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English introduction

In number theory, Diophantine equations have always motivated the search of new tools, new
methods, and new theorems to resolve them. One of the most famous is with no doubt Fermat’s
last theorem. In the 1630s, Pierre de Fermat wrote that the equation

Xn + Y n = Zn (0.1)

in non-zero integers had no solution (X,Y, Z) if n is greater than 2. In 1995 – almost four
centuries – many mathematicians, and a lot of new tools later, Andrew Wiles brought the last
piece of mathematics to solve Fermat’s last theorem. This approach is now known as the modular
method. It uses elliptic curves, modular forms, and their Galois representations, in order to
prove that no solution to (0.1) can exist. Since Wiles’ proof, this approach has been developed
and generalised to be applied to other Diophantine equations. For example, in [Dar00], Darmon
proposed an ambitious program in order to tackle generalised Fermat equations using abelian
varieties of GL2-type, Hilbert modular forms, and their Galois representations.

Another example of theory which can be applied to the resolution of Diophantine equations is
the theory of linear forms in logarithms. Briefly, it deals with questions about linear independence
of logarithms of algebraic numbers, and more generally of logarithms of rational points in
commutative algebraic groups. An example of resolution of Diophantine equation in which this
theory has played a key role is Catalan’s conjecture. Catalan proposed in 1844 [Cat44] that the
only integer solution to the equation

Xp − Y q = 1

was (p, q,X, Y ) = (2, 3, 3, 2). This conjecture has been resolved 160 years later by Mihăilescu
[Mih04] using among other things a bound coming from the theory of linear forms in logarithms
of algebraic numbers. Another Diophantine tool that has been developed from the theory of
linear forms in logarithms is the method of the elliptic logarithm. It was conceptualised by
Stroeker and Tzanakis [ST94] and Gebel, Pethö, and Zimmer [GPZ94] in 1994, and a major step
in the theory, done by David [Dav95], made possible the applicability of the method.

More recently, a work of Bugeaud, Mignotte, and Siksek [BMS06a] combined the forces of
both the modular method, and results from the theory of linear forms in logarithms to prove
Diophantine results about perfect powers in Fibonacci and Lucas sequences. They proved that
the only Fibonacci and Lucas numbers that are integer powers are 0, 1, 8, and 144, and 1 and
4 respectively. Building on these ideas they manage to prove similar results in later articles
[BMS06b; Bug+07; Bug+08].
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The goal of this thesis is to bring new results on the modular forms and linear forms in
logarithms sides. Our work focuses on giving explicit results. In particular, we describe several
algorithms we have implemented in the number theory system PARI/GP. This manuscript is split
in two parts. In the first one we work purely on the linear forms in logarithms side. We develop
new, totally explicit theorems in the context of logarithms in abelian varieties over number fields.
Our results are similar in nature to those of David [Dav95] for elliptic curves, and improve and
generalise the work of [Gau06]. In the second part of the thesis, we go on the side of modular
forms and their Galois representations. We again prove explicit and algorithmic results in the
context of small images of residual Galois representations of modular forms. Our work generalises
the one of Billerey and Dieulefait [BD14], and the one of Ribet [Rib75; Rib85] before them. We
redirect the interested reader to chapters 1 and 8 for more details on the two parts of the thesis.



Introduction

En théorie des nombres, les équations diophantiennes ont toujours été un moteur dans la recherche
de nouveaux outils, de nouvelles méthodes, et de nouveaux résultats pour les résoudre. Sans
doute le plus célèbre exemple de telle équation est le Grand théorème de Fermat. Dans les années
1630, Pierre de Fermat écrivit dans la marge de son exemplaire d’Arithmetica de Diophante que
l’équation

Xn + Y n = Zn (0.2)

n’avait pas de solution entière non-nulle (X,Y, Z), si n est supérieur ou égal à 3. En 1995 – presque
4 siècles plus tard – et suite aux efforts de nombreux mathématiciens et au développement de
nombreuses nouvelles mathématiques, Andrew Wiles apporta la dernière pierre à la démonstration
du Grand théorème de Fermat. La stratégie de cette preuve est maintenant connue sous le nom
de méthode modulaire. Elle utilise des courbes elliptiques, des formes modulaires, et leurs
représentations galoisiennes pour démontrer qu’aucune solution non triviale à l’équation (0.2)
n’existe. Depuis la preuve de Wiles, cette méthode a été approfondie et généralisée afin d’être
appliquée à d’autres équations diophantiennes. En particulier, depuis [Dar00], Henri Darmon
a développé un programme pour aborder les équations de Fermat généralisées en utilisant des
variétés abéliennes de type GL2, des formes modulaires de Hilbert, et leurs représentations
galoisiennes.

Un autre exemple de mathématiques dont les progrès ont été appliquées dans le but de résoudre
des équations diophantiennes est la théorie des formes linéaires de logarithmes. Cette théorie
s’intéresse aux questions d’indépendance linéaire de logarithmes de nombres algébriques (et plus
généralement aux logarithmes de points rationnels dans des groupes algébriques commutatifs).
Un exemple célèbre d’équation diophantienne pour laquelle cette théorie a joué un rôle important
est l’équation de Catalan. En 1844, Catalan proposa dans [Cat44] que la seule solution entière à
l’équation

Xp − Y q = 1

était (p, q,X, Y ) = (2, 3, 3, 2). Cette conjecture resta elle aussi ouverte durant de nombreuses
années et c’est seulement en 2004 que Mihăilescu la démontra en utilisant, entre autres, la
théorie des formes linéaires de logarithmes de nombres algébriques. Parmi les outils diophantiens
développés à partir de la théorie des formes linéaires de logarithmes, on peut aussi citer la
méthode du logarithme elliptique. Elle fut originellement imaginée d’une part par Stroeker et
Tzanakis dans [ST94], et d’autre part par Gebel, Pethö, and Zimmer dans [GPZ94]. Les avancées
majeures de David [Dav95] permirent à partir de 1995 à cette méthode d’être mise en œuvre.
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Plus récemment, le travail commun de Bugeaud, Mignotte, et Siksek [BMS06a] combina les
forces à la fois de la méthode modulaire et de la théorie des formes linéaires de logarithmes pour
résoudre de nouveaux problèmes diophantiens concernant des puissances parfaites dans les suites
de Fibonacci et de Lucas. Ils prouvèrent que les seuls nombres de la forme an avec a et n entiers
sont 0, 1, 8 et 144 dans la suite de Fibonacci, et 1 et 4 dans la suite de Lucas. En réutilisant les
idées de leur méthode, ils parvinrent à démontrer des résultats du même ordre dans leurs articles
suivants [BMS06b ; Bug+07 ; Bug+08].

Le but de cette thèse est d’apporter de nouveaux résultats à la fois à la théorie des formes
modulaires, et à celle des formes linéaires de logarithmes. Notre travail se concentre sur les
aspects effectifs des deux théories. En particulier, nous développons plusieurs algorithmes que
nous avons implémentés dans le logiciel de calcul formel PARI/GP. Le présent manuscrit est
séparé en deux parties. La première traite uniquement de formes linéaires de logarithmes. Nous y
prouvons de nouveaux résultats d’indépendance linéaires de logarithmes dans le contexte des
variétés abéliennes. Nos résultats sont comparables à ceux de David [Dav95] pour les courbes
elliptiques, et améliorent et généralisent ceux de Gaudron [Gau06]. La seconde partie s’intéresse
aux formes modulaires et à leurs représentations galoisiennes résiduelles. Nous y prouvons des
résultats explicites et algorithmiques de petite image résiduelle. Nous prolongeons le travail de
Billerey et Dieulefait [BD14], et ceux de Ribet [Rib75 ; Rib85] avant eux. Nous renvoyons le
lecteur intéressé aux chapitres 2 et 9 pour plus de détails sur les deux parties de la thèse.
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Chapter 1

English introduction

1.1 Linear forms in logarithms

In this part of the present manuscript we present our new results in the theory of linear forms
in logarithms. A logarithm of an algebraic number α is any number u ∈ C such that eu = α.
The theory of linear forms in logarithms is interested in linear relations between logarithms of
algebraic numbers (and more generally between logarithms of points in commutative algebraic
groups). One can pin down the starting point of the theory to the work of Lindemann [Lin82] and
Weierstraß [Wei85] that proved one of the first result about linear independence of exponentials
and logarithms of algebraic numbers. It states the following.

Theorem 1.1 (Lindemann–Weierstraß). Let α1, . . . , αn be distinct algebraic numbers. Then, the
numbers eα1 , . . . , eαn are linearly independent over Q.

Lindemann and Weierstraß’ result proves the transcendence of any non-zero logarithm of an
algebraic number α, because elogα−α · e0 = 0. As iπ is a logarithm of −1, it also establishes the
transcendence of π. These results lead Hilbert to formulate its seventh problem in 1900 about
the transcendence of algebraic powers of algebraic numbers.

Hilbert’s seventh problem (1900). Let α be an algebraic number different from 0 and 1, and
let β be an irrational algebraic number. Write α = eu. The number αβ := eβu is transcendental.

This problem had soon be resolved independently by Gelfond and Schneider in 1934 and
1935 respectively and is now known as Gelfond–Schneider’s theorem. For our interests, we can
restate it as a problem about linear independence of logarithms of algebraic numbers. It is indeed
equivalent to the following result.

Theorem 1.2 (Gelfond–Schneider [Gel34; Sch35]). Let u1, u2 be two complex numbers such
that eu1 and eu2 are algebraic. If u1 and u2 are linearly independent over Q, they are linearly
independent over Q.

Until now, all these statements were qualitative results about linear independence of expo-
nentials of algebraic numbers in the case of Lindemann–Weierstraß’ theorem, and of logarithms
in the case of Gelfond–Schneider’s result. The next big step in the theory of linear forms in

17
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logarithms had been made by Baker in 1966. He proved the first fully explicit quantitative
statement about linear independence of logarithms of algebraic numbers. His theorem can be
stated as follows.

Theorem 1.3 ([Bak66]). Let α1, . . . , αn be algebraic numbers not 0 or 1, and let ui be a logarithm
of αi. If u1, . . . , un are linearly independent over Q, then 1, u1, . . . , un are linearly independent
over Q.

More precisely, for d > 0, there exists an effective constant C depending on α1, . . . , αn, and d
such that for all algebraic numbers β1, . . . , βn of degree at most d, we have

|β1u1 + · · ·+ βnun| > Ce−(n+2) logH ,

where H denotes the maximum of the heights of the βi’s.

To prove theorem 1.3 Baker developed what is now known as Baker’s method. Our results
will use a generalisation of this method in the context of abelian varieties. To better understand
their nature, let us take a more general point of view on the theory.

Let G be a commutative algebraic group defined over a number field k ⊂ C, and let p ∈ G(C).
The group G(C) is a complex Lie group and its tangent space tG(C) is a complex vector space.
A logarithm of p is a preimage u ∈ tG(C) by the exponential application expG : tG(C)→ G(C).
Let W0 be vector subspace of tG(C) defined over k (this means that W0 can be described with
linear equations with coefficients in k). The general theory of linear forms in logarithms mainly
try to answer two questions:

1. Can u lie in W0, and if yes for what reasons?

2. When u /∈W0, can we give a lower-bound for the distance between u and W0 in terms of
G, u, and W0?

The reason we still call this “linear forms in logarithms” can be seen in the following way. Consider
a basis (e1, . . . , eg) of tG(k), and a basis (φ1, . . . , φt) of the dual space W⊥

0 of linear forms of
tG(k) vanishing on W0. Let us write u = u1e1 + · · · + ugeg and φi = ai,1e

∗
1 + · · · ai,ge∗g. The

distance d(u,W0) is then comparable to the quantity

max
1⩽i⩽t

|u1ai,1 + · · ·ugai,g| ,

and the maps (u1, . . . , ug) 7→ ai,1u1 + · · · + ai,gug are linear forms in the coordinates of the
logarithm u.

Historically, the most explored case of commutative algebraic group G has been the case of the
group G = Ga×Gn

m. In this context, we have G(C) = C× (C×)n and the exponential application
is equal to Id× expn : (u0, u1, . . . , un) 7→ (u0, e

u1 , . . . , eun). If we take u0 = 0, u1, . . . , un to be
logarithms of elements of Q, and W0 := ker(β1x1 + · · ·+ βnxn) a hyperplane, we recover Baker’s
question to find a lower-bound for the linear form

|β1u1 + · · ·+ βnun|.

It also encompasses all previous results as Baker’s theorem already generalises Lindemann–
Weierstraß’ and Gelfond–Schneider’s theorems.
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To question 1, the first general answer had been given by Wüstholz in 1989. His result states
the obstruction to u to be rational is the tangent space of an algebraic subgroup of G.

Theorem 1.4 ([Wüs89]). The smallest vector subspace of tG(C) defined over Q that contains u
is the tangent space of a connected algebraic subgroup G̃ of G.

In particular, if u ∈W0, then W0 ⊇ tG̃(C).

Although this statement is only qualitative, one can in fact give explicit upper-bounds for
the degree of the subgroup G̃. For example, a bound for the degree deg G̃ of a subgroup whose
tangent space contains u appear in the work of David [Dav95, Théorème 2.1] in the case of G a
product of elliptic curves over a number field.

Let us now look at question 2. Research about it can be divided in several categories. First,
the general ones dealing with an arbitrary commutative algebraic group G over a number field.
One can for example cite the results of Philippon and Waldschmidt in 1988 [PW88] and the ones
of Gaudron in 2005 [Gau05]. Then, estimations for the linear group Ga×Gn

m – extending the work
of Baker. See for example [Gau14]. Finally, – and this is the case we will be interested in – the
case of G an elliptic curve and more generally an abelian variety. One of the most famous results
in this case is the one of David [Dav95, Théorème 2.1]. For a product of elliptic curves E1×· · ·En
defined over an arbitrary number field k, and u1, . . . , un such that pi := expEi(ui) ∈ Ei(k), he
gave a totally explicit lower bound for a linear form β0 + β1u1 + · · ·βnun, with (βi)i ∈ kn+1

under the assumption that the logarithm (1, u1, . . . , un) does not lie in the tangent space of an
algebraic subgroup of Ga × E1 × · · ·En of degree less than an explicit constant. By explicit
in this context we mean a lower-bound depending on n, [k : Q], the Weil heights h(βi) of the
coefficients of the linear form, the Néron–Tate heights ĥ(pi) of the rationals points pi, the heights
h(Ei) of the elliptic curves, the absolute values |ui| of the logarithms, and Im(τi) with τi ∈ C
such that Ei ∼= C2/(Z ⊕ Zτi) and Im(τi) > 0. This theorem leads to the applicability of the
so-called elliptic logarithm method, developed by independently by Stroeker and Tzanakis [ST94]
and Gebel, Pethö, and Zimmer [GPZ94]. This method results to many Diophantine applications.
See for example [SdW99; Tza02; KR18].

In the same vein of David’s result, Gaudron [Gau06] proved a similar result in the context of
abelian varieties defined over a number field. For a principally polarised abelian variety (A,L)

defined over a number field k, a logarithm u such that p := expA(u) ∈ A(k), and a k-vector
subspace W0 of tA of codimension t, he gave – under some technical assumption – an explicit
lower-bound for the distance between u and W0 in terms of the degree [k : Q], the Néron–Tate
height ĥL(p) of p, the Faltings height of A, the norm ∥u∥ relative the polarisation L, and the
height of W0. It was the first result of this kind in the level of generality. The results of this part
of the thesis exactly fit in this framework.

1.2 Statement of results

Let A be an abelian variety of dimension g defined over a number field k. Let σ : k ↪→ C be
a complex embedding of k, and let L be a polarisation on A. The Riemann form of Lσ gives
a Hermitian structure ∥ · ∥σ to the tangent space tAσ . Consider a vector subspace W0 of tAσ
defined over k. Let p ∈ A(k) be k-rational point of A, and let u ∈ tAσ be a logarithm of p,
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that is expAσ(u) = p. Our goal in all this part of this manuscript is to give a lower-bound for
the distance d(u,W0,σ), assuming that it is not zero. We seek for an explicit bound, in terms
of the classical invariants of our data such that the degree [k : Q] of the field of definition of
A, the Faltings height hF (A) of A, the degree degLA of A relative to the polarisation L, the
Néron–Tate height ĥL(p) of p, the norm ∥u∥σ of u, or the height h(W0) of W0 (this height will
be defined precisely in chapter 4). We give two answers to this question: a first one under some
assumption on the pair (A, u), and a second, unconditional one. A simplified version of our first
lower-bound can be stated as follows.

Theorem 1.5 (theorem 4.3). Consider the above notations and define

log a := max

(
ĥL(p),

e2∥u∥2σ
[k : Q]

)
, log b := max(1, h(W0)),

and a ⩾ [k : Q] max
(
1, hF (A), log h

0(A,L), log[k : Q], log log a
)
.

If u does not lie in the tangent space of a proper subvariety of A, then

log d(u,W0,σ) ⩾ −Ca1/t (1 + [k : Q]a log a)g/t (a+ [k : Q] log b)(degLA)
g,

with C = (5(g + t))
4(g+t+1)2

t .

The method used to prove theorem 1.5 can be seen as a generalisation of Baker’s method.
However, we used all the most recent tools available in the literature, such as Hirata-Khono’s
reduction method, a new multiplicity lemma due to Nakamaye, and Chudnovsky’s change of
variables. Our result is totally explicit in the classical invariants of the abelian variety (A,L),
the point p, the logarithm u, and the subspace W0. It is very comparable to [Gau06, Théorème
1] in the case of a principally polarised abelian variety, but improves their constant c1 from

(10(g + t))13
(g+t)2

t to (5(g + t))4
(g+t+1)2

t . Moreover, as Gaudron’s result – and previously in the
work of David and Hirata-Kohno [DH02, Theorem 1] – our result is linear in the parameter log b,
and is therefore optimal for this parameter. Looking at the hypothesis of the theorem, it is again
similar to Gaudron’s Théorème 1 hypothesis.

After proving theorem 1.5, we prove a more general result, removing its assumption on (A, u).
A special case of this second main result goes as follows.

Theorem 1.6 (theorem 4.6). Consider the above notations and define

MA := max

(
1, log[k : Q], hF (A), log

+ ĥL(p), log
∥u∥2σ
[k : Q]

)
,

and log b := max(1, h(W0)).
If u /∈W0,σ, then

log d(u,W0,σ) ⩾ −C[k : Q](2g+1)(g+1)M
(g+1)2

A max(MA, log b)max

(
1, ĥL(p),

∥u∥2σ
[k : Q]

)g2+g
,

with C = (265000g)4g
3.
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If g = 1, we have

log d(u,Wσ) ⩾ −2 · 1039D3M2
Amax

(
1, ĥL(pA),

∥uA∥2σ
D

)
.

This result is the main novelty of this part of the manuscript, because it is the first one of this
kind in the context of abelian varieties. Indeed, our result can be used without any restriction
on the abelian variety A, and on the point u other than the fact that it does not lie in W0,σ,
which was not the case in [Gau06]. The proof of theorem 1.6 comes back to theorem 1.5 applied
to the smallest abelian subvariety Au which tangent space contains u. The heart of the proof
is then to compare the invariants of the new setting to the ones of the original context of the
theorem. It uses in a crucial way the work of Bosser and Gaudron [BG19], who proved a bound
for the degree of Au in terms of A, u, and p. We also use the recent Rémond [Rém22] who gave
a new bound the Faltings height of any subvariety of A. As in theorem 1.5, the dependence in
the height of the subspace W0 is linear, and therefore optimal.
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Chapitre 2

Introduction en français

2.1 Formes linéaires de logarithmes

Dans cette partie, nous présentons nos contributions à la théorie des formes linéaires de logarithmes.
Un logarithme d’un nombre algébrique α, est n’importe quel nombre complexe u ∈ C tel que
eu = α. La théorie des formes linéaires de logarithmes s’intéresse aux relations linéaires qui
existent entre ces logarithmes (et plus généralement, aux logarithmes de points rationnels dans
des groupes algébriques commutatifs). On peut retracer l’origine de cette théorie aux travaux
de Lindemann [Lin82] d’une part, et de Weierstraß [Wei85] d’autre part, qui prouvèrent un
des premiers résultats d’indépendance linéaire d’exponentielles et de logarithmes de nombres
algébriques. Leur résultat est le suivant

Théorème 2.1 (Lindemann–Weierstraß). Soient α1, . . . , αn des nombres algébriques distincts.
Alors, les nombres eα1 , . . . , eαn sont linéairement indépendants sur le corps Q.

Ce théorème prouve en particulier la transcendance de n’importe que logarithme non-nul d’un
nombre algébrique α. En effet, la famille (elogα, e0) est linéairement liée sur Q car elogα−αe0 = 0

et donc logα ne peut être algébrique. Il découle aussi la transcendance de π car iπ est un
logarithme de −1, et i est algébrique. Tous ces résultats menèrent Hilbert en 1900 à énoncer un
problème de transcendance de puissances algébriques de nombres algébriques dans sa fameuse
liste des 23. Son problème peut s’énoncer comme suit.

Septième problème de Hilbert (1900). Soit α un nombre algébrique différent de 0 et de 1, et
soit β un nombre algébrique irrationnel. On note α = eu avec u ∈ C. Alors le nombre αβ := eβu

est transcendant.

Ce problème fut rapidement résolu suite aux travaux indépendants de Gelfond [Gel34] et
Schneider [Sch35] en 1934 et 1935 respectivement. Leur résultat est maintenant connu sous le nom
de théorème de Gelfond–Schneider et peut être reformulé comme un problème d’indépendance
linéaire entre des logarithmes de nombres algébriques. En effet, on peut montrer que le Septième
problème de Hilbert est équivalent au résultat suivant.

Théorème 2.2 (Gelfond–Schneider [Gel34 ; Sch35]). Soient u1, u2 deux nombres complexes tels
que eu1 et eu2 sont algébriques. Si u1 et u2 sont linéairement indépendants sur Q, alors ils le sont
sur Q.

23
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Jusqu’à maintenant, tous les résultats que nous avons évoqués étaient des énoncés qualitatifs
d’indépendance linéaire d’exponentielles de nombres algébriques dans le cas du théorème de
Lindemann–Weierstraß, et de logarithmes de nombres algébriques dans le cas de Gelfond–
Schneider. C’est à Baker que l’on doit une avancée majeure sur ces questions. En 1966, il prouva
le premier résultat entièrement explicite d’indépendance linéaire de logarithmes. Une version de
son théorème est la suivante.

Théorème 2.3 ([Bak66]). Soient α1, . . . , αn des nombres algébriques distincts de 0 ou 1, et soit
ui un logarithme de αi. Si u1, . . . , un sont linéairement indépendants sur Q, alors 1, u1, . . . , un
sont linéairement indépendants sur Q.

Plus précisément, pour tout d > 0, il existe une constante effective C dépendant de α1, . . . , αn,
et d telle que pour tous nombres algébriques β1, . . . , βn de degré au plus d, on ait

|β1u1 + · · ·+ βnun| > Ce−(n+2) logH ,

où H désigne le maximum des hauteurs des βi.

Pour démontrer le théorème 2.3 Baker développa une méthode maintenant connue sous le
nom de méthode de Baker. Pour démontrer nos résultats nous utiliserons une généralisation de
cette méthode dans le contexte des variétés abéliennes. Pour mieux comprendre la nature de ces
résultats, nous allons prendre un point de vue plus général sur la théorie.

Soit G un groupe algébrique commutatif défini sur un corps de nombre k ⊂ C, et soit
p ∈ G(C). Le groupe G(C) est un groupe de Lie complexe et son espace tangent tG(C) est un
espace vectoriel complexe. Un logarithme du point p est un antécédent de p par l’exponentielle
de G, expG : tG(C)→ G(C). Soit W0 un sous-espace de tG(C) défini sur k, c’est-à-dire que W0

peut être décrit par des équations linéaires à coefficients dans k. La théorie des formes linéaires
de logarithmes s’intéresse alors principalement aux deux questions suivantes :

1. Est-ce que u peut appartenir à l’espace W0, et si oui pour quelles raisons ?

2. Quand u n’appartient pas à W0, peut-on donner une borne inférieure pour la distance de u
à W0 en fonction du groupe G, du point u, et de W0 ?

On peut expliquer pourquoi ces questions traitent toujours de « formes linéaires de logarithmes »
de la façon suivante. Soit (e1, . . . , eg) une base de tG(k), et soit (φ1, . . . , φt) une base de l’espace
dual W⊥

0 des formes linéaires sur tG(k) qui s’annulent sur W0. On peut décomposer u en
u = u1e1 + · · ·+ ugeg et φi en φi = ai,1e

∗
1 + · · · ai,ge∗g. La distance d(u,W0) est alors comparable

à
max
1⩽i⩽t

|u1ai,1 + · · ·ugai,g| ,

et les applications (u1, . . . , ug) 7→ ai,1u1+ · · ·+ai,gug sont des formes linéaires en les coordonnées
du logarithme u.

Historiquement, le cas de groupe algébrique commutatif G le plus étudié a été le cas G =

Ga×Gn
m. Dans ce cas on a G(C) = C× (C×)n et l’exponentielle de G est l’application Id× expn :

(u0, u1, . . . , un) 7→ (u0, e
u1 , . . . , eun). Si on prend u0 = 0, u1, . . . , un des logarithmes d’éléments
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de Q, et W0 := ker(β1x1+ · · ·+βnxn) un hyperplan, on retrouve le problème de Baker de minorer
la forme linéaire

|β1u1 + · · ·+ βnun|.

Ces questions englobent aussi tous les résultats antérieurs au théorème de Baker qui les générali-
saient déjà.

La première réponse générale à la question 1 a été apportée par Wüstholz in 1989. Son
résultat énonce que la seule obstruction à u d’être rationnel est l’espace tangent d’un sous-groupe
algébrique de G.

Théorème 2.4 ([Wüs89]). Le plus petit espace vectoriel de tG(C) défini sur Q qui contient u est
l’espace tangent d’un sous-groupe algébrique connexe G̃ de G.

En particulier, si u ∈W0, alors W0 ⊇ tG̃(C).

Malgré le fait que cet énoncé soit seulement qualitatif, on peut énoncer des bornes effectives
sur le degré du sous-groupe G̃. Par exemple, on peut trouver dans le travail de David [Dav95,
Théorème 2.1], une borne sur le degré d’un sous-groupe dont l’espace tangent contient u dans le
cas où G est un produit de courbes elliptiques définies sur un corps de nombres.

Intéressons-nous maintenant à la question 2. On peut découper les travaux sur ces questions en
plusieurs catégories. Tout d’abord, les énoncés concernant un sous-groupe algébrique commutatif
G arbitraire. On peut citer entre autres les travaux importants de Philippon et Waldschmidt de
1988 [PW88], et ceux de Gaudron de 2005 [Gau05]. Ensuite, les estimations pour le groupe linéaire
Ga ×Gn

m – qui généralisent les travaux de Baker. Voir par exemple le travail [Gau14]. Enfin, – et
c’est le cas qui nous intéressera par la suite – le cas de G une courbe elliptique ou plus généralement
une variété abélienne. L’un des résultats les plus connus sur ce sujet est celui de David [Dav95,
Théorème 2.1]. Pour G un produit de courbes elliptiques E1 × · · · × En toutes définies sur un
même corps de nombres k, et des logarithmes u1, . . . , un tels que pi := expEi(ui) ∈ Ei(k), il donne
une borne inférieure entièrement effective pour la forme linéaire β0 + β1u1 + · · ·+ βnun, avec
(βi)i ∈ kn+1, sous l’hypothèse que le logarithme (1, u1, . . . , un) n’appartiennent pas à l’espace
tangent d’un sous-groupe algébrique de Ga × E1 × · · · × En, de degré inférieur à une constante
effective. Par effectif dans ce contexte, nous entendons une borne ne dépendant que n, du degré
[k : Q], des hauteurs de Weil h(βi) des coefficients de la forme linéaire, des hauteurs de Néron–Tate
ĥ(pi) des points rationels pi, des hauteurs de Faltings h(Ei) des courbes elliptiques, de la valeur
absolue |ui| des logarithmes, et enfin de Im(τi) avec τi ∈ C tel que Ei ∼= C2/(Z⊕τiZ). Ce théorème
mena à la mise en œuvre de la méthode du logarithme elliptique, imaginée indépendamment par
Stroeker et Tzanakis [ST94], et Gebel, Pethö, et Zimmer [GPZ94]. Cette méthode déboucha sur
de nombreux résultats diophantiens. Voir par exemple [SdW99 ; Tza02 ; KR18].

Dans la même lignée des résultats de David, Gaudron prouva en 2006 [Gau06] un résultat
similaire dans le cadre des variétés abéliennes définies sur des corps de nombres. Pour une variété
abélienne principalement polarisée (A,L) définie sur un corps de nombres k, un logarithme u d’un
point rationnel p ∈ A(k), et un sous-k-espace vectoriel W0 de tA(C) de codimension t, Gaudron
donne – sous certaines hypothèses techniques – une borne inférieure effective pour la distance de
u à W0 en fonction du degré [k : Q], de la hauteur de Néron–Tate ĥL(p) de p, de la hauteur de
Faltings de A, de la norme ∥u∥ relative à la polarisation L, et de la hauteur de W0. Ce résultat



26 CHAPITRE 2. INTRODUCTION EN FRANÇAIS

était à l’époque le premier résultat totalement explicite de ce genre, dans ce niveau de généralité.
Les résultats de cette partie de la thèse s’intègrent dans ce contexte et généralisent les résultats
de Gaudron.

2.2 Résultats

Soit A une variété abélienne de dimension g définie sur un corps de nombres k. Soit σ : k ↪→ C
un plongement complexe de k, et soit L une polarisation de A. La forme de Riemann de Lσ
munit l’espace tangent tAσ d’une structure hermitienne ∥ · ∥σ. Soit W0 un sous-espace vectoriel
k-rationnel de tA. On considère enfin un point rationnel p ∈ A(k) et un logarithme u ∈ tAσ de
p, c’est-à-dire tel que expAσ(u) = p. Notre but est de minorer la distance d(u,W0,σ) relative à
la structure hermitienne de tAσ donnée par Lσ. Nous cherchons une borne aussi explicite que
possible, fonction des invariants algébriques et analytiques de nos données, tels que le degré
[k : Q] du corps de définition de A, la hauteur de Faltings hF (A) de A, le degré degLA de A
relatif à la polarisation L, la hauteur de Néron–Tate ĥL(p) du point p, la norme ∥u∥σ de u, ou la
hauteur h(W0) de W0 (cette hauteur sera définie précisément dans le chapitre 4). Nous donnons
deux minorations pour cette distance. Une première sous une hypothèse sur la paire (A, u), et
une seconde totalement inconditionnelle. Un énoncé simplifié de notre premier résultat est le
suivant.

Théorème 2.5 (Theorem 4.3). Avec les notations ci-dessus, définissons

log a := max

(
ĥL(p),

e2∥u∥2σ
[k : Q]

)
, log b := max(1, h(W0)),

et a ⩾ [k : Q] max
(
1, hF (A), log h

0(A,L), log[k : Q], log log a
)
.

Si u n’appartient à l’espace tangent d’aucune sous-variété stricte de A, alors

log d(u,W0,σ) ⩾ −Ca1/t (1 + [k : Q]a log a)g/t (a+ [k : Q] log b)(degLA)
g,

avec C = (5(g + t))
4(g+t+1)2

t .

La méthode utilisée pour prouver le théorème 2.5 peut être vue comme une généralisation
de la méthode de Baker. Cependant, nous utilisons les outils les plus récents existant dans la
littérature, tels que la méthode de réduction d’Hirata-Khono, un nouveau lemme de multiplicité
dû à Nakamaye, ou le principe de changement de variables de Chudnovsky. Nos résultats sont
totalement effectifs en les invariants classiques de la variété abélienne (A,L), du point p, du
logarithme u, et du sous-espace W0. Ils sont comparables au [Gau06, Théorème 1] dans le cas d’une

variété abélienne principalement polarisée, mais améliorent leur constante c1 de (10(g+ t))13
(g+t)2

t

à (5(g + t))4
(g+t+1)2

t . De plus, comme chez Gaudron – et comme précédemment dans le travail
de David et Hirata-Kohono [DH02, Theorem 1] – notre minoration est linéaire en log b, et donc
optimal pour ce paramètre. En comparant l’hypothèse de notre théorème et l’hypothèse du
résultat [Gau06, Théorème 1], on peut voir qu’elles sont similaires.
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Une fois le théorème 2.5 démontré, nous prouvons un second résultat plus général, supprimant
l’hypothèse sur la paire (A, u). Un cas particulier de notre énoncé s’énonce de la manière suivante.

Théorème 2.6 (Theorem 4.6). Avec les notations ci-dessus, on définit

MA := max

(
1, log[k : Q], hF (A), log

+ ĥL(p), log
∥u∥2σ
[k : Q]

)
,

et log b := max(1, h(W0)).
Si u /∈W0,σ et g ⩾ 2, alors

log d(u,W0,σ) ⩾ −C[k : Q](2g+1)(g+1)M
(g+1)2

A max(MA, log b)max

(
1, ĥL(p),

∥u∥2σ
[k : Q]

)g2+g
,

avec C = (265000g)4g
3 .

Si g = 1, on a

log d(u,Wσ) ⩾ −2 · 1039D3M2
Amax

(
1, ĥL(pA),

∥uA∥2σ
D

)
.

Ce résultat est la principale nouveauté de cette partie du manuscrit. C’est le premier résultat
de ce type dans le cadre des variétés abéliennes. En effet, étant totalement inconditionnel, il peut
être utilisé sans aucune restriction sur la variété abélienne A, ni sur logarithme u autre qu’il
n’appartienne pas à l’espace W0,σ, ce qui n’était par exemple pas le cas dans [Gau06]. La preuve
du théorème 2.6 se base sur le théorème 2.5 appliqué à la plus petite sous-variété abélienne Au
dont l’espace tangent contient u. Le cœur de notre preuve est alors de comparer les invariants
de nos nouvelles données, en fonction des données initiales. Cette partie de la preuve utilise
de manière essentielle les travaux de Bosser et Gaudron [BG19] qui ont donné une majoration
du degré de Au en fonction de A, u, et p. Nous utilisons aussi les résultats récents de Rémond
[Rém22] qui a donné une nouvelle borne pour la hauteur de Faltings d’une sous-variété de A.
Comme pour le théorème 2.5, la dépendance en la hauteur du sous-espace W0 est linéaire et ainsi
optimale.
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Chapter 3

Preliminaries

This chapter is devoted to introduce the tools we will use in this part of the thesis and their
main properties. The content of this chapter is contain no original result and we will refer to the
existing literature for further developments of these topics.

3.1 Hermitian adelic vector bundles

3.1.1 Definitions

We present here the main concepts of the theory of Hermitian adelic vector bundles. We restrict
our exposition to Hermitian adelic vector bundles over the spectrum of the integer ring of a
number field, even though a more general theory of adelic vector bundles over the spectrum of a
number field exists. The content of this section comes essentially from [Gau08], [GR13], [Gau14,
§3], and [Gau21]. We fix a number field k of degree D, and we write Ok for its ring of integers.
For any place v of k, let kv be the v-adic completion of k, and Cv be the v-adic completion of an
algebraic closure of k.

Definition 3.1 ([Gau08, 3. Fibré vectoriel adélique]). A Hermitian adelic fiber bundle E over
SpecOk is the data of a Ok-projective module of finite type E together with, for every Archimedean
place v of k, a norm ∥ · ∥v on the Cv-vector space Ev := E ⊗Ok Cv that is Euclidean if v is real,
and Hermitian and invariant under complex conjugation if v is complex.

Remark 3.2. Any Hermitian adelic vector bundle E over SpecOk naturally comes with an
integral structure. Indeed, for a finite place v of k and x ∈ Ev, the quantity

∥x∥v := inf {|a|v, a ∈ Cv, such that x ∈ a · (E ⊗OCv)}

defines an ultrametric norm on Ev. Moreover, choosing a minimal spanning family (e1, . . . , en)

of E, we have for any λ1, . . . , λn ∈ Cv,∥∥∥∥∥
n∑
i=1

λiei

∥∥∥∥∥
v

= max
1⩽i⩽n

|λi|v.

The classical operations of linear algebra naturally transfer to Hermitian adelic vector bundles.
We present below the main constructions we will use in the upcoming chapters.

29
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Definition 3.3 ([Gau21, 2.2 Rigid Adelic Spaces]). Let E and F be two Hermitian adelic vector
bundles over SpecOk. The following spaces are Hermitian adelic vector bundles over SpecOk.

• The induced space F , for a submodule F of E, with the induced norms.

• The Hermitian sum E ⊕ F with norms ∥x⊕ y∥2v := ∥x∥2v + ∥y∥2v, for all Archimedean place
v and x⊕ y ∈ Ev ⊕ Fv.

• The quotient E/F , for a submodule F , with the quotient norms defined by

∥x+ Fv∥v := inf {∥y∥v, x− y ∈ Fv} , ∀x ∈ Ev.

• The tensor product E ⊗Ok F with the tensor norms constructed as follows. Let v be a
Archimedean place of k. Let (e1, . . . , en), (f1, . . . , fm) be orthonormal bases of Ev and Fv
respectively. The norm of an element x =

∑
i,j
λi,jei ⊗ fj of (E ⊗Ok F)v = Ev ⊗Cv Fv is

∥x∥2v :=
∑
i,j

|λi,j |2.

This indeed defines a norm on (E ⊗Ok F)v which is independent of the choice of the
orthonormal bases.

• The space Hom(E ,F) with the operator norms defined by

∥f∥v = inf
x∈Ev\{0}

∥f(x)∥v
∥x∥v

, ∀f ∈ Hom(Ev, Fv).

In particular the dual space Ev is a Hermitian adelic vector bundle.

• For a positive integer i, the i-th symmetric power Symi(E) of E with the quotient norm
coming from the natural surjection E⊗i

v → Symi(Ev). If (e1, . . . , en) is an orthonormal
basis of Ev, then the family (ei11 · · · einn )i1+···+in=i is orthogonal and we have

∥ei11 · · · e
in
n ∥2v =

i!

i1! · · · in!
.

• For a positive integer i, the i-th exterior power ∧iE of E with the quotient norms coming
from the natural surjection E⊗i

v → ∧iEv. For i vectors e1, . . . , ei in Ev, one has

∥e1 ∧ · · · ∧ ei∥2v = det(⟨en, em⟩v)1⩽n,m⩽i,

where ⟨·, ·⟩v denotes the inner product on Ev associated to ∥ · ∥v.

In particular the determinant det E := ∧rk EE is a Hermitian adelic vector bundle.
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3.1.2 Slopes and heights

Definition 3.4 ([Gau14, Définition 3.3]). Let E be a Hermitian adelic vector bundle over SpecOk.

• If rk E = 1, the (normalised) Arakelov degree of E is defined as

d̂egn E := − 1

D

∑
v

[kv : Qv] log ∥x∥v,

where the sum ranges over all places v of k (Archimedean or not), and x is any non-zero
element of E. This definition is independent of the choice of x.

• If rk E ⩾ 1, the Arakelov degree of E is the Arakelov degree of det E.

• The height of E is defined by h(E) := −d̂egnE.

• The Arakelov slope µ̂(E) of E is the number

µ̂(E) := d̂egn E
rk E

.

• Let x ∈ (E ⊗Ok k) \ {0}, the Arakelov height of x is defined as

ĥ(x) :=
1

D

∑
v

[kv : Qv] log ∥x∥v.

These notions nicely behave with respect to the constructions we gave in definition 3.3, as
stated in the following proposition.

Proposition 3.5 ([Gau21, Proposition 5]). Let E, F be two Hermitian adelic vector bundles
over SpecOk. We have

• d̂egn
(
E ⊕ F

)
= d̂egn

(
E
)
+ d̂egn

(
F
)
;

• If F is a submodule of E, d̂egn
(
E/F

)
= d̂egn

(
E
)
− d̂egn

(
F
)
;

• µ̂
(
E ⊗ F

)
= µ̂

(
E
)
+ µ̂

(
F
)
;

• µ̂
(
Ev
)
= −µ̂

(
E
)
;

• More generally µ̂
(
Hom(E ,F)

)
= µ̂(E)− µ̂(F);

Finally, for two submodules F and G of a Hermitian adelic vector bundle E over SpecOk, we
can compare the degrees of F , G, F + G and F ∩ G.

Proposition 3.6 ([Gau21, Proposition 6]). We have

d̂egn
(
F
)
+ d̂egn

(
G
)
⩽ d̂egn

(
F + G

)
+ d̂egn

(
F ∩ G

)
.

A natural way Hermitian adelic vector bundles arise is through ample invertible sheaves on
schemes over SpecOk.
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Definition 3.7. A Hermitian line bundle L on a scheme X over SpecOk is an invertible sheaf
L over X together with, for all x ∈ X (Ok) and all Archimedean place v of k, a norm ∥ · ∥x,v
on the fiber (x⋆L)v which is Euclidean if v is real, and Hermitian and invariant under complex
conjugation if v is complex.

Given a Hermitian line bundle L, on X/SpecOk, the Ok-module x⋆L is thus given a structure
of Hermitian adelic vector bundle of rank one. This leads to the following notion of height.

Definition 3.8. Let L be a Hermitian line bundle on a scheme X over SpecOk, and let
x ∈ X (Ok). The height of x relative to L is defined as

hL(x) := d̂egn
(
x⋆L

)
= − 1

D

∑
v

[kv : Qv] log ∥s(x)∥x,v,

where the sum ranges over all the places v of k, and s is a local section of L that does not vanish
at x.

The final tool of Arakelov theory of Hermitian adelic vector bundles we will need is the
maximal slope of a bundle. It is a fact that, for a Hermitian adelic vector bundle E , there is a
constant c(E), depending only on E , such that for any submodule F of E , we have

µ̂(F) ⩽ c(E).

See [Gau08, Proposition 5.3] or [Gau21, Lemma 12] for a proof of this result. This legitimises
the following definition.

Definition 3.9. Let E be a Hermitian adelic vector bundle over SpecOk. The maximal slope of
E is the real number

µ̂max(E) := sup
{
µ̂(F), F submodule of E

}
.

A direct consequence of this definition is that the maximal slope of E is always at least as big
as the Arakelov degree of any line of E . The opposite of the degree of a line being the height of
one its non-zero elements, we get the following result.

Proposition 3.10. Let E be a Hermitian adelic vector bundle over SpecOk. For any non-zero
element x of E ⊗Ok k, we have

−µ̂max(E) ⩽ ĥ(x).

This seemingly trivial result will in fact play a key role in our study.
The maximal slope behaves less nicely with the natural operations on Hermitian adelic vector

bundles than the Arakelov slope. We will still need estimates for the maximal slope of tensor
products and symmetric powers. We have the following results.

Proposition 3.11 ([Gau08, Propriétés 5.7]). Let E, F be two Hermitian adelic fiber bundles
over SpecOk with rkF = 1. We have

µ̂max(E ⊗ F) = µ̂max(E) + µ̂max(F).

Proposition 3.12 ([GR13, Proposition 8.4]). Let E be a Hermitian adelic fiber bundle over
SpecOk. For any positive integer ℓ, we have

µ̂max

(
Symℓ E

)
⩽ ℓ

(
µ̂max

(
E
)
+ 2 log rk E

)
.
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3.2 Complex abelian varieties

In this section, we recall some of the theory of abelian varieties defined over the field of complex
numbers. We will only scratch the surface of this very rich theory. For many more details on this
subject, see [BL04].

3.2.1 Line bundles and factors of automorphy

Let A be an abelian variety over C and let tA denotes the tangent space of A at 0A. The group
A(C) of C-points of A is naturally given the structure of a connected compact complex Lie
group. This ensures (see [BL04, Lemma 1.1.1]) that A(C) is a complex torus and comes with its
exponential function

expA : tA −→ A(C).

The map expA is surjective and its kernel denoted ΩA is called the period lattice of A. In order
to relate holomorphic function on tA, and holomorphic line bundles on A, we define the notion
of factor of automorphy on A.

Definition 3.13. Let Z1(ΩA, H
0(O⋆tA)) denotes the group holomorphic maps a : ΩA × tA → C×

satisfying the cocycle relation

a(ω1 + ω2, x) = a(ω1, ω2 + x)a(ω2, x), ∀ω1, ω2 ∈ ΩA, ∀x ∈ tA.

The elements of Z1(ΩA, H
0(O⋆tA)) are called factors of automorphy of A.

For any non-vanishing holomorphic function g : tA → C×, the map ag : Ω× tA → C× given
by

a0(ω, x) =
g(ω + x)

g(x)

is a factor of automorphy. The group of such factors of automorphy is denoted B1(ΩA, H
0(O⋆tA)).

We let H1(ΩA, H
0(O⋆tA)) to be the group Z1(ΩA, H

0(O⋆tA))/B
1(ΩA, H

0(O⋆tA)).

Theorem 3.14 ([BL04, Proposition B.1]). There is a group isomorphism between the Picard
group Pic(A) of holomorphic line bundles on A and H1(ΩA, H

0(O⋆tA)).

Sketch of proof. Let L be a holomorphic line bundle on A. One can pull back L(C) by expA to
get the holomorphic line bundle exp⋆A L(C) on tA. This bundle is necessarily trivial because there
is no non-trivial holomorphic line bundle on a complex vector space (see [BL04, Lemma 2.1.1.]).
Given a trivialisation α : exp⋆A L(C)→ tA × C, we get the following diagram.

tA × C exp⋆A L(C) L(C)

tA A(C)

exp⋆Aα

expA

The action of ΩA on tA by translation can be pulled back on exp⋆A L(C), and then on tA×C using
α. It can be shown that this action of ΩA on tA × C is of the shape ω · (x, z) = (x+ ω, a(ω, x)z)

for a factor of automorphy a which class in H1(ΩA, H
0(O⋆tA)) is independent of α.
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Conversely, given a factor of automorphy a one can construct a holomorphic line bundle
L := (tA×C)/ΩA where ΩA acts on tA×C by ω · (x, z) = (ω+ x, a(ω, x)z). One shows that this
construction factors through B1(ΩA, H

0(O⋆tA)) and is the inverse of the previous construction. ■

From theorem 3.14, we can deduce a correspondence between sections of (A,L) and some
holomorphic functions on tA.

Theorem 3.15 ([BL04, Appendix B, p.574]). Let L be a holomorphic line bundle on A and let
a be a factor of automorphy corresponding to L ∈ Pic(A). Define the C-vector space

Θ(a) :=

{
ϑ : tA → C

∣∣∣∣∣ ϑ is holomorphic and
ϑ(x+ ω) = a(ω, x)ϑ(x), ∀(ω, x) ∈ ΩA × tA

}
.

We have an isomorphism of C-vector spaces H0(A,L) ∼= Θ(a).

Sketch of proof. Similarly to the proof of theorem 3.14, given a holomorphic line bundle L, its
pull-back by expA is a trivial line bundle on tA, and the choice of a trivialisation α give rise
to the factor of automorphy a. Given a section s ∈ H0(A,L) of L, we then get the following
diagram.

tA × C exp⋆A L(C) L(C)

tA A(C)

α exp⋆A

exp⋆A s

expA

s

From the definition of a, one see that we have α ◦ exp⋆A s(x) = (x, ϑ(x)) for some holomorphic
function ϑ satisfying ϑ(x+ ω) = a(ω, x)ϑ(x). This yields a map H0(A,L)→ Θ(a) which can be
shown to be an isomorphism. ■

3.2.2 The Riemann form of a line bundle

Let L be a holomorphic line bundle on A. It can be viewed as an element of the group H1(X,O⋆X).
From the exact sequence

0 Z OA(C) O⋆A(C) 0,
exp(2iπ·)

one gets a morphism H1(A,O⋆A(C))→ H2(A,Z). Define the Néron–Severi group NS(A) to be
the image of this morphism. The following theorem states that it corresponds to a class of
Hermitian forms on tA.

Theorem 3.16 ([BL04, Theorem 2.1.2, Proposition 2.1.6 and Lemma 2.1.7]). There is an
isomorphism between NS(A) and the group of Hermitian forms H : tA × tA → C satisfying
ImH(ΩA,ΩA) ⊆ Z.

Given a holomorphic line bundle L over A, the Hermitian form H corresponding to the image
of L in NS(A) is called its Riemann form.
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For our purposes, the interest of the Riemann form of a holomorphic line bundle L is twofold.
It gives a canonical factor of automorphy corresponding to L, and it defines a hermitian structure
on tA.

Definition 3.17. Let H : tA × tA → C be a Hermitian form such that ImH(ΩA,ΩA) ⊆ Z. A
semi-character for H is a map χ : ΩA → U (where U is the group of complex numbers of module
1) satisfying χ(ω1 + ω2) = χ(ω1)χ(ω2) exp(iπH(ω1, ω2)).

Theorem 3.18 ([BL04, 2.2]). Let H ∈ NS(A) and let χ be a semi-character for H. Let aH,χ be
the map defined by

aH,χ :

∣∣∣∣∣ ΩA × tA −→ C⋆

(ω, x) 7−→ χ(ω) exp
(
πH(x, ω) + π

2H(ω, ω)
) .

The map aH,χ is a factor of automorphy for A and the associated holomorphic line bundle L(H,χ)
admits H as its Riemann form. Moreover, the mapping (H,χ) 7→ L(H,χ) is an isomorphism
onto the group of holomorphic line bundles. Given L, the associated pair (H,χ) is called the
Appel–Humbert data of L.

Remark 3.19. For a holomorphic line bundle L, the factor of automorphy aH,χ coming from
the Appel–Humbert data of L is canonically attached to L. We will therefore usually denote by
Θ(A,L) the space Θ(aL,χ) of theorem 3.15.

Consider now ϑ ∈ Θ(A,L). Notice that the map

tA −→ C
z 7−→ |ϑ(z)| exp

(
−π

2H(z, z)
)

is invariant under translations by elements of ΩA. Moreover, if L is ample then its Riemann form
is a positive definite Hermitian form (see [BL04, Proposition 4.5.2.]). Hence, given z ∈ tA and
x := expA(z), we can endow the fiber Lx with the Hermitian metric

∥s(x)∥Lx := |ϑ(z)| exp
(
−π
2
∥z∥2L

)
, ∀s ∈ H0(A,L), (3.1)

where ϑ ∈ Θ(A,L) is the theta function associated to s by theorem 3.15, and ∥z∥L := H(z, z).
This definition is independent of the choice of the section s. This defines two norms on H0(A,L):

∥s∥∞ := sup
x∈A(C)

∥s(x)∥Lx and ∥s∥22 :=
∫
A(C)
∥s(x)∥2Lxdx.

3.2.3 Injectivity diameter and covering radius

We conclude this section with two metric properties of complex abelian varieties: the injectivity
diameter and the covering radius.

Definition 3.20. Let (A,L) be a polarised complex abelian variety. The injectivity diameter
ρ(A,L) of (A,L) is the diameter of the biggest ball of tA such that expA is injective, namely

ρ(A,L) := inf
ω∈ΩA\{0}

∥ω∥L.
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The covering radius r(A,L) of (A,L) is the maximum distance of a point of tA to the period
lattice:

r(A,L) := sup
z∈tA, ω∈ΩA

∥z − ω∥L.

The injectivity diameter is a special case of minima associated to a lattice. It is the first
minimum of ΩA. In fact, the study of minima of a lattice allows one to compare ρ(A,L) and
r(A,L).

Proposition 3.21 ([BG19, 3.11.1, p. 28]). Let (A,L) be a polarised complex abelian variety of
dimension g. We have

r(A,L) ⩽
g h0(A,L)

ρ(Aσ, Lσ)
,

where h0(A,L) denote the dimension of H0(A,L).

3.3 Abelian varieties over number fields

3.3.1 Faltings height

We recall the definition of the Faltings height of an abelian variety over a number field. For
a reference, see for example [GR14b, 2.3 Hauteur de Faltings] . Notice however that the
normalisation they choose for their Faltings height is slightly different from ours.

Let A be an abelian variety over a number field k. Let K/k be a finite extension such that
AK is semi-stable. We have a semi-stable model π : A → SpecOK of generic fiber AK . Let
ε : SpecOK → A be the zero section of π. We denote by ΩA/ SpecOK the sheaf of first order
differentials over A, and by ΩgA/SpecOK = detΩA/ SpecOK its maximal exterior power. Define
ωA/SpecOK as the sheaf

ωA/ SpecOK := ε⋆ΩgA/ SpecOK .

It is an invertible sheaf over SpecOK and for any embedding σ : K ↪→ C, the line bundle
ωA/SpecOK ⊗σ C ∼= H0(Aσ,ΩgA/ SpecOK ) can be given the following Hermitian structure:

∥s∥2ωA/ SpecOK ,σ
=
ig

2

2g

∫
Aσ(C)

s ∧ s, ∀s ∈ H0(Aσ,ΩgA/SpecOK ).

This gives a structure of Hermitian adelic vector bundle to ωA/ SpecOK over SpecOK .

Definition 3.22. The Faltings height hF (A) of A is the Arakelov degree of ωA/SpecOK .

Remark 3.23. The Faltings height depends neither on the extension K/k, nor on the semi-stable
model π.

The Faltings height is not always positive, however Bost have proven the following lower
bound for the Faltings height of an abelian variety.

Proposition 3.24 ([GR14b, Corollaire 8.4.]). For any abelian variety A of dimension g over a
number field, we have

hF (A) ⩾ −
g

2
log(2π2).
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3.3.2 Moret-Bailly models

In order to apply the theory of Hermitian adelic vector bundle we exposed in section 3.1 to
polarised abelian varieties defined over a number field, we need some integral structure associated
to them. This was achieved by Moret-Bailly and Bost in [Mor85] and [Bos96a] thought the notion
of Moret-Bailly models.

Definition 3.25. Let (A,L) be a polarised abelian variety over a number field k, and let F be a
finite subset of A(k). A Moret-Bailly model (A,L, (εP )P∈F ) of (A,L, F ) over a number field K
containing k is composed of

• a semi-stable group scheme π : A → SpecOK with generic fiber isomorphic to AK ;

• a Hermitian line bundle L over A with generic fiber LK , such that for any complex embedding
σ : K ↪→ C, the metric on L ⊗σ C coincides with the one coming from the Riemann form
of L⊗σ C;

• for any P ∈ F , a section εP : SpecOK → A of π, such that the corresponding geometric
point εP,K ∈ A

(
K
) ∼= A

(
K
)

coincides with P .

The existence and properties of Moret-Bailly models have been studied by Bost in [Bos96a,
§4.3]. We state his results.

Theorem 3.26 ([Bos96a, Theorem 4.10]). Let (A,L) be a polarised abelian variety of dimension
g over a number field k, and let F be a finite subset of A(k).

1. There exists a finite extension K/k of k such that (A,L, F ) admits a Moret-Bailly model
over K.

2. For any Moret-Bailly model (A,L, (εP )P∈F ) and any P ∈ F , the normalised height
d̂egn

(
ε⋆PL

)
coincide with the Néron–Tate height ĥL(P ) of P .

3. If (A,L, (εP )P∈F ) is a Moret-Bailly model of (A,L, F ) over K, and K ′/K is a finite
extension of number fields, then (A×OK OK′ ,L ×OK OK′ , (εP ⊗OK OK′)P∈F ) is a Moret-
Bailly model of (AK′ , LK′ , F ) over K ′. In other words, Moret-Bailly models are compatible
with extension of scalars.

4. Let (A,L, (εP )P∈F ) be a Moret-Bailly model of (A,L, F ) over K. The space of global
sections H0(A,L)⊗k K of (AK , LK) inherits a structure of Hermitian adelic vector bundle
over SpecOK with H0(A,L) as underlying space and the Hermitian structure coming from
L as metrics at the Archimedean places of K. Its Arakelov slope is given by

µ̂
(
H0(A,L)

)
= −1

2
hF (A) +

1

4
log h0(A,L)− g

4
log(2π2).

The existence of a Moret-Bailly model (A,L, ∅) over K of a polarised abelian variety (A,L, ∅)
also gives the tangent space tAK a structure of Hermitian adelic vector bundle over SpecOK . Its
underlying space is the tangent space at the origin tA of A and the metrics at the Archimedean
places are given by the metrics ∥ · ∥L,σ. The Arakelov slope of tA has also been computed by
Bost.
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Proposition 3.27 ([Bos96b, Proposition D.1]). Let (A,L) be a polarised abelian variety of
dimension g over a number field k. Let (A,L, ∅) be a Moret-Bailly model of (A,L, ∅) over K.
The Arakelov slope of tA is equal to

µ̂
(
tA
)
= −1

g

(
hF (A) +

1

2
log h0(A,L)

)
.

To conclude on that topic, we give an estimation of the maximal slope of tA and tvA that has
been computed by Gaudron.

Proposition 3.28 ([Gau19, Corollary 4.5 & p. 447]). Let (A,L) be a polarised abelian variety
of dimension g over a number field, and let (A,L, ∅) be Moret-Bailly model of (A,L, ∅). We have

max
(
µ̂max

(
tA
)
, 0
)
⩽ 12hF (A) + 16g log(24g),

and
µ̂max

(
tvA
)
⩽ (0.6g + 1)

(
hF (A) +

1

2
log h0(A,L)

)
+ g2 log(10g).

3.4 Projective spaces

Besides abelian varieties, we will also deal with affine and projective spaces associated to a vector
space or a module. Let us first recall how one can define an affine or projective scheme from a
module.

Definition 3.29 ([Mum99, §4],[Har77, Proposition II.2.5]). Let E be a module over a commutative
ring R. We denote Ev := HomR(E , R) the dual of E.

• The affine group scheme V(Ev) over SpecR associated to E is defined as

V(Ev) := Spec (Sym Ev) .

The scheme V(Ev) represents the functor S 7→ E ⊗R S.

• The projective scheme P(Ev) over SpecR associated to E is

P(Ev) := Proj (Sym Ev) .

The Hermitian ample line bundles on projective spaces are very well known: they are the
tensor powers of the canonical bundle O(1). We recall here a way to describe it.

Let R be a commutative ring and n be a positive integer. The tautological bundle O(−1) on
PnR is defined as An+1

R \ {0} with the canonical map (x0, . . . , xn) 7→ [x0 : · · · : xn]. The fiber of a
point [x0 : · · · : xn] is the line spanned by (x0, . . . , xn). Taking the dual bundle, we get O(1).

Definition 3.30. The line bundle O(1) on PnR is the dual of the tautological bundle O(−1).
For a positive integer D, the line bundle O(D) is the D-th tensor power of O(1), that is
O(D) := O(1)⊗D.

The R-module of global sections H0(PnR,O(D)) is isomorphic to the R-module of homogeneous
polynomials P ∈ R[X0, . . . , Xn] of degree D.
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Let k be a number field and write Ok its ring of integers. The line bundle O(−1) on PnOk has
a natural structure of Hermitian adelic line bundle coming from the one of On+1

k . Passing to
the dual and the tensor power, we get such a structure on O(D). Let σ : k ↪→ C be a complex
embedding of k. For a section s ∈ H0(Pnk ,O(D)) corresponding to a homogeneous polynomial
P ∈ k[X0, . . . , Xn] of degree D, and a point x := [x0 : · · · : xn] ∈ Pnk , the norm of s(x) is given by

∥s(x)∥FS,σ :=
|P (x0, . . . , xn)|σ

(|x0|2σ + · · ·+ |xn|2σ)D/2
. (3.2)

This is the so-called Fubini–Study metric of Pnk,σ. We can do the same construction for E with E a
general Hermitian adelic fiber bundle E it comes with a Hermitian structure at the Archimedean
places. We can then compute the Arakelov heights and slopes associated to this Hermitian adelic
vector bundle structure. They are given in the following propositions.

Proposition 3.31 ([Bos91, 1.2. Degré arakelovien]). Let k be a number field and let n be a
positive integer. The height of a point x := [x0 : · · · : xn] ∈ Pnk relative to the line bundle O(1) is
equal to

hO(1)(x) =
1

2

∑
σ:k↪→C

log

(
n∑
i=0

|σ(xi)|2
)
− log Norm (x0Ok + · · ·+ xnOk) ,

where Norm denotes the ideal norm on the group the fractional ideals of Ok.

Remark 3.32. For x := (x1, . . . , xn) ∈ kn, we denote by hO(1)(x) the height of [1 : x1 : · · · : xn]
relative to O(1). For any non-zero integer m and x ∈ kn, we have

hWeil(x) ⩽ hO(1)(x) ⩽ hWeil(x) +
1

2
log(n+ 1) and hO(1)(mx) ⩽ hO(1)(x) + log |m|,

where hWeil the classical Weil logarithmic height on Pnk .

Proposition 3.33 ([Gau06, Proposition 4.2]). Let D be a positive integer. Let k be a number field
and let E be a Hermitian adelic fiber bundle of dimension N + 1 over SpecOk. The normalised
Arakelov slope of H0(P(E),O(D)) is equal to

µ̂
(
H0(P(E),O(D))

)
=

1

2
log

(
N +D

N

)
+Dµ̂(E) + 1

2
log γN,D,

where log γN,D := 1

(N+D
N )

∑
τ∈NN+1,
|τ |=D

log D!
τ1!···τN+1!

.

3.5 Comparison of norms

A compact complex variety with a Hermitian line bundle (X,L, ∥ · ∥) is composed of the data
of a compact complex variety X, together with line bundle L equipped for any x ∈ X with a
Hermitian norm ∥ · ∥x of the fiber Lx.

Given two compact complex varieties with a Hermitian line bundle (X1, L1, ∥ · ∥X1) and
(X2, L2, ∥ · ∥X2), one can construct a new one (X1×X2, L1 ⊠L2, ∥ · ∥X1×X2) in the following way.
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The underlying variety is the product variety X1 ×X2. The line bundle one puts on X1 ×X2

is the external tensor product L1 ⊠ L2 := p⋆1L1 ⊗ p⋆2L2 (with pi the projection X1 ×X2 → Xi).
For (x1, x2) ∈ X1 × X2, the fiber (L1 ⊠ L2)(x1,x2) is isomorphic to the tensor product of the
fibers (L1)x1 ⊗ (L2)x2 which has a canonical Hermitian structure ∥ · ∥X1×X2 coming from the
ones on (L1)x1 and (L2)x2 . Notice that the group of global of (X1 ×X2, L1 ⊠ L2) is isomorphic
to H0(X1, L1)⊗H0(X2, L2) by the Künneth formula (see [Kem93, Proposition 9.2.4]).

Let (X,L, ∥ · ∥) be a compact complex variety with a Hermitian line bundle. We can define
two metrics on the group of global sections H0(X,L) of (X,L). First, we have the sup norm
given by

∀s ∈ H0(X,L), ∥s∥∞ := sup
x∈X(C)

∥s(x)∥x.

This is well-defined since X is compact. Next, the normalised measure dx on X(C) induces a
Hermitian metric on H0(X,L) given by

∀s ∈ H0(X,L), ∥s∥22 :=
∫
X(C)

∥s(x)∥2xdx.

We call this norm the L2 norm on H0(X,L).
We would like to compare the sup norm and the L2 norm for the compact complex varieties

with a Hermitian line bundle we will be dealing with – namely (A,L) for a complex polarised
abelian variety, and (P(E),O(D)) for a complex projective variety P(E). Let us define the ratio

R(X,L, ∥ · ∥) := sup
s∈H0(X,L)\{0}

∥s∥∞
∥s∥2

.

The following proposition shows that R is compatible with the notion of product defined above.

Proposition 3.34. Let (X1, L1, ∥ · ∥X1), (X2, L2, ∥ · ∥X2) be two compact complex varieties with
a Hermitian line bundle. We have

R(X1 ×X2, L1 ⊠ L2, ∥ · ∥X1×X2) = R(X1, L1, ∥ · ∥X1)R(X2, L2, ∥ · ∥X2).

Proof. Let us R, R1, and R2 for R(X1 × X2, L1 ⊠ L2, ∥ · ∥X1×X2), R(X1, L1, ∥ · ∥X1), and
R(X2, L2, ∥ · ∥X2) respectively. For (x1, x2) ∈ X1 ×X2, we have

∥s1(x1)∥X1,x1∥s2(x2)∥X2,x2 = ∥(s1 ⊗ s2)(x1, x2)∥X1×X2,(x1,x2) ⩽ R · ∥s1 ⊗ s2∥2 = R · ∥s1∥2∥s2∥2.

Taking the supremum over (x1, x2) we get ∥s1∥∞∥s2∥∞ ⩽ R ·∥s1∥2∥s2∥2 and therefore R1R2 ⩽ R.
Conversely, let s ∈ H0(X1 ×X2, L1 ⊠ L2) \ {0}. We can write s =

∑
i,j
si,jei ⊗ fj where (ei)i

and (fj)j are orthonormal bases of H0(X1, L1) and H0(X2, L2). The L2 norm of s is then equal
to

∥s∥22 =
∑
i,j

|si,j |2.

For any (x1, x2) ∈ X1 ×X2, we have

s(x1, x2) =
∑
i,j

si,jei(x1)⊗ fj(x2).
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Let e ∈ (L1)x1 be an element of norm 1. As (L1)x1 is a one dimensional C-vector space, for every
i we can write ei(x1) = αie with αi ∈ C such that |αi| = ∥ei(x1)∥x1 . Therefore,

∥s(x1, x2)∥X1×X2,(x1,x2) =

∥∥∥∥∥∥e⊗
∑
i,j

si,jαifj(x2)

∥∥∥∥∥∥
X1×X2,(x1,x2)

=

∥∥∥∥∥∥
∑
i,j

si,jαifj(x2)

∥∥∥∥∥∥
X2,x2

⩽ R2

∥∥∥∥∥∥
∑
i,j

si,jαifj

∥∥∥∥∥∥
2

.

