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Glasses and liquids are ubiquitous [1]. However, they remain a puzzle and their description
represents a great challenge for theoreticians [2], probably “the deepest and most interesting
unsolved problem in solid state theory” [3]. In usual statistical mechanics textbooks and courses,
we learn the statistical mechanics formulation of two archetypal and unrealistic materials: the
ideal gas (in the limit of vanishing density) [4] and the perfect crystal (without defects and at
zero temperature) [5, 6]. Properties of more realistic gases or solids can then be deduced from
these limits thanks to perturbative expansions with respect to the density for the former and
to the temperature for the latter. However, dealing with liquids is far more complex because
they are disordered and dense. From a solid perspective, their intrinsic disorder forbids to use
the statistical tools which are implemented in order to deal with crystals. From a gas point of
view, their high density makes interactions between constituents no longer negligible. This is
emphasised by the fact that the liquid is separated from both the gas1 and the solid phases by
thermodynamic first order phase transitions [8, 9].

What is then the good statistical mechanics description of these materials? Can one en-
compass the thermal and dynamic properties of liquids and glasses within a single theoretical
framework? The work which is presented here participates to answering these questions. This
introduction poses the main aspects of supercooled liquids and glasses that are relevant for the

1This is true only below the liquid-gas critical point. Above, a single fluid phase exists [7].
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I. General introduction

Fig. I.1 | Angell plot which represents the experimental measure of the variation of the bulk viscosity
η for several glass-forming liquids. Data are plotted on a logarithmic scale versus Tg/T , where
the glass transition temperature Tg is operatively defined when the viscosity reaches 1012 Pa.s. A
significant slowing down is clearly visible: the bulk viscosity (or equivalently the structural relaxation
time) skyrockets with decreasing the temperature on a small window. Strong liquids display an
almost Arrhenius behaviour while the increase in viscosity in fragile liquids is more pronounced and
follows a super-Arrhenius trend. The inset shows the discontinuous jump in the heat capacity at
the glass transition: the heat capacity varies rapidly from its value in the supercooled liquid to its
value in the glass phase which is approximately equal to the heat capacity of the crystal at the same
temperature. Figure from Ref. [15].

work which is presented in the next chapters. Additive information can be found in several
reviews [10–14].

1. Phenomenology of the glass transition

1.1 Dynamic facts

1.1.1 Dynamic slowdown

The glass transition concerns a huge variety of materials, from atomic or polymeric liq-
uids [15, 16] to colloidal systems [17, 18], granular materials [19–21] and even active matter [22,
23] and biological objects [24, 25]. They are all characterised by a significant increase in their
microscopic relaxation time (by orders of magnitude) when one control parameter (typically the
temperature or the density) is increased or decreased by a small amount. This is a universal be-
haviour which seems independent of the microscopic details of the materials and which continues
to trigger many studies in order to provide a unified description of glassy materials.

In usual statistical mechanics textbooks, we read that when a liquid is cooled below the
melting point Tm, it undergoes a first order thermodynamic phase transition and ends up in a
solid crystalline phase. However, this statement is only true at the genuine thermodynamic equi-
librium, i.e., if the liquid is cooled infinitely slowly. Instead, if the liquid is cooled fast enough,
it can avoid crystallisation and enter the supercooled regime which represents a metastable

4



I. General introduction

Fig. I.2 | Schematic evolution of the molar enthalpy or the molar volume of the supercooled liquid
when it is cooled below the melting point at a constant pressure. The curves 1 and 2 are obtained
for two different cooling rates. At high-enough temperatures, they all follow the same master curve
which represents the equation of state of the liquid in the supercooled regime. The liquid eventually
falls out of equilibrium and freezes into an amorphous solid, i.e., a glass. The lower the cooling rate,
the lower temperature at which the liquid vitrifies. We recall that the glass transition temperature
Tg is defined by the condition η(Tg) = 1012 Pa.s with η(T ) the bulk viscosity. When a glass ages, its
thermodynamic properties slowly evolve, for instance it becomes denser and explores lower energies
(curve 3). If the glass ages for a very long time, it can eventually reach equilibrium to follow back
the equation of state of the supercooled liquid. The blue curve instead represents the equilibrium
equation of state of the crystal. Configurations of a 3d system from computer simulations are shown
for a supercooled liquid, a glass and a crystal. Figure from Ref. [26].

thermodynamic phase2 with respect to the stable crystal phase. Even though the supercooled
liquid is not the thermodynamic equilibrium phase for T < Tm, it behaves as such as soon as
it does not crystallise. In particular, intensive thermodynamic variables can be defined and the
fluctuation-dissipation theorem holds [10].

In the supercooled regime, the equilibrium relaxation time for density fluctuations τα (or
equivalently the bulk viscosity η) increases significantly by several orders of magnitude when
decreasing the temperature in a small interval [15], see Fig. I.1. Therefore, if a liquid is gradually
cooled below Tm at a constant rate, typically between 0.1 K.min−1 and 100 K.min−1, there is
a temperature at which the cooling rate becomes too large to allow for the liquid equilibration.
The system falls out of equilibrium and does not flow on a reasonable timescale. The frozen
liquid behaves as a disordered solid which is called a glass. The temperature at which the liquid
forms a glass corresponds to the glass transition temperature and it is denoted by Tg, see Fig. I.2.

2This is very different from the metastable glassy states which are mentioned in the title of this work
and which are discussed below.

5



I. General introduction

Fig. I.3 | Time evolution of the rescaled intermediate scattering function Φq(t) = F (q, t)/F (q, 0) for
several temperatures which range from T = 413 K (left) to T = 270 K (right) from experiments on
glycerol. The wave vector is taken at the first maximum in the structure factor. As the temperature
is reduced, data shift towards later times (on a logarithmic scale) but they also indicate a crossover
from a mere exponential relaxation to a two-step decay with a first relaxation to a plateau which is
followed by a stretched exponential relaxation. Figure from Ref. [29].

We must emphasise that the glass transition is not a genuine thermodynamic phase transition.
Instead, it is protocol-dependent (a lower cooling rate leads to a lower temperature3 at which the
supercooled liquid falls out of equilibrium) and it is dependent on the timescale over which the
experiment is performed [27]. Only an operative definition of the glass transition temperature
Tg can be given. It is often defined by the condition η(Tg) = 1012 Pa.s, or equivalently by
the relation τα(Tg) = 102 s. As a matter of comparison, the relaxation time of liquids at the
melting point is about 1 ps, and the bulk viscosity is about 10−2 Pa.s. In other words, on a
small temperature window4, the viscosity and the relaxation time have increased by 14 orders
of magnitude [28].

1.1.2 Correlation functions and relaxation spectra

The evolution of the α-relaxation time (or the viscosity) with the temperature or the density
is a shortcut to account for the slowing down of glass-forming liquids. The analysis of correlation
functions in the time domain or of relaxation spectra in the frequency domain shows that the
increase in the relaxation time is accompanied by a qualitative change of the latter. This suggests
a temperature dependence of the relaxation mechanisms. Experiments and simulations usually
focus on the correlation function which is associated with the relaxation of density fluctuations,
namely, the intermediate scattering function [30]

F (q, t) = 1
N
〈ρq(t)ρ−q(0)〉 . (I.1)

The brackets represent a thermal average at equilibrium at a temperature T , N stands for the
number of particles, while ρq(t) represents the Fourier component of the density field ρ(x, t) at

3However the variation is quite weak, of about 5 K [16].
4The difference between Tm and Tg is often about Tm/3.
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I. General introduction

wave vector q and time t which reads

ρq(t) =
N∑
j=1

eiq·rj(t), (I.2)

with rj(t) the position of particle j at time t. Varying the wave vector q allows one to probe the
relaxation at different lengthscales [31]. It is usually taken at the location of the first maximum
in the total structure factor which is computed from the Fourier components of the density field
at equal times [30], namely,

S(q) = 1
N
〈ρqρ−q〉 . (I.3)

This choice of wave vector amounts to probing the particle motion on lengthscales close to the
average inter-particle distance.

Computer simulations have direct access to the positions of the particles and the computation
of F (q, t) is rather straightforward. In experiments instead, it requires a coherent neutron
scattering apparatus for instance [29]. An example is shown in Fig. I.3. At high temperatures,
the relaxation is well approximated by a single exponential. At lower temperatures instead, the
intermediate scattering function displays a two-step decay. The first step corresponds to a partial
relaxation of the density fluctuations towards a plateau at microscopic timescales (of about
1 ps). From a nanoscopic point of view, this plateau represents the thermal vibrations which are
performed by the particles in the cages that are formed by their neighbours. The second step of
the relaxation instead represents the complete decorrelation (α-relaxation) on larger timescales
(from picosecond to second). It becomes increasingly stretched as the temperature decreases.
The time evolution of the correlation function is usually fitted by using a stretched exponential
function [32], namely,

F (q, t) ∝ e−(t/τ)β , (I.4)

with τ and β adjustable parameters: τ closely follows τα while β slightly decreases when de-
creasing the temperature [33].

Experiments often deal with relaxation spectra instead of correlation functions. For liq-
uids with dipolar moments, the imaginary part of the dielectric susceptibility ε′′(ν) can be
measured [36]. At equilibrium, it is related to the dipole-dipole correlation function by the
fluctuation-dissipation theorem [37]. All correlation functions are expected to display the same
glassy slowdown as the temperature is decreased [38, 39]. As a result, the dipole-dipole correla-
tion should have the same time and temperature evolution as in Fig. I.3, and the corresponding
spectrum should exhibit signatures of the approach to the glass transition. An example is dis-
played in Fig. I.4. Such as intermediate scattering functions, spectra display richer changes than
the simple increase in the relaxation time. At high temperatures, the spectra follow the Debye
Lorentzian shape, and they peak at the gigahertz scale. This reflects the near-exponential relax-
ation on the picosecond timescale in the time domain. As the temperature decreases, the spectra
broaden and they acquire a two-peak structure which corresponds to the two-step decay in the
time correlation functions. The low-frequency peak accounts for the structural α-relaxation
and its position ωα = 1/τα shifts towards lower frequencies when the temperature is decreased.
This peak is often fitted by several empirical formulas, such as the Cole-Davidson [40] or the
Havriliak-Negami [41]

ε′′(ν) ∝ Im
{ 1

[1 + i(ωτ)α]β
}

(I.5)
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I. General introduction

Fig. 1. – Frequency dependence of the dielectric loss in glycerol in a double-logarithmic representation.Fig. I.4 | (Left) Dielectric loss ε′′(ν) versus frequency ν of propylene carbonate on a double loga-
rithmic axis for several temperatures which are directly indicated on the graph. The spectra display
two peaks at low temperatures which stem for the two-step decay in time correlation functions. As
the temperature decreases, the position of the main peak in relaxation spectra shifts towards lower
frequencies. This reflects the increase in the relaxation time. The spectra also become increasingly
broad, as they cover 10 orders of magnitude close to Tg. Figure from Ref. [34]. (Right) Dielectric
spectra for glycerol at several temperatures which are indicated on the graph. Data are represented
on a double logarithmic axis and the high-frequency peak is not shown. For low temperatures
close to Tg, data are compatible with a sharp α-peak at low frequencies which is fitted by using a
Cole-Davidson function, while at intermediate frequencies, data display an “excess wing” which is
modelled by a power law. Data from Ref. [35].

laws5, which are the equivalents of the stretched exponential in the frequency domain [42]. In the
above expression, Im{.} denotes the imaginary part of a complex, while α, β and τ are adjustable
parameters. As the temperature approaches Tg, the low-frequency part of the spectrum becomes
larger and larger, as it almost covers 10 decades. It displays a sharp peak in the millihertz range
which is accompanied at intermediate frequencies (in the hertz to megahertz range) by a slowly
decaying signal. If one tries to fit the main peak (for instance with the previous Havriliak-
Negami process), the signal at intermediate frequencies appears in excess and it is consequently
referred to as the “excess wing” in the experimental literature [35]. It is usually fitted by a
power law [43] or by using a Cole-Cole law6 [44]. Even though the signal in dielectric spectra
could be more complex due to the chemical details of the material [45], the “excess wing” seems
to be a universal feature of the dielectric spectra of glass-forming liquids close to Tg [46–49].

1.1.3 Dynamic heterogeneities

At the level of the average correlation functions or the relaxation spectra, assessing the cause
of their broadening as the temperature decreases is difficult. A direct visualisation of the motion
of the particles at the microscopic scale is then more insightful. The motion of the particles
is found to be spatially heterogeneous and intermittent in time. In other words, the particles

5The Cole-Davidson law is obtained from the Havriliak-Negami fitting function by setting α = 1. In
particular, it behaves as a power law of exponent −β at high frequencies and as a power law of exponent
1 at low frequencies.

6The Cole-Cole law is obtained from the Havriliak-Negami fitting function by setting β = 1. In
particular, it behaves as a power law of exponent −α at high frequencies.
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I. General introduction

alternate between sudden jumps and quiescent vibrations around a given position [50]. This
suggests that there are strong spatio-temporal dynamic fluctuations and that the supercooled
liquid is always populated by mobile and immobile regions which relax on different timescales.
However, above the glass transition, the supercooled liquid is ergodic, and slow (resp. fast)
regions regularly become fast (resp. slow) [51].

These dynamic heterogeneities consequently represent a natural explanation of the shape of
the correlation functions and of the relaxation spectra. Indeed, if one assumes that the dynamics
proceeds thanks to the superposition of the relaxation of the different regions of the glass-forming
liquid on different timescales, then this should give rise to a large distribution of timescales
which should result in broad spectra and correlation functions. The local relaxation can be
exponential or already stretched [52] (which corresponds to a “homogeneous” broadening [53]).
In the latter case, this intensifies the broadening of the correlation functions and the relaxation
spectra. Even though the dynamic heterogeneities account for the broadening of the α-peak,
the microscopic origin of the “excess wing” close to Tg remains controversial. This stems for
the fact that experiments lack a nanoscopic resolution while computer simulations are often
limited to temperature and time windows at odds with the experimental studies. So far, “excess
wings” have not been reported in computer simulations of the dynamics of glass-forming liquids.
In Chap. VI, we tackle this problem by using the recent swap algorithm [54, 55] which allows
for the fast thermalisation of size-polydisperse model glass-formers down to the extrapolated
experimental glass transition temperature Tg.

As the two-point correlation functions, such as the intermediate scattering function, are blind
to the local fluctuations of the dynamics, namely, to the dynamic heterogeneities, four-point
correlation functions at different points in space and at different times have been introduced
to characterise the dynamic heterogeneities, in particular to quantify the typical amplitude
of the dynamic fluctuations along with their typical spatial extent and their typical temporal
duration [51]. In all the experimental and numerical systems which display glassy behaviour, the
variance of the dynamic fluctuations, which is known as the four-point dynamic susceptibility
χ4(t), grows with time and it reaches a maximum for times t ' τα(T ), before it decreases at
later times [56–58]. Consequently, the α-relaxation time represents the typical duration of the
dynamic heterogeneities before the dynamics becomes uncorrelated [50]. The typical size of
relaxing domains, which is known as the four-point dynamic length ξ4(t), also grows with time
and it likely saturates at later times [59]. The maximum value ξd(T ) of the four-point dynamic
length, which is called the dynamic correlation length, represents the maximum linear extent of
dynamically correlated domains, and it grows upon decreasing the temperature [60, 61].

The origin of the dynamic heterogeneities has been scrutinised in many past studies. In
order to disentangle purely dynamic effects from the heterogeneities which are encoded in the
structure, the iso-configurational ensemble has been introduced [62, 63]. Several simulations
are initiated from the same initial condition with different initial velocities which are drawn
from the Maxwell-Boltzmann distribution (in the case of molecular dynamics simulations) or
with different sequences of random numbers (in the case of Monte Carlo simulations) [64]. The
dynamics of each particle is then averaged over the iso-configurational runs and a propensity
field is computed to reveal dynamic heterogeneities which are rooted in the structure of the
liquid. In particular, correlations with soft vibrational modes [65–67], local density [67, 68],
locally favoured structures [67, 68] or hexatic order [69, 70] have been reported, without being
able to reveal direct causal links or to assess the degree of generality of these correlations among
systems [71]. However, it is expected that at the single-particle level, the dynamic fluctuations
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I. General introduction

are essentially of purely dynamic nature. Connections with the statics may only exist at larger
lengthscales and timescales [72]. In Chap. V, we define a new structural indicator which relies
on the strength of a field to localise a given patch of the liquid close to its initial position. Its
correlation with the propensity field would be worth studying in the future.

1.2 Properties of the non-equilibrium glass phase

1.2.1 Tuning glass stability

Below the glass transition temperature Tg, glasses have a relaxation time that exceeds the
typical experimental time, and they thus behave as non-equilibrium systems. This situation
also happens when the equilibrium supercooled liquid at a temperature Ti is instantaneously
quenched at a low temperature Tf < Tg < Ti [73]. Glasses are found to age, which means that
they are continuously slowly evolving [74]. One can still define intensive variables, for instance
an effective temperature, but they now depend on the waiting or aging time tw, namely, the
elapsed time since the liquid first fell out of equilibrium [75]. The off-equilibrium relaxation time
of aging systems can be measured from the two-time intermediate scattering function, namely,

F (q, tw, t) = 1
N

〈
N∑

j,k=1
eiq·[rj(tw+t)−rk(tw)]

〉
, (I.6)

and it also varies significantly with the age of the glass. The larger tw, the longer it takes for the
system to decorrelate. In the case of an instantaneous quench, the relaxation time τ(tw, Ti, Tf)
smoothly evolves from the equilibrium α-relaxation at the initial temperature τα(Ti) to a power
law behaviour τ(tw, Ti, Tf) ∼ tµw [76]. The average energy is also a decreasing function of tw.
This suggests that glasses become more stable upon aging [77] (see7 Fig. I.2). A similar effect
appears when the liquid is quenched from a decreasing initial temperature Ti down to Tf . In
addition, thanks to temperature cycles, rejuvenation and memory effects can be observed [78].

Overall, the previous facts show that the glass stability (as measured by its lower energy or
enthalpy or its higher density or its higher off-equilibrium relaxation time) is related to the age
of the latter and to the lowest temperature at which it fell out of equilibrium. Therefore, glass
properties can be tuned thanks to aging protocols. However, on experimental timescales, aging
does not result in a large change in glass properties. A more efficient way of enhancing glass
stability is to use vapor deposition [26, 79]. This new preparation protocol consists in slowly
depositing a compound on a substrate at a temperature Tsub. By considering deposition rates
of about less than 0.5 nm.s−1 and substrate temperatures of about 85 % of the glass transition
temperature of the deposited material, more stable glasses with larger density or lower enthalpy
can be formed [80, 81]. The glasses which are obtained by vapor deposition are of similar
stability as glasses which would be aged for about 3500 years [82] (see Fig. I.2). The high
stability of vapor-deposited glasses originates from the very high mobility of the molecules at
the free surface (first nanometers) as compared to the bulk (we recall that Tsub is usually a
fraction of Tg) [83]. The diffusion coefficient of the molecules at the free surface can be up to
7 orders of magnitude higher than the bulk diffusion constant [84]. Therefore, if the deposition
rate is small enough, then the molecules on the surface can find near-equilibrium configurations,
and this leads to more stable glasses. In Chap. VII, we present other preparation protocols on

7For solid or liquid phases which are poorly compressible, enthalpy and energy are usually roughly
equal.
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Fig. I.5 | (Left) Stress-strain curves σ(γ) which are obtained from athermal quasi-static shear
simulations of a system of N = 96000 size-polydisperse soft spheres. The samples are prepared from
equilibrium configurations at different temperatures Tini which are then instantaneously quenched
at zero temperature. All the curves display a first elastic regime at small strains and a plastic
regime at large strains which are separated by a yielding transition. At large initial temperatures,
the yielding transition is a smooth crossover. Instead, at low initial temperatures, the yielding
transition becomes a first order non-equilibrium phase transition with a stress discontinuity which
takes the form of an overshoot. Figure from Ref. [85]. (Right) Film of vapor-deposited glass of
indomethacin (inset) which is first heated at a constant rate of 1 K.min−1. The film thickness shows
an abrupt discontinuity in its first derivative with respect to the temperature at a temperature Tonset
when the sample “melts” to the supercooled liquid state. The liquid is subsequently cooled with a
cooling rate of 1 K.min−1 and it falls out of equilibrium for a larger thickness and a corresponding
lower density. When re-heated at the same rate, the liquid-cooled glass follows the cooling curve
which displays a much lower onset temperature Tonset ' Tg than the one of the vapor-deposited
glass. Figure from Ref. [86].

the computer which are cheap in terms of simulation walltime and which result in more stable
glasses than the ones that are obtained by gradual cooling or physical aging.

1.2.2 Influence of glass stability upon shearing or heating

Glass properties are history-dependent and protocol-dependent, and glass stability manifests
itself in a variety of phenomena in glasses. First, the behaviour of glasses under shear depends on
their stability. When performing athermal quasi-static shear deformations (at zero temperature
and in the limit of zero shear rate γ̇), a glass undergoes a yielding transition from an elastic regime
to a plastic-flow regime at a finite yield strain γY and a corresponding finite yield stress σY in the
plastic regime [87, 88]. Nevertheless, the nature of the yielding transition depends on the glass
stability and it can turn from ductile to brittle upon increasing the glass stability [85, 89]. In
the ductile case, the yielding transition is smooth with a weakening due to small plastic events8.
In the brittle case instead, the elastic regime extends over a broader range of deformations
and there is a sharp stress overshoot which is followed by a discontinuous stress drop. This
results in a catastrophic failure of the material and in the formation of a system-spanning shear
band9 [90], see Fig. I.5. Recently, the transition from ductile to brittle yielding upon increasing

8This is what happens with toothpaste for example.
9This is what happens with the screen of a smartphone for instance.
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the glass stability was shown to be controlled by the physics of the zero-temperature random-
field Ising model (RFIM) [91] (see Appendix A of Chap. II) when driven by an external magnetic
field [92]. The latter displays a hysteresis when the applied magnetic field is first increased and
then decreased. There is a non-equilibrium first order phase transition with a discontinuous
hysteresis loop at a spinodal [93] and a macroscopic avalanche in the magnetic response [94] for
low-enough disorder strength. The line of non-equilibrium first order transition terminates in a
second order critical point at a critical disorder. Above this critical point, the RFIM displays
a continuous hysteresis loop in its magnetic response [95]. In the mapping of glasses onto the
RFIM, the stability of the glass encodes the effective strength of the disorder. In particular,
well-annealed (stable) glasses have a low intrinsic disorder and they show a discontinuity in their
stress-strain curve. Instead, poorly annealed glasses have a higher disorder and their transition
from the elastic regime to the plastic regime upon shearing becomes a mere crossover without
any discontinuity in the stress.

A second manifestation of the history- and protocol-dependent behaviour of glasses is found
upon heating, see Fig. I.5. When one heats a glass at a finite heating rate, its density or
its enthalpy (or its energy) with respect to the temperature usually displays a discontinuity
in its slope at an onset temperature Tonset which marks its transformation from the glass to
the supercooled liquid state [96]. Equivalently, the heat capacity shows a maximum at T =
Tonset [97]. This onset temperature is an increasing function of the glass stability10: the more
stable the glass, the higher the temperature in order to fall back in equilibrium. For instance, the
vapor-deposited glasses have a larger onset temperature than the liquid-cooled glasses. This is
the manifestation of the enhanced kinetic stability S(T ) = τrec(T )/τα(T ) of the vapor-deposited
glasses. The latter represents the ratio of the recovery time to transform back to the supercooled
liquid when suddenly heated at a temperature T to the bulk relaxation time of the supercooled
liquid at the same temperature [99]. The liquid-cooled glasses typically have a kinetic stability
ratio of about 102 while the ultrastable glasses which are prepared via vapor deposition can reach
stability ratios of about 105 at a constant pressure [100]. The high kinetic ratio of the ultrastable
glasses lies in their recovery mechanism which shares many similarities with the melting of a
crystal, even though the liquid and the glass are not a priori two distinct thermodynamic phases.
In particular, thin films transform via the propagation of a mobility front which starts from
the free surface [101, 102], while larger samples transform thanks to a nucleation-and-growth
mechanism with Avrami-like kinetics [99, 103]. In other words, thick glass samples melt because
of the appearance of rare nuclei of the supercooled liquid in the glass, which is followed by
a rapid growth of these liquid droplets. The influence of the glass stability on the yielding
transition or on the heating behaviour is utilised in Chap. VII in order to assess the stability of
computer-generated glasses via new annealing schemes.

