) to conclude. Let Py(X,) = 1—6po+5pX§,

-1
so that we have P = [ P,(X,). A straightforward calculation shows that the value of P, (%)
peP
is

-1

(1-222) (1-1) it (. 8) = (@1(p) + P ealp) P ere2(p));
-1

1_ 815;# if (ep,dp) = (e1(p),0);

-1 if (ep, 6p) = (" e2(p), 0).



Chapter 13

Reducible modular representations

13.1 General study of reducible representations

o0
Let f=q+ > an(f)q" be a newform of weight k& > 2, level N > 1, and character ¢ of conductor

c. Let Ky bg tfle number field generated by (a,(f))n>2 and let A be a prime ideal of the ring of
integers of Ky above a prime number £. Our goal is to characterise the fact that p; , is reducible
by a finite set of congruences. We begin by looking at the possible factors that can appear in the
reduction of p; y. The set we define in the following corresponds these possible pairs of factors
(see the upcoming proposition 13.2).

Definition 13.1. Let £ be a place of Q above \. Define the set Ry k(L) as the set of quadruples
(e1,€9,m1,ma) consisting of two Dirichlet characters €1, 9 of prime-to-€ order and unramified

at £, and of two integers m1, mo satisfying

1. O<m1<m2<€—2;

—m1+mo——ro —k—1—=,
2. x, e =X, €

3. For every prime p # £, vy (%) € {0,1,2},

c1c
where = denotes the reduction modulo £, and ¢; is the conductor of €;, and up to the equivalence
relation (£1,€2, m,m) ~ (e2,€1,m,M).
In particular if (e1,e2,m1,m2) € Ry (L), then cica | N. The set Ry (L) is therefore
finite.

Proposition 13.2. Let £ be a place of Q extending \. The representation Py is reducible if
and only if there exists (1,2, m1,m2) € Ry (L) such that psy = X" €1 @ X, €2, where &
denotes the reduction of €; modulo £.

Proof. The representation py 5 is semi-simple and odd. Therefore, it is reducible if and only if
there exist two characters n; : Gg — F5 such that

Pra =M O na.

177
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Using section 10.2.2 to lift 7; with respect to the place £, we can write it 7; = X, "&;, with
0 <m; < ¢—2 and ¢; a primitive Dirichlet character of conductor ¢; not divisible by £, and
of prime-to-¢ order. Without loss of generality we can assume that m; < ms. Looking at the
determinant of py , we get

—k—1= —mi1+mo——on
Xe €= Xy e,

Moreover, by propositions 10.4 and 10.6 the Artin conductor of X" &1 @ X, &2 is equal to cico.
By proposition 10.12, we necessarily have v, (%) € {0,1,2} for all primes pt N, p # £. [ |

c1c

Remark 13.3. We consider (e1,€2,m,m) to be equivalent to (e2,e1, m, m) in Ry i, (L) because
these two quadruplets leads to the same representation X' ® (€1 @ &2) = X' @ (G2 @ €1).

Remark 13.4. We will see later that the set Ry (£) depends in fact only on £NQ(e) (and
obviously on N, k and €). For now, this dependency will not matter, and we postpone this proof
to section 13.5.

Now that the possible shape of the reduction of p; , is parametrise by a finite set, we need
to translate the isomorphism py, = Xy '€1 @ X, &2 by a system of congruences between two
modular forms. The following result is the key step in this direction. It uses in a crucial way the
local description of py 5 at the bad prime numbers (see section 10.3).

Lemma 13.5. Let £ be a place of Q above \. If the representation Py 1s reducible, then there
exists (€1,€2, m1,m2) € Ry (L) such that for any prime number p # £, we have

_ ) p™ei(p) +p"2e2(p) (mod £) ifptN;
ap(f) —{ P, (mod £) il N (13.1)

for some b, € {0,e1(p),p™* " ex(p)}.
Conversely, if for some (e1,e2,m1,m2) € Ry (£), those congruences hold for every prime
p in a set of density 1, then we have py\ = X" &1 © X, *&2.

Proof. Let us prove the second statement first. Write p := X" &1 @ X, "*€2. By construction, the
determinants of p; \ and p agree. Moreover, by assumption for any prime number p{ N in a set
of density 1, we have

Tr (pya(Froby)) = ap(f) = p™e1(p) +p™2e2(p) = Tr (p(Froby))  (mod £).

By corollary 10.3, ps  must be isomorphic to p and is thus reducible.

We now prove the first statement. Assume p; y to be reducible. Proposition 13.2 gives us the
existence of (1,2, m1, m2) € Ry (L), such that p,\ = X" &1 @ X,"*&2. For any prime p { N,
taking the trace at a Frobenius at p gives the congruence

ap(f) =p™ei1(p) +p"%e2(p) (mod £).
Let us now consider a prime p | N and different from ¢. We treat 3 cases separately:

(i) If vp(N) > 2 and v, (N) > vp(c), we know from proposition 10.16 that a,(f) = 0. Hence,
we have a,(f) = p™'b, (mod £) with b, = 0.
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If vp(N) = 1 and vp(c) = 0, then by proposition 10.17 the local representation py ,|a,
upper-triangular with unramified characters on the diagonal. It is moreover reducible by
assumption. Therefore, the characters €1 and €9 are unramified and we have an equality of
sets of characters of G:

{1 (ap(f)) s (ap(f) Xe} = (X721, X752}
There are two cases to look at:

o If 11 (ap(f)) = X, 1, then we have ay(f) = e1(p)p™ (mod £). In this case, we put
p = 61(p)

o If p(ap(f)) = X2, then we have a,(f) = e2(p)p™? (mod £), and we define b, =
m2 m1€2<p)

In both cases we have a,(f) = p™'b, (mod £) with b, € {e1(p),p™> ™' ea2(p)}.

Finally, if v,(IN) = vp(c), we are in the second case of proposition 10.17, and we get the
equality

{lan() 1 (ap(H ™) 26,7} = (e e
We again have two cases to consider:
o If yu(ap(f)) = X" €1, then a,(f) = e1(p)p™ (mod £). We define b, = £1(p).
o If yu(ap(f)) = X, "?&2, then ay(f) = e2(p)p™? (mod £). We put b, = p"2"™ey(p).

In both cases, we again have a,(f) = p™'b, (mod £) with b, € {e1(p),p™> ™ ea(p)}.

Lemma 13.5 states that the reducibility of py 5 is equivalent to an infinite set of congruences

satisfied by the coefficients a,(f), one for each prime number except ¢. This lack of congruence

for ays(f) is in fact not a problem because we always have fay(f) =0 (mod £). This will become

handy later. In order to transform this infinite set of congruences into a finite one we will use the

Sturm bound we develop in section 12.2. In order to do this we need to express the right-hand

side of (13.1) as the coefficients of a modular form with £-integral coefficients. We proceed in

three steps.

e First we define a g-series which coefficients will be congruent to e1(p) + p"2~ "™ e9(p) for

every prime p. This series will sometimes not be modular, or not has integral Fourier
coefficients.

e Next, we modify slightly this series in order to correct these defaults.

e Finally, we will modify it a second time in order to take into account the congruences at

p| N, p # ¢. This will lead to the wanted modular form except for the small modification
we may have done in the second step. To take this into account, we will have to also modify
the form f slightly.
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Let £ be a place of Q dividing A, and let (1,2, m1,m2) € Ry (L), we define
— +1 iff>2;

Ko=g 2T ’ d Eo:=E}e 13.2

{ 2 ife—o T FOT (13.2)

Proposition 13.6. We have e163(—1) = (—1)¥. In particular, Ey is well-defined and modular if
and only if (K',e1,e2) # (2,1,1), in which case Ey is a normalised eigenform of weight k', level
c1c2, and character e163. Moreover, for every prime number p we have a,(Eq) = 1(p)+p* ~e2(p)

M any case.

Proof. If £ = 2, then e1 and £y are even, and we have e1e9(—1) = 1 = (—1)¥. Otherwise, we
have
erea(—1) = (~1)mmEl = (et < (S

The rest of the proposition follows from proposition 11.8 and (11.1). |

As mentioned above, we need the coefficients our modular form to be £-integral. The following

result states when it may not be the case.

Lemma 13.7. Assume (k',e1,e2) # (2,1,1). The Fourier coefficients of Ey are £-integral unless
perhaps in the following cases:

o (=2 ¢e=1andey #1;
o (>5 e =e=1, and (m1,mz) = (0, —2).

Proof. Apart from the constant one, the coefficients of Ey are all algebraic integers. We therefore
only need to focus on the constant Fourier coefficient ag of Ej.

In the case ¢ # 2, if (e1,e2) # (1,1), then ag is always £-integral by proposition 11.5,

1
T2k
again, if (m1,mz) # (0,¢ — 2), then ag is always £-integral. If (mq,ms) = (0,¢ — 2), then ay is

because 1 and €9 are unramified at £. If ey = g9 = 1, then ag = By. By proposition 11.5
always not £-integral. Notice moreover that we must have £ # 3, because otherwise k' = 2 and
€1 = g9 = 1, which is excluded.

Assume £ = 2, hence k' = 2. If 1 # 1, then as before we have ag = 0. Else, if e = 1, then

ag = —BZEQ which may not be £-integral. Moreover, we must have g9 # 1 because otherwise we
would have (K, e1,e2) = (2,1,1). [ |

We can now construct from (e1,e2,m1,m2) € Ry (L) (and hence £’ and Ey), a modular
form with £-integral Fourier coefficients which corresponds to the right-hand side of equation
(13.1). With the notations of proposition 12.26 and proposition 12.30, define

we are in one of the cases listed in lemma 13.7
or (k' ,e1,e9) = (2,1,1); (13.3)
r:=1 and F := Ej otherwise.

ri=4 and E:= (Fp)y if

The following proposition sums up the properties of E.
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Proposition 13.8. The function E is a modular form of weight k', level M :=lem(cqco, 1), and
character e1e9. It is a normalised eigenform for all the Hecke operators at level M, all its Fourier
coefficients are £-integral, and for any prime p, we have

e+ 0" teap) ifptr
ap(E) = { 0 ifplr

Proof. The only thing to prove is that M is indeed the level of E. The rest of the proposition
then follows from proposition 12.26, proposition 12.30, lemma 13.7 and proposition 13.6. If
r =1, the level of E is equal to ¢jco = lem(cicg, 7). Assume r = 4. We then always have ¢y = 1
and either g9 = 1 or £ = 2. In the first case, co2 = 1 and £2(2) = 1 # 0. In the second case, ¢y
is odd because prime to ¢. Thus, we have £2(2) # 0. In every case, the level of E is equal to
4cyco = lem(cieg, 4). |

As mentioned above, as we have modified the second coefficient of E when r # 1, we need to
also modify the second coefficient of f in consequence. With the notations of proposition 12.26,
we define

N if 2| N and ax(f) = 0;

ff=fY and N':=<¢ 2N if 2| N and as(f) #0; if r = 4;
AN if 2t N,

f'==f and N':= N, if r=1.

(13.4)

Proposition 13.9. The form f' is a normalised eigenform of weight k, level N', and character .
Its Fourier coefficients are £-integral and if a prime p divides r, then ay(f') = ap(E) = 0.
Moreover, the level M = lem(cqico,7) of E (see proposition 13.8) always divides N', and if { = 2,
then N’ > 3.

Proof. The only facts that do not follow directly from proposition 12.26 are those on the level N'.
First recall that ¢jcy always divide N. For M = lem(cic2,7) to divide N/ thus need to prove that
r divides N'. If » = 1 this straightforward. Assume r = 4. If 2 N, then N’ = 4N is divisible
by r. If 2| N and as(f) # 0, then 4 divides N’ = 2N. Finally, if 2 | N and az(f) = 0, then by
proposition 10.16 we necessarily have vo(N) > 2. Therefore, N’ = N is again divisible by r. In
every case, we have M | N'.

Finally, assume ¢ = 2. If &1 = 1, then we necessarily have r = 4 and N’ > 4. Otherwise, if
g1 # 1, we then have N’ > ¢; > 3 because there is no non-trivial primitive character of conductor
less than 3. |

We can finally construct the modular form we need. Indeed, for a prime number p, the Hecke
polynomial of F at p is equal to

X% - (61(19) +p’“/_162(p)> X+ lerea(p) = (X — e1(p))(X — pF tea(p)).