Notice now that

∥∥∥∥∥∑i,j si,jαifj
∥∥∥∥∥
2

2

=
∑
j

∣∣∣∣∑
i
si,jαi

∣∣∣∣2 =∑
j

∥∥∥∥∑
i
si,jei(x1)

∥∥∥∥2
X1,x1

. We thus get

∥s(x1, x2)∥X1×X2,(x1,x2) ⩽ R1R2

√√√√∑
j

∥∥∥∥∥∑
i

si,jei

∥∥∥∥∥
2

2

⩽ R1R2

√∑
i,j

|si,j |2 = R1R2∥s∥2.

Taking the supremum for (x1, x2) ∈ X1 ×X2, we get the converse inequality R ⩽ R1R2. ■

We now state an upper-bound for R(X,L, ∥ · ∥X) in the two special cases we will be interested
in: the case of complex polarised abelian varieties, and the case of complex projective spaces.

Proposition 3.35 ([Gau19, Theorem 3.2]). Let (A,L) be a complex polarised abelian variety of
dimension g. We have

sup
s∈H0(A,L)\{0}

∥s∥∞
∥s∥2

⩽ h0(A,L)1/2max

(
1,

1

ρ(A,L)

)g/2
(3.9g)g/2.

Remark 3.36. The constant 3.9 instead of the 5 in [Gau19, Theorem 3.2] is justified just before
Remark 3.2.4 of [Gau19].

Proposition 3.37 ([Gau06, Proposition 4.14]). Let E be a complex vector space of dimension
N , and let D be an integer. We have

sup
s∈H0(P(E),O(D))\{0}

∥s∥∞
∥s∥2

=

(
N +D − 1

N − 1

)1/2

.

3.6 Some combinatorial identities

To conclude this chapter, we prove here some combinatorial identities that will be useful in the
rest of this part of the thesis.

For a tuple τ ∈ Nn, we will denote by

|τ | := τ1 + · · ·+ τn
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the length of τ , and by
τ ! := τ1! · · · τn!,

the factorial of τ .

Lemma 3.38. Let n, N1 and N2 be three non-negative integers. We have

1. # {τ ∈ Nn, |τ | = N1} =
(
N1+n−1
n−1

)
;

2. # {τ ∈ Nn, |τ | ⩽ N1} =
(
N1+n
n

)
;

3. # {τ ∈ Nn, |τ | ⩽ N1 and τn ⩽ N2} =
(
N1+n
n

)
−
(
N1−N2+n−1

n

)
.

Proof. 1. For any N ⩾ 1, let S(N) := {τ ∈ Nn, |τ | = N} and S′(N) := {τ ∈ S(N), τi ⩾ 1, ∀i}.
The set S′(N) is in one-to-one correspondence with the set of increasing maps from

{1, . . . , n− 1} to {1, . . . , N − 1}, a tuple τ corresponding to the map i 7→
i∑

j=1
τj . This latter

set has cardinality
(
N−1
n−1

)
.

Notice now that S(N) is in bijection with S′(N + n) via the map τ 7→ (τi + 1)i. Applying
the argument above with N = N3 + n, allows us to conclude.

2. We have a bijection {τ ∈ Nn, |τ | ⩽ N1} →
{
τ ′ ∈ Nn+1, |τ ′| = N1

}
sending τ to (τ,N1−|τ |).

The result then follows from the previous one.

3. We have a bijection between {τ ∈ Nn, |τ | ⩽ N1, τn > N2} and {τ ∈ Nn, |τ | ⩽ N1 −N2 − 1}
given by τ = (τ ′, τn) 7→ (τ ′, N1 − |τ |). The result then follows from the second one.

■

Lemma 3.39. Let n, N1, N2 be three non-negative integers with N2 ⩽ N1. We have(
N1 + n

n

)
−
(
N1 −N2 + n− 1

n

)
⩽ (N2 + 1)(N1 + 1)n−1.

In particular with N2 = N1, we have
(
N1+n
n

)
⩽ (N1 + 1)n.

Proof. From lemma 3.38, the left-hand side is the cardinality of the set S of tuples τ ∈ Nn such
that |τ | ⩽ N1 and τn ⩽ N2. We have an injection of S into {0, . . . , N1}n−1 × {0, . . . , N2}, and
the result follows. ■



Chapter 4

The setup

4.1 Data

Let k be a number field of degree D over Q. We fix an embedding σ0 : k ↪→ C of k into C.
Consider a polarised abelian variety (A,L) of dimension g, defined over k. Let pA be a k-rational
point of A and uA a logarithm of pA in tAσ0 , that is

expAσ0 (uA) = pA.

Let W0 be a k-vector subspace of tA of codimension t ⩾ 1 and define

G0 := V ((tA/W0)
v)

the group scheme over Spec k associated to the vector space tA/W0 (see definition 3.29). Let p0
be a k-rational point of G0. We define the algebraic group G over k to be

G := G0 ×Spec k A,

and we let p := (p0, pA) ∈ G(k). The group Gσ0(C) has a structure of complex Lie group and an
exponential map expGσ0 = Id× expAσ0 . Denote by u := (u0, uA) the logarithm of p in tGσ0 (C)
coming from u0 and uA. Notice that the point u0 correspond bijectively to the point p0.

Consider the canonical projection λ : tA → tA/W0. We denote by W the graph of λ in
tG = (tA/W0)× tA, that is

W := {(λ(x), x), x ∈ tA)} ⊂ tG.

In order to consider ample line bundles attached to the group G, let G be the compactification
of G defined by

G := Proj Sym (k ⊕ (tA/W0)
v)×Spec k A = P ((k ⊕ (tA/W0))

v)×Spec k A.

We put the ample line bundle
M := O(1)⊠ L

on G.

43
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For a complex embedding σ : k ↪→ C, we will denote by ∥ · ∥σ the Hermitian norm on tGσ
defined as the Hermitian sum of the Fubini–Study metric on tG0,σ induced by the quotient norm
on tA/W0 and the one coming from Lσ on tAσ . For x = (x0, xA) ∈ tGσ we have

∥x∥2σ = ∥x0∥2FS,σ + ∥xA∥2Lσ .

When there will be no ambiguity on the norm, we will also denote by ∥ · ∥σ the norms ∥ · ∥FS,σ
and ∥ · ∥Lσ .

Our goal is to find a lower-bound for the distance d(u,Wσ0) in terms of the invariants of
(A,L, pA, uA) on the one hand, and of (W0, u0) on the other hand. We group these invariants in
three constants. Let E ⩾ e be a real number. Define

log a := max

(
ĥL(pA),

∥uA∥2σ0E
2

D

)
, log b := max

(
hO(1)(p0), h(W0)

)
,

and a :=

⌈
D

logE
max

(
1, hF (A), log h

0(A,L), log
D

logE
, log log a

)⌉
,

(4.1)

where ⌈x⌉ denotes the ceiling of x. The numbers log a and log b measure the arithmetic complexity
of the data relative to (pA, uA), and (p0,W0) respectively. The term a considers the invariants
related to (A,L). Beside these three quantities, another invariant related to A will naturally
appear in the proofs and had already been considered in [GR14a]. Let y be the real number

y := inf
B⊊A

(
degLB

degLA

)1/(dimA−dimB)

,

where the infimum is taken over all the strict subvarieties B of A. It compares to the degree of
(A,L) in the following way.

Proposition 4.1. We have
1

degLA
⩽ y ⩽

1

(degLA)
1/g

.

Proof. By definition of y we have

y ⩽

(
degL(0)

degLA

)1/(g−0)

=
1

(degLA)
1/g

.

Moreover, we can bound from below degLB by 1 and then
1

(degLA)
g−dimB

by
1

degLA
. ■

During the proof we will need a technical hypothesis on A and uA in order to obtain our first
result. From now on and until section 7.2, we assume the following.

Hypothesis 4.2. For all embeddings σ : k ↪→ C dividing σ0, and all strict abelian subvarieties
B of Aσ, the tangent space of Bσ does not contain uA.

Under hypothesis 4.2 our result is the following.

Theorem 4.3. Assume hypothesis 4.2. Then, we have

log d(u,Wσ0) ⩾ −(5(g + t))
4(g+t+1)2

t a1/t
(
1 +

Da log a

logE

)g/t
× (a logE +D log b)

1

y1+g/t(degLA)
1/t
.
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Remark 4.4. Notice that theorem 1.5 follows indeed from theorem 4.3 by taking E = e, u0 = 0,
and bounding y−1−g/t(degLA)

−1/t by (degLA)
g using proposition 4.1.

This result compares to [Gau06, Corollaire 3.2] (taking B = {0} in their result). Besides the
better constant of g and t, our hypothesis 4.2 is weaker than their hypotheses (1) and (2).

Remark 4.5. Hypothesis 4.2 implies that u does not lie in Wσ0 as a consequence of Wüstholz’
analytic subgroup theorem 1.4. Indeed, if u ∈Wσ0 , then there exists a connected algebraic subgroup
G̃ of Gk such that u ∈ t

G̃
(C) ⊆Wσ0 . We can decompose G̃ as H0 ×SpecQ B with H0 a subgroup

of G0 and B an abelian subvariety of A. We then get uA ∈ tB and therefore B = A because of
hypothesis 4.2. It follows that t

G̃
(C) = tH0(C)× tA(C) ⊆Wσ0, which is impossible.

Once theorem 4.3 is proved, we shall reduce hypothesis 4.2 to the weakest hypothesis possible,
namely that uA does not belong to W0,σ0 . This will be our second main result.

Theorem 4.6. Let A′ be the smallest abelian subvariety of Aσ0 such that uA ∈ tA′,σ0. Assume
that uA /∈W0,σ0 and that u0 ∈ (tA′ +W0) /W0. Write

MA := max

(
1, logD,hF (A), log

+ ĥL(pA), log
∥uA∥2σ0
D

)
,

and log b := max
(
hO(1)(p0), h(W0)

)
.

Let σ be a place of k above σ0. If g ⩾ 2, we have

log d(u,Wσ) ⩾ −(265000g)4g
3
D(2g+1)(g+1)max

(
1, ĥL(pA),

∥uA∥2σ0
D

)g2+g
M

(g+1)2

A max(MA, log b).

If g = 1, we have

log d(u,Wσ) = ∥u0 − uA∥σ ⩾ −2 · 1039D3M2
Amax(MA, hO(1)(p0))max

(
1, ĥL(pA),

∥uA∥2σ
D

)
.

Remark 4.7. We deduce theorem 1.6 from theorem 4.6 by taking u0 = 0.

The main achievement of this result is the absence of any supplementary hypothesis on the
logarithm uA. It is to our knowledge the first result of this kind.

4.2 Overview of the proof

We will now begin the proof of theorem 4.3. Let us describe its main steps and the tools we will
be using. Our proof is an application of Baker’s method, using the technique of the auxiliary
section.

In a first time, we modify slightly our data in order to control the parameters of the problem.
This is the use of the quantities D0 and D1 defined below in section 4.3. We then make use of
a Siegel lemma due to Gaudron [Gau14, Lemme de Siegel approché absolu, p.24] in order to
construct a section s of small height, and small derivatives at the multiples of the point p (see
chapter 5). The choice of our constants, combined with a multiplicity lemma due to Nakamaye
[Nak07, Theorem 1] ensure that the jet of the section s does not vanish at a controlled order and
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at a controlled multiple of p. We then estimate the norm of this jet at every Archimedean and
non-Archimedean place in chapter 6. The non-Archimedean estimates make use of a theorem of
Gaudron based on Chudnovsky’s change of variables [Gau06, Proposition 5.10]. The Archimedean
estimates are split between the places that lie above σ0, and the ones that do not. For the second
ones, we use only elementary analysis. For the first ones, we make use of an interpolation lemma
developed by Bosser and Gaudron [BG19, Proposition 2.1]. This is where the distance from u to
Wσ appear, and is the most delicate part of the proof. Finally, in the last chapter 7 we combine
all these estimates with the Siegel lemma of chapter 5, and an estimation of the maximal slope
of the adelic bundle of jets to finally get our lower-bound for the distance.

4.3 Parameters

Let

C0 = (5(g + t))3 and C1 = (5(g + t))2g+t. (4.2)

We define two real numbers S̃ and S̃1 by

2S̃ + 1 := C0a and 2S̃1 + 1 := C1(2S̃ + 1) = C0C1a, (4.3)

and S := ⌊S̃⌋, and S1 = ⌊S̃1⌋. Let T̃1 be a positive real number. We put

D̃0 :=
yT̃1(2S̃ + 1) logE

C0

(
(2S̃1 + 1) logE +D(log S̃1 + log b)

) =
yT̃1
C0C1

(
1 +

D(log S̃1 + log b)

(2S̃1 + 1) logE

)−1

and D̃1 :=
yT̃1(2S̃ + 1) logE

C0

(
(2S̃1 + 1) logE +DS̃2

1 log a
) =

yT̃1
C0C1

(
1 +

DS̃2
1 log a

(2S̃1 + 1) logE

)−1

.

(4.4)

Remark 4.8. These parameters will be used to control the quantities that will arise during the
proofs and their shape has been motivated for that purpose. All the numbers with a capital T will
represent some order of derivation, the numbers with a capital S, some number of multiples of
our point p, and the numbers D0 and D1, some power of the line bundles O(1) and L.

Let H be a connected subgroup scheme of G defined over k. It decomposes as H0 ×Spec k B,
where H0 is a subgroup scheme of G0 (in fact the group scheme associated to some vector
subspace of tA/W0 ⊗ k), and B is an abelian subvariety of A, both defined over k. Let g′ be the
dimension of B, t′ be the dimension of H0, and put cW (H) := codimWk

(Wk ∩ tH).

Lemma 4.9. One has an exact sequence of vector spaces

0
Wk

tH ∩Wk

tGk
tH

tG0,k

tH0 + λ(tB)
0

f g

where f(w + tH ∩Wk) = w + tH and g((x0, xA) + tH) = x0 − λ(xA) + (tH0 + λ(tB).
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Proof. It is clear that f is injective, g is surjective, and that Im(f) ⊆ ker(g). Let (x0, xA) + tH
be in the kernel of g. This means that x0 − λ(xA) ∈ tH0 + λ(tB). Therefore, there exist y0 ∈ tH0

and xB ∈ tB such that x0 = y0 + λ(xA + xB), and thus

(x0, xA) + tH = (λ(xA + xB), xA + xB) + tH ∈Wk + tH = Im(f).

■

Corollary 4.10. We have max(g − g′, t− t′) ⩽ cW (H) ⩽ g + t− (g′ + t′) = codimGk
(H).

Moreover, if Wk + tH = tG, then cW (H) = codimGk
H, and if Wk + tH ̸= tG, then t− t′ > 0

and g − g′ > 0.

Proof. From lemma 4.9 we have

cW (H) = codimGk
H − dim

(
tG0,k

/(tH0 + λ(tB))
)
.

Therefore, cW (H) ⩽ dimG − dimH = (g + t) − (g′ + t′). Moreover, from the surjections
tAk/tB → tG0,k

/(tH0 + λ(tB)), and tG0,k
/tH0 → tG0,k

/(tH0 + λ(tB)) it follows that

dim
(
tG0,k

/(tH0 + λ(tB))
)
⩽ min(g − g′, t− t′).

For the second part of the corollary, notice that we have an isomorphism Wk/(tH ∩Wk)
∼=

(Wk + tH)/tH . Therefore, if Wk + tH = tGk then Wk/(tH ∩ Wk)
∼= tGk/tH and we have

cW (H) = codimGk
(H). Moreover, from lemma 4.9 we have Wk + tH = tGk if and only if

tG0,k
= tH0 + λ(tB). In particular, this is satisfied if either tAk = tB, or tG0,k

= tH0 . ■

Corollary 4.10 implies that under the assumption Wk + tH ̸= tGk we have t− t′ > 0, and we
can define

x(H) :=

#

(
Γp(S1) +H

H

)
T̃
cW (H)
1

2g

(
g′+t′

g′

)
D̃t′

0 D̃
g′

1 degLB(
g+t
g

)
D̃t

0D̃
g
1 degLA

1/(t−t′)

, (4.5)

where Γp(S1) := {np,−S1 ⩽ n ⩽ S1}.

Remark 4.11. For two positive integers n0, n1, the degree of H relative to the line bundle O(n0)⊠
L⊗n1 is equal to

(
g′+t′

g′

)
nt

′
0 n

g′

1 degLB. As the parameters D̃0 and D̃1 are not integers in general,

the term
(g

′+t′
g′ )D̃t

′
0 D̃

g′
1 degLB

(g+tg )D̃t0D̃
g
1 degL A

that appear in the definition of x(H) interpolates
degO(n0)⊠L

⊗n1 H

degO(n0)⊠L
⊗n1 G

for

non-integer values of n0 and n1.

Remark 4.12. The somewhat complicated shape of x(H) will be motivated by the upcoming
lemma 4.16. It will allow us to get rid of some subgroup of G that will measure the obstruction
of sections to vanish up to a certain order.

From the definition of D̃0 and D̃1, the quantity T̃ (codimG(H)−cW (H))/(t−t′)
1 x(H) is independent

of T̃1. We can therefore fix T̃1 such that x({0}) is equal to 1. Notice indeed that we have
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W + t{0} =W ̸= tG, and that x({0}) is thus well-defined. From the definition of D̃0, D̃1 and S1,
we have

T̃1 =

#Γp(S1)(C0C1)
g+t
(
1 +

S̃2
1D log a

(2S̃1+1) logE

)g (
1 + D(log S̃1+log b)

(2S̃1+1) logE

)t
2g
(
g+t
g

)
yg+t degLA


1/t

. (4.6)

Let x be the infimum of the x(H)’s over all the subgroups H satisfying Wk + tH ̸= tGk , and fix a
subgroup H satisfying x(H) = x. This is well-defined because x(H) takes values in a finite set.
From the definition of T̃1 we moreover have x ⩽ x({0}) = 1. Along the proof we will need to
distinguish two different cases depending on the cardinality of the group Γp(S1)+H

H .

Definition 4.13. We say that we are in the periodic case if #
(
Γp(S1)+H

H

)
is not maximal, that

is less than 2S1 + 1. Otherwise, we say that we are in the non-periodic case.

We finally define

T1 := ⌊T̃1⌋, T0 := 2(g + t)T1 − 1, T2 :=

{ ⌊
T̃1
C1

⌋
in the periodic case;

T0 in the non-periodic case,

D0 := ⌊xD̃0⌋, D1 := ⌊D̃1⌋, S0 :=

{
(g + t)S1 in the periodic case;
S in the non-periodic case,

(4.7)

and we equip G with the line bundle M(D0, D1) := O(D0)⊠ L⊗D1 .
The following proposition contains a lot of inequalities we will be using constantly in the rest

of the part. The proof is quite technical and uses intensively the definition (4.2), (4.3), (4.4),
(4.5), (4.6), and (4.7).

Proposition 4.14. The following inequalities hold.

1. T̃1 ⩾ (2(g + t))4g+2t+6 ⩾ 107 and T2 ⩾ 1;

2. D̃0, D̃1 ⩽
yT̃1
C0C1

⩽
T̃1
C0C1

;

3. D1 ⩾ (2(g + t))2g+t+3 and D0 ⩾ (2(g + t))3;

4.
(2S̃ + 1) logE

DC0
⩾ max

(
1,

logE

D
, hF (A), log h

0(A,L), log
D

logE
, log log a, log ∥uA∥σ0

)
;

5. log a ⩽
2(2S̃ + 1) logE

DC0
;

6.
(
1 + ∥ES1λ(uA)∥2σ0

)D0/2 ⩽ exp

(
1.01 · T̃1(2S̃ + 1) logE

C0

)
;

7. log D̃0 ⩽
(2S̃ + 1) logE

DC0
× 7(g+t)3

t .
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Proof. 1. For the lower bound of T̃1, we use its value (4.6). The quantities

1 +
S̃2
1D log a

(2S̃1 + 1) logE
, 1 +

D(log S̃1 + log b)

(2S̃1 + 1) logE
, and #Γp(S1)

are bigger than or equal to 1. As a consequence

T̃1 ⩾

(
(C0C1)

g+t

2g
(
g+t
g

)
yg+t degLA

)1/t

.

From proposition 4.1, we have 1
yg+t degL A

⩾ (degLA)
t/g ⩾ 1, and therefore

T̃1 ⩾

(
(C0C1)

g+t

2g
(
g+t
g

) )1/t

⩾

(
(5(g + t))(g+t)(2g+t+3)

22g+t

)1/t

⩾ (2(g + t))2(2g+t+3).

For the lower bound of T2 we have T2 ⩾
⌊
T̃1
C1

⌋
. The previous lower for T̃1 being greater

than the value of C1, it leads to the wanted bound.

2. This is straightforward from the definition (4.4) of D̃0 and D̃1.

3. From the value (4.6) of T̃1 and the definition (4.4) of D̃1, we have

D̃1 =

#Γp(S1)(C0C1)
g
(
1 +

S̃2
1D log a

(2S̃1+1) logE

)g−t (
1 + D(log S̃1+log b)

(2S̃1+1) logE

)t
2g
(
g+t
t

)
yg degLA


1/t

.

From proposition 4.1, we have yg degLA ⩽ 1. Bounding again

1 +
S̃2
1D log a

(2S̃1 + 1) logE
, 1 +

D(log S̃1 + log b)

(2S̃1 + 1) logE
, and #Γp(S1)

by 1 leads to

D̃1 ⩾

(
(C0C1)

g

2g
(
g+t
t

) )1/t

⩾

(
(5(g + t))g(2g+t+3)

22g+t

)1/t

⩾ (2(g + t))2g+t+3.

For the bound for D0, let us compute the value of xD̃0:

xD̃0 = D̃0

#

(
Γp(S1) +H

H

)
T̃
cW (H)
1

2g

(
g′+t′

g′

)
D̃t′

0 D̃
g′

1 degLB(
g+t
g

)
D̃t

0D̃
g
1 degLA

1/(t−t′)

=

(
#

(
Γp(S1) +H

H

)
T̃
cW (H)
1

D̃g−g′
1

degLB

degLA

(
g′+t′

g′

)
2g
(
g+t
g

))1/(t−t′)

.

We can bound from below the cardinality of Γp(S1)+H
H and

(
g′+t′

g′

)
by 1. Furthermore, from

the definition of y, we have degLB
degL A

⩾ yg−g
′ . Therefore,

xD̃0 ⩾

(
T̃
cW (H)
1 yg−g

′

D̃g−g′
1 2g

(
g+t
g

))1/(t−t′)

⩾

(
T̃
cW (H)
1 yg−g

′

D̃g−g′
1 22g+t

)1/(t−t′)

.
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To conclude, from corollary 4.10 we have cW (H) ⩾ g − g′ ⩾ 1. Because T̃1 is greater than
1 we deduce that T̃ cW (H)

1 ⩾ T̃ g−g
′

1 . Using proposition 4.14.2 and the values of C0 and C1,
we finally get

xD̃0 ⩾

(
T̃ g−g

′

1 yg−g
′

D̃g−g′
1 22g+t

)1/(t−t′)

⩾

(
(C0C1)

g−g′

22g+t

)1/(t−t′)

⩾

(
C0C1

22g+t

)1/t

⩾ (2(g + t))3.

Applying the floor function on both sides gives D0 ⩾ (2(g + t))3.

4. From (4.1), we have

a ⩾ max

(
1,

D

logE
max

(
1, hF (A), log h

0(A,L), log
D

logE
, log log a

))
.

The announced lower bound for (2S̃+1) logE
DC0

= a logE
D is then clear except maybe for

(2S̃ + 1) logE

DC0
⩾ log ∥uA∥σ0 .

On the one hand, from the value of log a, we have (2S̃+1) logE
C0D

⩾ log
∥uA∥2σ0E

2

D . On the other

hand we have (2S̃+1) logE
C0D

⩾ log D
logE . Therefore,

log ∥uA∥σ0 =
1

2

(
log
∥uA∥2σ0E

2

D
+ log

D

E2

)
⩽

1

2

(
(2S̃ + 1) logE

DC0
+

(2S̃ + 1) logE

DC0

)
.

5. We have a logE
D ⩾ log D

logE , and therefore

log a = log
a logE

D
+ log

D

logE
⩽

2a logE

D
=

2(2S̃ + 1) logE

DC0
.

6. We have(
1 + ∥ES1λ(uA)∥2σ0

)D0/2 ⩽ exp

(
D0 log

+ ∥uA∥σ0 +D0 logE +D0 logS1 +
D0

2
log(2)

)
.

Using the previous estimates, we can bound D0 by T̃1
C0C1

, log+ ∥uA∥σ0 , logE, and 1 by
(2S̃+1) logE

C0
, and D0 logS1 by T̃1(2S̃+1) logE

C0
to get

(
1 + ∥ES1λ(uA)∥2σ

)D0/2 ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
×
(

2

C0C1
+ 1 +

log(2)

2C0C1

))
.

From the values of C0 and C1 we deduce the result.

7. From the values (4.4) and (4.6) of D̃0 and T̃1, we have

D̃0 =

#Γp(S1)(C0C1)
g
(
1 +

S̃2
1D

(2S̃1+1) logE
log a

)g
2g
(
g+t
g

)
yg degLA


1/t

.
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As #Γp(S1) is less than C0C1a, and S̃2
1

2S̃1+1
is bounded by S̃1

2 ⩽ C0C1a
2 , we have

D̃0 ⩽

(
(C0C1)

2g+1

22g
(
g+t
g

) )1/t(
1 +

D log a

logE

)g/t a(g+1)/t

(yg degLA)
1/t
.

To bound log D̃0, we need to bound the logarithm of each term. Because log+ log a,
log+ D

logE , and log 2 are bounded by (2S̃+1) logE
DC0

, we have

g

t
log

(
1 +

D log a

logE

)
⩽
g

t

(
log+ log a+ log+

D

logE
+ log 2

)
⩽

(2S̃ + 1) logE

DC0
× 3g

t
.

To bound g+1
t log a, we use the point 5 of the proof:

g + 1

t
log a ⩽

(2S̃ + 1) logE

DC0
× 2(g + 1)

t
.

Finally, because y degLA ⩾ 1, we have 1
yg degL A

⩽ (degLA)
g−1. Hence,

log
1

(yg degLA)
1/t

⩽
g − 1

t
log degLA =

g − 1

t
log(g!) +

g − 1

t
log h0(A,L)

⩽
(2S̃ + 1) logE

DC0

(
(g − 1)2

t
log g +

g − 1

t

)
.

We deduce that log D̃0 is bounded by c(g, t) (2S̃+1) logE
DC0

, with

c(g, t) =
1

t
log

(
(C0C1)

2g+1

22g
(
g+t
g

) )
+

3g

t
+

2(g + 1)

t
+

(g − 1)2

t
log g +

g − 1

t
.

Recall that we have C0C1 = (5(g + t))2g+t+3. Therefore, we get

tc(g, t)

(g + t)3
⩽

(2g + 1)(2g + t+ 3) log(5(g + t))

(g + t)3
+

6g + 1

(g + t)3
+

(g − 1)2 log(g)

(g + t)3

⩽
(2g + 1)(2g + 4) log(5(g + 1))

(g + 1)3︸ ︷︷ ︸
⩽ 3·6·log(10)

8

+
6g + 1

(g + 1)3︸ ︷︷ ︸
⩽ 7

8

+
(g − 1)2 log(g)

(g + 1)3︸ ︷︷ ︸
⩽0.5

⩽ 7.

We conclude that log D̃0 ⩽
7(g+t)3

t × (2S̃+1) logE
DC0

.
■

Remark 4.15. The inequalities 4.14.3 ensure that the line bundle M(D0, D1) is in fact ample.

Before we switch to the actual heart of the proof, we state a result that will ensure that
the global sections of (G,M(D0, D1)) will not vanish too many along W at some multiples of p.
Such statement is known as a multiplicity lemma.
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Lemma 4.16 (multiplicity lemma). Let s ∈ H0(G,M(D0, D1))⊗ k. If sσ0 vanishes to order at
least (g + t)T1 + 1 at Γp((g + t)S1) along Wσ0, then s = 0.

In order to prove lemma 4.16 we use the following theorem of Nakamaye.

Theorem 4.17 ([Nak07, Theorem 1]). Let G be a complex algebraic commutative group of
dimension d. Let L be an ample line bundle on G. Let Λ ⊆ tG be a non-zero vector subspace of
the tangent space of G. Assume T, S ⩾ 1, let 0 ̸= σ ∈ H0(G,L), and p ∈ G(C). If σ vanishes at
order at least dT + 1 along Λ at Γp(dS), then there exists a proper connected subgroup G′ of G
such that

T cΛ(G
′)#

(
Γp(S) +G′

G′

)
degL(G

′) ⩽ degL(G).

Proof of lemma 4.16. Let s ∈ H0(G,M(D0, D1))⊗ k be non-zero and assume by contradiction
that sσ0 vanishes at order at least (g + t)T1 + 1 at Γp((g + t)S1) along Wσ0 . From theorem 4.17,
there exists a proper connected subgroup G′

σ0 of Gσ0 such that

T
cW (G′

σ0
)

1 #

(
Γp(S1) +G′

σ0

G′
σ0

)
degM(D0,D1)σ0

(G′
σ0) ⩽ degM(D0,D1)σ0

(Gσ0). (4.8)

The subgroup G′
σ0 comes from a subgroup G′ defined on k and G′ splits into G′

0 ×Speck
C with

G′
0 a subgroup scheme of G0 of dimension t′′ and C an abelian subvariety of A of dimension g′′.

We consider two possible cases:

1. If tG′ +Wk ̸= tGk , then by the very definition of x, we have x(G′) ⩾ x. We can express the
degree of G′ relative to the ample line bundle M(D0, D1)k in terms of degL(C):

degM(D0,D1)(G
′) = dim(G′)!×

degM(D0,D1)(G
′
0 ×Speck

C)

dim(G′)!

= dim(G′)!×
degO(D0)(G

′
0)

dim(G′
0)!

× degL⊗D1 (C)

dim(C)!

=

(
g′′ + t′′

g′′

)
Dt′′

0 D
g′′

1 degL(C).

Replacing C by A, g′′ by g, t′′ by t, the same formula holds for the degree of G relative to
M(D0, D1). Therefore, using the definition (4.5) of x(G′), we have

x(G′)t−t
′′
= #

(
Γp(S1) +G′

G′

)
T̃
cW (G′)
1

2g

(
g′′+t′′

g′′

)
D̃t′′

0 D̃
g′′

1 degL(C)(
g+t
g

)
D̃t

0D̃
g
1 degLA

= #

(
Γp(S1) +G′

G′

)
T
cW (G′)
1

degM(D0,D1)(G
′)

degM(D0,D1)(G)

× 2−g

(
T̃1
T1

)cW (G′)(
D0

D̃0

)t−t′′ (D1

D̃1

)g−g′′
.
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As T̃1 ⩾ 2, we can bound T̃1
T1

by 3
2 . We also have D1 ⩽ D̃1, D0 ⩽ xD̃0, and cW (G′) ⩽ g.

Therefore,

x(G′)t−t
′′
⩽ 2−g

(
3

2

)g
xt−t

′′
< xt−t

′′
.

This case is therefore impossible.

2. If tG′ +Wk = tGk . By corollary 4.10, we have cW (G′) = g + t− (g′′ + t′′). Therefore,

#

(
Γp(S1) +G′

G′

)
T
g+t−(g′′+t′′)
1

(
g′′+t′′

g′′

)
Dt′′

0 D
g′′

1 degL(C)(
g+t
g

)
Dt

0D
g
1 degLA

⩽ 1.

However, the cardinality of Γp(S1)+G′

G′ is positive, from proposition 4.14 the quotients T1
D0

and T1
D1

are both greater than or equal to C0C1
2y , and degL(C)

degL A
⩾ yg−g

′′ . We can further bound
the binomial quotient:(

g′′+t′′

g′′

)(
g+t
g

) =
(g′′ + t′′)!g!t!

(g + t)!g′′!t′′!
⩾

(g′′ + t′′)!

(g + t)!
=

1

(g + t) · · · (g′′ + t′′ + 1)
⩾

1

(g + t)g+t−(g′′+t′′)
.

We then get

#

(
Γp(S1) +G′

G′

)
T
g+t−(g′′+t′′)
1

(
g′′+t′′

g′′

)
Dt′′

0 D
g′′

1 degL(C)(
g+t
g

)
Dt

0D
g
1 degLA

>
1

yt−t′′

(
C0C1

2(g + t)

)g+t−(g′′+t′′)

⩾ 1.

This case is thus also impossible and the section s has to be zero.

■

4.4 Adelic structures

In order to use the theory of Hermitian adelic vector bundles we introduced in section 3.1,
we need to associate a structure of projective module to the k-vector space of global sections
of
(
G,M(D0, D1)

)
. First, consider a Moret-Bailly model

(
A,LD1 , (εmpA)−(g+t)S1⩽m⩽(g+t)S1

)
defined over some finite extension K/k of the triplet (A,L⊗D1 , (mpA)−(g+t)S1⩽m⩽(g+t)S1

) (see
theorem 3.26). The spaceH0(A,LD1) has a structure of Hermitian adelic vector bundle compatible
with the Riemann form of (A,L⊗D1), as well as the tangent space tA. Let W0 be the OK-
submodule tA ∩ (W0 ⊗k K) coming from the vector space W0 and define

G0 := V ((tA/W0)
v) and G := G0 ×SpecOK A.

The generic fibers of G0 and G are G0 and G respectively. We now put the invertible sheaf

M(D0, D1) := O(D0)⊠ LD1 ,

on the scheme G := P (OK ×SpecOK (tA/W0)
v) ×SpecOK A over SpecOK . It is equipped with

Hermitian metrics at the Archimedean places of K obtained by Hermitian sum of the Fubini-
Study metrics on O(D0) coming from tA and the cubist metrics on LD1 . The OK-module
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H0
(
G,M(D0, D1)

)
is locally free and following section 3.5, for a complex embedding σ : K ↪→ C,

we have a Hermitian metric on H0
(
G,M(D0, D1)

)
⊗σ C = H0

(
Gσ,M(D0, D1)σ

)
given by

∥s∥22,σ =

∫
Gσ(C)

∥s(x)∥2x,σdx, ∀s ∈ H0
(
Gσ,M(D0, D1)σ

)
.

This defined a Hermitian adelic vector bundle H0
(
G,M(D0, D1)

)
, allowing us to use Arakelov

theory with the sections of (G,M(D0, D1)). Let us describe more precisely this Hermitian
structure. There is a canonical way to attach a holomorphic function on tGσ to a section s.
Indeed, we have an isomorphism H0

(
Gσ,M(D0, D1)σ

) ∼= H0
(
Aσ, L

⊗D1
σ

)
⊗H0

(
G0,σ,O(D0)

)
,

and therefore s decomposes as
s =

∑
j

sA,j ⊗ s0,j ,

with sA,j ∈ H0
(
Aσ, L

⊗D1
σ

)
and s0,j ∈ H0

(
G0,σ,O(D0)

)
. From theorem 3.15, the sA,j ’s corre-

spond to holomorphic functions ϑj on tAσ , and from definition 3.30 the s0,j ’s correspond to
homogeneous polynomials of degree at most D0 on G0,σ. Embedding tG0,σ in G0,σ by sending x0
to [1 : x0], the s0,j ’s correspond to polynomials Pj of degree at most D0 on tG0,σ . Therefore, the
section s corresponds to the function

s⋆ :=
∑
j

ϑjPj . (4.9)

Moreover, from (3.1) and (3.2), we get a structure of compact complex variety with a Hermitian
line bundle on (Gσ,M(D0, D1)σ) defined by

∥s([1 : x0], xA)∥σ = |s⋆(z)|
exp

(
−π

2D1∥xA∥2σ
)

(1 + ∥x0∥2σ)
D0/2

, ∀(x0, xA) ∈ Gσ, (4.10)

with z ∈ tGσ such that (x0, xA) = expGσ(z). In the following, we will also use a lot the sup norm

∥s∥∞,σ := sup
x∈Gσ

∥s(x)∥σ.

Applying the results of section 3.5, together with the values of our parameters we can compare
the Hermitian norm and the sup-norm.

Lemma 4.18. Let K ′/k be a finite extension of k, let σ : K ′ ↪→ C be a complex embedding of
K ′, and let s ∈ H0(Gσ,M(D0, D1)σ). We have

∥s∥∞,σ ⩽ ∥s∥2,σDg/2
1

(
t+D0

t

)1/2

h0(A,L)1/2(3.9g)g/2max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

In particular,

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

DC0C1

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.
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Proof. The first result follows from propositions 3.34, 3.35 and 3.37. We then bound D
g/2
1

and
(
t+D0

t

)1/2
using proposition 4.14. The function x 7→ log x

x is decreasing for x ⩾ e, and
D1 ⩾ (2(g + t))2g+t+3 ⩾ e from proposition 4.14.3. Therefore,

D
g/2
1 = exp

(g
2
logD1

)
⩽ exp

(
g

2

(2g + t+ 3) log(2(g + t))

(2(g + t))2g+t+3︸ ︷︷ ︸
⩽1/10

D1

)
⩽ exp

(
T̃1

10C0C1

)
.

Similarly, we have
(
t+D0

t

)1/2
⩽ (D0 + 1)t/2 from lemma 3.39, and because the map x 7→ log(x+1)

x

is decreasing for x ⩾ 0, and D0 ⩾ (2(g + t))3 from proposition 4.14.3, we have(
t+D0

t

)1/2

⩽ exp

(
t

2
log(D0 + 1)

)
⩽ exp

(
t

2

3 log(2(g + t))

(2(g + t))3︸ ︷︷ ︸
⩽1/10

D0

)
⩽ exp

(
T̃1

10C0C1

)
.

Moreover, from proposition 4.14.4 we have h0(A,L)1/2 ⩽ exp
(
(2S̃+1) logE

2DC0

)
and (2S̃+1) logE

DC0
⩾ 1.

Therefore,

h0(A,L)1/2(3.9g)g/2 ⩽ exp

(
T̃1(2S̃ + 1) logE

DC0

(
1

2T̃1
+
g log(3.9g)

2T̃1

))
.

From proposition 4.14.1, 2T̃1 ⩾ 2 · (2(g + t))4g+2t+6 ⩾ 10C1(1 + g log(3.9g)), and therefore

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

DC0
× 3

10C1

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2

⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

DC0C1

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

■

4.5 Autissier matrix lemma

Autissier matrix lemma [Aut13, Corollary 1.4] gives an upper-bound for the mean of the numbers
1

ρ(Aσ ,Lσ)2
over all the complex embeddings of (A,L). The following result of [Gau19] is a direct

application of it using the value ε = 1− 6
2.3π .

Proposition 4.19 ([Gau19, Matrix lemma, p. 443]). Let (A,L) be a polarised abelian variety of
dimension g over a number field k. We have

1

D

∑
σ:k↪→C

1

ρ(Aσ, Lσ)2
⩽ (2.3 + 5.5g)max

(
1, hF (A) +

1

2
log h0(A,L)

)
.

The quantity we will have to bound during the proof is not the mean of
(

1
ρ(Aσ ,Lσ)2

)
σ

by the
mean of the positive part of the logarithm of it. In order to switch between these two means we
have the following lemma is extracted from [BG19, Lemme 3.19].
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Lemma 4.20. Let x1, . . . , xn be positive real numbers. We have

1

n

n∑
i=1

log+(xi) ⩽ max

(
1, log

(
1

n

n∑
i=1

xi

))
.

Combining proposition 4.19 and lemma 4.20 we get the following.

Proposition 4.21. Let K ′/k be a finite extension of k. For any positive integer n, we have

1

[K ′ : Q]

∑
σ:K′↪→C

log+
1

ρ(Aσ, L
⊗n
σ )

⩽
1

2
max

(
1,

(2S̃ + 1) logE

DC0
×
(
1 + log

9(g + t)

n

))
.

Proof. First notice that for any positive real number x, we have log+ x = 1
2 log

+ x2. Combining
this with lemma 4.20 we get

1

[K ′ : Q]

∑
σ:K′↪→C

log+
1

ρ(Aσ, L
⊗n
σ )

⩽
1

2
max

(
1, log

(
1

[K ′ : Q]

∑
σ:K′↪→C

1

ρ(Aσ, L
⊗n
σ )2

))
.

From the definition of the injectivity diameter we have ρ(Aσ, L⊗n
σ )2 = nρ(Aσ, Lσ)

2. Applying
proposition 4.19, we deduce that

1

[K ′ : Q]

∑
σ:K′↪→C

log+
1

ρ(Aσ, L
⊗n
σ )

⩽
1

2
max

(
1, log

(
1

[K ′ : Q]

∑
σ:K′↪→C

1

nρ(Aσ, Lσ)2

))

⩽
1

2
max

(
1, log+

(2.3 + 5.5g)max
(
1, hF (A) +

1
2 log h

0(A,L)
)

n

)
.

From proposition 4.14.4, 1, hF (A), and log h0(A,L) are all bounded by (2S̃+1) logE
DC0

. Therefore,

log
(2.3 + 5.5g)max

(
1, hF (A) +

1
2 log h

0(A,L)
)

n
⩽ log

(
(2S̃ + 1) logE

DC0
× 3(2.3 + 5.5g)

2n

)

⩽
(2S̃ + 1) logE

DC0

(
1 + log

(
3(2.3 + 5.5g)

2n

))
.

We conclude using the inequalities 3(2.3+5.5g)
2 ⩽ 3.5 + 8.3g ⩽ 9(g + t). ■

We will need proposition 4.21 for both n = 1 and n = D1. We state hereafter the results we
will use during the proof.

Corollary 4.22. Let K ′/k be a finite extension of k and let σ : K ′ ↪→ C be a complex embedding
of K ′. We have

log+
1

ρ(Aσ, Lσ)
⩽

(2S̃ + 1) logE

C0
× (g + t),
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and
1

[K ′ : Q]

∑
σ:K′↪→C

log+
1

ρ(Aσ, L
⊗D1
σ )

⩽
(2S̃ + 1) logE

2DC0
.

In particular

log+
1

ρ(Aσ, L
⊗D1
σ )

⩽
(2S̃ + 1) logE

2C0
.

Proof. Because ρ(Aσ, Lσ) depends only on σ|k, we can bound log+ 1
ρ(Aσ ,Lσ)

by
∑

τ :k↪→C
log+ 1

ρ(Aτ ,Lτ )
.

Using proposition 4.21 with n = 1, we get

log+
1

ρ(Aσ, Lσ)
⩽
D

2
max

(
1,

(2S̃ + 1) logE

DC0
× (1 + log(9(g + t)))

)
.

As (2S̃+1) logE
DC0

⩾ 1, and 1 + log(9(g + t)) ⩽ 1 + 9(g + t) log(18)18 ⩽ 2(g + t), we deduce

log+
1

ρ(Aσ, Lσ)
⩽
D

2
max

(
1,

(2S̃ + 1) logE

DC0
× (1 + log(9(g + t)))

)

⩽
D

2
max

(
1,

(2S̃ + 1) logE

DC0
× 2(g + t)

)

⩽
(2S̃ + 1) logE

C0
× (g + t).

For the second result, we apply proposition 4.21 with n = D1. From the lower-bound of
proposition 4.14.3, we have D1 ⩾ (2(g + t))2g+t+3 ⩾ 9(g + t). Therefore, because (2S̃+1) logE

DC0
⩾ 1

from proposition 4.14.4, we have

1

[K ′ : Q]

∑
σ:K′↪→C

log+
1

ρ(Aσ, L
⊗D1
σ )

⩽
1

2
max

(
1,

(2S̃ + 1) logE

DC0
×
(
1 + log

9(g + t)

D1︸ ︷︷ ︸
⩽1

))

⩽
(2S̃ + 1) logE

2DC0
.

■

Finally, we will also deal with means of functions involving the covering radii of (A,L). Using
the previous results and proposition 3.21 we prove the result we will need.

Proposition 4.23.

1

[K ′ : Q]

∑
σ:K′↪→C

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)
⩽

2(2S̃ + 1) logE

DC0



58 CHAPTER 4. THE SETUP

Proof. From proposition 3.21, we have r(Aσ, Lσ) ⩽
g h0(A,L)
ρ(Aσ ,Lσ)

. Using lemma 4.20 we have

1

[K ′ : Q]

∑
σ:K′↪→C

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)
⩽

1

[K ′ : Q]

∑
σ:K′↪→C

log

(
2πg h0(A,L)

C0C1

1

ρ(Aσ, Lσ)
+ 1

)

⩽ max

(
1, log

(
1

[K ′ : Q]

∑
σ:K′↪→C

(
2πg h0(A,L)

C0C1

1

ρ(Aσ, Lσ)
+ 1

)))
.

From the convexity of the function x 7→ x2, the sum 1
[K′:Q]

∑
σ:K′↪→C

1
ρ(Aσ ,Lσ)

is bounded by(
1

[K′:Q]

∑
σ:K′↪→C

1
ρ(Aσ ,Lσ)2

)1/2

. Applying proposition 4.19, we get

1

[K ′ : Q]

∑
σ:K′↪→C

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)

⩽ max

1, log

1 +
2πg h0(A,L)

√
(2.3 + 5.5g)max(1, hF (A) +

1
2 log h

0(A,L))

C0C1

 .

Finally, from proposition 4.14.4, 1, hF (A), and log h0(A,L) are bounded by (2S̃+1) logE
C0D

. Using

the values of C0 and C1,
2πg
√

3(2.3+5.5g)√
2C0C1

is less than 1. It follows that

1

[K ′ : Q]

∑
σ:K′↪→C

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)

⩽ max

1, log

1 +
2πg h0(A,L)

√
(2.3 + 5.5g)max(1, hF (A) +

1
2 log h

0(A,L))

C0C1


⩽ max

(
1, log h0(A,L) + log

(
1 +

2πg
√
2.3 + 5.5g

C0C1
max(1, hF (A) +

1

2
log h0(A,L))1/2

))

⩽ max

(
1, log h0(A,L) + log

(
1 +

√
(2S̃ + 1) logE

DC0
×

2πg
√
3(2.3 + 5.5g)√
2C0C1︸ ︷︷ ︸
⩽1

))

⩽ max

1,
(2S̃ + 1) logE

DC0
+ log

1 +

√
(2S̃ + 1) logE

DC0


⩽

2(2S̃ + 1) logE

DC0
.

■



Chapter 5

Siegel lemma

The goal of this chapter is to construct a section s ∈ H0(G,M(D0, D1)) of controlled height. More
precisely, we want a section of small height with respect to the adelic Hermitian vector bundle
structure of H0(G,M(D0, D1)) defined in section 4.4, and with small derivatives at multiples of
the point p. In order to do this, we define a twisted Hermitian metric on H0(G,M(D0, D1)).

5.1 Adelic vector bundle of global sections

All along the proof we will be using a lot the theory of holomorphic functions over a complex vector
space. Given a finite dimensional complex vector space V , a holomorphic function f : V → C,
and a vector subspace W of V , the Taylor coefficients

(
1
τ !D

τ
wf(x)

)
τ∈Ng of f at x ∈ V along the

basis w := (w1, . . . , wg) of W are the coefficients of the following Taylor expansion

f

(
x+

g∑
i=1

hiwi

)
=
∑
τ∈Ng

1

τ !
Dτ

wf(x)h
τ1
1 · · ·h

τg
g , ∀h1, . . . , hg ∈ C.

The Taylor coefficients of a function are highly dependent of the chosen basis w. We therefore
need to fix a basis of Wσ for every embedding σ.

Let σ : K ↪→ C be an embedding of K, where K is the field of definition of the group G (see
section 4.4). We define a basis wσ = (wσ,1, . . . ,wσ,g) of Wσ in the following way:

• If σ divides neither σ0 nor σ0, we choose any orthonormal basis of Wσ.

• If σ divides σ0 and we are in the non-periodic case, we again choose any orthonormal
basis of Wσ.

• If σ divides σ0 and we are in the periodic case, we first choose an orthonormal basis
of tHσ ∩Wσ. We then complete it so that it is an orthonormal basis of Wσ with wσ,g

unitary and colinear to the orthogonal projection of (λ(uA), uA) onto (tHσ ∩Wσ)
⊥. This is

well-defined because of hypothesis 4.2. Indeed, we know that uA does not lie inside tBσ .
Thus, if (λ(uA), uA) is contained in tHσ ∩Wσ, then in particular uA ∈ tBσ .

• If σ divides σ0, we define wσ to be the basis corresponding to wσ via the morphism
tGσ → tGσ induced by the complex conjugation. More precisely, the complex conjugation
on C induces a morphism τ : Spec(C)→ Spec(C) that leads to the following diagram.

59
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Aσ A Aσ

Spec(C) Spec(K) Spec(C)

Spec(R)

σ

τ

σ

□ □

The arrow Aσ → Aσ is an isomorphism of R-schemes but not of C-schemes. Taking the
C-points, we get an anti-linear isomorphism of real Lie groups Aσ(C)→ Aσ(C), and we
have the following result.

Proposition 5.1 ([GR14b, §2.6]). The isomorphism f : Aσ → Aσ lifts into an isomorphism
df : tAσ → tAσ such that df(ΩAσ) = ΩAσ . It is an isometry with respect to the Hermitian
metrics coming from Lσ and Lσ.

The isometry df then induces an isometry df0 : tG0,σ → tG0,σ that leads to the isometry
tGσ → tGσ .

Remark 5.2. Through this construction, many invariants are conserved. For example, we
have ρ(Aσ, Lσ) = ρ(Aσ, Lσ) and r(Aσ, Lσ) = r(Aσ, Lσ). We will therefore usually prove
results in the case σ | σ0, the case σ | σ0 following from this construction.

We now define a new adelic structure on the space H0(G,M(D0, D1)) that take into account the
derivatives of the sections at the multiples of the point p.

Definition 5.3. Define

Υ := {(m, τ) ∈ Z× Ng, |m| ⩽ S0, |τ | ⩽ T0, and τg ⩽ T2} .

Recall that S0, T0, and T2 have been defined after definition 4.13. For an embedding σ : K ↪→ C
of K extending σ0 we define a linear map Uσ from H0(G,M(D0, D1))⊗σ C to CΥ by

Uσ(s) :=

(
1

τ !
Dτ

wσs
⋆(mu)

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

)
(m,τ)∈Υ

,

where s⋆ is the holomorphic function of tGσ defined in (4.9). For σ : k ↪→ C extending σ0, we
define Uσ to be the corresponding linear map, as discussed in remark 5.2.

We finally twist the Hermitian adelic vector bundle structure on H0(G,M(D0, D1)) we defined
in section 4.4. For α > 0, we define for σ : K ↪→ C and s ∈ H0(Gσ,M(D0, D1)σ),

∥s∥2α,σ :=

{
∥s∥2σ + α2∥Uσs∥22 if σ extends σ0 or σ0;
∥s∥2σ otherwise.

(5.1)

This define a Hermitian adelic structure on H0(G,M(D0, D1)). We will denote by hα the height
relative to this adelic bundle.
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To construct the wanted section, we will use the following Siegel lemma applied to the vector
bundles H0(G,M(D0, D1)) and CΥ, together with the linear maps (Uσ)σ|σ0,σ0 .

Lemma 5.4 ([Gau14, Lemme de Siegel approché absolu, p. 24]). Let k be a number field of
degree D and let S be a finite set of embedding of k. Let E and F be two Hermitian adelic vector
bundles over SpecOk. For all σ ∈ S, let aσ : Eσ → Fσ be a C-linear map of rank ρσ, norm ∥aσ∥,
and such that ∥aσ∥ = ∥aσ∥. Let Ea be the Hermitian adelic vector bundle with E as base space
and metrics

∥x∥σ :=

{
∥aσx∥σ if σ ∈ S;
∥x∥σ otherwise.

There exists s ∈ Ea ⊗Ok k \ {0} such that

hEa(s) ⩽
1

D rk E
∑
σ∈S

ρσ log
√

1 + ∥aσ∥2 +
1

2
log rk E − µ̂(E).

The rest of this chapter is devoted to estimate the quantities that appear in the lemma.

5.2 Estimation of the rank of Uσ

We give in this section an upper bound for the rank of the linear maps (Uσ)σ. As the matrices Uσ
and Uσ have always the same rank, we will only focus on the embeddings σ : K ↪→ C extending
σ0. To do so we will change our basis wσ to a basis that will be adapted to the subgroup H.
The following lemma ensures that this change of basis will not change the rank of Uσ.

Lemma 5.5. Let V be a C-vector space and W be a vector subspace of V of dimension g. Let
w1 := (w1,1, . . . , w1,g), w2 := (w2,1, . . . , w2,g) be two bases of W such that

SpanC(w1,1, . . . , w1,g−1) = SpanC(w2,1, . . . , w2,g−1). (5.2)

Let us denote by O(V ) the C-vector space of holomorphic functions on V , and let T be the number
of g-tuples τ such that |τ | ⩽ T0 and τg ⩽ T2. Then for any x ∈ V and integers T0, T2, the kernel
of the linear maps ∣∣∣∣∣∣

O(V ) −→ CT

f 7−→
(
1
τ !D

τ
wif(x)

)
|τ |⩽T0
τg⩽T2

for i ∈ {1, 2} are the same. Moreover, if T2 = T0, then this is true even without the assumption
(5.2).

Proof. We begin by computing the derivatives of a holomorphic function f : V → C along w2 in

terms of the ones along w1. For i between 1 and g write w2,i =
g∑
j=1

ai,jw1,j with ai,j ∈ C, and let

h1, . . . hg ∈ C. From the definition of the Taylor coefficients of f we have for x ∈ V ,

f

(
x+

g∑
i=1

hiw2,i

)
=
∑
τ∈Ng

1

τ !
Dτ

w2
f(x)hτ11 · · ·h

τg
g =

∑
τ ′∈Ng

1

τ ′!
Dτ ′

w1
f(x)

g∏
j=1

(
g∑
i=1

ai,jhi

)τ ′j
.
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From the multinomial formula we have(
g∑
i=1

ai,jhi

)τ ′j
=

∑
τ1,j+···+τg,j=τ ′j

τ ′j !

τ1,j ! · · · τg,j !
(a1,jh1)

τ1,j · · · (ag,jhg)τg,j .

Identifying the coefficient of hτ11 · · ·h
τg
g , we finally get

1

τ !
Dτ

w2
f(x) =

∑
(τi,j)1⩽i,j⩽g

τi,1+···+τi,g=τi
for all 1⩽i⩽g

 ∏
1⩽i,j⩽g

a
τi,j
i,j

τi,j !

Dτ ′
w1
f(x), (5.3)

where the components of τ ′ ∈ Ng are τ ′j :=
g∑
i=1

τi,j .

We now prove the result. From the symmetry of the setup, it is enough to prove that if
1
τ ′!D

τ ′
w1
f(x) = 0 for all τ ′ ∈ Ng such that |τ ′| ⩽ T0 and τ ′g ⩽ T2, then this is also true for the

1
τ ′!D

τ ′
w2
f(x)’s. Assume that 1

τ ′!D
τ ′
w1
f(x) = 0 for all τ ′ ∈ Ng such that |τ ′| ⩽ T0 and τ ′g ⩽ T2, and

let τ ∈ Ng be such that |τ | ⩽ T0 and τg ⩽ T2. Let us prove that all the terms in the sum of (5.3)
vanish. Let (τi,j)1⩽i,j⩽g be such that τi,1 + · · ·+ τi,g = τi for all 1 ⩽ i ⩽ g, and let τ ′ ∈ Ng with

components τ ′j =
g∑
i=1

τi,j .

If T2 = T0, then all the derivatives of f along w1 of order less or equal to T0 vanish. Therefore, ∏
1⩽i,j⩽g

a
τi,j
i,j

τi,j !

Dτ ′
w1
f(x) = 0

and we are done. In the general case, under the assumption (5.2) we have ai,g = 0 for all i < g.

Thus, either
∏

1⩽i,j⩽g

a
τi,j
i,j

τi,j !
= 0, or τi,g = 0 for all i < g. In this second case, we have

τ ′g = τ1,g + · · ·+ τg,g = τg,g ⩽ τg ⩽ T2.

Therefore, τ ′ satisfies |τ ′| ⩽ T0 and τ ′g ⩽ T2 and Dτ ′
w1
f(x) = 0. In all cases we again have( ∏

1⩽i,j⩽g

a
τi,j
i,j

τi,j !

)
Dτ ′

w1
f(x) = 0. ■

Let σ : K ↪→ C extending σ0. We outline the strategy we use to estimate the rank of Uσ. It
mimics the method of [BG19, §3.5] adapted in our more general context. We construct a filtration
(Fℓ)ℓ⩾−1 of H0(Gσ,M(D0, D1)σ) adapted to our distinguished subgroup H of Gk defined before
definition 4.13. This filtration will be such that

F−1 = H0(Gσ,M(D0, D1)σ) and FT0 = ker(Uσ).

Using the rank-nullity theorem, we get

rk(Uσ) = dim(F−1)− dim(FT0) =

T0∑
ℓ=0

(dim(Fℓ−1)− dim(Fℓ)) .
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An estimation of the dimension of the quotients Fℓ−1/Fℓ will lead to an estimation of rk(Uσ).
Consider a basis w of Wσ such that the first g− cW (H) = dim(Wk ∩ tH) elements of w form

a basis of tHσ ∩Wσ. For any ℓ ⩾ −1, let Xℓ be the set of τ ∈ Ng such that |τ | ⩽ ℓ, τg ⩽ T2, and
τ1 = · · · = τg−cW (H) = 0. We define the vector subspace Fℓ of H0(Gσ,M(D0, D1)σ) by

Fℓ :=

{
s ∈ H0(Gσ,M(D0, D1)σ),∀|m| ⩽ S0,∀ξ ∈ tHσ ,∀τ ∈ Xℓ,

1

τ !
Dτ

ws
⋆(mu+ ξ) = 0

}
.

Notice that the spaces (Fℓ)ℓ form a descending filtration of F−1 = H0(Gσ,M(D0, D1)σ). More-
over, we claim that FT0 lies in the kernel of Uσ. Indeed, if s ∈ FT0 , then 1

τ !D
τ
ws

⋆(mu+ ξ) = 0 for
all ξ ∈ tHσ and (m, τ) ∈ Υ such that τ ∈ XT0 . As the vectors (w1, . . . , wg−cW (H)) form a basis
of tHσ ∩Wσ, we get that 1

τ !D
τ
ws

⋆(mu) = 0 for all (m, τ) ∈ Υ. Finally, from the way the bases
wσ and w have been constructed lemma 5.5 applies and thus s ∈ ker(Uσ). From the rank-nullity
theorem we get

rk(Uσ) ⩽ h0(G,M(D0, D1))− dim(FT0) = dim(F−1)− dim(FT0) =

T0∑
ℓ=0

(dimFℓ−1 − dimFℓ) .

(5.4)
Our goal is now to give an upper-bound for the codimension of Fℓ in Fℓ−1. We begin by relaxing
the definition of Fℓ. Consider now α1, . . . , αh a system of representatives of

{mu, |m| ⩽ S0}+ tHσ +ΩAσ
tHσ +ΩAσ

.

As expGσ is a bijection between {mu,|m|⩽S0}+tHσ+ΩAσ
tHσ+ΩAσ

and Γp(S0)+H
H , we have h = #

(
Γp(S0)+H

H

)
.

Let us define a seemingly different filtration (Gℓ)ℓ⩾−1 of H0(Gσ,M(D0, D1)σ) by

Gℓ :=

{
s ∈ H0(Gσ,M(D0, D1)σ), ∀i ⩽ h, ∀ξ ∈ tHσ , ∀τ ∈ Xℓ,

1

τ !
Dτ

ws
⋆(αi + ξ) = 0

}
.

The following result tells us that it is in fact the same filtration as (Fℓ)ℓ.

Proposition 5.6. For all ℓ ⩾ −1, we have Fℓ = Gℓ.

Proof. Let s ∈ Fℓ. From (4.9), s corresponds to a function

s⋆ =
∑
j

ϑjPj

on tGσ , where Pj is a polynomial on tAσ/W0,σ of degree less or equal to D0 and ϑj is holomorphic
on tAσ . Let i be an integer between 1 and h, and let ξ ∈ tHσ . There is m ∈ Z, |m| ⩽ S0, ξ′ ∈ tHσ ,
and ω ∈ ΩAσ such that αi + ξ = mu+ ξ′ + ω. Write ξ′ := (ξ′0, ξ

′
A) ∈ tH0,σ × tAσ . Consider the

factor of automorphy a coming from the Appel–Humbert data of L⊗D1
σ (see theorem 3.18). As

the functions ϑj lies in the space Θ(a), we have

s⋆(αi + ξ) =
∑
j

ϑj(muA + ξ′A + ω)Pj(mu0 + ξ′0)

=
∑
j

a(ω,muA + ξ′A)ϑj(muA + ξ′A)Pj(mu0 + ξ′0)

= a(ω,muA + ξ′A)s
⋆(mu+ ξ′).
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Therefore, from Leibniz derivation formula we have for τ ∈ Xℓ,

1

τ !
Dτ

ws
⋆(αi + ξ) =

∑
τ1+τ2=τ

1

τ1!
Dτ1

wa(ω,muA + ξ′A)
1

τ2!
Dτ2

w s
⋆(mu+ ξ′)︸ ︷︷ ︸

=0 because s∈Fℓ

= 0,

the derivative Dτ1
wa(ω,muA+ ξ′A) being understood as the derivative of the holomorphic function

of tGσ sending (x0, xA) to a(ω, xA). Therefore, s lies in Gℓ.
Conversely, let s ∈ Gℓ and writes s⋆ =

∑
j
ϑjPj . For m ∈ Z, |m| ⩽ S0, and ξ ∈ tHσ , there are

i ∈ {1, . . . , h}, ξ ∈ tHσ , and ω ∈ ΩAσ such that mu + ξ = αi + ξ′ + ω, and we similarly have
s⋆(mu+ ξ) = a(ω, αi,A + ξ′A)s

⋆(αi + ξ′). For τ ∈ Xℓ, we deduce that

1

τ !
Dτ

ws
⋆(mu+ ξ) =

∑
τ1+τ2=τ

1

τ1!
Dτ1

wa(ω, αi,A + ξ′A)
1

τ2!
Dτ2

w s
⋆(αi + ξ′)︸ ︷︷ ︸

=0 because s∈Gℓ

= 0.

Therefore, s ∈ Fℓ. ■

We now work with the filtration (Gℓ)ℓ. First, let us impose some constraints on our represen-
tatives α1, . . . , αh. For any x ∈ tGσ , the orthogonal projection of x onto t⊥Hσ differs from x by an
element of tHσ . Therefore, it lies in the same class modulo tHσ +ΩAσ as x. Replacing the αi’s
by their orthogonal projection onto t⊥Hσ , we can assume they all lie in t⊥Hσ .

Let (χ,H) be the Appel–Humbert data for (A,L⊗D1) (see theorem 3.18). For ωB ∈ ΩBσ
(where B is the abelian part of H, see the discussion before lemma 4.9) and z ∈ tAσ , we have

a(ωB, αi,A + z) = χ(ωB) exp
(
πH(z, ωB) + πH(αi,A, ωB) +

π

2
H(ωB, ωB)

)
= χ(ωB) exp

(
πH(z, ωB) +

π

2
H(ωB, ωB)

)
= a(ωB, z).

Therefore, given a section s ∈ Gℓ, an integer i between 1 and h, a period ωB ∈ ΩBσ , and an
element ξ := (ξ0, ξB) ∈ tH,σ = tH0,σ × tBσ , we have

s⋆(αi + ξ + ωB) = a(ωB, αi,A + ξB)s
⋆(αi + ξ)

= a(ωB, ξB)s
⋆(αi + ξ).

Thus, for τ ∈ Xℓ the map

ϑB :

{
tBσ −→ C
ξB 7−→ 1

τ !D
τ
ws

⋆(αi + ξ0 + ξB)
,

satisfies ϑB(ξB + ωB) = a(ωB, ξB)ϑB(ξB) and comes from a section of (Bσ, L⊗D1
σ ).

Proposition 5.7. For any ℓ ⩾ 0, we have

dim(Gℓ−1)− dim(Gℓ) ⩽ #

(
Γp(S0) +H

H

)(
t′ +D0

t′

)
h0(B,L⊗D1)#Xℓ.
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Proof. Let ξ0,1, . . . , ξ0,N be points of tH0,σ , with N :=
(
t′+D0

t′

)
such that the map∣∣∣∣∣ H0 (H0,σ,O(D0)) −→ CN

P 7−→ (P (ξ0,i))i⩽N
,

is an isomorphism of C-vector spaces. This is possible as the vector space H0(H0,σ,O(D0))

corresponds to polynomials on tH0,σ of degree at most D0. Let us define a linear map

iℓ :

∣∣∣∣∣∣
Gℓ−1 −→ Θ(Bσ, L

⊗D1
σ )hN#Xℓ

s 7−→
(
ξB 7→ 1

τ !D
τ
ws

⋆(αi + ξ0,j + ξB)
)
1⩽i⩽h, τ∈Xℓ,

1⩽j⩽N

.

From the discussion above iℓ is well-defined and its kernel is exactly Gℓ. We therefore get an
injection Gℓ−1/Gℓ ↪→ Θ(Bσ, L

⊗D1
σ )hN#Xℓ and

dim(Gℓ−1)− dim(Gℓ) ⩽ dim
(
Θ(Bσ, L

⊗D1
σ )hN#Xℓ

)
= hN#Xℓ h

0(B,L⊗D1).