The glass stability also affects other properties, such as sound propagation [104], heat ca-
pacity and conductivity [105–108] (in relation with two-level systems), or vibrational proper-
ties [109].

10We stress that this temperature is a non-equilibrium and protocol-dependent property, and in partic-
ular it is different from the onset temperature of glassy behaviour which is usually defined as the highest
temperature at which the equilibrium time correlation functions display a two-step decay [98].
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Fig. I.6 | Excess entropy ∆S of several supercooled liquids with respect to the crystal which has
been divided by its value ∆Sm at the melting point for various glass-formers. Data are plotted as
a function of the temperature T which has been rescaled by the melting point temperature Tm.
The dotted lines represent the value of the excess entropy below the glass transition temperature
when the systems are out of equilibrium. Equilibrium data look to extrapolate to zero at a finite
temperature TK. Figure from Ref. [110].

1.3 Thermodynamic features

The dynamic glass transition corresponds to a huge increase in the relaxation time with
decreasing the temperature. Similarly, the transformation of glasses into supercooled liquids
shows similarities with the melting of crystals. By analogy with critical phenomena and first
order phase transitions in statistical mechanics, a legitimate question that arises is whether the
glass transition is due to the existence of an underlying thermodynamic phase transition at a
temperature lower than Tg at which the relaxation time truly diverges.

Seventy years ago, Kauzmann measured the temperature evolution of the excess entropy
∆S(T ) = Sliq(T )−Sxtal(T ) for several glass-forming liquids, with Sliq(T ) and Sxtal(T ) the total
entropies of the liquid and the crystal at the temperature T respectively [110], see Fig. I.6.
The excess entropy is found to decrease sharply as the temperature is decreased, as opposed to
other static quantities which vary midly, such as the total pair correlation functions11 [11]. If
one extrapolates Kauzmann’s data to lower temperatures by following the supercooled regime,
one finds that they are compatible with a vanishing excess entropy at a finite temperature
TK > 0. This entropy crisis then naturally accounts for the jump in the heat capacity at the
glass transition temperature, see the inset in Fig. I.1. The decrease in the excess entropy and its
putative vanishing indicate that the glass transition is not a purely dynamic transition without
any thermodynamic change. However, whether this decrease in the excess entropy is related to
the glassy slowdown is still today strongly debated [112, 113].

From his analysis, Kauzmann concluded that as ∆S(T ) could not be negative, the liquid
should either crystallise or should undergo a thermodynamic phase transition to a glass phase.

11Nevertheless, very small variations in the pair correlation function may rationalise large differences
in the dynamics, as reported recently [111].
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Even though there is no contradiction in the fact that ∆S(T ) becomes negative [114], Kauz-
mann’s intuition of the possibility of a low-temperature thermodynamic singularity has triggered
a succession of theoretical breakthroughs which has led to the mean-field theory of the glass tran-
sition for infinite-dimensional off-lattice particle systems. In this limit, the Kauzmann entropy
crisis is defined in terms of a configurational entropy. It is exactly realised and it corresponds
to a genuine thermodynamic phase transition to an ideal glass phase.

2. The mean-field theory of the glass transition

2.1 From fully-connected spin glasses to liquids in infinite dimensions

Mean-field theory is usually the starting point to describe phase transitions or critical phe-
nomena. It amounts to neglecting correlations between fluctuations and to derive an effective
field which carries information about the mean interactions between constituents. It is often
more tractable than the initial theory and it may be solved exactly [115]. The mean-field theory
of the glass transition was first derived in the context of spin glasses, namely, spin systems in the
presence of quenched disorder [116–120]. Thanks to the underlying lattice and their mean-field
nature, these models can be solved exactly. Based on phenomenological arguments from density
functional theory, the results which were obtained for spin glasses were advocated to hold for
structural liquids too [121–124].

More recently, the mean-field theory of supercooled liquids and structural glasses was exactly
derived in the limit of infinite dimensions of space d → +∞ (see reviews in Ref. [125, 126]).
Qualitatively, the limit of infinite dimensions is of mean-field nature because, for a given particle,
the number of its neighbours diverges with d and its interactions with them can be considered
as an effective thermal bath [127].

In the next sections, we describe the results which are obtained at the mean-field level. They
are next compared with the phenomena which are presented in the previous section.

2.2 The dynamics in infinite dimensions

The equilibrium dynamics of supercooled liquids in infinite dimensions was first derived ex-
actly by using path integrals and the Martin-Siggia-Rose-De-Dominicis-Janssen formalism [128,
129], and by considering a Langevin dynamics at the single-particle level [130]. The result is a
generating functional [131] which takes the form of a partition function over trajectories. By
analogy with the statistical mechanics of interacting systems at equilibrium, one can then per-
form a virial expansion of the generating functional in increasing powers of the density [30].
Formally, this amounts to considering a diagrammatic expansion of the generating functional
with density vertices and bonds which are formed by Mayer functions. At order n in density, the
relevant diagrams are made of n vertices and taking into account diagrams with an increasing
number of nodes then corresponds to an expansion in increasing powers of the density. However,
we have already mentioned that the number of neighbours of a given particle diverges with d
in infinite dimensions. As a result, for a central particle i which interacts with particles j and
k, the probability that j and k interact is extremely small. Then, a virial expansion which is
truncated at the second order should already give a reasonable estimate. Actually, the trunca-
tion of the virial expansion to the second order is exact in the limit d → +∞ [132, 133]. As a
result, a low-density expansion is equivalent to a high-dimension one [134]. Eventually, saddle-
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point approximations which become exact in the limit d→ +∞ yield an exact equation for the
correlation function (namely, the mean-squared displacement), which involves a memory kernel
that is determined self-consistently from the autocorrelation of the interaction force between the
particles.

Later on, the mean-field dynamical equations were derived from simpler arguments [126,
127]. By first considering the dynamics at the single-particle level and by assuming that the
interaction between a tagged particle and the other ones can be modelled by an effective friction
(effective bath), one obtains

ζ
dri
dt (t) = −β

ˆ t

0
dt′M(t− t′)dri

dt (t′) + Ξi(t), (I.7)

where β = 1/T (the Boltzmann constant is set to unity) and where the colored noise Ξi(t) is of
zero mean and of correlation

〈Ξi(t)Ξj(t′)〉 = δij
[
2Tζδ(t− t′) +M(t− t′)

]
1, (I.8)

with δij the Kronecker delta, which is equal to 1 if i = j and to 0 otherwise. In the above
equation, 1 represents the identity matrix (the components of the noise in different directions
of space are uncorrelated), the first term accounts for the actual thermal bath and the second
term represents the effective bath which takes into account the interactions of a tagged particle
with all its neighbours and which is added in order for the fluctuation-dissipation theorem to
be satisfied. The second term is not delta-correlated in time but it is instead described by a
memory kernel which corresponds to the force-force correlation function, namely,

M(t− t′) = 1
Nd

∑
i 6=j
〈Fi→j(t) · Fi→j(t′)〉, (I.9)

where the sum runs over all indices i, j = 1 . . . N and where Fi→j(t) is the force which is exerted
by particle i on particle j at time t.

The equation for the memory kernel is obtained by considering the dynamic equation for the
inter-particle distance r = ri − rj . By using Eq. (I.7), one finds

ζ

2
dr

dt (t) = −β2

ˆ t

0
dt′M(t− t′)dr

dt (t′) + Ξ(t)− F (r(t)), (I.10)

where Ξ(t) is a random process of zero mean and of correlation

〈Ξ(t)Ξ(t′)〉 =
[
Tζδ(t− t′) + 1

2M(t− t′)
]
1, (I.11)

and where F (r(t)) = Fi→j(t) is the interaction force between two particles, which depends on
their relative distance. Eq. (I.9) and (I.10)-(I.11) represent a closed system from which one can
determine the memory kernel self-consistently by iteration. By starting from M(t) = 0, one can
simulate the process given by Eq. (I.10)-(I.11), then one can compute the corresponding memory
kernel thanks to Eq. (I.9) and can insert this new form into Eq. (I.10)-(I.11). Eventually, one
can repeat the entire procedure until convergence [135].

Finally, once the memory kernel is known, the differential equation for the mean-squared
displacement, i.e.,

∆̂(t) =
〈

1
N

N∑
i=1
|ri(t)− ri(0)|2

〉
, (I.12)
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Fig. I.7 | Evolution of the mean-squared displacement ∆(t) = ∆̂(t)d/`2 for infinite-dimensional
hard spheres (with ` the diameter of the spheres) for several rescaled packing fractions ϕ̂ = ρVd`

d/d,
with Vd the volume of the unit sphere in d dimensions and ρ the number density. Time is expressed
in units of ζ`2/T . The mean-squared displacement develops a plateau at intermediate times between
the diffusive regimes at short times and at long times when increasing the density. At large densities
ϕ̂ > ϕ̂d ' 4.8067, the dynamics is totally arrested with a vanishing long-time diffusion constant.
Figure from Ref. [135].

can be derived from Eq. (I.10) and reads

ζ
d∆̂
dt (t) = −β

ˆ t

0
dt′M(t− t′)d∆̂

dt (t′) + 2dT. (I.13)

The evolution of the mean-squared displacement for hard spheres in the limit d → +∞ is
shown in Fig. I.7. The phenomenology is very similar to what is found experimentally, compare
with Fig. I.3. When the density is increased (or the temperature is decreased), the mean-
squared displacement is no longer purely diffusive and it develops a two-step increase with a first
increase towards a plateau which is followed by a subsequent diffusion at later times. One strong
prediction of mean-field theory is that the diffusion constant vanishes at a finite temperature or
density. Equivalently, the α-relaxation time diverges at this same state point. This corresponds
to the dynamical transition temperature Td or density ρd which is found by looking for a solution
of Eq. (I.13) with a finite limit when t → +∞. When approaching the dynamical transition
from the supercooled liquid side, one finds that the inverse diffusion constant diverges as a power
law. Interestingly, a similar result was also found few decades ago within the mode-coupling
theory [136]. Even though the two approaches yield equations of similar form for the correlation
functions, hence they qualitatively describe the same trends, there are significant quantitative
differences which are due to the successive approximations that are involved in the derivation
of the mode-coupling equations [137, 138]. In particular, in mode-coupling theory, the memory
kernel is expressed as a mere function of the correlation function ∆̂(t) while here it is computed
self-consistently from the dynamic process itself.
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2.3 The thermodynamics in infinite dimensions

2.3.1 Definition of metastable states

Below Td (or above ρd), the equilibrium relaxation time is truly infinite. Therefore, the
equilibrium dynamics is no longer ergodic and the system only explores a narrow region of the
phase space. In real space, this limited exploration corresponds to thermal vibrations of the
particles of typical squared amplitude which is given by the plateau value in the mean-squared
displacement. As a consequence, the phase space is split into disconnected components in which
the system is trapped forever. These components represent the metastable states, hence the
name of this thesis. There are two directions of study. On the one hand, one can be interested
in the thermodynamics of the system within a metastable state, to account for the properties of
the glass when the system falls out of equilibrium. One can aim at computing its free energy,
which has two contributions: one comes from the average energy of the configurations that are
visited within the metastable state, while the other one comes from the vibrational entropy of
the glass within the metastable state. On the other hand, one can also focus on the ergodic
supercooled liquid which is obtained when exploring the phase space entirely, i.e., when summing
over all the metastable states. For instance, how many metastable states are there? What is
their structure? How can they be generated, for instance by looking for the extrema of a given
functional?

Here, we describe the second line of thought, and the first one is instead described in the next
chapter. Below the dynamical transition temperature, one can formally rewrite the partition
function of the supercooled liquid as [139, 140]

Z(T ) =
∑
α

e−Nβfα =
ˆ

dfeN [Σ(f ;T )−βf ], (I.14)

where the sum runs over all the metastable states α of free energy per particle fα(T ). The
partition function is written in the continuum limit by introducing the complexity

Σ(f ;T ) = 1
N

lnN (f ;T ), (I.15)

which represents the logarithm of the number N (f ;T ) of metastable states of free energy f at
a temperature T per unit particle. The free energy of the liquid can then be computed from
the previous partition function by using a saddle-point (Laplace) approximation [141] in the
thermodynamic limit (N → +∞) and it reads

F (T ) = − T
N

lnZ(T ) = inf
f
{f − TΣ(f ;T )} = f∗(T )− TΣ(f∗;T ). (I.16)

The quantity f∗(T ) corresponds to the minimiser of the quantity between brackets and it is thus
a solution of

dΣ
df (f∗;T ) = 1

T
. (I.17)

By performing the saddle-point approximation, one implicitly assumes that the complexity re-
mains finite in the thermodynamic limit, or equivalently that the number of metastable states is
exponentially large in system size. Equivalently, this means that there is an extensive difference
between the free energy of the liquid F (T ) and the free energy of a typical glass state f∗(T ) at
a temperature T , which is precisely the temperature times the complexity. This is confirmed
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by direct calculations of the complexity (see the next section). The equilibrium complexity is
finally obtained as Σ(T ) = Σ(f∗;T ). It is often called the configurational entropy as it quantifies
the number of typical metastable states at a given temperature.

The metastable states correspond to distinct regions of the phase space which are made of
a set of configurations that are connected by thermal vibrations of the particles. It is then
reasonable to associate a different density profile

ρα(x) =
〈

N∑
i=1

δ(x− ri)
〉
α

(I.18)

to each metastable state α, where the brackets stand for a thermal average over the metastable
state α only. By starting from density functional theory, a free energy landscape functional
F [ρ(x)] can be conceptually defined [122, 142, 143]. On general grounds, the emergence of the
metastable states in the equilibrium dynamics is expected to be associated with the emergence of
many metastable minima in the functional F [ρ(x)] (i.e., in the free energy landscape). Therefore,
the complexity can in principle be derived by first computing F [ρ(x)] and then by counting
the number N (f ;T ) of its minima of free energy f [144]. However, deriving the free energy
functional from first principles has been impossible so far. The construction is however possible
in the context of mean-field spin glasses and it is known as the TAP approach [145–148]. In
the following section, we explain how to compute the configurational entropy, even without a
detailed description of the free energy landscape.

Before, we stress once again that a metastable state is not a mere configuration but a set
of configurations in the phase space. In other words, the free energy landscape should not be
confused with the potential energy landscape which corresponds to the total potential energy
of the system as a function of the positions of the particles (i.e., the Hamiltonian Ĥ[rN ]).
Accordingly, the metastable states should not be confused with the potential energy minima
which are called inherent structures [149]. Free energy minima and energy minima only coincide
at zero temperature.

2.3.2 Computation of the configurational entropy and the Kauzmann
transition

In order to compute the complexity, one can usefully introduce m replicas12 or copies of
the same liquid and assume that the m replicas are constrained to be in the same metastable
state [150]. The partition function of this replicated system of m copies then reads

Zm(T ) =
∑
α

e−Nβmfα =
ˆ

dfeN [Σ(f ;T )−mβf ]. (I.19)

The latter results in a replicated free energy

Fm(T ) = inf
f
{mf − TΣ(f ;T )} = mf∗(T )− TΣ(f∗;T ), (I.20)

where f∗(T ) is the solution of
dΣ
df (f∗;T ) = m

T
. (I.21)

12The use of replicas to deal with disordered systems is extensively discussed in Chap. II.
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Fig. I.8 | Schematic evolution of the complexity Σ(f ;T ) at a low-enough temperature T (typically
for T < Td). The configurational entropy vanishes at f = fmin(T ), it increases with f and it drops
discontinuously to zero at f = fmax(T ). The typical free energy f∗(T ) of the metastable states at
a temperature T is given by the graphical solution of Eq. (I.17).

By computing the replicated free energy for an integer number m of replicas and by then
performing an analytical continuation for any real number m, one can derive both the typical
free energy of the glassy metastable states [151]

f∗(T ) = ∂Fm
∂m

∣∣∣∣
m→1

(T ), (I.22)

and the configurational entropy

Σ(T ) = Σ(f∗;T ) = 1
T

∂

∂m

(
Fm
m

)∣∣∣∣
m→1

(T ). (I.23)

From the parametric plot of Σ(f∗;T ) with respect to f∗(T ), one can eventually reconstruct
the curve Σ(f ;T ). The shape of this curve is system-dependent but its schematic evolution is
displayed in Fig. I.8. The thermodynamics of the system can now be discussed in the light of
the evolution of the complexity. We restrict ourselves to the case T < Td

13.

For temperatures T < Td, the evolution of the complexity is usually monotonic with f in a
range [fmin(T ), fmax(T )] and the typical free energy of glassy metastable states f∗(T ) is obtained
by the graphical solution of Eq. (I.17). The value of the complexity at this free energy gives
the configurational entropy Σ(T ). As the temperature decreases, 1/T increases and both f∗(T )
and the configurational entropy decrease. Qualitatively, this means that as the temperature is
reduced, the typical free energy of the metastable states decreases but the number of metastable
states which contribute to the free energy of the supercooled liquid also decreases. At this
mean-field level, there is usually14 a temperature TK < Td at which f∗(T ) = fmin(T ). At
this temperature, the configurational entropy vanishes. This means that the thermodynamics
is now dominated by a sub-exponential number of metastable states which correspond to the
lowest minima of the free energy landscape. Below TK, the configurational entropy remains
equal to zero15 and the metastable states which were dominating at TK continue to control

13For T > Td, metastable states either do not exist or they may exist below an onset temperature but
they do not dominate the thermodynamics.

14There are however liquids which do not display an entropy crisis at any finite temperature [126].
15The configurational entropy cannot be negative, see Eq. (I.15).
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Fig. I.9 | (Left) Mean-field stress-strain curves for harmonic-sphere and hard-sphere glasses which
are obtained from equilibrium configurations at a density ϕ̂g = 6 (see the caption of Fig. I.7) and
different temperatures T̂g below the dynamical transition temperature (where T̂ = Td2 and where
the temperature is expressed in units of the typical interaction energy ε between harmonic spheres).
The rescaled stress is σ̂ = σ/(Td3) where the usual stress σ is expressed in units of ε/`3 with `
the diameter of the harmonic spheres. Dashed lines represent an approximation of the stress-strain
curve above the Gardner transition [157]. Figure from Ref. [158]. (Right) Rescaled energy ê = e/d
(where energies are expressed in units of ε) for harmonic spheres as a function of the temperature.
Glasses which are prepared at different initial temperatures leave the supercooled liquid equation
of state and follow distinct glass equations of state. When the system is heated infinitely slowly,
it follows the non-equilibrium glass equation of state until an onset temperature (triangle) where a
spinodal instability occurs and where the glass transforms back to the liquid. Figure from Ref. [159].

the thermodynamic behaviour of the system [152]. At T = TK, one can then show that the
free energy F (T ) and its first derivative with respect to the temperature are continuous but
the second derivative is discontinuous. This corresponds to a genuine thermodynamic phase
transition16 which takes place at TK between the liquid phase and the ideal glass phase. Glass
formation at the thermodynamic level below Td is therefore controlled by the number of free
energy minima rather than the value of the free energy at these minima [f∗(T ) weakly varies with
the temperature and it does not display any singular behaviour while changing the temperature].

Another way of computing the configurational entropy relies on Eq. (I.16). The configura-
tional entropy represents up to a factor T the difference between the free energy of the liquid
and the free energy of the typical metastable states. Therefore, a direct computation of these
two terms allows for an estimation of the configurational entropy. The computation of the glass
free energy requires to constrain the integration over the phase space to a given metastable
state. In practice, this is done by introducing a penalty in the Hamiltonian of the liquid for
large excursions from a given reference density profile. This construction, which is known as the
theoretical Franz-Parisi construction, is extensively described in Chap. II [153–156].

2.4 Properties of the non-equilibrium glass phase in infinite dimensions

The non-equilibrium behaviour of glasses can also be investigated in mean-field theory by
using the constrained thermodynamics formalism, which is described in the next chapter, along

16This thermodynamic phase transition is not of second order because the associated order parameter
jumps discontinuously, see the next chapter. It is thus often called a random first order transition [122].
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with the state-following formalism to follow glasses that are prepared in equilibrium conditions
at an initial temperature down to any lower temperature [160]. The behaviour under applied
quasi-static shear [158, 161] is summarised in Fig. I.9. An elastic regime with a linear behaviour
is first observed which extends on a range that broadens as the initial temperature decreases
and the glass stability conversely increases. This behaviour is followed by the plastic regime
which corresponds to a spinodal beyond which metastable states no longer exist. For a high
glass stability, a stress overshoot is found at the yielding transition.

The behaviour of glasses upon cooling or heating can also be investigated in the mean-
field limit, see Fig. I.9. By starting from equilibrium configurations and by following a typical
glassy metastable state upon cooling, one finds the glass equation of state which lies above the
equilibrium curve. When the glass is further heated infinitely slowly, the metastable state can be
followed to higher temperatures than the one at which it first fell out of equilibrium. The glass
eventually melts and it transforms back to the liquid at the onset temperature, which increases
with increasing the glass stability [159].

The mean-field theory provides a complete framework to describe structural glasses and
supercooled liquids with arbitrary interaction potentials between constituents. Other physical
properties can also be analysed in this context, for instance the jamming transition and the
vibrational properties of glasses [126, 162, 163], or the Gardner transition [157, 162].

3. Towards a theory of the glass transition in finite dimensions

3.1 The fate of the metastable states in finite dimensions

In the previous section, we have reviewed the main results which have derived over the last
decade from the mean-field theory of the glass transition for particle systems in the limit of
infinite dimensions of space. First, an increase in the relaxation time is found when decreasing
the temperature or increasing the density, with a power law divergence at a dynamical transition
temperature Td in a similar spirit as in experiments. Below Td, the dynamics is arrested (the
relaxation time is truly infinite in the thermodynamic limit) because the liquid remains trapped
forever in one of the numerous metastable states which dominate the thermodynamics for T ≤
Td. Therefore, in mean-field theory, there is a direct connection between the dynamics and
the thermodynamics of supercooled liquids. In addition, the thermodynamics of supercooled
liquids reveals the existence of an exponentially-large number of metastable states below Td.
The configurational entropy which quantifies the logarithm of this number (per unit particle)
vanishes at a lower temperature TK. This corresponds to a genuine thermodynamic phase
transition from the supercooled liquid to the ideal glass. This is similar to the extrapolated
entropy crisis which was first found by Kauzmann but it is exactly realised at the mean-field
level and it does not rely on any extrapolation. Indeed, if one assumes that the vibrational
properties and the internal energy of the glass and the crystal at the same temperature are
similar, then the mean-field rigorously-defined configurational entropy is comparable (but not
rigorously equal [114, 164]) to the excess entropy. Finally, the out-of-equilibrium properties of
glasses in mean-field can be investigated. In particular, one can follow the behaviour of the
metastable states when shearing or heating a glass and they are in qualitative agreement with
finite-dimensional glasses.