H=1g,(p)} to get a modular

Therefore, we can apply corollary 12.29 to E with b, € {0,¢1(p),p
form with the same Fourier coefficients of prime index as F except at some prime p where it
equals b,. The following lemma allows us to moreover control the level of the resulting modular

form.
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Lemma 13.10. Let (e1,e2,m1,m2) € Ry (L), let p # £ be any prime number dividing N, and

let by € {0,e1(p), P "ea(p)}-
If we have a congruence a,(f) =p™'b, (mod £), then we have

1 < wp(erez) +np < vp(N),

where n, is defined as in proposition 12.26 with respect to g = E and b,. In particular, those

inequalities are independent of the choice of by.

Proof. First, we always have vp(cic2) +ny, > 1, because n, = 0 only if b, = a,(E) = e1(p) +
pk/_lsg(p), which implies that v,(cic2) > 1.
Next, we claim the following:

b, = 0 if and only if v,(c) < vy(N) and v,(N) > 2.

Indeed, we have b, = 0 if and only if a,(f) =0 (mod £). Moreover, by proposition 10.16 we
have either v,(c) < vp(N), v,(N) = 2 and a,(f) = 0, or |ay(f)|> = p® with s > 0. Therefore, we
have a,(f) =0 (mod £) if and only if v,(¢) < v,(N) and v,(N) > 2.

We now prove that v,(c1c2) + np, < vp(N). If n, = 0, it follows from the fact that cjco | V.
If n, = 2, then from proposition 12.26, we must have b, =0 ¢ {sl(p),pklfleg(p)}. Therefore,
p 1t cice and from the discussion above we have vy(N) > 2 = vp(c1c2) + np.

Assume finally that n, = 1. We have b, # 1(p) + p¥ ~'ea(p) and b, € {e1(p), " ~tea(p)}.
Therefore, p does not divide both ¢; and ca. If p { ¢ico, we have v,(cic2) +np = 1 < vp(IV).
Otherwise, assume that p | ¢; and p { ca. We then necessarily have b, = 0 and from the
discussion above we get v,(c) < vp(IV). Looking at the p-part of the Artin conductor of both

'z =X, """ &1E7, we get vp(c) = vy(cq) where ¢ and © denote the

sides of the equality Yéf*
conductors of € and &7 respectively. Because £1 has prime-to-f order, we have ¢ = ¢;. On the
other sides we always have ¢ | ¢. Therefore, we have v,(c1c2) = vp(c1) < vp(c). Hence, we get

vp(c1e2) +np < vp(N). The case p | ¢2 and p 1 ¢; is treated in exactly the same way. |

This leads to the fundamental result of our discussion.

Corollary 13.11. Let (e1,e2,m1,m2) € Ry (L) Define k', r and E as in (13.2) and (13.3)

respectively. Consider P C {p prime, p | N,p{rl} and b := (b,)pep € ] {0,21(p),p* 'ea(p)}
peP
such that for all p € P, we have p™ b, = a,(f) (mod £).

The modular form E' := EB is of weight k', character 1e2, and its level divides N'. It has
L-integral Fourier coefficients and for every prime p such that either p4 N¢ or p e PU{r}, F’

1s a normalised eigenform for the Hecke operator T];N/.

Proof. From corollary 12.29, the form E’ is a normalised eigenform for all the Hecke operators at

its level Ngs :=lem(cico,7) J] p™. Moreover, the action of Tlfv/ and TéVE' on E’ is the same if p
peP
divides both N and Ng or none of them. If p{ N¢, then p{ Ng:. If p € PU{r}, by lemma 13.10

we have

1 < ’Up(NE/) g Up(Nl).
Therefore, N divides N’ and E’ is a normalised eigenform for the announced Hecke operators.
The rest of the corollary follows from corollary 12.29. |
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We now able to prove the main result of this section. It gives for a given A, an explicit finite

set of congruences that characterises the reducibility of the representation py ).

Theorem 13.12. Let f be a newform of weight k > 2, level N > 1, and character €. Let X be a
prime ideal of Ky above a prime number £. The following assertions are equivalent:

1. Py is reducible;

2. Let £ be a place of Q above \. There exists (1,2, m1,m2) € Ry (L) (see definition 13.1)
such that the following holds. Let k', r, and N’ be as in (13.2), (13.3) and (13.4) respectively.

Define
4 if E=mi+ma+3 (mod4),
a= =3 andVp| N',p=1 (mod 9);
0 otherwise,
3 if ¢ N';
_ / _
b=<¢ 6 if f)E?i mzzlzz ’E)f, and k = a + b+ max(k, k' + bmy).

£+ 1 otherwise,

For every prime p < B := % L (1 + %) not dividing r¢, we have
q !

e pt N and ay(f) =p™ei(p) +p2e2(p) (mod L);
e or, p| N and ay(f) =p™b, (mod £) for some b, in the set {0,e1(p), p™* ™ ea(p)}.

When this holds, we moreover have pg \ = X" &1 © X, *&2.

Proof. Assertion (2) is weaker than the second part of lemma 13.5. Therefore, (1) implies (2).
Assume that 2 holds. Consider again k', r, E, N’ and f’ defined in (13.2), (13.3) and (13.4)
respectively. Define P := {p prime, p | N,pt {r,p < B}, and b := (b,),cp. Finally, with the
notation of corollary 12.29, consider the form E’ := Eb.
We wish to apply corollary 12.19 with f = f’, g = E', my = 1 and my = m; + 1. By
corollary 13.11, we have E' € My (N’ e1e2), it has £-integral Fourier coefficients, and it is
an eigenform for all the Hecke operators at level N of index less than B, except maybe at £.

~mit+ma——

Moreover, from the identity %, €162 = Y’Zilg, we have

_k'+2(m1+1 mo—mi1+1)+2(m1+1 —mi+mo+3—
Xy (s )5 1€2 = Xé HRm )5152296211 e e _Xz

Let p be a prime number less than B. If p | #r, then we have
P ay(E') = 0 = pay(f')  (mod £).

Otherwise, by corollary 12.29 we have p™ *1a,(E’) = p™ b, = pa,(f’) (mod £). The defini-
tions of a, b and k correspond to those of a, b and k in proposition 12.17 (the case £ = 2 and
N’ < 2 never occurs as proved in proposition 13.9). By corollary 12.19, we therefore obtain the
congruence na,(f') = n™*a,(E") (mod £) for every non-negative integer n. By lemma 13.5,

we thus have py , = X, €1 DX, *E2. |
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Remark 13.13. From this theorem, we can deduce an algorithm that takes a prime ideal X as input
and decides whether the representation py \ is reducible or not, and computes the representation
if it is reducible. In particular, it justifies the reducibility modulo 11 of the representation treated
in [BD14, 5.1.2]. We give further details on how to explicitly do this in PARI/GP in chapter 15.
Moreover, the theorem extends the case m =1 of [Kra97, Proposition 2.].

13.2 Reducible modular representations in big characteristic

The previous theorem holds without any restriction on £, but the result depends on £ through
1. the set Ry k(£);
2. the integer B that bounds the number of congruences to check.

The goal of this section is to remove these dependencies on £ under some assumptions. We first
remove the dependency in ¢ in the set Ry k. o(£).

Definition 13.14. Define Ry, as the set of pairs (e1,€2) of primitive Dirichlet characters

such that e1e2 = € and for every prime number p, we have v, (%) € {0,1,2}, where ¢; is the
conductor of ;.

Proposition 13.15. Assume { > k —1 and £ { No(N). The representation py  is reducible
if and only if there exists (e1,€2) € Ry such that Py ZE1LD Yif*l@. We moreover have
ar(f) = e1(£) + £F1eg(£) (mod £).

Proof. From proposition 13.2, if p; y is reducible, then there exists a quadruple (e1,62,m1,m2) €
RN k(L) such that ps, = X, "&1 @ X, *€2. By the assumptions £ { N and ¢ > k — 1, together
with proposition 10.14, f must be ordinary at A, and we have an equality of sets

) } (e )

It follows that (m1,mg) = (0,k — 1) and as(f) = e1(£) = e1(¢) + 5 e3(0) (mod £). Finally,
the character (e162) ! reduces to the trivial character modulo £, and because £ { p(N), it must

{u(az(f)) ,x’Z‘lu( E((?)

Qg

have prime-to-¢ order. Using lemma 10.5, it must be trivial, and we get € = g1¢5. |

The following result will allow us to both remove the dependency in ¢ in the bound B of
theorem 13.12, and bound the set of £ such that py 5 is reducible.

Proposition 13.16. Assume { > k+1 and {1 No(N). The representation py , is reducible

if and only if there exist a pair (g1,e2) € Rne, and b € [] {0,e1(p),p* tea(p)}, with P :=
peP
{p prime,p | N,p{ €r}, such that f' = E' (mod £), with f' defined as in (13.4) and E' := EB

with E defined in (13.3).

Proof. If we have f' = E’ (mod £), then in particular for all primes p{ N¢r, we have

ap(f) = ap(f/) = ap(E/) = e1(p) Jr]716_152(19) (mod £).
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By lemma 13.5, py 5 is therefore reducible.
Assume that p;, is reducible. The existence of (e1,e2) is granted by proposition 13.15.

Moreover, by lemma 13.5 there exists b € [] {0,e1(p),p" e2(p)} such that for every prime
peP
number p, we have a congruence a,(f’) = a,(E’) (mod £). By corollary 13.11, E' € My(N’,¢)

has £-integral Fourier coefficients and is an eigenform for all the Hecke operators at level N’. By
proposition 13.9, f’ has the same properties and therefore the modular form f’ — E’ is constant
modulo £.

By the assumptions ¢ > k + 1 and ¢ { No(N), we have £ > 5 and ¢ t+ N. Therefore, we
know from [DI95, Theorem 12.3.7] this Katz’ modular form spaces with coefficients in F, are
isomorphic to the spaces of reduction modulo £ of modular forms with £-integral coefficients.
Therefore, from [Kat73, Corollary 4.4.2], for f" — E’ to be congruent to a non-zero constant we
must have K =0 (mod ¢ — 1). This cannot hold under the assumption ¢ > k + 1, and we get
f'=F' (mod £). [ |

We now state our second main result. It is analogous to theorem 13.12 for the prime numbers
¢>k+1and £ Np(N).

Theorem 13.17. Let f be a newform of weight k > 2, level N > 1, and character €. Let X be a
prime ideal of K¢ above a prime number £. Assume £ >k +1 and £ { No(N). The following
assertions are equivalent.

1. py  is reducible.

2. Let £ be a place of Q above \. There exists (1,e2) € Ry such that the following holds.
Let r be as is (13.3) (recall that (my,me) = (0,k — 1)) and let N’ be as in (13.4). Define

0 ifr>1o0re #1;

“7 T Tl —r ) otheruise,
p|N

where gqg 18 the primitive character associated to €.

We have C = 0 (mod £), and for all primes p < B := Nk (1 + %), we have either

plror

o ay(f) = e1(p) +p*ealp) (mod £), if pt N;
b, (mod &) for some b, € {0,e1(p), p*ea(p)}, if p | N.

°

S
bS]
—~
~
N~—

1l

When this holds, we moreover have ps\ = €1 @ yéf*l@‘

Proof. Assume py 5 to be reducible. Introduce f"and E’ as in proposition 13.16. The congruences
for ap(f) follow from the congruence f’ = E’ (mod £). It only remains to prove that C' = 0
(mod £). Because f’ is cuspidal, its constant coefficient at infinity is equal to 0. Therefore, the
one of E' must be congruent to 0 modulo £.
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The congruence C' =0 (mod £) is non-trivial only if » = 1 and €; = 1. In this case, we have
€9 = €, the set P of proposition 13.16 is the set of prime divisors of N and for all p € P we
have b, = a,(f) (mod £). Therefore, the constant coefficient of E’ is equal to

e TT by (b, — 4 e20)) = ~ 2 T ap(F)(ap(1) — 5 0(p)  (mod £)
peP pIN
=C (mod £).

This proves that (1) implies (2).