The result follows as h = #
(
Γp(S0)+H

H

)
and N =

(
t′+D0

t′

)
. ■

We can finally get a first upper-bound for the rank of Uσ. From (5.4) and proposition 5.6, it
follows that

rk(Uσ) ⩽
T0∑
ℓ=0

(dim(Gℓ−1)− dim(Gℓ))

⩽
T0∑
ℓ=0

#

(
Γp(S0) +H

H

)(
t′ +D0

t′

)
h0(B,L⊗D1)#Xℓ

⩽ #

(
Γp(S0) +H

H

)(
t′ +D0

t′

)
Dg′

1 h0(B,L)#
{
τ ∈ NcW (H), |τ | ⩽ T0, τcW (H) ⩽ T2

}

⩽ #

(
Γp(S0) +H

H

)(
t′ +D0

t′

)
Dg′

1 h0(B,L)

×
((

T0 + cW (H)

cW (H)

)
−
(
T0 − T2 + cW (H)− 1

cW (H)

))
.

The last line follows from lemma 3.38.

Proposition 5.8. For any embedding σ : K ↪→ C extending σ0 or σ0, we have

rk(Uσ)

h0(G,M(D0, D1))
⩽

2.03 · 22g−1

52g+t
.

Proof. From remark 5.2, we only need to consider the case σ | σ0. Taking back the upper-bound
we just got and using lemma 3.39, we deduce that

rk(Uσ)

h0(G,M(D0, D1))
⩽ #

(
Γp(S0) +H

H

) (t′+D0

t′

)
Dg′

1 h0(B,L)(
t+D0

t

)
Dg

1 h
0(A,L)

(T2 + 1)(T0 + 1)cW (H)−1.
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Because g!h0(A,L) = degL(A), we can rewrite the fraction in the middle using the definition
(4.5) of x(H), as(

t′+D0

t′

)
g!Dg′

1 degLB(
t+D0

t

)
g′!Dg

1 degLA
=

(g′+t′g′

)
D̃t′

0 D̃
g′

1 degL(B)(
g+t
g

)
D̃t

0D̃
g
1 degL(A)

× D̃t−t′
0

(g + t)!(t′ +D0)!

(g′ + t′)!(t+D0)!

(
D̃1

D1

)g−g′

=
(
x(H)D̃0

)t−t′ 2g

#
(
Γp(S1)+H

H

)
T̃
cW (H)
1

× (g + t)!(t′ +D0)!

(g′ + t′)!(t+D0)!

(
D̃1

D1

)g−g′
.

The fractions (g+t)!
(g′+t′)! and (t′+D0)!

(t+D0)!
are bounded by (g + t)g+t−(g′+t′) and 1

(1+D0)t−t
′ respectively.

As x(H)D̃0 ⩽ ⌊x(H)D̃0⌋+ 1 = 1 +D0, we get

(g + t)!(t′ +D0)!

(g′ + t′)!(t+D0)!
(x(H)D̃0)

t−t′ ⩽ (g + t)g+t−(g′+t′).

Finally, from proposition 4.14.3 we have D̃1 ⩽ D1 + 1 ⩽ D1

(
1 + 1

(2(g+t))2g+t+3

)
. Therefore,

rk(Uσ)

h0(G,M(D0, D1))
⩽

#
(
Γp(S0)+H

H

)
#
(
Γp(S1)+H

H

) T2 + 1

T̃1

(
T0 + 1

T̃1

)cW (H)−1

× 2g(g + t)g+t−(g′+t′)

(
1 +

1

(2(g + t))2g+t+3

)g−g′
.

From the definition (4.7) of T0 the fraction T0+1

T̃1
is less than 2(g + t). Because g − g′ and t− t′

are positive by corollary 4.10, and cW ⩽ g, we are left with

rk(Uσ)

h0(G,M(D0, D1))
⩽

#
(
Γp(S0)+H

H

)
#
(
Γp(S1)+H

H

) T2 + 1

T̃1
× 22g−1(g + t)2g+t−1

(
1 +

1

(2(g + t))2g+t+3

)g
︸ ︷︷ ︸

⩽1+(1/4)6⩽1.001

⩽
#
(
Γp(S0)+H

H

)
#
(
Γp(S1)+H

H

) T2 + 1

T̃1
× 22g−1(g + t)2g+t−1 · 1.001.

To conclude, from the values (4.3) and (4.7), we have 2S̃1 + 1 ⩾ 106 and therefore 2S+1
2S1+1 ⩽

C0a
0.999C0C1a

⩽ 1.01
C1

. We deduce that

#
(
Γp(S0)+H

H

)
#
(
Γp(S1)+H

H

) T2 + 1

T̃1
⩽


2S+1
2S1+1

2(g+t)T1

T̃1
⩽ 2.02(g+t)

C1
in the non-periodic case;(⌊

T̃1
C1

⌋
+ 1
)

1

T̃1
⩽ 2

C1
in the periodic case,

and using the value C1 = (5(g + t))2g+t we finally get

rk(Uσ)

h0(G,M(D0, D1))
⩽

2.03 · 22g−1

52g+t
.

■
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5.3 Estimation of the norm of Uσ

In this section we give a bound for the norm of Uσ. As in the previous section, for an embedding
σ dividing σ0, the norms of Uσ and Uσ are the same. We will therefore only consider the case
σ | σ0. We begin by a general lemma that we will use extensively throughout the rest of this
part of the thesis. It applies with no assumption on the embedding.

Lemma 5.9. Let K ′/k be a finite extension of k and let σ : K ′ ↪→ C be any embedding of
K ′. Consider a basis w := (w1, . . . , wg) of Wσ such that all the wi are unitary. Let s ∈
H0(Gσ,M(D0, D1)σ), let (x0, xA) ∈ tGσ , and let τ ∈ Ng. For any r > 0, we have∣∣∣∣ 1τ !Dτ

ws
⋆(x0, xA)

∣∣∣∣ exp
(
−π

2D1∥xA∥2σ
)

(1 + ∥x0∥2σ)
D0/2

⩽
∥s∥∞,σ

r|τ |
exp

(π
2
D1r(2g∥xA∥σ + rg2)

)
×
(
1 + rg + r2g2

)D0/2 .

Proof. By Cauchy’s inequality, we have for any r > 0,∣∣∣∣ 1τ !Dτ
ws

⋆(x0, xA)

∣∣∣∣ ⩽ 1

r|τ |
sup

(zi)1⩽i⩽g∈Cg
|zi|=r

∣∣∣∣∣s⋆
(
(x0, xA) +

g∑
i=1

ziwi

)∣∣∣∣∣ .
Furthermore, applying (4.10), we get∣∣∣∣ 1τ !Dτ

ws
⋆(x0, xA)

∣∣∣∣ ⩽ ∥s∥∞,σ

r|τ |
sup

(zi)1⩽i⩽g∈Cg
|zi|=r

exp

π
2
D1

∥∥∥∥∥xA +

g∑
i=1

ziwi,A

∥∥∥∥∥
2

σ



×

1 +

∥∥∥∥∥x0 +
g∑
i=1

ziwi,0

∥∥∥∥∥
2

σ

D0/2

.

The wi’s are all of norm 1 and therefore ∥wi,A∥σ, ∥wi,0∥σ ⩽ 1. Using the triangle inequality, we
have ∥∥∥∥∥xA +

g∑
i=1

ziwi,A

∥∥∥∥∥
2

σ

⩽ (∥xA∥σ + gr)2 ⩽ ∥xA∥2σ + r(2g∥xA∥σ + rg2).

Similarly, and using 2∥x0∥σ ⩽ 1 + ∥x0∥2σ, we get

1 +

∥∥∥∥∥x0 +
g∑
i=1

ziwi,0

∥∥∥∥∥
2

σ

⩽ 1 + ∥x0∥2σ + 2rg∥x0∥σ + r2g2 ⩽
(
1 + ∥x0∥2σ

) (
1 + rg + r2g2

)
.

This gives the result. ■

Corollary 5.10. With the same notations as lemma 5.9, for T ⩾ |τ |, we have∣∣∣∣ 1τ !Dτ
ws

⋆(x0, xA)

∣∣∣∣ exp
(
−π

2D1∥xA∥2σ
)

(1 + ∥x0∥2σ)
D0/2

⩽ ∥s∥∞,σe
T max

(
1,

2πD1g∥xA∥σ +D0g

2T

+

√
πD1g2 +D0g2

2T

)T
.
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Proof. Bounding (1 + rg + r2g2)D0/2 by exp
(
D0
2 (rg + r2g2)

)
, lemma 5.9 gives∣∣∣∣ 1τ !Dτ

ws
⋆(x0, xA)

∣∣∣∣ exp
(
−π

2D1∥xA∥2σ
)

(1 + ∥x0∥2σ)
D0/2

⩽
∥s∥∞,σ

r|τ |
exp

(
ar + br2

)
,

with a = πD1g∥xA∥σ + D0g
2 , and b = πD1g2+D0g2

2 . Set r := 2T
a+

√
a2+4bT

. It satisfies ar + br2 = T .
Therefore,

1

r|τ |
ear+br

2
= eT

(
a+
√
a2 + 4bT

2T

)|τ |

⩽ eT max

(
1,
a

T
+

√
b

T

)T
.

In the last inequality we have bounded
√
x+ y by

√
x+
√
y. ■

We will use corollary 5.10 in several cases during the proofs of our results. The most annoying
term to bound is the one in the max function. The following result gives an upper-bound in the
cases we will need.

Lemma 5.11. For (S′, T ′) ∈ {(S0, T0), ((g + t)S1, (g + t)T1), (E((g + t)S1 + 1), (g + t)T1)}, we
have

2πgD1S
′∥uA∥σ +D0g

2T ′ +

√
πD1g2 +D0g2

2T ′ ⩽

√
1 +

(2S̃ + 1) logE

C0C1
.

Proof. Recall that we have T0 = 2(g + t)T1 − 1, and S0 ⩽ (g + t)S1 from the definition (4.7).
Therefore, in every case we have T ′ ⩾ (g+t)T1 ⩾

g+t
2 T̃1 and S′ ⩽ E((g+t)S1+1) ⩽ ES̃1(g+t+1).

Therefore, it is enough to bound

2πgD̃1(g + t+ 1)ES̃1∥uA∥σ
(g + t)T̃1

+
gD̃0

(g + t)T̃1
+

√
πD̃1g2 + D̃0g2

(g + t)T̃1
.

Let us begin with the first fraction. From proposition 4.14.2, we have D̃1 ⩽ T̃1
C0C1

and

D̃1E
2S̃2

1∥uA∥2σ ⩽ T̃1(2S̃+1) logE
C0

. Therefore,

2πgD̃1(g + t+ 1)ES̃1∥uA∥σ
(g + t)T̃1

⩽ 2πg

(
1 +

1

g + t

)√
D̃1E2S̃2

1∥uA∥2σ
T̃1

√
D̃1

T̃1

⩽
3πg√
C0︸ ︷︷ ︸

⩽1/
√
2

√
(2S̃ + 1) logE

C0C1

⩽

√
(2S̃ + 1) logE

2C0C1
.

On the other hand, we have D̃0 ⩽
T̃1

C0C1
and thus

gD̃0

(g + t)T̃1
+

√
πD̃1g2 + D̃0g2

(g + t)T̃1
⩽

1

C0C1
+

√
(π + 1)g

C0C1
⩽

1√
2
.

Using the inequality a+ b ⩽
√
2(a2 + b2) finally gives the result. ■
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Let us use corollary 5.10 and lemma 5.9 to estimate the norm of Uσ. First recall a simple
lemma on norms of linear maps.

Lemma 5.12. Let (E, ∥ · ∥) be a Hermitian vector space and let U : E → Cn be a linear map.
We have

∥U∥ ⩽
√
n sup

1⩽i⩽n
s∈E\{0}

|(Us)i|
∥s∥

,

where (Us)i denotes the i-th component of Us in Cn.

Proof. Let s ∈ E. We have

∥Us∥22 =
n∑
i=1

|(Us)i|2 ⩽ n sup
1⩽i⩽n

|(Us)i|2.

The result then follows directly from the definition of the norm of ∥U∥. ■

Let σ : K ↪→ C extending σ0. Applying lemma 5.12, the norm of Uσ is therefore bounded by

√
#Υ sup

(m,τ)∈Υ
s ̸=0

∣∣∣∣∣ 1

τ !∥s∥2,σ
Dτ

wσs
⋆(mu)

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ .
The following bounds the supremum

Proposition 5.13. We have

sup
(m,τ)∈Υ
s ̸=0

∣∣∣∣∣ 1

τ !∥s∥2,σ
Dτ

wσs
⋆(mu)

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 2.01(g + t)

)

×max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

Proof. Let us write C the quantity we want to bound. We first apply corollary 5.10 with T = T0:

C ⩽ sup
m∈Z,|m|⩽S0

s ̸=0

∥s∥∞,σ

∥s∥2,σ
eT0 max

1,
2πD1g∥muA∥σ +D0g

2T0
+

√
πD1g2 +D0g2

2T0

T0

⩽

(
sup
s ̸=0

∥s∥∞,σ

∥s∥2,σ

)
eT0 max

1,
2πD1gS0∥uA∥σ +D0g

2T0
+

√
πD1g2 +D0g2

2T0

T0

.

Lemma 5.11 gives a bound for the max, and the inequalities log(1 + x) ⩽ x, and 1 ⩽ (2S̃+1) logE
C0
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from proposition 4.14.4 give

eT0 max

(
1,

2πD1gS0∥uA∥σ +D0g

2T0
+

√
πD1g2 +D0g2

2T0

)T0

⩽ exp

(
T0

(
1 +

1

2
log

(
1 +

(2S̃ + 1) logE

C0C1

)))

⩽ exp

(
2(g + t)T̃1

(
1 +

(2S̃ + 1) logE

2C0C1

))

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 2(g + t)

(
1 +

1

2C1

))
.

On the other hand, lemma 4.18 allows us to bound the term sup
s ̸=0

∥s∥∞,σ

∥s∥2,σ . We deduce with the

value (4.2) of C1 that

C ⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
2(g + t)

C1
+ 2(g + t) +

1

DC1

)
︸ ︷︷ ︸

⩽2.01(g+t)

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

■

To conclude this section, we have to bound the remaining term
√
#Υ.

Proposition 5.14. We have
√
#Υ ⩽ exp

(
T̃1(2S̃ + 1) logE

8C0

)
.

Proof. From lemma 3.38 and lemma 3.39, we have

#Υ = (2S0 + 1)

((
T0 + g

g

)
−
(
T0 − T2 + g − 1

g

))
⩽ (2S0 + 1)(T2 + 1)(T0 + 1)g−1.

We check that in both the periodic and the non-periodic case, the right-hand side is bounded by
(2(g + t))gT̃ g1 (2S̃ + 1) logE. From the inequality (2S̃ + 1) logE ⩾ C0 of proposition 4.14.4, we
then have

#Υ ⩽ (2(g + t))gT̃ g1 (2S̃ + 1) logE

⩽
1

(g + 1)!

(
T̃1(2S̃ + 1) logE

4C0

)g+1

× (2(g + t))g(g + 1)!4g+1C0

T̃1

⩽ exp

(
T̃1(2S̃ + 1) logE

4C0

)
× 23g+2(g + t)g(g + 1)gC0

T̃1
.

From the lower bound of proposition 4.14.1 and the value of C0, we finally bound the fraction:

23g+2(g + t)g(g + 1)gC0

T̃1
⩽

23g+253(g + t)2g+3

(2(g + t))4g+2t+6
⩽ 1.

■
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Combining proposition 5.13 and proposition 5.14, we get

Proposition 5.15. For any σ : K ↪→ C extending σ0 or σ0, we have

∥Uσ∥ ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 2.1(g + t)

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

5.4 Estimation of the slopes

We bound here the term 1
2 log rkE − µ̂(E) that appear in lemma 5.4.

Proposition 5.16. We have

1

2
log h0(G,M(D0, D1))− µ̂

(
H0(E ,M(D0, D1))

)
=

(
1

2
− D0

t+ 1

)(
hF (A) +

1

2
log h0(A,L)

)
+
g

4
log(2π2D1)−

1

2
log γt,D0 +

D0h(W0)

t+ 1
.

In particular,

1

2
log h0(G,M(D0, D1))− µ̂

(
H0(G,M(D0, D1))

)
⩽
T̃1(2S̃ + 1) logE

DC0
.

Proof. Using theorem 3.26.4, proposition 3.33, and the fact that normalised Arakelov slope turns
tensor products into sums (see proposition 3.5), we have

µ̂
(
H0(G,M(D0, D1))

)
= −1

2
hF (A)+

1

4
log h0(A,L)− g

4
log

(
2π2

D1

)
+

1

2
log

(
t+D0

t

)
−D0

d̂egn(tA)− d̂egn(W0)

t+ 1
+

1

2
log γt,D0 .

Moreover,

log h0(G,M(D0, D1)) = log

(
t+D0

t

)
+ g logD1 + log h0(A,L),

and from proposition 3.27

d̂egn
(
tA
)
= −

(
hF (A) +

1

2
log h0(A,L)

)
.

Combining these identities, we get

1

2
log h0(G,M(D0, D1))− µ̂

(
H0(G,M(D0, D1))

)
=

(
1

2
− D0

t+ 1

)(
hF (A) +

1

2
log h0(A,L)

)
+
g

4
log(2π2D1)−

1

2
log γt,D0 +

D0h(W0)

t+ 1
.

This gives the first part of the proposition. We then have from proposition 4.14.2, D1 ⩽
T̃1

C0C1
,

D0h(W0) ⩽
T̃1(2S̃+1) logE

C0D
, and γt,D0 ⩾ 1. Because 1 ⩽ (2S̃+1) logE

DC0
from proposition 4.14.4, we
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have

g

4
log(2π2D1)−

1

2
log γt,D0 −

D0 d̂egn(W0)

t+ 1
⩽
π2gT̃1
2C0C1

+
T̃1(2S̃ + 1) logE

(t+ 1)DC0

⩽
T̃1(2S̃ + 1) logE

DC0

( 1

t+ 1
+

π2g

2C0C1︸ ︷︷ ︸
⩽3/4

)
.

Next, we use propositions 4.14.3 and 4.14.2 to get

− T̃1
C0C1(t+ 1)

⩽
1

2
− D0

t+ 1
⩽ 0.

On the other hand, using Bost’s bound of proposition 3.24, we have

hF (A) +
1

2
log h0(A,L) ⩾ −g

2
log(2π2).

Therefore, (
1

2
− D0

t+ 1

)(
hF (A) +

1

2
log h0(A,L)

)
⩽

g log(2π2)T̃1
2(t+ 1)C0C1

⩽
T̃1(2S̃ + 1) logE

DC0C1
× g log(2π2)

2(t+ 1)C0

⩽
T̃1(2S̃ + 1) logE

DC0C1
.

Combining this with the other upper-bound, we finally get

1

2
log h0(G,M(D0, D1))−µ̂

(
H0(G,M(D0, D1))

)
⩽
T̃1(2S̃ + 1) logE

DC0C1
+

3T̃1(2S̃ + 1) logE

4DC0

⩽
T̃1(2S̃ + 1) logE

DC0
.

■

5.5 Construction of the auxiliary section

We are now ready to apply the lemma 5.4.

Proposition 5.17. Let α ⩾ 1 be such that logα = T̃1(2S̃ + 1) logE × 3(g + t)3. There exists a
section s ∈ H0(G,M(D0, D1))⊗K, s ̸= 0 such that

hα(s) ⩽ 1.6× T̃1(2S̃ + 1) logE

D
+

g

2D
log+

1

ρ(Aσ0 , L
⊗D1
σ0 )

.
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Proof. We apply lemma 5.4 to E = H0(G,M(D0, D1)), F = OΥ
K , S = {σ : K ↪→ C, σ | σ0, σ0},

and aσ = αUσ. There exists a non-zero section s ∈ H0(G,M(D0, D1))⊗K such that

hα(s) ⩽
[kσ0 : R]
[K : Q]

∑
σ|σ0

rk(Uσ)

h0(G,M(D0, D1))

(
log+ ∥Uσ∥+ logα+ log

√
2
)

+
1

2
log h0(G,M(D0, D1))− µ̂

(
H0(G,M(D0, D1))

)
.

We have [kσ0 : R] ⩽ 2. Combining propositions 5.8, 5.15 and 5.16, we get

hα(s) ⩽
T̃1(2S̃ + 1) logE

D

(
2 · 2.03 · 2

2g−11

52g+t

(
2.1(g + t)

C0
+ 3(g + t)3 + log

√
2

)
+

1

C0

)
+ 2 · 2.03 · 2

2g−1

52g+t
g

2D
log+

1

ρ(Aσ0 , L
⊗D1
σ0 )

.

To conclude, the term in the first pair of brackets is maximal at g = t = 1 and is smaller than
1.6, and we also have 2.03·22g

52g+t
⩽ 2.03 · 4

53
⩽ 1. ■
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Chapter 6

Jets of sections

6.1 The jets hermitian vector bundle

Consider the section s constructed in the previous chapter. It is defined over some extension K ′

of K. The degree of this extension will again not matter as it will disappear in the computation
some height function. By lemma 4.16, there exists some pair (m, ℓ) ∈ Z×N with |m| ⩽ (g+ t)S1
and ℓ ⩽ (g + t)T1 such that the section s does not vanish at mp at order ℓ+ 1 along W . Let
(m, ℓ) be minimal for the lexicographic order on {−(g + t)S1, . . . , (g + t)S1} × {0, . . . , (g + t)T1}
and such that s does not vanish at mp at order ℓ+ 1. We consider the ℓ-th jet of s at the point
mp. We refer to [Gau06, §5.6. Choix de l’espace des jets et de sa filtration] for the algebraic
definition of the space JetℓW(mp) of jets of order ℓ at the point mp along W . Let us recall the
main properties of it.

Proposition 6.1 ([Gau06, §5.6]).

• The Hermitian adelic vector bundle JetℓW(mp) is isometrically isomorphic to the one given
by Symℓ(Wv)⊗ (mp)⋆M(D0, D1).

• We have a morphism s 7→ jetℓW s(mp) from the space of sections s ∈ H0(G,M(D0, D1))

that vanishes at order ℓ at the point mp along W , to JetℓW(mp).

• For any such section s defined over K ′, any Archimedean place σ of K ′, any basis w =

(w1, . . . ,wg) of Wσ, and any logarithm v = (v0, vA) of mp in tGσ , the norm of jetℓW s(mp)

is equal to

∥ jetℓW s(mp)∥σ =
exp

(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∥∥∥∥∥∥
∑

τ∈Ng ,|τ |=ℓ

1

τ !
Dτ

ws
⋆
σ(v)(w

v
1)
τ1 · · · (wv

g)
τg

∥∥∥∥∥∥
Symℓ(W v

σ)

.

(6.1)
This definition is independent of the basis w and the logarithm v.

The crucial point of the rest of the proof is the inequality of proposition 3.10. In our context
it states

h(jetℓW s(mp)) ⩾ −µ̂max

(
JetℓW(mp)

)
. (6.2)

The following result gives an upper-bound for the maximal slope of the jet bundle.

75
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Proposition 6.2. The maximal slope of JetℓW(mp) is bounded by

T̃1(2S̃ + 1) logE

DC0
× (g + t)4.

Proof. From proposition 3.11, we have

µ̂max

(
JetℓW(mp)

)
= µ̂max

(
Symℓ(Wv)

)
+ d̂egn

(
(mp)⋆M(D0, D1)

)
. (6.3)

From theorem 3.26.2, proposition 3.31, and remark 3.32, the Arakelov degree of (mp)⋆M(D0, D1)

is equal to

d̂egn

(
(mp)⋆M(D0, D1)

)
= D0hO(1)(mp0) +D1ĥL(mpA)

⩽ D0hO(1)(p0) +D0 log |m|+D1m
2ĥL(pA).

(6.4)

Moreover, by proposition 3.12 we have the upper-bound

µ̂max

(
Symℓ(Wv)

)
⩽ ℓ

(
µ̂max(Wv) + 2 log g

)
. (6.5)

To estimate the maximal slope of Wv, let iv be the dual application of the inclusion tA → W

defined by x 7→ (λ(x), x). By [Gau08, Lemme 6.3] we have

µ̂max

(
Wv
)
⩽ µ̂max

(
tvA
)
+ h(iv), (6.6)

where the height of iv is equal to h(iv) := 1
D

∑
v
[kv : Qv] log ∥iv∥v. By definition, we have

∥iv∥v = sup
φ∈W v

v\{0}
sup

x∈tAv\{0}

|φ(λ(x), x)|
∥φ∥v∥x∥v

⩽ sup
x∈tAv\{0}

∥(λ(x), x)∥v
∥x∥v

.

If v is Archimedean we have ∥(λ(x), x)∥v ⩽
√
2∥x∥v and thus ∥iv∥v ⩽

√
2. If v is non-Archimedean

we have ∥(λ(x), x)∥v ⩽ max(∥λ(x)∥v, ∥x∥v) ⩽ ∥x∥v and therefore ∥iv∥v ⩽ 1. We thus get

h(iv) ⩽
1

D

∑
v non-Arch.

[kv : Qv] log 1 +
1

D

∑
v Arch.

[kv : R] log
√
2 ⩽ log

√
2. (6.7)

Combining (6.3), (6.4), (6.5), (6.6), and (6.7), we get

µ̂max

(
JetℓW(mp)

)
⩽ ℓ

(
µ̂max

(
tvA
)
+ log

√
2 + 2 log g

)
+D0hO(1)(p0)+D0 log |m|+D1m

2ĥL(pA).

From proposition 3.28, we can bound the maximal slope of tvA by

µ̂max

(
tvA
)
⩽ (0.6g + 1)

(
hF (A) +

1

2
log h0(A,L)

)
+ g2 log(10g).

We have ℓ ⩽ (g + t)T̃1, and using proposition 4.14.4, 1, hF (A), and log h0(A,L) are bounded by
(2S̃+1) logE

DC0
. Therefore,

ℓ
(
µ̂max

(
tvA
)
+ log

√
2 + 2 log g

)
⩽
T̃1(2S̃ + 1) logE

DC0
(g + t)

(
3

2
(0.6g + 1) + g2 log(10g)

+ log
√
2 + 2 log g

)
.
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Dividing the term in parentheses by (g + t)3, we see that it is less than 0.64(g + t)3.
Finally, we have |m| ⩽ (g + t)S1. Therefore, from the definition (4.4) of D̃1 and D̃0, we have

D0(hO(1)(p0) + log |m|) ⩽ T̃1(2S̃+1) logE
DC0

(
1 + log(g+t)

C1

)
and D1m

2ĥL(pA) ⩽ (g + t)2 T̃1(2S̃+1) logE
DC0

.
Therefore,

D0hO(1)(p0) +D0 log |m|+D1m
2ĥL(pA) ⩽

T̃1(2S̃ + 1) logE

DC0

(
1 +

log(g + t)

C1
+ (g + t)2

)
︸ ︷︷ ︸

⩽1.26(g+t)2

.

Thus, the maximal slope of JetℓW(mp) is bounded by

T̃1(2S̃ + 1) logE

DC0

(
0.64(g + t)4 + 1.26(g + t)2

)
⩽
T̃1(2S̃ + 1) logE

DC0
× (g + t)4.

■

Now that we have bounded the maximal slope, we are going to estimate the height of the jet
of the section s. We split the computation in three distinct parts. We first bound the norm of
the jet with respect to the non-Archimedean places. Next we look at the norm of the jet at an
Archimedean place dividing neither σ0, nor σ0. Finally – and this will be the more tedious and
important part – we estimate the norm of the jet with respect to an Archimedean place dividing
σ0 or σ0.

6.2 Non-Archimedean estimates

For two integers ℓ and h, we define the integer

δℓ(h) := lcm
{
i1 · · · ih′ , 1 ⩽ h′ ⩽ h, i1, . . . , ih′ ⩾ 1, i1 + · · ·+ ih′ ⩽ ℓ

}
.

The following estimate has been obtained by Gaudron using Chudnovsky change of variables.

Proposition 6.3 ([Gau06, Proposition 5.10]). Let P be a finite place of K ′. We have

∥δℓ(D0) jet
ℓ
W s(mp)∥P ⩽ ∥s∥P = ∥s∥α,P.

At the end of the proof we will need an upper-bound for the (real) absolute value of δℓ(D0).
A theorem of Bruiltet gives us such a bound.

Proposition 6.4 ([Bru02, Proposition 1]). Let ℓ, h be two non-negative integers. We have

log δℓ(h) ⩽ ℓ log(4h).

Lemma 6.5. We have

log |δℓ(D0)| ⩽
T̃1(2S̃ + 1) logE

D
× 0.06(g + t).
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Proof. From proposition 4.14.7, we have logD0 ⩽ 7(g + t)3 (2S̃+1) logE
DC0

. Therefore, using proposi-
tion 6.4 we get

log |δℓ(D0)| ⩽ ℓ log(4D0)

⩽
T̃1(2S̃ + 1) logE

D
× (g + t)(log(4) + 7(g + t)3)

C0
.

Using the value C0 = (5(g + t))3, we can bound the constant:

(g + t) log(4) + 7(g + t)4

C0
= (g + t)

(
log(4)

(5(g + t))3
+

7

53

)
⩽ 0.06(g + t).

■

6.3 Archimedean estimates at the places σ ∤ σ0, σ0

We bound here the norm of jetℓW s(mp) corresponding to an Archimedean place σ of K ′ not
dividing σ0 nor σ0. Let σ : K ′ ↪→ C be an embedding dividing neither σ0, nor σ0. The basis
wσ of Wσ defined in section 5.1 is an orthonormal basis of Wσ. Let v := (v0, vA) ∈ tGσ be any
logarithm of mp. From the definition (6.1) of ∥ jetℓW s(mp)∥σ and because wσ is orthonormal,
we have

∥ jetℓW s(mp)∥σ =
exp

(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

√√√√ ∑
τ∈Ng ,|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(v)

∣∣∣∣2 τ1! · · · τg!ℓ!

⩽ sup
τ∈Ng ,|τ |=ℓ

exp
(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(v)

∣∣∣∣×
√(

g + ℓ− 1

g − 1

)
.

(6.8)

Note that the binomial coefficient comes from the upper-bound τ1!···τg !
ℓ! ⩽ 1, together with

lemma 3.38.1. Using lemma 3.39 and the lower bounds T̃1 ⩾ (2(g+ t))4g+2t+6 and 1 ⩽ (2S̃+1) logE
DC0

from proposition 4.14.1 and proposition 4.14.4, we have√(
g + ℓ− 1

g − 1

)
⩽ (ℓ+ 1)(g−1)/2 ⩽ ((g + t)T1 + 1)(g−1)/2

⩽

√√√√ 1

g!

(
T̃1
26

)g
× 23g(g + t+ 1)(g−1)/2

√
g!

T̃
1/2
1

⩽ eT̃1/2
7 ×

√
26g(g(g + t+ 1))g−1

(2(g + t))4g+2t+6

⩽ exp

(
T̃1(2S̃ + 1) logE

27DC0

)
.

(6.9)

We now treat the derivative part of (6.8). As we can choose any logarithm of mp in (6.8), we
take v := (v0, vA) of norm as small as possible. As ΩAσ is the kernel of expAσ , the norm of vA
satisfies

∥vA∥σ ⩽ r(Aσ, Lσ) := sup
x∈tAσ

d(x,ΩAσ).
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Using corollary 5.10 we get the following result.

Proposition 6.6. Let τ ∈ Ng be such that |τ | = ℓ. We have

exp
(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(v)

∣∣∣∣ ⩽ ∥s∥2,σ exp
(
T̃1(2S̃ + 1) logE

DC0
× 1.005(g + t)

)

×
(

2π

C0C1
r(Aσ, Lσ) + 1

)(g+t)T̃1

max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

Proof. We apply corollary 5.10 with w = wσ, (x0, xA) = v, and T = (g + t)T1, to get

exp
(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(v)

∣∣∣∣ ⩽ ∥s∥∞,σe
(g+t)T1 max

(
1,

2πD1g∥vA∥σ +D0g

2(g + t)T1

+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

.

The upper-bound 4.14.2 gives Di
T1

⩽ 2D̃i
T̃1

⩽ 2
C0C1

, for i = 0, 1, and leads to

exp
(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(v)

∣∣∣∣
⩽ ∥s∥∞,σe

(g+t)T1 max

(
1,

2πg∥vA∥σ + g

(g + t)C0C1
+

√
g2(π + 1)

(g + t)C0C1

)(g+t)T1

⩽ ∥s∥∞,σe
(g+t)T1 max

(
1,

2π∥vA∥σ
C0C1

+ 1

)(g+t)T1

.

We finally use lemma 4.18 to bound ∥s∥∞,σ in terms of ∥s∥2,σ and proposition 4.14.4 to get

exp
(
−π

2D1∥vA∥2σ
)

(1 + ∥v0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(vσ)

∣∣∣∣ ⩽ ∥s∥2,σ exp
(
T̃1(2S̃ + 1) logE

DC0C1
+ (g + t)T1

)

×
(

2π

C0C1
r(Aσ, Lσ) + 1

)(g+t)T̃1

max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2

⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

DC0

(
1

C1
+ g + t

))

×
(

2π

C0C1
r(Aσ, Lσ) + 1

)(g+t)T̃1

max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

Bounding 1
C1

by 0.005(g + t) gives the result. ■

As for an embedding σ ∤ σ0, or σ0, ∥s∥2,σ = ∥s∥α,σ, we deduce an upper-bound for the norm
the jet.
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Proposition 6.7. For σ : K ′ ↪→ C not dividing σ0 and σ0 we have

∥ jetℓW s(mp)∥σ ⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

DC0
× 1.01(g + t)

)

×
(

2π

C0C1
r(Aσ, Lσ) + 1

)(g+t)T̃1

max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2
.

6.4 Archimedean estimates at the places σ | σ0 or σ0

We now focus on bounding the Archimedean norm of the jet of s at the places above σ0 and
σ0. As before we only need to consider the case σ | σ0, the other one being exactly the same by
remark 5.2. In order for the distance of the point u to Wσ to appear, we shift our jet from the
point p to the point w := (λ(uA), uA) ∈Wσ.

6.4.1 Change of point

Proposition 6.8. Let σ : K ′ ↪→ C be a complex embedding of K ′ dividing σ0 or σ0. Let
w := (λ(uA), uA) ∈Wσ. Let (j, τ) ∈ Z×Ng, let T ⩾ |τ |, and assume |j|D0d(u,Wσ0)

√
2 ⩽ 1. We

have∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(ju)−

1

τ !
Dτ

wσs
⋆
σ(jw)

∣∣∣∣exp
(
−π

2D1∥juA∥2σ
)

(1 + ∥ju0∥2σ)D0/2
⩽ 3.8d(u,Wσ0)|j|D0∥s∥∞,σ

× eT max

(
1,

2πgD1∥juA∥σ +D0g

2T
+

√
πD1g2 +D0g2

2T

)T
.

Proof. If j = 0, there is nothing to prove. Therefore, assume j ̸= 0. Let us first compare the
distance between u and w to the distance from u to Wσ0 . Let w0 = (λ(x0), x0) ∈ Wσ0 be the
point of Wσ0 minimising the distance between u and a point of Wσ0 . We then have

∥u− w∥σ = ∥λ(uA)− u0∥σ ⩽ ∥λ(uA)− λ(x0)∥σ + ∥λ(x0)− u0∥σ
⩽ ∥uA − x0∥σ + ∥λ(x0)− u0∥σ
⩽
√
2d(u,Wσ0).

We define the holomorphic function

F :

∣∣∣∣∣ C −→ C
z 7−→ 1

τ !D
τ
wσs

⋆
σ

(
ju+ z w−u

∥w−u∥σ

) .

The function z 7→ F (0)−F (z)
z is holomorphic on C and from the maximum modulus principle we

deduce that for any real number X ⩾ |j|∥u− w∥σ,∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(ju)−

1

τ !
Dτ

wσs
⋆
σ(jw)

∣∣∣∣ = |j|∥u− w∥σ ∣∣∣∣F (0)− F (j∥u− w∥σ)j∥u− w∥σ

∣∣∣∣
⩽
√
2|j|d(u,Wσ0) sup

|z|=X

∣∣∣∣F (0)− F (z)z

∣∣∣∣ .
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Using corollary 5.10 with w = wσ, (x0, xA) =
(
ju0 + z λ(uA)−u0

∥λ(uA)−u0∥σ , juA

)
, and T ⩾ |τ | to bound

|F (z)| for any z ∈ C, we get

|F (z)| =
∣∣∣∣ 1τ !Dτ

wσs
⋆
σ

(
ju0 + z

λ(uA)− u0
∥λ(uA)− u0∥σ

, juA

)∣∣∣∣
⩽ ∥s∥∞,σ exp

(π
2
D1∥juA∥2σ

)(
1 +

∥∥∥∥ju0 + z
λ(uA)− u0
∥λ(uA)− u0∥σ

∥∥∥∥2
σ

)D0/2

× eT max

(
1,

2πD1g∥juA∥σ +D0g

2T
+

√
πD1g2 +D0g2

2T

)T
.

By the triangle inequality, we have

1 +

∥∥∥∥ju0 + z
λ(uA)− u0
∥λ(uA)− u0∥σ

∥∥∥∥2
σ

⩽ 1 + ∥ju0∥2σ + 2∥ju0∥σ|z|+ |z|2 ⩽ (1 + ∥ju0∥2σ)(1 +X +X2).

To conclude, we just have to bound 1+(1+X+X2)D0/2

X for some X ⩾ |j|∥u− w∥σ. Let us choose
X = 1

D0
. It is indeed bigger than |j|∥u − w∥σ under the assumption d(u,Wσ0)|j|D0

√
2 ⩽ 1.

With this value of X we have

1 + (1 +X +X2)D0/2

X
= D0

(
1 +

(
1 +

1

D0
+

1

D2
0

)D0/2
)

= D0

(
1 + exp

(
D0

2
log

(
1 +

1

D0
+

1

D2
0

)))
⩽ D0

(
1 + exp

(
1

2
+

1

2D0

))
.

Using the lower bound D0 ⩾ (2(g + t))3 ⩾ 64 from proposition 4.14.3, we get the comparison
1+(1+X+X2)D0/2

X ⩽ 2.67D0. The result follows from the inequality 2.67
√
2 ⩽ 3.8. ■

Due to the hypothesis d(u,Wσ0)|j|D0

√
2 ⩽ 1 in the statement of proposition 6.8 we need to

make a further assumption in what follows. From now on we assume that d(u,Wσ0) is sufficiently
small, more precisely.

Hypothesis 6.9. Assume that d(u,Wσ0) ⩽
1√

2(g+t)D0S1
.

We will explicitly specify when we use this hypothesis in the following. We now specialise
the proposition 6.8 in the two main cases we will need it. First with τ ∈ Ng such that
|τ | = ℓ ⩾ (g + t)T1, j ∈ Z such that |j| ⩽ (g + t)S1, and T = (g + t)T1. Next with τ ∈ Ng such
that |τ | ⩽ T0, m ∈ Z such that |j| ⩽ S0, and T = T0.

Proposition 6.10. Let τ ∈ Ng be such that |τ | ⩽ (g + t)T1 and j ∈ Z such that |j| ⩽ (g + t)S1.
Under hypothesis 6.9 we have∣∣∣∣ 1τ !Dτ

wσs
⋆
σ(ju)−

1

τ !
Dτ

wσs
⋆
σ(jw)

∣∣∣∣ exp
(
−π

2D1∥juA∥2σ
)

(1 + ∥ju0∥2σ)
D0/2

⩽ ∥s∥2,σd(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE

C0
× 1.01(g + t)

)
.
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Proof. We apply proposition 6.8 with (j, τ) and T = (g + t)T1. Notice that from hypothesis 6.9,
the hypothesis of proposition 6.8 is indeed satisfied. First, from proposition 4.14.2 we have

3.8|jD0| ⩽
3.8T̃1(g + t)S1

C0C1
⩽

3.8T̃1(g + t)(2S̃1 + 1)

2C0C1

⩽
1

2

(
T̃1(2S̃ + 1) logE

C0C1

)2
3.8(g + t)C0C1

T̃1
.

Because x2

2 ⩽ ex for all real number x, and 3.8(g + t)C0C1 ⩽ T̃1 from proposition 4.14.1, we get

the inequality 3.8|jD0| ⩽ exp
(
T̃1(2S̃+1) logE

C0C1

)
.

Next, from lemma 4.18 and corollary 4.22 we have

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

C0C1

)
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1
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⊗D1
σ )

)g/2

⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

C0

(
1

C1
+

g

4T̃1

))
.

Finally from lemma 5.11 we have

2πgD1∥juA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1
⩽

√
1 +

(2S̃ + 1) logE

C0C1
,

and therefore

e(g+t)T1 max

(
1,

2πgD1∥juA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
g + t+

g + t

2C1

)
︸ ︷︷ ︸

⩽1.001(g+t)

)
.

Therefore,
∣∣ 1
τ !D

τ
wσs

⋆
σ(ju)− 1

τ !D
τ
wσs

⋆
σ(jw)

∣∣ exp(−π
2
D1∥juA∥2σ)

(1+∥ju0∥2σ)
D0/2

is bounded by

∥s∥2,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE
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1
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︸ ︷︷ ︸

⩽1.01(g+t)

)
.

■

Proposition 6.11. Let τ ∈ Ng be such that |τ | ⩽ T0 and j ∈ Z such that |j| ⩽ S0. Under
hypothesis 6.9 we have∣∣∣∣ 1τ !Dτ

wσs
⋆
σ(ju)−

1

τ !
Dτ

wσs
⋆
σ(jw)

∣∣∣∣ exp
(
−π

2D1∥juA∥2σ
)

(1 + ∥ju0∥2σ)
D0/2

⩽ ∥s∥2,σd(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE
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× 2.01(g + t)

)
.
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Proof. The proof is exactly the same as the previous one. Because S0 ⩽ (g+t)S1, the upper-bound
for 3.8|j|D0 is the same as the previous one, as well as the bound for ∥s∥∞,σ:

3.8|j|D0 ⩽ exp

(
T̃1(2S̃ + 1) logE

C0C1

)
;

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

C0

(
1

C1
+

g

4T̃1

))
.

The only inequality that changes is the last one. From lemma 5.11, we have

2πgD1∥juA∥σ +D0g

2T0
+

√
πD1g2 +D0g2

2T0
⩽

√
1 +

(2S̃ + 1) logE

C0C1
,

and therefore from the value T0 = 2(g + t)T1 − 1 we have

eT0 max

1,
2πgD1∥juA∥σ +D0g

2T0
+

√
πD1g2 +D0g2

2T0

T0

⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
2(g + t) +

2(g + t)

2C1

)
︸ ︷︷ ︸

⩽2.001(g+t)

)
.

We can thus bound
∣∣ 1
τ !D

τ
wσs

⋆
σ(ju)− 1

τ !D
τ
wσs

⋆
σ(jw)

∣∣ exp(−π
2
D1∥juA∥2σ)

(1+∥ju0∥2σ)
D0/2

by

∥s∥2,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0

(
1

C1
+

1

C1
+

g

4T̃1
+ 2.001(g + t)

)
︸ ︷︷ ︸

⩽2.01(g+t)

)
.

■

6.4.2 The interpolation lemma

We are now down to bound the derivatives of s⋆σ at the point mw. In order to do this appropriately
(and this is in fact the heart of the Baker’s method), we use an interpolation lemma. By that we
mean bounding the value of a holomorphic function at a point in terms of the supremum of the
function on a disc containing the point, and of the derivatives of the function at some chosen
points.

For a holomorphic function f on an open subset of C containing a closed disc D(0, R), we
denote by ∥f∥R the sup norm of f on D(0, R). The interpolation lemma we will use to estimate
the norm of jetℓW s(mp) at the Archimedean places dividing σ0 is the following one, coming from
[BG19].

Proposition 6.12 ([BG19, Proposition 2.1]). Let S be a non-negative integer, let r, R be two
real numbers such that R > r ⩾ S + 1

2 , and let ε ∈
]
0, 12
[
. Let f be a holomorphic function on an
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open subset of C containing the closed disc D(0, R). Then, for every non-negative integer T , and
every real number a > 0, we have

∥f∥r ⩽
R

R− r

( r
R

)T+1

R2
(
r2 + (S+1)(2S+1)

6

)
R4 + r2 (S+1)(2S+1)

6

S(T+1)

× ∥f∥R

+
1

2ε

 ∑
|j|⩽S
0⩽h⩽T

|f (h)(j)|
2hh!

( r

a cos(πε)

)T+1

max
(
1,
r

a

)2S(T+1)
(sh(πa))T+1 .

In order to make this proposition more usable for our purposes, we optimise the values of ε
and a in the following lemma.

Lemma 6.13. Let T be a positive integer and let S be a non-negative integer. We have

inf
0<ε< 1

2
a>0

1

2ε

(
r sh(πa)

a cos(πε)

)T+1

max
(
1,
r

a

)2S(T+1)
⩽ exp

(
(T + 1)(2S + 1) log

(
rπe

2S + 1

))
.

Proof. Let us take ε = 1
π
√
T+1

. We have 1
2ε cos(πε)T+1 = π

√
T+1

2 cos
(

1√
T+1

)T+1 . Because cosx ⩾ 1− x2

2

for x ∈ [0, π2 ], we have for T ⩾ 1,

cos

(
1√
T + 1

)T+1

⩾

(
1− 1

2(T + 1)

)T+1

⩾

(
1− 1

4

)2

=
9

16
.

Therefore, we get
π
√
T + 1

2 cos
(

1√
T+1

)T+1
⩽

8π

9

√
T + 1 ⩽ 2.8

√
T + 1. (6.10)

On the other hand, let a = 2S+1
π . From the assumption r ⩾ S + 1

2 , we have r > a. Therefore,
since sh(x) ⩽ ex

2 , we get

(r
a

)T+1
max

(
1,
r

a

)2S(T+1)
(sh(πa))T+1 = sh(2S + 1)T+1

(
rπ

2S + 1

)(T+1)(2S+1)

⩽
1
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exp

(
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(
1 + log

(
rπ
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⩽

1

2T+1
exp

(
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(
rπe
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(6.11)

Combining (6.10) and (6.11), we get

1

2ε

(
r sh(πa)

a cos(πε)

)T+1

max
(
1,
r

a

)2S(T+1)
⩽

2.8
√
T + 1

2T+1
exp

(
(T + 1)(2S + 1) log

(
rπe

2S + 1

))
,

and because T ⩾ 1, we have 2.8
√
T+1

2T+1 ⩽ 1. This finishes the proof. ■
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We can now simplify a bit proposition 6.12 using lemma 6.13.

Lemma 6.14. Let S be a non-negative integer, let r be a real number such that r ⩾ S + 1
2 , and

let E > e be a real number. Let f be an holomorphic function on an open subset of C containing
the closed disc D(0, R). Then, for every positive integer T , we have

∥f∥r ⩽
2

E(T+1)(2S+1)

(
1 +

(S + 1)(2S + 1)

6r2

)S(T+1)

× ∥f∥Er

+
∑
|j|⩽S
0⩽h⩽T

|f (h)(j)|
2hh!

× exp

(
(T + 1)(2S + 1) log

(
rπe

2S + 1

))
.

Proof. Let us take R = Er in the statement of proposition 6.12. Using lemma 6.13 we are
reduced to prove the inequality

R

R− r

R2
(
r2 + (S+1)(2S+1)

6

)
R4 + r2 (S+1)(2S+1)

6

S(T+1)

⩽
2

E2S(T+1)

(
1 +

(S + 1)(2S + 1)

6r2

)S(T+1)

.

First, recall that we have E ⩾ e. Thus, R
R−r = E

E−1 ⩽ e
e−1 ⩽ 2. Next, bounding the denominator

R4 + r2 (S+1)(2S+1)
6 from below by R4 we get

R2
(
r2 + (S+1)(2S+1)

6

)
R4 + r2 (S+1)(2S+1)

6

⩽
r2 + (S+1)(2S+1)

6

E2r2
⩽

1

E2

(
1 +

(S + 1)(2S + 1)

6r2

)
.

■

We are going to use lemma 6.14 to bound the ℓ-th jet of s⋆σ at the point mw in two different
ways depending on if we are in the periodic or the non-periodic case (see definition 4.13). From
now on we split the proof according to these two cases.

6.4.3 The non-periodic case

We assume in this paragraph that we are in the non-periodic case. Recall that in this case we
have Υ = {(m, τ) ∈ Z× Ng, |m| ⩽ S0, |τ | ⩽ T0}.

First, if |m| ⩽ S0, then for any τ ∈ Ng such that |τ | = ℓ ⩽ (g+ t)T1 ⩽ T0, we have (m, τ) ∈ Υ.
Therefore, from the definition (5.1) we have

∥ jetℓW s(mp)∥σ =
exp

(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

 ∑
τ∈Ng ,|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(mu)

∣∣∣∣2 τ1! · · · τg!ℓ!

1/2

⩽ ∥Uσs∥

⩽
1

α
∥s∥α,σ.

(6.12)

In the end, this upper-bound will be smaller than the one we will obtain without the assumption
|m| ⩽ S0. We thus assume from now on that |m| > S0 and we fix τ ∈ Ng such that |τ | = ℓ. Our
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goal is to bound
∣∣ 1
τ !D

τ
wσs

⋆
σ(mw)

∣∣. Define the holomorphic function

f :

∣∣∣∣∣ C −→ C
z 7−→ 1

τ !D
τ
wσs

⋆
σ(zw)

.

We thus want to bound |f(m)| ⩽ ∥f∥(g+t)S1
. In order to do this we are going to apply lemma 6.14.

We will want to use the value of ∥s∥α,σ during the proof. Notice that it involves the derivatives
of s⋆σ at order up to T0 at the points ju for |j| ⩽ S0. This leads us naturally to the values
r = (g + t)S1, S = S0 and T = T0 − (g + t)T1 = (g + t)T1 − 1 in lemma 6.14 (the “−(g + t)T1”
comes from the fact that the definition of f already involve a derivative at order ℓ ⩽ (g + t)T1).
In this case, the interpolation lemma becomes

∥f∥(g+t)S1
⩽

2

E(g+t)(2S0+1)T1

(
1 +

(S0 + 1)(2S0 + 1)

6(g + t)2S2
1

)(g+t)S0T1

× ∥f∥E(g+t)S1

+
∑

|j|⩽S0

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

× exp

(
(g + t)T1(2S0 + 1) log

(
(g + t)S1πe

2S0 + 1

))
.

Let us first deal with the terms that are easy to bound. From the definition (4.3) of S0 and S1
we have S1 ⩾ C1S̃ and S0 = S ⩽ S̃. Therefore,(

1 +
(S0 + 1)(2S0 + 1)

6(g + t)2S2
1

)(g+t)S0T1

⩽

(
1 +

(S̃ + 1)(2S̃ + 1)

6(g + t)2C2
1 S̃

2

)(g+t)S̃T̃1

⩽

(
1 +

6

6(g + t)2C2
1

)(g+t)T̃1
2S̃+1

2

⩽ exp

(
T̃1(2S̃ + 1) logE × 1

2(g + t)C2
1︸ ︷︷ ︸

⩽10−6

)
.

(6.13)

Similarly we have

log

(
(g + t)S1πe

2S + 1

)
⩽ log (2πe(g + t)C1) . (6.14)

Finally, from proposition 4.14.1, we have T̃1 ⩾ 107. Writing T1 as T̃1 − ε with ε ∈ [0, 1[, we get

T1 = T̃1 − ε = T̃1

(
1− ε

T̃1

)
⩾ T̃1

(
1− 10−7

)
⩾ 0.999 T̃1.

Similarly, we have 2S̃+1 ⩾ C0 = (5(g+ t))3 ⩾ 103. Writing S as S̃− ε′ with ε′ ∈ [0, 1[ we deduce

2S + 1 = 2S̃ + 1− 2ε′ = (2S̃ + 1)

(
1− 2ε′

2S̃ + 1

)
⩾ (2S̃ + 1)

(
1− 2 · 10−3

)
= 0.998(2S̃ + 1).

This allows us to bound 2E−(g+t)T1(2S+1). Since 1 ⩽ (2S̃+1) logE
C0

from proposition 4.14.4, and
C0T̃1 ⩾ 1010, we have

2

E−(g+t)T1(2S+1)
⩽ exp

(
T̃1(2S̃ + 1) logE ×

(
−0.999 · 0.998(g + t) +

log 2

C0T̃1

))
⩽ exp

(
−0.996(g + t)T̃1(2S̃ + 1) logE

)
.

(6.15)
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Combining (6.13), (6.14), and (6.15), we get

∥f∥(g+t)S1
⩽ ∥f∥E(g+t)S1

exp
(
−0.99(g + t)T̃1(2S̃ + 1) logE

)
+

∑
|j|⩽S

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

exp
(
T̃1(2S̃ + 1) logE × (g + t) log(2πe(g + t)C1)

)
. (6.16)

We are essentially left with bounding ∥f∥E(g+t)S1
and

∑
|j|⩽S

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

. We first look at

∥f∥E(g+t)S1
.

Proposition 6.15. The sup norm of f on the disc D(0, E(g + t)S1) is bounded by

∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0
× 5

2
(g + t)2

)
.

Proof. We use corollary 5.10 with w = wσ, (x0, xA) = zw with z ∈ C such that |z| ⩽ E(g+ t)S1,
and T = (g + t)T1 to get

∥f∥E(g+t)S1
⩽ exp

(π
2
D1∥E(g + t)S1uA∥2σ

) (
1 + ∥E(g + t)S1λ(uA)∥2σ

)D0/2 ∥s∥∞,σ

× e(g+t)T1 max

(
1,

2πD1g∥E(g + t)S1uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

.

From the value (4.4) of D̃1, we have D1∥ES1uA∥2σ ⩽ T̃1(2S̃+1) logE
C0

and therefore

exp
(π
2
D1∥E(g + t)S1uA∥2σ

)
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× π

2
(g + t)2

)
. (6.17)

Moreover, from proposition 4.14.6 and proposition 4.14.2 we have(
1 + ∥E(g + t)S1λ(uA)∥2σ

)D0/2 ⩽ (g + t)D0
(
1 + ∥ES1λ(uA)∥2σ

)D0/2

⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
log(g + t)

C1
+ 1.01

))

⩽ exp

(
1.02 · T̃1(2S̃ + 1) logE

C0

)
.

(6.18)

From lemma 4.18 and corollary 4.22, we have

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

DC0C1

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2

⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0
×
(

1

C1
+

g

4T̃1

)
︸ ︷︷ ︸

⩽1/2

)
.

(6.19)
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From lemma 5.11 we have

2πD1g∥E(g + t)S1uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1
⩽

√
1 +

(2S̃ + 1) logE

C0C1
,

and with the inequality 1 ⩽ (2S̃+1) logE
C0

from proposition 4.14.4, we deduce

e(g+t)T1 max

(
1,

2πD1g∥E(g + t)S1uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
(g + t) +

g + t

2C1

)
︸ ︷︷ ︸

⩽1.01(g+t)

)
.

(6.20)

Combining (6.17), (6.18), (6.19), (6.20), we finally get

∥f∥E(g+t)S1
⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0

(π
2
(g + t)2 + 1.02 + 0.5 + 1.01(g + t)

))
.

The upper-bound π
2 (g + t)2 + 1.02 + 0.5 + 1.01(g + t) ⩽ 5

2(g + t)2 gives the result. ■

Let us now look at the derivatives of f . Let w =
g∑
i=1

wiwσ,i be the decomposition of w in the

basis wσ. By Leibniz formula, the h-th derivative of f is equal to

1

h!
f (h)(z) =

∑
τ ′∈Ng ,|τ ′|=h

1

τ ′!τ !
Dτ+τ ′

wσ s⋆σ(zw)

g∏
i=1

w
τ ′i
i .

To bound this sum, we change back to the point u. We have∑
|j|⩽S

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

⩽
∑

|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

1

2|τ ′|

∣∣∣∣ 1

τ ′!τ !
Dτ+τ ′

wσ s⋆σ(jw)−
1

τ ′!τ !
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i

+
∑

|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

1

2|τ ′|

∣∣∣∣ 1

τ ′!τ !
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i .

We have (τ+τ ′)!
τ !τ ′! ⩽ 2|τ |+|τ ′| so that 1

2|τ ′|τ ′!τ !
⩽ 2ℓ

(τ+τ ′)! . We now treat the two sums separately. We
warn the reader that the proof of the following result is quite technical.

Proposition 6.16. Under hypothesis 6.9 we have

2ℓ
∑

|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

∣∣∣∣ 1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(jw)−
1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i

⩽ ∥s∥α,σ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 d(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE

C0
× 4.2(g + t)

)
.



6.4. ARCHIMEDEAN ESTIMATES AT THE PLACES σ | σ0 OR σ0 89

Proof. As we have |τ + τ ′| ⩽ T0 and |j| ⩽ S0 ⩽ |m|, we can apply proposition 6.11 to get∣∣∣∣ 1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(jw)−
1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

⩽ ∥s∥2,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0
× 2.01(g + t)

)
.

Moreover, from the multinomial formula and the upper-bound τ ′! ⩽ h!, for τ ′ ∈ Ng such that
|τ ′| = h, we can bound the remaining part of the sum using the Cauchy–Schwarz inequality and
lemma 3.39 (recall also that ∥w∥σ =

√
∥λ(uA)∥2σ + ∥uA∥2σ ⩽

√
2∥uA∥σ):

∑
|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

g∏
i=1

|wi|τ
′
i ⩽ (2S + 1)

∑
τ ′∈Ng ,

|τ ′|⩽(g+t)T1−1

1×
√
|τ ′|!
τ ′!

g∏
i=1

|wi|τ
′
i

⩽ (2S + 1)

√√√√√ ∑
τ ′∈Ng ,

|τ ′|⩽(g+t)T1−1

12

√√√√√√ ∑
τ ′∈Ng ,

|τ ′|⩽(g+t)T1−1

|τ |!
τ !

g∏
i=1

|wi|2τ
′
i

⩽ (2S + 1)

(
g + (g + t)T1 − 1

g

)1/2

√√√√(g+t)T1−1∑
h=0

∥w∥2hσ

⩽ (2S + 1)((g + t)T1)
g/2
√
(g + t)T1max(1, ∥w∥σ)(g+t)T1−1

⩽ (2S + 1) ((g + t)T1)
(g+1)/2

(√
2max(1, ∥uA∥σ)

)(g+t)T1−1
.

As ∥s∥2,σ ⩽ ∥s∥α,σ, the sum we want to bound is therefore less than or equal to

∥s∥α,σ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 d(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0
× 2.01(g + t)

)

× 2ℓ(2S + 1) ((g + t)T1)
g/2
(√

2max(1, ∥uA∥σ)
)(g+t)T1−1

.

(6.21)

As ℓ ⩽ (g + t)T1 ⩽ (g + t)T̃1 and 1 ⩽ (2S̃+1) logE
C0

from proposition 4.14.4, we have

2ℓ = exp (ℓ log 2) ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t) log 2

)
. (6.22)

Moreover, because log+ ∥uA∥σ is also less than or equal to (2S̃+1) logE
C0

from proposition 4.14.4,

(√
2max(1, ∥uA∥σ

)(g+t)T1−1
⩽ exp

(
(g + t)T̃1(log

√
2 + log+ ∥uA∥σ)

)
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)

(
1 + log

√
2
))

.
(6.23)
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Finally, by the inequality T̃1 ⩾ (2(g + t))4g+2t+6 from proposition 4.14.1, we deduce that

(2S + 1) ((g + t)T1)
(g+1)/2 ⩽

1√
(g + 3)!

(
T̃1(2S̃ + 1) logE

23C0

)(g+3)/2
23(g+3)/2(g + t)(g+1)/2

√
(g + 3)!C0

T̃1

⩽ exp

(
T̃1(2S̃ + 1) logE

8C0

)
× 2(g+3)/2(g + t)(g+1)/2(g + 3)(g+2)/2(5(g + t))3

(2(g + t))4g+2t+6

⩽ exp

(
T̃1(2S̃ + 1) logE

8C0

)
.

(6.24)

The inequalities (6.21), (6.22), (6.23), (6.24) lead to the upper-bound

2ℓ
∑

|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

∣∣∣∣ 1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(jw)−
1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i

⩽ ∥s∥α,σ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 d(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE

C0
×
(
(g + t)

(
3.01 +

3

2
log 2

)
+

1

8

))
.

The inequality (g + t)
(
3.01 + 3

2 log 2
)
+ 1

8 ⩽ 4.2(g + t) finishes the proof. ■

We now bound the second sum.

Proposition 6.17.

∑
|j|⩽S0, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

∣∣∣∣ 2ℓ

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i ⩽
∥s∥α,σ
α

exp

(
T̃1(2S̃ + 1) logE

C0
× 2.1(g + t)

)

× exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 .

Proof. Using the Cauchy–Schwarz inequality, the sum is less than

2ℓ

 ∑
|j|⩽S0, τ ′∈Ng
|τ ′|⩽(g+t)T1−1

∣∣∣∣ 1

(τ + τ ′)!
Dτ+τ ′

wσ s⋆(ju)

∣∣∣∣2


1/2 ∑
|j|⩽S0, τ ′∈Ng
|τ ′|⩽(g+t)T1−1

g∏
i=1

|wi|2τ
′
i


1/2

. (6.25)

From the assumption |m| > S0, it follows that the first square root of (6.25) is bounded by
1
α∥s∥α,σ exp

(
π
2D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2, and as in the proof of proposition 6.16 we can
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bound the second square root: ∑
|j|⩽S0, τ ′∈Ng
|τ ′|⩽(g+t)T1−1

g∏
i=1

|wi|2τ
′
i


1/2

⩽
√

2S0 + 1

 ∑
τ ′∈Ng

|τ ′|⩽(g+t)T1−1

|τ ′|!
τ ′!

g∏
i=1

|wi|2τ
′
i


1/2

⩽
√
2S + 1

(g+t)T1−1∑
h=0

∥w∥2hσ

1/2

⩽
√
(2S + 1)(g + t)T1

(√
2max(1, ∥uA∥σ)

)(g+t)T1−1
.

From (6.22), we have

2ℓ ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t) log 2

)
, (6.26)

from (6.23), we have

(√
2max (1, ∥uA∥σ)

)(g+t)T1−1
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)

(
1 + log

√
2
))

, (6.27)

and from (6.24), we have

√
(2S + 1)(g + t)T1 ⩽ (2S + 1)((g + t)T1)

g/2 ⩽ exp

(
T̃1(2S̃ + 1) logE

8C0

)
. (6.28)

Combining (6.26), (6.27), and (6.28), we get

∑
|j|⩽S, τ ′∈Ng ,
|τ ′|⩽(g+t)T1−1

∣∣∣∣ 2ℓ

(τ + τ ′)!
Dτ+τ ′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′
i

⩽
∥s∥α,σ
α

exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)

(
3

2
log 2 + 1

)
+

1

8

)
.

The inequality (g + t)
(
3
2 log 2 + 1

)
+ 1

8 ⩽ 2.2(g + t) gives the result. ■

Combining propositions 6.16 and 6.17 we get the following result.

Proposition 6.18. We have under hypothesis 6.9,

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥σ)D0/2

∑
|j|⩽S

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

⩽
∥s∥α,σ
α

exp

(
T̃1(2S̃ + 1) logE

C0
× 2.2(g + t)

)

+∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0
× 4.2(g + t)

)
.
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The equation (6.16), and propositions 6.15 and 6.18 give us a bound for
∣∣ 1
τ !D

τ
wσs

⋆(mw)
∣∣.

Proposition 6.19. Let τ ∈ Ng be such that |τ | = ℓ. If |m| > S0, then we have under
hypothesis 6.9,

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ 1τ !Dτ
wσs

⋆(mw)

∣∣∣∣∣ ⩽ 2∥s∥α,σ exp
(
−0.98(g + t)T̃1(2S̃ + 1) logE

)
+ ∥s∥α,σd(u,Wσ0) exp

(
2.7(g + t)3T̃1(2S̃ + 1) logE

)
.

Proof. Let us replace the bounds for ∥f∥E(g+t)S1
and

∑
|j|⩽S

0⩽h⩽(g+t)T1−1

|f (h)(j)|
2hh!

given by proposi-

tions 6.15 and 6.18 respectively in (6.16):

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ 1τ !Dτ
wσs

⋆(mw)

∣∣∣∣∣
⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE ×

(
−0.99(g + t) +

5(g + t)2

2C0

))
+
∥s∥α,σ
α

exp

(
T̃1(2S̃ + 1) logE

(
(g + t) log(2πe(g + t)C1) +

2.2(g + t)

C0

))
+ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

(
(g + t) log(2πe(g + t)C1) +

4.2(g + t)

C0

))
.

(6.29)

First, from the value C1 = (5(g + t))2g+t, we have

log(2πe(g + t)C1)

(g + t)2
=

log(2πe)

(g + t)2
+

(2g + t) log 5

(g + t)2
+

(2g + t+ 1) log(g + t)

(g + t)2

⩽
log(2πe)

4
+

3 log 5

4
+

2 log(g + t)

g + t

⩽
log(2πe)

4
+

3 log 5

4
+

2

e

⩽ 2.66.

Therefore, the inner parenthesis of the third exponential of (6.29) is bounded by

(g + t) log(2πe(g + t)C1) +
4.2(g + t)

C0
⩽ 2.66(g + t)3 +

4.2

53(g + t)2
⩽ 2.7(g + t)3.