Mean-field theory thus reproduces the main features of the phenomenology of glassy systems.
A way then to deal with finite-dimensional glasses and supercooled liquids is to consider 1/d as
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a small parameter to compute expansions from the idealised mean-field limit. This is similar in
spirit to what is done in gases and solids (see the beginning of this chapter). However, there
is a strong caveat: the dynamical transition is smeared out when d is finite no matter how
large, and consequently the metastable states are no longer well-defined because they have a
finite lifetime [144]. This is problematic since the dynamics, the Kauzmann transition and the
behaviour upon shearing or heating all rely on the very existence of the metastable states and
on their properties as a function of the temperature or of a non-equilibrium driving. Ergodicity
is thus restored below Td and presumably down to TK. This comes from the mean-field nature
of the d → +∞ limit as, in this case, the liquid is fully-connected (a given particle interacts
with a diverging number of neighbours). In other words, the actual liquid below Td does not
remain stuck forever in a metastable state but it can escape from the corresponding free energy
minimum due to non-perturbative activation processes which do not exist in mean-field [124].
Incorporating activated events and fluctuations in the mean-field theory of the glass transition
quantitatively has been impossible to date (see however Ref. [165–168] for first attempts by
using instanton calculations [169]). As activation processes are non-perturbative, this would
require non-perturbative functional renormalisation group techniques [170] (see Ref. [171] for
a tentative perturbative approach via a Migdal-Kadanoff approximation). As a result, the
theoretical description of finite-dimensional glass-forming liquids so far relies on scaling laws
and qualitative discussions which are usually grouped under the “mosaic state” scenario of the
random first order transition (RFOT) theory [122]. This is the object of the next section.

3.2 Spatial definition of the metastable states: the point-to-set length

In this section, we explain why metastable states cannot exist as such in finite dimensions as
they are unstable with respect to the escape to another metastable state (activation process).
The argument relies on a gedankenexperiment [124, 144]. One first assumes that the free energy
landscape still displays several metastable minima of density profiles ρα(x) and free energies
per unit volume fα(T ) but with now finite barriers between them. Then, one assumes that all
the particles of the liquid are frozen in a metastable state α, except within a cavity of radius R
which is free to equilibrate and to explore the phase space at a temperature T in the presence
of the amorphous boundary. The state α is assumed to be typical at the temperature T , i.e.,
fα(T ) = f∗(T ). When the cavity is in a metastable state γ 6= α, there is a mismatch between
the density profiles at the boundary of the cavity. Accordingly, one should account for a free
energy penalty by introducing a generalised surface tension Υαγ between states α and γ and the
corresponding free energy cost ΥαγR

θ with θ ≤ d− 1. When θ = d− 1, one recovers the usual
surface tension term (up to a prefactor which corresponds to the solid angle in d dimensions).
This is what was advocated in Ref. [172] by considering a Kac version of a model spin glass which
shares similarities with the behaviour of supercooled liquids (see Chap. II). Instead, values of
θ < d − 1 take into account a renormalised value of the exponent due to wetting phenomena
or complex geometries of the interface [173]. For instance, the value θ = d/2 was advocated in
Ref. [122, 174].

In order to determine the thermodynamics of the cavity, one computes its partition function,
which reads

Z(R, T ) = e−VdR
dβfα +

∑
γ 6=α

e−VdR
dβfγ−RθβΥαγ , (I.24)
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with Vd the volume of the unit sphere in d dimensions. In the continuum limit, by introducing17

Nα(f,Υ;T ) = pα(Υ|f ;T )N (f ;T ) = pα(Υ|f ;T )eVdRdΣ(f ;T ), (I.25)

the number of states γ of a given free energy per unit volume f and a given surface tension Υ
with the state α, along with the conditional probability pα(Υ|f ;T ) to have a surface tension Υ
given that the free energy per unit volume is f , one finds

Z(R, T ) = e−VdR
dβfα +

ˆ
df
ˆ

dΥpα(Υ|f ;T )e−VdRdβf−RθβΥ+VdRdΣ(f ;T ). (I.26)

The above integral can be approximated by the Laplace (saddle-point) method in the limit of
large R. The integral over the free energies is dominated by the value f∗(T ) of the typical free
energy of glass states at the temperature T if pα(Υ|f ;T ) is sub-dominant. The integral over the
surface tensions is instead dominated by the lowest values and this can lead to a renormalisation
of the exponent θ if the conditional probability is not of finite range because of arbitrary-low
surface tensions [175]. In any case, after the saddle-point approximation, the partition function
reads (with a possible renormalisation of θ)

Z(R, T ) = e−VdR
dβf∗

[
1 + κe−R

θβΥ∗(T )+VdRdΣ(T )
]
, (I.27)

where κ is an irrelevant normalisation constant and where Υ∗(T ) is a typical surface tension
scale (we recall that the metastable state α is typical at the temperature T ). Eventually, one
finds for the free energy per unit volume in the large R limit

F (R, T ) = − T

VdRd
lnZ(R, T ) = f∗(T )− T

VdRd
ln
[
1 + κe−R

θβΥ∗(T )+VdRdΣ(T )
]

=
{

f∗(T ) for R� ξPTS(T ),
f∗(T )− TΣ(T ) +O

(
R−(d−θ)

)
for R� ξPTS(T ),

(I.28)

where two different extreme cases are distinguished, which depend on the value of the radius
R of the cavity with respect to the maximum of the argument of the exponential in Eq. (I.27),
namely,

ξPTS(T ) =
[
θΥ∗(T )
dVdTΣ(T )

]1/(d−θ)
. (I.29)

If the radius of the cavity is R � ξPTS(T ), then the free energy of the cavity is the one of
a single glassy metastable state. The cavity is too constrained by the boundary and the only
thermodynamic state which is relevant for the thermodynamics is the same as the one outside
the cavity. The system belongs to a well-defined metastable state and behaves as an ideal glass
even above TK. On the opposite, if R� ξPTS(T ), the exponential term dominates, and the free
energy of the cavity is given by an expression similar to Eq. (I.16), except for the surface free
energy term which vanishes if R → +∞. This means that the cavity is no longer in a single
metastable state but it instead resembles a mosaic, and each piece of the mosaic corresponds to
a given metastable state.

From the previous argument, one concludes that the metastable states in finite dimensions
are only defined up to a certain lengthscale ξPTS(T ) which is called the point-to-set (PTS) length.
For linear sizes larger than the PTS length the liquid cannot belong to a single metastable state:

17In this section, the complexity is defined per unit volume.
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it forms a pattern of different metastable states of typical size ξPTS(T ) which can of course
fluctuate. This is because the system wants to explore the other metastable states despite the
surface free energy cost and it prefers gaining entropy. The PTS length also receives another
interpretation. This is the typical length over which an amorphous order extends in finite
dimensions. Indeed, if the cavity is of radius R < ξPTS(T ), then the only physical state which
can be sampled by the cavity is the state that is imposed by the state outside the cavity, namely,
on the boundary. In other words, the PTS length quantifies the spatial correlations between a
particle inside a cavity and the set of particles on the boundary of the cavity, hence its name. The
PTS length grows as the temperature decreases as the configurational entropy also decreases.
It diverges as (T − TK)−(d−θ) if there is an entropy crisis, as the configurational entropy can be
linearised close to TK. In other words, there is a growing amorphous order in the liquid at lower
temperatures with a diverging lengthscale at TK as for usual second order phase transitions. To
detect amorphous order, one has to introduce two copies or replicas of the same liquid and to
consider the overlap or similarity between them [176], which is extensively discussed in Chap. IV.

The construction with a cavity in a frozen environment has been implemented both in ex-
periments [177] and in computer simulations [178–180] in order to measure the PTS length.
A modest increase when decreasing the temperature has been reported. In addition, the con-
nection with the configurational entropy has been studied [181, 182]. The computation of the
latter requires to consider constrained systems to avoid the escape from the metastable states
and to compute the free energy of the individual glass states [114, 164, 181], see Eq. (I.16).
The constrained thermodynamics is extensively discussed in Chap. II and its implementation in
finite dimensions by using computer simulations is the object of Chap. III.

3.3 Activation and the escape from the metastable states

So far, the focus has been made on the statics and on the formulation of what could be a
mean-field-like scenario of the glass transition in finite dimensions. However, the relaxation of
the mosaic liquid below Td

18 has not been discussed. The dynamics below Td is assumed to be
activated, which is a reasonable assumption since the liquid is described as a mosaic of different
patches in different free energy minima (metastable states). A droplet of size smaller than the
point-to-set (PTS) length ξPTS(T ) cannot relax as it remains trapped forever in a metastable
state: it behaves as the mean-field ideal glass. For droplets of size R > ξPTS(T ), the free energy
barrier to relax is expected to grow with R and therefore the fastest regions to relax are the
smallest, namely, the ones of linear extent ξPTS(T ) [185]. The decorrelation of the droplets of
size ξPTS(T ) drives the relaxation of the entire mosaic liquid and their relaxation time should
thus be similar to the α-relaxation time τα(T ) of the liquid. Rare fluctuations bring the patches
of size ξPTS(T ) to another metastable state via a barrier crossing, and a reasonable assumption
is that the free energy barrier scales as [ξPTS(T )]ψ in analogy with systems that are pinned by
random boundaries [186], where ψ ≤ d is a new exponent [172, 187]. This leads to

ln
[
τα(T )
τ0

]
∼ [ξPTS(T )]ψ

T
∼ 1
T [Σ(T )]ψ/(d−θ)

, (I.30)

where τ0 is a microscopic timescale. We note that entropic effects for the selection of the final
metastable state have not been taken into account, which are likely to decrease the relaxation

18Above Td, the mode-coupling theory (or mean-field theory) may correctly describe the dynamics [183].
However, the crossover from non-activated dynamics to activated dynamics at the avoided dynamical
transition remains elusive [125, 184].
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time [144].

Eq. (I.30) directly relates the relaxation time below the avoided dynamical transition to the
configurational entropy. The slowing down of structural liquids is then accounted for by the fact
that the number of accessible states for the droplets that compose the mosaic liquid decreases as
the temperature decreases, or equivalently by the fact that the dynamics becomes increasingly
collective. The above equation predicts that the α-relaxation time significantly increases when
approaching the Kauzmann transition and it truly diverges when T = TK along with the PTS
length. In addition, if one linearises the configurational entropy close to TK, the α-relaxation
time is found to follow a generalised Vogel-Fulcher-Tammann (VFT) law [124, 144], namely,

ln
[
τα(T )
τ0

]
∼ 1

(T − TVFT)α , (I.31)

with α = ψ/(d− θ). Experimental data are usually fitted with a VFT law (with α = 1) but of
course this does not represent a proof of any kind, as other fitting functions which come from
different theories of the glass transition perform equally well [98, 188].

A similar relation as Eq. (I.30) was already derived by Adam and Gibbs in 1965, with ψ = d
and θ = 0 (α = 1) [189]. By assuming that the liquid is formed by cooperatively rearranging
regions which can explore a finite number of states, and that each of these regions relaxes due to
activated events, the configurational entropy and the α-relaxation time were related. Eq. (I.30)
and its formulation by Adam and Gibbs have been extensively discussed by using computer
simulations in Ref. [190]. While the latter is found incompatible with the numerical results,
the former instead reproduces the data well and measurements of the exponents θ and ψ have
been provided. Yet, there is no theoretical prediction for the exponents which is rooted in first
principle calculations.

Overall, measurements of the configurational entropy and of the PTS length establish that
the glassy slowdown is indeed accompanied by growing thermodynamic fluctuations which are
predicted by the finite-dimensional version of mean-field theory, namely, the random first order
transition theory. In addition, a direct comparison between the statics and the dynamics reveals
that there might be connections between the two and that the dynamics could be driven by a
putative thermodynamic phase transition at TK.

3.4 Dynamic heterogeneities and dynamic facilitation

So far, we have discussed the dynamics of the liquid below Td as the independent relaxation of
blobs of typical size ξPTS(T ) due to rare fluctuations which lead to the transitions of the patches
of the mosaic liquid from one metastable state to another. This picture of the relaxation of
the supercooled liquid naturally gives rise to dynamic heterogeneities as all the patches are not
going to relax at the same time (see Sec. 1.1.3). In particular, the random first order transition
(RFOT) theory predicts a non-monotonic dynamic susceptibility χ4(t) with a maximum value
for t ' τα(T ) and a growing dynamic four-point correlation length ξ4(t) which saturates to ξd(T )
of about few ξPTS(T ) [191].

However, there are two limitations of the description of the dynamics within the RFOT
framework we have made so far: (i) it does not account for the stretching of the dynamic
time correlation functions and (ii) measurements suggest that the dynamic correlation length
ξd(T ) grows more rapidly than the point-to-set (PTS) length ξPTS(T ) for decreasing tempera-
tures [192]. In order to account for these, two modifications of the results of the previous section
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should be made. On the one hand, a reasonable assumption is that the mosaic domains are
distributed in size [122, 144, 174] and shape [193]. This naturally leads to a distribution of free
energy barriers for the transitions between the metastable states, and to a corresponding distri-
bution of the droplet relaxation times [194]. The relaxation should then start with the smallest
domains and eventually end with the largest ones, to give rise to larger dynamic heterogeneities
and a stretching of the correlation functions. However, there is no indication of what should
be the form of the distribution of the free energy barriers and only reasonable guesses can be
made [168, 195]. The numerical work of Chap. V is a tentative to measure the actual spatial
fluctuations of the PTS length (or equivalently of the configurational entropy), which is usually
referred to as the “self-induced” disorder of glass-forming liquids [196, 197] (see Chap. II).

On the other hand, if one droplet relaxes and reaches another metastable state, then the
neighbouring droplets experience another amorphous boundary. This is likely to change the bar-
rier for escaping their own metastable state, and to consequently trigger relaxation nearby [195].
Facilitation effects are therefore expected and they may give rise to correlations in the dynamics
on larger lengthscales than the PTS length [144]. Facilitation effects are at the core of an-
other theory of the glass transition, namely, the dynamic facilitation theory. In this framework,
the relaxation of supercooled liquids is described as the mobility invasion from excitations or
defects of purely dynamic origin [112, 198–200]. This theory was built on lattice Kinetically
Constrained Models (KCMs) with binary on-site variables, namely, the presence or the absence
of an excitation [201]. These models have trivial thermodynamics (typically the one of a non-
interacting lattice gas) and non-trivial dynamic rules for the spatio-temporal evolution of the
excitations [202]. These rules result in a glassy slowdown which is similar to what is found in
supercooled liquids. As a consequence, the dynamic facilitation theory is based on the fact that
there is no connection between the thermodynamics and the dynamics, contrary to the RFOT
theory [see Eq. (I.30)]. In particular, one of the main differences with the RFOT theory is the
nature of the first relaxation events. While they are rooted in the thermodynamics as far as the
RFOT theory is concerned, they represent purely dynamic defects in the dynamic facilitation
theory. Trying to reconcile the RFOT theory with dynamic facilitation remains a big theoretical
challenge, see however Ref. [203–205] for first attempts. In Chap. VI, we assess the respective
roles of dynamic facilitation and activation in the dynamics of supercooled liquids close to Tg
by means of computer simulations.

4. Structure of the manuscript

The present work aims at studying the meaning and the consequences of the description of
glass-forming liquids in terms of a “complex free energy landscape” which is characterised by a
multitude of “metastable states”19. As summarised in this introduction, this description is at the
core of the mean-field theory of glass formation and its extension in the form of the random first
order transition theory. Yet, what remains of this construction in two- and three-dimensional
supercooled liquids and glasses? We delve into this question by using different strategies and
mostly by means of state-of-the-art computer simulations.

In Chap. II, we introduce the formalism of constrained thermodynamics in the mean-field
theory of the glass transition along with the order parameter of the random first order transition,
namely, the overlap or similarity between equilibrium configurations. We show that the changes
in the free energy landscape, in particular the emergence of a multitude of metastable states

19The quotation marks emphasise that these concepts are a priori ill-defined in finite dimensions.
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and their subsequent rarefaction as the temperature is lowered, directly translate into thermo-
dynamic singularities in an extended phase diagram when considering the temperature T and a
source ε that is linearly coupled to the overlap as control parameters. A line of conventional first
order transition for finite ε emerges from the random first order transition at TK, and it ends
in a critical point at a higher temperature Tc and a non-zero field εc. We also discuss the fate
of these thermodynamic singularities in finite dimensions in the framework of statistical field
theory and of previous numerical works.

In Chap. III, we study the statistics of the overlap order parameter and the constrained
thermodynamics of glass-forming liquids in finite dimensions by means of computer simulations.
We first show that the glassy slowdown is accompanied by growing thermodynamic fluctuations
of the overlap order parameter as the temperature is decreased, which may lead to singularities
in the thermodynamics of constrained glass-formers. We then go beyond all past studies by
considering constrained glass-formers in 2d and 3d and we show that they display very different
behaviours. For the first time, we are able to perform a bona fide finite size scaling analysis in
order to characterise the transitions in the phase diagram (ε, T ) of glass-forming liquids in the
thermodynamic limit. In particular, we provide strong evidence that the critical point at the
end of the first order transition line at (εc, Tc) is in the universality class of the random-field
Ising model (RFIM) and that its lower critical dimension is d = 2. We thus demonstrate the
robustness of the mean-field/random first order transition (RFOT) theory in finite dimensions,
and for the first time we emphasise a genuine thermodynamic phase transition in the physics of
glass-forming liquids, which is not rounded by finite-dimensional fluctuations [206] (as opposed
to the dynamical transition for example). The results of this chapter strengthen the analogy
between supercooled liquids and the RFIM, and they suggest the measure of a number to quan-
tify the effective “self-induced” disorder in glass-forming liquids. In particular, we expect that
performing the analysis of Chap. III in several model glass-formers could lead to a quantitative
comparison of the effective disorder in different supercooled liquids, which could later be used
to rationalise their equilibrium [207, 208] and non-equilibrium dynamic properties [85].

In Chap. IV, we come back to mean-field theory and we discuss the properties of the order
parameter for the ideal glass transition at TK, namely, the overlap between liquid configurations.
The latter, which quantifies the similarity between configurations of the liquid, is defined up to
a tolerance length whose influence we study systematically. We show that the thermodynamic
properties of constrained supercooled liquids in their phase diagram (ε, T ) are strongly dependent
on the coarse-graining (tolerance) length in the definition of the overlap, while the dynamical
and static transitions at Td and TK respectively are not. These conclusions also hold in finite
dimensions and they are backed by computer simulations. The results of this chapter have
practical outcomes and they are likely to ease the computer simulations of constrained glass-
forming liquids in the future, which have proved useful in Chap. III to study the complexity of
the free energy landscape in finite-dimensional glass-formers. In particular, they open the way
for moving the critical point for ε > 0 to higher temperatures by a clever choice of the tolerance
length, and consequently for considering larger system sizes to approach the thermodynamic
limit. Our results also shed light on the structure of the free energy landscape, and they suggest
the definition of a new static landscape-inspired “onset temperature” below which “metastable
states” manifest themselves.

In Chap. V, we manage to directly assess the “self-induced” disorder in a model glass-former
and to measure the fluctuations of the point-to-set length, or equivalently of the configurational
entropy, which are introduced in the RFOT theory to account for the static finite-dimensional
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fluctuations and the dynamic heterogeneities. By constraining a glass-forming liquid with a
field ε which is only applied locally in a given region of space, i.e., which is linearly coupled to
the local overlap only, we show strong thermodynamic local fluctuations, which account for the
local fluctuations of the configurational entropy, and we study for the first time their statistics
and their spatial organisation. This opens new directions of research, in particular to study the
correlation with other structural indicators or the propensity, and to assess the connection (if
any) between the statics and the dynamics at the mesoscopic scale in glass-forming liquids.

In Chap. VI, we study the dynamics of glass-forming liquids at very low temperatures via
computer simulations. We are able to surpass all previous numerical studies thanks to the swap
algorithm [54] which allows for a fast thermalisation of size-polydisperse glass-formers down
to very low temperatures, and to investigate time and temperature ranges which are directly
comparable to experiments. In comparison, computer simulations are usually limited to the
first microseconds of the dynamics of supercooled liquid (we recall that at the glass transition
temperature Tg, the experimental relaxation time is about 102 s). We demonstrate for the first
time the existence of excess wings in the relaxation spectra of a model glass-former in agreement
with the experimental relaxation spectra close to Tg and we are able to unravel its origin which
has been the subject of intense debates for decades. We are also able to rationalise the whole
shape of the experimental relaxation spectra by assessing the relative roles of activation and
dynamic facilitation in the equilibrium dynamics of supercooled liquids. This paves the way
towards a confrontation and/or a conciliation of the RFOT theory and the dynamic facilitation
theory.

In Chap. VII, we study the non-equilibrium properties of the glass phase, which depend on
its stability. However, physical aging often results in weak changes of the latter on reasonable
timescales, and this forbids the systematic investigation of the influence of glass stability in
computer simulations, in particular for metallic glasses with a few number of components for
which the above swap algorithm cannot be implemented. We present numerical protocols to
generate metallic glasses of higher stability than the ones which are obtained by direct aging in an
archetypal model glass-former, namely, the Kob-Andersen model. The stability of the generated
glasses is analysed by rheology and heating procedures, but also thanks to the inherent structure
energies and the fictive temperatures. This allows for a wider exploration of the influence of
glass stability in the future. This also opens new research avenues in the study of stable metallic
glasses in computer simulations, namely, brittle yielding or melting.

In Chap. VIII, we finally conclude and detail several perspectives.

In Chap. IX, we provide a summary of this work in French.
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II An introduction to the theoretical
Franz-Parisi construction

In this chapter, we describe the Franz-Parisi theoretical construction which enables one to
probe and to characterise the complexity of the free energy landscape of glass-forming liquids.
This construction consists in studying the thermodynamics when the system is constrained
to stay at a finite overlap with a reference configuration of the same system. The overlap
corresponds to the order parameter of the thermodynamic glass transition and it physically
represents the degree of similarity between the two replicas (configuration of the constrained
liquid and reference configuration). Equivalently, the liquid evolves at a temperature T with a
finite attraction of typical strength ε with a reference configuration. The latter in effect acts as a
source of quenched disorder. The reference configurations correspond to the typical equilibrium
configurations at a temperature T0. We first present the general statistical mechanics framework
to describe the behaviour of the constrained liquid. The thermodynamics of the constrained
liquid can be related to the properties of the unconstrained liquid (with ε = 0) via a change
of thermodynamic ensembles. In this connection, the Franz-Parisi potential quantifies the free
energy cost to constrain the overlap to a given value in the unconstrained liquid, and it plays a
crucial role. We then review mean-field results of a spin glass system, namely, the spherical p-
spin, whose behaviour shares similarities with structural glasses. In particular, we summarise the
calculations of the Franz-Parisi potential and of the phase diagram (ε, T ). The latter displays
a first order transition line between a delocalised phase of low overlap and a localised phase
of higher overlap, which ends in a critical point. We discuss how the thermodynamics in the
plane (ε, T ) is a way of detecting changes in the free energy landscape which do not affect the
thermodynamics of the liquid on the ε = 0 axis. We extend previous studies of the spherical
p-spin, and we present new results about the systematic influence of the temperature of the
reference configuration T0 in the quenched Franz-Parisi setting. In particular, we show that the
critical point moves to a higher temperature and a larger source when T0 decreases. We then
present recent statistical field theory arguments beyond mean-field theory which establish that
the critical point is in the universality class of the random field Ising model (RFIM), provided
it survives despite finite-dimensional fluctuations. Likewise, the first order transition becomes
a first order transition in the presence of quenched disorder. We then extend already published
works by showing that the mapping onto the RFIM close to the critical point holds for any
temperature T0 of the reference configuration, and we discuss the influence of T0 on the strength
of the effective random fields. We end with a review of existing computer simulation studies of
constrained glass-forming liquids in finite dimensions, and we list our directions of study which
are pursued in Chap. III. This chapter is therefore a mixture of a review of existing formalisms
and results and of a few new contributions.
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1. Presentation

The mean-field theory of the glass transition relates the glassy slowdown to the emergence
of a large number of free energy minima. Below the dynamical transition temperature Td, the
phase space splits into an exponentially-large number of disconnected components which are
called metastable states and which dominate the thermodynamics. The configurational entropy
Σ(T ) is the logarithm of this number (per particle) and it decreases when the temperature also
decreases until it vanishes at the Kauzmann transition temperature. At this temperature, a
phase transition towards the ideal glass phase occurs.