Assume now that the second part of the theorem holds. Consider again the modular forms F
and f’, and define P<p := {p prime, p | N,p < B} and bep 1= (by)pep., and let E' := Elt;?;.
By corollary 13.11, we have E' € My (N’,¢), it has £-integral coefficients, and it is an eigenform
for all the Hecke operators at level N’ of index less than B. The form f’ has moreover the same
properties and for all prime numbers p < B, we have by assumption a,(f") = ap(E’) (mod £).
In order to apply corollary 12.19 to f = f’, g = E', my = my = 0, we need to have ao(E’) =0
(mod £). From proposition 12.32, we have ao(E’) = 0if e; # 1 or r > 1. Else, if e; = 1 and
r =1, we have €9 = ¢y and

ag(E') = —B;;Q H by (b, — P es(p))
p|N,p<B
- _B;]jo H ap(f)(ap(f) — pkilso(p)) (mod £).

p|N,p<B

By the assumption C' =0 (mod £), we have either ag(E’) =0 (mod £), or there exists pg | N,
po > B, such that ap, (f)(ap, (f) — b e0(po)) =0 (mod £). Define then,

B { E' if ap(E') =0 (mod £);

E'°  otherwise.

pe 'eo(po) i apy(f) = pf 'eo(po)  (mod £).

By corollary 13.11, E” still lies in Mg (N’, €), has £-integral Fourier coefficients, is an eigenform for

with by, = { 0 if ap,(f) =0 (mod £);

the Hecke operators at level N’ of index less than B, for any prime p < B, we have a,(E") = a,(f)
(mod £), and its constant Fourier coefficient vanishes modulo £. By corollary 12.19, we finally
get B = f' (mod £), and we therefore have p; \ = &1 © X, 5. [ |

Remark 13.18. Notice that we could have always taken r = 4 from the start (i.e. from
(13.3) ) without modifying any of the results of chapter 13. The version of theorem 13.12 and
theorem 13.17 we exposed in the introduction assumed that. The coefficient C is then equal to
zero, and we get back the results announced previously.

From theorem 13.17 we also deduce a bound for the reducible primes in terms of N, k and ¢
only.

Theorem 13.19. Assume that py  is reducible, then one of the following conditions holds.
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o /< k+1;
o [| Np(N);

e there exists (€1, €2) € Ry such that ¢ divides the algebraic norm of one the following
non-zero quantities

1. B,

(e1 'e2)o’
2. pk — (5152_1)0(1)) for a prime p such that p | cica, p t ¢o with ¢y the conductor of

(€165 )o-

Proof. Assume £ >k +1 and £{ No(N). From proposition 13.16, if p; ) is reducible, we have
a congruence modulo £ between the cuspidal modular form f’, and the Eisenstein series F’.
Therefore, by Katz’ g-expansion principle (see [Kat73]) the constant coefficient of E' must be
congruent to 0 modulo £ at every cusp. By proposition 12.33, the constant coefficient of E’ at
the cusp é divides the quantity

S vt (e ]

Let us look at the prime factors of the norm of this coefficient.

e The number —e1(—1) is a unit. Its norm has no prime factor.

-1
e By proposition 11.7, the prime factors of the norm of %(%)k are only powers of

prime factors of N. By assumption, ¢ does not divide them.

_ p—1

e For p | N', we have 1 — % £ By the assumption £ N (), this cannot vanish modulo

L.

e For p | N’ again, let us prove that the prime factors of the norm of (1 — %W) are
redundant with the ones of N and (p* — (e16;")o(p)). Note that we either have p = 2
and (k,e1,e2) = (2,1,1), or N’ = N. In the first case we have 1 — 81(17);% = 2. This
cannot vanish modulo £ by assumption because 2 and 3 are less or equal to k + 1 = 3.
Otherwise, we have p | N, then either p | ¢y and 1 — %,f_l(m =1%# 0 (mod £), or

e1(p)ey ' (p) _ pP—(e1e5 o (p)
pF - pF

pteoand 1 — . Therefore, £ must divide the algebraic norm of

p* — (e165 o (p).

B, 1
e Finally, ¢ divides either the norm of W and thus B, (e7le because 2k is non-zero
(€1 €2)0
modulo £ by assumption, or p* — (165 Do(p) for p | ¢ycp. This final quantity contains only

prime factors of N if p | ¢g. We can therefore consider only the primes p 1t co.
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13.3 Checking the reducibility

We explain here how to use theorem 13.12 and theorem 13.17 to explicitly compute the prime
ideals A for which the representation py ) is reducible. We begin by discussing the dependency of
the set Ry (L) (see definition 13.1) in the place £.

Proposition 13.20. Let N > 1 and k > 2 be integers, and let € be a Dirichlet character modulo
N. Let ¢ be a prime number and let £ be a place of Q above . The set Ry (L) depends only
on £NQ(e) (and on N, k and €).

Proof. Write g for the projection modulo £, and T¢ for the associated Teichmiiller lift (see
section 10.2.2). Recall that for x € FZX, T¢(x) is the only root of unity of order prime to ¢ and
such that m¢(Te(z)) = =.

We first prove that the map Tg o ¢ depends only on ¢. Let ¢ be a root of unity of order
n = {Mq with m > 0 and £ { q. We can then write ¢ = ¢/"® - (%, with £ b and a prime to q.
Because ( is a root of unity of order n, (/"% is a root of unity of order ¢ and (% is a root of unity
of order /™. From lemma 10.5, we get ¢ = ¢/ (mod £), and T¢ o m¢(¢) = ¢, Therefore, it
depends only on /.

Let (e1,€2,m1,m2) € Ry <(£). The only dependency on the place £ is the congruence

Xy e =x"T"e1es  (mod £).

Decompose ¢ as gs¢’, where g/ is the f-part of €, and ¢’ is unramified at £. Looking at the ¢-part of
the congruence on the one hand, and at the prime-to-¢ part on the another hand, the congruence
is equivalent to

X ler =Xt (mod £) and & =si5  (mod £). (13.5)

Applying Te to the second equation, we get T¢ o me(e’) = Te o me(e162). We have seen that this
depends only on ¢. Let us look at the first equation. The projection of €, modulo £ depends
only on £ N Q(e). Moreover, m¢(gs) is a character modulo £ of conductor ¢. Therefore, there
exists an integer k; between 0 ¢ — 1, depending only on £ N Q(e), such that me(ep) = Y]g"'. The
equation X5 'e, = X" 7™ (mod £) is therefore equivalent to k +ky — 1 = mq +my (mod £ —1)
and depends only on £N Q(e). [ |

Notice that we have in fact proved that Ry k. (£) depends only on £NQ(Te o mg(er)) but we
will only use what we have stated. A practical application of this result is that we can compute
the set Ry j-(£) while knowing only a prime ideal A below £ in a finite extension of Q(¢), like
K for example. For X\ a prime ideal in an extension of Q(¢), we will freely write Ry x o(\) for
the set Ry (L) for any place £ above A. We also deduce from proposition 13.20, a procedure
to compute Ry - (A):

Algorithm 13.21. Input: Two integers N > 1, k > 2, a Dirichlet character € modulo N, and
a prime ideal X in a finite extension of Q(e) above a prime number £.
Output: The set Ry k().

1. Compute g4 and €', the (-part and prime-to-f part of € respectively.
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2. Compute the unique Dirichlet character €” modulo N such that €” has prime-to-£ order,
is unramified at £ and €'e"~1 has order a power of £. This corresponds to the character
Te oma(e') for any place £ above .

3. Compute the integers ky such that 0 < ky < € — 2 and for all integer 1 < n < N prime to
N, g4(n) =n* (mod ). We then have gy = Xfl (mod A).

4. Compute the set My, -(\) of pairs of integers (mq,ma) such that 0 < m; <mp <€ —1
and my +mg=k+ky—1 (mod £ —1).

5. Compute the set En j¢(\) of pairs of Dirichlet characters (e1,€2) of conductor (¢1,¢2) and
such that 1 and €9 have prime-to-£ order, are unramified at £, satisfy e162 = " and for all
primes p # £, we have vy (%) € {0,1,2}.

6. Return the set Enjc(A) X MNge(A) = RNk e(N).

We now give the two main algorithm that follows from theorem 13.17 and theorem 13.12
respectively. The first algorithm computes the prime ideals A of Oy, of residual characteristic £
such that £ >k + 1 and £ No(N), for which py , is reducible, together with the description of
Ps- The correctness of the algorithm is granted by theorem 13.17.

Algorithm 13.22. Input: A newform f, described by its Fourier coefficients (an(f))n>0 as
elements of the number field Ky, together with its level N, weight k, and character €.

Output: The set of prime ideals X of Oy of residual characteristic £ such that £ >k + 1 and
L1 No(N), for which py y is reducible, together with the shape of py .

1. Set Red(f) = 0.
2. Compute the set Ry, (see definition 13.14).
3. For (e1,e2) € Ry,

(a) Compute r, C, and B defined in (13.3), and theorem 13.17 respectively.

(b) Compute the set P(e1,e2) of prime divisors of the ged of the algebraic norms of
o C;
o ay(f) —e1(p) — p*'ea(p), forpf Nr, p < B;
o and ay(f) (ap(f) — e1(p) (ap(f) =" e2(p)), for p | N, ptr, p < B,

that are bigger than k + 1 and do not divide No(N). By theorem 13.17, these are the
only prime numbers bigger than k + 1 and not dividing No(N) for which Py can be
reducible.

4. For (e1,e2) € Ry and for £ € P(ey, e2),

(a) Compute the prime ideals X of Oy above {.
(b) For each such A\, compute a prime ideal £ in the ring of integers of Ky(e1,€2) above A.

(c¢) For each such £, check the following congruences.
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e C=0 (mod £);
o ap(f) =e1(p) +p*'ea(p) (mod £) for allpf Nr, p < B;
o ap(f)(ap(f) = e1(p))(ap(f) — p"'e2(p)) = 0 (mod £) for allp | N, p{r, p< B.

If they all hold, add (X,e1,€2,0,k — 1) to Red(f). By theorem 13.17, py  is reducible
and we have P ~E D Yﬁf‘l@.

5. Return Red(f).

We now turn to the computation of the reducible primes of residue characteristic £ such that
¢<k+1orl| Np(N). The correctness of the following algorithm follows by theorem 13.12.

Algorithm 13.23. Input: A newform f, described by its Fourier coefficients (an(f))n>0 as
elements of the number field Ky, together with its level N, weight k, and character €.

Output: The set of prime ideals X of Oy of residual characteristic £ such that £ < k+1 or
C| No(N), for which py , is reducible, together with the shape of py .

1. Set Red(f) = 0.
2. Compute the set P of prime numbers { such that ¢ < k+1 or | No(N).
3. For each ¢ € P, compute the set P({) of prime ideals X in O above {.

4. For each £ € P and for each A\ € P({), compute Ry -(\) using algorithm 13.21. We can
do this because we have Q(e) C K.

5. For each € € P, for each A\ € P({), and for each (€1,e2, m1,m2) € RN j(N),

(a) Compute a prime ideal £ in the ring of integers of K¢(e1,e2) above A.
(b) Compute r and B defined in (13.3) and theorem 13.12 respectively.
(c) Check the following congruences.

o ap(f) =p™e1(p) +p"e2(p) (mod L) for all pt Nr, p < B;
o ap(f)(ap(f) — p™er(p))(ap(f) — p™2e2(p)) = 0 (mod &) for all p | N, p {7,
p< B.
If they all hold, add (X, e1,e2,m1,m2) to Red(f). By theorem 13.12, p; \ is reducible
and we have py\ =X, €1 © X, &2

6. Return Red(f).

The correctness of algorithm 13.22 and algorithm 13.23 follows directly from theorem 13.17 and
theorem 13.12 respectively. The most time-consuming computation is step 3(b) of algorithm 13.22.
This depends on the size of the “big” reducible primes. We have implemented these algorithms
in PARI/GP [21], and we have been able to execute them as long as the degree of Ky keeps
reasonable (say [Ky : Q] < 20). The second limiting factor being the weight £ that controls the
size of the Fourier coeflicients of f. Our code is available on GitHub at the following address:

https://github.com/bpeaucelle/mfexceptional
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Chapter 14

Dihedral modular representations

14.1 General study of dihedral modular representations

o0

Let f =q+ > an(f)q" be a newform of weight k£ > 2, level N > 1, and character ¢ of conductor
n=2

¢. Let A be a prime ideal in the ring of integers of the field of coefficients Ky of f above a rational

prime number £. We study in this section the case where p; , has projective dihedral image of
order prime to £. We therefore assume in this chapter that ¢ is bigger than 2. The main result
of this section is theorem 14.12. It is the analogue in the dihedral case of theorem 13.12. It
characterises the fact that py  has dihedral projective image by a finite number of congruences.
We begin this section by recalling some results on twists of modular forms and CM forms.