Next, from the value C0 = (5(g + t))3, we have

−0.99(g + t) +
5(g + t)2

2C0
⩽ (g + t)

(
−0.99 + 5

2 · 53(g + t)

)
⩽ −0.98(g + t).

Finally, we have

(g + t) log(2πe(g + t)C1) +
2.2(g + t)

C0
− 3(g + t)3 ⩽ 2.66(g + t)3 +

2.2

53(g + t)2
− 3(g + t)3

⩽ −0.3(g + t)3

< −0.98(g + t).
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Thus, as logα = T̃1(2S̃ + 1) logE × 3(g + t)3, we finally get from (6.29) that

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ 1τ !Dτ
wσs

⋆(mu)

∣∣∣∣∣ ⩽ 2∥s∥α,σ exp
(
−0.98(g + t)T̃1(2S̃ + 1) logE

)
+ ∥s∥α,σd(u,Wσ0) exp

(
2.7(g + t)3T̃1(2S̃ + 1) logE

)
.

■

We finally obtain an upper-bound for the norm of the jet in the non-periodic case.

Proposition 6.20. For an embedding σ : K ′ ↪→ C dividing σ0 or σ0 and under hypothesis 6.9,
the norm ∥ jetℓW s(mp)∥σ is bounded in the non-periodic case by

∥ jetℓW s(mp)∥σ ⩽ ∥s∥α,σ exp
(
−0.96(g + t)T̃1(2S̃ + 1) logE

)
+ ∥s∥α,σd(u,Wσ0) exp

(
3(g + t)3T̃1(2S̃ + 1) logE

)
.

Proof. First, if |m| ⩽ S0, we have seen in (6.12), that

∥ jetℓW s(mp)∥σ ⩽
1

α
∥s∥α,σ = ∥s∥α,σ exp

(
−3(g + t)3T̃1(2S̃ + 1) logE

)
. (6.30)

Assume now that |m| > S0. The norm of jetℓW s(mp) is given by

∥ jetℓW s(mp)∥σ =
exp

(
−π

2D1∥mu∥2σ
)

(1 + ∥mu0∥2σ)

∑
τ∈Ng ,
|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(mu)

∣∣∣∣2 τ1! · · · τg!ℓ!


1/2

⩽
exp

(
−π

2D1∥mu∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

sup
τ∈Ng ,
|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(mu)−

1

τ !
Dτ

wσs
⋆
σ(mw)

∣∣∣∣
√(

g + ℓ− 1

g − 1

)

+
exp

(
−π

2D1∥mu∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

sup
τ∈Ng ,
|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(mw)

∣∣∣∣
√(

g + ℓ− 1

g − 1

)
.

As in (6.9), the term
√(

g+ℓ−1
g−1

)
is bounded by exp

(
T̃1(2S̃+1) logE

27C0

)
. Using propositions 6.10

and 6.19, and the value C0 = (5(g + t))3, we get

∥ jetℓW s(mp)∥σ ⩽ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE ×

(
1.01(g + t)

C0
+

1

27C0

))
+ 2∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

(
−0.98(g + t) +

1

27C0

))
+ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

(
2.7(g + t)3 +

1

27C0

))
⩽ 2∥s∥α,σ exp

(
−0.97(g + t)T̃1(2S̃ + 1) logE

)
+ 2∥s∥α,σd(u,Wσ0) exp

(
2.8(g + t)3T̃1(2S̃ + 1) logE

)
.
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Notice that this upper bound is always larger than (6.30), this is thus the only case we have to con-
sider. To finish we have 2 = exp log 2 ⩽ exp

(
T̃1(2S̃+1) logE

C0
× log 2

T̃1

)
⩽ exp

(
0.01× T̃1(2S̃+1) logE

C0

)
.

The norm of the jet is therefore bounded by

∥s∥α,σ
(
exp

(
−0.96(g + t)T̃1(2S̃ + 1) logE

)
+ d(u,Wσ0) exp

(
3(g + t)3T̃1(2S̃ + 1) logE

))
.

■

6.4.4 The periodic case

Let us now look at the periodic case. The proof of the non-periodic case almost works in the
periodic case, except at the very end of the proof of proposition 6.18: because of the condition
τg ⩽ T2 we imposed in the periodic case, we cannot bound the first square root of (6.25) in terms
of ∥sσ∥α,σ. However, we will still proceed in a similar manner.

Let τ ∈ Ng be such that |τ | = ℓ, and write τ = τ ′ + (0, τg) with τ ′ ∈ Ng such that τ ′g = 0.
Let us define the holomorphic function

f :

∣∣∣∣∣ C −→ C
z 7−→ 1

τ ′!D
τ ′
wσs

⋆
σ(zw)

.

The derivatives of f are equal to

1

h!
f (h)(z) =

1

h!τ ′!
D
τ ′+(0,h)
w s⋆σ(zw), (6.31)

where w := (wσ,1, . . . ,wσ,g−1, w). This family is indeed a basis of Wσ because by construction
of the basis wσ (see section 5.1) the last coordinate of w in non-zero. If we bound

∣∣∣ 1
τg !
f (τg)(m)

∣∣∣
we will have bounded all derivatives of s⋆σ at mw at order ℓ along the basis w. As jetℓWσ

s⋆σ(mw)

does not depend on the basis of Wσ we choose, this will not matter. To bound 1
τg !
f (τg)(m) we

first use Cauchy’s inequality:

1

τg!
|f (τg)(m)| ⩽ sup

|z|=1
|f(m+ z)| ⩽ ∥f∥|m|+1 ⩽ ∥f∥(g+t)S1+1.

Now, as in the non-periodic case, we use the interpolation lemma 6.14 to bound ∥f∥(g+t)S1+1.

Let us choose T = T2 =
⌊
T̃1
C1

⌋
and S = S0 = (g + t)S1 in lemma 6.14. We get

∥f∥(g+t)S1+1 ⩽
2

E(T2+1)(2S0+1)

(
1 +

(S0 + 1)(2S0 + 1)

6(S0 + 1)2

)(S0+1)(T2+1)

× ∥f∥E((g+t)S1+1)

+
∑

|j|⩽(g+t)S1

0⩽h⩽T2

|f (h)(j)|
2hh!

× exp

(
(T2 + 1)(2S0 + 1) log

(
(S0 + 1)πe

2S0 + 1

))
.

Let us again bound some terms. From definition (4.3) we have 2S̃1 + 1 ⩾ C0C1 ⩾ 106. Writing
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S1 = S̃1 − ε with ε ∈ [0, 1[, we get

2S0 + 1 = 2(g + t)S1 + 1 ⩾ 2(g + t)S̃1 − 2(g + t)ε

⩾ (g + t)(2S̃1 + 1)

(
1− 2ε+ 1

2S̃1 + 1

)
⩾ (g + t)(2S̃1 + 1)

(
1− 3

106

)
⩾ 0.999(g + t)C1(2S̃ + 1).

We moreover have T̃1
C1

⩽ T2 + 1. Therefore, from the inequality 1 ⩽ (2S̃+1) logE
C0

and the value of
C0, we have

2

E(T2+1)(2S0+1)
⩽ exp

(
T̃1(2S̃ + 1) logE

(
−0.999(g + t) +

log 2

C0T̃1

))
⩽ exp

(
−0.99(g + t)T̃1(2S̃ + 1) logE

)
.

(6.32)

Similarly, we have T2 + 1 ⩽ 2T̃1
C1

, S0 + 1 ⩽ (g + t)S̃1 + 1 ⩽ (g+t)(2S̃1+1)
2 = (g+t)C1(2S̃+1)

2 , and
2S0 + 1 ⩽ 2(S0 + 1) ⩽ (g + t)C1(2S̃ + 1). We deduce that(

1 +
(S0 + 1)(2S0 + 1)

6(S0 + 1)2

)(S0+1)(T2+1)

= exp

(
(T2 + 1)(S0 + 1) log

(
1 +

2S0 + 1

6(S0 + 1)

))
⩽ exp

(
(g + t)T̃1(2S̃ + 1) logE × log

4

3

)
⩽ exp

(
T̃1(2S̃ + 1) logE × 0.3(g + t)

)
,

(6.33)

and

exp

(
(T2 + 1)(2S0 + 1) log

(
(S0 + 1)πe

2S0 + 1

))
⩽ exp

(
2(g + t)T̃1(2S̃ + 1) logE × log

2πe

3

)
⩽ exp

(
3.5(g + t)T̃1(2S̃ + 1) logE

)
.

(6.34)

Combining (6.32), (6.33), and (6.34) the interpolation lemma now writes

∥f∥(g+t)S1+1 ⩽∥f∥E((g+t)S1+1) exp
(
−0.69(g + t)T̃1(2S̃ + 1) logE

)
+

∑
|j|⩽(g+t)S1

0⩽h⩽T2

|f (h)(j)|
2hh!

exp
(
T̃1(2S̃ + 1) logE × 3.5(g + t)

)
. (6.35)

We now bound ∥f∥E((g+t)S1+1) and
∑

|j|⩽(g+t)S1

0⩽h⩽T2

|f (h)(j)|
2hh!

.

Proposition 6.21. The sup norm of f on the disc D(0, E((g + t)S1 + 1)) is bounded by

∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0
× 2.4(g + t)2

)
.
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Proof. We proceed in the exact same way as proposition 6.15. We use corollary 5.10 with w = wσ,
(x0, xA) = zw with z ∈ C such that |z| ⩽ E((g + t)S1 + 1) and T = (g + t)T1 to get

∥f∥E(S0+1) ⩽ exp
(π
2
D1∥E((g + t)S1 + 1)uA∥2σ

) (
1 + ∥E((g + t)S1 + 1)λ(uA)∥2σ

)D0/2 ∥s∥∞,σ

× e(g+t)T1 max

(
1,

2πD1g∥E((g + t)S1 + 1)uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

.

From the value (4.4) of D1 we have D1∥ES̃1uA∥2σ ⩽ T̃1(2S̃+1) logE
C0

. Moreover, S1 ⩾ 1
2 S̃1 ⩾

C0C1
2

and we deduce that

exp
(π
2
D1∥E((g + t)S1 + 1)uA∥2σ

)
⩽ exp

(
π

2
D1∥ES̃1uA∥2σ

(
g + t+

1

S̃1

)2
)

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× π

2

(
g + t+

2

C0C1

)2
)

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 1.6(g + t)2

)
.

(6.36)

From proposition 4.14.2 and proposition 4.14.6 we have(
1 + ∥E((g + t)S1 + 1)λ(uA)∥2σ

)D0/2 ⩽ (g + t+ 1)D0

(
1 + ∥ES̃1λ(uA)∥2σ

)D0/2

⩽ exp

(
T̃1(2S̃ + 1) logE

C0

(
log(g + t+ 1)

C1
+ 1.01

)
︸ ︷︷ ︸

⩽1.02

)
.

(6.37)

From lemma 4.18 and corollary 4.22,

∥s∥∞,σ ⩽ ∥s∥2,σ exp

(
T̃1(2S̃ + 1) logE

C0C1

)
max

(
1,

1

ρ(Aσ, L
⊗D1
σ )

)g/2

⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0

(
1

C1
+

g

4T̃1

)
︸ ︷︷ ︸

⩽0.01

)
.

(6.38)

Finally, from lemma 5.11 we have

2πD1g∥E((g + t)S1 + 1)uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1
⩽

√
1 +

(2S̃ + 1) logE

C0C1
,

and therefore, because 1 ⩽ (2S̃+1) logE
C0

by proposition 4.14.4, we get

e(g+t)T1 max

(
1,

2πD1g∥E((g + t)S1 + 1)uA∥σ +D0g

2(g + t)T1
+

√
πD1g2 +D0g2

2(g + t)T1

)(g+t)T1

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
×
(
g + t+

g + t

2C1

)
︸ ︷︷ ︸

⩽1.01(g+t)

)
.

(6.39)
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Combining (6.36), (6.37), (6.38), and (6.39), we thus get

∥f∥E((g+t)S1+1) ⩽ ∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0

(
1.6(g + t)2 + 1.03 + 1.01(g + t)

))
.

The result follows from the inequality 1.6(g + t)2 + 1.03 + 1.01(g + t) ⩽ 2.4(g + t)2. ■

We now look at the derivatives of f . Writing again w =
g∑
i=1

wiwσ,i, from Leibniz’ derivation

formula we have for any integer h ⩾ 0,

1

h!
f (h)(z) =

∑
τ ′′∈Ng ,|τ ′′|=h

1

τ ′′!τ ′!
Dτ ′+τ ′′

wσ s⋆σ(zw)

g∏
i=1

w
τ ′′i
i .

As before, for τ ′, τ ′′ ∈ Ng we can bound 1
2|τ ′′|τ ′′!τ ′!

by 2|τ
′|

(τ ′+τ ′′)! , and we therefore have

∑
|j|⩽(g+t)S1

0⩽h⩽T2

|f (h)(j)|
2hh!

⩽
∑

|j|⩽(g+t)S1,
τ ′′∈Ng ,|τ ′′|⩽T2

∣∣∣∣ 2ℓ

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i

+
∑

|j|⩽(g+t)S1,
τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 2ℓ

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(jw)−
2ℓ

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i .

Proposition 6.22. Under hypothesis 6.9, we have

2ℓ
∑

|j|⩽(g+t)S1,
τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(jw)−
1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i

⩽ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 ∥s∥α,σd(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE

C0
× 2(g + t)2

)
.

Proof. First, from (6.22), we have

2ℓ ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t) log 2

)
. (6.40)

Then, using proposition 6.11 we have for j ∈ Z such that |j| ⩽ (g + t)S1,∣∣∣∣ 1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(jw)−
1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ exp
(
−π

2D1∥juA∥2σ
)

(1 + ∥ju0∥2σ)
D0/2

⩽ ∥s∥α,σd(u,Wσ0)× exp

(
T̃1(2S̃ + 1) logE

C0
× 2.01(g + t)

)
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From the definition (4.4) of D1, we have for |j| ⩽ (g + t)S1,

exp
(π
2
D1∥juA∥2σ

)
⩽ exp

(π
2
(g + t)2D1S̃

2
1∥uA∥2σ

)
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× π

2e2
(g + t)2︸ ︷︷ ︸

⩽0.22(g+t)2

)
.

(6.41)

To bound term
(
1 + ∥ju0∥2σ

)D0/2 notice that

∥u0∥σ ⩽ ∥u0 − λ(uA)∥σ + ∥λ(uA)∥σ ⩽
√
2d(u,Wσ0) + ∥λ(uA)∥σ ⩽

√
4d(u,W0)2 + 2∥λ(uA)∥2σ.

Using the assumption hypothesis 6.9 we have d(u,Wσ0) ⩽
1√

2(g+t)S1D0
and from propositions

4.14.6 and 4.14.3 we get(
1 + ∥ju0∥2σ

)D0/2 ⩽
(
1 + (g + t)2S2

1

(
4d(u,Wσ0)

2 + 2∥λ(uA)∥2σ
))D0/2

⩽

(
1 +

2

D2
0

+ 2(g + t)2S2
1∥λ(uA)∥2σ

)D0/2

⩽
(
2(g + t)2

)D0/2 (1 + S2
1∥λ(uA)∥2σ

)D0/2

⩽ exp

(
D0

2
log(2(g + t)2) + 1.01 · T̃1(2S̃ + 1) logE

C0

)

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
×
(
log(2(g + t)2)

2C1
+ 1.01

)
︸ ︷︷ ︸

⩽1.02

)
.

(6.42)

Next, we have ∑
|j|⩽(g+t)S1

τ ′′∈Ng , |τ ′′|⩽T2

g∏
i=1

|wi|τ
′′
i ⩽ (2(g + t)S1 + 1)

∑
τ ′′∈Ng , |τ ′′|⩽T2

|τ ′′|!
τ ′′!

g∏
i=1

|wi|τ
′′
i

⩽ (g + t)(2S1 + 1)

T2∑
h=0

(
g∑
i=1

|wi|

)h
⩽ (g + t)(2S1 + 1)(T2 + 1)

(√
2gmax(1, ∥uA∥σ)

)T2
.

Because we have T2 =
⌊
T̃1
C1

⌋
and 2S1+1 ⩽ C1(2S̃+1), we deduce that T2 ⩽ T̃1

C1
and T2+1 ⩽ 2T̃1

C1
.

We thus get

(g + t)(2S1 + 1)(T2 + 1) ⩽ 2(g + t)(2S̃ + 1)T̃1

⩽
1

2

(
T̃1(2S̃ + 1) logE

2C0

)2
16(g + t)C0

T̃1︸ ︷︷ ︸
⩽1

⩽ exp

(
T̃1(2S̃ + 1) logE

2C0

)
, (6.43)
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and (√
2gmax(1, ∥uA∥σ)

)T2
⩽ exp

(
T2(2S̃ + 1) logE

C0
×
(
1 + log

√
2g
))

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 1 + log

√
2g

C1︸ ︷︷ ︸
⩽0.01

)
.

(6.44)

The equations (6.40), (6.41), (6.42), (6.43), and (6.44) give

2ℓ
∑

|j|⩽(g+t)S1,
τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(jw)−
1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i

⩽ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0
×
(
(g + t) log 2 + 2.01(g + t)

+ 0.22(g + t)2 + 1.02 + 0.5 + 0.01
))

⩽ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 ∥s∥α,σd(u,Wσ0)

× exp

(
T̃1(2S̃ + 1) logE

C0
× 2(g + t)2

)
,

the last inequality coming from the fact that

(g + t) log 2 + 2.01(g + t) + 0.22(g + t)2 + 1.53 ⩽ (g + t)2
(
log 2 + 2.01

2
+ 0.22 +

1.53

4

)
⩽ 2(g + t)2.

■

Proposition 6.23. Under hypothesis hypothesis 6.9, we have

∑
|j|⩽(g+t)S1,

τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 2ℓ

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i

⩽ exp
(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2 1

α
∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)2

)
.

Proof. We proceed roughly as in the proof of proposition 6.17. Using the Cauchy–Schwarz
inequality, the sum is less than

2ℓ

 ∑
|j|⩽(g+t)S1,

τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 1

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣2


1/2 ∑
|j|⩽(g+t)S1,
τ ′′∈Ng ,|τ ′′|⩽T2

g∏
i=1

|wi|2τ
′′
i


1/2

. (6.45)
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From the definition (5.1) of ∥s∥α,σ, the first square root of (6.45) is bounded by the quantity
∥s∥α,σ
α exp

(
π
2D1∥(g + t)S1uA∥2σ

) (
1 + ∥(g + t)S1u0∥2σ

)D0/2, and as in the proof of proposition 6.16
we have ∑

|j|⩽(g+t)S1,
τ ′′∈Ng ,|τ ′′|⩽T2

g∏
i=1

|wi|2τ
′′
i


1/2

⩽
√

2(g + t)S1 + 1

 ∑
τ ′′∈Ng ,|τ ′′|⩽T2

|τ ′′|!
τ ′′!

g∏
i=1

|wi|τ
′′
i

1/2

⩽
√

2(g + t)S1 + 1

(
T2∑
h=0

∥w∥2hσ

)1/2

⩽
√
(2(g + t)S1 + 1)(T2 + 1) (max(1, ∥w∥σ))T2

⩽
√
(2(g + t)S1 + 1)(T2 + 1)

(√
2max(1, ∥uA∥σ)

)T2
.

From (6.22),

2ℓ ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t) log 2

)
, (6.46)

from (6.41),

exp
(π
2
D1∥(g + t)S1uA∥2σ

)
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 0.22(g + t)2

)
, (6.47)

and from (6.42), we again have(
1 + (g + t)2S2

1∥u0∥2σ
)D0/2 ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 1.02

)
. (6.48)

Moreover, as in (6.43) and (6.44), we have the two following inequalities.(√
2max(1, ∥uA∥σ)

)T2
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 1 + log

√
2

C1︸ ︷︷ ︸
⩽0.01

)
, (6.49)

√
(2(g + t)S1 + 1)(T2 + 1) ⩽ (g + t)(2S1 + 1)(T2 + 1) ⩽ exp

(
T̃1(2S̃ + 1) logE

2C0

)
. (6.50)

Combining (6.46), (6.47), (6.48), (6.49), and (6.50), we get∑
|j|⩽(g+t)S1,

τ ′′∈Ng , |τ ′′|⩽T2

∣∣∣∣ 2ℓ

(τ ′ + τ ′′)!
Dτ ′+τ ′′

wσ s⋆σ(ju)

∣∣∣∣ g∏
i=1

|wi|τ
′′
i

⩽
1

α
∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0

(
(g + t) log 2 + 0.22(g + t)2 + 1.53

))
⩽

1

α
∥s∥α,σ exp

(π
2
D1∥muA∥2σ

) (
1 + ∥mu0∥2σ

)D0/2

× exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)2

)
,
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the last inequality coming from the fact that

(g + t) log 2 + 0.22(g + t)2 + 1.53 ⩽ (g + t)2
(
log 2

2
+ 0.22 +

1.53

4

)
⩽ (g + t)2.

■

Combining proposition 6.22 and proposition 6.23, we finally get a bound for the derivative
term of (6.35).

Proposition 6.24.

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥σ)D0/2

∑
|j|⩽(g+t)S1

0⩽h⩽T2

|f (h)(j)|
2hh!

⩽
1

α
∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)2

)

+ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE

C0
× 2(g + t)2

)
.

We can now apply the interpolation lemma to get a upper-bound for derivatives of s⋆(mu)
along the basis w = (wσ,1, . . . , wσ,g−1, w).

Proposition 6.25. Let τ ∈ Ng be such that |τ | = ℓ. We have

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣∣ 1τ !Dτ
ws

⋆(mw)

∣∣∣∣∣ ⩽ 2∥s∥α,σ exp
(
−0.68(g + t)T̃1(2S̃ + 1) logE

)
+ ∥s∥α,σd(u,Wσ0) exp

(
3.6(g + t)T̃1(2S̃ + 1) logE

)
.

Proof. By (6.31), (6.35), propositions 6.21 and 6.24, we get

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∣∣∣∣ 1τ !Dτ
ws

⋆(mw)

∣∣∣∣ ⩽ exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∥f∥(g+t)S1+1

⩽ ∥s∥α,σ exp
(
T̃1(2S̃ + 1) logE

(
−0.69(g + t) +

2.4(g + t)2

C0

))
+
∥s∥α,σ
α

exp

(
T̃1(2S̃ + 1) logE ×

(
3.5(g + t) +

(g + t)2

C0

))
+ ∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE ×

(
3.5(g + t) +

2(g + t)2

C0

))
.

From the value C0 = (5(g + t))3, we have

−0.69(g + t) +
2.4(g + t)2

C0
= −0.69(g + t) +

2.4

53(g + t)
⩽ −0.68(g + t),

3.5(g+ t)+
(g + t)2

C0
− 3(g+ t)3 = 3.5(g+ t)+

1

53(g + t)
− 3(g+ t)3 ⩽ −2(g+ t)3 < −0.68(g+ t),
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and

3.5(g + t) +
2(g + t)2

C0
= 3.5(g + t) +

2

53(g + t)
⩽ 3.6(g + t).

Therefore, with the value logα = T̃1(2S̃ + 1) logE × 3(g + t)3, we get the result. ■

Now that we have a bound for the derivatives of s⋆ at mp, we can bound the norm of the jet.
As the derivatives we have considered are along the basis w, we need to consider this basis in the

expression (6.1) of the norm of the jet. Write again w =
g∑
i=1

wiwσ,i the decomposition of w in the

basis wσ of Wσ, and let us express the dual basis of w in terms of the dual basis of wσ. We have

wσ,i =


wi if 1 ⩽ i ⩽ g − 1;

−
g−1∑
i=1

wi
wg

wi +
1
wg

wg otherwise.

Therefore, it follows that

wv
i =

{
wv
σ,i −

wi
wg

wv
σ,g if 1 ⩽ i ⩽ g − 1;

1
wg

wv
σ,g otherwise.

To bound the norm of an element (wv
1)
τ1 · · · (wv

g)
τg of Symℓ(W v

σ) recall that the Hermitian
structure on Symℓ(W v

σ) is the quotient metric from the one on the tensor product (W v
σ)

⊗ℓ.
Therefore, given ℓ elements φ1, . . . , φℓ in W v

σ , we have

∥φ1 · · ·φℓ∥Symℓ(Wσ)
⩽ ∥φ1 ⊗ · · · ⊗ φℓ∥(W v

σ)
⊗ℓ = ∥φ1∥ · · · ∥φℓ∥.

We thus get,

∑
τ∈Ng , |τ |=ℓ

∥wv
1∥τ1 · · · ∥wv

g∥τg ⩽

(∥∥∥∥wv
σ,g

wg

∥∥∥∥
σ

+

g−1∑
i=1

∥∥∥∥wv
σ,i −

wi
wg

wv
σ,g

∥∥∥∥
σ

)ℓ

⩽

 1

|wg|
+

g−1∑
i=1

√
1 +

∣∣∣∣wiwg
∣∣∣∣2
ℓ

⩽

(
gmax(1, ∥w∥σ)

|wg|

)ℓ
⩽

(
g
√
2max(1, ∥uA∥σ)
|wg|

)ℓ
.

In order to bound the jet, we therefore need to bound 1
|wg | appropriately. This is achieved by the

following proposition.

Proposition 6.26. We have 1
|wg | ⩽

S1(degL(B))2

ρ(Aσ ,Lσ)
. In particular

∑
τ∈Ng , |τ |=ℓ

∥wv
1∥τ1 · · · ∥wv

g∥τg ⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 15(g + t)4

)
.
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Proof. By the way the basis wσ has been constructed (see section 5.1) we have |wg| = d(w, tHσ ∩
Wσ). Because we are in the periodic case, there exists an integer m0 such that |m0| ⩽ S1 and
m0u ∈ tHσ +ΩAσ . Therefore, we have

m0uA = ω + uB,

for some period ω ∈ ΩAσ , uB ∈ tBσ . From inclusion tHσ ∩Wσ ⊆ tG0,σ × tBσ , we get

d(w, tHσ ∩Wσ) =
1

|m0|
d(m0w, tHσ ∩Wσ) =

1

|m0|
d((λ(m0uA), ω + uB), tHσ ∩Wσ) ⩾

d(ω, tBσ)

S1
.

By the assumption hypothesis 4.2, m0uA does not lie in tBσ , hence ω ∈ ΩAσ \ ΩBσ . By [GR14b,
Proposition 4.3] we get

1

|wg|
⩽

S1
d(ω, tBσ)

⩽
S1(degLB)2

ρ(Aσ, Lσ)
.

To prove the second upper-bound we need to bound degLB. Let us use the definition (4.5) of x
and the fact that x ⩽ 1. We have

degLB ⩽

(
g+t
g

)
2gD̃t−t′

0 D̃g−g′
1 degLA(

g′+t′

g′

)
T̃
cW (H)
1 #

(
Γp(S1)+H

H

) ⩽
D̃t−t′

0 D̃g−g′
1

T̃
cW (H)
1

(
g + t

g

)
2g degLA.

From proposition 4.14.2 we have

D̃t−t′
0 D̃g−g′

1

T̃
cW (H)
1

⩽

(
y

C0C1

)g−g′ D̃t−t′
0

T̃
cW (H)−(g−g′)
1

⩽

(
y

C0C1

)cW (H)

D̃
t−t′−(cW (H)−(g−g′))
0 .

We have (g− g′)+ (t− t′)− cW (H) ⩽ t, and cW (H) ⩾ max(g− g′, t− t′) ⩾ 1 from corollary 4.10.
Moreover, we have S1 ⩽ 2S̃1 + 1 = C0C1a and we deduce that

1

|wg|
⩽

S1D̃
2t
0

ρ(Aσ, Lσ)

(
g+t
g

)2
22g

(C0C1)2cW (H)
(ycW (H) degLA)

2 ⩽
22g+2(g+t)

C0C1︸ ︷︷ ︸
⩽1

aD̃2t
0

ρ(Aσ, Lσ)
(yg degLA)

2.

We now have

• log a ⩽ 2× (2S̃+1) logE
C0

from proposition 4.14.5;

• 2t log D̃0 ⩽
(2S̃+1) logE

C0
× 14(g + t)3 from proposition 4.14.7;

• yg degLA ⩽ 1 from proposition 4.1;

• 1
ρ(Aσ ,Lσ)

⩽ exp
(
(2S̃+1) logE

C0
(g + t)

)
from corollary 4.22,

and we deduce that

1

|wg|
⩽ exp

(
(2S̃ + 1) logE

C0
×
(
2 + 14(g + t)3 + (g + t)

))
.
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Finally, using the inequality max(1, ∥uA∥σ) ⩽ exp
(
(2S̃+1) logE

C0

)
from proposition 4.14.4, we

deduce that(
g
√
2max(1, ∥uA∥σ)
|wg|

)ℓ
⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× (g + t)

(
log(g

√
2) + 3

+ 14(g + t)3 + (g + t)
))

⩽ exp

(
T̃1(2S̃ + 1) logE

C0
× 15(g + t)4

)
.

■

Putting together propositions 6.10, 6.25 and 6.26, we can finally bound the norm of the jet in
the periodic case.

Proposition 6.27. For an embedding σ : K ′ ↪→ C dividing σ0 or σ0 and hypothesis 6.9, the
norm ∥ jetℓW s(mp)∥σ is bounded in the periodic case by

∥sσ∥α,σ exp
(
−0.56(g + t)T̃1(2S̃ + 1) logE

)
+∥sσ∥α,σd(u,Wσ0) exp

(
3.9(g + t)T̃1(2S̃ + 1) logE

)
.

Proof. For τ = (τ1, . . . , τg) ∈ Ng, let us write (wv)τ for (wv
1)
τ1 · · · (wv

g)
τg . From the definition

(6.1) of ∥ jetℓW s(mp)∥σ and its independence from the basis of Wσ, we have

∥ jetℓW s(mp)∥σ =
exp

(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∥∥∥∥∥∥
∑

τ∈Ng , |τ |=ℓ

1

τ !
Dτ

wσs
⋆(mu)(wv

σ)
τ

∥∥∥∥∥∥
σ

⩽
exp

(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∥∥∥∥∥∥
∑

τ∈Ng ,|τ |=ℓ

(
1

τ !
Dτ

wσs
⋆(mu)− 1

τ !
Dτ

wσs
⋆(mw)

)
(wv

σ)
τ

∥∥∥∥∥∥
σ

+
exp

(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

∥∥∥∥∥∥
∑

τ∈Ng , |τ |=ℓ

1

τ !
Dτ

ws
⋆(mw)(wv)τ

∥∥∥∥∥∥
σ

⩽
exp

(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

sup
|τ |=ℓ

∣∣∣∣ 1τ !Dτ
wσs

⋆
σ(mu)−

1

τ !
Dτ

wσs
⋆
σ(mw)

∣∣∣∣
√(

g + ℓ− 1

g − 1

)
+

exp
(
−π

2D1∥muA∥2σ
)

(1 + ∥mu0∥2σ)
D0/2

sup
τ∈Ng , |τ |=ℓ

∣∣∣∣ 1τ !Dτ
ws

⋆
σ(mw)

∣∣∣∣ ∑
τ∈Ng , |τ |=ℓ

∥wv
1∥τ1σ · · · ∥wv

g∥
τg
σ .

From (6.9) the square root of the binomial coefficient is bounded by exp
(
T̃1(2S̃+1) logE

27C0

)
. Applying
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propositions 6.10, 6.24 and 6.26, we get that ∥ jetℓW s(mp)∥σ is bounded by

∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE ×

(
1.01(g + t)

C0
+

1

27C0

))
+2∥s∥α,σ exp

(
T̃1(2S̃ + 1) logE

(
−0.68(g + t) +

16(g + t)4

C0

))
+∥s∥α,σd(u,Wσ0) exp

(
T̃1(2S̃ + 1) logE ×

(
3.6(g + t) +

15(g + t)4

C0

))
.

From the value C0 = (5(g + t))3, we have

1.01(g + t)

C0
+

1

27C0
⩽ 0.01,

−0.68(g + t) +
15(g + t)4

C0
= −0.56(g + t),

and

3.6(g + t) +
15(g + t)4

C0
⩽ 3.8(g + t).

The norm of the jet is therefore bounded by

2∥s∥α,σ exp
(
−0.56(g + t)T̃1(2S̃ + 1) logE

)
+2∥s∥α,σd(u,Wσ0) exp

(
3.8(g + t)T̃1(2S̃ + 1) logE

)
.

To conclude we have 2 = exp log 2 ⩽ exp
(
T̃1(2S̃+1) logE

C0
× log 2

T̃1

)
⩽ exp

(
0.01× T̃1(2S̃+1) logE

C0

)
.

The norm of the jet is therefore bounded by

∥s∥α,σ
(
exp

(
−0.55(g + t)T̃1(2S̃ + 1) logE

)
+ d(u,Wσ0) exp

(
3.9(g + t)T̃1(2S̃ + 1) logE

))
.

■

If we compare the results of proposition 6.20 and proposition 6.27, we notice that the term
in d(u,Wσ0) is larger in the non-periodic case than in the periodic case, and the other term is
smaller in the non-periodic case than in the periodic case. We therefore get

Proposition 6.28. For an embedding σ : K ′ ↪→ C dividing σ0 or σ0 and under hypothesis 6.9,
the norm ∥ jetℓW s(mp)∥σ is bounded in every case by

∥s∥α,σ exp
(
−0.55(g + t)T̃1(2S̃ + 1) logE

)
+∥s∥α,σd(u,Wσ0) exp

(
3(g + t)3T̃1(2S̃ + 1) logE

)
.
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Chapter 7

End of the proof

7.1 Proof of theorem 4.3

Now that we have bounded the norm of jetℓW s(mp) at all the places of K ′ we are finally ready
to prove our two main results, namely theorems 4.3 and 4.6. From the definition of height of
jetℓW s(mp) we have

h(jetℓW s(mp)) =
∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
log ∥ jetℓW s(mp)∥P +

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]
log ∥ jetℓW s(mp)∥σ

+
∑

σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log ∥ jetℓW s(mp)∥σ.

Using the results of sections 6.2 to 6.4 let us bound each of the three sums. First, we use
proposition 6.3 to bound the sum over the non-Archimedean places.

Proposition 7.1. We have∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
log ∥ jetℓW s(mp)∥P ⩽ 0.06(g+ t)

T̃1(2S̃ + 1) logE

D
+
∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
log ∥s∥α,P.

Proof. Applying proposition 6.3, we have∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
log ∥ jetℓW s(mp)∥P ⩽

∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
(log ∥s∥α,P − log |δℓ(D0)|P)

⩽ log |δℓ(D0)|+
∑
P|p

p prime

[K ′
P : Qp]

[K ′ : Q]
log ∥s∥α,P.

We now use lemma 6.5 to bound log |δℓ(D0)| by 0.06(g + t)× T̃1(2S̃+1) logE
D . ■

We now turn to the sum ranging over the Archimedean places dividing neither σ0, nor σ0.
To bound it we use proposition 6.7.

107
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Proposition 7.2. We have

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]
log ∥ jetℓW s(mp)∥σ ⩽

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]

(
log ∥s∥α,σ +

g

2
log+

1

ρ(Aσ, L
⊗D1
σ )

)

+ 3.01(g + t) · T̃1(2S̃ + 1) logE

DC0
.

Proof. By proposition 6.7, we have

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]
log ∥ jetℓW s(mp)∥σ ⩽

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]

(
log ∥s∥α,σ +

g

2
log+

1

ρ(Aσ, L
⊗D1
σ )

)

+
∑

σ:K′↪→C
σ∤σ0 and σ0

1

[K ′ : Q]
(g + t)T̃1 log

(
2π

C0C1
r(Aσ, Lσ) + 1

)

+
T̃1(2S̃ + 1) logE

DC0
× 1.01(g + t).

Moreover, from proposition 4.23 we deduce that

(g + t)T̃1
[K ′ : Q]

∑
σ:K′↪→C

σ∤σ0 and σ0

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)
⩽

(g + t)T̃1
[K ′ : Q]

∑
σ:K′↪→C

log

(
2π

C0C1
r(Aσ, Lσ) + 1

)

⩽
T̃1(2S̃ + 1) logE

DC0
× 2(g + t).

The result follows. ■

The final step toward a bound of the height of jetℓW s(mp) is to bound the sum ranging over
the Archimedean places dividing σ0 or σ0. To do this we use proposition 6.28. Recall that the
proof uses hypothesis 6.9.

Proposition 7.3. Under hypothesis 6.9, we have

∑
σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log∥ jetℓW s(mp)∥σ

⩽
2

D
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)

+
∑

σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log ∥s∥α,σ.

Proof. This is a direct consequence of proposition 6.28. Indeed, it follows from this proposition
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that ∑
σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log ∥ jetℓW s(mp)∥σ

⩽
∑

σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)

+
∑

σ:K′↪→C
σ|σ0 or σ0

1

[K ′ : Q]
log ∥s∥α,σ.

The summand of the first sum is independent of σ and the sum is therefore equal to

#{σ : K ′ ↪→ C, σ | σ0 or σ′0}
[K ′ : Q]

log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)

=
[kσ0 : R][K ′ : k]

[K ′ : Q]
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)

⩽
2

D
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)
.

■

We now bound the height of jetℓW s(mp). Combining propositions 5.17 and 7.1 to 7.3 we have

h(jetℓW s(mp)) ⩽ hα(s) + 0.06(g + t)
T̃1(2S̃ + 1) logE

D

+
3.01(g + t)

C0
· T̃1(2S̃ + 1) logE

D
+
g

2

∑
σ:K′↪→C

σ∤σ0 and σ0

1

[K ′ : Q]
log+

1

ρ(Aσ, L
⊗D1
σ )

+
2

D
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)

⩽
T̃1(2S̃ + 1) logE

D

(
1.6 + 0.06(g + t) +

3.01(g + t)

C0

)
+
g

2

∑
σ:k↪→C

1

D
log+

1

ρ(Aσ, L
⊗D1
σ )

+
2

D
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)
.

Corollary 4.22 gives us an upper-bound for the remaining sum over the embedding of k, and we
get

h(jetℓW s(mp)) ⩽
T̃1(2S̃ + 1) logE

D

(
1.6 + 0.06(g + t) +

3.01(g + t)

C0
+

g

4C0T̃1

)
︸ ︷︷ ︸

⩽0.9(g+t)

(7.1)

+
2

D
log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE + e−0.55(g+t)T̃1(2S̃+1) logE
)
.
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On the other hand the inequality (6.1) and proposition 6.2 give us a lower-bound for the height.

h(jetℓW s(mp)) ⩾ − T̃1(2S̃ + 1) logE

D
× (g + t)4

C0
= − T̃1(2S̃ + 1) logE

D
× 0.008(g + t). (7.2)

Combining (7.1) and (7.2), we get a first lower-bound involving d(u,Wσ0):

log
(
d(u,Wσ0)e

3(g+t)3T̃1(2S̃+1) logE+e−0.55(g+t)T̃1(2S̃+1) logE
)

⩾ −T̃1(2S̃ + 1) logE × 0.008(g + t) + 0.9(g + t)

2

⩾ −0.5(g + t)T̃1(2S̃ + 1) logE.

We therefore deduce a lower bound for the distance d(u,Wσ0) in terms of T̃1(2S̃ + 1) logE:

d(u,Wσ0) ⩾ e−3(g+t)3T̃1(2S̃+1) logE
(
e−0.5(g+t)T̃1(2S̃+1) logE − e−0.55(g+t)T̃1(2S̃+1) logE

)
⩾ e−T̃1(2S̃+1) logE(3(g+t)3+0.5(g+t))

(
1− e−0.05(g+t)T̃1(2S̃+1) logE

)
.

Computing the derivative of the function x 7→ x−1 log
(
1− e−0.05(g+t)x

)
, we see that it is increasing

on R⋆+. Therefore, because T̃1(2S̃+1) logE ⩾ (2(g+ t))4g+2t+6C0 ⩾ 1010 from proposition 4.14.1
and proposition 4.14.4, we get

log d(u,Wσ0) ⩾ −T̃1(2S̃ + 1) logE

3(g + t)3 + 0.5(g + t) +
log
(
1− e−0.05(g+t)T̃1(2S̃+1) logE

)
T̃1(2S̃ + 1) logE


⩾ −T̃1(2S̃ + 1) logE

(
3(g + t)3 + 0.5(g + t) + 10−10 log

(
1− e−0.05(g+t)·10−10

))
⩾ −4(g + t)3T̃1(2S̃ + 1) logE.

Let us now remove hypothesis 6.9. Assume that it does not hold. This means that

log d(u,Wσ0) ⩾ − log
(√

2(g + t)S1D0

)
.

From the definition (4.3), we have S1 ⩽ C1
2 (2S̃ + 1), and from proposition 4.14.2 we have

D0 ⩽
T̃1

C0C1
. Therefore, we have

log d(u,Wσ0) ⩾ − log

(√
2(g + t)

2C0
T̃1(2S̃ + 1)

)
⩾ −4(g + t)3T̃1(2S̃ + 1) logE.

We deduce that in any case we have

log d(u,Wσ0) ⩾ −4(g + t)3T̃1(2S̃ + 1) logE.

To get the lower bound of theorem 4.3, let us replace T̃1 and 2S̃ + 1 by their values (4.6) and
(4.3).

4(g + t)3T̃1(2S̃ + 1) logE = 4(g + t)3
(C0C1)

(g+t)/t(
2g
(
g+t
g

))1/t #Γp(S1)
1/t

(
1 +

S̃2
1D log a

(2S̃1 + 1) logE

)g/t

× (2S̃ + 1) logE

(
1 +

D(log S̃1 + log b)

(2S̃1 + 1) logE

)
1

y(g+t)/t(degLA)
1/t
.
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The set Γp(S1) has cardinality at most 2S1+1 ⩽ C0C1a. Moreover, we have S̃1 ⩽ 2S̃1+1
2 ⩽ C0C1

2 a.
Therefore,

1 +
S̃2
1D log a

(2S̃1 + 1) logE
⩽ 1 +

C0C1aD log a

4 logE
⩽
C0C1

4

(
1 +

aD log a

logE

)
.

Then, using the inequalities D log a ⩽ 2a logE and D ⩽ a logE from proposition 4.14.5 and
4.14.4, we have

(2S̃ + 1) logE

(
1 +

D(log S̃1 + log b)

(2S̃1 + 1) logE

)
= C0a logE +

D

C1
log

C0C1

2
+
D log a

C1
+
D log b

C1

⩽ C0

(
a logE + a logE

log C0C1
2

C0C1
+

2a logE

C0C1
+
D log b

C0C1

)

⩽ C0

(
a logE

(
1 +

log C0C1
2

C0C1
+

2

C0C1︸ ︷︷ ︸
⩽2

)
+
D log b

C1

)

⩽ 2C0 (a logE +D log b) .

We thus get

log d(u,Wσ0) ⩾ −8(g + t)3
(C0C1)

(2g+2t+1)/t

23g/t
(
g+t
t

)1/t
C1

a1/t
(
1 +

Da log a

logE

)g/t
× (a logE +D log b)

1

y(g+t)/t(degLA)
1/t
.

To conclude, we look at the constant 8(g + t)3 (C0C1)(2g+2t+1)/t

23g/t(g+tt )
1/t
C1

. It is equal to

(5(g + t))(2g+t+3)(2g+2t+1)/t

(
8(g + t)3

23g/t
(
g+t
t

)1/tC1

)
.

As we have (2g+t+3)(2g+2t+1) = 4(g+t+1)2−(2t2+2gt+t+1) ⩽ 4(g+t+1)2−t(2t+2g+1),
the constant is bounded by

(5(g + t))
4(g+t+1)2

t ×

(
8(g + t)3

(5(g + t))2t+2g+123g/t
(
g+t
t

)1/t
C1

)
⩽ (5(g + t))

4(g+t+1)2

t .

We finally deduce theorem 4.3:

log d(u,Wσ0) ⩾ −(5(g + t))
4(g+t+1)2

t a1/t
(
1 +

Da log a

logE

)g/t
× (a logE +D log b)

1

y1+g/t degL(A)
1/t
.
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7.2 Proof of theorem 4.6

Our final goal is to prove theorem 4.6, removing the hypothesis 4.2 of theorem 4.3. Let again
(A,L) be a polarised abelian variety over a number field k of degree D. Let σ0 : k ↪→ C be an
embedding of k into C. Let pA ∈ A(k) be a k-rational point of A, uA ∈ tAσ0 be a logarithm of
pA, and consider W0 < tA a k-vector subspace of tA.

Define A′ to be the smallest subvariety of Aσ0 whose tangent subspace contains uA. From
[BG19, Proposition 4.2] (which follows from [Rém20, Théorème 1.1]) A′ is defined over some Galois
extension kA/k of degree at most f(g) := 2α(g)6g−1g!, with α(2) = 2, α(4) = 5, α(5) = 7/6, and
α(g) = 1 otherwise. The following lemma gives an upper-bound for [kA : k] that will be simpler
to use.

Lemma 7.4. For all integer g, we have [kA : k] ⩽ f(g) ⩽ (3.8g)g.

Proof. Using the upper-bound g! ⩽ 2
(g
2

)g, we have

f(g) = 2α(g)× 6g−1g! ⩽
2α(g)

3
(3g)g .

For every value of g except g = 2 and 4, we have 2α(g) ⩽ 3. This gives the announced
result in these cases. For g = 2, we have f(g) = 48 ⩽ (3.8 · 2)2, and for g = 4, we have
f(g) = 51840 ⩽ (3.8 · 4)4. ■

Let u0 ∈ (tA′ +W0 ⊗k kA)/(W0 ⊗k kA) ⊆ tA/W0 ⊗k kA and let

W := {(λ(x), x), x ∈ tA} ⊂ tA/W0 × tA,

where λ : tA → tA/W0 is the canonical projection. We want to find a lower bound for the distance
d((u0, uA),Wσ) for σ : kA ↪→ C extending σ0. We fix such σ and we define W ′

0 := (W0⊗kkA)∩tA′ .
Let φ be the linear map

φ :

∣∣∣∣∣ tA′/W ′
0 −→ (tA′ +W0 ⊗k kA)/(W0 ⊗k kA)

x+W ′
0 7−→ x+W0

.

We let u′0 := φ−1(u0) ∈ tA′/W ′
0. Our strategy to bound d((u0, uA),Wσ) is to transpose our setup

in a situation where theorem 4.3 applies, and to compare the quantities that will appear in terms
of A, uA, pA, W0, and u0. The abelian variety A′ satisfies hypothesis 4.2. Therefore, to apply
theorem 4.3 to A′, W ′

0, uA, and u′0 we have to ensure that the vector space W ′
0 is a strict vector

subspace of tA′ . To do so we make the following assumption.

Hypothesis 7.5. Assume that uA doesn’t lie in W0 ⊗σ0 C.

Hypothesis 7.5 implies thatW ′
0 is distinct from tA′ . Indeed, ifW ′

0 = tA′ thenW0⊗kkA contains
tA′ , but uA lies in tA′,σ but not in W0,σ. Letting W ′ := {(λ′(x), x), x ∈ tA′} ⊆ tA′/W ′

0× tA′ , with
λ′ : tA′ → tA′/W ′

0 the canonical projection, theorem 4.3 gives us a lower-bound for d((u′0, uA),W ′
σ).

The following result allows us to compare d((u0, uA),Wσ) and d((u′0, uA),W ′
σ).
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Proposition 7.6. We have

d((u0, uA),Wσ) ⩾
d((u′0, uA),W

′
σ)√

2∥φ−1∥σ
.

Proof. First, we have ∥u0−λ(uA)∥σ ⩽
√
2d((u0, uA),Wσ). Indeed, let (λ(x), x) ∈ (tA/W0 × tA)σ

be such that d((u0, uA),Wσ)
2 = ∥uA − x∥2σ + ∥u0 − λ(x)∥2σ. We then have

∥λ(uA))− u0∥2σ ⩽ (∥λ(uA)− λ(x)∥σ + ∥u0 − λ(x)∥σ)2

⩽ 2(∥uA − x∥2σ + ∥u0 − λ(x)∥2σ)
⩽ 2d((u0, uA),Wσ)

2.

Then, define W̃ := {(λ(x), x), x ∈ tA′} ⊆W . By definition, we have

∥u0 − λ(uA)∥2σ ⩾ inf
x∈tA′

(
∥u0 − λ(x)∥2σ + ∥x− uA∥2σ

)
= d((u0, uA), W̃σ)

2.

Finally, notice that the image of W̃ by φ−1 × Id is equal to W ′. Therefore,

d((u′0, uA),W
′
σ) = d((φ−1 × Id)(u0, uA), (φ

−1 × Id)(W̃σ))

⩽ ∥φ−1 × Id ∥σd((u0, uA), W̃σ).

To conclude, the norm φ−1×Id is smaller than max(∥φ−1∥σ, ∥ Id ∥σ) = max(∥φ−1∥σ, 1). Moreover,
the norm ∥φ∥σ is smaller or equal to 1 because for x ∈ tA′/W ′

0 ⊗kA kσ, we have

∥φ(x+W ′
0,v)∥σ = inf

w0∈W0,σ

∥x+ w0∥σ ⩽ inf
w0∈W ′

0,σ

∥x+ w0∥σ = ∥x+W ′
0,σ∥σ,

meaning that ∥φ∥σ ⩽ 1 for any place σ. Finally, we get ∥φ−1∥σ ⩾ 1 because 1 ⩽ ∥ Id ∥σ ⩽
∥φ∥σ∥φ−1∥σ ⩽ ∥φ−1∥σ. ■

From the lower-bound of proposition 7.6, let us apply theorem 4.3. Indeed, (A′, uA) satisfies
hypothesis 4.2 by construction, we can apply the theorem to A′, W ′

0, σ, uA, and u0 to get a lower
bound for d((u′0, uA),W ′

σ). Taking E = e in the theorem we get

d((u′0, uA),W
′
σ) ⩾ −(5(g′ + t′))

4(g′+t′+1)2

t′ a′1/t
′ (
1 + [kA : Q]a′ log a′

)g′/t′
×
(
a′ + [kA : Q] log b′

) 1

y′1+g′/t′ degL(A
′)1/t′

,
(7.3)

with

g′ := dimA′, log a′ := max

(
ĥL(pA),

∥uA∥2σ0e
2

[kA : Q]

)
,

t′ := codimtA′ (W
′
0), log b′ := max

(
hO(1)(p

′
0), h(W

′
0)
)
,

a′ :=
⌈
[kA : Q] max

(
1, hF (A

′), log h0(A′, L), log[kA : Q], log log a′
)⌉
,

and y′ := inf
B⊊A′

(
degLB

degLA
′

)1/(dimA′−dimB)

.
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The strategy to prove theorem 4.6 from proposition 7.6 and (7.3) is to compare the quantities
∥φ−1∥σ, log a′, log b′, a′, and degLA

′, in terms of invariants depending on A, pA, uA, W0, and
u0. This is achieved by the following lemmas 7.7 to 7.12, 7.14 and 7.15. Let us define

MA := max

(
1, logD,hF (A), log ĥL(pA), log

∥uA∥2σ0
D

)
.

Before going into the heart of the proof, we first treat the case g = 1 which is much simpler. In
this case, the polarisation L is some tensor power Ln0 of the unique principal polarisation L0 on
A. We have A′ = A, W0 = {0} and therefore

dL((u0, uA),Wσ) =
√
ndL0((u0, uA),Wσ) ⩾ dL0((u0, uA),Wσ).

We can directly apply theorem 4.3 to (A,L0, pA, uA,W0, u0) as an elliptic curve always satisfies
hypothesis 4.2. Taking E = e we get

log dL0((u0, uA),Wσ) ⩾ −1036a0 (1 +Da0 log a0) (a0 +D log b0) ,

where we have denoted a0, log a0, and log b0 the quantities a, log a, and log b corresponding to
the datum (A,L0, pA, uA,W0, u0). We then have

a0 ⩽ 2Dmax

(
1, hF (A), logD, log

+ ĥL0(pA), 2 + log
∥uA∥2σ,L0

D

)

⩽ 6Dmax

(
1, hF (A), logD, log

+ ĥL(pA), log
∥u∥2σ,L
D

)
,

log a0 ⩽ e2max

(
ĥL0(pA),

∥uA∥2σ,L0
D

)
⩽ e2max

(
1, ĥL(pA),

∥uA∥2σ,L
D

)
, and log b0 = log b. We

therefore conclude that

log dL((u0, uA),Wσ) ⩾ −1036 × 6DMA × (1 + 6e2)DMAmax

(
1, ĥL(pA),

∥uA∥2σ,L
D

)
× 7Dmax (MA, log b)

⩾ −2 · 1039D3M2
Amax (MA, log b)max

(
1, ĥL(pA),

∥uA∥2σ,L
D

)
.

Let us now assume that g ⩾ 2. A recent result of Rémond gives a very good comparison between
hF (A

′) and hF (A).

Lemma 7.7 ([Rém22]). We have hF (A′) ⩽ hF (A) + g log(π
√
2).

The quantity log a′ is also not so difficult to estimate.

Lemma 7.8. We have log a′ ⩽ e2max

(
ĥL(pA),

∥uA∥2σ0
D

)
.

To compare degLA
′ with invariants depending only on A and uA, we use a result of Bosser

and Gaudron.
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Lemma 7.9. If g ⩾ 2, we have

degLA
′ ⩽ (132g)4g

2
D2g+1max

(
ĥL(pA),

∥uA∥2σ0
D

)g
Mg+1
A .

Proof. [BG19, Théorème 1.1] states that for g ⩾ 2, we have

degLA
′ ⩽ (100g)4gg

′
(
DĥL(pA) + ∥uA∥2σ0

)g′
×
(
Dmax

(
1, log (D) , hF (A), log

(
DĥL(pA) + ∥uA∥2σ0

)))g′+1
.

We now have

DĥL(pA) + ∥uA∥2σ0 ⩽ 2Dmax

(
ĥL(pA),

∥uA∥2σ0
D

)
,

and

log
(
DĥL(pA) + ∥uA∥2σ0

)
⩽ logD + log

(
2max

(
ĥL(pA),

∥uA∥2σ0
D

))
⩽ (2 + log(2))max

(
1, logD, log ĥL(pA), log

∥uA∥2σ0
D

)
.

As g′ is bounded by g, we get

degLA
′ ⩽ (100g)4g

2
2g(2 + log 2)g+1D2g+1max

(
ĥL(pA),

∥uA∥2σ0
D

)g
Mg+1
A .

We finally bound the constant. We have

2g(2 + log 2)g+1 =
(
21/(4g)(2 + log 2)(g+1)/(4g2)

)4g2
.

The terms in the brackets is bounded by 1.32 if g ⩾ 2. Therefore, if g ⩾ 2, then

(100g)4g
2
2g(2 + log 2)g+1 ⩽ (132g)4g

2
.

■

Lemma 7.9 allows us immediately to bound the quantity y′−(1+g′/t′)(degLA
′)−1/t′ .

Lemma 7.10. If g ⩾ 2, then

1

y′1+g/t(degLA
′)1/t

⩽ (132g)4g
3
Dg(2g+1)max

(
ĥL(pA),

∥uA∥2σ0
D

)g2
M

g(g+1)
A .

Proof. As y′ degLA′ ⩾ 1 from proposition 4.1 we have

1

y′1+g′/t′(degLA
′)1/t′

⩽ (degLA
′)1+(g′−1)/t′ ⩽ (degLA

′)g
′
.

We then bound g′ by g and use lemma 7.9 to conclude. ■
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The result of lemma 7.9 also leads to an estimation for log h0(A′, L).

Lemma 7.11. If g ⩾ 2, then
log h0(A′, L) ⩽ 13g3MA.

Proof. We have log h0(A′, L) = log degLA
′ − log g′! ⩽ log degLA

′. Therefore, using lemma 7.9
we have

log h0(A′, L) ⩽ 4g2 log(132g) + (2g + 1) logD

+ g logmax

(
ĥL(A),

∥uA∥2σ0
D

)
+ (g + 1) logMA

⩽
(
4g2 log(132g) + (2g + 1) + g + (g + 1)

)
MA.

To conclude, if g ⩾ 2 we have

4g2 log(132g) + 4g + 2 = g3
(
4 log(132g)

g
+

4g + 2

g3

)
⩽ 13g3.

We deduce that log h0(A′, L) ⩽ 13g3MA. ■

We can use this result to bound the quantity a′.

Lemma 7.12. If g ⩾ 2, then
a′ ⩽ (59g)gDMA.

Proof. Recall that we have

a′ =
⌈
[kA : Q] max

(
1, hF (A

′), log h0(A′, L), log[kA : Q], log log a′
)⌉
.

Using lemmas 7.7, 7.8 and 7.11, we deduce that

a′ ⩽ 2f(g)Dmax
(
1, hF (A) +

g

2
log(π

√
2), 13g3MA, logD + log f(g),

2 + max

(
log ĥL(pA), log

∥uA∥2σ0
D

))

⩽ 26g3f(g) ·Dmax

(
1, logD,hF (A), log ĥL(pA), log

∥uA∥2σ0
D

)
.

The last inequality is justified by the fact that 13g3 is always bigger than 1 + g
2 log(π

√
2),

1 + log f(g) ⩽ 1 + g log(3.8g), and 3. To conclude, we have f(g) ⩽ (3.8g)g from lemma 7.4 and if
g ⩾ 2, we have

26g3f(g) ⩽ (3.8g)g
(
261/gg3/g

)g
⩽ (3.8g)g

(
261/2 · 3

)g
⩽ (59g)g.

■
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The remaining quantities to bound are log ∥φ−1∥σ and log b′. Until now, all the estimations
only involved quantities related to our abelian variety A but the upcoming ones will also have to
take into account W0 and u0. We define

log b = max
(
hO(1)(p0), h(W0)

)
.

We first prove a general result about norms of linear applications that we will use to bound
∥φ−1∥σ.

Lemma 7.13. Let K be a number field and let E, F be two Hermitian adelic vector bundles over
SpecOK of dimension n. Let ψ : E → F be an isomorphism. For any place v of K, we have

∥ψ∥v ⩽ ∥ψ−1∥n−1
v |detψ|v,

for the operator norm induced by the structure of Kv-normed spaces on Ev and Fv.

Proof. First assume that v is non-Archimedean. Let (e1, . . . , en) be a basis of E such for any
a1, . . . , an ∈ Kv, we have ∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥
v

= max
1⩽i⩽n

|ai|v.

Similarly, consider a basis (f1, . . . , fn) of F , such that for all b1, . . . , bn ∈ Kv, we have∥∥∥∥∥∥
n∑
j=1

bjfj

∥∥∥∥∥∥
v

= max
1⩽j⩽n

|bj |v.

We get the following diagram of Kv-normed vector spaces.

Ev Fv

Kn
v Kn

v

ψ

P Q

Ψ

where P and Q are the applications induced by the bases (e1, . . . , en) and (f1, . . . , fn), and Ψ is
the matrix QψP−1 corresponding to ψ. By construction, we have ∥ψ∥v = ∥Ψ∥v. Moreover, the
inverse of Ψ−1 is equal to det(Ψ)CT, where C is the cofactor matrix of Ψ−1. As the coefficients
of C consist of minors of Ψ−1 of size n− 1, we have ∥C∥v ⩽ ∥Ψ−1∥n−1

v . Therefore, we get

∥ψ∥v = ∥Ψ∥v ⩽ |detΨ|v∥C∥v ⩽ | detΨ|v∥Ψ−1∥n−1
v = ∥ψ−1∥n−1

v |detψ|v.

If v is Archimedean, the v-norm of ψ is equal to the square root of the norm of the biggest
eigenvalue of ψT

ψ. Let us denote λ1, λ2 . . . , λn the spectrum of ψT
ψ with 0 < |λ1|v ⩽ · · · ⩽ |λn|v.

We then have ∥ψ∥2v = |λn|v and ∥ψ−1∥2v = |λ1|−1
v . This leads to

∥ψ∥2v = |λn|v = |λ1 · · ·λn|v × |λ1 · · ·λn−1|−1
v ⩽ | det

(
ψ
T
ψ
)
|v|λ1|−n+1

v = ∥ψ−1∥2(n−1)
v |detψ|2v.

This proves that ∥ψ∥v ⩽ ∥ψ−1∥n−1
v |detψ|v in the Archimedean case too. ■

We now apply lemma 5.12 to φ−1.
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Lemma 7.14. If g ⩾ 2, we have

log ∥φ−1∥σ ⩽ (94g)gDmax(MA, log b).

Proof. Take ψ := φ−1 in lemma 5.12 and any place v of kA. We get ∥φ−1∥v ⩽ ∥φ∥t
′−1
v |detφ−1∥v.

We claim that the v-norm of φ is always less or equal to 1. Indeed, for x ∈ tA′/W ′
0 ⊗kA kv, we

have
∥φ(x+W ′

0,v)∥v = inf
w0∈W0,v

∥x+ w0∥v ⩽ inf
w0∈W ′

0,v

∥x+ w0∥v = ∥x+W ′
0,v∥v,

meaning that ∥φ∥v ⩽ 1 for any place v. We deduce that for our embedding σ, we have
log ∥φ−1∥σ ⩽ log |detφ−1|σ ⩽ D[kA : k]h(detφ−1). Moreover, from [Gau21, Proposition 42] we
can express the height of detφ in terms of Arakelov degrees in the following way:

h(detφ−1) = d̂egn

(
(tA′ +W0 ⊗Ok OkA)/(W0 ⊗Ok OkA)

)
− d̂egn

(
tA′/W ′

0

)
.

Using the inequalities d̂egn
(
W ′

0

)
, d̂egn

(
t′A +W0 ⊗Ok OkA

)
⩽ gmax

(
0, µ̂max

(
tA
))

coming from
the very definition of the maximal slope, we deduce a first estimation for the norm of φ relative
to σ | σ0.

log ∥φ−1∥σ ⩽ [kA : k]D
(
d̂egn

(
tA′ +W0 ⊗Ok OkA

)
− d̂egn(W0)− d̂egn(tA′) + d̂egn(W ′

0)
)

⩽ f(g)D

(
2gmax(0, µ̂max(tA)) + h(W0) + hF (A

′) +
1

2
log h0(A′, L)

)
.

From proposition 3.28, the maximal slope of tA is bounded by 12hF (A) + 16g log(24g). Applying
lemmas 7.7 and 7.11, we get

log ∥φ−1∥σ ⩽ f(g)D

(
32g2 log(24g) + (24g + 1)hF (A) + g log(π

√
2) + h(W0) +

13g3

2
MA

)
⩽ (3.8g)g

(
32g2 log(24g) + 24g + 1 + g log(π

√
2) + 1 + 6.5g3

)
Dmax(MA, log b)

⩽ (94g)gDmax(MA, log b).

■

To conclude, we look at the term log b′ = max
(
hO(1)(p

′
0), h(W

′
0)
)
. The following result

bounds it in terms of MA and log b := max
(
hO(1)(p0), h(W0)

)
.

Lemma 7.15. If g ⩾ 2, we have

log b′ ⩽ 42g3max(MA, log b).

Proof. First, applying the inequality d̂egn(F) + d̂egn(G) ⩽ d̂egn(F + G) + d̂egn(F ∩ G) from
proposition 3.6 with F =W0 ⊗Ok OkA and G = tA′ , we get

−d̂egn
(
W ′

0

)
⩽ −d̂egn

(
W0

)
− d̂egn(tA′) + d̂egn

(
W0 ⊗Ok OkA + tA′

)
⩽ h(W0) + hF (A

′) +
1

2
log h0(A′, L) + gmax

(
0, µ̂max

(
tA
))
.
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Using the upper bound gmax
(
0, µ̂max

(
tA
))

⩽ 12ghF (A) + 16g2 log(24g) from proposition 3.28,
and lemmas 7.7 and 7.11, we deduce

−d̂egn(W ′
0) ⩽ h(W0) + hF (A) + g log(π

√
2) +

13g3

2
MA + 12ghF (A) + 16g2 log(24g)

⩽
(
1 + 1 + g log(π

√
2) + 6.5g3 + 12g + 16g2 log(24g)

)
max(MA, log b)

⩽ 42g3max(MA, log b).

Let us now bound hO(1)(p
′
0). From the definition u′0 = φ−1(u0) we deduce using [Gau06, §4.4.3]

that hO(1)(p
′
0) ⩽ h(φ) + hO(1)(p0). As we have already seen, for any place v, the v-norm of φ is

less than or equal to 1 and therefore h(φ) is non-positive. We finally get

log b′ ⩽ max
(
hO(1)(p

′
0), h(W

′
0)
)
⩽ 42g3max(MA, log b).

■

We are finally ready to prove theorem 4.6. Recall that from proposition 7.6 and (7.3), we
have

log d(u,Wσ) ⩾ −(5(g′ + t′))
4(g′+t′+1)2

t′ a′1/t
′ (
1 + [kA : Q]a′ log a′

)g′/t′
× (a′ + [kA : Q] log b′)× 1

y′1+g′/t′ degL(A
′)1/t′

− log
√
2− log ∥φ−1∥σ.

Moreover, we have proved that

• a′ ⩽ (59g)gDMA (lemma 7.12);

• log a′ ⩽ e2max

(
ĥL(pA),

∥uA∥2σ0
D

)
(lemma 7.8);

• log b′ ⩽ 42g3max(MA, log b) (lemma 7.15);

•
1

y′1+g′/t′(degLA
′)1/t′

⩽ (132g)4g
3
Dg(2g+1)max

(
ĥL(pA),

∥uA∥2σ0
D

)g2
M

g(g+1)
A (lemma 7.10);

• log ∥φ−1∥σ ⩽ (94g)gDmax(MA, log b) (lemma 7.14).