A convenient theoretical way of studying the complexity of the free energy landscape of
glass-formers has been put forward by Franz and Parisi [148, 153]. It relies on the constrained
thermodynamics which has been briefly discussed in Chap. I. Instead of merely studying the
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ε

(〈Q̂[rN ; rN0 ]〉ε = Qrand � 1) (〈Q̂[rN ; rN0 ]〉ε = Qg ≈ 1)

Fig. II.1 | Sketch of the Franz-Parisi setting: a replica of a glass-forming liquid (in blue) evolves
at a temperature T , and its overlap with a reference replica of the same liquid (in yellow), which
is sampled at equilibrium at a temperature T0, is linearly coupled to a source ε. Equivalently,
the constrained liquid evolves in the presence of quenched disorder which is represented by the
reference configuration that exerts attractive forces. With a small attraction between the two
copies, the average overlap between the replicas is almost zero (delocalised phase) while it grows
when ε increases (localised phase).

liquid, the Franz-Parisi (FP) method then consists in analysing the thermodynamics of two
coupled supercooled liquids in the presence of a finite attraction between them, see Fig. II.1.
One thus introduces two replicas of the same liquid, in a similar spirit as in the Monasson
construction which has been introduced in Chap. I [150]. The strength of the attraction is
denoted by ε. In the FP construction, the overlap between the two copies or replicas of the
liquid is the order parameter which enables one to distinguish between a delocalised (liquid)
phase of typical overlap Qrand � 1 and a localised (glassy) phase with a significantly larger
overlap Qg ' 1. The overlap can be computed from the positions of the N particles in the first
rN1 and the second rN2 replicas, and it reads

Q̂[rN1 ; rN2 ] = 1
N

∑
i,j

w(|r1,i − r2,j |/a), (II.1)

where the sums run over all indices i, j = 1 . . . N . In the above equation, w(x) is a window
function which decreases from 1 to 0 on a scale O(1), whose precise expression is not important
for now. The parameter a stands for the tolerance length modulo which one considers two
particles as overlapping. Its role is discussed at length in Chap. IV. Here, we just emphasise
that the tolerance length should be taken as a fraction of the average diameter of the particles.
If a is taken too large, then a particle can have a significant overlap with several particles in the
reference configuration, and the average overlap Q̂ can exceed 1, which may seem unphysical. In
addition, the mean-field theory of the glass transition pictures the phase space of glass-forming
liquids as a set of configurations which forms a single metastable state and which corresponds
to a particular average density profile that slightly changes from one configuration to another
due to thermal vibrations [121, 126, 174]. The tolerance length is precisely designed to account
for these vibrations within a single metastable state in the definition of the overlap.

Two different settings can be imagined. In the annealed setting, both replicas are consid-
ered on an equal footing and they feel the attraction when they explore the phase space at a
temperature T . In the quenched setting instead, there is an asymmetry between the two repli-
cas. One replica, which we now call the reference configuration and which we denote by rN0 , is
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instantaneously frozen after it has been sampled with the unconstrained Hamiltonian

Ĥ[rN0 ] = 1
2
∑
i<j

v(|r0,i − r0,j |), (II.2)

where v(r) is the pairwise radial interaction potential between two particles, and where the sums
run over all particles i, j = 1 . . . N . The reference configurations are sampled at a temperature
T0. The other replica, which we now denote by rN , explores the phase space at a tempera-
ture T and it is constrained due to a finite attraction of energy strength ε with the reference
configuration. The temperature T can be equal or not to T0. When T = T0, the reference
configurations represent configurations which are relevant for the thermodynamics of the liquid
at the temperature T . Instead, choosing T0 < T allows for an exploration of different regions
of the free energy landscape, and in particular of metastable states which are typical at lower
temperatures [148]. For instance, this could be relevant for the description of the melting of
ultrastable glasses [99, 209]. In the remaining of this chapter (and the following ones), we focus
on the quenched setting which is the more relevant to describe the properties of the free-energy
landscape of glass-forming systems.

The coupling between the two replicas of the same liquid is implemented by linearly biasing
the overlap between the two configurations with a source ε in order to favour large overlap values
when ε > 0. A thermodynamic constraint is thus imposed to the overlap in order to forbid the
complete decorrelation between the replicas. The Hamiltonian of the constrained liquid when it
is coupled to a reference configuration becomes

Ĥε[rN ; rN0 ] = Ĥ[rN ]−NεQ̂[rN ; rN0 ] = 1
2
∑
i<j

v(|ri − rj |)− ε
∑
i,j

w(|ri − r0,j |/a), (II.3)

where once again the sums run over all particles i, j = 1 . . . N , and where the minus sign in front
of the second term in the right-hand side implies that the two replicas are coupled attractively
when ε > 0. We note that the parameter a can also be seen as the attraction range between the
two replicas.

At a fixed temperature T , the state of the constrained liquid is obtained by minimising its
free energy. At the mean-field level, and for T = T0 and TK < T < Td, the thermodynamics
of the system is ruled by a competition between the configurational entropy and the attraction
energy. The contribution of the configurational entropy to the free energy is −TΣ(T ), while the
attraction energy contribution scales like −ε. At low fields ε, the entropic term dominates the
free energy and the system maximises its entropy. Its thermodynamics takes contributions from
the exponentially large number of metastable states and the liquid is thus in a delocalised phase.
In other words, it has a low overlap with the reference configurations on average. Instead, if ε
is increased so that ε & TΣ(T ), then the attraction energy term dominates and the system ends
up in a localised phase. The liquid only explores a narrow region of the phase space, namely,
the metastable state of the reference configuration, and thus it has a large overlap with the
quenched replica on average.

From this simple argument, one anticipates that the thermodynamics of a constrained super-
cooled liquid allows one to unravel the main features of the free energy landscape. In particular,
it reveals the existence of the metastable states and it enables one to assess their properties. In
addition, the FP construction allows one to explore untypical regions of the free energy land-
scape by varying the temperature T0 of the reference configurations. On the other hand, tuning
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ε enables one to localise the system in one particular metastable state, hence to quantify the
number of these metastable states, or equivalently the configurational entropy. Overall, this dis-
cussion suggests to systematically study the thermodynamics of constrained supercooled liquids
for generic (T, T0, ε). This is the object of the next section.

2. Statistical mechanics formulation

2.1 The canonical free energy F (ε)

As mentioned previously, the thermodynamic state of the system is obtained by minimising
its free energy at a fixed temperature. For a given reference configuration rN0 , the free energy
per particle F (ε; rN0 ) at a fixed temperature T reads

F (ε; rN0 ) = − T
N

ln
ˆ

drNe−βĤε[r
N ;rN0 ], (II.4)

with β = 1/T (the Boltzmann constant is set to unity). The argument of the logarithm in the
previous equation stands for the partition function of the constrained liquid for a fixed reference
configuration rN0 . However, contrary to unconstrained liquids, the constrained liquid evolves in
the presence of quenched disorder which is represented by the reference configurations. In the
thermodynamic limit, the free energy is self-averaging [210], and consequently, it must be equal
to its average over the disorder. The free energy of the constrained liquid thus equals

F (ε) = F (ε; rN0 ) =

ˆ
drN0 e

−β0Ĥ[rN0 ]F (ε; rN0 )
ˆ

drN0 e
−β0Ĥ[rN0 ]

= − T
N

ˆ
drN0 e

−β0Ĥ[rN0 ] ln
ˆ

drNe−βĤε[r
N ;rN0 ]

ˆ
drN0 e

−β0Ĥ[rN0 ]
,

(II.5)
where β0 = 1/T0, where the overline is a short-hand notation for the average over the reference
configurations, and where the denominator in the two last equalities corresponds to the partition
function of the unconstrained liquid at a temperature T0. We note that this free energy F (ε) is
a function of the triplet (ε, T, T0).

2.2 Thermal versus disorder fluctuations

Once the free energy is computed, thermodynamic properties of the system can be derived
from it by differentiating with respect to the control parameters [4]. First, the average overlap
is obtained by differentiating the free energy once:

〈Q̂〉ε = −F ′(ε) =

ˆ
drN0

ˆ
drNe−β0Ĥ[rN0 ]e−βĤε[r

N ;rN0 ]Q̂[rN ; rN0 ]
ˆ

drN0

ˆ
drNe−β0Ĥ[rN0 ]e−βĤε[r

N ;rN0 ]
, (II.6)

where the prime denotes a derivative with respect to the argument and where 〈.〉ε stands for the
thermal average in the canonical ensemble at a temperature T , a source ε and a fixed reference
configuration rN0 .

Likewise, taking the second derivative of the constrained free energy with respect to ε yields
the connected susceptibility χ(con)

ε , which quantifies the disorder-averaged amplitude of thermal
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fluctuations, namely,
χ(con)
ε = Nβ

[
〈Q̂2〉ε − 〈Q̂〉2ε

]
= −F ′′(ε). (II.7)

Geometrically, the connected susceptibility is the slope of the tangent line of the isotherms 〈Q̂〉ε
with respect to ε.

In systems with quenched disorder, there are two sources of fluctuations [211, 212], namely,
thermal fluctuations and disorder fluctuations. In other words, the connected susceptibility
which is defined in the previous equation differs from the total susceptibility which quantifies
the total amount of overlap fluctuations,

χ(tot)
ε = Nβ

[
〈Q̂2〉ε − 〈Q̂〉ε

2]
. (II.8)

The difference between the total and the connected susceptibilities represents the overlap fluc-
tuations due to the change in the reference configurations. These disorder fluctuations are
quantified by the disconnected susceptibility

χ(dis)
ε = χ(tot)

ε − χ(con)
ε = Nβ

[
〈Q̂〉2ε − 〈Q̂〉ε

2]
, (II.9)

which cannot be obtained from a derivative of the free energy F (ε) as it does not correspond
to the average over the disorder of a random thermodynamic quantity. Geometrically, the
disconnected susceptibility represents the typical difference at fixed ε between isotherms 〈Q̂〉ε
obtained from differents realisations of the reference configuration. Both the connected and the
disconnected susceptibilities are positive as they stand for variances of the order parameter.

2.3 The Franz-Parisi potential V (Q)

So far the focus has been made on the canonical ensemble in which the temperature T
and the field ε are control parameters1. But several ensembles can be defined by exchanging the
control parameter and its conjugate variable. For instance, in usual statistical physics textbooks,
the microcanonical ensemble corresponds to the ensemble with the energy as control parameter
while in the canonical ensemble the temperature becomes the control parameter [4]. The change
from one ensemble to the other stands for a Legendre transform.

One thus considers a “microcanonical”2 ensemble in which the overlap between the two
replicas becomes the control parameter. One introduces the “microcanonical” free energy which
is called the Franz-Parisi (FP) potential V (Q) in the context of glass-forming liquids, and which
is now a function of (Q,T, T0) [148, 153–156]. By following the lines of the previous paragraph,
the FP free energy in this ensemble reads

V (Q) = − T
N

ˆ
drN0 e

−β0Ĥ[rN0 ] ln
ˆ

drNe−βĤ[rN ]δ(Q̂[rN ; rN0 ]−Q)
ˆ

drN0 e
−β0Ĥ[rN0 ]

= V (Q; rN0 ), (II.10)

1The temperature T0 of the reference configurations is another parameter but it is not a control
parameter in the usual sense for the thermodynamics of the constrained liquid.

2We say that this ensemble is “microcanonical” by analogy with the standard formalism of statistical
mechanics, even though the temperature is still a control parameter.

34



II. An introduction to the theoretical Franz-Parisi construction

where
V (Q; rN0 ) = − T

N
ln
ˆ

drNe−βĤ[rN ]δ(Q̂[rN ; rN0 ]−Q) (II.11)

is the FP potential for a given reference configuration rN0 , which is a self-averaging random
variable. We emphasise that the Hamiltonian which is involved in the definition of the FP
potential is the unconstrained Hamiltonian.

Before expliciting the relation between the FP potential and the constrained free energy,
we note that V (Q) has another physical intepretation, besides being the free energy in the iso-
overlap ensemble. Indeed, the argument of the logarithm in Eq. (II.11) corresponds, up to a
normalisation constant, to the unconstrained probability distribution (namely, for ε = 0) of the
overlap P(Q; rN0 ) for a fixed reference configuration rN0 . More precisely, one has that

V (Q; rN0 ) = − T
N

lnP(Q; rN0 )− T

N
lnZ(T ), (II.12)

where Z(T ) represents the partition function of the unconstrained liquid at a temperature
T . As a consequence, the FP potential can be seen as the large deviation rate function of
the unconstrained probability distribution of the overlap [213]. This gives a practical way of
computing the FP potential when dealing with computer simulations, see Chap. III. But this
also tells that the FP potential represents the free energy cost to force the unconstrained liquid
to have a given overlap Q with a reference configuration. In other words, it is the Landau free
energy which quantifies the free energy penalty for the overlap fluctuations in the unconstrained
liquid [214]. It is closely related to the Landau free energy for the overlap fluctuations in the
canonical ensemble where the liquid is constrained with a source ε. Indeed, in the canonical
ensemble, the probability distribution of the overlap for a fixed reference configuration rN0 reads

Pε(Q; rN0 ) =

ˆ
drNe−βĤε[r

N ;rN0 ]δ(Q̂[rN ; rN0 ]−Q)
ˆ

drNe−βĤε[r
N ;rN0 ]

∝ P(Q; rN0 )eNβεQ. (II.13)

Therefore, the Landau free energy for the overlap fluctuations in the constrained liquid is merely
given by

Vε(Q; rN0 ) = − T
N

lnPε(Q; rN0 ) = V (Q; rN0 )− εQ, (II.14)

up to an irrelevant additive constant.

2.4 Connection between the Franz-Parisi potential and the constrained
free energy

Two ensembles have now been introduced in which the control parameter and its conjugate
variable have been exchanged. Therefore, in the thermodynamic limit, the canonical free energy
F (ε) is the Legendre-Fenchel transform of the “microcanonical” Franz-Parisi (FP) potential [215,
216], which reads

F (ε) = inf
Q
{V (Q)− εQ} = V (Q̃)− εQ̃, (II.15)

by using a saddle-point (Laplace) approximation. In the above equality, Q̃ (which depends on
ε) corresponds to the location of the minimum in V (Q)− εQ, namely,

V ′(Q̃) = ε, (II.16)
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by assuming that V (Q) is differentiable.

Geometrically, Eq. (II.15) indicates that F (ε) is the minimum distance between the curve of
V (Q) and the straight line of slope ε. In addition, it implies that F (ε) is a concave function of
ε and that the curve F (ε) is always below its tangent lines. This concavity property can also be
recovered from Eq. (II.7). In addition, we note that F (ε) is just the minimum of the Landau
free energy for the overlap fluctuations in the constrained liquid (II.14), as it should.

2.5 Ensemble equivalence and phase transitions

The constrained free energy has now been related to the Franz-Parisi (FP) potential. But a
natural question which arises is whether a reciprocal relation exists to give the FP potential as
a function of F (ε). In other words, one wants to know if the FP potential can be expressed as
the Legendre-Fenchel transform of the constrained free energy. This is only possible if the two
ensembles in which Q and ε are the respective control parameters are equivalent. In this case,
the FP potential can be written as

V (Q) = sup
ε
{F (ε) + εQ}. (II.17)

Therefore, if the ensembles are equivalent and if Eq. (II.17) correctly gives the FP potential,
then the FP potential must be a convex function of Q.

There are three different situations that can be analysed at this stage, and which depend on
the convexity properties of the FP potential.

I If the FP potential is strictly convex at a temperature T , then the ensembles in which Q
and ε are control parameters are equivalent. The free energy in each ensemble is obtained
via a Legendre transform of the free energy in the other ensemble.

I If the FP potential is marginally convex at a temperature T with a straight line behaviour
of slope ε∗ in the range [Ql, Qh] with Ql < Qh, then the ensembles are still equivalent
and the FP potential can be computed as the Legendre-Fenchel transform of the free
energy. However, the free energy has a discontinuity in its first derivative for ε = ε∗ =
[V (Qh)− V (Ql)]/(Qh −Ql), because

F ′(ε) = −Q̃ = −arginfQ{V (Q)− εQ}. (II.18)

The situation is depicted in Fig. II.2 (a)-(b) and it thus corresponds to a thermodynamic
first order transition in the canonical ensemble (where ε is the control parameter) with a
discontinuity in the overlap order parameter when ε is tuned to ε∗. Indeed, from Eq. (II.6),
one has that the derivative of the constrained free energy with respect to ε corresponds to
the opposite of the average order parameter. More precisely, by combining Eq. (II.6) and
Eq. (II.18), one notes that for ε = ε∗, the average overlap jumps discontinuously from Ql
to Qh. Finally, if the range over which the FP potential is linear shrinks to a single point
at which the second derivative of the FP potential vanishes, the first derivative of the free
energy F (ε) becomes continuous but its second derivative diverges, and this corresponds
to a second order thermodynamic phase transition and a critical point with diverging
susceptibilities. Indeed, by taking the derivative of Eq. (II.16) with respect to ε, one finds
that

F ′′(ε) = −dQ̃
dε = − 1

V ′′(Q̃)
. (II.19)

36



II. An introduction to the theoretical Franz-Parisi construction

Ql Qh

(a)

V
(Q

)

Q

ε < ε∗

ε > ε∗
−Ql

−Qh

ε∗

(b)

F
(ε
)

ε

Q̃l Q̃h

(c)

V
(Q

)

Q

ε < ε∗

ε > ε∗

ε = ε∗
−Q̃l

−Q̃h

ε∗

(d)

F
(ε
)

ε

Fig. II.2 | Schematic representation of the Franz-Parisi (FP) potential V (Q) and the canonical
free energy F (ε) which is obtained via a Legendre-Fenchel transform of V (Q). Geometrically, F (ε)
corresponds to the minimum distance between the curve of V (Q) and the straight lines of slope ε,
see Eq. (II.15). (a) If the FP potential is marginally convex between Ql and Qh with a straight line
behaviour of slope ε∗, (b) the free energy displays a discontinuity in its first derivative for ε = ε∗.
(c) If the FP potential is not convex, (d) the free energy has a discontinuous first derivative for
ε = ε∗ which is obtained thanks to the double-tangent construction to the FP potential. In both
cases, this corresponds to a first order phase transition in the canonical ensemble. In panels (a) and
(c), the full disks mark the minimiser Q̃ in the Legendre-Fenchel transform of the FP potential for
the corresponding value of ε, see Eq. (II.15).

I If the FP potential is not convex at a temperature T , then the two ensembles are no longer
equivalent as the FP potential potential cannot be computed from the Legendre-Fenchel
transform of the canonical free energy F (ε). The constrained free energy F (ε) is still the
Legendre-Fenchel transform of V (Q) but the reciprocal is false. This also corresponds to a
thermodynamic first order transition in the canonical ensemble for ε = ε∗ with ε∗ obtained
by the double-tangent construction, see Fig. II.2 (c)-(d).

In mean-field models or in systems with long-range interactions, the FP potential can be
non-convex, and this corresponds to the first and third previous cases. On the opposite, this is
rigorously impossible in finite dimensions with short-range interactions in the thermodynamic
limit [217]. As a consequence, the FP potential must be convex, and only the two first cases
can occur. Overall, this discussion suggests that the thermodynamics of constrained liquids can
be singular with thermodynamic phase transitions and a critical point, which can be detected
from the convexity properties of the FP potential. In particular, a critical point in the canonical
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ensemble at a temperature Tc and a source εc exists if there exists an overlap value Qc such that
V ′(Qc) = εc,

V ′′(Qc) = 0,
V ′′′(Qc) = 0.

(II.20)

In the previous system, the first equation gives the value of ε at the critical point, while the last
one selects the highest temperature at which the FP potential develops an inflexion point.

2.6 Schematic computation of the Franz-Parisi potential

In this section, we schematically review how the Franz-Parisi (FP) potential can be com-
puted, in order to study its convexity properties and to make some progress in the understanding
of the thermodynamics of constrained supercooled liquids. The most convenient way to compute
the FP potential is to use the “replica trick3” [210], which relies on the following equality:

lnZ = lim
n→0

Zn − 1
n

. (II.21)

If one now rewrites Eq. (II.10) by using the partition function Z(Q; rN0 ) of the liquid at a
temperature T for a given fixed overlap Q with the reference configuration rN0 , namely,

V (Q; rN0 ) = − T
N

lnZ(Q; rN0 ), (II.22)

then the FP potential reads

V (Q) = − T
N

lim
n→0

{
Zn(Q; rN0 )− 1

n

}
. (II.23)

The quantity Zn(Q; rN0 ) represents the partition function of n non-interacting replicas of the
same supercooled liquid {rNa }a=1...n whose overlaps with the same reference configuration rN0
are fixed to Q. This “replica trick” thus enables one to replace the logarithm that appears
in the definition of the FP potential by a more tractable expression and eventually the limit
n → 0 must be taken by assuming an analytical continuation. In consequence, it handles the
average over the disorder which is represented by the reference configurations, and it leads to
the following expression of the FP potential:

V (Q) = − lim
n→0

T

Nn

{
1
Z0

ˆ n∏
α=0

drNα e
−
∑

α
βαĤ[rNα ]

n∏
a=1

δ(Q̂[rNa ; rN0 ]−Q)− 1
}
, (II.24)

where Z0 is the partition function of the unconstrained liquid at a temperature T0, where βa = β
for a = 1 . . . n, and where the sum in the exponential runs from α = 0 to α = n. In the following,
we always use greek (resp. roman) indices when they range from 0 (resp. 1) to n.

One can then formally rewrite the previous equation as an integral over all square symmetric
overlap matrices of size n+ 1 with diagonal elements equal to 1 and first row and column equal

3This is a trick, as opposed to the two replicas which have been introduced previously and which are
“real” replicas.
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to Q [131, 218], namely,

V (Q) = − lim
n→0

T

Nn

 1
Z0

ˆ
dQαγ

ˆ n∏
α=0

drNα e
−
∑

α
βαĤ[rNα ]

n∏
α,γ=0

δ(Q̂[rNα ; rNγ ]−Qαγ)− 1


= − lim

n→0

T

nN

{ˆ
dQαγeNS[Qαγ ] − 1

}
.

(II.25)
The last equation defines an overlap dependent action S[Qαγ ] of order n which is formally ob-
tained by integrating the microscopic degrees of freedom, i.e., the positions of the particles in the
replicas. The factor of N in the last row of Eq. (II.25) comes from the fact that the Hamiltonian
is extensive and so must be the argument of the exponential. Eventually, the FP potential can
be computed from this action by performing a saddle-point (Laplace) approximation in the limit
of large N which yields

V (Q) = − lim
n→0

T

Nn

{
eNS[Q∗αγ ] − 1

}
= −T lim

n→0
∂nS[Q∗αγ ], (II.26)

after doing a Taylor expansion of the exponential whose argument is of order n. The expression
of the FP potential involves the derivative of the action S[Qαγ ] with respect to the replica index
n, which is denoted ∂n. In addition, the free parameters Q∗ab for 1 ≤ a < b ≤ n of the overlap
matrix are solutions of the saddle-point equation

∂QabS[Q∗αγ ] = 0, (II.27)

with ∂Qab the partial derivative with respect to Qab, i.e., they maximise the action S[Qαγ ].

Even though this recipe can be applied systematically in any glass-forming liquid, in general,
deriving the FP potential from the Hamiltonian by integrating over the microscopic degrees of
freedom is a formidable task [197, 218]. One could then consider effective actions, like the one
of Ref. [167, 168] and from this stage, one could continue the calculations along the lines we
detail now.