Let 1 be a primitive Dirichlet character of conductor ¢,. We define the twist of f by ¢ as
the only newform denoted f ® 9 such that a,(f ® ¢) = ¥(p)a,(f) for all primes p not dividing
Nc¢y,. We have the following result from [AL7S8, §§1-3].

Proposition 14.1. Let f and ¢ be as above.
e The form f ® 1 has weight k, its level divides lem(N, ci, ccy), and its character is P2e.

o For all primes p{ ¢y, we have ap(f ® ) = Y(p)ap(f), and the p-part of the level of f ® 1) is

equal to pv»™)

o Ifv,(N) =wpy(c) and ¢, = z—:;l, where 1, and €, denote the p-parts of 1 and e respectively,
then we have ay(f @ V) = (ev)o(p)ap(f), where ap(f) denotes the complex conjugate of
ap(f) and (ev))o is the primitive character associated to ep. Moreover, the p-parts of the
level of f @ and f are equal.

e For any prime number p dividing N, if vp(cy) = vp(N) and the p-part of the conductor of
et is equal to pU»(v) | then the p-part of the level of f ® 1 is exactly p””(lcm(N’ci’“w)).

Remark 14.2. [t is enough to consider twists by primitive characters. Indeed, if ¥ is a Dirichlet
character modulo M, and g for the primitive character associated to i, the newforms f ®
and f ® Yo are necessarily equal because their Fourier coefficients at a prime p not dividing M N

both coincide with Y (p)ay(f).

191
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We take this definition of CM forms from [Rib77, p. 34].

Definition 14.3. Suppose 1 is not the trivial character. The form f is said to have complex
multiplication by ¢ if Y(p)ay(f) = ap(f) for all primes p in a set of primes of density 1, that is
ff@d=r.

The starting point of our study is the following proposition that characterises the dihedral
case. To have dihedral projective image is in fact equivalent to be isomorphic to one of its twists.

Proposition 14.4. The projective image Ppy \(Gg) C PGL2(F)) is dihedral of order prime to ¢
if and only if there exists a quadratic Galois character v such that pr\ = 9 @ py 5.

Proof. Assume the projective image of py 5 is isomorphic to the dihedral group Day, of order 2n,
with 2n prime to ¢. We necessarily have ¢ # 2. Denote C), a cyclic subgroup of order n of Dy, (it
is unique if n > 2). Recall that the set Dy, \ C), contains only elements of order 2. Composing
Pp; \ with the projection Dap — Doy, /Cy, = {1, —1}, we get a quadratic Galois character:

YA

> D 1,—-1}. 14.1
Go 5t Do — {1-1) (14.1)
Let us prove that pyy = ¢¢\ @ py 5. As by has order 2, we have

det(¥r) ©pya) = ¥Fxdet(py ) = det(py ).

Let p be a prime number not dividing N¢. The character ¢\ is unramified at p because py ) s,

and for a Frobenius element Frob,, at p we have

Tr (7,0 © Pya) (Froby)) = ¢y a(Frobp)ay(f)  (mod A).

If ¢y (Frob,) = 1, we have Tr (¢ ®ﬁf7/\)(Fr0bp)) = ap(f) = Tr(pya(Froby)) (mod ). If
Frob,, is mapped to —1 by 1y, then Pp; , (Frob,) is an element of D, \ Cy, and has order 2. It
is therefore annihilated by X2 — 1 and has trace 0 = a,(f) (mod A). We then get

Tr ((wf,/\ ®ﬁf7/\)(Frobp)) =ap(f)=0= Tr(ﬁfv/\(Frobp)) (mod A).

We have proved that the determinant and the trace at (Froby )y, of 1y ) ® Py and py y agree.
By theorem 10.1, we deduce that s x ® pr\ = Py y.

Conversely, assume that there exists a quadratic Galois character 1) such that ¢ ® py\ = oy .
As there is no character of order 2 with value in F9, we necessarily have £ > 2. Let G be the
kernel of ¥. By Galois theory, the group G is the absolute Galois group of a number field K.
Moreover, as ¢ has values in {1, -1}, Gg has index 2 in Gg, and K is therefore a quadratic
extension of Q. Let P € GLy(Fy) be such that p;, = ¢ ® (Pp; \P~1), and let 7 € Gg \ Gk.
We have

Pralr) = —PppA(r)PL, (14.2)

Let v be an eigenvector of P with eigenvalue A. The vector p (7)v is then an eigenvector of P
with eigenvalue —\ # A (because ¢ # 2). We deduce that P is diagonalisable. Let 0 € Gx. We
have

Pralo)P = Ppy (o).
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Therefore, Ppy(0)v = pyr(0)Pv = Aps,(o)v. That is, py 5(0)v is an eigenvector for P with
eigenvalue A. Because the \-eigenspace of P is one dimensional, there exists a(o) € FZX such that
pralo)v = a(o)v. Similarly, p;,(0)ps A (7)v is an eigenvector for P with eigenvalue — A\, hence
there exists B(c) € F, such that Pa(@)ppa(T)v = B(0)psA(T)v. The functions o and 3 are in
fact characters of G and we have

pf,)\|GK Zadp.

Moreover, for o € G we have

a(o)v =psa(o)v = pf,A(Til)ﬁf,A(TUTil)ﬁf,A(T)v = ﬁf,A(7-71)/8(7-0'7-71)5]‘,)\(7)” = B(ror ).
The character « is thus equal to 87 := (o = B(ro771)).

We can prove from this that Pp; ,(Gg) is dihedral. Let C := Pp; ,(Gk). It is isomorphic
to Ba"Y(Gk) C fo and is thus cyclic of order some integer n prime to ¢, and generated by
Pp \(00) for some og € Gk. Moreover, we have

Pora(Go) = CUPps(7)C.

This decomposition is indeed disjoint because if we had C N Pp ( )C # ), we would get an
element of the form 705 in the kernel of Pp #.a- Therefore, py /\(Taé“) would be scalar but because
Tag ¢ G this is in contradiction with (14.2). Next, because 72 € Gk, we have

Pp (1) =P (B7(7%) @ B(7%)) =P (B(7%) & B(7?)) = PLa.

Therefore, Ppy \(7) has order 2 because it can not be trivial from (14.2). Finally, we have

Pﬁf,A(TUOT_l) =P (8 (roor™ ) @ ﬁ(TUOT_l))
:]P’( (T200772) ® 7 (o ))
=P (B(0o0) & B7(00))
=P (87(05) ®Blog 1)) -

The group Pp; ,(Gg) is therefore generated by Pp \(7) and Ppy \(00), with Ppy 5(7) of order 2,
Ppy \(00) of order n prime to ¢, and such that Pﬁf)\(T)%f,)\(O‘o)%f’)\(T)_l = Ppy(00) 7t Tt is
therefore dihedral of order prime to £. |

To refine this result, we look at the local properties of the possible characters ¢ that leave py 5
invariant by twisting. We first state a lemma that is a general property of Dirichlet characters.

Lemma 14.5. Let ¢ be a quadratic primitive Dirichlet character of conductor ¢y, and let p be a
prime number dividing cy,. If p is odd, then vy(cy) =1, and if p = 2, then va(cy) € {1,2,3}.

Proof. Write n,, the p-adic valuation of ¢;. Assume first that p is odd. The group (Z/p"*Z)™
is cyclic. Let x be any generator. Since v is quadratic, the kernel of 4, contains (z?), and the
kernel of the projection (Z/p™Z)* — (Z/pZ)* is (xP~1) D (x?). As 1) is primitive, we need to
have n, = 1.

Similarly, the group (Z/2"27Z) is generated by —1 and 5 and the kernel of 15 contains (52).
Moreover, if n, > 3, the kernel of the projection (Z/2"2Z)* — (Z/8Z)* is (5?). It follows that
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Using the knowledge of the local shape of py  given by proposition 10.17, we now deduce

local properties that the possible twists v may satisfy. It is similar to lemma 13.5.

Proposition 14.6. Assume py \ has projective dihedral image of order prime to £ and let ¢ be a

quadratic character of Gg such that py\ = ¢ @ psy. Write ¢y for its conductor and let p be a

prime number.

1. If p is odd then vy(cy) < 1 and if p =2 then va(cy) < 3..

2. If pt NU, then p{cy and ap(f) = (p)ap(f) (mod A).

3. Ifp| N, p#L, v,(N) =1, and vy(c) =0, then 1 is unramified at p and either (p) =1,
or (p) = —1=p (mod ).

4. If p| N, p# L, and vy,(N) = vp(c), then either ¢ is unramified at p and (p) =1, or 1 is
ramified at p, 1, = ;' (mod A), and ay(f)? = p* 1 (p)e,(p) (mod A), where b, and €,
denote the p-parts of 1 and € respectively, and w;, and 5;) denote the prime-to-p part of 1
and € respectively.

In particular, in the second case €, has order 2 modulo X.

5. If va(N) € {2,3} and va(c) < va(N), then va(cy) < 2.

Proof. 1. It follows immediately from lemma 14.5.

2. The representation p;y is unramified outside N¢. Therefore, as p;\ = ¢ ® p; , the
character v is necessarily unramified outside N/ too. Moreover, looking at the trace at
Frob,, we have a,(f) = ¥ (p)ap(f) (mod ) for all p{ NZ.

3. Assume that p | N, p # ¢, v,(N) = 1, and vp(c) = 0. By proposition 10.17 and the
assumption, we have

— ~ :U’(ap(f)) * ~ w’Gp/’L(ap(f)) * ~ —
Prala, = = =Y @psala,
ey ( 0 ulpay(f) 0 Wla,ulpay(F) saley
Therefore, we have an equality of sets of characters of G):
{ulap(£)), 1pay ()} = {¥le,mlap(f)), Yle, mpap(f))} -
We deduce that ¢ needs to be unramified at p and we have an equality of sets of elements
of IF,\,
{an(F).pap(D} = {W)ap(F). o an(F)}
By proposition 10.16, the coefficient a,(f) is invertible modulo A. Therefore, we either
have ¥ (p) =1, or ¢(p) = —1 and ¢ (p) = p (mod N).
4. If p| N, p # ¢, and v,(IN) = vp(c), then from proposition 10.17 and the assumption, we

have

Gy = nlap(f) @ p* tap(f) Hele,
p(ap(H))ble, & p" tap(f)h) (WE) e, ¥ @ pralg,

Pfx (14.3)

I
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We deduce again an equality of sets of characters of G:

{1(ap(£)), 10" tap () NElG, } = {ilap()le,. n" ap(f) ) (WE)lG, }-

If p(ap(f)) = ulap(f))¥lg,, then ¢ is unramified at p we get 1 (p) = 1 because ay,(f) is
invertible modulo A by proposition 10.16. Otherwise, 1 is ramified at p and & needs to be
unramified at p. We deduce that ¢, = ¢, 1 (mod M), the value of ¢g at Frob, is equal to

Y, (p)ey(p) (mod N), and

ap(f) = 0" ap(f) "My (p)ey(p)  (mod N).

5. First notice that ¢ ® py\ = Prgy . We can prove this by looking at the trace of both
representations at Frobenius elements at the primes p { N¢ and using theorem 10.1. Write
Nygy for the level of f ® 1. Since py ) and pyg, 5 are isomorphic their Artin conductor
N(py,) and N(v ® py ) are equal. We find using proposition 10.12 that for any prime p,

Up(Nyow) < vp(N( ©D2)) +2 = vp(N(pf ) +2 < vp(N) + 2. (14.4)

Assume that vo(N) € {2,3} and va(c) < v2(IN). If va(cy) > 3, we get from the last point
of proposition 14.1 that

’L}Q(Nf®¢) = Uz(lCHl(N, C?ﬁ, CC¢)) = QUQ(Cw) > ’UQ(N) + 2.