Using lemmas 7.8 and 7.12 we can bound the term 1 + [kA : Q]a′ log a′:

1 + [kA : Q]a′ log a′ ⩽ (1 + f(g)(59g)ge2)max

(
1, D ×DMA ×max

(
ĥL(pA),

∥uA∥2σ0
D

))
⩽
(
1 + (3.8g)g(59g)ge2

)
D2MAmax

(
1, ĥL(pA),

∥uA∥2σ0
D

)
⩽ (25g)2gD2MAmax

(
1, ĥL(pA),

∥uA∥2σ0
D

)
.

Similarly, we can bound the term a′ + [kA : Q] log b′ using lemmas 7.12 and 7.15:

a′ + [kA : Q] log b′ ⩽ (59g)gDMA + f(g)× 42g3Dmax(MA, log b)

⩽
(
(59g)g + (3.8g)g × 42g3

)
Dmax(MA, log b)

⩽ (92g)gDmax(MA, log b).
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Using these inequalities together with lemmas 7.10 and 7.14, we get

log d(u,Wσ) ⩾ −
(
5(g′ + t′))

4(g′+t′+1)2

t′ (59g)g/t
′
(25g)2gg

′/t′(92g)g(132g)4g
3

)
(DMA)

1/t′

×Dmax(MA, log b)

(
D2MAmax

(
1, ĥL(pA),

∥uA∥2σ0
D

))g′/t′

×Dg(2g+1)max

(
ĥL(pA),

∥uA∥2σ0
D

)g2
M

g(g+1)
A

− log
√
2− (94g)gDmax(MA, log b)

⩾ −c(g)D(2g+1)(g+1)max

(
1, ĥL(pA),

∥uA∥2σ0
D

)g2+g
M

(g+1)2

A max(MA, log b),

with

c(g) = (10g)4(g+2)2(59g)g(25g)2g
2
(92g)g(132g)4g

3
+ log

√
2 + (94g)g ⩽ (265000g)4g

3
.

Notice that we have bounded 4(g′+t′+1)2

t′ by 4(g + 2)2 because x 7→ 4(g′+x+1)2

x is decreasing for
x ∈ [1, g′], therefore maximal at x = 1 with value 4(g′ + 2)2 ⩽ 4(g + 2)2. We are finally done in
the case g ⩾ 2.
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Chapter 8

English introduction

This part of the thesis mainly comes from the article [Pea21]. Chapters 8 and 10 have been
lengthened a bit, slight changes have been made in chapters 11 and 13 and sections 15.1 and 15.1.2,
and chapter 14 and section 15.2 are mainly new and the corresponding section [Pea21, 5. Dihedral
Representations] has been augmented with new results.

8.1 Residual modular representations

Among all modular forms, the most famous one is with no doubt the Ramanujan Delta function.
Considered and first studied by Ramanujan in 1916 in [Ram00, §15-19], it can be defined as

∆ := q
∞∏
n=1

(1− qn)24 =
∞∑
n=0

τ(n)qn.

Since this seminal article, many mathematicians have studied the properties of the tau and delta
functions. Apart from being the Fourier coefficients of a modular newform for the whole modular
group, the coefficients (τ(n))n∈N satisfy the following surprising congruence relations.

τ(p) ≡ 1 + p11 (mod 25), for all primes p ̸= 2;

τ(p) ≡ p2 + p9 (mod 33), for all primes p;
τ(p) ≡ p+ p10 (mod 52), for all primes p;
τ(p) ≡ p+ p4 (mod 7), for all primes p;
τ(p) ≡

( p
23

)
τ(p) (mod 23), for all primes p ̸= 23;

τ(p) ≡ 1 + p11 (mod 691), for all primes p,

(8.1)

where
( p
23

)
denotes the Legendre symbol at p and 23. Note the one can prove more general

relations modulo higher powers of 2, 3, 5, 7, 23 and 691. See the beginning of [Swi73] for a
statement and references for those congruences.

For long, no geometric setup had been given to explain the congruences (8.1). In his Delange–
Pisot–Poitou lecture in 1968 [Ser69], Jean-Pierre Serre proposed a conjecture relative to the
existence of a certain Galois representation attached to ∆. It states the following.
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Conjecture 8.1 ([Ser69, 3.2. Conjecture]). Let ℓ be a prime number and denote by Kℓ the
maximal extension of Q unramified outside ℓ. There exists a continuous linear representation

ρℓ : Gal(Kℓ/Q) −→ GL(Vℓ),

where Vℓ is a Qℓ-vector space of dimension 2, satisfying the following condition:

(C) For every prime number p ̸= ℓ, the characteristic polynomial of a Frobenius element at p is
equal to X2 − τ(p)X + p11.

As explained by Serre, this conjecture gives a Galois theoretic explanation for the congruences
(8.1). Indeed, there is always a lattice in Vℓ that is stable under the action of Galois induced by
ρℓ. A choice of basis for this lattice induces a representation Gal(Kℓ/Q) → GL2(Zℓ) that has
the same trace and determinant as ρℓ. One can then reduce this representation modulo ℓn to get
a representation

ρℓ,n : Gal(Kℓ/Q) −→ GL2(Z/ℓnZ).

In this setup, the previous congruences can be reformulated, up to semi-simplification, as

ρ2,5 ∼= 1⊕ χ11
25 ; ρ7,1 ∼= χ7 ⊕ χ4

7;

ρ3,2 ∼= χ2
33 ⊕ χ

9
33 ; ρ23,1 ∼=

( ·
23

)
⊗ ρ23,1;

ρ5,2 ∼= χ52 ⊕ χ10
52 ; ρ691,1 ∼= 1⊕ χ11

691,

(8.2)

where χℓn is the cyclotomic character modulo ℓn. With this reformulation arise several questions.
Are the primes 2, 3, 5, 7, 23, and 691 the only primes for which isomorphisms as in (8.2) appear?
Is there a way to predict and compute these isomorphisms? Is conjecture 8.1 true and does it
generalise to other modular newforms?

The answer to the last question is in fact affirmative since Deligne in 1969 and Deligne–Serre
in 1974 proved the following result for all modular forms of weight k ⩾ 2 and k = 1 respectively.

Theorem 8.2 ([Del71], [DS74, Théorème 4.1]). Let k, N be two positive integers, and let ε be a
Dirichlet character modulo N . Let f be a newform of weight k, level N , and character ε. Denote
by Kf the number field generated by the Fourier coefficients of f .

For every prime ideal λ in the ring of integers of Kf of residue characteristic ℓ, there exists
a continuous Galois representation

ρf,λ : Gal(Q/Q) −→ GL2(F ),

where F = Kf,λ is the λ-adic completion of Kf if k ⩾ 2, and F = C if k = 1, satisfying the
following conditions:

1. The representation ρf,λ is unramified outside Nℓ;

2. For every prime number p ∤ Nℓ, the characteristic polynomial of a Frobenius element at p
is equal to X2 − ap(f)X + pk−1ε(p), where ap(f) denotes the p-th Fourier coefficient of f .
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Theorem 8.2 is the starting point of many theorems and conjectures of the second half of the
twentieth century and many are still active today. Among others, one can cite Serre’s conjecture
[Ser87], Wiles’ modularity theorem [Wil95, Theorem 0.4], the questions of level raising [DT94]
and lowering [Rib90, Theorem 1.1], and so on.

As explained by Ribet in [Rib77, Theorem (2.3)], the conditions 1 and 2 characterise entirely
ρf,λ up to isomorphism and ensure that it is always irreducible.

Let us now focus on the case k ⩾ 2 – the case of modular forms of weight 1 being a whole
story on its own. We fix a newform f of weight k ⩾ 2, level N ⩾ 1, and character ε. Let λ
be a prime ideal of the ring of integers OKf of Kf . As before, one can construct a lattice of
K2
f,λ that is stable under the action of Gal(Q/Q). This leads to a representation with values in

the local ring of Kf,λ that we can reduce modulo λ. Writing Fλ the residue field of λ, we get a
representation

ρ̃f,λ : Gal(Q/Q) −→ GL2(Fλ).

This representation depends on the lattice used to reduce ρf,λ. However, the Brauer–Nesbitt
theorem ensures that semi-simplifying ρ̃f,λ leads to a representation ρf,λ with values in Fλ
uniquely characterised up to isomorphism by the following properties:

1. The representation ρf,λ is semi-simple;

2. The represenattion ρf,λ is unramified outside Nℓ;

3. For every prime number p ∤ Nℓ, the characteristic polynomial of a Frobenius element at p
is equal to X2 − ap(f)X + pk−1ε(p) (mod λ).

Remark 8.3. Notice that the reduction modulo λ indeed makes sense for ap(f) and ε(p) because
it is a fact that the coefficients of f are all algebraic integers and that Kf contains the values of
the character of f . See [Rib77, Corollary (3.1)] for a proof of this fact.

Again Čebotarev density theorem and Brauer–Nesbitt theorem ensure that ρf,λ is entirely
determined by the conditions 1, 2, and 3. However, ρf,λ may no longer be irreducible. The
starting point of this part of the present thesis is the following theorem proved by Ribet in 1975
for modular forms of level 1 and in 1985 for modular forms of arbitrary level, and generalising
results of Serre and Swinnerton-Dyer of 1973 for N = 1 and Kf = Q [Ser73; Swi73].

Theorem 8.4 ([Rib85, Theorem 2.1]). For all but finitely many λ the representation ρf,λ is
irreducible. Furthermore, if f is not a form with complex multiplication (see definition 14.3),
then for all but finitely many λ, the order of the image of ρf,λ is divisible by ℓ.

Theorem 8.4 gives a first answer to Serre’s questions about the congruences of the tau function:
there is indeed a finite number of primes ℓ such that for some integers a and b, τ(p) is congruent
modulo ℓ to pa + pb for all but finitely many primes (and they in fact appear only for ℓ = 2, 3, 5,
7, and 691). Indeed, this kind of congruences corresponds exactly to the primes for which ρ∆,ℓ is
reducible. To understand how the congruences of tau modulo 23 is related to Ribet’s theorem,
we need to make it more precise. The classification of the subgroups of PSL2 of a finite field is
known since Dickson [Dic01, Chapter XII]. It goes as follows.
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Theorem 8.5 ([Hup67, Hauptsatz 8.27]). Let q := pf be a power of a prime number p. A
subgroup of PSL2(Fq) is isomorphic to one the following groups.

1. A cyclic group of order z dividing q±1
gcd(q−1,2) ;

2. A dihedral group of order 2z with z dividing q±1
gcd(q−1,2) ;

3. The alternating group A4, only if p > 2 or q = 22n;

4. The symmetric group S4, only if q2 ≡ 1 (mod 16);

5. The alternating group A5, only if p = 5, or q2 ≡ 1 (mod 5);

6. (Z/pZ)n for some non-negative integers n;

7. A semi-direct product (Z/pZ)n ⋊ Z/mZ for some non-negative integer n and m dividing
pn − 1 and q − 1 respectively;

8. PSL2(Fpn) for some integer n dividing f ;

9. PGL2(Fpn) for some integer n dividing 2f .

Using theorem 8.5 and the fact that we can always embed PGL2(Fq) into PSL2(Fq2), we can
reformulate Ribet’s theorem.

Corollary 8.6. Let f be a newform. There are only finitely many prime ideals λ that satisfy
one of the following properties.

1. The representation ρf,λ is reducible;

2. The form f is not CM and the projective image of ρf,λ in PGL2(Fλ) is isomorphic to a
dihedral group D2n with ℓ ∤ 2n, where ℓ is the residue characteristic of λ;

3. The projective image of ρf,λ in PGL2(Fλ) is isomorphic to A4, S4, or A5.

We call a prime ideal that satisfies one of these properties an “exceptional ideal”.

Remark 8.7. Despite the fact that the hypothesis f not CM appears in the second part of
theorem 8.4, the proof of [Rib85, Theorem 2.1] used it only in the dihedral case.

The isomorphism modulo 23 in (8.2) falls in the second case of corollary 8.6. From this point
two natural questions arise.

I) For each case of corollary 8.6, can we bound the residue characteristic of the “exceptional
ideals” in terms of invariants of the modular f (such as the weight, the level, or the
character)?

II) For each case of corollary 8.6, can we compute the exceptional ideals?
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For modular forms of level 1, the result of Ribet from 1975 gives an explicit description of the
prime ideals for which the associated representation is reducible. However, it was no more the
case in 1985. For the second and third cases of corollary 8.6, even the 1975’s proof was not
effective. The first step in making Ribet’s result effective has been accomplished by Billerey and
Dieulefait in 2014 [BD14]. Assuming that the character of f is trivial, they gave explicit criteria
for the residue characteristics ℓ of λ in terms of k and N , for ρf,λ to be reducible. In the two
other cases, they gave explicit bounds for ℓ, in terms of k and N . The goal of this part of the
thesis is to pursue this work and to give as many answers as possible to questions I and II.

8.2 Overview of the results

Let f = q +
∞∑
n=2

an(f)q
n be a newform of weight k, level N , and character ε of conductor c. Let

Kf := Q(an(f))n⩾2 be the coefficients’ field of f , and let λ be a prime ideal in the ring of integers
of Kf above a rational prime number ℓ. The contributions of this part of the thesis are twofold.
On the one hand they extend the results of [BD14] to all newforms of arbitrary weight, level,
and character, giving an explicit bound in all three cases of corollary 8.6 in terms of k, N , and
ε. On the other hand, we give in the reducible and dihedral cases an algorithm that, given the
level, the weight, the character, and a finite number of Fourier coefficients of f , computes all the
reducible prime ideals and all the dihedral prime ideals.

The general ideas we use to prove our results come back to Serre and Swinnerton-Dyer
[Ser73; Swi73]. The three special cases of corollary 8.6 can be formulated in terms of congruences
satisfied by a set of Fourier coefficients of f of density 1 – namely the ones of index coprime to
Nℓ. From these congruences we deduce necessary conditions that need to be satisfied by the
residue characteristic, and with some extra work a bound in all three cases. To get an algorithm
in the dihedral and reducible cases, we work with necessary and sufficient conditions that lead,
with the use of a new Sturm bound, to a finite set of congruences verified by the coefficients of f
that are equivalent to the reducibility or dihedrality of ρf,λ. Let us review in more details our
approach in each case of corollary 8.6.

In the third case, we use the fact that A4, S4, and A5 contain only elements of order at most
3, 4, and 5 respectively. Given the shape of the local representations attached to ρf,λ, this gives
huge restrictions for the possible residue characteristics that fall into this case. The argument
given in [BD14] can be applied almost without modification to the case of a form with non-trivial
character. The bound in this case in given by the following result.

Theorem 8.8 (theorem 10.15). If the projective image of ρf,λ is isomorphic to A4, S4 or A5,
then either ℓ | N or ℓ ⩽ 5k − 4.

Remark 8.9. The proof of the corresponding result in [Pea21, Theorem 0.2] is not correct because
it uses [BD14, Lemma 1.2] that assumes that the weight k is even. This assumption (which comes
from the fact that the character of the forms in [BD14] is trivial) is not true in our general case.
This has been corrected in the proof of theorem 10.15.

In the dihedral case, we get congruences between twists of f . The strategy is then to use a
Sturm bound in characteristic zero and Deligne bound for the coefficients of a modular form to
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get a bound for ℓ. Our result is the following.

Theorem 8.10 (theorem 14.17). Assume ρf,λ has dihedral projective image of prime-to-ℓ order.
If N = 1 then we have ℓ ⩽ k or ℓ ∈ {2k− 1, 2k− 3}. Else, if N ⩾ 2 and f does not have complex
multiplication, then we have

ℓ ⩽ max

(
Nk

3
(2 log log(N) + 2.4) , 25N2

) k−1
2

[Kf :Q]

.

This result gives us indeed an upper bound for ℓ in terms of N and k because [Kf : Q] can
be bounded by the dimension of the C-vector space generated by the newforms of weight k, level
N and character ε (see for example [Mar05]).

In the reducible case, we deal instead with congruences involving Eisenstein series. Our
approach in comparable to the one of Billerey and Dieulefait in [BD14, Section 2]. The restriction
on the character in [BD14] was mainly due to a partial knowledge of the constant term of
Eisenstein series at arbitrary cusps. This computation has been done in full generality in [BM18],
allowing us to generalise their result. The following theorem then follows from combining this
technical result with a detailed study of modular reducible representations, hence extending the
strategy used for the proof of [BD14, Theorem 2.7].

Theorem 8.11 (theorem 13.19). Assume ρf,λ to be reducible. Then one of the following holds:

1. ℓ ⩽ k + 1;

2. ℓ | Nφ(N), where φ denotes the Euler totient function;

3. there exists a prime-to-ℓ order primitive Dirichlet character η of conductor c0 | N such that
η(−1) = (−1)k and ℓ divides the algebraic norm of one of the following non-zero quantities:

(a) pk − η(p) for a prime number p | N ;

(b) the k-th Bernoulli number Bk,η attached to η (see definition 11.1).

The precise study of reducible and dihedral modular representations used in the proof of the
two previous theorems is the main novelty of our results. The basic question we consider is as
follows: How to characterise the reducibility and dihedrality of ρf,λ by a finite number of explicit
congruences? In both the reducible and the dihedral case we give two answers to this question.
A general one that applies without any restriction on ℓ or f , and, under some assumptions on ℓ,
a second one for which the number of congruences to check is independent of ℓ. A weaker form
of our two unconditional results state as follows.

Theorem 8.12 (theorem 13.12). The following are equivalent:

1. ρf,λ is reducible;

2. Let L be a place of Q above λ. There exist two primitive Dirichlet characters ε1, ε2 of
conductor c1, c2 respectively, unramified at ℓ and such that c1c2 | N , and two integers m1,
m2 such that 0 ⩽ m1 ⩽ m2 ⩽ ℓ− 2 and χm1+m2

ℓ ε1ε2 ≡ χk−1
ℓ ε (mod L). Define

k̃ =

{
3 + max(k,m2 + 2m1 + 1) if ℓ | N
ℓ+ 5 +max(k,m2 + ℓm1 + 1) if ℓ ∤ N

.
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For every prime number p ⩽ Nk̃
3

∏
q|2N
q prime

(
1 + 1

q

)
and not dividing 2ℓ, we have

• p ∤ N and ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L);

• or, p | N and ap(f) ≡ pm1bp (mod L) for some bp in the set {0, ε1(p), pm2−m1ε2(p)}.

When this holds, we moreover have ρf,λ ∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2, where ε1 and ε2 are the reductions of
ε1 and ε2 modulo L respectively.

Theorem 8.13 (theorem 14.12). The following are equivalent.

1. The representation ρf,λ has dihedral projective image of prime-to-ℓ order;

2. There exist an integer e ∈ {0, 1} and a primitive Dirichlet character ψ of conductor cψ | N ,
unramified at ℓ, and such that for a prime p dividing N .

• if vp(N) = 1, vp(c) = 0, and p ̸= ℓ, then p ∤ cψ;

• if vp(N) = vp(c) and p ̸= ℓ, then either p ∤ cψ or the p-parts of ψ and ε−1 are equal
modulo λ;

• if v2(N) ∈ {2, 3}, and v2(c) < v2(N), then v2(cψ) ⩽ 2.

Define

k̃ :=

{
k + 4 + 3

(
1 + e ℓ−1

2

)
if ℓ | N ;

k + 4 + (ℓ+ 1)
(
1 + e ℓ−1

2

)
if ℓ ∤ N.

For every prime p ⩽
N gcd(2, N)2k̃

12

∏
p|N

(p+ 1), the following congruences hold:

• ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f) (mod λ) if p ∤ Nℓ;

• ap(f)
2 ≡ pe

ℓ−1
2

+k−1 (ψε)′p (p) (mod λ) if p | N , p ̸= ℓ, vp(N) = vp(c), and ψ is
ramified at p. Here (ψε)′p denotes the prime-to-p part of the Dirichlet character ψε.

Notice that these two results apply with no assumption on f and ℓ. In particular, they can
be used to check the reducibility and the dihedrality of ρf,λ for any given λ, including the ones
with small residue characteristic compared to the weight, or divides the level. Such restrictions
appear for instance in the work of Anni [Ann13, Algorithms 7.2.4 and 10.1.3], where the author
develops a different, “bottom-up” approach, towards these questions in the context of modular
forms “à la Katz”.

In theorems 8.12 and 8.13, the number of congruences to be satisfied depends not only on
N , k and ε, but also on ℓ. Under some assumptions on ℓ, we have been able to remove this
dependency in the bound. A weaker form of these two “big” characteristic results can be stated
as follows.

Theorem 8.14 (theorem 13.17). Assume ℓ > k + 1 and ℓ ∤ Nφ(N), where φ denotes the Euler
totient function. The following are equivalent:

1. ρf,λ is reducible;
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2. Let L be a place of Q above λ. There exist two primitive Dirichlet characters ε1, ε2
of conductor c1, c2 respectively such that c1c2 | N , and ε1ε2 = ε. For all odd primes
p ⩽ Nk

3

∏
q|2N
q prime

(
1 + 1

q

)
, we have

• p ∤ N and ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L);

• p | N and ap(f) ≡ bp (mod L) for some bp ∈ {0, ε1(p), pk−1ε2(p)}.

When this holds, we moreover have ρf,λ ∼= ε1 ⊕ χk−1
ℓ ε2, where ε1 and ε2 are the reductions of ε1

and ε2 modulo L respectively.

Theorem 8.15 (theorem 14.16). Assume ℓ ⩾ k − 1, ℓ /∈ {2k − 1, 2k − 3}, ℓ ∤ N , ℓ ∤ p± 1 for all
primes p dividing N . The following are equivalent.

1. ρf,λ has dihedral projective image of prime-to-ℓ order.

2. There exists a primitive Dirichlet character ψ of conductor cψ | N such that for a prime p
dividing N

• if vp(N) = 1 and vp(c) = 0, then p ∤ cψ;

• if vp(N) = vp(c), then either p ∤ cψ, or the p-parts of ψ and ε−1 are equal;

• if v2(N) ∈ {2, 3}, and v2(c) < v2(N), then v2(cψ) ⩽ 2.

Moreover, for every prime p ⩽ N gcd(N,2)2k
12

∏
p|N

(
1 + 1

p

)
, the following congruences hold.

• ap(f) ≡ ψ(p)ap(f) (mod λ) if p ∤ N ;

• ap(f)
2 ≡ pk−1(ψε)0(p) (mod λ) if p | N , vp(N) = vp(c) and ψ is ramified at p, where

(ψε)0 denotes the primitive character associated to ψε.

We stress the fact that according to theorems 8.12 and 8.14, proving the reducibility of ρf,λ
requires checking around N max(k2, N) log log(N) congruences (and even Nk log log(N) for the
primes ℓ satisfying the assumptions ℓ > k + 1 and ℓ ∤ Nφ(N)). Notice that the log log(N) part
comes from the upper-bound we prove in lemma 12.23. Similarly, it follows from theorems 8.13
and 8.15 that proving the dihedrality of ρf,λ needs around N max(k2, N) log logN congruences
to check (and around Nk log logN when the assumptions of theorem 8.15 hold).

To achieve such bounds, we extensively use the local description of ρf,λ at the bad prime
numbers (i.e. the prime numbers dividing N), together with generalised Sturm bounds theorems
and an appropriate use of degeneracy maps between modular forms spaces of various levels.
Having a sharp bound is especially important from a computational point of view. Indeed, those
four results also provide us two algorithms: one that explicitly computes the exact set of λ such
that ρf,λ is reducible, and one that explicitly computes the exact set of λ’s such that ρf,λ has
dihedral projective image. We have implemented these algorithms in PARI/GP [21].



Chapitre 9

Introduction en français

Cette partie de la thèse vient principalement de l’article [Pea21]. Les chapitres 9 et 10 ont été
rallongés légèrement. Quelques changements ont été effectués dans les chapitres 11, 13, et les
sections 15.1, 15.1.2. Enfin, le chapitre 14, et la section 15.2 sont en grande partie nouveaux.

9.1 Représentations résiduelles modulaires

Parmi toutes les formes modulaires, la plus célèbre est sans nul doute la fonction Delta de
Ramanujan. Définie et étudiée par Ramanujan en 1916 dans l’ouvrage [Ram00, §15-19], elle est
définie par la série génératrice

∆ := q
∞∏
n=1

(1− qn)24 =
∞∑
n=0

τ(n)qn.

Depuis cet article fondateur de nombreux mathématiciens ont étudié les propriétés des fonctions
tau et delta. Outre être les coefficients d’une forme modulaire nouvelle pour le tout le groupe
modulaire, les coefficients (τ(n))n∈N satisfont les surprenantes congruences suivantes.

τ(p) ≡ 1 + p11 (mod 25), pour tout nombre premier p ̸= 2 ;

τ(p) ≡ p2 + p9 (mod 33), pour tout nombre premier p ;

τ(p) ≡ p+ p10 (mod 52), pour tout nombre premier p ;

τ(p) ≡ p+ p4 (mod 7), pour tout nombre premier p ;

τ(p) ≡
( p
23

)
τ(p) (mod 23), pour tout nombre premier p ̸= 23 ;

τ(p) ≡ 1 + p11 (mod 691), pour tout nombre premier p,

(9.1)

où
( p
23

)
est le symbole de Legendre modulo 23 en p. Des congruences plus générales modulo des

puissances plus grandes de 2, 3, 5, 7, 23 et 691 existent aussi. Nous renvoyons le lecteur à [Swi73]
pour les énoncés et des références pour ces congruences.

Pendant de nombreuses années, les congruences (9.1) n’étaient expliquée par aucun cadre
géométrique plus général. C’est en 1968 que Jean-Pierre Serre proposa une conjecture relative
à l’existence d’une famille de représentations galoisiennes associée à ∆ dans son Séminaire
Delange–Pisot–Poitou de 1968 [Ser69]. Sa conjecture était la suivante.

135
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Conjecture 9.1 ([Ser69, 3.2. Conjecture]). Pour nombre premier ℓ, il existe une représentation
linéaire continue

ρℓ : Gal(Kℓ/Q) −→ GL(Vℓ),

où Kℓ est l’extension maximale non ramifiée en ℓ de Q, et Vℓ est un Qℓ-espace vectoriel de
dimension 2, satisfaisant à la condition suivante :

(C) Pour tout nombre premier p ̸= ℓ, le polynôme caractéristique de ρℓ(Frobp) est égale à
X2 − τ(p)X + p11.

Serre explique que cette conjecture donne une interprétation galoisienne des congruences
(8.1). En effet, considérons un réseau Λℓ stable par Gal(Kℓ/Q) dans Vℓ (un tel réseau existe
toujours). Le choix d’un tel réseau induit une représentation Gal(Kℓ/Q) → GL2(Zℓ) ayant la
même trace et le même déterminant que ρℓ. En réduisant cette représentation modulo ℓn, on
obtient une représentation

ρℓ,n : Gal(Kℓ/Q) −→ GL2(Z/ℓnZ).

On peut alors reformuler les congruences précédentes (à semi-simplification près) par les isomor-
phismes suivants.

ρ2,5 ∼= 1⊕ χ11
25 ; ρ7,1 ∼= χ7 ⊕ χ4

7 ;

ρ3,2 ∼= χ2
33 ⊕ χ

9
33 ; ρ23,1 ∼=

( ·
23

)
⊗ ρ23,1 ;

ρ5,2 ∼= χ52 ⊕ χ10
52 ; ρ691,1 ∼= 1⊕ χ11

691,

(9.2)

où χℓn est le caractère cyclotomique modulo ℓn. De ces isomorphismes émergent plusieurs
questions : Est-ce que ce type d’isomorphismes apparaît uniquement pour les nombres premiers
2, 3, 5, 7, 23, et 691 ? Y a-t-il une procédure pour prédire et calculer ces isomorphismes ? La
conjecture 9.1 est-elle vraie et se généralise-t-elle pour d’autres newform ?

La réponse à la dernière question est positive et a été apportée par Deligne en 1969 pour des
formes de poids supérieur ou égal à 2, et par Deligne et Serre en 1974 pour des formes modulaires
de poids 1. Leurs énoncés sont les suivants.

Théorème 9.1 ([Del71], [DS74, Théorème 4.1]). Soient k et N deux entiers strictement positifs,
et soit ε un caractère de Dirichlet modulo N . Soit f une newform de poids k, niveau N , et de
caractère ε. On désigne par Kf le corps de nombres engendré par les coefficients de Fourier de f .

Soit λ un idéal premier de l’anneau des entiers de Kf de caractéristique résiduelle ℓ. Il existe
une représentation galoisienne linéaire continue

ρf,λ : Gal(Q/Q) −→ GL2(F ),

où F := Kf,λ est la complétion λ-adique de Kf si k ⩾ 2, et F := C si k = 1, qui satisfait les
conditions suivantes :

1. La représentation ρf,λ est non ramifiée en dehors de Nℓ ;

2. Pour tout nombre premier p ∤ Nℓ, le polynôme caractéristique de ρf,λ en un Frobenuis en p
est égal à X2 − ap(f)X + pk−1ε(p), où ap(f) est le pe coefficient de Fourier de f .
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La démonstration du théorème 9.1 marque le point de départ de nombreux théorèmes et
conjectures de la seconde moitié du XXe siècle – et beaucoup sont ouvertes encore aujourd’hui.
Parmi eux on peut citer la conjecture de modularité de Serre [Ser87], le théorème de modularité
de Wiles [Wil95, Theorem 0.4], les questions d’augmentations du niveau [DT94] et d’abaissement
du niveau [Rib90, Theorem 1.1].

Comme l’explique Ken Ribet dans [Rib77, Theorem (2.3)], les conditions 1 et 2 caractérisent
entièrement la représentation ρf,λ à isomorphisme près, et imposent qu’elle soit irréductible.

Concentrons-nous désormais sur le cas du poids supérieur à 2 – le cas des formes modulaires
de poids 1 étant toute une autre histoire. Soit f une newform de poids k ⩾ 2, niveau N ⩾ 1, et
caractère de ε. Soit λ un idéal premier de l’anneau des entiers OKf du corps Kf des coefficients
de f . Comme précédemment, on peut construire un réseau Galois-stable de K2

f , et en conjuguant
par ce réseau on obtient une représentation à valeurs dans l’anneau local de Kf . Notons Fλ le
corps résiduel de λ. On peut alors réduire modulo λ la représentation obtenue et on trouve

ρ̃f,λ : Gal(Q/Q) −→ GL2(Fλ).

Cette représentation dépend du choix du réseau utilisé pour réduire ρf,λ. Cependant, le théorème
de Brauer–Nesbitt nous assure que la semi-simplifiée de ρ̃f,λ est unique à isomorphisme près et
est caractérisée par les propriétés suivantes.

1. La représentation ρf,λ est semi-simple ;

2. La représentation ρf,λ est non ramifiée en dehors de Nℓ ;

3. Pour tout nombre premier p ∤ Nℓ, le polynôme caractéristique de ρf,λ en un Frobenius en
p est égal à X2 − ap(f)X + pk−1ε(p) (mod λ).

Remarque 9.2. La réduction modulo λ de ap(f) et ε(p) est effectivement bien définie car les
coefficients d’une newform sont toujours des entiers algébriques et que le corps Kf contient
toujours les valeurs du caractère de la forme f . Nous renvoyons à [Rib77, Corollary (3.1)] pour
une démonstration de ces résultats.

De nouveau grâce au théorème de Brauer–Nesbitt et par le théorème de densité de Čebotarev,
la représentation ρf,λ est entièrement déterminée par les propriétés 1, 2, et 3. Cependant, elle
peut ne plus être irréductible – contrairement à ρf,λ. Le point de départ de cette partie de la
thèse est un théorème démontré par Ribet en 1975 pour les formes de niveau 1, et en 1985 pour
n’importe quelle forme modulaire. Il généralise les travaux de Swinnerton-Dyer et Serre de 1973
pour N = 1 et Kf = Q [Ser73 ; Swi73].

Théorème 9.3 ([Rib85, Theorem 2.1]). Pour tout idéal premier λ en dehors d’un ensemble
fini, la représentation ρf,λ irréductible. De plus, si f n’est pas à multiplication complexe (voir
la définition 14.3), alors pour tout λ sauf un nombre fini, l’ordre de l’image de ρf,λ n’est pas
divisible par ℓ.

Le théorème 9.3 apporte une première réponse aux questions de Serre sur les congruences
vérifiées par la fonction tau : il n’existe effectivement qu’un nombre fini de nombres premiers ℓ
pour lesquels τ(p) est congruent modulo ℓ à pa + pb pour tout p sauf un nombre fini, avec a, b
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deux entiers (et on peut démontrer que ce phénomène se produit uniquement pour ℓ = 2, 3, 5,
7, et 691 dans le cas de ∆). En effet, ces congruences correspondent exactement aux nombres
premiers pour lesquels ρ∆,ℓ est réductible. Pour mieux comprendre les congruences vérifiées par
τ modulo 23, nous avons besoin d’être plus précis quant au théorème de Ribet. La classification
des sous-groupes de PSL2 d’un corps fini est bien connue depuis Dickson [Dic01, Chapter XII].
Elle peut s’énoncée comme suit.

Théorème 9.4 ([Hup67, Hauptsatz 8.27]). Soit q := pf une puissance d’un nombre premier p.
Un sous-groupe de PSL2(Fq) est isomorphe à un des groupes suivants.

1. Un groupe cyclique d’ordre z divisant q±1
gcd(q−1,2) ;

2. Un groupe dihédral d’ordre 2z avec z divisant q±1
gcd(q−1,2) ;

3. Le groupe alterné A4, uniquement si p > 2 ou q = 22n ;

4. Le groupe symétrique S4, uniquement si q2 ≡ 1 (mod 16) ;

5. Le groupe alterné A5, seulement si p = 5, ou q2 ≡ 1 (mod 5) ;

6. (Z/pZ)n pour un entier positif n ;

7. Un produit semi-direct (Z/pZ)n ⋊ Z/mZ pour des entiers n et m divisant pn − 1 et q − 1

respectivement ;

8. PSL2(Fpn) pour un entier n divisant f ;

9. PGL2(Fpn) pour un entier n divisant 2f .

En utilisant le théorème 9.4 et le fait que l’on peut toujours plonger PGL2(Fq) dans PSL2(Fq2),
nous pouvons reformuler le théorème de Ribet de la manière suivante.

Corollaire 9.5. Soit f une newform. Il existe seulement un nombre fini d’idéaux premiers λ qui
satisfont à au moins une des propriétés suivantes.

1. La représentation ρf,λ est réductible ;

2. La forme f n’est pas CM et l’image projective de ρf,λ dans PGL2(Fλ) est isomorphe à un
groupe dihédral D2n avec ℓ ∤ 2n, où ℓ est la caractéristique résiduelle de λ ;

3. L’image projective de ρf,λ dans PGL2(Fλ) est isomorphe à A4, S4, ou A5.

On appellera par la suite « idéaux exceptionnels », les idéaux qui vérifient une des propriétés
ci-dessus.

Remarque 9.6. Malgré le fait que l’hypothèse f non-CM apparaît dans la seconde moitié du
théorème 9.3, la preuve de [Rib85, Theorem 2.1] ne l’utilise que dans le cas dihédral.

L’isomorphisme modulo 23 dans (9.2) correspond alors au deuxième cas du corollaire 9.5. À
partir de là, deux questions se posent.
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I) Pour chaque cas du corollaire 9.5, peut-on borner la caractéristique résiduelle des idéaux
exceptionnels en fonction des invariants de la forme f tels que son poids, son niveau, ou
son caractère ?

II) Pour chaque cas du corollaire 9.5, peut-on calculer les idéaux exceptionnels ?

Pour des formes de niveau 1 les résultats de Ribet de 1975 donnent une description explicite des
idéaux premiers pour lesquels la représentation résiduelle associée est réductible. Cependant, cela
n’est plus le cas dans sa preuve générale de 1985, et cela n’était déjà pas le cas pour les deux
autres cas en 1975. Le premier pas pour rendre les résultats de Ribet effectifs a été accompli
par Billerey et Dieulefait en 2014 [BD14]. Dans le cas où le caractère de la forme f est trivial,
ils donnent des critères explicites sur la caractéristique résiduelle ℓ de λ en fonction de k et N
pour que la représentation ρf,λ soit réductible. Dans les deux autres cas ils donnent des bornes
explicites sur ℓ en fonction de k et N . Le but de cette partie de la thèse est de continuer leur
travail et de donner autant de réponses que possible aux questions I et II.

9.2 Résultats

Soit f = q +
∞∑
n=2

an(f)q
n une newform de poids k, niveau N , et de caractère ε de conducteur c.

Soit Kf := Q(an(f))n⩾2 le corps des coefficients de f , et soit λ un idéal premier de l’anneau des
entiers de Kf , au-dessus d’un nombre premier ℓ. Les contributions de cette partie de la thèse
sont doubles. D’une part, nous généralisons les résultats de [BD14] à n’importe quelle forme
modulaire de poids, niveau, et caractère quelconque, et nous donnons une borne effective pour
chacun des trois cas du corollaire 9.5 en fonction de k, N , et ε. D’autre part, nous développons
un algorithme qui, étant donné le poids, le niveau, le caractère, et un nombre fini de coefficients
de f , calcule tous les idéaux réductibles, et tous les idéaux dihédraux.

La stratégie que nous adoptons se base sur les idées de Serre et Swinnerton-Dyer [Ser73 ;
Swi73]. Les trois cas du théorème de Ribet peuvent être reformulées en termes de congruences
satisfaites par un ensemble de densité 1 de coefficients de Fourier de f – ceux d’indice premier
à Nℓ. À partir de ces congruences, nous déduisons des conditions nécessaires que doit vérifier
la caractéristique résiduelle de λ, puis des bornes dans chacun des trois cas. Pour obtenir un
algorithme dans les cas dihédraux et réductibles, nous travaillons par conditions nécessaires et
suffisantes. Celles-ci nous conduisent, en utilisant des bornes de Sturm, à un ensemble fini de
congruences que doivent satisfaire les coefficients de Fourier de f , équivalentes à la réductibilité
de ρf,λ d’une part, et à sa dihédralité d’autre part. Nous détaillons notre approche pour chacun
des trois cas ci-dessous.

Dans le troisième cas, nous utilisons le fait que les groupes A4, S4, et A5 ne contiennent
respectivement que des éléments d’ordre 3, 4, et 5. En connaissant la forme locale en ℓ de la
représentation ρf,λ, cela nous donne des contraintes sur les caractéristiques résiduelles possibles
dans ce cas. L’argument donné dans [BD14] s’applique presque sans modification au cas général
d’une forme de caractère non trivial, et nous déduisons la borne suivante.

Théorème 9.7 (10.15). Si l’image projective de ρf,λ est isomorphe à A4, S4 ou A5, alors soit
ℓ | N , soit ℓ ⩽ 5k − 4.
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Remarque 9.8. La preuve du résultat correspondant dans [Pea21, Theorem 0.2] était fausse
car elle utilisait le résultat [BD14, Lemma 1.2] qui supposait que le poids de f était pair. Cette
hypothèse – qui venait du fait que le caractère dans [BD14] était trivial – n’est pas vrai dans notre
cadre plus général. Nous avons corrigé cela dans la démonstration du théorème 10.15.

Dans le cas dihédral, nous utilisons des congruences entre des tordues de la forme f . Notre
stratégie est d’utiliser une borne de Sturm en caractéristique nulle et les bornes de Deligne pour
les coefficients d’une forme modulaire pour obtenir un majorant de ℓ. Notre résultat est le suivant.

Théorème 9.9 (14.17). Supposons que ρf,λ est d’image projective dihédrale d’ordre premier à
ℓ. Si N = 1, alors ℓ ⩽ k, ou ℓ ∈ {2k − 1, 2k − 3}. Si N ⩾ 2, et que f n’est pas à multiplication
complexe, alors

ℓ ⩽ max

(
Nk

3
(2 log log(N) + 2.4) , 25N2

) k−1
2

[Kf :Q]

.

Ce résultat nous donne effectivement une borne sur ℓ en fonction de N et k car le degré
[Kf : Q] peut être borné par la dimension du C-espace vectoriel engendré par les newform de
poids k, niveau N et de caractère ε (voir par exemple [Mar05]).

Dans le cas réductible, nous travaillons avec des congruences faisant intervenir des séries
d’Eisenstein. Notre méthode est comparable à celle de Billerey et Dieulefait dans [BD14, Section
2]. Leur restriction sur le caractère de f venait principalement du manque de connaissance
à l’époque sur le terme constant des séries d’Eisenstein en une pointe quelconque. Ce calcul
a été effectué en toute généralité par [BM18], nous permettant de généraliser les calculs de
[BD14]. Le résultat suivant est la combinaison de ce résultat technique et de l’étude détaillée
des représentations modulaires résiduelles réductibles, généralisant ainsi la preuve de [BD14,
Theorem 2.7].

Théorème 9.10 (13.19). Supposons que ρf,λ est réductible. Au moins une des propriétés suivantes
est alors vraie.

1. ℓ ⩽ k + 1 ;

2. ℓ | Nφ(N), où φ désigne la fonction caractéristique d’Euler ;

3. il existe un caractère de Dirichlet primitif η d’ordre premier à ℓ, de conducteur c0 | N tel que
η(−1) = (−1)k, et ℓ divise la norme algébrique d’une des quantités non-nulles suivantes :

(a) pk − η(p) pour un nombre premier p | N ;

(b) le ke nombre de Bernoulli Bk,η de η (voir la définition 11.1).

L’étude détaillée des représentations modulaires réductibles et dihédrales qui sont faites dans
la thèse sont les principales nouveautés de nos résultats. La question que nous nous posons est la
suivante : Comment caractériser la réductibilité (resp. la dihédralité) de ρf,λ par un nombre fini
de congruences effectives ? Dans ces deux cas, nous donnons deux réponses à cette question. Une
réponse générale, sans restriction sur la caractéristique résiduelle de l’idéal λ, ni sur la forme f .
Et une seconde réponse qui, sous certaines hypothèses sur ℓ, donne un ensemble de congruences
à satisfaire qui est indépendant de ℓ. Nous énonçons une version affaiblie de nos deux résultats
inconditionnels ci-dessous.
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Théorème 9.11 (Theorem 13.12). Les énoncés suivant sont équivalents.

1. La représentation ρf,λ est réductible ;

2. Soit L une place de Q au-dessus de λ. Il existe deux caractères de Dirichlet primitifs ε1, ε2,
de conducteur c1, c2 respectivement, non ramifiés en ℓ, et tels que c1c2 | N . Il existe deux
entiers m1, m2 tels que 0 ⩽ m1 ⩽ m2 ⩽ ℓ− 2 et χm1+m2

ℓ ε1ε2 ≡ χk−1
ℓ ε (mod L). Soit

k̃ =

{
3 + max(k,m2 + 2m1 + 1) si ℓ | N ;

ℓ+ 5 +max(k,m2 + ℓm1 + 1) si ℓ ∤ N.

Pour tout nombre premier p ⩽ Nk̃
3

∏
q|2N

q premier

(
1 + 1

q

)
et ne divisant pas 2ℓ, on a

• p ∤ N et ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L) ;

• ou, p | N et ap(f) ≡ pm1bp (mod L) pour un nombre bp ∈ {0, ε1(p), pm2−m1ε2(p)}.

Quand ces propriétés sont satisfaites, on a de plus ρf,λ ∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2, où ε1 et ε2 sont les
réductions de ε1 et ε2 modulo L.

Théorème 9.12 (Theorem 14.12). Les énoncés suivants sont équivalents.

1. La représentation ρf,λ est d’image projective dihédrale d’ordre premier à ℓ ;

2. Il existe un entier e ∈ {0, 1} et un caractère de Dirichlet primitif ψ de conducteur cψ | N ,
non ramifié en ℓ, et tel que pour tout nombre premier p divisant N ,

• si vp(N) = 1, vp(c) = 0, et p ̸= ℓ, alors p ∤ cψ ;

• si vp(N) = vp(c) et p ̸= ℓ, alors soit p ∤ cψ, soit les p-parties de ψ et ε−1 sont égales
modulo λ ;

• si v2(N) ∈ {2, 3}, et v2(c) < v2(N), alors v2(cψ) ⩽ 2.

Soit

k̃ :=

{
k + 4 + 3

(
1 + e ℓ−1

2

)
si ℓ | N ;

k + 4 + (ℓ+ 1)
(
1 + e ℓ−1

2

)
si ℓ ∤ N.

Pour tout nombre premier p ⩽
N gcd(2, N)2k̃

12

∏
p|N

(p+ 1), les congruences suivantes sont

satisfaites :

• ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f) (mod λ) si p ∤ Nℓ ;

• ap(f)
2 ≡ pe

ℓ−1
2

+k−1 (ψε)′p (p) (mod λ) si p | N , p ≠ ℓ, vp(N) = vp(c), et ψ est ramifié
en p, où (ψε)′p désigne la partie première à p du caractère de Dirichlet ψε.

On notera que ces deux résultats s’appliquent quelques soient la forme f et le nombre premier
ℓ. En particulier, ils peuvent être utilisés pour tester la réductibilité et la dihédralité de ρf,λ pour
n’importe quel idéal premier λ, y compris ceux dont la caractéristique résiduelle est petite devant
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le poids, ou divise le niveau. De telles hypothèses étaient par exemple présentes dans le travail
d’Anni [Ann13, Algorithms 7.2.4 et 10.1.3], où l’auteur développait une approche différente –
utilisant des connaissances sur les formes de petit poids pour en déduire pour des formes de poids
supérieur – dans le contexte des formes modulaires de Katz.

Dans les théorèmes 9.11 and 9.12, le nombre de congruences à satisfaire ne dépendent pas
seulement de N , k, et ε, mais aussi de la caractéristique ℓ. Sous des hypothèses sur ℓ, nous
sommes parvenus à supprimer cette dépendance dans la borne. Nous énonçons ci-dessous une
forme affaiblie de nos résultats « en grande caractéristique » pour les cas réductibles et dihédraux.

Théorème 9.13 (Theorem 13.17). Supposons ℓ > k + 1 et ℓ ∤ Nφ(N), où φ désigne la fonction
caractéristique d’Euler. Les propriétés suivantes sont équivalentes.

1. La représentation ρf,λ est réductible ;

2. Soit L une place de Q au-dessus de λ. Il existe deux caractères de Dirichlet primitifs ε1,
ε2, de conducteur c1, c2 respectivement, tels que c1c2 | N , et ε1ε2 = ε. Pour tout nombre
premier impair p ⩽ Nk

3

∏
q|2N

q premier

(
1 + 1

q

)
, on a

• p ∤ N et ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L) ;

• p | N et ap(f) ≡ bp (mod L) pour un bp ∈ {0, ε1(p), pk−1ε2(p)}.

Quand ces propriétés sont vérifiées, on a de plus ρf,λ ∼= ε1⊕χk−1
ℓ ε2, où ε1 et ε2 sont les réductions

de ε1 et ε2 modulo L.

Théorème 9.14 (Theorem 14.16). Supposons ℓ ⩾ k − 1, ℓ /∈ {2k − 1, 2k − 3}, et ℓ ∤ N , ℓ ∤ p± 1

pour tout nombre premier p divisant N . Les énoncés suivants sont équivalents.

1. La représentation ρf,λ est d’image projective dihédrale d’ordre premier à ℓ ;

2. Il existe un caractère de Dirichlet primitif ψ de conducteur cψ | N tel que pour tout nombre
premier p divisant N

• si vp(N) = 1 et vp(c) = 0, alors p ∤ cψ ;

• si vp(N) = vp(c), alors soit p ∤ cψ, soit les p-parties de ψ et ε−1 sont égales ;

• si v2(N) ∈ {2, 3}, et v2(c) < v2(N), alors v2(cψ) ⩽ 2.

De plus, pour tout nombre premier p ⩽ N gcd(N,2)2k
12

∏
p|N

(
1 + 1

p

)
, les congruences suivantes

sont satisfaites.

• ap(f) ≡ ψ(p)ap(f) (mod λ) si p ∤ N ;

• ap(f)
2 ≡ pk−1(ψε)0(p) (mod λ) si p | N , vp(N) = vp(c) et ψ est ramifié en p, où

(ψε)0 désigne le caractère primitif associé à ψε.
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Nous insistons sur le fait que selon les théorèmes 8.12 et 8.14, certifier la réductibilité de ρf,λ
nécessite environ N max(k2, N) log log(N) congruences (et même Nk log log(N) pour les nombres
premiers ℓ tels que ℓ > k + 1 et ℓ ∤ Nφ(N)). Le terme log log(N) provenant de la majoration
donnée dans le lemme 12.23. De même, il suit des théorèmes 8.13 et 8.15 que prouver la dihédralité
de ρf,λ requiert vérifier de l’ordre de N max(k2, N) log logN congruences (et Nk log logN quand
les hypothèses du théorème 8.15 sont satisfaites).

Pour obtenir de telles bornes, nous utilisons de manière cruciale la description locale de
la représentation ρf,λ aux mauvais nombres premiers (c’est-à-dire les nombres premiers qui
divisent le niveau N). Les autres ingrédients importants que sont de nouveaux théorèmes de
type bornes de Sturm que nous démontrons, ainsi qu’une utilisation judicieuse des applications
de dégénérescences entre les espaces de formes modulaires. Avoir des bornes aussi petites que
possible est extrêmement important dans une optique algorithmique. En effet, nos résultats nous
ont permis de développer deux algorithmes : un premier qui, étant donné une forme f , calcule
l’ensemble exact des idéaux premiers λ tels que ρf,λ est réductible ; et un second qui calcule les λ
tels que ρf,λ est d’image projective dihédrale d’ordre premier à ℓ. Nous avons de plus implémenté
ces deux algorithmes dans PARI/GP [21].
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Chapter 10

Background on Galois representations

We fix once and for all algebraic closures Q of Q, Qp of Qp, and Fp of Fp for all prime numbers p.
We denote by Z and Zp the rings of integers of Q and Qp respectively.

10.1 Generalities on Galois representations

We begin by recalling general notions of the theory of Galois representations we will be using. A
Galois representation is a continuous morphism from the group GQ := Gal(Q/Q) to GLn(F ),
for a positive integer n and some field F . The group GQ is endowed with the Krull topology,
a basis of open subsets of Id consisting of the subgroups Gal(Q/K) for all number fields K/Q.
The topology on GLn(F ) depends on the field F . For F = C or a subfield of Fp for a prime p it
is the discrete one, and for F a subfield of Qp it is the p-adic topology. A result we will be using
extensively to prove isomorphism between Galois representations is the so-called Brauer–Nesbitt
theorem.

Theorem 10.1 (Brauer–Nesbitt [CR06, (30.16) and (30.14)]). Let ρ, ρ′ : GQ → GLn(F ) be two
semi-simple Galois representations. If ρ and ρ′ have the same characteristic polynomials, then
they are isomorphic. If F has characteristic zero, then ρ and ρ′ are isomorphic if and only if for
all σ ∈ GQ, the traces of ρ(σ) and ρ′(σ) are equal.

The study of a Galois representation usually passes through the investigation of the rami-
fication and the restriction of the representation to decomposition and inertia subgroups. We
recall what they are. For a place v of Q (Archimedean or not), the decomposition subgroup of
GQ associated to v is defined as

Gv := {σ ∈ GQ, v ◦ σ = v} .

For a place p of Q, all the decomposition subgroups Gv for v | p are conjugated under Galois.
We will denote by Gp an element of this conjugacy class of subgroups of GQ.

In the Archimedean case, G∞ corresponds to a copy of Gal(C/R) inside GQ. A complex
conjugation is the non-trivial element of such a subgroup, and any two complex conjugations are
conjugated under GQ. A Galois representation ρ : GQ → GL2(F ) is said to be odd if for any
complex conjugation c, we have

det ρ(c) = −1.
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In particular if F ⊆ F2, every Galois representation is odd.
In the non-Archimedean case, let Gp be a decomposition subgroup of GQ at a prime number

p. The inertia subgroup Ip of Gp is the kernel of the projection Gp → Gal(Fp/Fp). A Galois
representation ρ : GQ → GLn(F ) is said to be unramified at p if for any inertia subgroup Ip at p,
we have Ip ⊆ ker ρ. Otherwise, we say that ρ is ramified at p.

A Frobenius element Frobp is any preimage in Gp of the Frobenius of Gal(Fp/Fp). Two
Frobenius elements of a fixed decomposition subgroup differ by an element of the inertia, and the
sets of Frobenii of two decomposition subgroups are conjugated. Therefore, if a representation ρ
is unramified at p, it makes sense to define the trace, the determinant, and the characteristic
polynomial of ρ at a Frobenius element at p. The main reason we will use Frobenius elements in
the rest of this part is the so-called Čebotarev theorem, which we now state.

Theorem 10.2 (Čebotarev). Let K/Q be a Galois extension (possibly infinite) that is unramified
outside a finite set of primes S. Let P be a set of primes of density one not containing any
element of S. The union of the conjugacy classes of Frobenius elements at p ∈ P is dense in
Gal(K/Q).

Combining Čebotarev density theorem with Brauer–Nesbitt theorem 10.1, we get the following
result.

Corollary 10.3 ([DS74, Lemme 3.2]). Let ρ, ρ′ : GQ → GLn(F ) be two semi-simple Galois
representations both unramified outside a finite set of primes S. If ρ and ρ′ have the same
characteristic polynomials (or the same traces if F has characteristic zero) at the Frobenius
elements at p /∈ S, then they are isomorphic.

We conclude this section by recalling some facts on the Artin conductor. For a reference
about this material, see [Ser68, Chapitres IV & VI]. Let u ⩾ −1 be a real number, and let v be a
non-Archimedean place of Q above a prime number p. Write Guv the u-th ramification subgroup
of GQ at the place v in upper-notation. For a Galois representation ρ : GQ → GL(V ) acting on a
F -vector space, with F = Qℓ, Fℓ, or C, the number

np :=

∫ +∞

−1
dimV/V Guvdu,

is an integer if p ̸= ℓ. If ρ is unramified outside a finite number of places, the Artin conductor of
ρ is defined as

N(ρ) :=
∏
p

pnp ,

where the product ranges over the primes p ̸= ℓ if F ̸= C, and over all the primes if F = C.

10.2 One dimensional Galois representations

10.2.1 Cyclotomic characters

Let ℓ be a prime number and n a positive integer. The group GQ acts naturally on the group
µℓn of ℓn-th roots of unity. This gives rise to the cyclotomic character modulo ℓn:

χℓn : GQ → Aut(µℓn) ∼= (Z/ℓnZ)× .
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This action is moreover compatible with the projection maps Aut(µℓn)→ Aut(µℓm) for n ⩾ m,
giving a character

χℓ := lim←−
n⩾1

χℓn .

This is the ℓ-adic cyclotomic character. As lim←−
n⩾1

(Z/ℓnZ)× = Z×
ℓ this is an ℓ-adic character.

Let us compute the ramification of χℓ and χℓ. The action of GQ on µℓn factors through
Gal(Q(ζℓn)/Q) where ζℓn is a primitive ℓn-th root of unity, and the only prime that ramifies in
Q(ζℓn) is ℓ. Therefore, the inertia subgroup of Gal(Q(ζℓn)/Q) at a prime p ̸= ℓ is trivial, and all
the cyclotomic characters are unramified outside ℓ. Furthermore, for a prime p the action of a
Frobenius element Frobp on ζℓn is given by Frobp ζℓn = ζpℓn , and the one of a complex conjugation
c is cζℓn = ζ−1

ℓn . We get the following result.

Proposition 10.4. Let ℓ be a prime number. The ℓ-adic and modulo ℓ cyclotomic characters
are unramified outside ℓ. In particular, we have

N(χℓ) = N(χℓ) = 1.

Moreover, for all primes p ̸= ℓ and complex conjugation c, we have

χℓ(Frobp) = p and χℓ(c) = −1;
χℓ(Frobp) = p (mod ℓ) and χℓ(c) = −1 (mod ℓ).

10.2.2 Dirichlet characters

Recall that a Dirichlet character of modulus N ⩾ 1 is a morphism ε : (Z/NZ)× → C×. Changing
the field C to Fℓ, we get what we will call a residual Dirichlet character ε : (Z/NZ)× → F×

ℓ . The
conductor of a Dirichlet character (residual or not), is the smallest divisor of d of N such that
the character factorises through (Z/dZ)×.

We can go from one type of character to the other in the following way. As any Dirichlet
character ε of modulus N has order at most φ(N), its image lies in the ring of integers of Q(ζφ(N)).
Choosing a prime ideal λ in this field above a prime number ℓ, we can reduce ε modulo λ to get
a residual Dirichlet character ε : (Z/NZ)× → F×

ℓ . Note that the conductor of the character may
decrease through this operation. In the other way, let us look at the behaviour of the roots of
unity after reduction modulo some place L of Q above ℓ.

Lemma 10.5. Let n be a positive integer and let ζ be a primitive n-th root of unity in Q. Let ℓ
be a prime number and let L be a place of Q above ℓ. We have ζ ≡ 1 (mod L) if and only if n is
a power of ℓ. In particular, a Dirichlet character is trivial modulo L if and only if it has order a
power of ℓ.

Proof. According to [Coh07, Proposition 3.5.4], the algebraic norm of 1− ζ over Q(ζ) is equal to:
0 if n = 1;

q if n = qr with q prime and r ⩾ 1;

1 otherwise.
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Thus, if n is not an ℓ-power, then ℓ does not divide the norm of ζ−1 and we have ζ ̸≡ 1 (mod L).
Assume n = ℓr, r ⩾ 1. We then have

ℓZ[ζ] = (1− ζ)ℓr−1(ℓ−1)Z[ζ].

Thus, the only prime ideal above ℓ in Z[ζ] is (1− ζ)Z[ζ], and we therefore have ζ ≡ 1 (mod L).
For the second part of the lemma, let ε be a Dirichlet character modulo N . From above, ε is

trivial modulo L if and only if ε(x) is a root of unity of order a power of ℓ for every x ∈ (Z/NZ)×.
This happens if and only if ε has order a power of ℓ. ■

Lemma 10.5 implies that the kernel of the reduction modulo L from the group of all roots of
unity to F×

ℓ , is the subgroup of primitive roots of unity of order a power of ℓ. In particular, the
restriction of this map to the subgroup of roots of unity of order prime to ℓ is injective. Moreover,
because the subgroup of roots of unity of order ℓn − 1 maps to F×

ℓn , it is onto and therefore an
isomorphism. Denoting µ∞ the group of complex roots of unity, the inverse map

TL : F×
ℓ → {ζ ∈ µ∞, gcd(ℓ, ord(ζ)) = 1},

is the so-called Teichmüller lift with respect to the place L. Therefore, given a residual Dirichlet
character η : (Z/NZ)× → F×

ℓ , we can lift it to a Dirichlet character TL ◦ η of prime-to-ℓ order.
Moreover, the conductor of the character does not change during this process. Therefore, there is a
correspondence between Dirichlet characters of modulus N (and of conductor c respectively) with
prime-to-ℓ order, and residual Dirichlet characters of modulus N (and of conductor c respectively).
Note that, there may be several ways to lift a residual Dirichlet characters depending on the
place of Q above ℓ we choose.

Next, we can see any Dirichlet character as a Galois representation of dimension one in the
following way. For ζN a primitive root of unity, the Galois group of the cyclotomic extension
Q(ζN )/Q is isomorphic to (Z/NZ)×. Therefore, we have the following diagram.

GQ Z[ζφ(N)]
×

Gal(Q(ζN )/Q) (Z/NZ)×
∼=

ε

We will denote by ρε the Galois representation GQ → Z[ζφ(N)] corresponding to ε. Conversely,
given a one-dimensional complex representation ρ : GQ → C×, it has finite image and factors
through a finite abelian extension of Q. From Kronecker-Weber theorem, such extension is
contained in a cyclotomic extension of Q, and thus ρ comes from a Dirichlet character. Moreover,
we have the following result.

Proposition 10.6 ([Ser68, Chapitres IV & VI]). Let ε : (Z/NZ)× → C× be a Dirichlet character
of modulus N and conductor c. Denote by ρε the associated Galois representation.

The Artin conductor of ρε is equal to c. Moreover, for a complex conjugation c and a Frobenius
element Frobp at a prime p ∤ c we have

ρε(c) = ε(−1) and ρε(Frobp) = ε0(p),

where ε0 is the primitive Dirichlet character associated to ε. Finally, for a prime p | c, the
representation ρε|Ip corresponds to the p-part εp of ε.
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Remark 10.7. In the rest of the thesis Dirichlet characters of modulus N will also be regarded
as totally multiplicative N -periodic functions ε from Z to C such that ε(m) = 0 if gcd(m,N) > 1.
This is indeed equivalent to the previous definition of Dirichlet characters because if ε : Z→ C
satisfies these properties, the function n 7→ ε(n) is well-defined and a group homomorphism from
(Z/NZ)× to C×. Conversely, if ε ∈ Hom

(
(Z/NZ)× ,C×), then one get a function

Z −→ C

n 7−→

{
0 if gcd(n,N) > 1

ε(n) otherwise

that satisfies the wanted properties.

10.3 Modular Galois representations

The main protagonists of the following chapters are the modular Galois representations, which
have been of major interest in number theory in the last 50 years. The following theorem is the
fundamental theorem of Deligne that states the existence of these objects.

Theorem 10.8 ([Del71]). Let f be a newform of weight k ⩾ 2, level N ⩾ 1, and character ε.
Denote by Kf the number field generated by the Fourier coefficients of f , and let λ be a prime
ideal in the ring of integers of Kf with residue characteristic ℓ. There exists a unique (up to
isomorphism) odd Galois representation

ρf,λ : GQ → GL2(Kf,λ)

with values in the λ-adic completion Kf,λ of Kf , such that

1. ρf,λ is unramified outside Nℓ;

2. For every prime number p ∤ Nℓ, the characteristic polynomial of ρf,λ at Frobp is equal to
X2 − ap(f)X + pk−1ε(p).

Remark 10.9. Using the Čebotarev density theorem, the condition on the characteristic polyno-
mial at the Frobenius elements can be reformulated as follows. For any prime p ∤ Nℓ, we have
Tr(ρf,λ(Frobp)) = ap(f) and the determinant of ρf,λ is equal to χk−1

ℓ ε.

We have seen in the introduction that any ℓ-adic Galois representation gives rise to a unique
semi-simple residual Galois representation. This gives the following result.

Theorem 10.10. Let f :=
∑
n⩾1

an(f)q
n be a newform of weight k ⩾ 2, level N ⩾ 1, and character

ε. Denote by Kf the number field generated by the Fourier coefficients of f , and let λ be a prime
ideal in the ring of integers of Kf with residue characteristic ℓ and denote by Fλ the residue field
of λ. There exists a unique (up to isomorphism) semi-simple, odd Galois representation

ρf,λ : GQ → GL2(Fλ)

such that
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1. ρf,λ is unramified outside Nℓ;

2. For every prime number p ∤ Nℓ, the characteristic polynomial of ρf,λ at Frobp is equal to
X2 − ap(f)X + pk−1ε(p) (mod λ).

Remark 10.11. Again, the second condition is equivalent to the fact that the trace of ρf,λ(Frobp)
is equal to ap(f) (mod λ) and that the determinant of ρf,λ is χk−1

ℓ ε (mod λ).

Given f and λ, one can ask what are the Galois theoretical invariants of ρf,λ and ρf,λ we
discussed in section 10.1 such as their ramification, their Artin conductors, and their shape at
the decompositions subgroups. The answer to these questions are now well-known but are in
general difficult results. First, the Artin conductor of ρf,λ has been computed by Carayol in
[Car86, Théorème (A)], and the study of the behaviour the Artin conductor of ρf,λ has been
independently obtained by Carayol in [Car89, Proposition 2] and Livné [Liv89, 2.3 Proposition].

Proposition 10.12 (Carayol-Livné). The Artin conductor of ρf,λ is equal to the prime-to-ℓ part
of the level N of f . The Artin conductor of ρf,λ satisfies

N(ρf,λ) | N.

Moreover, for a prime number p ̸= ℓ, we have

vp(N)− vp(N(ρf,λ)) ∈ {0, 1, 2}.

Next, the local behaviour of ρf,λ has been also well studied. First at a decomposition subgroup
at ℓ, the following result has been obtained by Deligne when aℓ(f) ̸≡ 0 (mod λ), and by Fontaine
when aℓ(f) ≡ 0 (mod λ). Before stating their result, we make the following definition.

Definition 10.13. Let p be any prime number, and let x ∈ Zp. We denote by µp(x) (or simply
µ(x)), the unique unramified character of Gp that send Frobp to x.

Proposition 10.14 (Deligne–Fontaine, [Edi92, Theorem 2.5 and Theorem 2.6]). Assume that
2 ⩽ k ⩽ ℓ+ 1 and ℓ ∤ N .

• If f is ordinary at λ (that is if aℓ(f) ̸≡ 0 (mod λ)), then ρf,λ|Gℓ is reducible, and we have

ρf,λ|Gℓ ∼=

(
χk−1
ℓ µ

(
ε(ℓ)
aℓ(f)

)
⋆

0 µ (aℓ(f))

)
.

• If f is not ordinary at λ, then ρf,λ|Gℓ is irreducible, and we have

ρf,λ|Iℓ ∼=

(
ϕk−1 0

0 ϕ′k−1

)
.

Here {ϕ, ϕ′} = {ϕ, ϕℓ} stands for the set of fundamental characters of level 2 (see [Edi92, §2.4]).