To derive the FP potential from Eq. (II.26), one needs to solve Eq. (II.27) which actually
corresponds to a set of n(n−1)/2 non-linear coupled equations. Most of the time, this is done by
considering an ansatz for the replica matrix which is motivated by physical considerations. The
overlap matrix Qab corresponds to the matrix of the overlap between equilibrium configurations
at a temperature T which are all forced to have an overlap Q with the reference configuration. It
is thus sensible to consider a replica symmetric (RS) ansatz [131, 219] where the overlap between
two equilibrium configurations is the same for all the replicas and is equal to Q0, namely,

Q∗ab = Q0 + (1−Q0)δab, (II.28)

where δab is the Kronecker delta, which is equal to 1 when a = b and to 0 otherwise. The free
parameter Q0 is the solution of a saddle-point equation. From a mathematical point of view,
the action S[Qαγ ] is symmetric under replica permutations and considering an ansatz which
is consistent with this symmetry is then natural [126]. Even though this ansatz is reasonable
because all the replicas are equivalent, it is not always the correct maximiser of the action
S[Qαγ ]. Two things can happen. On the one hand, this RS ansatz can become unstable, which
means that it becomes a minimum of the action S[Qαγ ]. This phenomenon is known as a de
Almeida Thouless instability [220–223]. This is something that can be checked by looking at
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the eigenvalues of the Hessian matrix of the action S[Qαγ ] when it is evaluated for the RS
ansatz [221]. On the other hand, the RS solution can be a relative maximum of S[Qαγ ] but not
the absolute one. This is more difficult to check and this requires physical intuition to guess
another ansatz for the overlap matrix.

This new ansatz must explicitely break the symmetry between the replicas whereas the action
S[Qαγ ] is symmetric under permutations of the replicas. This phenomenon is called spontaneous
symmetry breaking and it is at the core of the theory of phase transitions [115]. If one imagines
that the phase space is organised into metastable states, it is reasonable to think that the overlap
between equilibrium configurations at a temperature T can take two different values, either Q0 if
the two replicas are not in the same metastable state or Q1 otherwise. This leads to the one-step
replica symmetry breaking (RSB) ansatz for the overlap matrix [131, 210, 224–226], namely,

Q∗ab = Q0 + (Q1 −Q0)ζab + (1−Q1)δab, (II.29)

with ζab the block diagonal matrix with blocks of size x which are filled with 1. Physically,
this RSB ansatz indicates that if one considers two replicas at equilibrium, the overlap can be
either Q0 with probability x, or Q1 with probability 1 − x. As a consequence, when Q0 =
Q1, one recovers the RS ansatz of Eq. (II.28). The three free parameters (Q0, Q1, x) are the
solutions of saddle-point equations. The same problems as for the RS solution can occur, either
an instability or the presence of a higher maximum. Nevertheless, one understands from the
previous discussion how to generate a full hierarchy of ansatz for the overlap matrix by assuming
that each metastable state is actually a metabasin which breaks into smaller metastable states
and by introducing more overlap values [210, 225, 226]. One can thus define k-RSB ansatz with
1 ≤ k ≤ +∞. The case k = +∞ corresponds to an ultrametric structure of the overlap matrix
which is known as a full replica symmetry breaking [210, 224–228]. The correct ansatz is sensitive
to the structure of the free energy landscape and it is thus system-dependent. For simple glasses,
a 1-RSB ansatz gives the correct answer at any temperature, see the next section [126].

In this section, we have reviewed the method to compute the FP potential by using replicas.
However, one cannot go further on general grounds and one has to consider a specific model
in order to analyse the convexity of the FP potential. In the next section, we review the
computation of the FP potential and of the phase diagram (ε, T ) for an archetypal mean-field spin
glass model. Even though the precise analytical form of the FP potential is system-dependent,
the results of the next section are very general.

3. Exact results from mean-field theory: the spherical p-spin

3.1 The model

We focus on the fully-connected p-spin models (with p ≥ 3). They correspond to systems
of N spins with p-body long-range interactions which are mediated by random coupling con-
stants. This set of models has been introduced as a generalisation of the Sherrington-Kirkpatrick
model [219, 229] (which is recovered when p = 2), and they behave as the Random Energy
Model [230] in the limit p → +∞. Its thermodynamics has been first studied extensively in
the case of Ising spins [117, 231]. We focus here on spherical p-spin models which have been
introduced by Crisanti and Sommers [221, 232]. The Hamiltonian of the spherical p-spin is given
by

Ĥ [σ] = −
∑

1≤i1<···<ip≤N
Ji1...ipσi1 . . . σip , (II.30)
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where J = {Ji1...ip}1≤i1<···<ip≤N are Gaussian random variables of zero mean and of variance

E{J2
i1...ip} = J2p!/(2Np−1). (II.31)

In the above equation, J is a constant of unit energy and the scaling with N ensures that the
unconstrained free energy is extensive. The spin variables are real numbers on the unit sphere,
in other words the spin configurations σ = {σi}i=1...N fulfill the spherical constraint

1
N

N∑
i=1

σ2
i = 1. (II.32)

In the p-spin model, the overlap between a spin configuration σ and a reference one σ(0) is

Q̂[σ;σ(0)] = 1
N

N∑
i=1

σiσ
(0)
i , (II.33)

without the need of introducing a cutoff parameter a. With this definition, the spherical con-
straint is merely written as Q̂[σ;σ] = 1.

We now comment on this model. Instead of dealing with off-lattice continuous degrees of
freedom as for glass-forming liquids, one still treats continuous degrees of freedom but now
on a lattice. This first simplification allows one to get rid of the tolerance length a in the
definition of the overlap and this makes the overlap an average over the sample of a single
site quantity. However, contrary to structural liquids, the p-spin models present a source of
external quenched disorder which corresponds to the random coupling constants.Liquids do not
display explicit quenched disorder but they generate the disorder by themselves, which is thus
said to be “self-induced” [196, 197, 208]. In the p-spin models, the free energy is expected
to be self-averaging with respect to the random coupling constants. Also, when dealing with
the constrained thermodynamics and the Franz-Parisi construction, the disorder average over
the random couplings must be the last to be computed because the constrained p-spin and the
reference configuration face the same realisation of the disorder.

Despite these discrepancies, the p-spin models display several similarities with structural
glasses. First, for T = Td, the phase space splits into an exponentially-large number of
metastable states which dominate the thermodynamics4. The dynamical transition tempera-
ture has a simple expression in the p-spin models [11], namely,

Td = J

√
p(p− 2)p−2

2(p− 1)p−1 . (II.34)

Contrary to liquids in the limit d → +∞, the metastable states in the spherical p-spin can
be obtained by minimising a free energy in the TAP approach [131, 146, 148, 210], which can
be computed by relying on a diagrammatic expansion of the free energy [145, 152], or via the
cavity method [210, 233]. The configurational entropy Σ(T ) is non-zero for T ≤ Td [145–
147] and it decreases when the temperature decreases. This illustrates the rarefaction of the
metastable states. The p-spin models also display a static transition temperature TK where

4In the replica language that we have described in Sec. 2.6, this corresponds to the highest temperature
at which a one-step replica symmetry breaking solution appears in the saddle-point equations when the
unconstrained free energy is computed.
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the number of metastable states becomes sub-exponential in N and where the configurational
entropy vanishes5. The value of the Kauzmann transition temperature reads

TK = J

√
py

2 (1− y)p/2−1, (II.35)

where y is the solution of 1/p = −y(1− y + ln y)/(1− y)2 [152, 233].

The dynamics of the p-spin models is also similar to the one of glass-forming liquids in the
limit of infinite dimensions of space. A Langevin equation for the single-spin dynamics is often
chosen [234], namely,

dσi
dt (t) = −∂Ĥ[σ]

∂σi(t)
+ Ξi(t)− νσi(t), (II.36)

where Ξi(t) is a random Gaussian noise which is delta-correlated in time, and where ν is a
Lagrange multiplier in order to ensure the spherical constraint of Eq. (II.32) [232]. From the
dynamics of single spins, a closed differential equation can be obtained for the spin-spin corre-
lation function at equilibrium [233, 235–237], which is very similar to the dynamical mean-field
equation for the mean-squared displacement in supercooled liquids [130], see Eq. (I.13). In
particular, the numerical resolution of these equations shows that, in both cases, the relaxation
time diverges from above at T = Td, and the equilibrium correlation function displays a constant
plateau at lower temperatures [117, 118, 131, 135].

3.2 Calculation of the Franz-Parisi potential

One can now compute the Franz-Parisi (FP) potential in the p-spin model in order to detect
singular behaviours which are sketched in Fig. II.2. In this system, the formal expression of the
FP potential is

V (Q) = E
{
V (Q;σ(0),J)

}
= E


ˆ ′

dσ(0) e
−β0Ĥ[σ(0)]
Z0(J) V (Q;σ(0),J)

 , (II.37)

see Eq. (II.10) for a comparison with structural glasses. The FP potential should be self-
averaging with respect to the random coupling constants and the average over them (which is
denoted by E{.}) must be the last taken. In the last equation, Z0(J) is the partition function at a
temperature T0 for a given realisation of the random coupling constants and the prime integral
denotes the integral over all the spin configurations which respect the spherical constraint.
Besides, V (Q;σ(0),J) is the random FP potential for a given reference configuration σ(0) and a
given realisation J of the random coupling constants, namely,

V (Q;σ(0),J) = − T
N

ln
ˆ ′

dσe−βĤ[σ]δ(Q̂[σ;σ(0)]−Q). (II.38)

To compute the FP potential, one can use the strategy which is described in Sec. 2.6 and

5In the replica language, this corresponds to the lowest temperature at which a one-step replica
symmetry breaking solution is found with x = 1.
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which relies on replicas. By using Eq. (II.23) and Eq. (II.25), one obtains

V (Q) =

− lim
n→0

T

Nn
E

 1
Z0(J)

ˆ
dQαγ

ˆ n∏
α=0

dσ(α)e−
∑

α
βαĤ[σ(α)]

n∏
α,γ=0

δ(Q̂[σ(α);σ(γ)]−Qαγ)− 1

 .
(II.39)

We note that the prime integral has been replaced by a full integral as the spherical constraint
is taken into account in the product of the delta functions.

Due to the extra source of disorder in the p-spin models, namely, the random coupling
constants, another group of replicas should be introduced, in particular to deal with the disorder
average of Z0(J) [148, 156]. However, if T0 ≥ TK, not only the unconstrained free energy at
the temperature T0 is self-averaging, but the partition function also is6 [208]. We now note
Z0 = E{Z0(J)}. With this further simplification and because of the mean-field nature of the
model [131], the average over the random coupling constants can be computed straightforwardly
by using Eq. (II.31), and one ends up with

V (Q) =

− lim
n→0

T

Nn

 1
Z0

ˆ
dQαγ

ˆ n∏
α=0

dσ(α)e
(NJ2/4)

∑
α,γ

βαβγQ
p
αγ

n∏
α,γ=0

δ(Q̂[σ(α);σ(γ)]−Qαγ)− 1

 .
(II.40)

We note that the average over the random coupling constants now couple all the replicas [115,
131].

So far, the recipe of Sec. 2.6 has been followed. For the p-spin model, one can go further and
one can actually integrate over the microscopic degrees of freedom (spin variables). In order to
do so, an exponential representation of the δ-functions [131] is introduced, which amounts in
softening the overlap constraints. After a saddle-point (Laplace) approximation in the limit of
large N , one gets

V (Q) = − lim
n→0

T

nN

{ 1
Z0

ˆ
dQαγe(NJ2/4)

∑
α,γ

βαβγQ
p
αγ+(N/2) ln detQαγ − 1

}
. (II.41)

Therefore, the action S[Qαγ ] can be exactly computed for the p-spin model, and it reads

S[Qαγ ] = J2

4

n∑
α,γ=0

βαβγQ
p
αγ + 1

2 ln detQαγ −
J2β2

0
4 , (II.42)

by using that Z0 = eNJ
2β2

0/4 in the limit of large N [131, 221].

One can now compute the FP potential from Eq. (II.26) first by solving the saddle-point
equation (II.27), which for the p-spin model is

pJ2β2

2 [Q∗ab]p−1 + (Q−1)∗ab = 0, (II.43)

6A more rigorous method consists in introducing another group of m replicas for the reference con-
figurations and eventually in taking the limit m → 0. For T0 ≥ TK, a replica symmetric ansatz for the
overlap matrix of the reference replicas describes the problem correctly and this is strictly equivalent
to replacing Z0(J) by its annealed average over the disorder. For T0 ≤ TK, this simplification does no
longer hold. Equivalently, a correct description of the problem when introducing two groups of repli-
cas requires the more general one-step replica symmetry breaking ansatz for the overlap matrix of the
reference configurations.
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for 1 ≤ a < b ≤ n, where (Q−1)αγ is the inverse matrix of Qαγ . To solve Eq. (II.43), the most
general 1-step RSB ansatz of Eq. (II.29) is inserted. This ansatz is exact at any temperature
for the p-spin models with p ≥ 3 [221, 231], while the resolution of the Sherrington-Kirkpatrick
model with p = 2 requires a full replica symmetry breaking ansatz [210, 225–227].

The parameters in the definition (II.29) of the overlap matrix are the solutions of saddle-point
equations which are obtained by inserting the 1-RSB ansatz into Eq. (II.43), namely,

pβ2J2

2 Qp−1
0 = Q0 −Q2

[1− (1− x)Q1 − xQ0]2
, (II.44)

pβ2J2

2 (Qp−1
1 −Qp−1

0 )(1− x) = (Q1 −Q0)(1− x)
(1−Q1) [1− (1− x)Q1 − xQ0] , (II.45)

and
pβ2J2Qp−1

1
2x (1−Q1)− pβ2J2Qp−1

0
2x [1− (1− x)Q1 − xQ0]

+ β2J2

2 (Qp1 −Q
p
0) + 1

x2 ln
[ 1−Q1

1− (1− x)Q1 − xQ0

]
= 0.

(II.46)

Besides, by inserting the 1-RSB ansatz into Eq. (II.42) and by using Eq. (II.26), one obtains the
following expression for the FP potential:

V (Q) = −βJ
2

4 − β0J
2

2 Qp + βJ2

4 [(1− x)Qp1 + xQp0] + 1
2β

1− x
x

ln(1−Q1)

− 1
2βx ln [1− (1− x)Q1 − xQ0]− Q0 −Q2

2β [1− (1− x)Q1 − xQ0] ,
(II.47)

where one uses that the diagonal elements of the overlap matrix are equal to 1 and that the
elements of the first row and column are equal to Q.

3.3 Temperature evolution of the Franz-Parisi potential for equal tem-
peratures

We numerically solve the saddle-point equations (II.44)-(II.46) in order to compute the Franz-
Parisi (FP) potential for the specific case p = 3 and to follow its temperature evolution. The
resolution of the equations at a fixed temperature T is done numerically by using the Newton-
Raphson method [238]. We start by solving the saddle-point equations for Q = 0 and we then
gradually increase Q. For each value of Q, several initial guesses are considered with different
values of (Q0, Q1, x) in order to find the one-step replica symmetry breaking (1-RSB) solution
if the latter exists. Indeed, a solution with Q0 = Q1 always exists and it corresponds to the
replica symmetric (RS) ansatz of Eq. (II.28). In the case of the p-spin model, the saddle-point
equation within the RS ansatz is written as

pJ2β2

2 Qp−1
0 = Q0 −Q2

(1−Q0)2 , (II.48)

while the FP potential reads

VRS(Q) = −βJ
2

4 − β0J
2

2 Qp + βJ2

4 Qp0 −
1

2β ln(1−Q0)− Q0 −Q2

2β(1−Q0) . (II.49)
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Fig. II.3 | (a) Franz-Parisi (FP) potential for T = T0 and p = 3. The curves have been translated
so that the value of the FP potential is 0 at its absolute minimum. The FP potential always displays
a minimum for Q = 0 which corresponds to the most probable value of the overlap between the
unconstrained p-spin and the reference configuration, see Eq. (II.12). The FP potential is strictly
convex at high temperatures but loses convexity at Tcvx/J = 0.772 (βcvxJ = 1.295). The square
marks the location of the inflexion point (Qc ' 0.285). Below Tcvx, the FP potential is no longer
convex on an finite overlap range but it remains a monotonic function of Q. At the dynamical
transition temperature Td with Td/J = 0.613 (βdJ = 1.632), a metastable minimum appears at
a high-overlap value. Below this temperature, the FP potential is non-convex with two minima.
The high-overlap minimum deepens when the temperature decreases. At the Kauzmann transition
temperature TK/J = 0.586 (βKJ = 1.707), the two minima are of equal depth. (b) Phase diagram
(ε, T ) for the constrained p-spin in the canonical ensemble (with ε as a control parameter) for T = T0.
From the thermodynamic glass transition at (ε, T ) = (0, TK), a line of conventional first order phase
transition ε∗(T ) emerges and it ends in a critical point at (εc, Tc), with Tc = Tcvx where the FP
potential first loses convexity. The line of first order transition separates a delocalised phase of low
overlap above from a localised phase of high overlap below.

For T ≥ TRSB (TRSB/J = 0.666 for p = 3), the RS solution provides the correct value of the
FP potential. However, when T ≤ TRSB, the replica symmetry is broken for intermediate values
of the overlap Q ∈ [Qmin,RBS(T ), Qmax,RSB(T )]. In this range, the estimate of the FP potential
from the 1-RSB solution with Q1 6= Q0 and x < 1 is larger than its estimate from the RS ansatz.
Therefore, the 1-RSB solution should be kept because the overlap matrix must maximise the
FP potential. The range over which the replica symmetry is broken increases with decreasing
the temperature. For T ≤ TK, the replica symmetry becomes broken even in the minimum at
Q = 0. For T ≤ TRSB, a discontinuous replica symmetry breaking occurs at Q = Qmin,RBS(T )
(with a jump in Q1 as a function of Q) when increasing Q from 0, and a continuous one at
Q = Qmax,RSB(T ) (Q1 remains continuous) when decreasing Q from 1 [222, 239]. The replica
symmetry breaking is the manifestation of the fact that the thermodynamics is dominated by a
few number of metastable states or equivalently that the configurational entropy has vanished.

The temperature and overlap dependence of the FP potential is first analysed for the case
T = T0, see Fig. II.3 (a). At a very high temperature (T/J = 0.909), the FP potential is a
monotonic function of Q and it displays a unique minimum at Q = 0. As the FP potential also
corresponds to the large deviation rate function of the unconstrained probability distribution of
the overlap [see Eq. (II.12)], this minimum merely reflects the fact that the most probable value
of the overlap between equilibrium configurations is 0. The growth of the FP potential indicates
that the excursions of the system towards larger overlap cost free energy. When the temperature
decreases, the minimum at Q = 0 remains but the FP potential decreases for high-overlap values,
and this indicates that larger fluctuations of the overlap become possible, as their free energy
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cost decreases.

When T = Tcvx (Tcvx/J = 0.772), the FP potential has a vanishing second derivative for
an overlap value Qc (Qc ' 0.285). For T < Tcvx, the FP potential is non-convex over a finite
overlap range but it is still a monotonic function of the overlap. When further decreasing
the temperature, one reaches the dynamical transition temperature Td (Td/J = 0.613), which
is given by Eq. (II.34). For this particular temperature, one observes that the FP potential
develops a horizontal inflexion point at a large-overlap value Qg where both its first and its
second derivatives vanish. For T . Td, this horizontal inflexion point turns into a secondary
minimum. Physically, this means that in the unconstrained liquid, the probability distribution
of the overlap now displays two peaks, see Eq. (II.12): a larger peak at Q = 0 and a smaller
one at Q = Qg. The latter is the direct manifestation of the splitting of the phase space into
disconnected metastable states. In other words, the absolute minimum in the FP potential at
Q = 0 corresponds to the overlap between two replicas which belong to different metastable
states, while the relative minimum at Q = Qg represents the typical overlap between replicas
which are in the same metastable state. In consequence, Qg also corresponds to the value of the
free parameter Q1 when Q = Qg.

The depth of the secondary minimum in the FP potential decreases as the temperature
is decreased. From a probabilistic point of view, this represents an enhanced probability for
two replicas to be in the same metastable state and this thus indicates the rarefaction of the
metastable states. This suggests that the height of the secondary minimum may be related
to the configurational entropy Σ(T ). We recall that the FP potential is a Landau free energy
and that it corresponds to the free energy cost for the overlap fluctuations in the unconstrained
liquid. The value V (Qg) of the FP potential at its secondary minimum should then equal the
free energy cost to constrain the system in the metastable state of the reference configuration,
which is precisely TΣ(T ). In the p-spin model, both the FP potential and the configurational
entropy can be computed and the exact equality between V (Qg) and TΣ(T ) can be verified [153,
156, 222]. Finally, the values of the FP potential at the two minima become identical precisely
at the Kauzmann transition temperature TK which is given by Eq. (II.35). This means that
the two overlap values Q = 0 and Q = Qg are equally probable, or equivalently that the free
energy cost to maintain two replicas in the same metastable state has vanished. This is the
direct consequence of the Kauzmann entropy crisis.

In the case T = T0, one cannot discuss the shape of the FP potential from the calculations of
the previous section when T ≤ TK because the latter are restricted to T0 ≥ TK. The shape of the
FP potential when T = T0 ≤ TK can be found in Ref. [152] and it displays two minima of equal
depth for Q = 0 and Q = Qg. Indeed, in this temperature regime, the configurational entropy is
zero and the number of metastable states is sub-exponential in the system size. Consequently,
it is equally probable for the system to have a low or a high overlap with another equilibrium
configuration whether they belong to the same free energy minimum.

Overall, from this analysis one concludes that the changes in the free energy landscape of
the spherical p-spin are directly encoded in the FP potential. As similar changes exist in the
free energy landscape of glass-forming liquids at the mean-field level, this temperature evolution
of the FP potential is generic for every mean-field glass-former which displays an entropy crisis
and a one-step replica symmetry breaking at T = TK. Its computation, for instance in computer
simulations (see Chap. III), is thus of particular relevance.
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3.4 Mean-field phase diagram (ε, T ) for equal temperatures

One can now perform a change in ensembles to derive the mean-field phase diagram (ε, T ).
The analysis of the temperature evolution of the Franz-Parisi (FP) potential has revealed non-
trivial properties, such as its loss of convexity. As explained in Sec. 2.5, this corresponds to a
first order transition in the thermodynamics of the constrained p-spin, as shown in Ref. [140,
152, 153, 156, 240]. In this section, the focus is still made on the case T = T0.

The phase diagram is displayed in Fig. II.3 (b) and it was first described in Ref. [153]. It
displays a critical point at Tc = Tcvx where the FP potential first loses convexity. The value of
the source εc which is needed to be critical is given by the first equation of the system (II.20),
hence by the slope of the tangent line to the FP potential at its inflexion point. When the
FP potential is not convex, the double-tangent construction locates the field ε∗(T ) at which the
constrained liquid displays a first order phase transition from a low-overlap (delocalised) phase to
a high-overlap (localised) phase. The temperature evolution of the FP potential shows that ε∗(T )
decreases when T decreases. More precisely, for T < Td, the double-tangent construction shows
that ε∗(T )Qg ' V (Qg) = TΣ(T ). This confirms the qualitative discussion of Sec. 1, in particular
the fact that the thermodynamics of the constrained system is ruled by a competition between
the configurational entropy and the attraction energy. One can also note that ε∗(T ) represents
a practical way of measuring the configurational entropy, and this has for instance proved useful
in computer simulations [181, 241]. When T = TK, the double-tangent construction gives
ε∗ = 0 and the line of first order transition reaches the random first order transition point at
(ε, T ) = (0, TK). Below TK, the FP potential has a similar shape as what is found at T = TK.
Therefore, as long as ε > 0, the system ends up in a high-overlap (localised) phase.