This is in contradiction with (14.4) and therefore va(cy) < 2 in this case.
[ |

We can now define a set that characterises the possible characters ¢ for which could have
Pix =Y @pyy. This is the dihedral counterpart of the set Ry (£) of definition 13.1 in the
reducible case.

Definition 14.7. Let T ¢(\) be the set of pairs (e, 1)) with e € {0,1} and v a primitive Dirichlet
character of order less or equal to 2 such that (e,v) # (0,1) and

e The character ¢ is unramified outside N and unramified at ¢;

e For a prime p such that p | N, p # £, v,(N) = 1, and v,(c) = 0, the character ¢ is
unramified at p and either pe%¢(p) =1 (mod ¥), or pe%w(p) =p=—1 (mod ¥);

e For a prime p such that p | N, p # £, and v,(N) = vp(c), either ¢ is unramified at p and
pee_le(p) =1 (mod ¥), or v is ramified at p and ¢, = 5;1 (mod \);

o Ifuy(N) €{2,3} and va(c) < vo(N), then the conductor of 1o is strictly less than 8.

Combining propositions 14.4 and 14.6, we deduce a first characterisation of the dihedral case
in terms of congruences.

Corollary 14.8. The representation pg y has dihedral projective image of order prime to £ if
and only if there exists (e, ) € T (\) such that the following congruences hold for all prime

numbers p in a set of density one.
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o If pt NU, then ay(f) = p° 2 (p)ay(f) (mod A);

o If£1| N, p # £, vp(N) = vp(c), and the character v is ramified at p, then ay(f)? =
P Ty (p)ey(p) (mod A).

Proof. First assume that there exists (e, 1)) € Tv¢(\) such that the congruences of the corollary
hold. From theorem 10.1, the congruences a,(f) = peé_le(p)ap(f) (mod A) for pt N/ imply the

£—1

isomorphism p \ = <Xz 2 1/1) ® pg.x- Moreover, it follows from the definition of Ty () that

Z 1

the character X@ 2 4} is quadratic. From proposition 14.4, p #,» has dihedral projective image of
order prime to /.

Conversely, assume that p; , has dihedral projective image of order prime to ¢. By proposi-
tion 14.4, there exists a quadratic character n such that n ® p;\ = ps 5. Let us decompose 7 as
ne - 1My, with 7, ramified only at ¢, and 774 unramified at £. As 7 is quadratic, so are 7, and 7.

71
Therefore, either 7, is trivial, or 7, = Xg . We can thus write 7, as Xg with e € {0,1}. Let ¢
be the Teichmiiller lift of 7}, with respect to A (see section 10.2.2). From proposition 14.6, the
pair (e, 1)) lies in the set Ty -(\) and the announced congruences hold. [ |

Our goal is now to refine corollary 14.8 in a way that requires checking only a finite number
of congruences. Let (e,v¢) € Ty.()\) and denote by ¢, the conductor of ¥». We construct a
new Dirichlet character from 1 that will be better suited for our study. Let {/; be the Dirichlet
character that is unramified outside ¢, and such that for a prime p | ¢y,

_ S — .
{ et ifp| N, p# € and, vy(N) = vy(c); (14.5)

Yp = 1,  otherwise.

Notice that from the definition of T . (\), we have ¢ =1 (mod \) because at the primes p for
which we have modified ¢, we have ¥, = ¢, = Yp (mod X). Moreover, for the primes p for

which we have not modified 1, the p-adic valuation of the conductor of 1; is the same as the
p-adic valuation of ¢y,. We now define a modular form g by

g=fe. (14.6)
From proposition 14.1 we deduce the following result.

Proposition 14.9. The modular form g has integral Fourier coefficients and is a normalised
eigenform of weight k, level N,, and character 1%c. Let p be a prime number.

1. If pt N orp =1/, then ap(g) = J(p)ap(f) and vy(Ng) = vp(N);
2. Ifp| N, p#{, v,(N) =1, and vy(c) = 0, then ay(g) = J(p)ap(f) and vy(Ng) = vp(N);

3. Ifp| N, p#U¢, and vp(N) = vp(c), then vp(Ng) = vp(N). Moreover, if ¢ is unramified at
p, then ay(g) = Y (p)ay(f), and otherwise a,(g) = ap(f)(We)o(p);

4. Ifp | N, p# L, vp(N) = 2, and v,(N) > vy(c), then if p is odd, we have v,(Ng) < vp(IN),
and if p =2, we have va(Ny) < va(N) + 2.
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In particular we have N, | N - ged(N, 2)%.

Proof. The formula for the weight and the character of g follow from proposition 14.1. Let p be
a prime number.

1. If pf N or if p = ¢, then from the definition of Ty () the character QZ is unramified at p.
Therefore, by proposition 14.1 the p-adic parts of the levels of g and f are the same and

ap(g) = v(P)ay(f).

2. Ifp| N, p#L, v,(N) =1, and vp(c) = 0, then the character ¢ is also unramified at p and
the result follows just as before.

3. If p| N, p# ¢, and v,(N) = vp(c), then from the definition of Y either v is unramified at
p and ¢ is too, or ¢ is ramified at p and ¢, = ¢, L In both cases the result follows from
proposition 14.1.

4. Finally, assume that p | N, p # £, v,(N) > 2, and v,(N) > vp(c). If p is odd, then from
proposition 14.6.1 we have v,(c¢y) = 1 and from proposition 14.1 deduce

vp(Ng) < max(vp(IV), 2vp(cy), vp(cy) + vp(c)) = max(vp(IN), 2, vp(c) + 1) = vp(NV).

If now p = 2, we have va(cy) € {0,2,3} from proposition 14.6.1. By the same computation
as above, we have va(Ny) < max(va(N),2v2(cy), va(cye)). If va(N) € {2,3}, we have
v2(cy) < 2 by definition 14.7 and we deduce va(Ng) < va2(N) + 2. If va(N) > 4, we have

v2(Ny) < max(va(N), 6,v2(c) +3) < va(N) + 2.

Before we get to the main result of this section we need to modify the form g slightly in order
to get congruences at the primes p | N, p # ¢ lacking a suitable congruence. The following result
solves this issue.

Proposition 14.10. Let g be the modular form defined in (14.6) and consider two sets of primes
Py, Py such that

P, C{p|N, p#¢ v,(N)=1 and vy(c) =0},
and Py C{p| N, p#L, v,(N) =2 and vy(c) < vy(N)}.

Define P := P1 U Py and, with the notations of corollary 12.29,

h = gg))pep.
The form h has integral Fourier coefficients and is of weight k and character st. Its level Ny,

satisfies Nj, | N’ := N ged(N,2)? ] p and has the same prime factors as N. It is a normalised
peP

etgenform for all the Hecke operators T]ﬁvl except maybe at the primes p such thatp | N, p # ¢,
Up(N) =2, vp(N) > vp(c) and p & Po. Finally, for any prime number p we have

_ ap(g) ifp ¢ P;
ap(h)_{ 0 ifpeP.



198 CHAPTER 14. DIHEDRAL MODULAR REPRESENTATIONS

Proof. Everything follows directly from corollary 12.29 and proposition 14.9 except the assertions
about the level of h. The level of h may differ from the level of g only at the primes in P. Write
Np, and Ny for the levels of h and g respectively and let p € P.

If p € Py, then from proposition 14.9 we have v,(Ny) = v,(N) = 1, and a,(g) = J(p)ap(f) #0
from proposition 10.16. Therefore v,(Ny) = vp(Ny) + 1 = v,(N) + 1 from corollary 12.29.

If p € Py, then we have v,(N) > 2 and v,(c) < vp(N).

e If a,(g9) = 0, then we have v,(NN},) = vp(INy) and the result follows in this case from
proposition 14.9.

o If a,(g) # 0 and v,(Ny) = 0, then v,(Ny) = 2 < vp(N).

e Finally, if a,(g) # 0 and v,(INy) > 0, then we get v,(Np) = v,(Ng) + 1. If v,(Ny) = 1, then
we have v,(Np,) = 2 < vp(IN). Otherwise, by proposition 10.16 the p-adic valuation of IV,
is necessarily equal to the p-adic valuation of the conductor of 1525. As the p-part of 1525 is
equal to €, in this case, we get v,(Np) = v,(Ng) +1 = vp(c) + 1 < vp(NV).

To conclude, it follows from proposition 14.9 that N}, has the same prime factors as N’ :=

N ged(N,2)% T] p, except maybe for the primes p such that p | N, p # £, v,(N) = 2, v,(c) <
pEP
vp(N), and p ¢ Py. Therefore, from lemma 12.24 it is also an eigenform for the Hecke operators

at this level. [}

Remark 14.11. The modular form h in the previous proposition is an eigenform for all the
Hecke operators at its level Ny but not necessarily for all the Hecke operators at level N'. Indeed,
the p-adic valuation of Ny and N' may not be the same for the primes p not in the set Py but
such that p | N, p # £, vp(N) = 2, and vp(N) > vp(c).

We now prove the main result of this chapter. We give a finite list of explicit congruences
that suffice to prove that a given modular representation is dihedral.

Theorem 14.12. The following are equivalent.
1. The representation py 5 has projective dihedral image of order prime to ¢;

2. There exists (e,¢) € Tn(X) such that the following holds. Define the set

P, = {p prime, p | N, p# £, v,(N) =1, vp(c) =0, and 7,&(1))1965771 =-1 (mod 6)}

and
0 4 ift=3andV¥p|N, p=1 (mod9); b 3 if €| N,
"] 0 otherwise, ) ¢+1 ifetN.
Nged(2,N)?2 (k+a+b(1+e5t 1
Let B := god( ) ( a ( 62)) HpH(l—i—).Foreveryprz‘mepéB,
12 pePy pIN P
we have

£—1

o ap(f) =p" 7 Y(p)ap(f) (mod A) if p N¢;
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° ap(f)2 = peliTlJrk_l (we); (p) (mod A) if p | N, p # £, vp(N) = wvy(c), and ¢ is
ramified at p.

Proof. The implication 1 = 2 follows directly from corollary 14.8. Assume that the second part
of the theorem holds. We define the set

P2 = {p primeapra p‘Nv p;ég, vP(N) > 2’ UP<N) >1}p(C)},

and P := P; UP,. Let 1; be defined as in (14.5) and put
~\ (0)pep 0
h = (f ® d))P ! and f = I(,l)pepl.

We claim that, with the notations of section 12.1, the modular forms 91+ 5 h and 0 f are
congruent modulo A. To prove this, let us check that the hypotheses of corollary 12.19 are
satisfied by the forms f’ and h, and the integers my = 1, and my =1 + e%.

From proposition 14.10 and corollary 12.29, the forms h and f’ are of weight k, character

1?e and ¢ respectively, and level Ny, | N ged(2,N)? J] pand N [] p respectively. Moreover,

peEP] peEP;
h and f’ are both normalised eigenforms at level N ged(2, N)2 [] p. Next, by construction we
peP,
have 12 = 92 =1 (mod \). Therefore, we have
k =1\
X€+2(1+6 2 )¢28 = yif“a (mod \).

To apply corollary 12.19 we finally need to check that pa,(f’) = p1+e[771ap(h) (mod A) for all
prime numbers p < B. Let p be a prime number less than or equal to B.

e If p =/, then we have p1+e%ap(h) =0 = pay(f’) (mod X).

e If pt N/, then we have a,(f) = pe%w(p)ap(f) = pe%a(p)ap(f) (mod \) by assumption,
and from propositions 14.9 and 14.10, we deduce that

P ap(h) = pTF G(0)ay(f) = pay(f) = pay(f)  (mod A).

o Ifp| N, p# ¢, vp(N) =1, and vp(c) = 0, then if p € Py, we have from corollary 12.29,

pay(f) =0 = p1+e%ap(h), If p ¢ Py, we have from the definition of Ty .(\), J(p)pe% =
w(p)peé%l =1 (mod \). We then get
p1+e“71ap(h) — pHG% ap (f ® {/;) from proposition 14.10
= p1+627T11f/;(p)ap(f) from proposition 14.9

= pa,(f) (mod A).

o If p| N, p# ¢, and v,(N) = vp(c), then either ¢ is unramified at p and because ¢ and J
—1

are congruent modulo A we have peeT{/;(p) = pe%i/)(p) =1 (mod /), or 9 is ramified at
p. In the first case we have from propositions 14.9 and 14.10,

P ap(h) = pT G(p)ay(f) = pay(f) = pay(f)  (mod A).
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In the second case, we have a,(h) = ap(f)(qze)o(p) = ap(f)(¢e),(p) (mod A) from proposi-
tions 14.9 and 14.10 again. Therefore, since a,(f) = a,(f)~1p*~! from proposition 10.16,
we deduce from the assumption that

PHS%%UZ) = ap(f)ilkare%(l/’E);(P) = pap(f) = pap(f') (mod A).

e Finally if p | N, p # £, v,(N) > 2, and v,(IN) > v,(c), then from proposition 10.16 and
£—1
corollary 12.29 we have p' ¢ 2 a,(h) = 0 = pa,(f) = pa,(f’).