Using only proposition 10.14, we can prove a bound for the prime ideals λ of Of for which
the projective image of ρf,λ is isomorphic to A4, S4, or A5. As mentioned in the introduction,
the statement and the proof given in [Pea21] were not correct as mentioned in remark 8.9. We
fix it here and give a more precise result.



10.3. MODULAR GALOIS REPRESENTATIONS 151

Theorem 10.15. Let f be a newform of weight k, level N , and character ε.

• If the projective image of ρf,λ is isomorphic to A4, then either ℓ | N , or ℓ ⩽ 3k − 2.

• If the projective image of ρf,λ is isomorphic to S4, then either ℓ | N , or ℓ ⩽ 4k − 3.

• If the projective image of ρf,λ is isomorphic to A5, then either ℓ | N , or ℓ ⩽ 5k − 4.

Proof. Assume the order of the projective of image of ρf,λ is prime-to-ℓ and that ℓ ∤ N and that
ℓ ⩾ k − 1. If f is ordinary at ℓ, by proposition 10.14, we have

ρf,λ|Iℓ ∼=

(
χk−1
ℓ ⋆

0 1

)
.

As the projective order of the matrix

(
a b

0 1

)
, for a, b ∈ Fλ, is equal to ℓ if a ̸= 1 and b ̸= 0,

we necessarily have ⋆ = 0 because the order of the projective image of ρf,λ is prime-to-ℓ by
assumption. We deduce that the projective image of Iℓ is isomorphic to χk−1

ℓ (Iℓ), which is a
cyclic group of order

#Pρf,λ(Iℓ) =
ℓ− 1

gcd(ℓ− 1, k − 1)
.

Similarly, if f is not ordinary at ℓ, by proposition 10.14 we have

ρf,λ|Iℓ ∼=

(
ϕk−1 0

0 ϕ(k−1)ℓ

)
.

Therefore, the projective image of Iℓ is isomorphic to ϕ(k−1)(ℓ−1)(Iℓ), which is a cyclic group of
order

#Pρf,λ(Iℓ) =
ℓ2 − 1

gcd(ℓ2 − 1, (k − 1)(ℓ− 1))
=

ℓ+ 1

gcd(ℓ+ 1, k − 1)
.

Assume that we are in the A4 case. As A4 contains only elements of order less or equal to 3, the
projective image of Iℓ must be of order at most 3. In the ordinary case we get

ℓ− 1

gcd(ℓ− 1, k − 1)
⩽ 3 =⇒ ℓ− 1 ⩽ 3 gcd(ℓ− 1, k − 1) ⩽ 3(k − 1)

=⇒ ℓ ⩽ 3k − 2.

Similarly, in the non-ordinary case, we get

ℓ+ 1

gcd(ℓ+ 1, k − 1)
⩽ 3 =⇒ ℓ+ 1 ⩽ 3 gcd(ℓ+ 1, k − 1) ⩽ 3(k − 1)

=⇒ ℓ ⩽ 3k − 4.

Therefore, in the A4 case, we necessarily have ℓ ⩽ 3k − 2.
Similarly, the group S4 contains only elements of order less or equal to 4. With same

calculations as above, we deduce that ℓ must be less or equal to 4k− 3. Finally, A5 contains only
elements of order less or equal to 5, and we get ℓ ⩽ 5k − 4 in this case. ■
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Finally, the shape of the local residual representation at the primes dividing the level but
different from ℓ is also essentially known. It has been derived by Langlands and compiled in
[LW12, Proposition 2.8]. In order to justify some details about it, we first need a result coming
purely from the theory of modular forms.

Proposition 10.16 ([Miy06, Theorem 4.6.17]). Let p be a prime dividing N and write c for the
conductor of ε.

1. If vp(N) = vp(c), then |ap(f)|2 = pk−1.

2. If vp(N) = 1 and vp(c) = 0, then ap(f)2 = ε′p(p)p
k−2, where ε′p is the prime-to-p component

of ε (in particular ε′p(p) ̸= 0).

3. If vp(N) ⩾ 2 and vp(N) > vp(c), then ap(f) = 0.

Proposition 10.17. Let p ̸= ℓ be a prime dividing N and let c be the conductor of ε. We denote
by vp the p-adic valuation.

• If vp(N) = 1 and vp(c) = 0, then we have

ρf,λ|Gp ∼=

(
µ(ap(f))χℓ ⋆

0 µ(ap(f))

)
.

• If vp(N) = vp(c), then ap(f) is a unit in Of,λ and we have

ρf,λ|Gp ∼= µ (ap(f))⊕ µ
(
ap(f)

−1
)
χk−1
ℓ ε|Gp ,

where ε|Gp stands for the reduction modulo λ of the restriction of ε to Gp.

Proof. From the first case of proposition 10.16, we have |ap(f)|2 = pk−1 in the second case.
Therefore, ap(f) is indeed invertible in Of,λ because p ̸= ℓ.

The only thing to prove is that the hypothesis of [LW12, Proposition 2.8] holds in our cases,
namely that f is p-primitive in the terminology of [LW12, Definition 2.7]. To do so, we use [LW15,
Theorem]. We recall a direct consequence of this result. Let u = min

(⌊
vp(N)

2

⌋
, vp(N)− vp(c)

)
.

If u = 0, then f is p-primitive. We easily check that in our two cases we have u = 0. ■
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Background on Eisenstein series

11.1 Generalised Bernoulli numbers and Gauß sums

Let ε be a primitive Dirichlet character of conductor c. We recall the definition and properties of
the Gauß sums and generalised Bernoulli numbers attached to ε.

Definition 11.1. The Bernoulli numbers (Bm,ε)m⩾0 attached to ε are defined by the following
generating series:

∞∑
m=0

Bm,ε
tm

m!
:=

c∑
n=1

ε(n)
tent

ect − 1
.

Remark 11.2. If ε = 1 is the trivial character modulo 1, we get the classical Bernoulli numbers
except when m = 1, in which case we have B1,1 = 1

2 = −B1.

Proposition 11.3. When ε is odd, we have

B1,ε =
1

c

c−1∑
n=1

nε(n),

and when ε is both even and non-trivial, we have

B2,ε =
1

c

c−1∑
n=1

n2ε(n).

Proof. Let us compute the Taylor expansion of tent

ect−1 for some positive integer n.

tent

ect − 1
=

tent

ct+ c2t2

2 + c3t3

6 + o(t3)

=
ent

c
(
1 + ct

2 + c2t2

6 + o(t2)
)

=
1

c

(
1 + nt+

n2t2

2
+ o(t2)

)(
1−

(
ct

2
+

c2t2

6

)
+

c2t2

4
+ o(t2)

)
=

1

c
+ t

(
n

c
− 1

2

)
+
t2

2

(
n2

c
− n+

c

6

)
+ o(t2).
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It follows that for any primitive Dirichlet character ε, we have B1,ε =
c∑

n=1
ε(n)

(
n
c −

1
2

)
and

B2,ε =
c∑

n=1
ε(n)

(
n2

c − n+ c
6

)
.

Assume that ε is odd. As it is not the trivial character we have
c∑

n=1
ε(n) = 0 and therefore

B1,ε =
c∑

n=1

ε(n)

(
n

c
− 1

2

)
=

1

c

c∑
n=1

nε(n).

Assume that ε is even and non-trivial. We have
c−1∑
n=0

ε(n) = 0. Moreover,

c∑
n=1

nε(n)
n=c−m
=

c−1∑
m=0

(c−m)ε(c−m) =
c−1∑
m=0

(c−m)ε(m) = −
c∑

m=1

mε(m).

This sum is therefore equal to zero and we get

B2,ε =
c∑

n=1

ε(n)

(
c

6
+
n2

c
− n

)
=

1

c

c∑
n=1

n2ε(n).

■

We state below the main properties of the Bernoulli numbers. First, we exactly know when
the Bernoulli numbers vanish (see [Miy06, Theorem 3.3.4] for a proof).

Proposition 11.4. We have Bm,ε = 0 if and only if ε(−1) ̸= (−1)m.

Secondly, the behaviour of the Bernoulli numbers after reduction modulo a prime ideal has
been studied by Van-Staudt [Sta40] in the case ε = 1, and by Carlitz [Car59, Theorem 1] in the
case ε ̸= 1. We summarise their results in the following proposition.

Proposition 11.5. Let m be a positive integer.

1. Let ℓ be a prime number. If ℓ−1 divides m, then we have ℓBm,1 ≡ −1 (mod ℓ). Otherwise,
Bm,1
m is ℓ-integral and its reduction modulo ℓ depends only on the residue class of m modulo

ℓ− 1. In particular, the denominator of Bm,1 is equal to
∏

ℓ prime
ℓ−1|m

ℓ.

2. For ε ̸= 1, write Bm,ε
m = ND−1, with N and D two coprime ideals of Z[ε], the ring

spanned by the image of ε. If the conductor of ε admits at least two distinct prime factors,
then D = 1. Otherwise, if the conductor of ε is a power of a prime number ℓ, then D

contains only prime ideals above ℓ.

Another classical quantity attached to Dirichlet characters is its Gauß sum. We recall its
definition and properties below.
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Definition 11.6. The Gauß sum attached to ε is defined as

W (ε) :=
c∑

n=1

ε(n)e
2iπn

c .

One can find the following result in [BD14, Lemma 2.1].

Proposition 11.7. The prime divisors of the algebraic norm of W (ε) are those of c.

11.2 Eisenstein series

Let k be a positive integer and let ε1, ε2 be two Dirichlet characters modulo c1 and c2 respectively,
and such that ε1ε2(−1) = (−1)k. Moreover, if k = 2 and ε1, ε2 are both trivial, then assume c1 = 1

and c2 is a prime number. Otherwise, assume that ε1 and ε2 are primitive. For a complex number
z in the upper-half plane H, consider the following q-expansion:

Eε1,ε2k (z) := C +

∞∑
n=1

σε1,ε2k−1 (n)qn, (11.1)

with σε1,ε2r (n) :=
∑

0<d|n
drε1

(
n
d

)
ε2(d) for any r ⩾ 0 and

C :=


0

∣∣∣∣∣ if k ⩾ 2 and ε1 ̸= 1,

or if k = 1 and ε1, ε2 are both non-trivial;
1

24
(c2 − 1) if k = 2 and ε1, ε2 both trivial;

−
Bk,ε1ε2
2k

otherwise.

The following result is proved in [Miy06, Theorem 4.7.1] and [Miy06, (4.7.16)].

Proposition 11.8. The q-series Eε1,ε2k defines a modular form of weight k, level c1c2 and
character ε1ε2. It is a normalised eigenform for all the Hecke operators at level c1c2.

For ε1 = ε2 = 1, the definition of the series E1,1
k agrees with the definition of the classical

Eisenstein series of weight k. We simply write it Ek in this case. For k = 2, we denote by E2

the q-series

E2(z) := −
1

24
+

∞∑
n=1

( ∑
0<d|n

d

)
qn.

Note that this formula defines a holomorphic function on H, but E2 is not modular.
In the case k ⩾ 2 and ε1, ε2 primitive, the behaviour of the constant coefficient of Eε1,ε2k at a

cusp of Γ1(N) has been computed in [BM18, Proposition 4]. It states the following:

Proposition 11.9. Assume k ⩾ 2 and ε1, ε2 are primitive. Let M be a positive integer and

let γ :=

(
u β

v δ

)
∈ SL2(Z). Put ṽ := v

gcd(v,M) and M̃ := M
gcd(v,M) . We define

Υε1,ε2
k (γ,M) := lim

Im(z)→+∞
(Eε1,ε2k (M ·)|kγ)(z),
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where we denote by |k the classical slash action of weight k.
If c2 ∤ ṽ then, Υε1,ε2

k (γ,M) = 0. Otherwise, if c2 | ṽ then Υε1,ε2
k (γ,M) ̸= 0⇔ gcd

(
c1,

ṽ
c2

)
= 1.

In this case, we moreover have

Υε1,ε2
k (γ,M) = −ε−1

2

(
M̃u

)
ε1

(
− ṽ
c2

)
W ((ε1ε

−1
2 )0)

W (ε−1
2 )

×
Bk,(ε−1

1 ε2)0

2k

(
c2

M̃c0

)k ∏
p|c1c2

(
1− (ε1ε

−1
2 )0(p)

pk

)
,

where χ0 denotes the primitive character associated to a Dirichlet character χ, and c0 the
conductor of ε−1

1 ε2.

The proof of [BM18] is only given in the cases k ⩾ 3, and k = 2 and ε1, ε2 non-trivial. We
give a proof of the result in the case k = 2, ε1 = ε2 = 1, based on the techniques used in [BM18].

Proof. As in [BM18, §1.3], we write for Re(ε) > 0 and z ∈ H,

G2,ε(z) :=
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)2|mz + n|2ε
.

By [Miy06, Corollary 7.2.10 and Theorem 7.2.12], the function ε 7→ G2,ε(z) is holomorphically
continued to Re(ε) > −1

2 and we have

lim
ε→0

G2,ε(z) = −8π2E2(z)−
π

Im(z)
.

Now, because Im
(
M uz+β

vz+δ

)
= M Im(z)

|vz+δ|2 , we get

Υ1,1
2 (γ,M) = lim

Im(z)→+∞
lim
ε→0

− 1

8π2
G2,ε(M ·)|2γ(z) +

1

(vz + δ)2
1

8π Im
(
M uz+β

vz+δ

)


= − 1

8π2
lim

Im(z)→+∞
lim
ε→0

G2,ε(M ·)|2γ(z) + lim
Im(z)→+∞

|vz + δ|2

8πM(vz + δ)2 Im(z)

= − 1

8π2
lim

Im(z)→+∞
lim
ε→0

G2,ε(M ·)|2γ(z).

From this identity the proof of [BM18] still applies. Let us write z2,ε := z2|z|2ε. The function
G2,ε(M ·)|2γ(z) writes as Tε(z) +Rε(z), with

Tε(z) =
∑

(m,n)∈Z2\{(0,0)}
mMu+nv=0

1

(mMβ + nδ)2,ε
,

and Rε(z) =
∑

(m,n)∈Z2\{(0,0)}
mMu+nv ̸=0

1

((mMu+ nv)z + (mMβ + nδ))2,ε
.
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The function Tε is independent of z and the series is absolutely convergent for ε > 1
2 . Therefore,

we have
lim

Im(z)→+∞
lim
ε→0

Tε(z) =
∑

(m,n)∈Z2\{(0,0)}
mMu+nv=0

1

(mMβ + nδ)2
.

Finally, writing n in Rε(z) as Mn′ + ρ, with ρ between 0 and M − 1, we have

Rε(z) =
∑

(m,n′)∈Z2

∑
0⩽ρ⩽M−1

M(mu+n′v)+vρ̸=0

1

(z(M(mu+ n′v) + vρ) +M(mβ + n′δ) + ρδ)2,ε

p=mu+n′v
q=mβ+n′δ

=

M−1∑
ρ=0

∑
(p,q)∈Z2

Mp+vρ̸=0

1

(z(Mp+ vρ) +Mq + δρ)2,ε
.

The last equality is justified by the fact that (p, q) = (m,n′)γ, and γ ∈ SL2(Z). Applying [BM18,
Lemma 9] with a1 = vρ, a2 = δρ and D =M , we get

lim
Im(z)→+∞

lim
ε→0

Rε(z) = 0.

Lemma 6 of [BM18] therefore still applies in the case (k, ε1, ε2) = (2,1,1) and one easily checks
that the proof of lemma 7 and proposition 4 of [BM18] only uses the fact that ε1 and ε2 are
Dirichlet characters satisfying ε1ε2(−1) = (−1)k. ■
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Chapter 12

Preliminary results on modular forms

12.1 Theta operators

We fix for this paragraph a place L of Q. Consider the operator θ acting on the space of
holomorphic functions on H by 1

2iπ
d
dz = q d

dq . On q-expansions, this operator maps
∑
n⩾0

anq
n to∑

n⩾0
nanq

n. It is well-known that if g is a modular form, then θg is no longer modular (see for

example [Zag08, Chapter 5]). However, Swinnerton-Dyer and Serre [Swi73, § 3] have proved that
for ℓ ⩾ 5 and a level 1 modular form g with L-integral Fourier coefficients, one can construct
a level 1 form with L-integral Fourier coefficients and which Fourier coefficients are congruent
modulo L to the one of θg. More generally, Katz [Kat77] has proved using his geometric theory
of modular forms that there is an operator on the space of modular forms with coefficients in an
algebraic closure of Fℓ, whose action on the q-expansions is the same as the one of θ. For our
purposes, the main drawbacks of this latter approach is that Katz’ modular forms modulo L do
not always lift in characteristic 0, and have by essence a prime-to-ℓ level. To remedy this, we
will construct for any given level N ⩾ 1 and place L, an operator θ̃ acting on M(N) – the graded
algebra of modular forms of level N –, stabilising the subspace of modular forms with L-integral
Fourier coefficients, and such that for every modular form g with L-integral coefficients we have

θ̃g ≡ θg (mod L),

meaning that an
(
θ̃g
)

and nan(g) are congruent modulo L for all n.
The main tool we will use in the construction of θ̃ is the Rankin–Cohen bracket, introduced

by Cohen in [Coh75, Corollary 7.2]. We recall its definition and properties below.

Proposition 12.1 (Rankin–Cohen bracket). Let g and h be two modular forms of weight kg
and kh, level Ng and Nh, and character εg and εh respectively. The Rankin–Cohen bracket of g
and h is

[g, h] := kggθh− khhθg.

It is a cuspidal modular form of weight kg + kh + 2, level lcm(Ng, Nh) and character εgεh.
Moreover, if both g and h have their Fourier coefficients in a ring R, then so has [g, h].

159
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Let N be a positive integer. For a prime number p, we denote by TNp the p-th Hecke operator
acting on M(N). Recall that a modular form g ∈ Mk(N, ε) is an eigenform for TNp modulo L

with eigenvalue ap ∈ Fℓ in the sense of [DS74, §6(b)] if g has L-integral Fourier coefficients, and if

TNp g ≡ apg (mod L).

If g is moreover normalised modulo L, that is if a1(g) ≡ 1 (mod L), then g is an eigenform for
TNp modulo L if and only if for all integer n ⩾ 0 prime to p, and all α ⩾ 1, we have{

anpα(g) ≡ an(g)apα(g) (mod L);

apα+1(g) ≡ ap(g)apα(g)− pk−1ε(p)apα−1(g) (mod L).

The eigenvalue is then moreover equal to the reduction of ap(g) modulo L. The following lemma
is the central result that shows how to construct an operator θ̃ satisfying the properties described
above, using Rankin–Cohen brackets.

Lemma 12.2. Let kA be a positive integer, and let χA be a Dirichlet character modulo N . Let
A ∈ MkA(N,χA) be such that A and 1

kA
θA have L-integral Fourier coefficients and satisfy

A ≡ 1 (mod L),
1

kA
θA ≡ 0 (mod L), and χA ≡ χ−kA

ℓ (mod L).

Then, we have a well-defined operator θ̃A on M(N) given by θ̃Ag := − 1
kA

[g,A]. For every
g ∈ Mk(N, ε) with L-integral Fourier coefficients, this operator satisfies the following properties.

• θ̃Ag ∈ Sk+kA+2(N, εχA) and has L-integral Fourier coefficients;

• θ̃Ag ≡ θg (mod L);

• If for some prime number p, g is a normalised eigenform for TNp modulo L then so is θ̃Ag
with eigenvalue pap(g) (mod L).

In the following, when there will be no confusion on the form A, we shall write θ̃ for the operator
θ̃A.

Proof. According to proposition 12.1 above, this is clear that θ̃A is a well-defined operator and that
θ̃Ag has the announced weight, level, and character. Furthermore, we have θ̃Ag = − k

kA
gθA+Aθg.

Therefore, from the assumptions, if g has L-integral Fourier coefficients, then so does θ̃Ag and
we have

θ̃Ag = Aθg − 1

kA
θA× kg ≡ θg (mod L).

Assume g is a normalised eigenform for TNp modulo L. Then, θ̃Ag is also normalised modulo L

because we have a1
(
θ̃Ag

)
≡ 1× a1(g) ≡ 1 (mod L). Let n ⩾ 0 be prime to p, and α ⩾ 1. We

have

anpα
(
θ̃Ag

)
≡ npαanpα(g) ≡ nan(g)× pαapα(g) ≡ an

(
θ̃Ag

)
apα

(
θ̃Ag

)
(mod L),



12.1. THETA OPERATORS 161

and

apα+1

(
θ̃Ag

)
≡ pα+1apα+1(g) (mod L)

≡ pα+1
(
ap(g)apα(g)− pk−1ε(p)apα−1(g)

)
(mod L)

≡ pap(g)× pαapα(g)− p2pk−1ε(p)× pα−1apα−1(g) (mod L)

≡ ap
(
θ̃Ag

)
apα

(
θ̃Ag

)
− pk+1ε(p)apα−1

(
θ̃Ag

)
(mod L).

We claim that pk+1ε(p) is congruent to p(k+kA+2)−1(εχA)(p) modulo L. Indeed, if p | Nℓ, then
both sides are congruent to 0 modulo L. If p ∤ Nℓ, we have pkAχA(p) ≡ 1 (mod L) by assumption,
and therefore

pk+kA+1ε(p)χA(p) ≡ pk+kA+1ε(p)p−kA ≡ pk+1ε(p) (mod L).

As desired, we get

apα+1

(
θ̃Ag

)
≡ ap

(
θ̃Ag

)
apα

(
θ̃Ag

)
− p(k+kA+2)−1εχA(p)apα−1

(
θ̃Ag

)
(mod L),

and the form θ̃Ag is thus a normalised eigenform modulo L. ■

Remark 12.3. When ℓ does not divide N , the reduction of A modulo L is the so-called Katz’
Hasse invariant.

The rest of this paragraph is devoted to construct, for each level N and place L, a form A

that satisfies the hypotheses of lemma 12.2. Among all possible forms, the ones presented in
table 12.1 are those we found with the smallest weight. Notice that if we have a form A of
level M satisfying the hypotheses of lemma 12.2 for a given place L, this form also satisfies
the hypotheses of lemma 12.2 at the multiple-of-M levels. We will use this fact to consider the
smallest set of level possible. We divide our study in three parts: first the places L of residue
characteristic ℓ ⩾ 5, then ℓ = 2, and finally ℓ = 3.

12.1.1 Theta operators in characteristic greater than 3

The following proposition was already known to Swinnerton-Dyer in [Swi73, Theorem 2].

Proposition 12.4. Assume ℓ ⩾ 5. The form A := −2ℓEℓ−1 ∈ Mℓ−1(1,1) satisfies the hypotheses
of lemma 12.2 for any level N .

Proof. Since ℓ ⩾ 5, A is well-defined and the constant coefficient of A is equal to ℓBℓ−1,1

ℓ−1 . From
proposition 11.5, it is L-integral and congruent to 1 modulo L. Moreover, because Eℓ−1 has
integral coefficients except for the constant one, it follows that A and − 1

kA
θA have L-integral

Fourier coefficients and that A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). We finally check the

condition on the character of A. We have χ−kA
ℓ = χ1−ℓ

ℓ ≡ 1 (mod L). ■

If the level N is divisible by ℓ, the situation is in fact much more pleasant for us, in the sense
that we can find a form with kA = 1. We find a record of the following fact in [Rib94, (2.1)
Theorem].
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Proposition 12.5. Assume ℓ ⩾ 5 and ℓ | N . Let χL be the Teichmüller lift of χℓ with
respect to the place L, viewed as a primitive Dirichlet character of modulus ℓ. The form
A := 2ℓE

1,χ−1
L

1 ∈ M1(ℓ, χ
−1
L ) satisfies the hypotheses of lemma 12.2.

Proof. The form A is well-defined because χ−1
L is an odd character. Indeed, we have χ−1

L (−1) ≡
χ−1
ℓ (−1) ≡ −1 (mod L), and because ℓ is odd, this lifts to χ−1

L (−1) = −1. From proposition 11.3
and (11.1), the constant term of A is equal to

−ℓB1,χ−1
L

= −
ℓ−1∑
i=1

iχ−1
L (i),

which is L-integral. Therefore, because χL induces the identity modulo L, this coefficient is
congruent to 1 modulo L, and because E1,χ−1

L
1 has integral coefficients away from the constant

one, A and 1
kA
θA have L-integral Fourier coefficients and we get A ≡ 1 (mod L) and 1

kA
θA ≡ 0

(mod L). Finally, by definition we have χ−kA
ℓ = χ−1

ℓ ≡ χA (mod L). Thus, A satisfies the
hypotheses of lemma 12.2. ■

This finishes the case ℓ ⩾ 5. For ℓ ⩽ 3, the two previous constructions do not always give
well-defined modular forms. We present in the next two paragraphs specific constructions in the
cases ℓ = 2 and ℓ = 3.

12.1.2 Theta operators in characteristic 2

For ℓ = 2, the most favourable case is when 4 | N . The following construction is very analogous
to the one of proposition 12.5.

Proposition 12.6. Assume ℓ = 2 and N is divisible by 4. Let χ4 be the only non-trivial Dirichlet
character modulo 4. The form A := 4E1,χ4

1 ∈ M1(4, χ4) satisfies the hypotheses of lemma 12.2.

Proof. The form A is well-defined because χ4 is odd. Moreover, from proposition 11.3 and (11.1)
the constant coefficient of A is equal to

−2B1,χ4 = −1

2
(1χ4(1) + 3χ4(3)) = 1.

Therefore, because E1,χ4
1 has integral coefficients away from the constant one, A and 1

kA
θA have

L-integral coefficients, A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, it is straightforward

that χ4 is trivial modulo L, as its reduction is the cyclotomic character modulo 2. ■

The next favourable case is when N admits at least one odd prime divisor. The following
result was inspired by [Mei17, Appendix A.]. As it has never been published, we prove it for the
sake of completeness.

Proposition 12.7. Assume ℓ = 2 and N has an odd prime divisor. Let p be the least odd prime
divisor of N , and let χN be a Dirichlet character modulo p of order 2m, the greatest power of 2
dividing p−1. Let ζ be any primitive 2m-th root of unity. The form A := (ζ−1)E1,χN

1 ∈ M1(p, χN )

satisfies the hypotheses of lemma 12.2.
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Proof. First notice that χN exists because the group (Z/pZ)× is cyclic of order divisible by 2m.
Let g be an integer which class modulo p generates (Z/pZ)×. We claim that we can choose g
such that χN (g) = ζ. Indeed, as χN has order 2m, we have χN (g) = ζk with 2 ∤ k. Let u be an
integer such that ku ≡ 1 (mod 2m), and u ≡ 1 (mod p−1

2m ). We have χN (gu) = ζku = ζ, and by
construction u is prime to p− 1. Therefore, gu still generates (Z/pZ)×.

Because ζ is a root of unity of order 2m, we have χN (−1) = χN (g)
p−1
2 = ζ

p−1
2 = −1. Therefore,

χN is odd, A is well-defined, and its constant coefficient is equal to 1−ζ
2 B1,χN = 1−ζ

2p

p−1∑
a=1

aχN (a).

For i between 0 and 2m−1 − 1, we have χN (gi) = ζi, and

χN (−gi) = −ζi = ζi+2m−1
= χN (g

i+2m−1
).

Therefore, the set
{
±gi, 0 ⩽ i ⩽ 2m−1 − 1

}
is a set of representatives of (Z/pZ)× /Ker(χN ). For

an integer x, we write [x] for the only integer between 0 and p− 1 that is congruent to x modulo
p. We then have

1− ζ
2

B1,χN =
1− ζ
2p

2m−1−1∑
i=0

∑
e∈Ker(χN )

([
egi
]
χN (g

i) +
[
−egi

]
χN (−gi)

)

=
1− ζ
2p

2m−1−1∑
i=0

∑
e∈Ker(χN )

([
egi
]
ζi +

(
p−

[
egi
]) (
−ζi

))

=
1− ζ
2p

2m−1−1∑
i=0

ζi

−p ·#Ker(χN ) + 2
∑

e∈Ker(χN )

[
egi
]

=
1− ζ
2p
× 1− ζ2m−1

1− ζ
×
(
−p · p− 1

2m

)
+ (1− ζ)

1

p

2m−1−1∑
i=0

ζi
∑

e∈Ker(χN )

[
egi
]

= −p− 1

2m
+ (1− ζ)

1

p

2m−1−1∑
i=0

ζi
∑

e∈Ker(χN )

[
egi
] .

The term inside the parentheses is L-integral and p−1
2m is an odd integer. Moreover, the only prime

ideal above 2 in the ring OQ(ζ) = Z[ζ] is (1− ζ)Z[ζ]. Therefore, we have 1−ζ
2 B1,χN ≡ 1 (mod L).

Because the non-constant Fourier coefficients of E1,χN
1 are integral, A and 1

kA
θA have L-integral

coefficients, and we get A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, from lemma 10.5,

because χN has order a power of 2, it is trivial modulo L as well as the cyclotomic character
modulo 2. This finishes the proof. ■

Proposition 12.6 gives us a form A for all the levels divisible by 4, and proposition 12.7 gives
us a form for all the odd levels. We are thus left with the cases N = 1 and N = 2. There is
no modular form of weight 1 of these levels, so we have to look at bigger weights in order to
construct the form A. For level 2, we show that weight 2 suffices.

Proposition 12.8. Assume that ℓ = 2 and N = 2. Let 1(2) be the trivial character modulo 2.

The modular form A := 24E
1,1(2)

2 ∈ M2(2,1(2)) satisfies the hypotheses of lemma 12.2.
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Proof. The constant coefficient of A is equal to 1 and E
1,1(2)

2 has integral coefficients away from
the constant one. Therefore, the forms A and 1

kA
θA have both L-integral Fourier coefficients, and

we have A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, the character of A is trivial modulo L

as well as the cyclotomic character modulo 2. ■

For N = 1, the weight needs to be at least 4, and we have the following result.

Proposition 12.9. Assume ℓ = 2 and N = 1. The form A := 240E4 ∈ M4(1,1) satisfies the
hypotheses of lemma 12.2.

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier coefficients of
E4 are integers. Therefore, A and 1

kA
θA have integer coefficients, and we have A ≡ 1 (mod L),

and 1
kA
θA ≡ 0 (mod L). The character of A is again trivial, as well as the cyclotomic character

modulo 2. ■

12.1.3 Theta operators in characteristic 3

For N divisible by 3, the form of proposition 12.5 is still valid.

Proposition 12.10. Assume ℓ = 3 and N is divisible by 3. Let χ3 be the unique non-trivial
Dirichlet character modulo 3. The form A := 6E1,χ3

1 ∈ M1(3, χ3) satisfies the hypotheses of
lemma 12.2.

Proof. We have χ3 ≡ χ−1
ℓ (mod L) and the proof is exactly the same as the one of proposition 12.5.

■

For the levels containing a prime divisor congruent to 2 modulo 3, we can still consider an
Eisenstein series for the form A.

Proposition 12.11. Assume ℓ = 3 and N has a prime divisor congruent to 2 modulo 3. Let p
be the least such prime divisor, and let 1(p) be the trivial Dirichlet character modulo p. The form

A := 24
p−1E

1,1(p)

2 ∈ M2(p,1(p)) satisfies the hypotheses of lemma 12.2.

Proof. The constant coefficient of A is equal to 1. Moreover, E
1,1(p)

2 has integral Fourier
coefficients away from the constant one. Because p is congruent to 2 modulo 3, 24

p−1 is 0 modulo
L. Therefore A and 1

kA
θA have L-integral Fourier coefficients, and we have A ≡ 1 (mod L) and

1
kA
θA ≡ 0 (mod L). Finally, the character of A is trivial, and we have χ−2

3 ≡ 1 (mod L). ■

The remaining cases are the levels containing only prime factors that are congruent to 1
modulo 3. For the levels divisible by a prime p congruent to 4 modulo 9 (that is if 3 divides p− 1

only once), we found the following construction.

Proposition 12.12. Assume ℓ = 3 and N has a prime divisor congruent to 4 modulo 9. Let p be
the least such prime divisor of N , and let χN be a Dirichlet character modulo p of order 3. The
modular form A := 3

p−1

(
E1,χN

2 − Eχ
N ,1

2

)
∈ M2

(
p, χN

)
satisfies the hypotheses of lemma 12.2.
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Proof. First notice that χN indeed exists as (Z/pZ)× is a cyclic group of order p − 1 that is
divisible by 3. Moreover, because χN has order 3, it is trivial modulo L and even, and the two
Eisenstein series E1,χN

2 and Eχ
N ,1

2 exist.
The constant coefficient of A is equal to 3

4(1−p)B2,χN which is L-integral by proposition 11.5.
We have from proposition 11.3,

3

4(1− p)
B2,χN =

3

4p(1− p)

p−1∑
a=1

a2χN (a) ≡ 3

1− p

p−1∑
a=1

a2 (mod L)

≡ 3

1− p
p(p− 1)(2p− 1)

6
(mod L)

≡ 1 (mod L).

Therefore, the constant coefficient of A is 1 modulo L, and because the non-constant Fourier
coefficients of E1,χN

2 and Eχ
N ,1

2 are integral, A and 1
kA
θA have L-integral coefficients. The weight

kA is invertible modulo 3, it consequently suffices to prove that A ≡ 1 (mod L) to conclude.
The forms E1,χN

2 and Eχ
N ,1

2 are both normalised eigenforms for all the Hecke operators at
level p, and have the same weight and character. Thus, it is enough to prove that the congruence
ar

(
E1,χN

2

)
≡ ar

(
Eχ

N ,1
2

)
(mod L) hold for all prime numbers r. This last congruence is

straightforward, because we have

ar

(
E1,χN

2

)
= 1 + rχN (r) ≡ χN (r) + r = ar

(
Eχ

N ,1
2

)
(mod L).

■

It only remains the levels containing only primes congruent to 1 modulo 9. We found no general
way to express the modular form A as form of weight 2. Using computations in PARI/GP, we
looked for a modular form of level p ≡ 1 (mod 9) satisfying the hypotheses of lemma 12.2 for p up
to 1000. We always find a form except for p ∈ {307, 379, 433, 487, 523, 613, 631, 757, 811, 829, 991},
i.e. we found 16 forms out of the 27 we were looking for. It can be proved that such a modular
form cannot be expressed as a linear combination of forms in the Eisenstein space, meaning that
one has necessarily to consider cusp forms to construct A. To fill this gap anyway, we can still
consider the modular form A := 240E4 as in the case of proposition 12.9.

Proposition 12.13. Assume ℓ = 3, and N contains only prime factors congruent to 1 modulo 9.
The modular form A := 240E4 satisfies the hypotheses of lemma 12.2.

Proof. The constant coefficient of A is equal to 1 and the non-constant Fourier coefficients of E4

are integral. Therefore, the forms A and 1
kA
θA have both L-integral Fourier coefficients, and we

have A ≡ 1 (mod L) and 1
kA
θA ≡ 0 (mod L). Finally, the character of A is trivial, and we have

χ−kA
ℓ = χ−4

ℓ ≡ 1 (mod L). ■

We have compiled in table 12.1 the definition of A depending on ℓ and N . When multiple
definitions were possible, we have taken the one with the least weight among all the possible
forms. The third column corresponds to the proposition where the properties of the form have
been proved. Looking at the various results above, we state the following definition that will be
useful in the proofs of the next paragraph.
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Table 12.1: Various forms A used to construct the operator θ̃

ℓ ⩾ 5 Form A Proposition

ℓ ∤ N − 2ℓEℓ−1 12.4

ℓ | N 2ℓE
1,χ−1

L
1 12.5

ℓ = 2 Form A Proposition

4 | N 4E1,χ4
1 12.6

N ⩾ 3 and 4 ∤ N (ζ − 1)E1,χN
1 12.7

N = 2 24E
1,1(2)

2 12.8

N = 1 240E4 12.9

ℓ = 3 Form A Proposition

ℓ | N 6E1,χ3
1 12.10

ℓ ∤ N and N has a prime 24
p−1E

1,1(p)

2 12.11
factor q ≡ 2 (mod 3)

∀d | N , d ≡ 1 (mod 3) and N has 3
p−1

(
E1,χN

2 − Eχ
N ,1

2

)
12.12

a prime factor p ≡ 4 (mod 9)

∀p | N , p ≡ 1 (mod 9) 240E4 12.13

Definition 12.14. We say a pair (ℓ,N) is bad, if we have one of the following.

• ℓ = 2 and N = 1;

• ℓ = 3 and all the prime factors of N are congruent to 1 modulo 9.

Remark 12.15. When (ℓ,N) is bad, the modular form −504E6 is also congruent to 1 modulo
L. Its weight is greater than the one of table 12.1, but we will have to use it in the proof of
proposition 12.17 in the next section.

12.2 Sturm bounds

A Sturm bound for a space of modular forms is an upper bound on the number of leading
coefficients that characterise a form of this space. Equivalently, it is the maximal number of zero
leading coefficients that a non-zero form of this space can have. The study of such bounds has
first been made by Sturm [Stu87] and was later generalised among others by Murty [Mur97].
The same kind of bounds exist if we look at modular forms modulo a prime ideal – and are in
fact the same as the first ones. In the next lemma we give a slight improvement of Murty’s result
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for modular forms of same weight. We then state a more general result for modular forms of any
weight and level.

For all this paragraph, we fix a prime number ℓ and a place L of Q above ℓ.

Lemma 12.16. Let f , g be two modular forms of same weight k ⩾ 0, level Nf , Ng and character
εf , εg respectively. Let N be the least common multiple of Nf and Ng. Assume that f and g
have both L-integral Fourier coefficients and that εf ≡ εg (mod L).

If an(f) ≡ an(g) (mod L) for every integer n ⩽ kN
12

∏
p|N

p prime

(
1 + 1

p

)
, then f ≡ g (mod L).

Proof. We follow substantially the proof of Murty of [Mur97, §4]. Write B := kN
12

∏
p|N

p prime

(
1 + 1

p

)
.

Consider ϕ = f − g and suppose that the vanishing order modulo L at infinity of ϕ is at least
equal to B, that is an(ϕ) ≡ 0 (mod L) for all n ⩽ B. If ϕ = 0, there is nothing to prove.
Otherwise, as explained in [Mur97, §4], for γ ∈ SL2(Z) there is an element Aγ ∈ Q× such that
the modular form Aγϕ|kγ has L-integral coefficients and is not congruent to 0 modulo L.

We write m := [SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 + 1

p

)
and consider a system of representa-

tives (γi)1⩽i⩽m of right cosets of Γ0(N) in SL2(Z). We can further assume γ1 = I2, the identity
matrix. Also choose a set (τj)1⩽j⩽φ(N) of representatives of Γ1(N) in Γ0(N) with τ1 = I2. We
then have,

SL2(Z) =
m⋃
i=1

Γ0(N)γi =
m⋃
i=1

φ(N)⋃
j=1

Γ1(N)τjγi.

Taking the norm function of ϕ according to this system of representatives, we define

F :=

φ(N)∏
j=1

ϕ|kτjγ1

 m∏
i=2

φ(N)∏
j=1

Aτjγiϕ|kτjγi ∈ Mkmφ(N)(SL2(Z)).

For i = 1 and j between 1 and φ(N), we have

ϕ|kτjγ1 = ϕ|kτj = (εf (τj)f − εg(τj)g) ≡ εf (τj)ϕ (mod L). (12.1)

Therefore, the modular forms ϕ|kτjγ1 have L-integral Fourier coefficients and thereby, the form
F too, by the construction of the coefficients Aτjγi . Moreover, by assumption the vanishing
order at infinity of ϕ modulo L is at least equal to km

12 . Therefore, the one of the modular

form Φ :=
φ(N)∏
j=1

ϕ|kτjγ1 is at least equal to kmφ(N)
12 , and the same goes for F . Applying Sturm’s

theorem for level 1 modular forms [Mur97, Theorem 5], F must vanish modulo L and by
construction of the coefficients Aτjγi , the modular forms Aτjγiϕ|kτjγi are non-trivial modulo L

for i ̸= 1. Thus Φ – and hence ϕ by (12.1) – must be trivial modulo L. ■

The following proposition generalises the previous lemma to modular forms of arbitrary
weights and levels. The proof uses extensively the construction of theta operators given in
section 12.1. We warn the reader that we will write 00 = 1.



168 CHAPTER 12. PRELIMINARY RESULTS ON MODULAR FORMS

Proposition 12.17. Let f , g be two modular forms of weight kf , kg ⩾ 0, level Nf , Ng ⩾ 1 and
character εf , εg respectively. Let mf , mg be two non-negative integers. Assume that f and g
have both L-integral Fourier coefficients and that χkf+2mf

ℓ εf ≡ χ
kg+2mg
ℓ εg (mod L). Let N be

the least common multiple of Nf and Ng, and define

a =

 4 if

∣∣∣∣∣ kf + 2mf ≡ kg + 2mg + 2 (mod 4),

and (ℓ,N) is bad;
0 otherwise,

b =


4 if ℓ = 2 and N = 2;

3 if ℓ | N and (ℓ,N) ̸= (2, 2);

6 if (ℓ,N) is bad;
ℓ+ 1 otherwise,

and k = a+max(kf + bmf , kg + bmg),

where “bad” refers to definition 12.14.
If for every n ⩽ Nk

12

∏
p|N

p prime

(
1 + 1

p

)
, we have nmfan(f) ≡ nmgan(g) (mod L), then this holds

for all integers n ⩾ 0.

Proof. For the whole proof, we write A for the modular form associated with L and N constructed
in section 12.1. According to table 12.1, it has weight b− 2 and level N . We write χA for the
character of A and B(N, k) := Nk

12

∏
p|N

p prime

(
1 + 1

p

)
.

Assume without loss of generality that kf + bmf ⩽ kg + bmg. We first prove that the
proposition is true assuming b− 2 divides kg − kf + b(mg −mf ), that is if for all non-negative
integers n ⩽ B(N, kg + bmg) we have nmfan(f) ≡ nmgan(g) (mod L), then these congruences
hold for all non-negative integers n. Applying lemma 12.2 recursively, we have

θ̃mf f ∈ Mkf+bmf (N, εfχ
mf
A ) and θ̃mgg ∈ Mkg+bmg(N, εgχ

mg
A ).

We cannot apply lemma 12.16 to θ̃mf f and θ̃mgg directly since they do not have the same weight.

However, the forms A
kg−kf+b(mg−mf )

b−2 θ̃mf f and θ̃mgg are well-defined modular forms by assumption.

They have the same weight kg + bmg, the same level N , and character εfχ
mf+

kg−kf+b(mg−mf )
b−2

A

and εgχ
mg
A respectively. Moreover, from lemma 12.2 again, we have χA ≡ χ2−b

ℓ (mod L). By the
assumption on the characters we get

εfχ
mf+

kg−kf+b(mg−mf )
b−2

A ≡ εfχ
−(b−2)

(
mf+

kg−kf+b(mg−mf )
b−2

)
ℓ (mod L)

≡ εfχ
(2−b)mf−kg+kf+b(mf−mg)
ℓ (mod L)

≡ χkf+2mf
ℓ εf · χ

−(kg+bmg)
ℓ (mod L)

≡ χkg+2mg
ℓ εg · χ

−(kg+bmg)
ℓ (mod L)

≡ εgχ
mg
A (mod L).
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Therefore, the assumptions of lemma 12.16 are satisfied for these two modular forms. Since A
reduces to 1 modulo L, we get that if the coefficients of θ̃mf f and θ̃mgg are congruent up to the
B(N, kg + bmg)-th one, then θ̃mf f and θ̃mgg are congruent modulo L by lemma 12.16.

We now look at the hypothesis b− 2 | kg − kf + b(mg −mf ). We claim that if (ℓ,N) is not
bad, then it is always satisfied. We have three cases: (i) ℓ = N = 2, (ii) ℓ | N and (ℓ,N) ̸= (2, 2),
(iii) ℓ ∤ N and (ℓ,N) is not bad.

(i) If ℓ = N = 2, then b − 2 = 2, and kf ≡ kg ≡ 0 (mod 2), because the weight of a level 2
modular form is necessarily even. Thus, kg − kf + 4(mg −mf ) is divisible by b− 2.

(ii) If ℓ | N , then b− 2 = 1 and there is nothing to prove.

(iii) If ℓ ∤ N and (ℓ,N) is not bad, we have b − 2 = ℓ − 1. Because ℓ ∤ N , εf and εg are
unramified at ℓ. From the assumption χ

kf+2mf
ℓ εf ≡ χ

kg+2mg
ℓ εg (mod L), we get that

kg − kf + 2(mg −mf ) ≡ 0 (mod ℓ− 1), hence b− 2 | kg − kf + b(mg −mf ).

Therefore, when (ℓ,N) is not bad, the proposition is proved because we have a = 0 and
k = kg + bmg.

From now on, assume that (ℓ,N) is bad. By definition, we have b = 6, and either (ℓ,N) =

(2, 1), or ℓ = 3 and ℓ ∤ N . Let us first prove that we have kg − kf +6(mg −mf ) ≡ 0 (mod 2) (i.e.
kg ≡ kf (mod 2)). When (ℓ,N) = (2, 1), it is true because the weights kf and kg are both even.
When ℓ = 3 and ℓ ∤ N , the hypothesis on the characters again implies that kf + 2mf ≡ kg + 2mg

(mod 2) and the conclusion follows.
If the even number kg − kf + 6(mg −mf ) is divisible by 4 = b − 2, then by definition we

have a = 0 and k = kg + bmg. The result follows as before in this case. Otherwise, we have
4 | kg − kf +6(mg −mf )− 2 and a = 4. Write A4 := 240E4 and A6 := −504E6. We have seen in
proposition 12.13 and remark 12.15, that both A4 and A6 are congruent to 1 modulo L. We set

f ′ := A6f and g′ = A4g.

Then f ′ and g′ are modular forms with L-integral Fourier coefficients of weight kf ′ = kf + 6,
kg′ = kg + 4, level N and character εf , εg respectively. Since χ2

ℓ is trivial for ℓ = 2, 3, the
congruence

χ
kf ′+bmf
ℓ εf ≡ χ

kg′+bmg
ℓ εg (mod L)

is satisfied. Moreover, we have kf ′ +bmf ⩽ kg′ +bmg, and b−2 = 4 divides kg′−kf ′ +b(mg−mf ).
According to the discussion at the beginning of the proof, we therefore get the desired result
since f ′, g′ reduce to f , g respectively and kg′ + bmg = a+ kg + bmg = k. ■

Remark 12.18. Notice that lemma 12.16 corresponds to the special case mf = mg = 0 and
kf = kg = k. Moreover, in practice we can always take mf ∈ {0, 1} and 0 ⩽ mg ⩽ ℓ− 1.

In chapter 13 we will mainly deal with eigenforms. It is well-known that the knowledge of
the Fourier coefficients of prime index and of the constant coefficient characterises such forms.
We can therefore simplify proposition 12.17 and get the following corollary.
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Corollary 12.19. Let f , g be as in proposition 12.17 and define also N and k similarly. Assume
further that f and g are normalised eigenforms for the Hecke operators at level N modulo L of
prime index less than Nk

12

∏
p|N

p prime

(
1 + 1

p

)
(and different from ℓ if mf , mg ⩾ 1).

If 0mfa0(f) ≡ 0mga0(g) (mod L) (with 00 = 1) and if for every prime p ⩽ Nk
12

∏
p|N

p prime

(
1 + 1

p

)
we have pmfap(f) ≡ pmgap(g) (mod L), then we have nmfan(f) ≡ nmgan(g) (mod L) for every
non-negative integer n.

We finally state a Sturm bound result in characteristic zero that we will be used in the proof
of theorem 14.17. It is a well-known result, but we do not find a suitable reference for it. For the
sake of completeness we give a proof of it due essentially to Buzzard.

Proposition 12.20. Let f , g be two modular forms of same weight k ⩾ 0, same level N , and
same character ε. If an(f) = an(g) for every integer n ⩽ kN

12

∏
p|N

p prime

(
1 + 1

p

)
, then f = g.

Proof. We reduce to the case of trivial character. Let s be the order of the character ε, and
define

ϕ := (f − g)s ∈ Mks (N,1) .

By assumption, the first s · Nk12
∏
p|N

p prime

(
1 + 1

p

)
Fourier coefficients of ϕ vanish. Applying [Mur97,

Theorem 1], we get ϕ = 0 and therefore f = g. ■

Remark 12.21. We can in fact deduce proposition 12.20 from lemma 12.16. Indeed, it is well
known that the denominators of the Fourier coefficients of a modular form are bounded. Therefore,
we can reduce f and g modulo infinitely many places L. Applying lemma 12.16, f and g are
congruent modulo infinitely many places L and are thus equal.

As in the positive characteristic case, to check the equality of two eigenforms it is enough to
check only the coefficients of prime index.

Corollary 12.22. Let f , g be two modular forms of same weight k ⩾ 0, same level N , and same
character ε. Assume further that f and g are normalised eigenforms for the Hecke operators TNp
of prime index less or equal to Nk

12

∏
p|N

p prime

(
1 + 1

p

)
.

If a0(f) = a0(g) and ap(f) = ap(g) for every prime p ⩽ Nk
12

∏
p|N

p prime

(
1 + 1

p

)
, then f = g.

We now give an upper-bound for the product appearing in the Sturm bound. We use a
technique of Kraus [Kra95] to get a slightly better bound than the one suggested by Serre in
Kraus’ article.

Lemma 12.23. Let n be an integer greater than or equal to 2, we have:∏
p|n

p prime

(
1 +

1

p

)
⩽ 2 log log(n) + 2.4.



12.3. MODIFYING MODULAR FORMS 171

Proof. We first split the product in two parts:
∏
p|n

p prime

(
1 + 1

p

)
= P (n)Q(n) with

P (n) =
∏
p|n

p>logn

(
1 +

1

p

)
and Q(n) =

∏
p|n

p⩽logn

(
1 +

1

p

)
.

Let m be the number of primes p dividing n and being greater than log n. As n ⩾ log(n)m, we
get m ⩽ logn

log logn . Thus,

P (n) ⩽ exp

(
log n

log log n
log

(
1 +

1

log n

))
⩽ exp

(
1

log log n

)
. (12.2)

Applying [RS62, (3.27)], we get an upper bound for Q:

Q(n) ⩽
∏

p⩽logn

(
1− 1

p

)−1

< eγ log log(n)

(
1− 1

(log log n)2

)−1

, (12.3)

where γ is the Euler-Mascheroni constant. Putting (12.2) and (12.3) together we have∏
p|n

p prime

(
1 +

1

p

)
⩽ eγ log log(n) exp

(
1

log log n

)(
1− 1

(log log n)2

)−1

.

The function x 7→ eγ+x(1− x2)−1 is bounded by 2 for x ∈ [0, 0.1]. Therefore, the lemma holds
for all integers n ⩾ exp(exp(10)). For n between 2 and exp exp(10), we first notice that it is
enough to deal with square-free integers. Then, among the square-free integers having k prime

factors, it suffices to only check the lemma for nk =
k∏
i=1

pi, pi being the i-th prime number, as it

is for this value of n that the left hand side product is the biggest and the right-hand side the
smallest. The greatest k such that nk ⩽ exp exp(10) is 2486, and we have checked the lemma
with a computer for all those nk. ■

12.3 Modifying modular forms

In this paragraph we discuss a way to construct from a given eigenform, another eigenform with
slightly different Fourier coefficients but with a bigger level. It will be crucial in chapters 13
and 14.

Let O(H) be the space of holomorphic functions on the complex upper-half plane. For an
integer n ⩾ 1 and a complex number b, we define two operators Vn and Sn(b) on O(H) by

Vn :

{
O(H) −→ O(H)

h 7−→ (z 7→ h(nz))
and Sn(b) :

{
O(H) −→ O(H)

h 7−→ h− bVnh
.

For a prime number p, we denote by Up the operator which action on Fourier expansions is given
by

Up

( ∞∑
n=0

anq
n

)
:=

∞∑
n=0

anpq
n.
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We recall the following facts about the operators Up and Vp: for any primes p and r, the
operators Vp and Vr commute and the image of Mk(M, ε) by Vp is Mk(Mp, ε). Letting Vp act on
q-expansions, it commutes with Ur for r ̸= p and satisfies UpVp = Id. Moreover, TMp decomposes
on the space Mk(M, ε) as

TMp = Up + pk−1ε(p)Vp.

We therefore have the following lemma for eigenforms of TMp .

Lemma 12.24. Let M ′ be a multiple of M and assume either that p | M , or that p ∤ M ′.
On q-expansions, the actions of TMp and TM ′

p are the same. Therefore, if f ∈ Mk(M, ε) is an
eigenform for TMp , then, seeing f in level M ′, it is also an eigenform for TM ′

p .

From now on, consider a modular form g of weight k ⩾ 1, level M ⩾ 1, and character ε that
is a normalised eigenform for all the Hecke operators at level M . For any prime number p, we
denote by αp, βp the roots of the Hecke polynomial X2 − ap(g)X + pk−1ε(p).

Lemma 12.25. Let p be a prime number and let b ∈ {αp, βp}. The function Sp(b)g is a modular
form of same weight and character as g and of level Mpnp with

np =

{
1 if b ̸= 0;

0 if b = 0.

It is a normalised eigenform for all the Hecke operators at level Mpnp, and for any prime r we
have

ar (Sp(b)g) =

{
ar(g) if r ̸= p;

ap(g)− b if r = p.

Moreover, if g has Fourier coefficients in a ring R, then those of Sp(b)g lie in the ring R[b].

Proof. If b = 0, then there is nothing to prove as Sp(0)g = g. Assume b ̸= 0. Because both g

and Vpg are modular forms of weight k, level Mp, and character ε, it is also the case for Sp(b)g.
Let us compute the action of the Hecke operators at level Mp on Sp(b)g.

Let r be a prime number different from p. From lemma 12.24, TMp
r g and TMr g are equal.

Thus, because the operators Vp and TMr commute, we have

TMp
r Sp(b)g = TMr g − bVpTMr g = ar(g)g − bar(g)Vpg = ar(g)Sp(b)g.

For r = p, we have TMp
p g = Upg = TMp g − pk−1ε(p)Vpg = ap(g)g − pk−1ε(p)Vpg. It gives

TMp
p Sp(b)g =

(
ap(g)g − pk−1ε(p)Vpg

)
− bUpVpg = (ap(g)− b) g − pk−1ε(p)Vpg.

As b is a root of X2 − ap(g)X + pk−1ε(p), it satisfies b(ap(g)− b) = pk−1ε(p). We finally get

TMp
p Sp(b)g = (ap(g)− b) g − (ap(g)− b) bVpg = (ap(g)− b)Sp(b)g.

The form Sp(b)g is thus a normalised eigenform for the all Hecke operators at level Mp. The
fact about the ring of Fourier coefficients of Sp(b)g is straightforward. ■
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We now apply this result to construct from the eigenform g, an eigenform which p-th Fourier
coefficient is a chosen number b in {αp, βp, 0}.

Proposition 12.26. Let p be a prime number and let b ∈ {αp, βp, 0}. Define
gbp = g and np = 0, if b = ap(g);

gbp = Sp(ap(g)− b)g and np = 1, if b ̸= ap(g) and b ∈ {αp, βp};
gbp = Sp(αp) ◦ Sp(βp)g and np = 2, if b ̸= ap(g) and b /∈ {αp, βp}.

Then, gbp is a modular form of same weight and character as g and of level Mpnp. It is a
normalised eigenform for all the Hecke operators at level Mpnp, and for any prime r we have

ar

(
gbp

)
=

{
ar(g) if r ̸= p;

b if r = p.

Moreover, if g has Fourier coefficients in a ring R, then those of gbp lie in the ring R[b].

Proof. In the first two cases, we have gbp = Sp(ap(g) − b)g and lemma 12.25 gives directly the
result. In the third case, we necessarily have b = 0 and αp, βp non-zero. From lemma 12.25
applied to g and βp, the p-th Hecke polynomial of Sp(βp)g is X2 − αpX, of which αp is a root.
We can then apply lemma 12.25 to Sp(βp)g and αp to conclude. Finally, the calculation

Sp(αp) ◦ Sp(βp)g = (g − βpVpg)− αpVp (g − βpVpg)
= g − (αp + βp)Vpg + αpβpV

2
p g

= g − ap(g)Vpg + pk−1ε(p)V 2
p g,

proves that the Fourier coefficients of gbp lie in the same ring as g, because the values of the
character of an eigenform always lie in the ring spanned by its Fourier coefficients (see [Rib77,
Corollary (3.1)]). ■

Remark 12.27. The form gbp reads “the modular form g which p-th Fourier coefficient has been
changed to the number b”.

Remark 12.28. Notice that the modular form gbp is always of the shape P (Vp)g with P =

1− εpX + δpX
2 and (εp, δp) ∈ {(αp, 0), (βp, 0), (ap(g), pk−1ε(p))}.

For any prime number p and bp ∈ {0, αp, βp}, define

S
bp
p =


Id if bp = ap(g);

Id− (ap(g)− bp)Vp if bp ̸= ap(g) and bp ∈ {αp, βp};
Id− ap(g)Vp + pk−1ε(p)V 2

p if bp ̸= ap(g) and bp /∈ {αp, βp},

so that we have gbpp = S
bp
p g. By proposition 12.26, applying Sbpp to g only modifies the Fourier

coefficients of index divisible by p. Moreover, it gives us a modular form that is still a normalised
eigenform for the whole Hecke algebra at its level. It means that for another prime r and
br ∈ {0, αr, βr}, the modular forms

(
g
bp
p

)br
r

and
(
gbrr
)bp
p

are well-defined and equal to Sbpp Sbrr g =

Sbrr S
bp
p g.
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For any finite set of primes P and any b ∈
∏
p∈P
{0, αp, βp}, we define

gbP :=
∏
p∈P

S
bp
p g.

With the notations of proposition 12.26, we deduce the following result.

Corollary 12.29. The function gbP is a modular form of same weight and character as g and of
level M

∏
p∈P

pnp . It is a normalised eigenform for all the Hecke operators at level M
∏
p∈P

pnp , and

for any prime r we have

ar

(
gbP

)
=

{
ar(g) if r /∈ P;

br if r ∈ P.

Moreover, if g has Fourier coefficients in a ring R, then those of gbP lie in the ring R[b].

Since the beginning of this section, our results were about “true” modular forms. There
is another function that we can modify with the operator Sp(b) and get a modular form: the
Eisenstein series E2.

Proposition 12.30. Let p be any prime number and b ∈ {1, 0}. Define{
(E2)

b
p = Sp(p)E2 and np = 1 if b = 1;

(E2)
b
p = Sp(1) ◦ Sp(p)E2 and np = 2 if b = 0.

The function (E2)
b
p is a modular form of weight 2, level pnp, and trivial character. It is a

normalised eigenform for all the Hecke operators at level pnp , and for any prime r we have

ar

(
(E2)

b
p

)
=

{
r + 1 if r ̸= p;

b if r = p.

Moreover, all the Fourier coefficients of (E2)
b
p are integers, except maybe the constant one that is

rational.

Proof. An easy computation shows that for any prime p, we have Sp(p)E2 = E
1,1(p)

2 . In
particular, the form Sp(p)E2 = Sp(ap(E2) − 1)E2 is a normalised eigenform of weight 2, level
p, trivial character, and for any prime r, its r-th Fourier coefficient is equal to r + 1 = ar(E2)

if r ̸= p, and 1 if r = p. Moreover, the Hecke polynomial at p of E
1,1(p)

2 is X(X − 1). Thus,
Sp(1)E

1,1(p)

2 = Sp(1) ◦ Sp(p)E2 is a normalised eigenform of weight 2, trivial character and level
p2 and we have ap(Sp(1) ◦ Sp(p)E2) = 0. ■

We can then state a result of the shape of corollary 12.29 for E2.

Corollary 12.31. Let P be a finite set of primes and let b ∈
∏
p∈P
{0, 1, p} \ (p)p∈P. There is a

modular form (E2)
b
P of weight 2, level

∏
p∈P

pnp , and trivial character. It is a normalised eigenform

for all the Hecke operators at its level, and for any prime number r we have

ar

(
(E2)

b
P

)
=

{
r + 1 if r /∈ P;

br if r ∈ P.
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Moreover, all the Fourier coefficients of (E2)
b
P are integers, except maybe the constant one that is

rational.

We finally give a result on the constant coefficient of an Eisenstein series that has been
modified with corollary 12.29.

Proposition 12.32. Let k ⩾ 2, let ε1, ε2 be two primitive Dirichlet characters. Let P be a
finite set of prime numbers and let b := (bp) ∈

∏
p∈P
{0, ε1(p), pk−1ε2(p)}, different from (1)p∈P if

(k, ε1, ε2) = (2,1,1). Then the constant coefficient of
(
Eε1,ε2k

)b
P

is equal to 0 if ε1 ̸= 1;

−Bk,ε2
2k

∏
p∈P

bp(bp − pk−1ε2(p)) if ε1 = 1.

Proof. First, if ε1 ≠ 1, then the constant coefficient of Eε1,ε2k is trivial by (11.1). Assume ε1 = 1.
Then the modular form

(
Eε1,ε2k

)b
P

is equal to∏
p∈P

(
Id− εpVp + δpV

2
p

)
Eε1,ε2k ,

where

(εp, δp) =


(1 + pk−1ε2(p), p

k−1ε2(p)) if bp = 0;

(1, 0) if bp = pk−1ε2(p);

(pk−1ε2(p), 0) if bp = 1.

(12.4)

Therefore, the constant coefficient is equal to −Bk,ε2
2k

∏
p∈P

(1 − εp + δp). A straightforward

computation gives that 1− εp + δp is equal to 0 if bp ∈ {0, pk−1ε2(p)}, and to 1− pk−1ε2(p) if
bp = 1. Therefore, if one of the bp’s is equal to 0 or pk−1ε2(p), then the constant coefficient is
equal to

0 = −
Bk,ε2
2k

∏
p∈P

bp(bp − pk−1ε2(p)).

Else, if all the bp’s are equal to 1, then the constant coefficient is equal to

−
Bk,ε2
2k

∏
p∈P

(1− pk−1ε2(p)) = −
Bk,ε2
2k

∏
p∈P

bp(bp − pk−1ε2(p)).

■

Proposition 12.33. Let k, ε1, ε2, P and b be as in proposition 12.32. Let c1, c2 be the
conductors of ε1 and ε2 respectively. Then the constant coefficient of

(
Eε1,ε2k

)b
P

at the cusp 1
c2

is
equal to

−ε1(−1)
W ((ε1ε

−1
2 )0)

W (ε−1
2 )

Bk,(ε−1
1 ε2)0

2k

(
c2
c0

)k ∏
p|c1c2

(
1− (ε1ε

−1
2 )0(p)

pk

)

×
∏

bp ̸=ε1(p)

(
1− ε1ε

−1
2 (p)

pk

) ∏
bp ̸=pk−1ε2(p)

(
1− 1

p

)
.
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Proof. Let γ :=

(
1 0

c2 1

)
be an element of SL2(Z) such that γ∞ = 1

c2
. Write the modular form(

Eε1,ε2k

)b
P

as ∏
p∈P

(
Id− εpVp + δpV

2
p

)
Eε1,ε2k ,

with εp and δp defined by (12.4). By proposition 11.9, for an integer M , the constant coefficient
of
(
VME

ε1,ε2
k

)
|kγ is non-zero if and only if M and c2 are coprime. Under this assumption, we

have, with the notations of proposition 11.9,

Υε1,ε2
k (γ,M) =

ε−1
2 (M)

Mk

[
− ε1(−1)

W ((ε1ε
−1
2 )0)

W (ε−1
2 )

Bk,(ε−1
1 ε2)0

2k

×
(
c2
c0

)k ∏
p|c1c2

(
1− (ε1ε

−1
2 )0(p)

pk

) . (12.5)

The expression in brackets is independent of M , let us write it D. Notice that if M is not coprime
to c2, the formula still holds, as ε2(M) = 0. Define

P :=
∏
p∈P

(
1− εpXp + δpX

2
p

)
∈ C [(Xp)p∈P] .

As (12.5) is fully multiplicative in M , the constant coefficient of
(
Eε1,ε2k

)b
P

is then equal to

lim
Im(z)→+∞

P ((Vp)p∈P)E
ε1,ε2
k |kγ(z) = D · P

((
ε−1
2 (p)

pk

)
p∈P

)
.

We just have to compute the value of P
((

ε−1
2 (p)

pk

)
p∈P

)
to conclude. Let Pp(Xp) = 1−εpXp+δpX

2
p ,

so that we have P =
∏
p∈P

Pp(Xp). A straightforward calculation shows that the value of Pp
(
ε−1
2 (p)

pk

)
is 

(
1− ε1ε

−1
2 (p)

pk

)(
1− 1

p

)
if (εp, δp) = (ε1(p) + pk−1ε2(p), p

k−1ε1ε2(p));

1− ε1ε
−1
2 (p)

pk
if (εp, δp) = (ε1(p), 0);

1− 1
p if (εp, δp) = (pk−1ε2(p), 0).

■



Chapter 13

Reducible modular representations

13.1 General study of reducible representations

Let f = q+
∞∑
n=2

an(f)q
n be a newform of weight k ⩾ 2, level N ⩾ 1, and character ε of conductor

c. Let Kf be the number field generated by (an(f))n⩾2 and let λ be a prime ideal of the ring of
integers of Kf above a prime number ℓ. Our goal is to characterise the fact that ρf,λ is reducible
by a finite set of congruences. We begin by looking at the possible factors that can appear in the
reduction of ρf,λ. The set we define in the following corresponds these possible pairs of factors
(see the upcoming proposition 13.2).