Two other lines can be added to the diagram in Fig. II.3 (b) and can be found in Ref. [153].
They correspond to the spinodal lines, namely, the limits of metastability of the low-overlap
phase and of the high-overlap phase. Both lines converge to the critical point at high tempera-
tures. Besides, the analysis of the temperature evolution of the FP potential indicates that the
spinodal of the high-overlap phase converges to Td for ε = 0.

In the unconstrained liquid, whose behaviour is found on the ε = 0 axis of the phase dia-
gram (ε, T ), one recovers the thermodynamic phase transition at T = TK from the liquid phase
to the ideal glass phase. The extension of the phase diagram with an additional control pa-
rameter ε enables one to emphasise thermodynamic features which are hardly noticeable in the
thermodynamics of the unconstrained liquid and which take place at higher temperatures than
the Kauzmann transition temperature. Such as the temperature evolution of the FP potential,
the shape of the mean-field phase diagram is generic for all the mean-field glass-formers which
display a vanishing configurational entropy [154, 155]. Some systems do not have an entropy
crisis and instead their configurational entropy remains finite even at zero temperature [126].
For these systems, the phase diagram still resembles the one in Fig. II.3 (b), but the line of first
order transition now extends down to zero temperature [242, 243].

The nature of the phase transitions in the diagram (ε, T ) can finally be discussed. At T = Tc,
the transition is of second order with a critical point. At this temperature, the constrained
free energy and its first derivative are both continuous but its second derivative diverges. For
TK < T < Tc, the transition is a conventional first order transition with a discontinuous jump
in the order parameter, see Eq. (II.6). The latent heat of this transition from delocalised
to localised phases can be computed and it is strictly negative [153]. Finally, for T = TK, the
overlap jumps discontinuously but the latent heat vanishes [153]. This behaviour is intermediate
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between the first order and the second order phase transitions and it has been called a random
first order transition [122, 144], see Chap. I. The overlap therefore represents an appropriate
order parameter to distinguish between the liquid phase and the ideal glass phase on the ε = 0
axis above and below TK respectively.

3.5 Mean-field phase diagrams (ε, T ) for a fixed temperature of the refer-
ence configurations

So far, the focus has been made on the case T = T0. However, T0 is a free parameter, and in
particular it is possible to fix T0 once and for all whatever T , and then to study the constrained
thermodynamics of the glass-forming liquid at the temperature T . As already discussed, this
corresponds to exploring at a temperature T different metastable states of the glass-forming
liquid than the typical ones at this temperature.

In this section, we extend the results of the previous section which have been reported in
previous works, and we systematically study the influence of the temperature T0 of the reference
configurations on the mean-field phase diagram in Fig. II.3 (b). By using Eq. (II.47), the Franz-
Parisi (FP) potential can be computed for any temperature T0 of the reference configurations
after solving Eq. (II.44)-(II.46) with the method that has already been described before. We first
note that Eq. (II.44)-(II.46) do not involve the temperature T0 of the reference configurations
and, as a result, their solution can be computed at once. Once the FP potential is obtained
for several temperatures T for a given T0, its convexity properties can be studied. If it displays
non-convexities, the phase diagram (ε, T ) can be computed as in the previous section via the
double-tangent construction.

We show in Fig. II.4 (a) the phase diagram for a fixed T0 in between Td and TK (T0/J = 0.599
or β0J = 1.67). We observe that the phase diagram still displays a first order transition line
ε∗(T, T0) between a low-overlap phase and a high-overlap phase which ends in a critical point.
The diagram nonetheless has several differences with the case T = T0. On the one hand, the
location of the first order transition line and of the critical point changes with the temperature
T0. More precisely, we observe that both are shifted to a higher temperature and a larger
coupling strength. On the other hand, the first order transition line does not converge to the
random first order transition point at TK, it becomes instead reentrant at low temperatures
and the line ε∗(T, T0) goes to zero temperature for a finite value of the attraction between the
replicas. This is a natural consequence of the fact that the FP potential has a double-well
structure with a secondary minimum at a high-overlap value for low-enough temperatures when
T0 < Td, as reported in Ref. [222]. When the high-overlap metastable minimum exists, its height
has two contributions: one comes from the entropic cost to select a particular metastable state
at a temperature T0, and the other comes from the difference between the free energy of the
TAP states which dominate at T0 and which are followed at T and the equilibrium free energy
at the temperature T [148, 222].

The phase diagram in Fig. II.4 (a) also displays a discontinuous replica symmetry breaking
(RSB) line εK(T, T0) which corresponds to the line where the ansatz that describes the thermo-
dynamics of the constrained system switches from the replica symmetric (RS) one to the 1-RSB
one discontinuously (with a jump in Q1 when varying Q). Equivalently, this is the line where
the value of the FP potential for Q = Q̃ = 〈Q̂〉ε is higher for the 1-RSB ansatz, where Q̃ is the
minimiser in the Legendre-Fenchel transform of Eq. (II.15). On this line, the configurational
entropy in the iso-overlap ensemble vanishes [222, 244]. As ensembles are equivalent outside the

48



II. An introduction to the theoretical Franz-Parisi construction

0

0.4

0.8

1.2

0 0.04 0.08 0.12 0.16

RSl

* RSBl

RSh

(a)

*

T
/
J

ε/J

ε∗(T, T0)
εK(T, T0)

0

0.4

0.8

1.2

0 0.08 0.16 0.24

RSl

RSh
RSBhRSBl

(b)

T
/
J

ε/J

ε∗(T, T0)
εK(T, T0)
εAT(T, T0)

0

0.2

0.4

0.6

0 0.08 0.16 0.24 0.32

RSh

RSBh

RSBl

RSl (c)

T
/
J

ε/J

ε∗(T, T0)
εK(T, T0)
εAT(T, T0)

Fig. II.4 | Phase diagram (ε, T ) of the p-spin model (p = 3) for a fixed temperature T0 of the
reference configurations. We show several cases: (a) T0 < Td (T0/J = 0.599 or β0J = 1.67), (b)
Td < T0 < Tcvx (T0/J = 0.752 or β0J = 1.33) and (c) T0 > Tcvx (T0/J = 0.833 or β0J = 1.2). We
have represented the first order transition line ε∗(T, T0) from the low-overlap (delocalised) phase
to the high-overlap (localised) phase, along with the lines where the ansatz which describes the
thermodynamics switches from the replica symmetric (RS) one to the one-step replica symmetry
breaking (RSB) one either continuously εAT(T, T0) or discontinuously εK(T, T0). The phase diagrams
display at most four different phases: a low-overlap RS phase (RSl), a low-overlap 1-RSB phase
(RSBl), a high-overlap RS phase (RSh) and a high-overlap 1-RSB phase (RSBh). The full square
marks the position of the high-temperature critical point, the empty disk marks the end of the first
order transition line at low temperature with a second critical point, and the full diamond stands
for the temperature at which RSB effects appear (TRSB/J = 0.666). The overlap with the reference
configuration is discontinuous on the line ε∗(T, T0) but it is continuous otherwise.

first order transition region, this means that in the canonical ensemble, the constrained liquid
has an entropy crisis on the discontinuous RSB line. On this line, the overlap between the con-
strained liquid at a temperature T and the reference configuration at a temperature T0 remains
continuous but the overlap between two constrained replicas at the temperature T jumps dis-
continuously. We note that this discontinuous RSB line is absent in the diagram in Fig. II.3 (b).
This is because, in the case T = T0, the thermodynamics of the constrained system is always
described by a RS ansatz outside the first order transition region [245, 246].

We can also show the phase diagram for an intermediate case Td < T0 < Tcvx (T0/J = 0.752
or β0J = 1.33) which appears to be more complex, see Fig. II.4 (b). It still displays a first order
transition line ε∗(T, T0) which ends in a critical point at a high temperature. The position of the
line ε∗(T, T0) and of the critical endpoint are shifted up in temperature and source as compared
to the case T = T0, but they appear at lower temperatures and fields than in the case T0 < Td.
Besides, we also observe that for this particular choice of T0, the first order transition line ends
with another critical point at a lower temperature7. This behaviour can be understood from
the analytical expression of the FP potential, see Eq. (II.47). Indeed, one notes that if VT (Q)
stands for the FP potential for T = T0, then one has for fixed T0:

V (Q) = VT (Q) + (β − β0)J2

2 Qp. (II.50)

7The first order transition line seems to go to zero temperature for T0 < Tz and to end in another
critical point for T0 > Tz, with Tz/J ' 0.749.
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The second term in the right-hand side is of the sign of 1/T − 1/T0 and it gives a positive
contribution to the second derivative of the FP potential if T < T0 and a negative one otherwise.
As a result, if T is very small and T0 is fixed, then V (Q) is less non-convex than VT (Q): it
can eventually become convex again at very low temperatures, and this implies a second low-
temperature critical point. Physically, the first order transition line may disappear at a lower
critical point because the free energy cost to be in the high-overlap phase may be too prohibitive
to be overcome by the field ε. Indeed, a plausible assumption is that the system should be similar
to the unconstrained liquid at the temperature T0 (resp. T ) when it is forced to have a large
(resp. small) overlap with the reference configuration. Consequently, the free energy cost to
force the liquid to have a large overlap Q with the reference configuration, as quantified by
V (Q), not only takes into account the entropic cost but also the free energy difference between
the temperatures T0 and T which grows as T decreases below T0.

The phase diagram in Fig. II.4 (b) also displays one more line as compared with that
in Fig. II.4 (a). It corresponds to the continuous RSB line εAT(T, T0) where the ansatz which
describes the thermodynamics switches from the 1-RSB one to the RS one continuously, namely,
with Q1 −Q0 → 0. On this line, the RS solution becomes unstable and a de Almeida Thouless
instability occurs [221–223]. For T0 < Td, the secondary minimum of the FP potential is always
described by the RS ansatz and there is not a de Almeida Thouless instability in this case.

We have finally investigated the fate of the phase diagram for a temperature T0 > Tcvx, see
Fig. II.4 (c) for T0/J = 0.833 (β0J = 1.2). We observe that the critical point and the first
order transition line ε∗(T, T0) survive if T0 is sufficiently low. In this case, they appear at a
lower temperature and a smaller source, as compared to the case T = T0. In addition, the first
order transition line still ends with another critical point at a lower temperature. However, the
first order transition line has considerably shrunk. As T0 is increased up to a temperature Tmax
(Tmax/J ' 0.867), the ansatz to describe the thermodynamics at the critical point becomes a
1-RSB one and the two critical points which delimitate the first order transition line merge and
they eventually annihilate. When T0 > Tmax, only the discontinuous and continuous RSB lines
remain, and any phase transition in the canonical ensemble has disappeared. This is reasonable
since the configurational entropy in the constrained liquid vanishes on the discontinuous RSB
line and the competition between the entropy and the attraction energy which is central for the
existence of the transition in the canonical ensemble no longer exists.

We have found complex phase diagrams when varying the temperature T0 of the reference
configurations. This is reminiscent of what is encountered in the p-spin models with a fraction
c of spins which are pinned in an equilibrium configuration that has been sampled at a fixed
temperature T0 > T [247], even though the two settings are different [246]. In particular, we
have seen that the location of the first order transition line and the high-temperature critical
point varies with T0: they seem to move upwards (resp. downwards) in temperature and source
when T0 decreases (resp. increases).

3.6 Variation of the location of the critical point with the temperature
of the reference configurations

We now systematically study the location of the critical point (εc(T0), Tc(T0)) when T0 is
varied in the p-spin model. We use the replica symmetric (RS) expression of the Franz-Parisi
(FP) potential which is given by Eq. (II.49), as the critical point disappears when it enters the
region of replica symmetry breaking. Besides, to simplify notations, we drop the subscript RS.
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Fig. II.5 | Systematic evolution of the position of the critical point as a function of the temperature
T0 of the reference configurations for the spherical p-spin model with p = 3: (a) critical temperature
Tc(T0) and (b) critical field εc(T0). The square marks the location of the critical point for T = T0.

To find the critical point, we need to solve the set of equations (II.20) for the triplet (Qc, εc, Tc).

The derivatives in Eq. (II.20) can be computed exactly from Eq. (II.49) while Eq. (II.48)
is used to obtain the derivatives of the saddle-point solution Q0 with respect to Q. The first
derivative reads

V ′(Q) = ∂QV (Q) = −pβ0J
2

2 Qp−1 + Q

β(1−Q0) , (II.51)

where ∂Q stands for the partial derivative with respect to Q, and where the derivative with
respect to Q0 is zero due to the saddle-point condition. The second derivative can be found in
the same way and it reads

V ′′(Q) = ∂QV
′(Q) + ∂Q0V

′(Q)∂QQ0

= −p(p− 1)β0J
2

2 Qp−2 + 1
β(1−Q0) + Q

β(1−Q0)2∂QQ0,
(II.52)

where now we have to take into account the first derivative ∂QQ0 of the saddle-point solution with
respect to Q. The latter can be computed by differentiating the saddle-point equation (II.49)
with respect to Q, and it reads

∂QQ0 = − 2Q
pβ2J2

2 Qp−2
0 (1−Q0) [p− 1− (p+ 1)Q0]− 1

. (II.53)

The third derivative is obtained similarly and it involves the second derivative of the saddle-point
solution with respect to Q, which can be expressed as a function of Q and Q0 by differentiating
Eq. (II.53) with respect to Q.

We solve Eq. (II.20) by means of a Newton-Krylov algorithm. We start from the case T = T0
and we then gradually increase or decrease T0. We show in Fig. II.5 the evolution of Tc(T0) and
εc(T0) with the temperature T0 of the reference configurations. We clearly observe that when T0
is fixed to a value below (resp. above) Tcvx (the value of Tc for the case T = T0), the critical point
is shifted upwards (resp. downwards) in temperature and source in the phase diagram. The
variation of the critical temperature is quite large, of about 25 % between the case T = T0 and
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the case of fixed T0 = TK. This feature can be easily understood from the analytical expression
of the FP potential, and in particular from Eq. (II.50). Indeed if T0 . T = Tcvx, the second
term gives a negative contribution to the second derivative of the FP potential, and this makes
the FP potential even more non-convex. Therefore, the critical point appears at a temperature
Tc(T0) > Tcvx. The trend of the critical source εc(T0) as a function of the temperature of the
reference configurations is more complicated to rationalise. On the one hand, as Tc(T0) increases
when T0 decreases, the thermal fluctuations become more significant and consequently the field
to localise the system in the high-overlap phase should increase too. But on the other hand,
considering a smaller T0 leads to a more stable high-overlap phase and it reduces the free energy
cost to be localised at a fixed temperature T .

Overall, past studies along with our analysis of the phase diagrams have revealed that the
non-trivial modifications of the free energy landscape of glass-forming liquids in the mean-field
limit translate into interesting thermodynamic features in the phase diagram (ε, T ) which are
robust with respect to changes in the temperature of the reference configurations (if it is not
taken too large). As a consequence, the study of the thermodynamics of constrained supercooled
liquids is of great relevance in order to assess the ability of mean-field theory to describe finite-
dimensional systems. This is the object of Chap. III which relies on computer simulations in
d = 2, 3. Calculations of the p-spin model have shown that decreasing T0 moves the singular
thermodynamic behaviours to larger temperatures T well above the glass transition temperature,
see Fig. II.5. We expect these trends to be generic in glass-forming liquids and this property is
at the heart of our numerical strategy in Chap. III for the study of the phase diagram (ε, T ) in
finite dimensions.

4. Statistical field theory beyond mean-field

Before turning to the computer simulations of finite-dimensional systems, we briefly sum-
marise the first steps towards a thermodynamic description of constrained supercooled liquids in
finite dimensions d by using a Landau-Ginzburg functional [214], and by focusing on the high-
temperature critical point at (εc, Tc) [218]. We first come back to the general case of structural
liquids before dealing with the spherical p-spin for explicit calculations.

4.1 The replicated Landau-Ginzburg free energy

In finite dimensions, a good starting point to study the critical point is to build a Landau-
Ginzburg free energy. Usually, this is done by starting from a mean-field Landau free energy
as a function of the order parameter, and then by considering the possibility of inhomogeneous
profiles. By considering the Franz-Parisi (FP) potential V (Q) as the Landau free energy on
top of which the spatial fluctuations of the overlap could be added may be tempting. However,
in finite dimensions, the only knowledge of the FP potential is not enough to determine the
Landau free energy [248]. Indeed, Eq. (II.10) indicates that the FP potential is the average
over disorder of a random free energy V (Q; rN0 ). As a result, by computing the FP potential,
one has lost most of the properties of the disorder which is represented by the choice of the
reference configuration. Nevertheless, one must assess the role of the disorder, which is known
to be relevant and to affect the universality class of critical points. For instance random fields
destroy any long-range order in 2d [249].

As a result, previous works in the literature [196, 197, 218, 250] emphasise that one needs
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to compute the different cumulants of the random variable V (Q; rN0 ), and not only its first
cumulant which is the FP potential [218, 239]. For instance, the second cumulant quantifies the
total variance of the fluctuations of the FP potential among the realisations of the disorder, and
it is defined as [208, 239, 248]

V (2)(Q1, Q2) = Nβ
[
V (Q1; rN0 )V (Q2; rN0 )− V (Q1; rN0 )V (Q2; rN0 )

]
, (II.54)

where the factor of N comes from the fact that the FP potential is an intensive quantity and
that its typical fluctuations are expected to scale as N−1/2, while the factor β = 1/T ensures
that V (2)(Q1, Q2) has the dimension of an energy. The higher order cumulants V (l)(Q1, . . . , Ql)
(l ≥ 3) can be defined similarly.

The different cumulants can be generated by introducing n replicas with the same realisation
of the disorder (reference configuration), and at the end by taking the limit n→ 0, as we have
already reviewed for the computation of the FP potential. Nevertheless, in Sec. 2.6, all the
replicas are forced to have the same overlap Q with the reference configuration. In order to
generate the higher order cumulants, one must consider n replicas but with different overlaps
with the reference configuration. For instance, the calculation of the second cumulant requires
two different overlap values, see Eq. (II.54). Therefore, one introduces n replicas, each of them
having an overlap Qa with the reference configuration for a = 1 . . . n, and one is led to define a
replicated FP potential Vrep({Qa}) as the large deviation rate function of the joint probability
distribution of the overlaps {Qa}a=1...n in the n unconstrained replicas [218], namely,

e−NβVrep({Qa}) = e−Nβ
∑

a
V (Qa;rN0 ) =

ˆ n∏
α=0

drNα e
−
∑

α
βαĤ[rNα ]

n∏
a=1

δ(Q̂[rNa ; rN0 ]−Qa)
ˆ

drN0 e
−β0Ĥ[rN0 ]

. (II.55)

The free energy Vrep({Qa}) thus corresponds to the Landau free energy of a mixture of n + 1
replicas. The above equation is very similar to Eq. (II.24) except that now all the replicas have
a different overlap with the reference configuration. One can then once again formally rewrite
Eq. (II.55) as an integral over all the square symmetric overlap matrices Qαγ of size n+ 1 with
diagonal elements equal to 1 and with Qa0 = Q0a = Qa:

e−NβVrep({Qa}) =

ˆ
dQαγ

ˆ n∏
α=0

drNα e
−
∑

α
βαĤ[rNα ]

n∏
α,γ=0

δ(Q̂[rNα ; rNγ ]−Qαγ)
ˆ

drN0 e
−β0Ĥ[rN0 ]

=
ˆ

dQαγeNS[Qαγ ],

(II.56)
with the already-introduced overlap dependent action S[Qαγ ]. In the limit of large N , one can
perform a saddle-point (Laplace) approximation which yields

Vrep({Qa}) = −TS[Q∗αγ ], (II.57)

where the overlap matrix Q∗αγ maximises S[Qαγ ].

We now review how one can generate the different cumulants of V (Q; rN0 ). The quantity∑
a V (Qa; rN0 ) is of order n and one can do a Taylor expansion of the middle-hand side in
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Eq. (II.55) in an increasing number of sums over replica indices, which yields

Vrep({Qa}) = 1 +
n∑
a=1

V (Qa)−
1
2

n∑
a,b=1

V (2)(Qa, Qb) + 1
6

n∑
a,b,c=1

V (3)(Qa, Qb, Qc)

− 1
24

n∑
a,b,c,d=1

V (4)(Qa, Qb, Qc, Qd) + . . . ,

(II.58)

where the ellipses represent sums over at least 5 replicas. For instance, if one sets all the replicas
to have the same overlap Qa = Q with the reference configuration, such as in Sec. 2.6, then
Eq. (II.58) becomes an expansion in powers of n, namely,

Vrep({Qa}) = 1+nV (Q)− n
2

2 V
(2)(Q,Q)+ n3

6 V
(3)(Q,Q,Q)− n

4

24V
(4)(Q,Q,Q,Q)+ . . . , (II.59)

so that in the limit n→ 0,

V (Q) = lim
n→0

∂nVrep({Qa}) = −T lim
n→0

∂nS[Q∗αγ ]. (II.60)

One thus recovers Eq. (II.26). One can do a similar manipulation for the other cumulants.
For example, for the second cumulant, one introduces two groups of replicas: one group of n1
replicas has an overlap Q1 with the reference configuration and another group of n2 replicas has
an overlap Q2 with the reference configuration, with n = n1 + n2. Then Eq. (II.58) becomes

Vrep({Qa}) = 1 + n1V (Q1) + n2V (Q2)− n2
1

2 V
(2)(Q1, Q1)− n2

2
2 V

(2)(Q2, Q2)

− n1n2V
(2)(Q1, Q2) +O

(
n3

1, n
3
2, n1n

2
2, n2n

2
1

)
,

(II.61)

so that in the limit n1, n2 → 0,

V (2)(Q1, Q2) = − lim
n1,n2→0

∂2
n1n2Vrep({Qa}) = T lim

n1,n2→0
∂2
n1n2S[Q∗αγ ]. (II.62)

Now that one has defined a replicated Landau free energy, and that one knows how to
generate the different cumulants which are involved in Eq. (II.58), one can focus on the critical
point (εc(T0), Tc(T0)), and on the replicated Landau free energy of the constrained liquid precisely
at the critical point which is given by

Vrep,ε({Qa}) = Vrep({Qa})− ε
n∑
a=1

Qa, (II.63)

with ε = εc, see Eq. (II.14). One can perform a Taylor expansion of the previous Landau free
energy for Qa = Qc + φa with φa � Qc for a = 1 . . . n. At the critical point, the second and
the third derivatives of the first cumulant V (Q) vanish, see Eq. (II.20). Consequently, one must
develop the replicated Landau free energy up to the fourth order in φa. This result was obtained
in Ref. [218] and it reads, up to an irrelevant additive constant,

βcVrep,εc({φa}) =
n∑
a=1

[
g2
2 φ

2
a + g3

6 φ
3
a + g4

24φ
4
a

]
− 1

2

n∑
a,b=1

φaφb

[
τ20 + τ21

2 (φa + φb) + τ22
4 φaφb + τ23

6
(
φ2
a + φ2

b

)]

+ 1
6

n∑
a,b,c=1

φaφbφc

[
τ30 + τ31

2 (φa + φb + φc)
]
− τ40

24

n∑
a,b,c,d=1

φaφbφcφd + . . . ,

(II.64)
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with βc = 1/Tc, and where the coefficients can be expressed in terms of the derivatives of the
cumulants of the FP potential, namely,

g2 = βcV
′′(Qc) = 0, g3 = βcV

′′′(Qc) = 0, g4 = βcV
′′′′(Qc),

τ20 = βc∂
2
Q1Q2

V (2)(Qc, Qc), τ21 = βc∂
3
Q2

1Q2
V (2)(Qc, Qc),

τ22 = βc∂
4
Q2

1Q
2
2
V (2)(Qc, Qc), τ23 = ∂4

Q3
1Q2

V (2)(Qc, Qc),

τ30 = βc∂
3
Q1Q2Q3

V (3)(Qc, Qc, Qc), τ31 = βc∂
4
Q2

1Q2Q3
V (3)(Qc, Qc, Qc),

τ40 = βc∂
4
Q1Q2Q3Q4

V (4)(Qc, Qc, Qc, Qc).