Therefore, corollary 12.19 applies and for every prime p, we have p1+ee_71 ap(h) = pay(f') (mod \).

In particular, for every prime p f N, we have

£—1

-1 i1
ap(f) =p° 7 ap(h) =p“ = Y(p)ay(f) (mod A).
From corollary 14.8, we deduce that p \ has projective dihedral image. |

Remark 14.13. As theorem 13.12, theorem 14.12 applies with no restriction on the prime ideal
A. It can therefore be used to check if any representation py 5 has dihedral projective image or
not. For example, one can recover the example [BD1/, §5.2] with tools coming only from the
theory of modular forms. See section 15.2 for more details.

14.2 Dihedral modular representations in big characteristic

Theorem 14.12 applies for every prime ideal A in Oy, but the bound for the number of prime
index coefficients depends on ¢. Under some assumptions on ¢, we remove this dependency. We
first get rid of £ in the definition of Ty (\) by looking at the shape of p; , at £. A result similar
the following one can be found in [BD14, Proposition 3.3|.

Proposition 14.14. Let ¢ be a quadratic character such that ¥ @ py\ = py . Assume further
that ¢ >k —1 and 1 N.

1. If f is ordinary at A\, then either ¢ is unramified at ¢ and ¢ (¢) = 1, or ¢ is ramified at ¢,
=2k —1 and a;(f)* = ¢;(0)(¢) (mod N);

2. If f is not ordinary at X\, then either £ = 2k — 3, or v is unramified at £.

Proof. We are under the hypotheses of proposition 10.14. In its notations we are in one of the
following two cases.

e If f is ordinary at A, then we have

—k—1 e(0)
_ ~ [ X a *
s (TR <)

0 p(ae(f))

o [Plexs ( E((Z})) * ) N
- a - w ® P R ’ 0
( 0 lalac(f)) FAE
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Therefore, we have an equality of characters of Gy:

e (20 ) tanton p = {olans e (205 ) vlaatan o))}

If Ylg,p(ae(f)) = plae(f)), then ¢ is unramified at £ and a,(f) = ¥(€)ae(f) (mod A).

Otherwise, we have WG@YIE_IM (;{&%) = u(ae(f)). Therefore, wlgzy]g_l is unramified, and
£—1

the character 1 is ramified at ¢ and quadratic. We deduce that ¢y =x,? (mod \) and
k—1= 4_71 (mod ¢ — 1). From the assumption ¢ > k — 1, we need to have ¢ = 2k — 1.

Moreover, the value of 1|, X ' at Froby is v} (¢), and we get 1)(¢) ai((?) = as(f) (mod A).

e If f is not ordinary at A, then we have

~ ¢k_1 0 ~ ¢|Ie¢k_1 0 ~ —
I, = ( 0 ¢€(k—l) - 0 1/)|Ie¢€(k—1) - w ®'0f,)\‘[£'

This means that either ¢*~1 = ¢[;,¢* 1 or ¢F~1 = 1/)|[Z¢£(k_1). In the first case, we get

that v is unramified at £. In the second case, ¢ is ramified at £ and quadratic, therefore
£=1 _
=X, = ¢(€+1)% (mod \). We deduce that k£ — 1 is congruent to HTI modulo £+ 1,

2

Prx

and from the assumption £ > k — 1, we get £ = 2k — 3.
|

Proposition 14.14 tells us that under the assumption ¢ > k—1, ¢4 N, and ¢ ¢ {2k — 1,2k — 3},
the possible quadratic twists of py  are unramified at £. This means that we no longer need the
number e in Ty (A) that encoded the ramification at £.

Definition 14.15. Let T . be the set of quadratic Dirichlet characters 1) such that
e The character v is unramified outside N ;
e For a prime p such that p | N, v,(N) =1, and vy(c) = 0, ¢ is unramified at p and ¢(p) = 1;

e For a prime p such that p | N and vy,(N) = vp(c), either ¢ is unramified at p and ¢ (p) =1,
or v is ramified at p and 1, = 6;1.
We now prove the second main theorem of this section.

Theorem 14.16. Let ¢ be a prime number such that ¢ > k —1, £ ¢ {2k — 1,2k — 3}, Lt N,
C{p+1 for all primes p with v,(N) =1 and vy(c) =0, and £ {p —1 for all primes p | N with
vp(N) = vp(c). The following are equivalent.

1. The representation py 5 has dihedral projective image of order prime to .

2. There exists 1 € Ty such that the following holds. Let B := %]2\[’2)2’“ II (1 + %) For
pIN
every prime p < B, we have

o ap(f) = P(plap(f) (mod A) if p N;
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e a,(f)? =p" L (we)o(p) (mod N) if p| N, vy(N) = vy(c), and 1 is ramified at p.

Proof. Assume that p; ) has dihedral projective image of order prime to £. Then, from corol-
lary 14.8 there exists a pair (e, 1) € Ty () such that a,(f) = peLle(p)ap(f) (mod A) for all
primes p f N¢, and a2 = pk_l“'e%w]’?(p)e;(p) (mod N\) if pt N, p# £, vp(N) = vp(c), and ¥ is
ramified at p. We have to prove that e =0, ¢» € Ty, and that ay(f) = ¢¥()ap(f) (mod A).

For the first point, it follows from theorem 10.1 that <X/21¢ @ prr = Py and from
proposition 14.14 we necessarily have e = 0. Let us prove that ¢ € Ty .. From the definition
of Ty (), the character ¢ is unramified outside N, at ¢, and as £ { N, also at the primes p
such that v,(IN) =1 and v,(c) = 0. For a prime p such that p | N and v,(NN) = vp(c) either ¢
is unramified at p and (p) = 1, or ¢ is ramified at p and ¢, = ¢, ! (mod \). In the second
case, the character v,¢), is trivial modulo A and therefore of order a power of £ by lemma 10.5.
However, as we assumed 1 N, and £t g — 1 for all prime divisors ¢ of N such that vy(N) = v4(c),
¢ does not divide the order of the group (Z / prr(V )Z) Therefore, 1€, is trivial and ¢, = €, ~1
Finally, for a prime p | N such that v,(N) = 1 and v,(c) = 0, we either have ¥(p) = 1 or
Y(p) = —1 =p (mod ¢). However, as we assume that ¢ 1 ¢ + 1 for all prime divisors ¢ of N such
that vy(/V) = 1 and v,4(c) = 0, the second case cannot occur. We conclude that ¢ € Ty .. Finally,
from proposition 14.14, either f is ordinary, we have 1(¢) = 1 and therefore a,(f) = ¥ (£)as(f),
or f is not ordinary. In this second case we have a;(f) =0 = ¥(0)as(f) (mod A).

Assume now that the second part holds. We define the set

Py := {p prime such that p < B,p | N,v,(N) = 2,v,(N) > v,(c)},

and the modular form

= (W& Npy "

Let us apply corollary 12.19 to h, f, and my = my = 0. From propositions 14.9 and 14.10, h and
f are modular forms of weight k, character ¢, level Nj, | N’ := N ged(N,2)? and N respectively,
and are normalised eigenforms for all the T}, N’ for p < B. The assumption of corollary 12.19 on
the characters is satisfied. Finally, we need to check the congruences a,(f) = a,(h) (mod A) for
all primes p < B. Let p < B be a prime number.

e If pt N{, then from propositions 14.9 and 14.10 and the assumption, we have
ap(h) = P(plap(f) = ap(f)  (mod A).

o If p =/, then as v is unramified at £ we have from the assumption
ag(h) = P ()ar(f) = ar(f)  (mod A).

e If p| N, v,(N) =1, and v,(c) = 0, then by assumption we have ¢(p) = 1. Thus, from
propositions 14.9 and 14.10 we have a,(h) = ¥(p)a,(f) = ap(f).

e If p | N and v,(IN) = vp(c), then from propositions 14.9 and 14.10 we have a,(h) =
ap(f)(We)o(p) = p*Lay(f) "1 (e)o(p). Therefore, a,(h) = ay(f) (mod ).
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e Finally, if p | N, v,(N) > 2, and v,(c) < v,(N), then we have from propositions 10.16
and 14.10, a,(h) = 0 = a,(f).

We therefore have a,(h) = a,(f) (mod A) for all primes p < B. From corollary 12.19, we deduce
that a,(h) = a,(f) (mod A) for all primes p. In particular, for the primes p t N¢ we have

ap(h) = ¥(p)ap(f) = ap(f) (mod A).

As (0,7) € T (), it follows from corollary 14.8 that py , has dihedral projective image. W

From theorem 14.16 we can also deduce a bound for the dihedral primes in terms of N, k, ¢,
and the degree of K.

Theorem 14.17. Assume py 5 has dihedral projective image of order prime to £. If N =1, then
we have £ < k or £ € {2k — 1,2k —3}. Else, if N > 1 and f does not have complex multiplication,
then we have

k-1 .
Nk 5 [K5:Q]
¢ < max <3 (2loglog(N) + 2.4) ,25N2> .

Proof. Assume that p;  has dihedral projective image of order prime to £. From theorem 14.16,
we either have ¢ <k —1,¢| N, ¢|p— 1 for some prime p | N, v,(N) = vp(c), £ | p+ 1 for some
prime p | N, v,(N) =1, vy(c) =0, £ € {2k — 1,2k — 3}, or there exists ¢ € T such that

¢ ] ged | (Norm (ap()pen i, » (Norm (ap(1)? = 01 ew)o(0)) ) peppv, | (147)
P(p)=-1 UP(N)IZUP(C)
Plty

2
where B := W I1 (1 + %) This greatest common divisor being understood as the gcd
pIN
of all the quantities in brackets in the ring Z.

If N =1, then the set 77 1 contains only quadratic Dirichlet characters unramified outside
1. Therefore, T11 is empty and p;\ can have dihedral projective image only if £ < k — 1 or
¢ € {2k — 1,2k — 3}. The result follows in this case.

Assume that N > 1. Using Deligne’s bounds for the coefficients of a newform (see |[Del74,
Théoréme 8.2]) and lemma 12.23, this means that for p < B we have either.

¢ Norm(ap(f))l = T lo(ap(H)

0:Ky—C
_ Ky
< <2p%>[ £:QJ

LK Q)
< (]\;k (2loglog(N) + 2.4)> :
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orp | N, vp(N) =wpy(c), p|cy, and

o] |Nom (a,(1? = (o)) < T (o ()] +57)

0:Ky—C

< (51?’c ’1) o

< <5Nk_1) (K Q] ‘

To conclude, we must prove that the quantity

ged | (Norm (a(£)))pep v, » (Norm (a(£)2 = " (=)o(8) ) ) pepain
Y(p)=-1 UP(N)|:UP(C)
pley

is non-zero. If it was the case, we would have,
e a,(f) =1(p)ap(f), for all p < B such that p{ N;

o and a,(f)% = (¥e)o(p)p*~1, for all p < B, such that p | N, v,(N) = v,(c), and p | ;.

Define Py := {p prime ,p < B,v,(N) > 2,v,(N) > v,(¢c)}, and g := (f ® w)g”e"? From propo-
sition 14.10, it is a modular form of weight k, level N, | N’ := N ged(2, N)?, and character
% = ¢, and an eigenform for all the Hecke operators 7, va "for p < B, as well as f. Moreover, we

have for all primes p < B,
* ap(g) =v(plap(f) = ap(f) i pt N;

ap(f) = ap(f) i p [ N, vp(N) =1, vp(c) = 0;

<

(p
1

o ap(9) = ap()(We)o(p) = ap(f) P (We)o(p) = ap(f), if p | N, vp(N) = vp(c) and p | cy;

o ay(9) = ¥(p) ap(f) = ap(f), if p| N, vp(N) = vp(c) and p 1 cy;
=1

e a,(9) =0=uay(f),ifp| N, vp(N) =2, v,(N) > v,(c).