Definition 13.1. Let L be a place of Q above λ. Define the set RN,k,ε(L) as the set of quadruples
(ε1, ε2,m1,m2) consisting of two Dirichlet characters ε1, ε2 of prime-to-ℓ order and unramified
at ℓ, and of two integers m1, m2 satisfying

1. 0 ⩽ m1 ⩽ m2 ⩽ ℓ− 2;

2. χm1+m2
ℓ ε1ε2 = χk−1

ℓ ε;

3. For every prime p ̸= ℓ, vp
(

N
c1c2

)
∈ {0, 1, 2},

where · denotes the reduction modulo L, and ci is the conductor of εi, and up to the equivalence
relation (ε1, ε2,m,m) ∼ (ε2, ε1,m,m).

In particular if (ε1, ε2,m1,m2) ∈ RN,k,ε(L), then c1c2 | N . The set RN,k,ε(L) is therefore
finite.

Proposition 13.2. Let L be a place of Q extending λ. The representation ρf,λ is reducible if
and only if there exists (ε1, ε2,m1,m2) ∈ RN,k,ε(L) such that ρf,λ ∼= χm1

ℓ ε1 ⊕ χm2
ℓ ε2, where εi

denotes the reduction of εi modulo L.

Proof. The representation ρf,λ is semi-simple and odd. Therefore, it is reducible if and only if
there exist two characters ηi : GQ → F×

λ such that

ρf,λ
∼= η1 ⊕ η2.

177
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Using section 10.2.2 to lift ηi with respect to the place L, we can write it ηi = χmiℓ εi, with
0 ⩽ mi ⩽ ℓ − 2 and εi a primitive Dirichlet character of conductor ci not divisible by ℓ, and
of prime-to-ℓ order. Without loss of generality we can assume that m1 ⩽ m2. Looking at the
determinant of ρf,λ we get

χk−1
ℓ ε = χm1+m2

ℓ ε1ε2.

Moreover, by propositions 10.4 and 10.6 the Artin conductor of χm1
ℓ ε1 ⊕ χm2

ℓ ε2 is equal to c1c2.
By proposition 10.12, we necessarily have vp

(
N
c1c2

)
∈ {0, 1, 2} for all primes p ∤ N , p ̸= ℓ. ■

Remark 13.3. We consider (ε1, ε2,m,m) to be equivalent to (ε2, ε1,m,m) in Rn,k,ε(L) because
these two quadruplets leads to the same representation χmℓ ⊗ (ε1 ⊕ ε2) ∼= χmℓ ⊗ (ε2 ⊕ ε1).

Remark 13.4. We will see later that the set RN,k,ε(L) depends in fact only on L ∩Q(ε) (and
obviously on N , k and ε). For now, this dependency will not matter, and we postpone this proof
to section 13.3.

Now that the possible shape of the reduction of ρf,λ is parametrise by a finite set, we need
to translate the isomorphism ρf,λ

∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2 by a system of congruences between two
modular forms. The following result is the key step in this direction. It uses in a crucial way the
local description of ρf,λ at the bad prime numbers (see section 10.3).

Lemma 13.5. Let L be a place of Q above λ. If the representation ρf,λ is reducible, then there
exists (ε1, ε2,m1,m2) ∈ RN,k,ε(L) such that for any prime number p ̸= ℓ, we have

ap(f) ≡

{
pm1ε1(p) + pm2ε2(p) (mod L) if p ∤ N ;

pm1bp (mod L) if p | N,
(13.1)

for some bp ∈ {0, ε1(p), pm2−m1ε2(p)}.
Conversely, if for some (ε1, ε2,m1,m2) ∈ RN,k,ε(L), those congruences hold for every prime

p in a set of density 1, then we have ρf,λ ∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2.

Proof. Let us prove the second statement first. Write ρ := χm1
ℓ ε1 ⊕ χm2

ℓ ε2. By construction, the
determinants of ρf,λ and ρ agree. Moreover, by assumption for any prime number p ∤ Nℓ in a set
of density 1, we have

Tr
(
ρf,λ(Frobp)

)
≡ ap(f) ≡ pm1ε1(p) + pm2ε2(p) ≡ Tr (ρ(Frobp)) (mod L).

By corollary 10.3, ρf,λ must be isomorphic to ρ and is thus reducible.
We now prove the first statement. Assume ρf,λ to be reducible. Proposition 13.2 gives us the

existence of (ε1, ε2,m1,m2) ∈ RN,k,ε(L), such that ρf,λ ∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2. For any prime p ∤ Nℓ,
taking the trace at a Frobenius at p gives the congruence

ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L).

Let us now consider a prime p | N and different from ℓ. We treat 3 cases separately:

(i) If vp(N) ⩾ 2 and vp(N) > vp(c), we know from proposition 10.16 that ap(f) = 0. Hence,
we have ap(f) ≡ pm1bp (mod L) with bp = 0.
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(ii) If vp(N) = 1 and vp(c) = 0, then by proposition 10.17 the local representation ρf,λ|Gp
upper-triangular with unramified characters on the diagonal. It is moreover reducible by
assumption. Therefore, the characters ε1 and ε2 are unramified and we have an equality of
sets of characters of Gp:

{µ (ap(f)) , µ (ap(f))χℓ} =
{
χm1
ℓ ε1, χ

m2
ℓ ε2

}
.

There are two cases to look at:

• If µ (ap(f)) = χm1
ℓ ε1, then we have ap(f) ≡ ε1(p)p

m1 (mod L). In this case, we put
bp = ε1(p).

• If µ (ap(f)) = χm2
ℓ ε2, then we have ap(f) ≡ ε2(p)p

m2 (mod L), and we define bp =

pm2−m1ε2(p).

In both cases we have ap(f) ≡ pm1bp (mod L) with bp ∈ {ε1(p), pm2−m1ε2(p)}.

(iii) Finally, if vp(N) = vp(c), we are in the second case of proposition 10.17, and we get the
equality {

µ (ap(f)) , µ
(
ap(f)

−1
)
ε|Gpχ

k−1
ℓ

}
=
{
χm1
ℓ ε1, χ

m2
ℓ ε2

}
,

We again have two cases to consider:

• If µ (ap(f)) = χm1
ℓ ε1, then ap(f) ≡ ε1(p)pm1 (mod L). We define bp = ε1(p).

• If µ (ap(f)) = χm2
ℓ ε2, then ap(f) ≡ ε2(p)pm2 (mod L). We put bp = pm2−m1ε2(p).

In both cases, we again have ap(f) ≡ pm1bp (mod L) with bp ∈ {ε1(p), pm2−m1ε2(p)}.

■

Lemma 13.5 states that the reducibility of ρf,λ is equivalent to an infinite set of congruences
satisfied by the coefficients ap(f), one for each prime number except ℓ. This lack of congruence
for aℓ(f) is in fact not a problem because we always have ℓaℓ(f) ≡ 0 (mod L). This will become
handy later. In order to transform this infinite set of congruences into a finite one we will use the
Sturm bound we develop in section 12.2. In order to do this we need to express the right-hand
side of (13.1) as the coefficients of a modular form with L-integral coefficients. We proceed in
three steps.

• First we define a q-series which coefficients will be congruent to ε1(p) + pm2−m1ε2(p) for
every prime p. This series will sometimes not be modular, or not has integral Fourier
coefficients.

• Next, we modify slightly this series in order to correct these defaults.

• Finally, we will modify it a second time in order to take into account the congruences at
p | N , p ̸= ℓ. This will lead to the wanted modular form except for the small modification
we may have done in the second step. To take this into account, we will have to also modify
the form f slightly.
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Let L be a place of Q dividing λ, and let (ε1, ε2,m1,m2) ∈ RN,k,ε(L), we define

k′ :=

{
m2 −m1 + 1 if ℓ > 2;

2 if ℓ = 2,
and E0 := Eε1,ε2k′ . (13.2)

Proposition 13.6. We have ε1ε2(−1) = (−1)k′ . In particular, E0 is well-defined and modular if
and only if (k′, ε1, ε2) ̸= (2,1,1), in which case E0 is a normalised eigenform of weight k′, level
c1c2, and character ε1ε2. Moreover, for every prime number p we have ap(E0) = ε1(p)+p

k′−1ε2(p)

in any case.

Proof. If ℓ = 2, then ε1 and ε2 are even, and we have ε1ε2(−1) = 1 = (−1)k′ . Otherwise, we
have

ε1ε2(−1) = (−1)m2+m1+1 = (−1)m2−m1+1 = (−1)k′ .

The rest of the proposition follows from proposition 11.8 and (11.1). ■

As mentioned above, we need the coefficients our modular form to be L-integral. The following
result states when it may not be the case.

Lemma 13.7. Assume (k′, ε1, ε2) ̸= (2,1,1). The Fourier coefficients of E0 are L-integral unless
perhaps in the following cases:

• ℓ = 2, ε1 = 1 and ε2 ̸= 1;

• ℓ ⩾ 5, ε1 = ε2 = 1, and (m1,m2) = (0, ℓ− 2).

Proof. Apart from the constant one, the coefficients of E0 are all algebraic integers. We therefore
only need to focus on the constant Fourier coefficient a0 of E0.

In the case ℓ ̸= 2, if (ε1, ε2) ̸= (1,1), then a0 is always L-integral by proposition 11.5,
because ε1 and ε2 are unramified at ℓ. If ε1 = ε2 = 1, then a0 = − 1

2k′Bk′ . By proposition 11.5
again, if (m1,m2) ̸= (0, ℓ− 2), then a0 is always L-integral. If (m1,m2) = (0, ℓ− 2), then a0 is
always not L-integral. Notice moreover that we must have ℓ ̸= 3, because otherwise k′ = 2 and
ε1 = ε2 = 1, which is excluded.

Assume ℓ = 2, hence k′ = 2. If ε1 ≠ 1, then as before we have a0 = 0. Else, if ε1 = 1, then
a0 = −B2,ε2

4 which may not be L-integral. Moreover, we must have ε2 ̸= 1 because otherwise we
would have (k′, ε1, ε2) = (2,1,1). ■

We can now construct from (ε1, ε2,m1,m2) ∈ RN,k,ε(L) (and hence k′ and E0), a modular
form with L-integral Fourier coefficients which corresponds to the right-hand side of equation
(13.1). With the notations of proposition 12.26 and proposition 12.30, define r := 4 and E := (E0)

0
2 if

∣∣∣∣∣ we are in one of the cases listed in lemma 13.7
or (k′, ε1, ε2) = (2,1,1);

r := 1 and E := E0 otherwise.
(13.3)

The following proposition sums up the properties of E.
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Proposition 13.8. The function E is a modular form of weight k′, level M := lcm(c1c2, r), and
character ε1ε2. It is a normalised eigenform for all the Hecke operators at level M , all its Fourier
coefficients are L-integral, and for any prime p, we have

ap(E) =

{
ε1(p) + pk

′−1ε2(p) if p ∤ r;
0 if p | r.

Proof. The only thing to prove is that M is indeed the level of E. The rest of the proposition
then follows from proposition 12.26, proposition 12.30, lemma 13.7 and proposition 13.6. If
r = 1, the level of E is equal to c1c2 = lcm(c1c2, r). Assume r = 4. We then always have c1 = 1

and either ε2 = 1 or ℓ = 2. In the first case, c2 = 1 and ε2(2) = 1 ̸= 0. In the second case, c2
is odd because prime to ℓ. Thus, we have ε2(2) ̸= 0. In every case, the level of E is equal to
4c1c2 = lcm(c1c2, 4). ■

As mentioned above, as we have modified the second coefficient of E when r ̸= 1, we need to
also modify the second coefficient of f in consequence. With the notations of proposition 12.26,
we define 

f ′ := f02 and N ′ :=


N if 2 | N and a2(f) = 0;

2N if 2 | N and a2(f) ̸= 0;

4N if 2 ∤ N,
if r = 4;

f ′ := f and N ′ := N, if r = 1.

(13.4)

Proposition 13.9. The form f ′ is a normalised eigenform of weight k, level N ′, and character ε.
Its Fourier coefficients are L-integral and if a prime p divides r, then ap(f

′) = ap(E) = 0.
Moreover, the level M = lcm(c1c2, r) of E (see proposition 13.8) always divides N ′, and if ℓ = 2,
then N ′ ⩾ 3.

Proof. The only facts that do not follow directly from proposition 12.26 are those on the level N ′.
First recall that c1c2 always divide N . For M = lcm(c1c2, r) to divide N ′ thus need to prove that
r divides N ′. If r = 1 this straightforward. Assume r = 4. If 2 ∤ N , then N ′ = 4N is divisible
by r. If 2 | N and a2(f) ̸= 0, then 4 divides N ′ = 2N . Finally, if 2 | N and a2(f) = 0, then by
proposition 10.16 we necessarily have v2(N) ⩾ 2. Therefore, N ′ = N is again divisible by r. In
every case, we have M | N ′.

Finally, assume ℓ = 2. If ε1 = 1, then we necessarily have r = 4 and N ′ ⩾ 4. Otherwise, if
ε1 ̸= 1, we then have N ′ ⩾ c1 ⩾ 3 because there is no non-trivial primitive character of conductor
less than 3. ■

We can finally construct the modular form we need. Indeed, for a prime number p, the Hecke
polynomial of E at p is equal to

X2 −
(
ε1(p) + pk

′−1ε2(p)
)
X + pk

′−1ε1ε2(p) = (X − ε1(p))(X − pk
′−1ε2(p)).

Therefore, we can apply corollary 12.29 to E with bp ∈ {0, ε1(p), pk
′−1ε2(p)} to get a modular

form with the same Fourier coefficients of prime index as E except at some prime p where it
equals bp. The following lemma allows us to moreover control the level of the resulting modular
form.
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Lemma 13.10. Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L), let p ̸= ℓ be any prime number dividing N , and
let bp ∈ {0, ε1(p), pk

′−1ε2(p)}.
If we have a congruence ap(f) ≡ pm1bp (mod L), then we have

1 ⩽ vp(c1c2) + np ⩽ vp(N),

where np is defined as in proposition 12.26 with respect to g = E and bp. In particular, those
inequalities are independent of the choice of bp.

Proof. First, we always have vp(c1c2) + np ⩾ 1, because np = 0 only if bp = ap(E) = ε1(p) +

pk
′−1ε2(p), which implies that vp(c1c2) ⩾ 1.
Next, we claim the following:

bp = 0 if and only if vp(c) < vp(N) and vp(N) ⩾ 2.

Indeed, we have bp = 0 if and only if ap(f) ≡ 0 (mod L). Moreover, by proposition 10.16 we
have either vp(c) < vp(N), vp(N) ⩾ 2 and ap(f) = 0, or |ap(f)|2 = ps with s ⩾ 0. Therefore, we
have ap(f) ≡ 0 (mod L) if and only if vp(c) < vp(N) and vp(N) ⩾ 2.

We now prove that vp(c1c2) + np ⩽ vp(N). If np = 0, it follows from the fact that c1c2 | N .
If np = 2, then from proposition 12.26, we must have bp = 0 /∈ {ε1(p), pk

′−1ε2(p)}. Therefore,
p ∤ c1c2 and from the discussion above we have vp(N) ⩾ 2 = vp(c1c2) + np.

Assume finally that np = 1. We have bp ̸= ε1(p) + pk
′−1ε2(p) and bp ∈ {ε1(p), pk

′−1ε2(p)}.
Therefore, p does not divide both c1 and c2. If p ∤ c1c2, we have vp(c1c2) + np = 1 ⩽ vp(N).
Otherwise, assume that p | c1 and p ∤ c2. We then necessarily have bp = 0 and from the
discussion above we get vp(c) < vp(N). Looking at the p-part of the Artin conductor of both
sides of the equality χk−1

ℓ ε = χm1+m2
ℓ ε1ε2, we get vp(c) = vp(c1) where c and c1 denote the

conductors of ε and ε1 respectively. Because ε1 has prime-to-ℓ order, we have c1 = c1. On the
other sides we always have c | c. Therefore, we have vp(c1c2) = vp(c1) ⩽ vp(c). Hence, we get
vp(c1c2) + np ⩽ vp(N). The case p | c2 and p ∤ c1 is treated in exactly the same way. ■

This leads to the fundamental result of our discussion.

Corollary 13.11. Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L). Define k′, r and E as in (13.2) and (13.3)
respectively. Consider P ⊆ {p prime, p | N, p ∤ rℓ} and b := (bp)p∈P ∈

∏
p∈P
{0, ε1(p), pk

′−1ε2(p)}

such that for all p ∈ P, we have pm1bp ≡ ap(f) (mod L).
The modular form E′ := Eb

P is of weight k′, character ε1ε2, and its level divides N ′. It has
L-integral Fourier coefficients and for every prime p such that either p ∤ Nℓ or p ∈ P ∪ {r}, E′

is a normalised eigenform for the Hecke operator TN ′
p .

Proof. From corollary 12.29, the form E′ is a normalised eigenform for all the Hecke operators at
its level NE′ := lcm(c1c2, r)

∏
p∈P

pnp . Moreover, the action of TN ′
p and TNE′

p on E′ is the same if p

divides both N ′ and NE′ or none of them. If p ∤ Nℓ, then p ∤ NE′ . If p ∈ P∪{r}, by lemma 13.10
we have

1 ⩽ vp(NE′) ⩽ vp(N
′).

Therefore, NE′ divides N ′ and E′ is a normalised eigenform for the announced Hecke operators.
The rest of the corollary follows from corollary 12.29. ■
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We now able to prove the main result of this section. It gives for a given λ, an explicit finite
set of congruences that characterises the reducibility of the representation ρf,λ.

Theorem 13.12. Let f be a newform of weight k ⩾ 2, level N ⩾ 1, and character ε. Let λ be a
prime ideal of Kf above a prime number ℓ. The following assertions are equivalent:

1. ρf,λ is reducible;

2. Let L be a place of Q above λ. There exists (ε1, ε2,m1,m2) ∈ RN,k,ε(L) (see definition 13.1)
such that the following holds. Let k′, r, and N ′ be as in (13.2), (13.3) and (13.4) respectively.
Define

a =

 4 if

∣∣∣∣∣ k ≡ m1 +m2 + 3 (mod 4),

ℓ = 3 and ∀p | N ′, p ≡ 1 (mod 9);

0 otherwise,

b =


3 if ℓ | N ′;

6 if

∣∣∣∣∣ ℓ = 3 and ∀p | N ′,

p ≡ 1 (mod 9);

ℓ+ 1 otherwise,

and k̃ = a+ b+max(k, k′ + bm1).

For every prime p ⩽ B := N ′k̃
12

∏
q|N ′

(
1 + 1

q

)
not dividing rℓ, we have

• p ∤ N and ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L);

• or, p | N and ap(f) ≡ pm1bp (mod L) for some bp in the set {0, ε1(p), pm2−m1ε2(p)}.

When this holds, we moreover have ρf,λ ∼= χm1
ℓ ε1 ⊕ χm2

ℓ ε2.

Proof. Assertion (2) is weaker than the second part of lemma 13.5. Therefore, (1) implies (2).
Assume that 2 holds. Consider again k′, r, E, N ′, and f ′ defined in (13.2), (13.3) and (13.4)

respectively. Define P := {p prime, p | N, p ∤ ℓr, p ⩽ B}, and b := (bp)p∈P. Finally, with the
notation of corollary 12.29, consider the form E′ := Eb

P.
We wish to apply corollary 12.19 with f = f ′, g = E′, mf = 1 and mg = m1 + 1. By

corollary 13.11, we have E′ ∈ Mk′(N
′, ε1ε2), it has L-integral Fourier coefficients, and it is

an eigenform for all the Hecke operators at level N ′ of index less than B, except maybe at ℓ.
Moreover, from the identity χm1+m2

ℓ ε1ε2 = χk−1
ℓ ε, we have

χ
k′+2(m1+1)
ℓ ε1ε2 = χ

(m2−m1+1)+2(m1+1)
ℓ ε1ε2 = χm1+m2+3

ℓ ε1ε2 = χk+2
ℓ ε.

Let p be a prime number less than B. If p | ℓr, then we have

pm1+1ap(E
′) ≡ 0 ≡ pap(f ′) (mod L).

Otherwise, by corollary 12.29 we have pm1+1ap(E
′) ≡ pm1+1bp ≡ pap(f ′) (mod L). The defini-

tions of a, b and k̃ correspond to those of a, b and k in proposition 12.17 (the case ℓ = 2 and
N ′ ⩽ 2 never occurs as proved in proposition 13.9). By corollary 12.19, we therefore obtain the
congruence nan(f ′) ≡ nm1+1an(E

′) (mod L) for every non-negative integer n. By lemma 13.5,
we thus have ρf,λ ∼= χm1

ℓ ε1 ⊕ χm2
ℓ ε2. ■
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Remark 13.13. From this theorem, we can deduce an algorithm that takes a prime ideal λ as input
and decides whether the representation ρf,λ is reducible or not, and computes the representation
if it is reducible. In particular, it justifies the reducibility modulo 11 of the representation treated
in [BD14, 5.1.2]. We give further details on how to explicitly do this in PARI/GP in chapter 15.
Moreover, the theorem extends the case m = 1 of [Kra97, Proposition 2.].

13.2 Reducible modular representations in big characteristic

The previous theorem holds without any restriction on ℓ, but the result depends on ℓ through

1. the set RN,k,ε(L);

2. the integer B that bounds the number of congruences to check.

The goal of this section is to remove these dependencies on ℓ under some assumptions. We first
remove the dependency in ℓ in the set RN,k,ε(L).

Definition 13.14. Define RN,ε as the set of pairs (ε1, ε2) of primitive Dirichlet characters
such that ε1ε2 = ε and for every prime number p, we have vp

(
N
c1c2

)
∈ {0, 1, 2}, where ci is the

conductor of εi.

Proposition 13.15. Assume ℓ ⩾ k − 1 and ℓ ∤ Nφ(N). The representation ρf,λ is reducible
if and only if there exists (ε1, ε2) ∈ RN,ε such that ρf,λ ∼= ε1 ⊕ χk−1

ℓ ε2. We moreover have
aℓ(f) ≡ ε1(ℓ) + ℓk−1ε2(ℓ) (mod L).

Proof. From proposition 13.2, if ρf,λ is reducible, then there exists a quadruple (ε1, ε2,m1,m2) ∈
RN,k,ε(L) such that ρf,λ ∼= χm1

ℓ ε1 ⊕ χm2
ℓ ε2. By the assumptions ℓ ∤ N and ℓ ⩾ k − 1, together

with proposition 10.14, f must be ordinary at λ, and we have an equality of sets{
µ (aℓ(f)) , χ

k−1
ℓ µ

(
ε(ℓ)

aℓ(f)

)}
=
{
χm1
ℓ ε1, χ

m2
ℓ ε2

}
.

It follows that (m1,m2) = (0, k − 1) and aℓ(f) ≡ ε1(ℓ) ≡ ε1(ℓ) + ℓk−1ε2(ℓ) (mod L). Finally,
the character ε(ε1ε2)−1 reduces to the trivial character modulo L, and because ℓ ∤ φ(N), it must
have prime-to-ℓ order. Using lemma 10.5, it must be trivial, and we get ε = ε1ε2. ■

The following result will allow us to both remove the dependency in ℓ in the bound B of
theorem 13.12, and bound the set of ℓ such that ρf,λ is reducible.

Proposition 13.16. Assume ℓ > k + 1 and ℓ ∤ Nφ(N). The representation ρf,λ is reducible
if and only if there exist a pair (ε1, ε2) ∈ RN,ε, and b ∈

∏
p∈P
{0, ε1(p), pk−1ε2(p)}, with P :=

{p prime, p | N, p ∤ ℓr}, such that f ′ ≡ E′ (mod L), with f ′ defined as in (13.4) and E′ := Eb
P

with E defined in (13.3).

Proof. If we have f ′ ≡ E′ (mod L), then in particular for all primes p ∤ Nℓr, we have

ap(f) = ap(f
′) ≡ ap(E′) ≡ ε1(p) + pk−1ε2(p) (mod L).
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By lemma 13.5, ρf,λ is therefore reducible.
Assume that ρf,λ is reducible. The existence of (ε1, ε2) is granted by proposition 13.15.

Moreover, by lemma 13.5 there exists b ∈
∏
p∈P
{0, ε1(p), pk−1ε2(p)} such that for every prime

number p, we have a congruence ap(f ′) ≡ ap(E′) (mod L). By corollary 13.11, E′ ∈Mk(N
′, ε)

has L-integral Fourier coefficients and is an eigenform for all the Hecke operators at level N ′. By
proposition 13.9, f ′ has the same properties and therefore the modular form f ′ − E′ is constant
modulo L.

By the assumptions ℓ > k + 1 and ℓ ∤ Nφ(N), we have ℓ ⩾ 5 and ℓ ∤ N . Therefore, we
know from [DI95, Theorem 12.3.7] this Katz’ modular form spaces with coefficients in Fℓ are
isomorphic to the spaces of reduction modulo L of modular forms with L-integral coefficients.
Therefore, from [Kat73, Corollary 4.4.2], for f ′ − E′ to be congruent to a non-zero constant we
must have k ≡ 0 (mod ℓ − 1). This cannot hold under the assumption ℓ > k + 1, and we get
f ′ ≡ E′ (mod L). ■

We now state our second main result. It is analogous to theorem 13.12 for the prime numbers
ℓ > k + 1 and ℓ ∤ Nφ(N).

Theorem 13.17. Let f be a newform of weight k ⩾ 2, level N ⩾ 1, and character ε. Let λ be a
prime ideal of Kf above a prime number ℓ. Assume ℓ > k + 1 and ℓ ∤ Nφ(N). The following
assertions are equivalent.

1. ρf,λ is reducible.

2. Let L be a place of Q above λ. There exists (ε1, ε2) ∈ RN,ε such that the following holds.
Let r be as is (13.3) (recall that (m1,m2) = (0, k − 1)) and let N ′ be as in (13.4). Define

C =

 0 if r > 1 or ε1 ̸= 1;

−Bk,ε0
2k

∏
p|N

ap(f)(ap(f)− pk−1ε0(p)) otherwise,

where ε0 is the primitive character associated to ε.

We have C ≡ 0 (mod L), and for all primes p ⩽ B := N ′k
12

∏
q|N ′

(
1 + 1

q

)
, we have either

p | r or

• ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L), if p ∤ N ;

• ap(f) ≡ bp (mod L) for some bp ∈ {0, ε1(p), pk−1ε2(p)}, if p | N .

When this holds, we moreover have ρf,λ ∼= ε1 ⊕ χk−1
ℓ ε2.

Proof. Assume ρf,λ to be reducible. Introduce f ′ and E′ as in proposition 13.16. The congruences
for ap(f) follow from the congruence f ′ ≡ E′ (mod L). It only remains to prove that C ≡ 0

(mod L). Because f ′ is cuspidal, its constant coefficient at infinity is equal to 0. Therefore, the
one of E′ must be congruent to 0 modulo L.
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The congruence C ≡ 0 (mod L) is non-trivial only if r = 1 and ε1 = 1. In this case, we have
ε2 = ε0, the set P of proposition 13.16 is the set of prime divisors of N and for all p ∈ P we
have bp ≡ ap(f) (mod L). Therefore, the constant coefficient of E′ is equal to

−
Bk,ε2
2k

∏
p∈P

bp(bp − pk−1ε2(p)) ≡ −
Bk,ε0
2k

∏
p|N

ap(f)(ap(f)− pk−1ε0(p)) (mod L)

≡ C (mod L).

This proves that (1) implies (2).
Assume now that the second part of the theorem holds. Consider again the modular forms E

and f ′, and define P⩽B := {p prime, p | N, p ⩽ B} and b⩽B := (bp)p∈P⩽B , and let E′ := E
b⩽B
P⩽B

.
By corollary 13.11, we have E′ ∈ Mk(N

′, ε), it has L-integral coefficients, and it is an eigenform
for all the Hecke operators at level N ′ of index less than B. The form f ′ has moreover the same
properties and for all prime numbers p ⩽ B, we have by assumption ap(f ′) ≡ ap(E′) (mod L).
In order to apply corollary 12.19 to f = f ′, g = E′, mf = mg = 0, we need to have a0(E′) ≡ 0

(mod L). From proposition 12.32, we have a0(E′) = 0 if ε1 ̸= 1 or r > 1. Else, if ε1 = 1 and
r = 1, we have ε2 = ε0 and

a0(E
′) = −

Bk,ε2
2k

∏
p|N,p⩽B

bp(bp − pk−1ε2(p))

≡ −
Bk,ε0
2k

∏
p|N,p⩽B

ap(f)(ap(f)− pk−1ε0(p)) (mod L).

By the assumption C ≡ 0 (mod L), we have either a0(E′) ≡ 0 (mod L), or there exists p0 | N ,
p0 > B, such that ap0(f)(ap0(f)− pk−1

0 ε0(p0)) ≡ 0 (mod L). Define then,

E′′ :=

{
E′ if a0(E′) ≡ 0 (mod L);

E′bp0
p0 otherwise.

with bp0 =

{
0 if ap0(f) ≡ 0 (mod L);

pk−1
0 ε0(p0) if ap0(f) ≡ pk−1

0 ε0(p0) (mod L).

By corollary 13.11, E′′ still lies in Mk(N
′, ε), has L-integral Fourier coefficients, is an eigenform for

the Hecke operators at level N ′ of index less than B, for any prime p ⩽ B, we have ap(E′′) ≡ ap(f ′)
(mod L), and its constant Fourier coefficient vanishes modulo L. By corollary 12.19, we finally
get E′′ ≡ f ′ (mod L), and we therefore have ρf,λ ∼= ε1 ⊕ χk−1

ℓ ε2. ■

Remark 13.18. Notice that we could have always taken r = 4 from the start (i.e. from
(13.3)) without modifying any of the results of chapter 13. The version of theorem 13.12 and
theorem 13.17 we exposed in the introduction assumed that. The coefficient C is then equal to
zero, and we get back the results announced previously.

From theorem 13.17 we also deduce a bound for the reducible primes in terms of N , k and ε
only.

Theorem 13.19. Assume that ρf,λ is reducible, then one of the following conditions holds.
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• ℓ ⩽ k + 1;

• ℓ | Nφ(N);

• there exists (ε1, ε2) ∈ RN,ε such that ℓ divides the algebraic norm of one the following
non-zero quantities

1. Bk,(ε−1
1 ε2)0

;

2. pk − (ε1ε
−1
2 )0(p) for a prime p such that p | c1c2, p ∤ c0 with c0 the conductor of

(ε1ε
−1
2 )0.

Proof. Assume ℓ > k + 1 and ℓ ∤ Nφ(N). From proposition 13.16, if ρf,λ is reducible, we have
a congruence modulo L between the cuspidal modular form f ′, and the Eisenstein series E′.
Therefore, by Katz’ q-expansion principle (see [Kat73]) the constant coefficient of E′ must be
congruent to 0 modulo L at every cusp. By proposition 12.33, the constant coefficient of E′ at
the cusp 1

c2
divides the quantity

−ε1(−1)
W ((ε1ε

−1
2 )0)

W (ε−1
2 )

Bk,(ε−1
1 ε2)0

2k

(
c2
c0

)k
×
∏
p|c1c2

(
1− (ε1ε

−1
2 )0(p)

pk

)∏
p|N ′

(
1− ε1(p)ε

−1
2 (p)

pk

)(
1− 1

p

)
.

Let us look at the prime factors of the norm of this coefficient.

• The number −ε1(−1) is a unit. Its norm has no prime factor.

• By proposition 11.7, the prime factors of the norm of W ((ε1ε
−1
2 )0)

W (ε2)

(
c2
c0

)k are only powers of
prime factors of N . By assumption, ℓ does not divide them.

• For p | N ′, we have 1− 1
p = p−1

p . By the assumption ℓ ∤ Nφ(N), this cannot vanish modulo
L.

• For p | N ′ again, let us prove that the prime factors of the norm of
(
1− ε1(p)ε

−1
2 (p)

pk

)
are

redundant with the ones of N and
(
pk − (ε1ε

−1
2 )0(p)

)
. Note that we either have p = 2

and (k, ε1, ε2) = (2,1,1), or N ′ = N . In the first case we have 1 − ε1(p)ε
−1
2 (p)

pk
= 3

4 . This
cannot vanish modulo L by assumption because 2 and 3 are less or equal to k + 1 = 3.
Otherwise, we have p | N , then either p | c0 and 1 − ε1(p)ε

−1
2 (p)

pk
= 1 ̸≡ 0 (mod L), or

p ∤ c0 and 1− ε1(p)ε
−1
2 (p)

pk
=

pk−(ε1ε
−1
2 )0(p)

pk
. Therefore, ℓ must divide the algebraic norm of

pk − (ε1ε
−1
2 )0(p).

• Finally, ℓ divides either the norm of
B
k,(ε−1

1 ε2)0

2k and thus Bk,(ε−1
1 ε2)0

because 2k is non-zero
modulo L by assumption, or pk − (ε1ε

−1
2 )0(p) for p | c1c2. This final quantity contains only

prime factors of N if p | c0. We can therefore consider only the primes p ∤ c0.

■
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13.3 Checking the reducibility

We explain here how to use theorem 13.12 and theorem 13.17 to explicitly compute the prime
ideals λ for which the representation ρf,λ is reducible. We begin by discussing the dependency of
the set RN,k,ε(L) (see definition 13.1) in the place L.

Proposition 13.20. Let N ⩾ 1 and k ⩾ 2 be integers, and let ε be a Dirichlet character modulo
N . Let ℓ be a prime number and let L be a place of Q above ℓ. The set RN,k,ε(L) depends only
on L ∩Q(ε) (and on N , k and ε).

Proof. Write πL for the projection modulo L, and TL for the associated Teichmüller lift (see
section 10.2.2). Recall that for x ∈ F×

ℓ , TL(x) is the only root of unity of order prime to ℓ and
such that πL(TL(x)) = x.

We first prove that the map TL ◦ πL depends only on ℓ. Let ζ be a root of unity of order
n = ℓmq with m ⩾ 0 and ℓ ∤ q. We can then write ζ = ζℓ

ma · ζqb, with ℓ ∤ b and a prime to q.
Because ζ is a root of unity of order n, ζℓma is a root of unity of order q and ζqb is a root of unity
of order ℓm. From lemma 10.5, we get ζ ≡ ζℓma (mod L), and TL ◦ πL(ζ) = ζℓ

ma. Therefore, it
depends only on ℓ.

Let (ε1, ε2,m1,m2) ∈ RN,k,ε(L). The only dependency on the place L is the congruence

χk−1
ℓ ε ≡ χm1+m2

ℓ ε1ε2 (mod L).

Decompose ε as εℓε′, where εℓ is the ℓ-part of ε, and ε′ is unramified at ℓ. Looking at the ℓ-part of
the congruence on the one hand, and at the prime-to-ℓ part on the another hand, the congruence
is equivalent to

χk−1
ℓ εℓ ≡ χm1+m2

ℓ (mod L) and ε′ ≡ ε1ε2 (mod L). (13.5)

Applying TL to the second equation, we get TL ◦ πL(ε′) = TL ◦ πL(ε1ε2). We have seen that this
depends only on ℓ. Let us look at the first equation. The projection of εℓ modulo L depends
only on L ∩ Q(ε). Moreover, πL(εℓ) is a character modulo L of conductor ℓ. Therefore, there
exists an integer kℓ between 0 ℓ− 1, depending only on L ∩Q(ε), such that πL(εℓ) = χkℓℓ . The
equation χk−1

ℓ εℓ ≡ χm1+m2
ℓ (mod L) is therefore equivalent to k+ kℓ− 1 ≡ m1+m2 (mod ℓ− 1)

and depends only on L ∩Q(ε). ■

Notice that we have in fact proved that RN,k,ε(L) depends only on L∩Q(TL ◦ πL(εℓ)) but we
will only use what we have stated. A practical application of this result is that we can compute
the set RN,k,ε(L) while knowing only a prime ideal λ below L in a finite extension of Q(ε), like
Kf for example. For λ a prime ideal in an extension of Q(ε), we will freely write RN,k,ε(λ) for
the set RN,k,ε(L) for any place L above λ. We also deduce from proposition 13.20, a procedure
to compute RN,k,ε(λ):

Algorithm 13.21. Input: Two integers N ⩾ 1, k ⩾ 2, a Dirichlet character ε modulo N , and
a prime ideal λ in a finite extension of Q(ε) above a prime number ℓ.
Output: The set RN,k,ε(λ).

1. Compute εℓ and ε′, the ℓ-part and prime-to-ℓ part of ε respectively.
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2. Compute the unique Dirichlet character ε′′ modulo N such that ε′′ has prime-to-ℓ order,
is unramified at ℓ and ε′ε′′−1 has order a power of ℓ. This corresponds to the character
TL ◦ πL(ε′) for any place L above λ.

3. Compute the integers kℓ such that 0 ⩽ kℓ ⩽ ℓ− 2 and for all integer 1 ⩽ n ⩽ N prime to
N , εℓ(n) ≡ nkℓ (mod λ). We then have εℓ ≡ χkℓℓ (mod λ).

4. Compute the set MN,k,ε(λ) of pairs of integers (m1,m2) such that 0 ⩽ m1 ⩽ m2 < ℓ− 1

and m1 +m2 ≡ k + kℓ − 1 (mod ℓ− 1).

5. Compute the set EN,k,ε(λ) of pairs of Dirichlet characters (ε1, ε2) of conductor (c1, c2) and
such that ε1 and ε2 have prime-to-ℓ order, are unramified at ℓ, satisfy ε1ε2 = ε′′ and for all
primes p ̸= ℓ, we have vp

(
N
c1c2

)
∈ {0, 1, 2}.

6. Return the set EN,k,ε(λ)×MN,k,ε(λ) = RN,k,ε(λ).

We now give the two main algorithm that follows from theorem 13.17 and theorem 13.12
respectively. The first algorithm computes the prime ideals λ of Of , of residual characteristic ℓ
such that ℓ > k + 1 and ℓ ∤ Nφ(N), for which ρf,λ is reducible, together with the description of
ρf,λ. The correctness of the algorithm is granted by theorem 13.17.

Algorithm 13.22. Input: A newform f , described by its Fourier coefficients (an(f))n⩾0 as
elements of the number field Kf , together with its level N , weight k, and character ε.
Output: The set of prime ideals λ of Of of residual characteristic ℓ such that ℓ > k + 1 and
ℓ ∤ Nφ(N), for which ρf,λ is reducible, together with the shape of ρf,λ.

1. Set Red(f) = ∅.

2. Compute the set RN,ε (see definition 13.14).

3. For (ε1, ε2) ∈ RN,ε,

(a) Compute r, C, and B defined in (13.3), and theorem 13.17 respectively.

(b) Compute the set P (ε1, ε2) of prime divisors of the gcd of the algebraic norms of

• C;
• ap(f)− ε1(p)− pk−1ε2(p), for p ∤ Nr, p ⩽ B;
• and ap(f) (ap(f)− ε1(p))

(
ap(f)− pk−1ε2(p)

)
, for p | N , p ∤ r, p ⩽ B,

that are bigger than k + 1 and do not divide Nφ(N). By theorem 13.17, these are the
only prime numbers bigger than k + 1 and not dividing Nφ(N) for which ρf,λ can be
reducible.

4. For (ε1, ε2) ∈ RN,ε and for ℓ ∈ P (ε1, ε2),

(a) Compute the prime ideals λ of Of above ℓ.

(b) For each such λ, compute a prime ideal L in the ring of integers of Kf (ε1, ε2) above λ.

(c) For each such L, check the following congruences.
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• C ≡ 0 (mod L);
• ap(f) ≡ ε1(p) + pk−1ε2(p) (mod L) for all p ∤ Nr, p ⩽ B;
• ap(f)(ap(f)− ε1(p))(ap(f)− pk−1ε2(p)) ≡ 0 (mod L) for all p | N , p ∤ r, p ⩽ B.

If they all hold, add (λ, ε1, ε2, 0, k − 1) to Red(f). By theorem 13.17, ρf,λ is reducible
and we have ρf,λ ∼= ε1 ⊕ χk−1

ℓ ε2.

5. Return Red(f).

We now turn to the computation of the reducible primes of residue characteristic ℓ such that
ℓ ⩽ k + 1 or ℓ | Nφ(N). The correctness of the following algorithm follows by theorem 13.12.

Algorithm 13.23. Input: A newform f , described by its Fourier coefficients (an(f))n⩾0 as
elements of the number field Kf , together with its level N , weight k, and character ε.
Output: The set of prime ideals λ of Of of residual characteristic ℓ such that ℓ ⩽ k + 1 or
ℓ | Nφ(N), for which ρf,λ is reducible, together with the shape of ρf,λ.

1. Set Red(f) = ∅.

2. Compute the set P of prime numbers ℓ such that ℓ ⩽ k + 1 or ℓ | Nφ(N).

3. For each ℓ ∈ P , compute the set P (ℓ) of prime ideals λ in Of above ℓ.

4. For each ℓ ∈ P and for each λ ∈ P (ℓ), compute RN,k,ε(λ) using algorithm 13.21. We can
do this because we have Q(ε) ⊂ Kf .

5. For each ℓ ∈ P , for each λ ∈ P (ℓ), and for each (ε1, ε2,m1,m2) ∈ RN,k,ε(λ),

(a) Compute a prime ideal L in the ring of integers of Kf (ε1, ε2) above λ.

(b) Compute r and B defined in (13.3) and theorem 13.12 respectively.

(c) Check the following congruences.

• ap(f) ≡ pm1ε1(p) + pm2ε2(p) (mod L) for all p ∤ Nr, p ⩽ B;
• ap(f)(ap(f) − pm1ε1(p))(ap(f) − pm2ε2(p)) ≡ 0 (mod L) for all p | N , p ∤ r,
p ⩽ B.

If they all hold, add (λ, ε1, ε2,m1,m2) to Red(f). By theorem 13.12, ρf,λ is reducible
and we have ρf,λ ∼= χm1

ℓ ε1 ⊕ χm2
ℓ ε2.

6. Return Red(f).

The correctness of algorithm 13.22 and algorithm 13.23 follows directly from theorem 13.17 and
theorem 13.12 respectively. The most time-consuming computation is step 3(b) of algorithm 13.22.
This depends on the size of the “big” reducible primes. We have implemented these algorithms
in PARI/GP [21], and we have been able to execute them as long as the degree of Kf keeps
reasonable (say [Kf : Q] ⩽ 20). The second limiting factor being the weight k that controls the
size of the Fourier coefficients of f . Our code is available on GitHub at the following address:

https://github.com/bpeaucelle/mfexceptional

https://github.com/bpeaucelle/mfexceptional


Chapter 14

Dihedral modular representations

14.1 General study of dihedral modular representations

Let f = q+
∞∑
n=2

an(f)q
n be a newform of weight k ⩾ 2, level N ⩾ 1, and character ε of conductor

c. Let λ be a prime ideal in the ring of integers of the field of coefficients Kf of f above a rational
prime number ℓ. We study in this section the case where ρf,λ has projective dihedral image of
order prime to ℓ. We therefore assume in this chapter that ℓ is bigger than 2. The main result
of this section is theorem 14.12. It is the analogue in the dihedral case of theorem 13.12. It
characterises the fact that ρf,λ has dihedral projective image by a finite number of congruences.
We begin this section by recalling some results on twists of modular forms and CM forms.

Let ψ be a primitive Dirichlet character of conductor cψ. We define the twist of f by ψ as
the only newform denoted f ⊗ ψ such that ap(f ⊗ ψ) = ψ(p)ap(f) for all primes p not dividing
Ncψ. We have the following result from [AL78, §§1-3].

Proposition 14.1. Let f and ψ be as above.

• The form f ⊗ ψ has weight k, its level divides lcm(N, c2ψ, ccψ), and its character is ψ2ε.

• For all primes p ∤ cψ we have ap(f ⊗ψ) = ψ(p)ap(f), and the p-part of the level of f ⊗ψ is
equal to pvp(N).

• If vp(N) = vp(c) and ψp = ε−1
p , where ψp and εp denote the p-parts of ψ and ε respectively,

then we have ap(f ⊗ ψ) = (εψ)0(p)ap(f), where ap(f) denotes the complex conjugate of
ap(f) and (εψ)0 is the primitive character associated to εψ. Moreover, the p-parts of the
level of f ⊗ ψ and f are equal.

• For any prime number p dividing N , if vp(cψ) ⩾ vp(N) and the p-part of the conductor of
εψ is equal to pvp(cψ), then the p-part of the level of f ⊗ ψ is exactly pvp(lcm(N,c2ψ ,ccψ)).

Remark 14.2. It is enough to consider twists by primitive characters. Indeed, if ψ is a Dirichlet
character modulo M , and ψ0 for the primitive character associated to ψ, the newforms f ⊗ ψ
and f ⊗ ψ0 are necessarily equal because their Fourier coefficients at a prime p not dividing MN

both coincide with ψ(p)ap(f).

191
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We take this definition of CM forms from [Rib77, p. 34].

Definition 14.3. Suppose ψ is not the trivial character. The form f is said to have complex
multiplication by ψ if ψ(p)ap(f) = ap(f) for all primes p in a set of primes of density 1, that is
if f ⊗ ψ = f .

The starting point of our study is the following proposition that characterises the dihedral
case. To have dihedral projective image is in fact equivalent to be isomorphic to one of its twists.

Proposition 14.4. The projective image Pρf,λ(GQ) ⊂ PGL2(Fλ) is dihedral of order prime to ℓ
if and only if there exists a quadratic Galois character ψ such that ρf,λ ∼= ψ ⊗ ρf,λ.

Proof. Assume the projective image of ρf,λ is isomorphic to the dihedral group D2n of order 2n,
with 2n prime to ℓ. We necessarily have ℓ ̸= 2. Denote Cn a cyclic subgroup of order n of D2n (it
is unique if n > 2). Recall that the set D2n \ Cn contains only elements of order 2. Composing
Pρf,λ with the projection D2n → D2n/Cn ∼= {1,−1}, we get a quadratic Galois character:

GQ D2n {1,−1}.Pρf,λ

ψf,λ

(14.1)

Let us prove that ρf,λ ∼= ψf,λ ⊗ ρf,λ. As ψf,λ has order 2, we have

det(ψf,λ ⊗ ρf,λ) = ψ2
f,λ det(ρf,λ) = det(ρf,λ).

Let p be a prime number not dividing Nℓ. The character ψf,λ is unramified at p because ρf,λ is,
and for a Frobenius element Frobp at p we have

Tr
(
(ψf,λ ⊗ ρf,λ)(Frobp)

)
≡ ψf,λ(Frobp)ap(f) (mod λ).

If ψf,λ(Frobp) = 1, we have Tr
(
(ψf,λ ⊗ ρf,λ)(Frobp)

)
≡ ap(f) ≡ Tr(ρf,λ(Frobp)) (mod λ). If

Frobp is mapped to −1 by ψf,λ, then Pρf,λ(Frobp) is an element of D2n \Cn and has order 2. It
is therefore annihilated by X2 − 1 and has trace 0 ≡ ap(f) (mod λ). We then get

Tr
(
(ψf,λ ⊗ ρf,λ)(Frobp)

)
≡ ap(f) ≡ 0 ≡ Tr(ρf,λ(Frobp)) (mod λ).

We have proved that the determinant and the trace at (Frobp)p∤Nℓ of ψf,λ ⊗ ρf,λ and ρf,λ agree.
By theorem 10.1, we deduce that ψf,λ ⊗ ρf,λ ∼= ρf,λ.

Conversely, assume that there exists a quadratic Galois character ψ such that ψ⊗ ρf,λ ∼= ρf,λ.
As there is no character of order 2 with value in F2, we necessarily have ℓ > 2. Let G be the
kernel of ψ. By Galois theory, the group G is the absolute Galois group of a number field K.
Moreover, as ψ has values in {1,−1}, GK has index 2 in GQ, and K is therefore a quadratic
extension of Q. Let P ∈ GL2(Fℓ) be such that ρf,λ = ψ ⊗

(
Pρf,λP

−1
)
, and let τ ∈ GQ \ GK .

We have
ρf,λ(τ) = −Pρf,λ(τ)P−1. (14.2)

Let v be an eigenvector of P with eigenvalue λ. The vector ρf,λ(τ)v is then an eigenvector of P
with eigenvalue −λ ̸= λ (because ℓ ̸= 2). We deduce that P is diagonalisable. Let σ ∈ GK . We
have

ρf,λ(σ)P = Pρf,λ(σ).
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Therefore, Pρf,λ(σ)v = ρf,λ(σ)Pv = λρf,λ(σ)v. That is, ρf,λ(σ)v is an eigenvector for P with
eigenvalue λ. Because the λ-eigenspace of P is one dimensional, there exists α(σ) ∈ F×

ℓ such that
ρf,λ(σ)v = α(σ)v. Similarly, ρf,λ(σ)ρf,λ(τ)v is an eigenvector for P with eigenvalue −λ, hence
there exists β(σ) ∈ F×

ℓ such that ρf,λ(σ)ρf,λ(τ)v = β(σ)ρf,λ(τ)v. The functions α and β are in
fact characters of GK and we have

ρf,λ|GK ∼= α⊕ β.

Moreover, for σ ∈ GK we have

α(σ)v = ρf,λ(σ)v = ρf,λ(τ
−1)ρf,λ(τστ

−1)ρf,λ(τ)v = ρf,λ(τ
−1)β(τστ−1)ρf,λ(τ)v = β(τστ−1)v.

The character α is thus equal to βτ :=
(
σ 7→ β(τστ−1)

)
.

We can prove from this that Pρf,λ(GQ) is dihedral. Let C := Pρf,λ(GK). It is isomorphic
to βα−1(GK) ⊆ F×

ℓ and is thus cyclic of order some integer n prime to ℓ, and generated by
Pρf,λ(σ0) for some σ0 ∈ GK . Moreover, we have

Pρf,λ(GQ) = C ⊔ Pρf,λ(τ)C.

This decomposition is indeed disjoint because if we had C ∩ Pρf,λ(τ)C ̸= ∅, we would get an
element of the form τσk0 in the kernel of Pρf,λ. Therefore, ρf,λ(τσk0 ) would be scalar but because
τσk0 /∈ GK this is in contradiction with (14.2). Next, because τ2 ∈ GK , we have

Pρf,λ(τ)2 = P
(
βτ (τ2)⊕ β(τ2)

)
= P

(
β(τ2)⊕ β(τ2)

)
= PI2.

Therefore, Pρf,λ(τ) has order 2 because it can not be trivial from (14.2). Finally, we have

Pρf,λ(τσ0τ−1) = P
(
βτ (τσ0τ

−1)⊕ β(τσ0τ−1)
)

= P
(
β(τ2σ0τ

−2)⊕ βτ (σ0)
)

= P (β(σ0)⊕ βτ (σ0))
= P

(
βτ (σ−1

0 )⊕ β(σ−1
0 )
)
.

The group Pρf,λ(GQ) is therefore generated by Pρf,λ(τ) and Pρf,λ(σ0), with Pρf,λ(τ) of order 2,
Pρf,λ(σ0) of order n prime to ℓ, and such that Pρf,λ(τ)Pρf,λ(σ0)Pρf,λ(τ)−1 = Pρf,λ(σ0)−1. It is
therefore dihedral of order prime to ℓ. ■

To refine this result, we look at the local properties of the possible characters ψ that leave ρf,λ
invariant by twisting. We first state a lemma that is a general property of Dirichlet characters.

Lemma 14.5. Let ψ be a quadratic primitive Dirichlet character of conductor cψ and let p be a
prime number dividing cψ. If p is odd, then vp(cψ) = 1, and if p = 2, then v2(cψ) ∈ {1, 2, 3}.

Proof. Write np the p-adic valuation of cψ. Assume first that p is odd. The group (Z/pnpZ)×

is cyclic. Let x be any generator. Since ψ is quadratic, the kernel of ψp contains ⟨x2⟩, and the
kernel of the projection (Z/pnpZ)× → (Z/pZ)× is ⟨xp−1⟩ ⊇ ⟨x2⟩. As ψ is primitive, we need to
have np = 1.

Similarly, the group (Z/2n2Z)× is generated by −1 and 5 and the kernel of ψ2 contains ⟨52⟩.
Moreover, if np ⩾ 3, the kernel of the projection (Z/2n2Z)× → (Z/8Z)× is ⟨52⟩. It follows that
n2 ⩽ 3. ■
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Using the knowledge of the local shape of ρf,λ given by proposition 10.17, we now deduce
local properties that the possible twists ψ may satisfy. It is similar to lemma 13.5.

Proposition 14.6. Assume ρf,λ has projective dihedral image of order prime to ℓ and let ψ be a
quadratic character of GQ such that ρf,λ ∼= ψ ⊗ ρf,λ. Write cψ for its conductor and let p be a
prime number.

1. If p is odd then vp(cψ) ⩽ 1 and if p = 2 then v2(cψ) ⩽ 3..

2. If p ∤ Nℓ, then p ∤ cψ and ap(f) ≡ ψ(p)ap(f) (mod λ).

3. If p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0, then ψ is unramified at p and either ψ(p) = 1,
or ψ(p) = −1 ≡ p (mod λ).

4. If p | N , p ̸= ℓ, and vp(N) = vp(c), then either ψ is unramified at p and ψ(p) = 1, or ψ is
ramified at p, ψp ≡ ε−1

p (mod λ), and ap(f)2 ≡ pk−1ψ′
p(p)ε

′
p(p) (mod λ), where ψp and εp

denote the p-parts of ψ and ε respectively, and ψ′
p and ε′p denote the prime-to-p part of ψ

and ε respectively.

In particular, in the second case εp has order 2 modulo λ.

5. If v2(N) ∈ {2, 3} and v2(c) < v2(N), then v2(cψ) ⩽ 2.

Proof. 1. It follows immediately from lemma 14.5.

2. The representation ρf,λ is unramified outside Nℓ. Therefore, as ρf,λ ∼= ψ ⊗ ρf,λ, the
character ψ is necessarily unramified outside Nℓ too. Moreover, looking at the trace at
Frobp, we have ap(f) ≡ ψ(p)ap(f) (mod λ) for all p ∤ Nℓ.

3. Assume that p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0. By proposition 10.17 and the
assumption, we have

ρf,λ|Gp ∼=

(
µ(ap(f)) ⋆

0 µ(pap(f))

)
∼=

(
ψ|Gpµ(ap(f)) ⋆

0 ψ|Gpµ(pap(f))

)
∼= ψ ⊗ ρf,λ|Gp .

Therefore, we have an equality of sets of characters of Gp:

{µ(ap(f)), µ(pap(f))} =
{
ψ|Gpµ(ap(f)), ψ|Gpµ(pap(f))

}
.

We deduce that ψ needs to be unramified at p and we have an equality of sets of elements
of Fλ, {

ap(f), pap(f)
}
=
{
ψ(p)ap(f), pψ(p)ap(f)

}
.

By proposition 10.16, the coefficient ap(f) is invertible modulo λ. Therefore, we either
have ψ(p) = 1, or ψ(p) = −1 and ψ(p) ≡ p (mod λ).

4. If p | N , p ̸= ℓ, and vp(N) = vp(c), then from proposition 10.17 and the assumption, we
have

ρf,λ|Gp ∼= µ(ap(f))⊕ µ(pk−1ap(f)
−1)ε|Gp

∼= µ(ap(f))ψ|Gp ⊕ µ(pk−1ap(f)
−1) (ψε) |Gp ∼= ψ ⊗ ρf,λ|Gp .

(14.3)
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We deduce again an equality of sets of characters of Gp:

{µ(ap(f)), µ(pk−1ap(f)
−1)ε|Gp} = {µ(ap(f))ψ|Gp , µ(pk−1ap(f)

−1)(ψε)|Gp}.

If µ(ap(f)) = µ(ap(f))ψ|Gp , then ψ is unramified at p we get ψ(p) = 1 because ap(f) is
invertible modulo λ by proposition 10.16. Otherwise, ψ is ramified at p and ψε needs to be
unramified at p. We deduce that ψp ≡ ε−1

p (mod λ), the value of ψε at Frobp is equal to
ψ′
p(p)ε

′
p(p) (mod λ), and

ap(f) ≡ pk−1ap(f)
−1ψ′

p(p)ε
′
p(p) (mod λ).

5. First notice that ψ ⊗ ρf,λ ∼= ρf⊗ψ,λ. We can prove this by looking at the trace of both
representations at Frobenius elements at the primes p ∤ Nℓ and using theorem 10.1. Write
Nf⊗ψ for the level of f ⊗ ψ. Since ρf,λ and ρf⊗ψ,λ are isomorphic their Artin conductor
N(ρf,λ) and N(ψ ⊗ ρf,λ) are equal. We find using proposition 10.12 that for any prime p,

vp(Nf⊗ψ) ⩽ vp(N(ψ ⊗ ρf,λ)) + 2 = vp(N(ρf,λ)) + 2 ⩽ vp(N) + 2. (14.4)

Assume that v2(N) ∈ {2, 3} and v2(c) < v2(N). If v2(cψ) > 3, we get from the last point
of proposition 14.1 that

v2(Nf⊗ψ) = v2(lcm(N, c2ψ, ccψ)) = 2v2(cψ) > v2(N) + 2.

This is in contradiction with (14.4) and therefore v2(cψ) ⩽ 2 in this case.
■

We can now define a set that characterises the possible characters ψ for which could have
ρf,λ
∼= ψ ⊗ ρf,λ. This is the dihedral counterpart of the set RN,k,ε(L) of definition 13.1 in the

reducible case.

Definition 14.7. Let TN,ε(λ) be the set of pairs (e, ψ) with e ∈ {0, 1} and ψ a primitive Dirichlet
character of order less or equal to 2 such that (e, ψ) ̸= (0,1) and

• The character ψ is unramified outside N and unramified at ℓ;

• For a prime p such that p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0, the character ψ is
unramified at p and either pe

ℓ−1
2 ψ(p) ≡ 1 (mod ℓ), or pe

ℓ−1
2 ψ(p) ≡ p ≡ −1 (mod ℓ);

• For a prime p such that p | N , p ̸= ℓ, and vp(N) = vp(c), either ψ is unramified at p and
pe

ℓ−1
2 ψ(p) ≡ 1 (mod ℓ), or ψ is ramified at p and ψp ≡ ε−1

p (mod λ);

• If v2(N) ∈ {2, 3} and v2(c) < v2(N), then the conductor of ψ2 is strictly less than 8.

Combining propositions 14.4 and 14.6, we deduce a first characterisation of the dihedral case
in terms of congruences.

Corollary 14.8. The representation ρf,λ has dihedral projective image of order prime to ℓ if
and only if there exists (e, ψ) ∈ TN,ε(λ) such that the following congruences hold for all prime
numbers p in a set of density one.
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• If p ∤ Nℓ, then ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f) (mod λ);

• If p | N , p ̸= ℓ, vp(N) = vp(c), and the character ψ is ramified at p, then ap(f)
2 ≡

pe
ℓ−1
2

+k−1ψ′
p(p)ε

′
p(p) (mod λ).

Proof. First assume that there exists (e, ψ) ∈ TN,ε(λ) such that the congruences of the corollary
hold. From theorem 10.1, the congruences ap(f) ≡ pe

ℓ−1
2 ψ(p)ap(f) (mod λ) for p ∤ Nℓ imply the

isomorphism ρf,λ
∼=
(
χ
e ℓ−1

2
ℓ ψ

)
⊗ ρf,λ. Moreover, it follows from the definition of TN,ε(λ) that

the character χe
ℓ−1
2

ℓ ψ is quadratic. From proposition 14.4, ρf,λ has dihedral projective image of
order prime to ℓ.

Conversely, assume that ρf,λ has dihedral projective image of order prime to ℓ. By proposi-
tion 14.4, there exists a quadratic character η such that η ⊗ ρf,λ ∼= ρf,λ. Let us decompose η as
ηℓ · η′ℓ, with ηℓ ramified only at ℓ, and η′ℓ unramified at ℓ. As η is quadratic, so are ηℓ and η′ℓ.

Therefore, either ηℓ is trivial, or ηℓ = χ
ℓ−1
2

ℓ . We can thus write ηℓ as χe
ℓ−1
2

ℓ with e ∈ {0, 1}. Let ψ
be the Teichmüller lift of η′ℓ with respect to λ (see section 10.2.2). From proposition 14.6, the
pair (e, ψ) lies in the set TN,ε(λ) and the announced congruences hold. ■

Our goal is now to refine corollary 14.8 in a way that requires checking only a finite number
of congruences. Let (e, ψ) ∈ TN,ε(λ) and denote by cψ the conductor of ψ. We construct a
new Dirichlet character from ψ that will be better suited for our study. Let ψ̃ be the Dirichlet
character that is unramified outside cψ and such that for a prime p | cψ,

ψ̃p =

{
ε−1
p if p | N, p ̸= ℓ and, vp(N) = vp(c);

ψp otherwise.
(14.5)

Notice that from the definition of TN,ε(λ), we have ψ̃ ≡ ψ (mod λ) because at the primes p for
which we have modified ψp, we have ψ̃p = ε−1

p ≡ ψp (mod λ). Moreover, for the primes p for
which we have not modified ψ, the p-adic valuation of the conductor of ψ̃ is the same as the
p-adic valuation of cψ. We now define a modular form g by

g := f ⊗ ψ̃. (14.6)

From proposition 14.1 we deduce the following result.

Proposition 14.9. The modular form g has integral Fourier coefficients and is a normalised
eigenform of weight k, level Ng, and character ψ̃2ε. Let p be a prime number.

1. If p ∤ N or p = ℓ, then ap(g) = ψ̃(p)ap(f) and vp(Ng) = vp(N);

2. If p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0, then ap(g) = ψ̃(p)ap(f) and vp(Ng) = vp(N);

3. If p | N , p ̸= ℓ, and vp(N) = vp(c), then vp(Ng) = vp(N). Moreover, if ψ is unramified at
p, then ap(g) = ψ̃(p)ap(f), and otherwise ap(g) = ap(f)(ψ̃ε)0(p);

4. If p | N , p ̸= ℓ, vp(N) ⩾ 2, and vp(N) > vp(c), then if p is odd, we have vp(Ng) ⩽ vp(N),
and if p = 2, we have v2(Ng) ⩽ v2(N) + 2.
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In particular we have Ng | N · gcd(N, 2)2.

Proof. The formula for the weight and the character of g follow from proposition 14.1. Let p be
a prime number.

1. If p ∤ N or if p = ℓ, then from the definition of TN,ε(λ) the character ψ̃ is unramified at p.
Therefore, by proposition 14.1 the p-adic parts of the levels of g and f are the same and
ap(g) = ψ̃(p)ap(f).

2. If p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0, then the character ψ̃ is also unramified at p and
the result follows just as before.

3. If p | N , p ̸= ℓ, and vp(N) = vp(c), then from the definition of ψ̃ either ψ is unramified at
p and ψ̃ is too, or ψ is ramified at p and ψ̃p = ε−1

p . In both cases the result follows from
proposition 14.1.

4. Finally, assume that p | N , p ̸= ℓ, vp(N) ⩾ 2, and vp(N) > vp(c). If p is odd, then from
proposition 14.6.1 we have vp(cψ) = 1 and from proposition 14.1 deduce

vp(Ng) ⩽ max(vp(N), 2vp(cψ), vp(cψ) + vp(c)) = max(vp(N), 2, vp(c) + 1) = vp(N).

If now p = 2, we have v2(cψ) ∈ {0, 2, 3} from proposition 14.6.1. By the same computation
as above, we have v2(Ng) ⩽ max(v2(N), 2v2(cψ), v2(cψc)). If v2(N) ∈ {2, 3}, we have
v2(cψ) ⩽ 2 by definition 14.7 and we deduce v2(Ng) ⩽ v2(N) + 2. If v2(N) ⩾ 4, we have

v2(Ng) ⩽ max(v2(N), 6, v2(c) + 3) ⩽ v2(N) + 2.

■

Before we get to the main result of this section we need to modify the form g slightly in order
to get congruences at the primes p | N , p ≠ ℓ lacking a suitable congruence. The following result
solves this issue.

Proposition 14.10. Let g be the modular form defined in (14.6) and consider two sets of primes
P1, P2 such that

P1 ⊆ {p | N, p ̸= ℓ, vp(N) = 1 and vp(c) = 0} ,
and P2 ⊆ {p | N, p ̸= ℓ, vp(N) ⩾ 2 and vp(c) < vp(N)} .

Define P := P1 ∪P2 and, with the notations of corollary 12.29,

h := g
(0)p∈P

P .

The form h has integral Fourier coefficients and is of weight k and character ψ̃2ε. Its level Nh

satisfies Nh | N ′ := N gcd(N, 2)2
∏
p∈P1

p and has the same prime factors as N . It is a normalised

eigenform for all the Hecke operators TN ′
p except maybe at the primes p such that p | N , p ≠ ℓ,

vp(N) ⩾ 2, vp(N) > vp(c) and p /∈ P2. Finally, for any prime number p we have

ap(h) =

{
ap(g) if p /∈ P;

0 if p ∈ P.
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Proof. Everything follows directly from corollary 12.29 and proposition 14.9 except the assertions
about the level of h. The level of h may differ from the level of g only at the primes in P. Write
Nh and Ng for the levels of h and g respectively and let p ∈ P.

If p ∈ P1, then from proposition 14.9 we have vp(Ng) = vp(N) = 1, and ap(g) = ψ̃(p)ap(f) ̸= 0

from proposition 10.16. Therefore vp(Nh) = vp(Ng) + 1 = vp(N) + 1 from corollary 12.29.
If p ∈ P2, then we have vp(N) ⩾ 2 and vp(c) < vp(N).

• If ap(g) = 0, then we have vp(Nh) = vp(Ng) and the result follows in this case from
proposition 14.9.