(II.65)

Once the Landau free energy is obtained, one can define the corresponding Landau-Ginzburg
free energy functional in d dimensions by considering inhomogeneous overlap profiles φa(x) for
a = 1 . . . n and x ∈ Rd, to allow for spatial fluctuations. Then, one introduces a free energy
penalty for interfaces, i.e., large spatial variations of the overlap. As usual, one does a Taylor
expansion in terms of the gradient of the overlap field ∂xφa, and only keeps the least order term
which respects the assumptions of locality and invariance with respect to spatial rotations and
translations [115]. The Landau-Ginzburg free energy then reads

βcVrep,εc({φa(x)}) =
n∑
a=1

ˆ
ddx

[
K (∂xφa(x))2 + g2

2 φa(x)2 + g3
6 φa(x)3 + g4

24φa(x)4
]

− 1
2

n∑
a,b=1

ˆ
ddxφa(x)φb(x)

[
τ20 + τ21

2 (φa(x) + φb(x))

+τ22
4 φa(x)φb(x) + τ23

6
(
φa(x)2 + φb(x)2

)]
+ 1

6

n∑
a,b,c=1

ˆ
ddxφa(x)φb(x)φc(x)

[
τ30 + τ31

2 (φa(x) + φb(x) + φc(x))
]

− τ40
24

n∑
a,b,c,d=1

ˆ
ddxφa(x)φb(x)φc(x)φd(x) + . . . ,

(II.66)

with K an unknown coefficient.

We now comment on the choice of the inhomogeneous term in the previous equation. In
the case of the spherical p-spin, the Landau-Ginzburg functional can be derived exactly by
considering its Kac formulation [251–253]. In this construction, the spherical p-spin which
is defined on a hypercubic lattice in d dimensions has now finite-range interactions, and the
thermodynamic limit (L → +∞) is taken before taking the limit of infinite interaction range.
The obtained inhomogeneous term which accounts for the phase separation is a priori more
complicated than the mere squared gradient term one may naively introduce (see the above
equation) [166, 172]. The first difference is that the inhomogeneous term involves an overlap
dependent “mass” K(Qa(x)) which vanishes when the overlap with the reference configuration
goes to zero. However, close to the critical point, the overlap is finite and it is approximately
equal to Qc > 0. Besides, the prefactor can be regularised by considering a mixed p-spin model.
A two-body interaction of typical amplitude J2 is added to the Hamiltonian of Eq. (II.30) which
makes the prefactor of the squared gradient finite and of order J2. In the limit of small-enough
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J2, the behaviour of the pure p-spin model is recovered. The second difference is that the Landau-
Ginzburg functional in the Kac limit displays gradient terms of the saddle-point solutions which
have not been included there. As the critical point lies above the Kauzmann transition, one
can assume that the saddle-point solutions adiabatically follow the overlaps with the reference
configuration [173], and their derivatives can thus be written as a function of the derivatives of
the overlaps with the reference configuration. These arguments justify the above approximation
of the interfacial free energy cost in terms of a mere squared gradient near the critical point.

4.2 Mapping onto the random-field Ising model

In this section, we extend the result of Ref. [218] where the focus was made on the case
T = T0. We show that for any temperature of the reference configurations T0, if the critical point
exists, then it is in the universality class of the random-field Ising model8 (RFIM). Details about
the RFIM can be found in Appendix A. For any temperature T0 of the reference configurations,
one can show that the Landau-Ginzburg free energy of Eq. (II.66) can be mapped onto the
replicated Hamiltonian of a system in the presence of a random field h(x), a random mass
m(x) and a random cubic coupling λ(x). In other words, glass-forming liquids whose overlap
with a reference configuration which is sampled at a temperature T0 is coupled to an external
source behaves close to the critical point as a random system which is described by the following
disordered Hamiltonian:

βV[φ(x)] =
ˆ

ddx
[
K ′ (∂xφ(x))2 + g2

2 φ(x)2 + g3
6 φ(x)3 + g4

24φ(x)4

+m(x)
2 φ(x)2 + λ(x)

6 φ(x)3 − h(x)φ(x)
]
,

(II.67)

with 
h(x)h(y) = τ20δ(x− y), h(x)m(y) = −τ21δ(x− y),
m(x)m(y) = τ22δ(x− y), h(x)λ(y) = −τ23δ(x− y),

h(x)h(y)h(t) = −τ30δ(x− y)δ(x− t), h(x)h(y)m(t) = τ31δ(x− y)δ(x− t),
h(x)h(y)h(t)h(w)− h(x)h(y)h(t)h(w) = τ40δ(x− y)δ(x− t)δ(x−w).

(II.68)

The random field is known to be the most relevant disorder term [248], as in the RFIM, the
higher-order random terms are anyway generated along the renormalisation flow. The above
derivation shows that, if the critical point at the mean-field level exists for a given value of T0
and if it survives in finite dimensions [206], then it is in the universality class of the RFIM [250].
Of course, this mapping is only correct if g4, τ20, τ22 and τ40 are all positive [218], which must
be checked for specific models. In the next section, we come back to the spherical p-spin and we
explain how to compute the second cumulant of the FP potential to derive τ20.

The fact that the long-range physical properties of constrained glass-forming liquids fall
in the universality class of the RFIM may be confusing. Indeed, in Sec. 1, the physics of
constrained liquids has been accounted for by a trade-off between the (configurational) entropy
and the attraction energy. On the opposite, the physics of the RFIM is known to be ruled by a

8There are multiple analogies between glass-forming liquids and the RFIM. They have been docu-
mented in the case of the thermodynamics of constrained liquids, of the non-equilibrium behaviour of
glasses when they are sheared (see Chap. I and Ref. [85]), but also of the equilibrium dynamics close to
the dynamical transition temperature [208].
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zero-temperature fixed point and by a competition between two energies (see Appendix A). In
fact, this seeming contradiction can be solved by invoking the mosaic state [144] of the random
first order transition theory (see Chap. I). In this framework, the configurational entropy is only
defined on a scale below the point-to-set length [196]. It fluctuates from one correlated region to
another and therefore it behaves as a random field which is linearly coupled to the overlap [197,
254]. For instance, the regions of larger configurational entropy tend to have a lower overlap
with the reference configuration.

Finally, we remark that in this section, we have focused on the system close to its putative
critical point in the presence of a finite source ε. The mapping onto the RFIM can be extended
on the whole first order transition line for the case T = T0 but also for the case of fixed T0, if the
first order transition survives in finite dimensions [218]. When ε > 0, the constrained supercooled
liquid behaves as the RFIM below its critical temperature in an external magnetic field which
experiences an equilibrium first order transition with disorder when the applied magnetic field
vanishes [211, 255]. More recently, the mapping was also extended close to (ε, T ) = (0, TK) for
T = T0, even though the replicated action displays more terms, in particular random bond and
power law decaying multi-body interactions [196, 197].

4.3 The second cumulant of the Franz-Parisi potential and the “self-induced”
disorder

As already discussed, to compute the second cumulant, one has to introduce two groups of
replicas with different overlaps Q1 and Q2 with the reference configuration, then to compute the
replicated Franz-Parisi (FP) potential from Eq. (II.57), and eventually to use Eq. (II.62). The
computation of the replicated FP potential requires to find the overlap matrix which maximises
the overlap dependent action S[Qαγ ]. One can look for a replica symmetric (RS) ansatz. This
is justified by the fact that we later compute the second cumulant for the spherical p-spin model
for which the critical point is always described by a RS ansatz. One thus considers an overlap
matrix at the saddle-point of the form

Q∗αγ =



1 Q1 . . . . . . Q1 Q2 . . . . . . Q2

Q1 1 Q
(1)
0 . . . Q

(1)
0 Q12 . . . . . . Q12

... Q
(1)
0

. . . . . . ...
...

...
...

... . . . . . . Q
(1)
0

...
...

Q1 Q
(1)
0 . . . Q

(1)
0 1 Q12 . . . . . . Q12

Q2 Q12 . . . . . . Q12 1 Q
(2)
0 . . . Q

(2)
0

...
...

... Q
(2)
0

. . . . . . ...
...

...
...

... . . . . . . Q
(2)
0

Q2 Q12 . . . . . . Q12 Q
(2)
0 . . . Q

(2)
0 1



, (II.69)

where Q(1)
0 , Q(2)

0 and Q12 are free parameters to maximise S[Qαγ ].

We now turn to the spherical p-spin for explicit calculations. Inserting the previous ansatz
in Eq. (II.42) and in the saddle-point equation (II.43) yields [218, 239]

V
(2)

RS (Q1, Q2) = βJ2

2 Qp12 −
(Q12 −Q1Q2)2

2β(1−Q(1)
0 )(1−Q(2)

0 )
, (II.70)
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Fig. II.6 | Variance of the effective random fields ∆ ≡ τ20 in the mapping onto the RFIM for the
spherical p-spin model (with p = 3). The square marks the value of ∆ at the critical point when
T = T0.

whereQ(a)
0 (a = 1, 2) is solution of Eq. (II.48) withQ that is replaced byQa, whileQ12 extremises

the above expression and is thus solution of

pβ2J2

2 Qp−1
12 = Q12 −Q1Q2

(1−Q(1)
0 )(1−Q(2)

0 )
. (II.71)

In the case of the spherical p-spin model, neither the expression of the second cumulant (II.70)
nor the solution of Eq. (II.71) depend on the temperature T0 of the reference configurations. In
addition, we remark that if Q1 = Q2 (in particular at the critical point), then Q12 = Q

(1)
0 = Q

(2)
0 .

We can now compute the coefficient ∆ ≡ τ20 from the second derivative of V (2)(Q1, Q2)
which is evaluated at the critical point, see Eq. (II.65). It represents the variance of the effective
random fields in the mapping onto the RFIM and it is thus a measure of the dominant effective
and “self-induced” disorder in the constrained p-spin. Its evolution with the temperature of the
reference configurations is given in Fig. II.6, where both ∆ and T are rescaled by the appropriate
measure of the interaction coupling. We first note that it always remains positive, as it should.
In addition, it decreases at both large and small values of T0 while it is maximum for intermediate
values of T0 ' Tcvx. We recall that Tcvx is the critical temperature for the case T = T0. As
a result, the case T = T0 corresponds to a relatively high disorder strength. The evolution of
∆(T0)/J2 can be understood qualitatively. On the one hand, when T0 is lowered, the number of
metastable states in which the reference configurations can be sampled decreases. On the other
hand, when T0 increases, the free energy landscape becomes more trivial and the disorder is less
relevant. If our physical intuition is correct, then the evolution of ∆ with the temperature of
the reference configurations in realistic glass-forming liquids should be similar when rescaling
all quantities by the strength of the effective interactions. As a consequence, decreasing T0 in
constrained glass-forming liquids pushes the critical point at higher temperatures in the liquid
region but it reduces the strength of the effective disorder and it potentially makes more difficult
to assess the role of the disorder in the physics of glass-forming liquids when they are coupled
to a quenched reference.

This section has discussed the first steps towards a statistical field theory of the overlap order
parameter in finite dimensions. However, a more realistic description of supercooled liquids re-
quires a knowledge of the overlap dependent action S[Qαγ ] from which the cumulants of the FP
potential can be computed. In other words, as derived, even though the statistical field theory
makes general predictions regarding the nature of the transitions, it does not predict whether
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the mean-field phase diagram (ε, T ) survives the introduction of finite-dimensional fluctuations.
Therefore, computer simulations can be helpful to detect phase transitions in constrained su-
percooled liquids but also to measure S[Qαγ ] in model glass-formers. Before presenting our
numerical simulations of constrained supercooled liquids in dimensions d = 2, 3 in Chap. III, we
first review the results which were obtained in previous works and we develop our directions of
study.

5. Computer studies of glass-formers in the Franz-Parisi construction

5.1 Structural liquids

Since coupling the overlap with a reference configuration to an external source may induce
a first order phase transition between a low-overlap phase and a high-overlap phase and since it
may thus reveal the existence of non-trivial thermodynamic fluctuations and of an entropy crisis
at a low and inachievable temperature, computer simulations have been performed in several
three-dimensional models in order to study the main features of the phase diagram (ε, T ).

The Franz-Parisi (FP) potential was measured in different model glass-formers for the case
T = T0 by using importance sampling techniques which are similar to the ones that are detailed
in Chap. III. In particular, in small systems, the FP potential shows a tendency to become non-
convex when lowering the temperature, in agreement with the mean-field picture [181, 209, 213,
241]. In larger systems instead, the FP potential turns to become almost linear when lowering
the temperature [256]. These results suggest that the mean-field theory of the glass transition
remains relevant in finite dimensions.

The thermodynamics in the presence of a finite source ε was also measured in computer
simulations for the case T = T0. The isotherms 〈Q̂〉ε flatten as the temperature is decreased and
conversely the susceptibilities grow in small systems. The location of the susceptibility maxima
forms a line in the plane (ε, T ) which is often called the “Widom line”. Along the Widom line,
the full overlap probability distribution was also computed, see Eq. (II.13), and it becomes
bimodal at low temperatures. This is the expected distribution if there is a phase separation
between a low-overlap phase and a high-overlap phase [209]. This is also consistent with the
direct real-space analysis of overlap profiles which show macroscopic domains of small and large
overlap [156, 256]. Finally, the phase diagram (ε, T ) was explored from a dynamic point of view
too. The study of the time variation of the overlap upon heating or cooling for fixed ε > 0 has
revealed hysteresis as it is expected when crossing a first order transition line [156].

The influence of the disorder which is represented by the reference configurations was also
assessed in Ref. [209]. For a fixed ε, the overlap probability distribution is shown to be different
from one reference configuration to another. Overall, this suggests that the disconnected sus-
ceptibility in Eq. (II.9) is non-zero in constrained glass-forming liquids and that the disorder is
indeed relevant. In addition, the RFIM-like scaling between the connected and the disconnected
susceptibilities [see Eq. (II.79) in Appendix A] was also investigated and it appears to be verified
even though the increase in both susceptibilities is mild because of small system sizes.

The role of the temperature T0 of the reference configuration was studied too [209]. When
T0 is decreased at a fixed temperature T , the overlap probability distribution for the largest
total susceptibility is found to become more bimodal. This shows that the overlap fluctuations
increase when lowering T0 and this result is indeed consistent with the fact that the putative
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critical point is shifted upwards in temperature, see Fig. II.5.

All the previous results are encouraging. However, their conclusions have been limited to too-
large temperatures or too-small system sizes. In particular, most studies have been performed in
the case T = T0 for which the critical point may be at or below the avoided dynamical transition
(mode coupling crossover) for which equilibration of the unconstrained liquid becomes difficult
to ensure for a reasonable simulation walltime, see also Appendix A of Chap. III. In other words,
all previous numerical works likely remained above the putative critical point, i.e., along the
Widom line. In order to go further in the simulations of constrained supercooled liquids, one
needs to be able to go to significantly lower temperatures and to larger system sizes. This is
what we achieve in Chap. III by relying on the recently-developed swap algorithm [54]. Finally,
we note that numerical works have concentrated on 3d systems. However, 2d models should
also be investigated as the mapping onto the RFIM excludes the existence of a transition at any
temperature in the thermodynamic limit (the lower critical dimension is 2, see Appendix A).
This is therefore a strong prediction that can be checked. In Chap. III, we also bridge this gap.

5.2 Plaquette models

We also review computer simulations which were performed on plaquette models. The latter
correspond to lattice models of Ising spins with p-body interactions in which interacting spins
form plaquettes of p spins [201]. These models are related to Ising p-spin models [257] which are
at the root of the mean-field theory of the glass transition. However, when the lattices of spins
and bonds are isomorph [258], or equivalently when the number of spins per plaquette equals the
number of plaquettes to which a given spin belongs, the model is well described by the dynamic
facilitation theory as it can be mapped onto a system of localised and non-interacting defects
which diffuse with kinetic constraints, namely, onto a kinetically constrained model [257, 259]
(see Chap. I).

In Ref. [260], the thermodynamics of the d = 3 square pyramid plaquette model which is
attractively coupled to a quenched reference configuration was studied numerically. Spin systems
are easier to simulate than particle systems and larger system sizes and lower temperatures can
thus be achieved. While the dynamics of the unconstrained square pyramid plaquette model is
actually described by the dynamic facilitation theory [112], its thermodynamic behaviour was
shown to be remarkably consistent with the mean-field theory of the glass transition. A random-
field Ising model (RFIM) critical point was found and characterised thanks to a finite-size scaling
analysis. The role of the temperature T0 of the reference configuration on the position of the
critical point was also discussed, with a similar trend as in Fig. II.5 (a). For this system, the
entropy only vanishes at zero temperature [243, 261] and the results are consistent with a line
of first order transition which converges to (ε, T ) = (0, 0) in the phase diagram.

The phase diagram (ε, T ) was also investigated from a dynamic point of view in Ref. [99] for
the 2d triangular plaquette model. The melting dynamics at a temperature T of equilibrium
configurations which were sampled at a temperature T0 was analysed for the unconstrained liq-
uid (ε = 0) and close to Widom line (ε > 0). When 0 < T0 < T and when ε is small-enough,
the dynamics of the constrained system agrees with the Avrami law which describes the rare
nucleation of small droplets of the stable (low-overlap) phase into the metastable (high-overlap)
one, that is followed by the growth of these nuclei, as it is expected close to a first order tran-
sition [103]. However, the Avrami description fails closer to the Widom line as the typical size
of the domains over which the overlap field is correlated increases and as the disorder starts
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to become relevant (see the Imry-Ma argument in Appendix A). Hence, at short lengthscales
and timescales, the system displays mean-field remnants. In addition, the behaviour is consis-
tent with the RFIM criticality and the fact that any phase transition should disappear in the
thermodynamic limit in 2d.

Overall, the fact that plaquette models behave similarly as glass-forming liquids means that
the mean-field theory of the glass transition and the dynamic facilitation theory are not com-
pletely incompatible. Consequently, the study of constrained glass-formers might be a way
of linking these two theories of the glass transition and this gives another motivation to the
simulations of the next chapter.

Appendix A - The random-field Ising model

A.1 Presentation

The random-field Ising model (RFIM) is a generalisation of the pure Ising model. It corre-
sponds to a system of Ising spins Si = ±1 on a hypercubic lattice in d dimensions which interact
with ferromagnetic coupling constants9 Jij > 0. In addition, on each lattice site, the spin Si
interacts with a random field hi [91]. The random fields are quenched random variables which
are usually of zero mean and which are delta-correlated in space. The Hamiltonian of the RFIM
is written as

Ĥ[S] = −
∑
〈i,j〉

JijSiSj −
N∑
i=1

hiSi, (II.72)

where 〈i, j〉 denotes the sum over all nearest neighbour pairs.

Alternatively, the RFIM can be described by a Landau-Ginzburg functional which corre-
sponds to a φ4-theory of the form [262, 263]

V(φ(x)) =
ˆ

ddx
{
K(∂xφ(x))2 + g2

2 φ(x)2 + g4
24φ(x)4 − h(x)φ(x)

}
, (II.73)

where K > 0, g2 and g4 > 0 are multiplicative constants, and where h(x) is a random field of
zero mean which is delta-correlated in space, namely,

h(x) = 0, h(x)h(y) = ∆`dδ(x− y), (II.74)

with ` a microscopic length. The coefficient g2 vanishes at the mean-field second order phase
transition in the pure Ising model (without disorder), it is positive in the paramagnetic phase
and it is negative otherwise. The two formulations of Eq. (II.72) and (II.73) describe the same
long-range physics and they thus belong to the same universality class. The long-range physics
is also independent of the details of the distribution of the random fields, provided there are no
long-range correlations among the latter [264]. In practice, a Gaussian distribution is usually
considered.
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Fig. II.7 | Mean-field phase diagram of the random-field Ising model in the plane (∆/J2, T/J),
with J the coupling constant between spins, T the temperature and ∆ the variance of the random
fields. The phase diagram is obtained for a Gaussian distribution of random fields and it displays
a line of second order phase transition between a paramagnetic phase (PM) at high temperatures
and disorder and a ferromagnetic phase (FM) at low temperatures and disorder. The transition line
converges to zero temperature for a finite critical disorder strength ∆c/J

2 = 2/π. When ∆ = 0, one
recovers the critical behaviour of the pure Ising model with Tc(∆ = 0)/J = 1.

A.2 Critical behaviour

A.2.1 Mean-field theory

In the mean-field limit, i.e., in the limit of long-range ferromagnetic interactions between
spins or of infinite dimensions, the thermodynamics of the random-field Ising model (RFIM)
can be computed exactly. This can for instance be done by using replica calculations to deal
with the average over the realisations of the random fields [265]. The pure Ising model is
described by a single control parameter, namely, the temperature T which is rescaled by the
typical ferromagnetic coupling constant J . The RFIM has instead two control parameters,
namely, the rescaled temperature T/J and the rescaled variance of the random fields ∆/J2. A
line of second order phase transition Tc(∆) in the plane (∆, T ) is then found and separates a
paramagnetic phase with a zero magnetisation at high temperatures and high disorder from a
ferromagnetic phase with a non-zero magnetisation at low temperatures and low disorder. The
phase diagram is shown in Fig. II.7 for the case of a Gaussian distribution of random fields.
When ∆ = 0, one recovers the critical temperature of the pure Ising model Tc(0)/J = 1. When
T is fixed below Tc(0), another critical point exists for ∆ > 0: the ferromagnetic phase becomes
stable for a small amplitude of the disorder when thermal fluctuations are weaker. The line
extends down to zero temperature with a critical disorder ∆c/J

2 = 2/π [266]. This indicates
that even at zero temperature, there is a critical point. This also implies that if the disorder
strength is such that ∆ > ∆c, no long-range order is found at any temperature and the system
is always in a paramagnetic phase. In consequence, the physics of the RFIM is different from the
one of the pure Ising model and it is governed by disorder-induced fluctuations rather than by
thermal fluctuations. The existence of a zero-temperature critical point also suggests that the
critical behaviour is not ruled by a competition between the entropy and the energy as for usual
phase transitions but by a competition between two energies, namely, the Zeeman energy (local
alignment with the random field) and the ferromagnetic energy (alignment between spins).

9Contrary to spin glasses [e.g., the p-spin model which is defined by the Hamiltonian (II.30)], the
ferromagnetic coupling constants Jij are not random in the RFIM.
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We have so far discussed the case of a zero external magnetic field. When the latter is added,
or equivalently when the random field is no longer of zero mean, the phenomenelogy is similar
to the one of the pure Ising model: in the ferromagnetic phase, a thermodynamic first order
phase transition is found when the applied magnetic field turns from negative to positive in the
thermodynamic limit.

A.2.2 The lower critical dimension

The thermodynamics of the RFIM in finite dimensions d can also be discussed, and the
focus is made on the critical behaviour. First of all, the lower critical dimension of the RFIM
is dl = 2 [267, 268], unlike the Ising model for which it is equal to 1. This result can be
understood qualitatively thanks to the Imry-Ma argument that we review now [91, 249]. As
already mentioned, at zero temperature, the transition is ruled by the competition between
the Zeeman energy and the ferromagnetic aligment energy. One imagines that the system in d
dimensions and in the absence of an external magnetic field is in a ferromagnetic phase of up
spins and we want to assess the stability of this state. One now considers a domain of down spins
of size L. The interfacial cost to create such a domain is of order JLd−1. Its Zeeman energy
is a random quantity of zero mean and of variance ∆Ld. As a result, the domain can gain at
most a Zeeman energy which is approximately equal to

√
∆Ld/2, and its total energy roughly

reads JLd−1−
√

∆Ld/2. For large-enough domains, this energy is negative if d− 1 < d/2, i.e., if
d < 2. In this case, the system prefers creating domains in order to gain a Zeeman energy and
any long-range order is destroyed.