* ap(g) =

{

We deduce from corollary 12.22 that g = f. It follows that a,(f) = ¢(p)a,(f) for all primes
p1 N, and that f must have CM. This concludes the proof. |

14.3 Checking the dihedrality

We explain in this section how to use theorems 14.12 and 14.16 to explicitly compute, given a
modular newform f, the exact set of prime ideals of Oy for which Pp; ,(Gg) is a dihedral group
of order prime to £. We begin by what we would call “the small potentially dihedral primes”. For

a practical use, we make the following definition.
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Definition 14.18. A prime number £ is said to be a small potentially dihedral prime for f, if it
satisfies at least of the following conditions:

o /< k—2;
o /| N;
e /| p+1 for some prime p | N with vy,(N) =1 and v,(c) = 0;
o (| p—1 for some prime p | N with v,(N) = vy(c);
o (c{2k—1,2k— 3}.
The small potentially dihedral primes are those which do not satisfy the hypotheses of theorem 14.16.

For the small potentially dihedral primes, we apply theorem 14.12. Notice that the computa-
tion of the set Ty -(A) makes no difficulty as it involves only computations of Dirichlet characters
modulo N and congruences involving rational integers.

Algorithm 14.19. Input: A newform f, described by its Fourier coefficients (an(f))n>0 as
elements of the number field Ky, together with its level N, weight k, and character €.

Output: The set of prime ideals X of Oy which residual characteristic is a small dihedral prime
and such that IP?f)\(GQ) s a dihedral group of order prime to £.

1. Set Dih(f) = 0.

2. Compute the set P of small potentially dihedral primes (see definition 14.18).

3. For each £ € P, compute the set P({) of prime ideals X in Oy above (.

4. For each € € P and for each A\ € P({), compute the set Ty (\) (see definition 14.7).
5. For each ¢ € P, for each X\ € P({), and for each (1, e) € Ty (),

(a) Compute the bound B defined in theorem 14.12.

6571

(b) For all prime number pt N{, p < B, check the congruence a,(f) = p°® 2 ¥ (p)ay(f)
(mod \).

(¢) For all prime numbers p | N, p # ¢, p < B, such that v,(N) = v,(c) and ¢ is ramified
at p, check that congruence a,(f)* = pk’1+e%(¢5);(p) (mod A).

d) If they all hold, add X\ to Dih(f). The representation py  has projective dihedral image
I
of order prime to {.

6. Return Dih(f).

For the big prime numbers — that is the ones that are not small according to definition 14.18
— we proceed mainly as in the reducible case. The bound of theorem 14.17 is impractical for
computations, and examples suggest that it is much bigger compared to the effective dihedral
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prime numbers. We can instead use the characterisation given by theorem 14.16: if Pp; (Gg) is
dihedral for a prime ideal above a big prime number ¢, then there exists 1 € T . such that

0| ged <(Norm (ap(f))p<BpinN, 5 (Norm (ap(f)2 —pk_1(5¢)0(p))> p<B,p|N, ) :

P(p)=-1 vp(N)=vp(c)
This gives us the following algorithm.
Algorithm 14.20. Input: A newform f, described by its Fourier coefficients (an(f))n=0 as
elements of the number field Ky, together with its level N, weight k, and character «.

Output: The set of primes ideals X of Oy which residual characteristic is not a small dihedral
prime and such that Pp; \(Gq) is a dihedral group of order prime to £.

1. Set Dih(f) = 0.
2. Compute the set T . (see definition 14.15).
3. Compute the bound B defined in theorem 14.16.

4. For v € T, compute the set P(v) of prime divisors of the ged of the algebraic norms of

* ap(f)(l - w(p)) fOTPTN; p < B;
o a,(f)? —p*t(we)o(p), for p| N such that vy,(N) = vp(c) and 1 is ramified at p,

that are not small dihedral prime numbers according to definition 14.18.
5. For ¢ € Ty, and for £ € P(),

(a) Compute the prime ideals X of Oy above {.

(b) For each such X\, check the following congruences:

e ap(f) =¥(p)ap(f) (mod A) forpt N, p < B;

o ap(f)? =p" " (¥e)o(p) (mod N).
If they all hold, add X to Dih(f). The representation Py has projective dihedral image
of order prime to {.

Remark 14.21. Notice that their may be some overlap between the reducible case and the dihedral
case. Indeed, assume that py y is reducible, isomorphic to m @ ng for two residual characters
M, nm2. In this case, the projective image of py 5 is isomorphic to (nlngl)(G@) which is a cyclic
group. It can be dihedral in exactly two cases :

o If m = ng, then the projective image of py 5 1s trivial.

o If (mny ) (Go) = {1, -1}, then mn, " is a quadratic character and the projective image of
ﬁf,)\ 18 Z/QZ = DQ.

The first case will not be detected by our theorem because the corresponding twist would be the
trivial character. However, the second case will be detected as a dihedral case. For example,
consider the modular form A € S13(1,1) at £ = 3. The representation pa (3) is isomorphic to
X3 ® X3. The projective image of Pa,3) is isomorphic to X3(Gq) = Z/2Z and the quadratic
character X is indeed a non-trivial twist of pa (3)-
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Numerical applications

We present here some examples of applications of the algorithms described in sections 13.3
and 14.3 to compute the reducible and dihedral primes of a given newform. Throughout this
section we use the Conrey representation (£4(b))pra=1 for the Dirichlet characters of modulus a.
This is the way they are described in the LMFDB for example (and in some extent in PARI/GP).
Notice that there would be no possible confusion with the characters €1, €2 from the algorithms
above.

15.1 The reducible case

15.1.1 A concrete example

Consider the space S¥V(7,e7(3)). It has dimension 6 over C and is generated by 2 newforms,
f1 and fo, up to conjugation by Gal(Q/Q(e7(3))). We have Ky = Q[t]/(t* —t + 1) and
Ky, = Q[z]/(z* + 22% + 4). Notice that (1, x, 902—2, %) is an integer basis of Oy,, and that £7(3)
.’L‘2

sends 3 to t in Ky, and to —% in Ky,. The g-expansions of f; and fo are given by

f1=q+12t¢> + (=7t — 7)¢® + (80t — 80)¢* + (=105t + 210)¢°
+ (—168t + 84)¢5 — 343¢" + O(¢®),

3 3

fo=q+ (3-'m2+2x2—|—3:1:> q2+ <13.’L‘3 — 2x2+13m+3> q3
25

+ (1522 — 24z + 30)¢* + <—25x3 — ?$2 + 50z — 50) q° + O(¢%).

The set of prime numbers less than k + 1 = 8 or dividing No(N) = 42 is equal to {2,3,5,7}.
We treat those primes separately below.

o { =2: The ideal 20, is prime and the ideal 20}, decomposes as 20;, = ((x,2)Oy,)*.
Because, the ideal generated by 2 in Z[e7(3)] is prime, algorithm 13.21 gives us

Ry 72.3)(20p) = Ry 7...3)((2,2)Op,) = {(1,e7(4),0,0)}.

207
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According to theorem 13.12, we have for (g1, 2, m1, mo) = (1,e7(4),0,0),

- 2
K=2 r=1 N=7 a=0 b=3 k=10 B=6+.

To check the reducibility of py, (o) and py, (2 ) we only have to check the third and fifth
coefficients of fi and fo. The table below shows the reduction modulo the prime ideals
above of ap(f;) —1 —e7(4)(p) for i =1, 2, and p = 3, 5. From theorem 13.12, we know
that py, \ is reducible if and only if the row corresponding to f; contains only zeros.

P 315
ap(f1) — (1 +e7(4)(p)) (mod2) |0
ap(f2) — (L+e7(4)(p)) (mod (2,2)) | 0| 0

Therefore, we have py, o) = 1 @ e7(4) and py, 2, = 1 © e7(4).

¢ = 3: We have 30, = ((3,t+ 1)Of1)2 and 30y, = ((3,2% + 1)(9f2)2. As for £ = 2, the
ideal generated by 3 in Z[e7(3)] is prime. Therefore, we have from algorithm 13.21
Ry 7.3)((3,t +1)0p,) = Ry 7 03)((3,2° + 1)Oy,)
= {(1,£7(6),0,0); (1,e7(6),1,1)}.

According to theorem 13.12, we have in both cases
~ 1
K=1 r=1, N =7 a=0, b=4, k=11, B:7—|—§.

We have to look at the second, fifth, and seventh coefficients of f; and fs. Let us look at
the second and fifth first.

p
ap(f1) — (1 +¢e7(6)(p)) (mod (3,t+1))
ap(f1) = (p+pe7(6)(p)) (mod (3,t+ 1))
ap(f2) — (1 +e7(6)(p)) (mod (3,22 + 1))
ap(f2) — (p+ per(6)(p)) (mod (3,2% + 1))

OIN| NN
OO OO ot

From these computations, we deduce that the only representation that can be reducible is
Pfy,(3,22+1)- and that it can only be isomorphic to X3 @@W. To confirm this isomorphism,
we finally have to check that there exists some by € {0,7,7¢7(6)(7)} = {0,7} such that
ar(f2) = Tb; (mod (3,22 +1)). We find that we have ar(f2) = 7 (mod (3,22 + 1)).
Therefore, the representation py, (3441) is irreducible, and we have py, 3,211) = X3 @
X3¢7(6).

¢ = 5: The rational prime number 5 is prime in Oy, , and 50y, = (5,22 —22—2)(5, 22 +22—2).
There is again only one prime ideal above 5 in Z[e7(3)] and we have
R77.003)(501,) = Ry 7 cn(3) (5, 2% £ 22 — 2)
= {(]17 87(3)7 0, 2)7 (67(3)7 1,2, 0)? (]la 57(3)7 1, 1)}
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Looking at the congruences at p = 3 for f1, and p = 2 for f5, we have
az(fi) — (1 +3%7(3)(3)) =4t +2 (mod 5),
az(f1) — (e7(3)(3) +3%) =2t +4  (mod 5),
2

(mod (5,22 — 22 — 2));

ax(f2) = (1+2r(3)(2)) = { (mod (5,22 + 2z — 2))

22 +3 (mod (5,22 — 2z — 2));
2z +1 (mod (5,2% + 2z — 2)),

{ 3z +2 mod( ,x2 — 22 —2));
);

as(f2) — (e7(3)(2) +2%)

az(f2) — (2 +2e7(3 (mod (5,22 + 2z — 2)).

The only candidate remaining is (1,e7(3),1,1) for Pr.(5)- We have
2

=1 r=1, N' =17, a=0, b=6, k=13, B=8+3.

We check the second, third, and seventh coefficients, and we get
az(f1) =2+ 2e7(3)(2) (mod 5),
az(f1) =3+ 3¢7(3)(3)  (mod 5),
ar(f1) =7 (mod 5).

Therefore, the representations py, 5 ,2_2,_2) and py, (5,219,—9) are irreducible, and we

have an isomorphism py, 5) = X5 ® X5¢7(3)-
o (=7 We have 70y, = (7,t —5)(7,t —3) and 704, = (7,2 — 1)(7,2 = 2)(7,2 +2)(7,2 + 1).

This time 7 decomposes in Z[e7(3)] and we have
Ry7er3) (Tt = 3) = Ry 73 (T2 £ 1)
={(L, 1)} x{(0,1);(2,5); (3,4)}
and Ry 7.3 (7.t —5) = R777,€7(3)(7, x+2)
={(L, 1)} x{(0,5); (1,4); (2,3)}.
For fi, looking at p = 2 leaves us only with (e1,e9,m1,mo) = (1,1,2,5) for the ideal
(7,t —3) and (1,1,1,4) for (7,t — 5). In both cases we have to look at congruences up to
p =15, and we get

Ppy(7,4-3) = Xs®Xs and P (1i—5) = X7 X7-
For fs, looking at p = 3 leaves us with (1,1,2,5) for (7,z + 1), (1,1,1,4) for (7,z + 2),
(1,1,2,3) for (7, —2), and (1,1,3,4) for (7,2 — 1). In the first two cases we have r = 1,
and we have to look at congruences up to p = 5. In the last two cases we have r = 4,
and we have to check congruences up to p = 53 and p = 67 respectively. In every case,
theorem 13.12 shows that the corresponding representation is reducible. To sum up we
have

_ 4 ~ _
Pho(Ta—1) EXTOXT:  Pho(Tas1) = X7 © X7

_ —2 . —3 — ~ = —4
Pl (1a—2) = X7 DX Py(1.042) = X7 D X7
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We finally look at the prime numbers ¢ > 7. We have
R7767(3) = {(]17 57(3))7 (57(3)7 ]1)}
Let (€1,62) € Rycp3)- Wehaver =1, N' =1, B =4+ %, and

(57(3)7 ]1)5
(1,e7(3)).