• If ap(g) ̸= 0 and vp(Ng) = 0, then vp(Nh) = 2 ⩽ vp(N).

• Finally, if ap(g) ̸= 0 and vp(Ng) > 0, then we get vp(Nh) = vp(Ng) + 1. If vp(Ng) = 1, then
we have vp(Nh) = 2 ⩽ vp(N). Otherwise, by proposition 10.16 the p-adic valuation of Ng

is necessarily equal to the p-adic valuation of the conductor of ψ̃2ε. As the p-part of ψ̃2ε is
equal to εp in this case, we get vp(Nh) = vp(Ng) + 1 = vp(c) + 1 ⩽ vp(N).

To conclude, it follows from proposition 14.9 that Nh has the same prime factors as N ′ :=

N gcd(N, 2)2
∏
p∈P1

p, except maybe for the primes p such that p | N , p ̸= ℓ, vp(N) ⩾ 2, vp(c) <

vp(N), and p /∈ P2. Therefore, from lemma 12.24 it is also an eigenform for the Hecke operators
at this level. ■

Remark 14.11. The modular form h in the previous proposition is an eigenform for all the
Hecke operators at its level Nh but not necessarily for all the Hecke operators at level N ′. Indeed,
the p-adic valuation of Nh and N ′ may not be the same for the primes p not in the set P2 but
such that p | N , p ̸= ℓ, vp(N) ⩾ 2, and vp(N) > vp(c).

We now prove the main result of this chapter. We give a finite list of explicit congruences
that suffice to prove that a given modular representation is dihedral.

Theorem 14.12. The following are equivalent.

1. The representation ρf,λ has projective dihedral image of order prime to ℓ;

2. There exists (e, ψ) ∈ TN,ε(λ) such that the following holds. Define the set

P1 :=
{
p prime, p | N, p ̸= ℓ, vp(N) = 1, vp(c) = 0, and ψ(p)pe

ℓ−1
2 ≡ −1 (mod ℓ)

}
and

a :=

{
4 if ℓ = 3 and ∀p | N, p ≡ 1 (mod 9);

0 otherwise,
b :=

{
3 if ℓ | N ;

ℓ+ 1 if ℓ ∤ N.

Let B :=
N gcd(2, N)2

(
k + a+ b

(
1 + e ℓ−1

2

))
12

∏
p∈P1

p
∏
p|N

(
1 +

1

p

)
. For every prime p ⩽ B,

we have

• ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f) (mod λ) if p ∤ Nℓ;



14.1. GENERAL STUDY OF DIHEDRAL MODULAR REPRESENTATIONS 199

• ap(f)
2 ≡ pe

ℓ−1
2

+k−1 (ψε)′p (p) (mod λ) if p | N , p ̸= ℓ, vp(N) = vp(c), and ψ is
ramified at p.

Proof. The implication 1⇒ 2 follows directly from corollary 14.8. Assume that the second part
of the theorem holds. We define the set

P2 := {p prime, p ⩽ B, p | N, p ̸= ℓ, vp(N) ⩾ 2, vp(N) > vp(c)} ,

and P := P1 ∪P2. Let ψ̃ be defined as in (14.5) and put

h :=
(
f ⊗ ψ̃

)(0)p∈P

P
and f ′ := f

(0)p∈P1
P1

.

We claim that, with the notations of section 12.1, the modular forms θ̃1+e
ℓ−1
2 h and θ̃f ′ are

congruent modulo λ. To prove this, let us check that the hypotheses of corollary 12.19 are
satisfied by the forms f ′ and h, and the integers mf = 1, and mg = 1 + e ℓ−1

2 .
From proposition 14.10 and corollary 12.29, the forms h and f ′ are of weight k, character

ψ̃2ε and ε respectively, and level Nh | N gcd(2, N)2
∏
p∈P1

p and N
∏
p∈P1

p respectively. Moreover,

h and f ′ are both normalised eigenforms at level N gcd(2, N)2
∏
p∈P1

p. Next, by construction we

have ψ̃2 ≡ ψ2 ≡ 1 (mod λ). Therefore, we have

χ
k+2(1+e ℓ−1

2 )
ℓ ψ̃2ε ≡ χk+2

ℓ ε (mod λ).

To apply corollary 12.19 we finally need to check that pap(f ′) ≡ p1+e
ℓ−1
2 ap(h) (mod λ) for all

prime numbers p ⩽ B. Let p be a prime number less than or equal to B.

• If p = ℓ, then we have p1+e
ℓ−1
2 ap(h) ≡ 0 ≡ pap(f ′) (mod λ).

• If p ∤ Nℓ, then we have ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f) ≡ pe

ℓ−1
2 ψ̃(p)ap(f) (mod λ) by assumption,

and from propositions 14.9 and 14.10, we deduce that

p1+e
ℓ−1
2 ap(h) = p1+e

ℓ−1
2 ψ̃(p)ap(f) ≡ pap(f) ≡ pap(f ′) (mod λ).

• If p | N , p ̸= ℓ, vp(N) = 1, and vp(c) = 0, then if p ∈ P1, we have from corollary 12.29,
pap(f

′) = 0 = p1+e
ℓ−1
2 ap(h). If p /∈ P1, we have from the definition of TN,ε(λ), ψ̃(p)pe

ℓ−1
2 ≡

ψ(p)pe
ℓ−1
2 ≡ 1 (mod λ). We then get

p1+e
ℓ−1
2 ap(h) = p1+e

ℓ−1
2 ap

(
f ⊗ ψ̃

)
from proposition 14.10

= p1+e
ℓ−1
2 ψ̃(p)ap(f) from proposition 14.9

≡ pap(f) (mod λ).

• If p | N , p ̸= ℓ, and vp(N) = vp(c), then either ψ is unramified at p and because ψ and ψ̃
are congruent modulo λ we have pe

ℓ−1
2 ψ̃(p) ≡ pe

ℓ−1
2 ψ(p) ≡ 1 (mod ℓ), or ψ is ramified at

p. In the first case we have from propositions 14.9 and 14.10,

p1+e
ℓ−1
2 ap(h) = p1+e

ℓ−1
2 ψ(p)ap(f) ≡ pap(f) = pap(f

′) (mod λ).
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In the second case, we have ap(h) = ap(f)(ψ̃ε)0(p) ≡ ap(f)(ψε)′p(p) (mod λ) from proposi-
tions 14.9 and 14.10 again. Therefore, since ap(f) = ap(f)

−1pk−1 from proposition 10.16,
we deduce from the assumption that

p1+e
ℓ−1
2 ap(h) ≡ ap(f)−1pk+e

ℓ−1
2 (ψε)′p(p) ≡ pap(f) = pap(f

′) (mod λ).

• Finally if p | N , p ̸= ℓ, vp(N) ⩾ 2, and vp(N) > vp(c), then from proposition 10.16 and
corollary 12.29 we have p1+e

ℓ−1
2 ap(h) = 0 = pap(f) = pap(f

′).

Therefore, corollary 12.19 applies and for every prime p, we have p1+e
ℓ−1
2 ap(h) ≡ pap(f ′) (mod λ).

In particular, for every prime p ∤ Nℓ, we have

ap(f) ≡ pe
ℓ−1
2 ap(h) = pe

ℓ−1
2 ψ(p)ap(f) (mod λ).

From corollary 14.8, we deduce that ρf,λ has projective dihedral image. ■

Remark 14.13. As theorem 13.12, theorem 14.12 applies with no restriction on the prime ideal
λ. It can therefore be used to check if any representation ρf,λ has dihedral projective image or
not. For example, one can recover the example [BD14, §5.2] with tools coming only from the
theory of modular forms. See section 15.2 for more details.

14.2 Dihedral modular representations in big characteristic

Theorem 14.12 applies for every prime ideal λ in Of , but the bound for the number of prime
index coefficients depends on ℓ. Under some assumptions on ℓ, we remove this dependency. We
first get rid of ℓ in the definition of TN,ε(λ) by looking at the shape of ρf,λ at ℓ. A result similar
the following one can be found in [BD14, Proposition 3.3].

Proposition 14.14. Let ψ be a quadratic character such that ψ ⊗ ρf,λ ∼= ρf,λ. Assume further
that ℓ ⩾ k − 1 and ℓ ∤ N .

1. If f is ordinary at λ, then either ψ is unramified at ℓ and ψ(ℓ) = 1, or ψ is ramified at ℓ,
ℓ = 2k − 1 and aℓ(f)2 ≡ ψ′

ℓ(ℓ)ε(ℓ) (mod λ);

2. If f is not ordinary at λ, then either ℓ = 2k − 3, or ψ is unramified at ℓ.

Proof. We are under the hypotheses of proposition 10.14. In its notations we are in one of the
following two cases.

• If f is ordinary at λ, then we have

ρf,λ|Gℓ ∼=

(
χk−1
ℓ µ

(
ε(ℓ)
aℓ(f)

)
⋆

0 µ(aℓ(f))

)

∼=

(
ψ|Gℓχ

k−1
ℓ µ

(
ε(ℓ)
aℓ(f)

)
⋆

0 ψ|Gℓµ(aℓ(f))

)
∼= ψ ⊗ ρf,λ|Gℓ .
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Therefore, we have an equality of characters of Gℓ:{
χk−1
ℓ µ

(
ε(ℓ)

aℓ(f)

)
, µ(aℓ(f))

}
=

{
ψ|Gℓχ

k−1
ℓ µ

(
ε(ℓ)

aℓ(f)

)
, ψ|Gℓµ(aℓ(f))

}
.

If ψ|Gℓµ(aℓ(f)) = µ(aℓ(f)), then ψ is unramified at ℓ and aℓ(f) ≡ ψ(ℓ)aℓ(f) (mod λ).
Otherwise, we have ψ|Gℓχ

k−1
ℓ µ

(
ε(ℓ)
aℓ(f)

)
= µ(aℓ(f)). Therefore, ψ|Gℓχ

k−1
ℓ is unramified, and

the character ψ is ramified at ℓ and quadratic. We deduce that ψℓ ≡ χ
ℓ−1
2

ℓ (mod λ) and
k − 1 ≡ ℓ−1

2 (mod ℓ − 1). From the assumption ℓ ⩾ k − 1, we need to have ℓ = 2k − 1.
Moreover, the value of ψ|Gℓχ

k−1
ℓ at Frobℓ is ψ′

ℓ(ℓ), and we get ψ′
ℓ(ℓ)

ε(ℓ)
aℓ(f)

≡ aℓ(f) (mod λ).

• If f is not ordinary at λ, then we have

ρf,λ|Iℓ ∼=

(
ϕk−1 0

0 ϕℓ(k−1)

)
∼=

(
ψ|Iℓϕk−1 0

0 ψ|Iℓϕℓ(k−1)

)
∼= ψ ⊗ ρf,λ|Iℓ .

This means that either ϕk−1 = ψ|Iℓϕk−1 or ϕk−1 = ψ|Iℓϕℓ(k−1). In the first case, we get
that ψ is unramified at ℓ. In the second case, ψ is ramified at ℓ and quadratic, therefore

ψℓ ≡ χ
ℓ−1
2

ℓ ≡ ϕ(ℓ+1) ℓ−1
2 (mod λ). We deduce that k − 1 is congruent to ℓ+1

2 modulo ℓ+ 1,
and from the assumption ℓ ⩾ k − 1, we get ℓ = 2k − 3.

■

Proposition 14.14 tells us that under the assumption ℓ ⩾ k−1, ℓ ∤ N , and ℓ /∈ {2k−1, 2k−3},
the possible quadratic twists of ρf,λ are unramified at ℓ. This means that we no longer need the
number e in TN,ε(λ) that encoded the ramification at ℓ.

Definition 14.15. Let TN,ε be the set of quadratic Dirichlet characters ψ such that

• The character ψ is unramified outside N ;

• For a prime p such that p | N , vp(N) = 1, and vp(c) = 0, ψ is unramified at p and ψ(p) = 1;

• For a prime p such that p | N and vp(N) = vp(c), either ψ is unramified at p and ψ(p) = 1,
or ψ is ramified at p and ψp = ε−1

p .

We now prove the second main theorem of this section.

Theorem 14.16. Let ℓ be a prime number such that ℓ ⩾ k − 1, ℓ /∈ {2k − 1, 2k − 3}, ℓ ∤ N ,
ℓ ∤ p+ 1 for all primes p with vp(N) = 1 and vp(c) = 0, and ℓ ∤ p− 1 for all primes p | N with
vp(N) = vp(c). The following are equivalent.

1. The representation ρf,λ has dihedral projective image of order prime to ℓ.

2. There exists ψ ∈ TN,ε such that the following holds. Let B := N gcd(N,2)2k
12

∏
p|N

(
1 + 1

p

)
. For

every prime p ⩽ B, we have

• ap(f) ≡ ψ(p)ap(f) (mod λ) if p ∤ N ;



202 CHAPTER 14. DIHEDRAL MODULAR REPRESENTATIONS

• ap(f)
2 ≡ pk−1(ψε)0(p) (mod λ) if p | N , vp(N) = vp(c), and ψ is ramified at p.

Proof. Assume that ρf,λ has dihedral projective image of order prime to ℓ. Then, from corol-
lary 14.8 there exists a pair (e, ψ) ∈ TN,ε(λ) such that ap(f) ≡ pe

ℓ−1
2 ψ(p)ap(f) (mod λ) for all

primes p ∤ Nℓ, and a2p ≡ pk−1+e ℓ−1
2 ψ′

p(p)ε
′
p(p) (mod λ) if p ∤ N , p ̸= ℓ, vp(N) = vp(c), and ψ is

ramified at p. We have to prove that e = 0, ψ ∈ TN,ε, and that aℓ(f) ≡ ψ(ℓ)ap(f) (mod λ).

For the first point, it follows from theorem 10.1 that
(
χ
e ℓ−1

2
ℓ ψ

)
⊗ ρf,λ ∼= ρf,λ and from

proposition 14.14 we necessarily have e = 0. Let us prove that ψ ∈ TN,ε. From the definition
of TN,ε(λ), the character ψ is unramified outside N , at ℓ, and as ℓ ∤ N , also at the primes p
such that vp(N) = 1 and vp(c) = 0. For a prime p such that p | N and vp(N) = vp(c) either ψ
is unramified at p and ψ(p) = 1, or ψ is ramified at p and ψp ≡ ε−1

p (mod λ). In the second
case, the character ψpεp is trivial modulo λ and therefore of order a power of ℓ by lemma 10.5.
However, as we assumed ℓ ∤ N , and ℓ ∤ q− 1 for all prime divisors q of N such that vq(N) = vq(c),
ℓ does not divide the order of the group

(
Z/pvp(N)Z

)×. Therefore, ψpεp is trivial and ψp = ε−1
p .

Finally, for a prime p | N such that vp(N) = 1 and vp(c) = 0, we either have ψ(p) = 1 or
ψ(p) = −1 ≡ p (mod ℓ). However, as we assume that ℓ ∤ q + 1 for all prime divisors q of N such
that vq(N) = 1 and vq(c) = 0, the second case cannot occur. We conclude that ψ ∈ TN,ε. Finally,
from proposition 14.14, either f is ordinary, we have ψ(ℓ) = 1 and therefore aℓ(f) = ψ(ℓ)aℓ(f),
or f is not ordinary. In this second case we have aℓ(f) ≡ 0 ≡ ψ(ℓ)aℓ(f) (mod λ).

Assume now that the second part holds. We define the set

P2 := {p prime such that p ⩽ B, p | N, vp(N) ⩾ 2, vp(N) > vp(c)} ,

and the modular form
h := (ψ ⊗ f)(0)p∈P2

P2
.

Let us apply corollary 12.19 to h, f , and mf = mg = 0. From propositions 14.9 and 14.10, h and
f are modular forms of weight k, character ε, level Nh | N ′ := N gcd(N, 2)2 and N respectively,
and are normalised eigenforms for all the TN ′

p for p ⩽ B. The assumption of corollary 12.19 on
the characters is satisfied. Finally, we need to check the congruences ap(f) ≡ ap(h) (mod λ) for
all primes p ⩽ B. Let p ⩽ B be a prime number.

• If p ∤ Nℓ, then from propositions 14.9 and 14.10 and the assumption, we have

ap(h) = ψ(p)ap(f) ≡ ap(f) (mod λ).

• If p = ℓ, then as ψ is unramified at ℓ we have from the assumption

aℓ(h) = ψ(ℓ)aℓ(f) ≡ aℓ(f) (mod λ).

• If p | N , vp(N) = 1, and vp(c) = 0, then by assumption we have ψ(p) = 1. Thus, from
propositions 14.9 and 14.10 we have ap(h) = ψ(p)ap(f) = ap(f).

• If p | N and vp(N) = vp(c), then from propositions 14.9 and 14.10 we have ap(h) =

ap(f)(ψε)0(p) = pk−1ap(f)
−1(ψε)0(p). Therefore, ap(h) ≡ ap(f) (mod λ).
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• Finally, if p | N , vp(N) ⩾ 2, and vp(c) < vp(N), then we have from propositions 10.16
and 14.10, ap(h) = 0 = ap(f).

We therefore have ap(h) ≡ ap(f) (mod λ) for all primes p ⩽ B. From corollary 12.19, we deduce
that ap(h) ≡ ap(f) (mod λ) for all primes p. In particular, for the primes p ∤ Nℓ we have

ap(h) = ψ(p)ap(f) ≡ ap(f) (mod λ).

As (0, ψ) ∈ TN,ε(λ), it follows from corollary 14.8 that ρf,λ has dihedral projective image. ■

From theorem 14.16 we can also deduce a bound for the dihedral primes in terms of N , k, ε,
and the degree of Kf .

Theorem 14.17. Assume ρf,λ has dihedral projective image of order prime to ℓ. If N = 1, then
we have ℓ ⩽ k or ℓ ∈ {2k− 1, 2k− 3}. Else, if N > 1 and f does not have complex multiplication,
then we have

ℓ ⩽ max

(
Nk

3
(2 log log(N) + 2.4) , 25N2

) k−1
2

[Kf :Q]

.

Proof. Assume that ρf,λ has dihedral projective image of order prime to ℓ. From theorem 14.16,
we either have ℓ ⩽ k − 1, ℓ | N , ℓ | p− 1 for some prime p | N , vp(N) = vp(c), ℓ | p+ 1 for some
prime p | N , vp(N) = 1, vp(c) = 0, ℓ ∈ {2k − 1, 2k − 3}, or there exists ψ ∈ TN,ε such that

ℓ | gcd

(Norm (ap(f)))p⩽B,p∤N,
ψ(p)=−1

,
(
Norm

(
ap(f)

2 − pk−1(εψ)0(p)
))

p⩽B,p|N,
vp(N)=vp(c)

p|cψ

 , (14.7)

where B := N gcd(N,2)2k
12

∏
p|N

(
1 + 1

p

)
. This greatest common divisor being understood as the gcd

of all the quantities in brackets in the ring Z.
If N = 1, then the set T1,1 contains only quadratic Dirichlet characters unramified outside

1. Therefore, T1,1 is empty and ρf,λ can have dihedral projective image only if ℓ ⩽ k − 1 or
ℓ ∈ {2k − 1, 2k − 3}. The result follows in this case.

Assume that N > 1. Using Deligne’s bounds for the coefficients of a newform (see [Del74,
Théorème 8.2]) and lemma 12.23, this means that for p ⩽ B we have either.

ℓ | |Norm(ap(f))| =
∏

σ:Kf ↪→C
|σ(ap(f))|

⩽
(
2p

k−1
2

)[Kf :Q]

⩽

(
Nk

3
(2 log log(N) + 2.4)

) k−1
2

[Kf :Q]

,
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or p | N , vp(N) = vp(c), p | cψ, and

ℓ |
∣∣∣Norm(ap(f)2 − (εψ)0(p)p

k−1
)∣∣∣ ⩽ ∏

σ:Kf ↪→C

(∣∣σ (ap(f)2)∣∣+ pk−1
)

⩽
(
5pk−1

)[Kf :Q]

⩽
(
5Nk−1

)[Kf :Q]
.

To conclude, we must prove that the quantity

gcd

(Norm (ap(f)))p⩽B,p∤N,
ψ(p)=−1

,
(
Norm

(
ap(f)

2 − pk−1(εψ)0(p)
))

p⩽B,p|N,
vp(N)=vp(c)

p|cψ


is non-zero. If it was the case, we would have,

• ap(f) = ψ(p)ap(f), for all p ⩽ B such that p ∤ N ;

• and ap(f)2 = (ψε)0(p)p
k−1, for all p ⩽ B, such that p | N , vp(N) = vp(c), and p | cψ.

Define P2 := {p prime , p ⩽ B, vp(N) ⩾ 2, vp(N) > vp(c)}, and g := (f ⊗ψ)(0)p∈P2
P2

. From propo-
sition 14.10, it is a modular form of weight k, level Ng | N ′ := N gcd(2, N)2, and character
ψ2ε = ε, and an eigenform for all the Hecke operators TN ′

p for p ⩽ B, as well as f . Moreover, we
have for all primes p ⩽ B,

• ap(g) = ψ(p)ap(f) = ap(f) if p ∤ N ;

• ap(g) = ψ(p)︸︷︷︸
=1

ap(f) = ap(f) if p | N , vp(N) = 1, vp(c) = 0;

• ap(g) = ap(f)(ψε)0(p) = ap(f)
−1pk−1(ψε)0(p) = ap(f), if p | N , vp(N) = vp(c) and p | cψ;

• ap(g) = ψ(p)︸︷︷︸
=1

ap(f) = ap(f), if p | N , vp(N) = vp(c) and p ∤ cψ;

• ap(g) = 0 = ap(f), if p | N , vp(N) ⩾ 2, vp(N) > vp(c).

We deduce from corollary 12.22 that g = f . It follows that ap(f) = ψ(p)ap(f) for all primes
p ∤ N , and that f must have CM. This concludes the proof. ■

14.3 Checking the dihedrality

We explain in this section how to use theorems 14.12 and 14.16 to explicitly compute, given a
modular newform f , the exact set of prime ideals of Of for which Pρf,λ(GQ) is a dihedral group
of order prime to ℓ. We begin by what we would call “the small potentially dihedral primes”. For
a practical use, we make the following definition.
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Definition 14.18. A prime number ℓ is said to be a small potentially dihedral prime for f , if it
satisfies at least of the following conditions:

• ℓ ⩽ k − 2;

• ℓ | N ;

• ℓ | p+ 1 for some prime p | N with vp(N) = 1 and vp(c) = 0;

• ℓ | p− 1 for some prime p | N with vp(N) = vp(c);

• ℓ ∈ {2k − 1, 2k − 3}.

The small potentially dihedral primes are those which do not satisfy the hypotheses of theorem 14.16.

For the small potentially dihedral primes, we apply theorem 14.12. Notice that the computa-
tion of the set TN,ε(λ) makes no difficulty as it involves only computations of Dirichlet characters
modulo N and congruences involving rational integers.

Algorithm 14.19. Input: A newform f , described by its Fourier coefficients (an(f))n⩾0 as
elements of the number field Kf , together with its level N , weight k, and character ε.
Output: The set of prime ideals λ of Of which residual characteristic is a small dihedral prime
and such that Pρf,λ(GQ) is a dihedral group of order prime to ℓ.

1. Set Dih(f) = ∅.

2. Compute the set P of small potentially dihedral primes (see definition 14.18).

3. For each ℓ ∈ P , compute the set P (ℓ) of prime ideals λ in Of above ℓ.

4. For each ℓ ∈ P and for each λ ∈ P (ℓ), compute the set TN,ε(λ) (see definition 14.7).

5. For each ℓ ∈ P , for each λ ∈ P (ℓ), and for each (ψ, e) ∈ TN,ε(λ),

(a) Compute the bound B defined in theorem 14.12.

(b) For all prime number p ∤ Nℓ, p ⩽ B, check the congruence ap(f) ≡ pe
ℓ−1
2 ψ(p)ap(f)

(mod λ).

(c) For all prime numbers p | N , p ≠ ℓ, p ⩽ B, such that vp(N) = vp(c) and ψ is ramified
at p, check that congruence ap(f)2 ≡ pk−1+e ℓ−1

2 (ψε)′p(p) (mod λ).

(d) If they all hold, add λ to Dih(f). The representation ρf,λ has projective dihedral image
of order prime to ℓ.

6. Return Dih(f).

For the big prime numbers – that is the ones that are not small according to definition 14.18
– we proceed mainly as in the reducible case. The bound of theorem 14.17 is impractical for
computations, and examples suggest that it is much bigger compared to the effective dihedral
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prime numbers. We can instead use the characterisation given by theorem 14.16: if Pρf,λ(GQ) is
dihedral for a prime ideal above a big prime number ℓ, then there exists ψ ∈ TN,ε such that

ℓ | gcd

(
(Norm (ap(f)))p⩽B,p∤N,

ψ(p)=−1

,
(
Norm

(
ap(f)

2 − pk−1(εψ)0(p)
))

p⩽B,p|N,
vp(N)=vp(c)

)
.

This gives us the following algorithm.

Algorithm 14.20. Input: A newform f , described by its Fourier coefficients (an(f))n⩾0 as
elements of the number field Kf , together with its level N , weight k, and character ε.
Output: The set of primes ideals λ of Of which residual characteristic is not a small dihedral
prime and such that Pρf,λ(GQ) is a dihedral group of order prime to ℓ.

1. Set Dih(f) = ∅.

2. Compute the set TN,ε (see definition 14.15).

3. Compute the bound B defined in theorem 14.16.

4. For ψ ∈ TN,ε, compute the set P (ψ) of prime divisors of the gcd of the algebraic norms of

• ap(f)(1− ψ(p)) for p ∤ N , p ⩽ B;

• ap(f)
2 − pk−1(ψε)0(p), for p | N such that vp(N) = vp(c) and ψ is ramified at p,

that are not small dihedral prime numbers according to definition 14.18.

5. For ψ ∈ TN,ε and for ℓ ∈ P (ψ),

(a) Compute the prime ideals λ of Of above ℓ.

(b) For each such λ, check the following congruences:

• ap(f) ≡ ψ(p)ap(f) (mod λ) for p ∤ N , p ⩽ B;
• ap(f)

2 ≡ pk−1(ψε)0(p) (mod λ).

If they all hold, add λ to Dih(f). The representation ρf,λ has projective dihedral image
of order prime to ℓ.

Remark 14.21. Notice that their may be some overlap between the reducible case and the dihedral
case. Indeed, assume that ρf,λ is reducible, isomorphic to η1 ⊕ η2 for two residual characters
η1, η2. In this case, the projective image of ρf,λ is isomorphic to (η1η

−1
2 )(GQ) which is a cyclic

group. It can be dihedral in exactly two cases :

• If η1 = η2, then the projective image of ρf,λ is trivial.

• If (η1η−1
2 )(GQ) = {1,−1}, then η1η

−1
2 is a quadratic character and the projective image of

ρf,λ is Z/2Z = D2.

The first case will not be detected by our theorem because the corresponding twist would be the
trivial character. However, the second case will be detected as a dihedral case. For example,
consider the modular form ∆ ∈ S12(1,1) at ℓ = 3. The representation ρ∆,(3) is isomorphic to
χ3 ⊕ χ2

3. The projective image of ρ∆,(3) is isomorphic to χ3(GQ) ∼= Z/2Z and the quadratic
character χ3 is indeed a non-trivial twist of ρ∆,(3).



Chapter 15

Numerical applications

We present here some examples of applications of the algorithms described in sections 13.3
and 14.3 to compute the reducible and dihedral primes of a given newform. Throughout this
section we use the Conrey representation (εa(b))b∧a=1 for the Dirichlet characters of modulus a.
This is the way they are described in the LMFDB for example (and in some extent in PARI/GP).
Notice that there would be no possible confusion with the characters ε1, ε2 from the algorithms
above.

15.1 The reducible case

15.1.1 A concrete example

Consider the space Snew
7 (7, ε7(3)). It has dimension 6 over C and is generated by 2 newforms,

f1 and f2, up to conjugation by Gal(Q/Q(ε7(3))). We have Kf1 = Q[t]/(t2 − t + 1) and
Kf2 = Q[x]/(x4 + 2x2 + 4). Notice that

(
1, x, x

2

2 ,
x3

2

)
is an integer basis of Of2 , and that ε7(3)

sends 3 to t in Kf1 and to −x2

2 in Kf2 . The q-expansions of f1 and f2 are given by

f1 = q + 12tq2 + (−7t− 7)q3 + (80t− 80)q4 + (−105t+ 210)q5

+ (−168t+ 84)q6 − 343q7 +O(q8),

f2 = q +

(
3 · x

3

2
+ 2x2 + 3x

)
q2 +

(
13x3 − 3

2
x2 + 13x+ 3

)
q3

+ (15x2 − 24x+ 30)q4 +

(
−25x3 − 25

2
x2 + 50x− 50

)
q5 +O(q6).

The set of prime numbers less than k + 1 = 8 or dividing Nφ(N) = 42 is equal to {2, 3, 5, 7}.
We treat those primes separately below.

• ℓ = 2: The ideal 2Of1 is prime and the ideal 2Of2 decomposes as 2Of2 = ((x, 2)Of2)
2.

Because, the ideal generated by 2 in Z[ε7(3)] is prime, algorithm 13.21 gives us

R7,7,ε7(3)(2Of1) = R7,7,ε7(3)((2, x)Of2) = {(1, ε7(4), 0, 0)}.

207
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According to theorem 13.12, we have for (ε1, ε2,m1,m2) = (1, ε7(4), 0, 0),

k′ = 2, r = 1, N ′ = 7, a = 0, b = 3, k̃ = 10, B = 6 +
2

3
.

To check the reducibility of ρf1,(2) and ρf2,(2,x) we only have to check the third and fifth
coefficients of f1 and f2. The table below shows the reduction modulo the prime ideals
above of ap(fi) − 1 − ε7(4)(p) for i = 1, 2, and p = 3, 5. From theorem 13.12, we know
that ρfi,λ is reducible if and only if the row corresponding to fi contains only zeros.

p 3 5

ap(f1)− (1 + ε7(4)(p)) (mod 2) 0 0

ap(f2)− (1 + ε7(4)(p)) (mod (2, x)) 0 0

Therefore, we have ρf1,(2) ∼= 1⊕ ε7(4) and ρf2,(2,x) ∼= 1⊕ ε7(4).

• ℓ = 3: We have 3Of1 = ((3, t+ 1)Of1)
2 and 3Of2 =

(
(3, x2 + 1)Of2

)2. As for ℓ = 2, the
ideal generated by 3 in Z[ε7(3)] is prime. Therefore, we have from algorithm 13.21

R7,7,ε7(3)((3, t+ 1)Of1) = R7,7,ε7(3)((3, x
2 + 1)Of2)

= {(1, ε7(6), 0, 0); (1, ε7(6), 1, 1)}.

According to theorem 13.12, we have in both cases

k′ = 1, r = 1, N ′ = 7, a = 0, b = 4, k̃ = 11, B = 7 +
1

3
.

We have to look at the second, fifth, and seventh coefficients of f1 and f2. Let us look at
the second and fifth first.

p 2 5

ap(f1)− (1 + ε7(6)(p)) (mod (3, t+ 1)) 1 0

ap(f1)− (p+ pε7(6)(p)) (mod (3, t+ 1)) 2 0

ap(f2)− (1 + ε7(6)(p)) (mod (3, x2 + 1)) 2 0

ap(f2)− (p+ pε7(6)(p)) (mod (3, x2 + 1)) 0 0

From these computations, we deduce that the only representation that can be reducible is
ρf2,(3,x2+1), and that it can only be isomorphic to χ3⊕χ3ε7(6). To confirm this isomorphism,
we finally have to check that there exists some b7 ∈ {0, 7, 7ε7(6)(7)} = {0, 7} such that
a7(f2) ≡ 7b7 (mod (3, x2 + 1)). We find that we have a7(f2) ≡ 7 (mod (3, x2 + 1)).
Therefore, the representation ρf1,(3,t+1) is irreducible, and we have ρf2,(3,x2+1)

∼= χ3 ⊕
χ3ε7(6).

• ℓ = 5: The rational prime number 5 is prime inOf1 , and 5Of2 = (5, x2−2x−2)(5, x2+2x−2).
There is again only one prime ideal above 5 in Z[ε7(3)] and we have

R7,7,ε7(3)(5Of1) = R7,7,ε7(3)(5, x
2 ± 2x− 2)

= {(1, ε7(3), 0, 2); (ε7(3),1, 2, 0); (1, ε7(3), 1, 1)}.
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Looking at the congruences at p = 3 for f1, and p = 2 for f2, we have

a3(f1)−
(
1 + 32ε7(3)(3)

)
≡ 4t+ 2 (mod 5),

a3(f1)−
(
ε7(3)(3) + 32

)
≡ 2t+ 4 (mod 5),

a2(f2)−
(
1 + 22ε7(3)(2)

)
≡

{
2 (mod (5, x2 − 2x− 2));

4x (mod (5, x2 + 2x− 2)),

a2(f2)−
(
ε7(3)(2) + 22

)
≡

{
2x+ 3 (mod (5, x2 − 2x− 2));

2x+ 1 (mod (5, x2 + 2x− 2)),

a2(f2)− (2 + 2ε7(3)(2)) ≡

{
3x+ 2 (mod (5, x2 − 2x− 2));

x (mod (5, x2 + 2x− 2)).

The only candidate remaining is (1, ε7(3), 1, 1) for ρf1,(5). We have

k′ = 1, r = 1, N ′ = 7, a = 0, b = 6, k̃ = 13, B = 8 +
2

3
.

We check the second, third, and seventh coefficients, and we get

a2(f1) ≡ 2 + 2ε7(3)(2) (mod 5),

a3(f1) ≡ 3 + 3ε7(3)(3) (mod 5),

a7(f1) ≡ 7 (mod 5).

Therefore, the representations ρf2,(5,x2−2x−2) and ρf2,(5,x2+2x−2) are irreducible, and we
have an isomorphism ρf1,(5)

∼= χ5 ⊕ χ5ε7(3).

• ℓ = 7: We have 7Of1 = (7, t− 5)(7, t− 3) and 7Of2 = (7, x− 1)(7, x− 2)(7, x+2)(7, x+1).
This time 7 decomposes in Z[ε7(3)] and we have

R7,7,ε7(3)(7, t− 3) = R7,7,ε7(3)(7, x± 1)

= {(1,1)} × {(0, 1); (2, 5); (3, 4)}
and R7,7,ε7(3)(7, t− 5) = R7,7,ε7(3)(7, x± 2)

= {(1,1)} × {(0, 5); (1, 4); (2, 3)}.

For f1, looking at p = 2 leaves us only with (ε1, ε2,m1,m2) = (1,1, 2, 5) for the ideal
(7, t− 3) and (1,1, 1, 4) for (7, t− 5). In both cases we have to look at congruences up to
p = 5, and we get

ρf1,(7,t−3)
∼= χ2

7 ⊕ χ5
7 and ρf1,(7,t−5)

∼= χ7 ⊕ χ4
7.

For f2, looking at p = 3 leaves us with (1,1, 2, 5) for (7, x+ 1), (1,1, 1, 4) for (7, x+ 2),
(1,1, 2, 3) for (7, x− 2), and (1,1, 3, 4) for (7, x− 1). In the first two cases we have r = 1,
and we have to look at congruences up to p = 5. In the last two cases we have r = 4,
and we have to check congruences up to p = 53 and p = 67 respectively. In every case,
theorem 13.12 shows that the corresponding representation is reducible. To sum up we
have

ρf2,(7,x−1)
∼= χ3

7 ⊕ χ4
7, ρf2,(7,x+1)

∼= χ2
7 ⊕ χ5

7,

ρf2,(7,x−2)
∼= χ2

7 ⊕ χ3
7, ρf2,(7,x+2)

∼= χ7 ⊕ χ4
7.
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We finally look at the prime numbers ℓ > 7. We have

R7,ε7(3) = {(1, ε7(3)), (ε7(3),1)}.

Let (ε1, ε2) ∈ R7,ε7(3). We have r = 1, N ′ = 1, B = 4 + 1
3 , and

C(ε1, ε2) =

{
0 if (ε1, ε2) = (ε7(3),1);

−B7,ε7(3)

14 a7 (fi)
2 if (ε1, ε2) = (1, ε7(3)).

We first look at f1. We find that 43 is the only prime factor greater than 7 of the gcd of
the algebraic norms of C(ε1, ε2) and ap(f1) − ε1(p) − p6ε2(p), for p = 2, 3. In Of1 we have
43Of1 = (43, t− 7)(43, t+ 6) and we get the following table.

(ε1, ε2) (1, ε7(3)) (ε7(3),1)

C(1, ε7(3))
ap(f1)− 1− p6ε7(3)(p) ap(f1)− ε7(3)(p)− p6

p = 2 p = 3 p = 2 p = 3

(43, t− 7) 0 0 0 14 25

(43, t+ 6) 40 31 22 0 0

Therefore, we get ρf1,(43,t−7)
∼= 1⊕ χ6

43ε7(3) and ρf1,(43,t+6)
∼= ε7(3)⊕ χ6

43.
We now turn to f2. Computing again the gcd of the algebraic norm of C(ε1, ε2) and

ap(f2)− ε1(p)− p7ε2(p), for p = 2, 3, we find that the only possible residue characteristics are 97

and 3919. We have the following decompositions in Of2 :

97Of2 = (97, x− 19)(97, x− 5)(97, x+ 5)(97, x+ 19),

3919Of2 = (3919, x− 934)(3919, x− 621)(3919, x+ 621)(3919, x+ 934),

and we get the following values for the reduction of C(1, ε7(3)), ap(f2) − 1 − p6ε7(3)(p), and
ap(f2)− ε7(3)(p)− p6 for p ∈ {2, 3}.

(ε1, ε2) (1, ε7(3)) (ε7(3),1)

C(1, ε7(3))
ap(f2)− 1− p6ε7(3)(p) ap(f2)− ε7(3)(p)− p6

p = 2 p = 3 p = 2 p = 3

(97, x− 19) 9 33 75 30 57

(97, x− 5) 0 0 0 8 66

(97, x+ 5) 0 80 15 88 81

(97, x+ 19) 11 3 18 0 0

(3919, x− 934) 3160 3231 1337 0 0

(3919, x− 621) 0 0 0 3042 609

(3919, x+ 621) 0 1685 2010 808 2619

(3919, x+ 934) 1455 3038 3047 3726 1710

Therefore, the representations ρf2,(97,x−19), ρf2,(97,x+5), ρf2,(3919,x+621) and ρf2,(3919,x+934) are
irreducible, and we have

ρf2,(97,x−5)
∼= 1⊕ χ6

97ε7(3), ρf2,(97,x+19)
∼= ε7(3)⊕ χ6

97,

ρf2,(3919,x−934)
∼= ε7(3)⊕ χ6

3919, ρf2,(3919,x−621)
∼= 1⊕ χ6

3919ε7(3).

The following table sums up all the cases for which ρfi,λ is reducible.
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ℓ f1 f2

2
(2) (2, x)

1⊕ ε7(4) 1⊕ ε7(4)

3 Irreducible
(3, x2 + 1)

χ3 ⊕ χ3ε7(6)

5
(5)

Irreducible
χ5 ⊕ χ5ε7(3)

7
(7, t− 3) (7, t− 5) (7, x− 2) (7, x− 1) (7, x+ 1) (7, x+ 2)

χ2
7 ⊕ χ5

7 χ7 ⊕ χ4
7 χ2

7 ⊕ χ3
7 χ3

7 ⊕ χ4
7 χ2

7 ⊕ χ5
7 χ7 ⊕ χ4

7

ℓ > k + 1
(97, x− 5) (97, x+ 19)

(43, t− 7) (43, t+ 6) 1⊕ χ6
97ε7(3) ε7(3)⊕ χ6

97

ℓ ∤ Nφ(N)
1⊕ χ6

47ε7(3) ε7(3)⊕ χ6
43 (3919, x− 934) (3919, x− 621)

ε7(3)⊕ χ6
3919 1⊕ χ6

3919ε7(3)

15.1.2 An irreducible everywhere representation

We present an example of a modular form which all residual representations are irreducible. Fix
(N, k, ε) = (35, 4,1). The space Snew

4 (35,1) has dimension 6 over C and contains 3 newforms up
to conjugation by Gal(Q/Q). Let f be the newform of this space which q-expansion is

f = q + (y + 4)q2 + (1− 4y)q3 +O
(
q4
)
,

where y is a root of X2− 2. The coefficient field of f is equal to Kf = Q(y). We have in this case

R35,1 = {(1,1)}.

Therefore, by theorem 13.19 the only prime ideals λ of Of for which ρf,λ can be reducible are of
residue characteristic ℓ ∈ {2, 3, 5, 7} (because we have B4,1 = − 1

30). Let us look at each of these
cases.

• ℓ = 2: We have 2Of = (2, y)2 and R35,4,1(2, y) = {(1,1, 0, 0)}. However, we have

Tr
(
ρf,(2,y)(Frob3)

)
≡ a3(f) ≡ 1 (mod (2, y))

and

Tr ((1⊕ 1)(Frob3)) ≡ 0 (mod (2, y)).

Therefore, ρf,(2,y) is irreducible.

• ℓ = 3: The ideal 3Of is prime, and we have R35,4,1(3) = {(1,1, 0, 1)}. However, we have

Tr
(
ρf,(3) (Frob2)

)
≡ a2(f) ≡ y + 1 (mod 3)

and

Tr ((1⊕ χ3) (Frob2)) ≡ 0 (mod 3).

Therefore, ρf,(3) is irreducible.
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• ℓ = 5: Again, 5 is prime in Of , and we have R35,4,1(5) = {(1,1, 0, 3); (1,1, 1, 2)}. Looking
at a Frobenius element at 2, we have

Tr
(
ρf,(5) (Frob2)

)
≡ a2(f) ≡ y + 4 (mod 5)

and

Tr
((
1⊕ χ3

5

)
(Frob2)

)
≡ 4 (mod 5), Tr

((
χ5 ⊕ χ2

5

)
(Frob2)

)
≡ 0 (mod 5).

Therefore, ρf,(5) is irreducible.

• ℓ = 7: In this case we have 7Of = (7, y − 3)(7, y + 3) and R35,7,1(7, y ± 3) = {(1,1)} ×
{(0, 3); (1, 2); (4, 5)}. However, for a Frobenius element at 7 we have Tr

(
ρf,(7,y−3) (Frob3)

)
≡ 3 (mod (7, y − 3));

Tr
(
ρf,(7,y+3) (Frob3)

)
≡ 6 (mod (7, y + 3)),

and
Tr
((
1⊕ χ3

7

)
(Frob3)

)
≡ 0 (mod 7, y ± 3);

Tr
((
χ7 ⊕ χ2

7

)
(Frob3)

)
≡ 5 (mod 7);

Tr
((
χ4
7 ⊕ χ5

7

)
(Frob3)

)
≡ 2 (mod 7).

Therefore, the representations ρf,(7,y−3) and ρf,(7,y+3) are both irreducible.

Thus, for all prime ideals λ in Of , the representation ρf,λ is irreducible.

15.2 The dihedral case

In [BD14, 5.2. Dihedral representation], Billerey and Dieulefait consider a modular form f in
the space S2(1888,1) and proved that its Galois representation modulo a prime ideal above 5 is
dihedral using the theory of elliptic curves. Let us illustrate our method on their example to
prove that this is in fact the only prime ideal which is dihedral for this form.

Consider the space S2(1888,1). It has dimension 58 over C is splits into 16 orbits under the
action of GQ. Let f be the modular form in the Galois orbit labeled 1888.2.a.k in the LMFDB
which q-expansion is given by

f = q+
(
2y4 − 5y3 − 12y2 + 20y + 10

)
q3(

2y4 − 5y3 − 11y2 + 19y + 8
)
q5 +O(q7),

where y is a root of X5 − 2X4 − 7X3 + 7X2 + 9X + 2.

Remark 15.1. This is in fact the same modular form as the one considered in [BD14, 5.2.
Dihedral representation]. To go from one form to the other, one can consider the isomorphisms
of field defined by

Q[X]

(X5 − 2X4 − 7X3 + 7X2 + 9X + 2)
−→ Q[X]

(X5 + 6X4 − 20X3 − 128X2 + 48X + 320)

X 7−→ − 1
16X

4 − 1
8X

3 + 3
2X

2 + 3
2X − 4

4X4 − 10X3 − 24X2 + 40X + 20 7−→ X

.
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Let us apply algorithms 14.19 and 14.20. The small prime ideals are ℓ = 3, 5, and 59. We
treat them separately.

• ℓ = 3: The ideal generated by 3 is prime is ring of integer of the coefficient field of f . The
set T1888,1(3) is equal to

T1888,1(3) = {(1,1), (0, ε8(3)), (1, ε8(3)), (0, ε8(5)), (1, ε8(5)), (0, ε4(3)), (1, ε4(3))}.

For every pair (e, ψ) of T1888,1(3), we can find a congruence ap(f)(1− peψ(p)) ≡ 0 (mod 3)

for p ∤ Nℓ that fails. The following table contains the first such prime number p for each
pair (e, ψ).

(e, ψ) p (e, ψ) p

(1,1) 5 (1, ε8(5)) 13

(0, ε8(3)) 5 (0, ε4(3)) 7

(1, ε8(3)) 7 (1, ε4(3)) 5

(0, ε8(5)) 5

Therefore, ρf,(3) does not have dihedral projective image.

• ℓ = 5: There are two prime ideals above 5, λ5,1 := (5, y − 1) and λ5,2 := (5, y4 − y3 − 8y2 +

4y + 8). For both λ1,5 and λ2,5, we again have

T1888,1(λ5,i) = {(1,1), (0, ε8(3)), (1, ε8(3)), (0, ε8(5)), (1, ε8(5)), (0, ε4(3)), (1, ε4(3))}.

For most pairs (e, ψ) in both T1888,1(λ5,1) and T1888,1(λ5,2) we can again find a congruence
ap(f)(1− p2eψ(p)) ≡ 0 (mod λ5,i) for p ∤ 5 · 1888 that fails. We compile in the following
table the first prime p that fails for each triplet (e, ψ, λ5,i) except (0, ε4(3), λ5,1).

(e, ψ, λ5,1) p (e, ψ, λ5,2) p

(0,1, λ5,1) 13 (0,1, λ5,2) 3

(0, ε8(3), λ5,1) 13 (0, ε8(3), λ5,2) 7

(1, ε8(3), λ5,1) 17 (1, ε8(3), λ5,2) 3

(0, ε8(5), λ5,1) 13 (0, ε8(5), λ5,2) 3

(1, ε8(5), λ5,1) 17 (1, ε8(5), λ5,2) 7

(0, ε4(3), λ5,1) (1, ε4(3), λ5,2) 3

(1, ε4(3), λ5,1) 13 (1, ε4(3), λ5,2) 11

The only triplet remaining is (0, ε4(3), λ5,1). To prove that ρf,λ5,1 has dihedral projective
image, we have to check that ap(f)(1 − ε4(3)(p)) ≡ 0 (mod λ5,1) for all prime numbers
p ⩽ B = 453,120. We have checked that with a computer. We therefore deduce that ρf,λ5,1
has dihedral projective image.

• ℓ = 59: There are two prime ideals above 59, λ59,1 := (59, y + 15) and λ59,2 := (59, y4 −
17y3 + 12y2 + 63y + 8), and the sets T1888,1(λ59,1) and T1888,1(λ59,2) are both equal to

{(1,1), (0, ε8(3)), (1, ε8(3)), (0, ε8(5)), (1, ε8(5)), (0, ε4(3)), (1, ε4(3))}.

As for ℓ = 3, for both prime ideals λ59,1, λ59,2, and each pair (e, ψ) in T1888,1(λ59,i), one
can find a congruence ap(f)

(
1− p29eψ(p)

)
≡ 0 (mod λ59,i) that fails.
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(e, ψ, λ5,1) p (e, ψ, λ5,2) p

(0,1, λ59,1) 11 (0,1, λ59,2) 11

(0, ε8(3), λ59,1) 5 (0, ε8(3), λ59,2) 5

(1, ε8(3), λ59,1) 5 (1, ε8(3), λ59,2) 5

(0, ε8(5), λ59,1) 3 (0, ε8(5), λ59,2) 3

(1, ε8(5), λ59,1) 3 (1, ε8(5), λ59,2) 3

(0, ε4(3), λ59,1) 3 (1, ε4(3), λ59,2) 3

(1, ε4(3), λ59,1) 3 (1, ε4(3), λ59,2) 3

We deduce that representations ρf,λ59,i do not have dihedral projective image.

We finally look at the “big” dihedral prime numbers. First, the set T1888,1 contains only the
character ε8(3) and the bound B is equal to 1888·4·2

12

(
1 + 1

2

) (
1 + 1

59

)
= 1920. Then, we have

gcd

(
(Norm(ap(f)))p⩽1920,p∤1888,

ε8(3)(p)=−1

)
= 1.

In fact, we even have ε8(3)(5) = ε8(3)(7) = −1 and gcd(Norm(a5(f)),Norm(a7(f))) = 1.
Therefore, there are no big dihedral primes and the only prime ideal λ for which ρf,λ is dihedral
is λ5,1 = (5, y − 1).



References on modular Galois
representations

[21] PARI/GP version 2.13.3. available from http://pari.math.u-bordeaux.fr/.
Univ. Bordeaux, 2021 (cited on pp. 134, 143, 190).

[AL78] A. O. L. Atkin and Wen Ch’ing Winnie Li. “Twists of newforms and pseudo-
eigenvalues of W -operators”. In: Inventiones Mathematicae 48.3 (1978), pp. 221–243.
doi: 10.1007/BF01390245 (cited on p. 191).

[Ann13] Samuele Anni. “Images des représentations galoisiennes”. These de doctorat. Bordeaux
1, Oct. 24, 2013 (cited on pp. 133, 142).

[BD14] Nicolas Billerey and Luis V. Dieulefait. “Explicit large image theorems for modular
forms”. In: Journal of the London Mathematical Society. Second Series 89.2 (2014),
pp. 499–523. doi: 10.1112/jlms/jdt072 (cited on pp. 131, 132, 139, 140, 155, 184,
200, 212).

[BM18] Nicolas Billerey and Ricardo Menares. “Strong modularity of reducible Galois rep-
resentations”. In: Transactions of the American Mathematical Society 370.2 (2018),
pp. 967–986. doi: 10.1090/tran/6979 (cited on pp. 132, 140, 155–157).

[Car59] L. Carlitz. “Arithmetic properties of generalized Bernoulli numbers”. In: Journal für
die Reine und Angewandte Mathematik. [Crelle’s Journal] 202 (1959), pp. 174–182.
doi: 10.1515/crll.1959.202.174 (cited on p. 154).

[Car86] Henri Carayol. “Sur les représentations l-adiques associées aux formes modulaires de
Hilbert”. In: Annales Scientifiques de l’École Normale Supérieure. Quatrième Série
19.3 (1986), pp. 409–468 (cited on p. 150).

[Car89] Henri Carayol. “Sur les représentations galoisiennes modulo l attachées aux formes
modulaires”. In: Duke Mathematical Journal 59.3 (1989), pp. 785–801. doi: 10.1215/
S0012-7094-89-05937-1 (cited on p. 150).

[Coh07] Henri Cohen. Number theory. Vol. I. Tools and Diophantine equations. Vol. 239.
Graduate Texts in Mathematics. Springer, New York, 2007. xxiv+650. isbn: 978-0-
387-49922-2 (cited on p. 147).

[Coh75] Henri Cohen. “Sums involving the values at negative integers of L-functions of
quadratic characters”. In: Mathematische Annalen 217.3 (1975), pp. 271–285. doi:
10.1007/BF01436180 (cited on p. 159).

215

http://pari.math.u-bordeaux.fr/
https://doi.org/10.1007/BF01390245
https://doi.org/10.1112/jlms/jdt072
https://doi.org/10.1090/tran/6979
https://doi.org/10.1515/crll.1959.202.174
https://doi.org/10.1215/S0012-7094-89-05937-1
https://doi.org/10.1215/S0012-7094-89-05937-1
https://doi.org/10.1007/BF01436180


216 REFERENCES ON MODULAR GALOIS REPRESENTATIONS

[CR06] Charles W. Curtis and Irving Reiner. Representation theory of finite groups and
associative algebras. AMS Chelsea Publishing, Providence, RI, 2006. xiv+689. isbn:
978-0-8218-4066-5. doi: 10.1090/chel/356 (cited on p. 145).

[Del71] Pierre Deligne. “Formes modulaires et représentations l-adiques”. In: Séminaire
Bourbaki. Vol. 1968/69: Exposés 347–363. Vol. 175. Lecture Notes in Math. Springer,
Berlin, 1971, Exp. No. 355, 139–172 (cited on pp. 128, 136, 149).

[Del74] Pierre Deligne. “La conjecture de Weil : I”. In: Publications Mathématiques de l’IHÉS
43 (1974), pp. 273–307 (cited on p. 203).

[DI95] Fred Diamond and John Im. “Modular forms and modular curves”. In: Seminar on
Fermat’s Last Theorem (Toronto, ON, 1993–1994). Vol. 17. CMS Conf. Proc. Amer.
Math. Soc., Providence, RI, 1995, pp. 39–133 (cited on p. 185).

[Dic01] Leonard E. Dickson. Linear groups with an exposition of the Galois field theory.
Leipzig : B.G. Teubner, 1901. 334 pp. (cited on pp. 129, 138).

[DS74] Pierre Deligne and Jean-Pierre Serre. “Formes modulaires de poids 1”. In: Annales
Scientifiques de l’École Normale Supérieure. Quatrième Série 7 (1974), 507–530
(1975) (cited on pp. 128, 136, 146, 160).

[DT94] Fred Diamond and Richard Taylor. “Nonoptimal levels of mod l modular represen-
tations”. In: Inventiones Mathematicae 115.3 (1994), pp. 435–462. doi: 10.1007/
BF01231768 (cited on pp. 129, 137).

[Edi92] Bas Edixhoven. “The weight in Serre’s conjectures on modular forms”. In: Inventiones
Mathematicae 109.3 (1992), pp. 563–594. doi: 10.1007/BF01232041 (cited on p. 150).

[Hup67] Bertram Huppert. Endliche Gruppen. I. Die Grundlehren Der Mathematischen
Wissenschaften, Band 134. Springer-Verlag, Berlin-New York, 1967. xii+793 (cited
on pp. 130, 138).

[Kat73] Nicholas M. Katz. “p-adic properties of modular schemes and modular forms”. In:
Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972). 1973, 69–190. Lecture Notes in Mathematics, Vol. 350
(cited on pp. 185, 187).

[Kat77] Nicholas M. Katz. “A result on modular forms in characteristic p”. In: Modular
Functions of One Variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn,
1976). 1977, 53–61. Lecture Notes in Math., Vol. 601 (cited on p. 159).

[Kra95] Alain Kraus. “Une remarque sur les points de torsion des courbes elliptiques”. In:
Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 321.9 (1995),
pp. 1143–1146 (cited on p. 170).

[Kra97] Alain Kraus. “Majorations effectives pour l’équation de Fermat généralisée”. In:
Canadian Journal of Mathematics. Journal Canadien de Mathématiques 49.6 (1997),
pp. 1139–1161. doi: 10.4153/CJM-1997-056-2 (cited on p. 184).

[Liv89] Ron Livné. “On the conductors of mod l Galois representations coming from modular
forms”. In: Journal of Number Theory 31.2 (1989), pp. 133–141. doi: 10.1016/0022-
314X(89)90015-2 (cited on p. 150).

https://doi.org/10.1090/chel/356
https://doi.org/10.1007/BF01231768
https://doi.org/10.1007/BF01231768
https://doi.org/10.1007/BF01232041
https://doi.org/10.4153/CJM-1997-056-2
https://doi.org/10.1016/0022-314X(89)90015-2
https://doi.org/10.1016/0022-314X(89)90015-2


REFERENCES ON MODULAR GALOIS REPRESENTATIONS 217

[LW12] David Loeffler and Jared Weinstein. “On the computation of local components of
a newform”. In: Mathematics of Computation 81.278 (2012), pp. 1179–1200. doi:
10.1090/S0025-5718-2011-02530-5 (cited on p. 152).

[LW15] David Loeffler and Jared Weinstein. “Erratum: “On the computation of local compo-
nents of a newform” [MR2869056]”. In: Mathematics of Computation 84.291 (2015),
pp. 355–356. doi: 10.1090/S0025-5718-2014-02867-6 (cited on p. 152).

[Mar05] Greg Martin. “Dimensions of the spaces of cusp forms and newforms on Γ0(N) and
Γ1(N)”. In: Journal of Number Theory 112.2 (2005), pp. 298–331. doi: 10.1016/j.
jnt.2004.10.009 (cited on pp. 132, 140).

[Mei17] Lennart Meier. “(Topological) modular forms with level structures: decompositions
and duality”. Feb. 20, 2017. arXiv: 1609.09264 [math] (cited on p. 162).

[Miy06] Toshitsune Miyake. Modular forms. English. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2006. x+335. isbn: 978-3-540-29592-1 (cited on pp. 152,
154–156).

[Mur97] M. Ram Murty. “Congruences between modular forms”. In: Analytic Number Theory
(Kyoto, 1996). Vol. 247. London Math. Soc. Lecture Note Ser. Cambridge Univ.
Press, Cambridge, 1997, pp. 309–320. doi: 10.1017/CBO9780511666179.020 (cited
on pp. 166, 167, 170).

[Pea21] Baptiste Peaucelle. “Explicit small image theorems for residual modular representa-
tions”. In: International Journal of Number Theory (Oct. 18, 2021), pp. 1–60. doi:
10.1142/S1793042122500609 (cited on pp. 127, 131, 135, 140, 150).

[Ram00] S. Ramanujan. “On certain arithmetical functions [Trans. Cambridge Philos. Soc. 22
(1916), no. 9, 159–184]”. In: Collected Papers of Srinivasa Ramanujan. AMS Chelsea
Publ., Providence, RI, 2000, pp. 136–162. doi: 10.1016/s0164-1212(00)00033-9
(cited on pp. 127, 135).

[Rib77] Kenneth A. Ribet. “Galois representations attached to eigenforms with Nebentypus”.
In: Modular Functions of One Variable, V (Proc. Second Internat. Conf., Univ. Bonn,
Bonn, 1976). 1977, 17–51. Lecture Notes in Math., Vol. 601 (cited on pp. 129, 137,
173, 192).

[Rib85] Kenneth A. Ribet. “On l-adic representations attached to modular forms. II”. In: Glas-
gow Mathematical Journal 27 (1985), pp. 185–194. doi: 10.1017/S0017089500006170
(cited on pp. 129, 130, 137, 138).

[Rib90] K. A. Ribet. “On modular representations of Gal(Q/Q) arising from modular forms”.
In: Inventiones Mathematicae 100.2 (1990), pp. 431–476. doi: 10.1007/BF01231195
(cited on pp. 129, 137).

[Rib94] Kenneth A. Ribet. “Report on mod l representations of Gal(Q/Q)”. In: Motives
(Seattle, WA, 1991). Vol. 55. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence,
RI, 1994, pp. 639–676 (cited on p. 161).

https://doi.org/10.1090/S0025-5718-2011-02530-5
https://doi.org/10.1090/S0025-5718-2014-02867-6
https://doi.org/10.1016/j.jnt.2004.10.009
https://doi.org/10.1016/j.jnt.2004.10.009
https://arxiv.org/abs/1609.09264
https://doi.org/10.1017/CBO9780511666179.020
https://doi.org/10.1142/S1793042122500609
https://doi.org/10.1016/s0164-1212(00)00033-9
https://doi.org/10.1017/S0017089500006170
https://doi.org/10.1007/BF01231195


218 REFERENCES ON MODULAR GALOIS REPRESENTATIONS

[RS62] J. Barkley Rosser and Lowell Schoenfeld. “Approximate formulas for some functions
of prime numbers”. In: Illinois Journal of Mathematics 6 (1962), pp. 64–94 (cited on
p. 171).

[Ser68] Jean-Pierre Serre. Corps locaux. Publications de l’Université de Nancago, No. VIII.
Hermann, Paris, 1968. 245 pp. (cited on pp. 146, 148).

[Ser69] Jean-Pierre Serre. “Une interprétation des congruences relatives à la fonction τ de
Ramanujan”. In: Séminaire Delange-Pisot-Poitou: 1967/68, Théorie Des Nombres,
Fasc. 1, Exp. 14. Secrétariat mathématique, Paris, 1969, p. 17 (cited on pp. 127, 128,
135, 136).

[Ser73] Jean-Pierre Serre. “Congruences et formes modulaires”. In: Séminaire Bourbaki
Vol. 1971/72 Exposés 400–417. Ed. by A. Dold and B. Eckmann. Lecture Notes in
Mathematics. Berlin, Heidelberg: Springer, 1973, pp. 319–338. isbn: 978-3-540-38403-
8. doi: 10.1007/BFb0069289 (cited on pp. 129, 131, 137, 139).

[Ser87] Jean-Pierre Serre. “Sur les représentations modulaires de degré 2 de Gal(Q/Q)”. In:
Duke Mathematical Journal 54.1 (1987), pp. 179–230. doi: 10.1215/S0012-7094-
87-05413-5 (cited on pp. 129, 137).

[Sta40] K. G. C. Staudt. “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen.” In:
Journal für die reine und angewandte Mathematik 21 (1840), pp. 372–374 (cited on
p. 154).

[Stu87] J. Sturm. “On the congruence of modular forms”. In: Number Theory. Vol. 1240. Lec-
ture Notes in Math. Springer, Berlin, 1987, pp. 275–280. doi: 10.1007/BFb0072985
(cited on p. 166).

[Swi73] H. P. F. Swinnerton-Dyer. “On ℓ-adic Representations and Congruences for Coeffi-
cients of Modular Forms”. In: Modular Functions of One Variable III. Ed. by Willem
Kuijk and Jean-Pierre Serre. Lecture Notes in Mathematics. Berlin, Heidelberg:
Springer, 1973, pp. 1–55. isbn: 978-3-540-37802-0. doi: 10.1007/978-3-540-37802-
0_1 (cited on pp. 127, 129, 131, 135, 137, 139, 159, 161).

[Wil95] Andrew Wiles. “Modular elliptic curves and Fermat’s last theorem”. In: Annals of
Mathematics. Second Series 141.3 (1995), pp. 443–551. doi: 10.2307/2118559 (cited
on pp. 129, 137).

[Zag08] Don Zagier. “Elliptic Modular Forms and Their Applications”. In: The 1-2-3 of
Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway. Ed. by Jan
Hendrik Bruinier, Gerard van der Geer, Günter Harder, Don Zagier, and Kristian
Ranestad. Universitext. Berlin, Heidelberg: Springer, 2008, pp. 1–103. isbn: 978-3-
540-74119-0. doi: 10.1007/978-3-540-74119-0_1 (cited on p. 159).

https://doi.org/10.1007/BFb0069289
https://doi.org/10.1215/S0012-7094-87-05413-5
https://doi.org/10.1215/S0012-7094-87-05413-5
https://doi.org/10.1007/BFb0072985
https://doi.org/10.1007/978-3-540-37802-0_1
https://doi.org/10.1007/978-3-540-37802-0_1
https://doi.org/10.2307/2118559
https://doi.org/10.1007/978-3-540-74119-0_1

	English introduction
	Introduction en français
	I Linear forms in abelian logarithms
	English introduction
	Linear forms in logarithms
	Statement of results

	Introduction en français
	Formes linéaires de logarithmes
	Résultats

	Preliminaries
	Hermitian adelic vector bundles
	Definitions
	Slopes and heights

	Complex abelian varieties
	Line bundles and factors of automorphy
	The Riemann form of a line bundle
	Injectivity diameter and covering radius

	Abelian varieties over number fields
	Faltings height
	Moret-Bailly models

	Projective spaces
	Comparison of norms
	Some combinatorial identities

	The setup
	Data
	Overview of the proof
	Parameters
	Adelic structures
	Autissier matrix lemma

	Siegel lemma
	Adelic vector bundle of global sections
	Estimation of the rank of Usigma
	Estimation of the norm of Usigma
	Estimation of the slopes
	Construction of the auxiliary section

	Jets of sections
	The jets hermitian vector bundle
	Non-Archimedean estimates
	Archimedean estimates at the places sigma nmid sigma0, barsigma0
	Archimedean estimates at the places sigma | sigma0 or barsigma0
	Change of point
	The interpolation lemma
	The non-periodic case
	The periodic case


	End of the proof
	Proof of theorem 4.3
	Proof of theorem 4.6


	II Modular Galois representations
	English introduction
	Residual modular representations
	Overview of the results

	Introduction en français
	Représentations résiduelles modulaires
	Résultats

	Background on Galois representations
	Generalities on Galois representations
	One dimensional Galois representations
	Cyclotomic characters
	Dirichlet characters

	Modular Galois representations

	Background on Eisenstein series
	Generalised Bernoulli numbers and Gauß sums
	Eisenstein series

	Preliminary results on modular forms
	Theta operators
	Theta operators in characteristic greater than 3
	Theta operators in characteristic 2
	Theta operators in characteristic 3

	Sturm bounds
	Modifying modular forms

	Reducible modular representations
	General study of reducible representations
	Reducible modular representations in big characteristic
	Checking the reducibility

	Dihedral modular representations
	General study of dihedral modular representations
	Dihedral modular representations in big characteristic
	Checking the dihedrality

	Numerical applications
	The reducible case
	A concrete example
	An irreducible everywhere representation

	The dihedral case