0 if (61, 52) =

Cle1,e9) =
e { Bt o (£ (e1,0) =
We first look at fi. We find that 43 is the only prime factor greater than 7 of the ged of
the algebraic norms of C(e1,e2) and a,(f1) — e1(p) — pPea(p), for p = 2, 3. In Oy we have

430y, = (43,t — 7)(43,t + 6) and we get the following table.

(e1,€2) (1,e7(3)) (e7(3),1)
ap(f1) =1 = p°ez(3)(p) || ap(fr) —7(3)(p) — p°

Cler(3) =725 b =3 pr— g

(43,6 —17) 0 0 0 14 25

(43, + 6) 40 31 22 0 0

Therefore, we get py, 43,7 =1 & XS3e7(3) and Pf1,(43,646) = >~ 7(3) @ X%

We now turn to fs. Computing again the ged of the algebraic norm of C(e1,e2) and
ap(f2) —e1(p) — pTea(p), for p = 2, 3, we find that the only possible residue characteristics are 97
and 3919. We have the following decompositions in Oy,:

ap(f2) —€7(3)(p)

9704, = (97,2 — 19)(97, 2 — 5)(97, z + 5)(97, z + 19),
39190, = (3919, — 934)(3919, 2 — 621)(3919, z + 621)(3919, z + 934),

and we get the following values for the reduction of C(1,¢e7(3)), ap(f2) — 1 — pbe7(3)(p), and
—p% for p € {2,3}.

(e1,€2) (L,e7(3)) (e7(3),1)
C1,e(3)) ap(f2) =1 = p%7(3)(p) || ap(f2) — e7(3)(p) — p°
p=2 p= p=2 p=3
(97,2 — 19) 9 33 75 30 57
(97,2 — 5) 0 0 0 8 66
(97,2 +5) 0 80 15 88 81
(97, 2 + 19) 11 3 18 0 0
(3919, z — 934) 3160 3231 1337 0 0
(3919, 2 — 621) 0 0 0 3042 609
(3919, z + 621) 0 1685 2010 808 2619
(3919, z + 934) 1455 3038 3047 3726 1710

Praor.a—s) = 1@ Xo7e7(3),

By (3919,0-934) = €7(3) © X3019,

Therefore, the representations py, 97.:-19), Pf,,(97,045) Pfy,(3919,0+621) A D, (3919 5 4934) BTE
irreducible, and we have

B (97,0419) = €7(3) & Xo7,

The following table sums up all the cases for which py, 5 is reducible.

Dy (3019,0—621) = 1 & X301067(3).
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¢ fi f2
, ) 2,2)
1 @87(4) 1 @87(4)
3,22 +1
3 Irreducible 7( ,a:i—i- )
X3 © X3€7(6)
5 o (E) Irreducible
X5 @ X5e7(3)
(7,t —3) (7,t —5) (7,2 =2) | (T,x—=1) | (T,x+1) | (T,x+2)
7 —2 =5 I —2 =3 —3 =4 —2 . =5 — =4
X7 D X7 X7 X7 X7OX7 | XOX7 | XeBX7 | X1 DB X7
— 1
(> k4l (97Li 5) (97, -I-ig)
(43,t —7) (43,t+6) 1 & Xg7e7(3) e7(3) ® X7
10x5,67(3) | e7(3) @ X5 (3919, x — 934) (3919, x — 621)
CEN(N) | il S et
£7(3) © X3o19 © X39197(3)

15.1.2 An irreducible everywhere representation

We present an example of a modular form which all residual representations are irreducible. Fix
(N,k,e) = (35,4,1). The space S}V (35, 1) has dimension 6 over C and contains 3 newforms up
to conjugation by Gal(Q/Q). Let f be the newform of this space which g-expansion is

f=a+y+98+ (1 -4y)¢’ +0(d"),
where y is a root of X? —2. The coefficient field of f is equal to Ky = Q(y). We have in this case
Rys1 = {(1,1)}.

Therefore, by theorem 13.19 the only prime ideals A of O for which py y can be reducible are of
residue characteristic £ € {2,3,5,7} (because we have Byj = —3). Let us look at each of these
cases.

e (=2: We have 20; = (2,y)? and Rs541(2,y) = {(1,1,0,0)}. However, we have

Tt (B (2.9 (Frobs) ) = as(f) =1 (mod (2,1))
and
Tr ((1 @ 1)(Frobs)) =0 (mod (2,y)).

Therefore, py, (5, is irreducible.
e (= 3: The ideal 30y is prime, and we have R3s54,1(3) = {(1,1,0,1)}. However, we have
Tr (ﬁf@) (Frob2)> =a(f)=y+1 (mod 3)
and

Tr ((1 @& x3) (Frobs)) =0 (mod 3).

Therefore, py,(3) is irreducible.
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e ¢ =5: Again, 5 is prime in Oy, and we have R3541(5) = {(1,1,0,3); (1,1,1,2)}. Looking
at a Frobenius element at 2, we have
Tr (ﬁﬂ@ (Frobz)) =ay(f)=y+4 (mod?5)
and
Tr ((1 @yg) (Frobg)) =4 (mod 5), Tr((xs @Yé) (Frobg)) =0 (mod 5).
Therefore, py, (5) is irreducible.

e ( =T7: In this case we have 70y = (7,y — 3)(7,y + 3) and R357,1(7,y £3) = {(1,1)} x
{(0,3);(1,2);(4,5)}. However, for a Frobenius element at 7 we have

(mod (7,y — 3));

Tr (Pf,(7,y—3) (Frobs) 3
6 (mod (7,y+3)),

Tr (Py,(7,y+3) (Frobs)

Q.

Tr ((1 @ %3) (Frobs)) =0 (mod 7,y =+ 3);
T (- @ X2) (Froby)) =5 (mod 7);
Tr ((%3 @ X2) (Frobs)) =2 (mod 7).

Therefore, the representations py 7 ,_3) and py (7, 3) are both irreducible.

Thus, for all prime ideals A in Oy, the representation py , is irreducible.

15.2 The dihedral case

In [BD14, 5.2. Dihedral representation|, Billerey and Dieulefait consider a modular form f in
the space S2(1888,1) and proved that its Galois representation modulo a prime ideal above 5 is
dihedral using the theory of elliptic curves. Let us illustrate our method on their example to
prove that this is in fact the only prime ideal which is dihedral for this form.

Consider the space S2(1888,1). It has dimension 58 over C is splits into 16 orbits under the
action of Gg. Let f be the modular form in the Galois orbit labeled 1888.2.a.k in the LMFDB

which g-expansion is given by
f=q+ (2y* — 5y® — 12y + 20y + 10) ¢
(2y* — 5y® — 11y* + 19y + 8) ¢° + O(q"),
where y is a root of X° —2X* - 7X3 +7X%2 +9X + 2.

Remark 15.1. This is in fact the same modular form as the one considered in [BD14, 5.2.
Dihedral representation/. To go from one form to the other, one can consider the isomorphisms

of field defined by

QLX) - QLX)
(X5 —2X% —7X3 +7X%+9X +2) (X5 +6X*—20X3 — 128X 2 + 48X + 320)

1 4 1v3 3 v2 3
4X* —10X3 —24X2 4+40X +20 X
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Let us apply algorithms 14.19 and 14.20. The small prime ideals are £ = 3, 5, and 59. We
treat them separately.

e ( = 3: The ideal generated by 3 is prime is ring of integer of the coefficient field of f. The
set T'gss,1(3) is equal to

T1888Jl (3) = {(L ]l)a (0’ 58(3))7 (17 58(3))3 (O’ 58(5))7 (13 58(5))3 (0’ 54(3))7 (13 54(3))}'

For every pair (e, 1) of Tigsg 1(3), we can find a congruence a,(f)(1 —p°¥(p)) =0 (mod 3)
for pt N that fails. The following table contains the first such prime number p for each

pair (e, ).

(e,v) |p|| (e9) | p

(L,1) |5 (1,es(5) | 13
(0,e5(3)) | 5 || (0,£4(3))
(Les(3)) | 7| (Lea(3) | 5
(0,e5(5)) | 5

Therefore, Py, (3) does not have dihedral projective image.

e ( =5: There are two prime ideals above 5, A5 1 := (5,y — 1) and A5 2 = (5,9 —y> — 8y* +
4y + 8). For both A; 5 and Ay 5, we again have

T1888,1l (>‘5,i) = {(L ]l)a (Oa 58(3))7 (17 58(3))’ (Oa 58(5))7 (1> 58(5))’ (Oa 54(3))7 (1> 54(3))}'

For most pairs (e, 1)) in both T1ggs 1(A5.1) and T1gss 1(A52) we can again find a congruence
ap(f)(1 — p*1(p)) =0 (mod As;) for p{5 - 1888 that fails. We compile in the following
table the first prime p that fails for each triplet (e, ), A5 ;) except (0,e4(3), X5,1).

(67%)\5,1) p (G,Q,Z),)\&Q) p

(0,1, X5,1) 13 (0,1, X5,2) 3
(0,58(3), )\571) 13 (0,88(3), )\5,2) 7
(1,68(3),)\571) 17 (1,68(3),)\5 2) 3
(0,68(5),)\571) 13 (0,58(5),)\5’2) 3
(1,68(5),)\571) 17 (1,88(5),>\5,2) 7
(0,24(3), X5,1) H (1,24(3),X52) | 3
(1,64(3),)\5’1) 13 (1,64(3),)\5,2) 11

The only triplet remaining is (0,£4(3), A5,1). To prove that py X5, Das dihedral projective

image, we have to check that a,(f)(1 —4(3)(p)) = 0 (mod As;) for all prime numbers
p < B =453,120. We have checked that with a computer. We therefore deduce that py, .1
has dihedral projective image.

e ( =159: There are two prime ideals above 59, Asg 1 := (59, y + 15) and X592 := (59,y4 -
17y% + 1292 + 63y + 8), and the sets T1ggs,1(As9,1) and Thgss 1(As9,2) are both equal to
{<17 ]l)? (07 58(3))7 (17 68(3))ﬂ (07 58(5))7 (17 88(5))ﬂ (07 54(3))7 (17 84(3))}'

As for ¢ = 3, for both prime ideals Asg 1, As9.2, and each pair (e, 1) in Tigss 1(As9,i), one
can find a congruence ap(f) (1 — p?**1(p)) =0 (mod Asg;) that fails.
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(e;¥,251) | p (e, As2) | p

(0,1, X59,1) 11 (0,1, As9,2) 11
(0,88(3), /\59’1) 5 (0,2’58(3),)\59,2) 5
(1,88(3),A59’1) 5 (1;58<3)7)\5972) 5
(0788(5), )\5971) 3 (0,88(5), )\5972) 3
(1,88(5),>\5971) 3 (1,68(5),)\5972) 3
(0,84(3), )\5971) 3 (1,84(3), )\5972) 3
(1,84(3),)\5971) 3 (1,84(3),)\5972) 3

We deduce that representations py 5, , do not have dihedral projective image.

We finally look at the “big” dihedral prime numbers. First, the set T1ggs 1 contains only the

character £g(3) and the bound B is equal to 18342 (1 4+ 1) (1 + &) = 1920. Then, we have

ged <(N0rm(ap(f)))p<1920,m1888,> =1
es(3)(p)=—1
In fact, we even have eg(3)(5) = €3(3)(7) = —1 and ged(Norm(as(f)), Norm(az(f))) = 1.
Therefore, there are no big dihedral primes and the only prime ideal A for which p; , is dihedral
is )\5,1 = (5,y - 1).
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