A.2.3 The zero-temperature fixed point

For dimensions d > 2 then, the phase diagram looks like Fig. II.7. The application of
renormalisation group techniques [269] proves that the pure critical point at a temperature
Tc(0) and at zero random field is unstable, and accordingly the disorder is relevant. Along the
line of critical points, the renormalisation flow converges to the zero-temperature fixed point
at ∆ = ∆c [91, 248]. Therefore, as long as ∆ > 0, the critical behaviour is ruled by the zero-
temperature fixed point which controls the critical exponents for instance. This confirms the
intuition that a competition between two energies controls the physics of the RFIM. However,
temperature is a dangerously irrelevant variable and the renormalised temperature converges
to the fixed point with a non-trivial critical exponent θ [269]. Because of this new exponent,
the system is described by three independent critical exponents [270], for instance by the triplet
(ν, η, η). The first one, ν, is the critical exponent which controls the divergence of the correlation
length ξ close to the critical point. The two others are the anomalous dimensions which describe
the spatial decrease of the connected correlation function,

G(con)(x,y) = 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 ∼ 1
|x− y|d−2+η , (II.75)

and of the disconnected one10 [270],

G(dis)(x,y) = 〈φ(x)〉〈φ(y)〉 − 〈φ(x)〉 〈φ(y)〉 ∼ 1
|x− y|d−4+η . (II.76)

10The integral over space of these correlation functions yields the connected and the disconnected
susceptibilities, which are introduced in Sec. 2.2.
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In particular, the temperature exponent θ is related to the two anomalous dimensions by the
scaling law [270]

η − η = 2− θ. (II.77)
In mean-field theory, η = η = 0, and θ = 2.

A.2.4 Dimensional reduction and its breakdown

A main consequence of the existence of a zero-temperature fixed point and of a new tem-
perature exponent is the fact that the hyperscaling relation is no longer satisfied, and instead
2−α = (d−θ)ν [262, 263, 271], with α the heat capacity exponent. In mean-field theory, α = 0,
ν = 1/2, and θ = 2. As a consequence, this relation can only be satisfied if d = du = 6 which
is thus the upper critical dimension above which mean-field theory becomes exact to describe
the critical behaviour of the RFIM. This upper critical dimension can also be derived from
another heuristic argument in the same spirit as the Imry-Ma argument for the lower critical
dimension [91, 262].

The critical exponents of the d-dimensional RFIM have been shown to be equal to the ones
of the pure Ising model in dimensions d− 2 by using perturbation theory [272, 273] and also by
displaying a hidden supersymmetry [274]. This property is known as dimensional reduction and
it is true in particular at the upper critical dimension du = 6, as the upper critical dimension of
the system without disorder is 4. Dimensional reduction then implies that the universality class
of the RFIM is merely described by two critical exponents instead of three, and the new scaling
law η = η holds [263]. However, dimensional reduction is clearly wrong at the lower critical
dimension of the RFIM which is dl = 2 and not 1 + 2 = 3. In addition, just above the lower
critical dimension, the relation η = 2η was proved by using perturbation theory [269], contrary
to the dimensional reduction prediction. An exact functional renormalisation group analysis
solved this paradox and demonstrated that dimensional reduction breaks down in dimensions
d < dDR = 5.1 for the RFIM [275, 276]. Below this dimension, the RFIM and the pure Ising
model universality classes are not related, as confirmed by large-scale computer simulations [277].

A.2.5 The number of independent critical exponents

The number of independent critical exponents in the RFIM has been a matter of debate for
many years, as several studies have suggested that the relation

η = 2η (II.78)

should hold in any dimension [278]. Once again, the functional renormalisation group theory
brought a clear answer and showed shown that the above relation does not generally hold [263],
and that it is actually an inequality which was first derived by Schwartz and Soffer [279], namely,
η ≤ 2η. However, in the range dl < d < dDR, the deviation from Eq. (II.78) is always quite
small, as direct measures of the critical exponents suggest [264, 277, 280]. A consequence of
Eq. (II.78) is that when approaching the critical point, the disconnected susceptibility scales as
the square of the connected one [270], namely,

χ(dis) = ∆
Tc(∆)χ

(con)2
. (II.79)

The prefactor in Eq. (II.79) represents the ratio of the variance of the random fields ∆ to the
critical temperature for the same value of ∆. When η ' 2η, as it is found in d = 3, Eq. (II.79)
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represents a very good approximation.

A.2.6 The activated critical dynamics

We finally discuss the dynamics of the RFIM close to its critical point, which is expected to
suffer from a critical slowing down. The fluctuations of the order parameter and the associated
relaxation mechanisms become collective on the scale of the correlation length ξ which diverges
when approaching the critical point. In standard critical phenomena, for instance in the univer-
sality class of the pure Ising model, the critical dynamics is described by a dynamic exponent z
such that the relaxation time τ scales as τ ∼ ξz. Therefore, in conventional critical phenomena,
τ diverges with a power law at the approach of the critical point [281].

The critical dynamics in the RFIM is different and this is also related to the fact that the
critical behaviour of the system is described by a zero-temperature fixed point. The droplet
scenario [262, 271] assumes that the system displays a distribution of energy barriers of typical
height which grows as ξψ because of the quenched disorder, with ψ another critical exponent.
Relaxation then occurs because of thermal activation over these barriers, and this leads to the
activated dynamic scaling

ln τ ∼ ξψ. (II.80)

Besides, the simplest assumption is that ψ should be equal to θ. In consequence, the critical
slowing down in the RFIM is far more dramatic than the conventional dynamic scaling, as
the logarithm of the relaxation time instead behaves as a power law of the correlation length.
Formally, the RFIM is characterised by a dynamic exponent z = +∞ for d < du, while above
the upper critical dimension, one should recover the mean-field prediction z = 2 [115, 281].

The activated dynamic scaling of Eq. (II.80) and the crossover between non-activated dy-
namics (d > du) and activated dynamics (d < du) can be understood by using functional
renormalisation group techniques [282]. When dimensional reduction breaks down (d < dDR),
then the relation ψ = θ is found, in agreement with the droplet scenario. When dDR < d < du,
then the dynamics is still activated contrary to what is expected from dimensional reduction.
Therefore, dimensional reduction only applies to static properties. In this regime, ψ decreases
with d and it eventually vanishes at d = du.
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Phase diagram of finite-dimensional
constrained supercooled liquids from
computer simulations

We study the thermodynamics of a model supercooled liquid in dimensions d = 2, 3 at a
temperature T whose overlap with a reference configuration is biased thanks to an external source
ε. Based on our discussion of Chap. II and in particular building on the analytical calculations
of the spherical p-spin model, we consider reference configurations which are sampled at very
low temperatures T0 in order to move all the putative relevant thermodynamic features that are
associated with the overlap fluctuations to higher temperatures. These configurations are easily
generated by using the swap algorithm. Results for the case T = T0 are instead presented in
the Appendix. To explore the phase diagram and to compute the thermodynamic properties
of constrained supercooled liquids accurately, we use importance sampling techniques, namely,
umbrella sampling and histogram reweighting. We find that the models in both d = 2 and
d = 3 display the mean-field phenomenology in “reasonably small” systems. In particular, the
Franz-Parisi potential, which represents the free energy cost for keeping a certain overlap with
a reference configuration in the bulk liquid, shows a non-convex behaviour while the isotherms
of the overlap with respect to ε plateau and the overlap distributions become bimodal at low
temperatures, consistently with a first order transition which ends in a critical point. However, in
low dimensions, e.g., d = 2, 3, strong finite-size effects are expected close to a first order transition
or a critical point. In order to assess the fate of the mean-field results in finite dimensions, we
perform an extensive finite-size analysis and we study the size evolution of the overlap probability
distribution and of the susceptibilities. In agreement with recent field theoretical calculations
beyond mean-field theory, we demonstrate the existence of a first order transition line for finite ε
which ends in a critical point in the universality class of the random-field Ising model (RFIM) in
3d. Instead, the 2d system does not present any sign of singular behaviour in the thermodynamic
limit, consistently with the RFIM universality class whose lower critical dimension is equal to
2. The RFIM criticality is confirmed by studying the dynamics of the constrained liquid in 3d
in the vicinity of its critical point, which is found to be compatible with an activated dynamic
scaling. Overall, our results prove that the mean-field results and their extensions to finite
dimensions by using statistical field theory are robust in finite dimensions and they emphasise
the important role of the disorder in some aspects of the physics of supercooled liquids and
glasses, as illustrated by the analogy with the physics of the RFIM.
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Part of this work has already been published in Ref. [283] and results of this chapter will
also be the object of another publication.

1. Introduction

In Chap. II, we have reviewed the Franz-Parisi (FP) setting in the study of glass-forming
liquids. It consists in linearly biasing the overlap between a liquid configuration at a temperature
T and a quenched reference configuration of the same liquid which has been sampled at a
temperature T0 thanks to an external source ε, see Eq. (II.3). Studying the thermodynamics of
the constrained liquid reveals the non-trivial changes in the underlying free energy landscape at
the mean-field level and it gives access to some properties of the metastable states (free energy
minima). In the plane (ε, T ), a line of first order transition between a low-overlap phase and a
high-overlap phase is found, which ends in a critical point at (εc, Tc) [153–155].

In Chap. II, we have also explained the first steps towards a field theory of the overlap beyond
mean-field in finite dimensions d which relies on a replicated Landau-Ginzburg functional of the
overlap profiles. We have detailed its main predictions, namely, that the critical point at (εc, Tc)
belongs to the universality class of the random-field Ising model (RFIM) and that the line of
first order transition below it corresponds to a transition in the presence of a random field [218,
250]. This is a strong statement as it forbids the existence of any singular behaviour in the
thermodynamics of constrained liquids in d = 2 [249, 267, 272, 273] or in d = 3 if the disorder
becomes too large [91, 265].

Even though statistical field theory makes predictions about the properties of the phase
diagram of constrained supercooled liquids (ε > 0) it does not provide information about the
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Fig. III.1 | Sketch of the different phase diagrams which can be expected for the thermodynamics of
constrained liquids in finite dimensions. The control parameters are the temperature T and the field
ε which biases the overlap Q̂ between the configuration of the liquid and a reference configuration
of the same liquid which has been sampled at a temperature T0. The diagrams are pictured here
for the case T0 = T . Panels (a) and (b) represent mean-field-like scenarios for thermal systems,
and which depend on the existence [panel (a)] or the absence [panel (b)] of an entropy crisis at a
temperature TK ≥ 0. Both diagrams display a line of first order transition (full line) between phases
of low overlap and high overlap which ends in a critical point (εc, Tc). Above the critical point, the
Widom line (dashed line) represents the loci of the (finite) maximum of the overlap fluctuations.
(c) Another phase diagram may also be found with a mere Widom line down to zero temperature,
for instance in d = 2 or in d = 3 if the disorder is too strong.

actual existence of the phase transition or of the critical point in realistic glass-forming liquids.
Actually, several different phase diagrams may be envisioned for the thermodynamics of con-
strained supercooled liquids in finite dimensions, see Fig. III.1. This is because statistical field
theory has so far dealt with simplified Landau-Ginzburg functionals. Computer simulations
then represent a complementary tool to study the thermodynamics of constrained supercooled
liquids. They allow one to measure the actual Landau-Ginzburg functional of the overlap field
in realistic glass-formers. The measured functional could later be used as an input of statistical
field theory for instance in order to compute the parameters of an effective RFIM description.
In this chapter, we use computer simulations to directly assess the existence of the critical point
and of the associated first order transition line and to check the theoretical predictions from
statistical field theory. We consider the cases d = 2 and d = 3, and in the next section, we
present our numerical strategy.

2. Model and methods

2.1 Numerical strategy

The constrained thermodynamics of supercooled liquids depends on the triplet (ε, T, T0). In
the previous chapter, we have computed the mean-field phase diagram (ε, T ) of the paradigmatic
spherical p-spin model for the case T = T0 but also for a fixed temperature of the reference
configuration T0 whatever the temperature T [153, 156]. We have shown that considering the
case of a fixed T0 in between the dynamical transition temperature at which the metastable states
first appear and the Kauzmann transition temperature TK at which the configurational entropy
vanishes moves the critical point and the first order transition line to higher temperatures. This
also changes the shape of the first order transition line which does no longer converge to the
random first order transition point at (ε, T ) = (0, TK) but which instead extends down to zero
temperature [222]. We have subsequently rationalised this trend which is thus expected to hold
in mean-field glass-forming liquids. We have also reviewed published numerical works which
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suggest that it should also hold in finite-dimensional liquids [209] and plaquette models [260].

In addition, past numerical works which have focused on the case T = T0 have been mostly
limited to the “Widom line”, i.e., the region of the phase diagram above the putative critical
point. This is because in the various systems which have been considered, this critical point
is likely to be close to or below the mode-coupling crossover1 Tmct ' Td below which the
equilibration of the unconstrained liquid exceeds a reasonable simulation walltime (of about one
week) [209, 213, 256], see Appendix A [283]. Pushing the interesting thermodynamic features to
higher temperatures would then be beneficial by considering stable equilibrium configurations
at a low temperature T0. This would ease sampling of the phase space of the constrained liquid
because of a smaller bulk relaxation time. We have however seen in Chap. III that this might
come with a less-pronounced RFIM-like behaviour.

In 2017, the swap algorithm was developed and optimised for a family of models with conti-
nous size-polydispersity [54]. The swap algorithm combines standard translational moves with
swap Monte Carlo moves which consist in exchanging the positions (or equivalently the sizes)
of two randomly-chosen particles while respecting detailed balance. This algorithm corresponds
to a non-physical dynamics but it results in an incredibly large equilibration speedup [284] (as
quantified by the ratio of the relaxation time of the swap dynamics to the one of the physical
dynamics), of about 103 at the mode-coupling crossover and up to 108 or even 1011 at the ex-
trapolated (experimental) glass transition temperature2 Tg in d = 3 and d = 2 respectively [54,
182]. Consequently, we take advantage of the swap algorithm in order to prepare very stable
configurations in equilibrium at a temperature T0 . Tg, see Tab. III.1. We have also obtained
results for the case T = T0 and they are discussed in Appendix A.

To study the thermodynamics of the constrained liquid at a temperature T which is coupled
to a reference configuration at a temperature T0, the easiest thing to do is to directly simu-
late the system with the Hamiltonian (II.3). However, we need to implement more advanced
simulation techniques because of several sampling issues. First, at high temperatures close to
the putative critical point, the dynamics (even with the swap algorithm) is expected to slow
down significantly [283], see also Sec. 5.2. This critical slowing down is due to diverging thermo-
dynamic fluctuations of the order parameter. In RFIM-like systems, the critical slowing down
is far more spectacular than in pure systems as the relaxation time scales exponentially with
the correlation length (instead of algebraically) [262, 271], see also Appendix A of Chap. II. In
addition, near the anticipated first order transition line, a correct sampling may be hindered
due to large nucleation barriers between the metastable phase and the stable one. The system
may remain trapped for a long time and it may then only sample one of the two phases.

In the next sections, we give more details about the model that we consider and the way com-
puter simulations are performed. We also explain how the thermodynamics of the constrained
liquid is computed without directly simulating the latter but instead via an umbrella sampling
and a subsequent reweighting.

1See Chap. VI for its measurement.
2We define the extrapolated glass transition temperature as the temperature at which the extrapolated

relaxation time increases by twelve orders of magnitude from its value at the onset temperature of glassy
behaviour. The onset temperature is instead defined as the highest temperature at which the relaxation
time departs from its high-temperature Arrhenius behaviour [285–287]. More details can be found in
Chap. VI.
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dt τth nMD nswap a κ T0 Tmct Tg
2d 0.005 0.5 50 10 0.22 0.3 0.03 0.115 0.068
3d 0.01 0.5 25 1 0.22 20 0.06 0.095 0.056

Tab. III.1 | Parameters which are used to run the simulations: time step dt for the integration of
the equations of motion, damping time of the thermostat τth, number of molecular dynamics steps
nMD between sequences of swap moves, number of swap moves per particle nswap, tolerance length
a in the definition of the overlap, curvature κ of the umbrella potential, temperature T0 of the
reference configuration when it is fixed. We also report the mode-coupling crossover temperature
Tmct and the extrapolated glass transition temperature Tg for comparison.

2.2 Model

We study a system of N spherical particles of equal mass m in spatial dimensions d = 2, 3
with radial pairwise interactions, as first introduced in Ref. [54]. The diameters {σi}i=1···N of
the particles are drawn from the distribution p(σi) ∝ σ−3

i for σi ∈ [σmin, σmax] with σmax/σmin '
2.217. Two particles i and j interact with the repulsive potential

v(rij) = v0

(
σij
rij

)12

+ c0 + c2

(
rij
σij

)2

+ c4

(
rij
σij

)4

, (III.1)

if their relative distance rij = |ri − rj | satisfies rij/σij < xc = 1.25, where their interaction
cross-diameter σij is given by the non-additive rule (µ > 0)

σij = σi + σj
2 (1− µ|σi − σj |). (III.2)

The constants c0, c2 and c4 are set in order to make the potential and its two first derivatives
continuous at the cutoff distance: c0 = −28v0/x

12
c , c2 = 48v0/x

14
c , c4 = −21v0/x

16
c . The distri-

bution of the diameters and the non-additive rule for the cross-diameters reduce the tendency
of the system for crystallisation or demixing. The average diameter σ of the particles is used
as unit length (µ = 0.2 in this unit), the interaction strength v0 is used as unit temperature
(the Boltzmann constant kB is set to unity), and

√
mσ2/v0 is used as unit time. The system is

simulated in a cubic box of linear size L with periodic boundary conditions [64]. The number
density ρ = N/Ld is chosen equal to 1.

The unconstrained system is simulated by using a hybrid scheme which combines molec-
ular dynamics (MD) in the conventional canonical ensemble and the recently developed swap
Monte Carlo algorithm in order to speed up equilibration and phase space exploration [55]. The
scheme consists in the succession of blocks of MD steps and blocks during which swap moves
are performed. The MD is run by implementing the Hoover equations [288] of the Nosé ther-
mostat [289–291] with a time step dt (see Tab. III.1) and a thermostat damping time τth (see
Tab. III.1). Both have been chosen to maximise the algorithm efficiency along with a proper
sampling of the canonical ensemble. The equations of motion are solved by using a reversible
integrator which is based on a Liouville formulation of the equations [292, 293]. The MD is run
for nMD steps (see Tab. III.1). Then, the positions and the velocities of the particles are frozen
and Nswap = nswapN swap moves are attempted (see Tab. III.1). For an elementary swap move,
two particles i and j are randomly selected and their diameters are exchanged. The change in
the total potential energy ∆Ĥswap = Ĥswap − Ĥ is then computed (the kinetic energy remains
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constant), with
Ĥ[rN ] = 1

2
∑
i<j

v(|ri − rj |), (III.3)

and Ĥswap the total potential energy when particle diameters are swapped. The move is eventu-
ally accepted by following the Metropolis rule, namely, with probability equal to min(1, e−β∆Ĥswap)
(β = 1/T ), in order to respect detailed balance [64, 294]. This combination of thermostated
MD and Monte Carlo swap moves ensures a proper sampling in the canonical ensemble. The
parameters nMD and nswap have been fixed in order to maximise the algorithm efficiency while
ensuring a proper sampling in the canonical ensemble.

To compute the overlap between the configuration rN and a reference configuration rN0 , i.e.,

Q̂[rN ; rN0 ] = 1
N

N∑
i,j=1

w(|ri − r0,j |/a), (III.4)

we use the continuous window function w(x) = e−x
4 ln 2 and the tolerance length a which is

reported in Tab. III.1. The prefactor ln 2 is just conventional and it is chosen so that the
window function equals 1/2 for x = 1. Different window functions could be considered, for
instance w(x) = θ(1 − x) with θ(x) the Heaviside step function [114, 154, 155, 181, 209, 213,
241], a Gaussian [179, 180], or a power law decaying function such as w(x) = (1 + x12)−1 [156].
As we are performing MD simulations, we require a window function which is differentiable in
order to compute forces and this forbids the much used Heaviside function. We have therefore
considered a smooth version of the Heaviside function but we have checked that our results are
qualitatively similar when considering different window functions. For our choice of w(x), the
“random” overlap between two uncorrelated configurations is Qrand = ρSda

dΓ(d/4)/[4(ln 2)d/4],
with Sd the area of the unit sphere in d dimensions, and Γ(x) the Euler Gamma function.

The tolerance length a also needs to be fixed. Its influence on the results which are presented
here is extensively studied in Chap. IV [295], where we use a mean-field-like model, namely, the
liquid-state theory in the hypernetted chain approximation (see Ref. [296–298] and Ref. [154,
155, 299–302] for its application in the Franz-Parisi setting), and computer simulations. We
briefly recap our findings here. The qualitative behaviour of the constrained liquid is insensitive
to the choice of a, even though the shape of the phase diagram (ε, T ) is quantitatively changed
when varying a. In particular, the critical point is expected to be at a larger temperature when
the value of a decreases. Here, we have chosen a relatively small value of a, namely, a = 0.22.

In the next sections, we explain how to compute the thermodynamics of the model glass-
former we have introduced when the latter is coupled to a reference configuration by means of
simulations at ε = 0 only. It relies on a two-step “divide and conquer” strategy. The description
of the first step, namely, umbrella sampling, is the object of the next section.

2.3 Umbrella sampling

In Eq. (II.13), the probability distribution Pε(Q; rN0 ) of the overlap in the constrained liquid
has been defined for a fixed reference configuration rN0 and it is related to the probability
distribution of the overlap in the unconstrained liquid for the same reference configuration
P(Q; rN0 ), i.e.,

Pε(Q; rN0 ) ∝ P(Q; rN0 )eNβεQ. (III.5)
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Fig. III.2 | Overlap time series for several biases Qref for the 3d system with N = 1200,
T = 0.22 and the other parameters which are given in Tab. III.1. From bottom to top,
Qref = 0, 0.12, 0.22, 0.32, 0.40, 0.50, 0.62, 0.72, 0.80, 0.94.

This comes from the fact that the Hamiltonian of the constrained liquid Ĥε[rN ; rN0 ] is simply
related to the Hamiltonian of the unconstrained liquid Ĥ[rN ] by

Hε[rN ; rN0 ] = Ĥ[rN ]−NεQ̂[rN ; rN0 ]. (III.6)

As a result, in principle, the thermodynamics of the constrained liquid for any field ε can be
obtained from simulations of the unconstrained liquid only, i.e., with ε = 0. However, positive
values of ε make more probable high-overlap values which are very unlikely in the bulk liquid
with ε = 0, see Fig. II.3 (a). More precisely, Eq. (III.5) indicates that high-overlap values are
exponentially more probable in N when ε gets larger. Therefore, in order to accurately compute
Pε(Q; rN0 ) from the unconstrained distribution, fluctuations of the overlap with an exponentially-
small weight in N must be measured. In a conventional simulation, the system typically explores
a narrow range of overlap values around its random value Qrand, which corresponds to the overlap
for two uncorrelated configurations and which is the absolute minimum of the Franz-Parisi
potential. Consequently, the correct measure of P(Q; rN0 ) on the entire range [0, 1] requires a
more sophisticated algorithm in order to sample rare events.

We use umbrella sampling [303–305] to force the liquid towards larger and untypical values
of the overlap, and we sample phase space with the biased Hamiltonian

Ĥb[rN ; rN0 ] = Ĥ[rN ] +W (Q̂[rN ; rN0 ]) = Ĥ[rN ] + 1
2Nκ(Q̂[rN ; rN0 ]−Qref)2, (III.7)

which is obtained by adding a harmonic bias W (Q) of center Qref and curvature κ to the
Hamiltonian of the unconstrained liquid. The factor of N ensures that the Hamiltonian remains
an extensive quantity. By increasing Qref , we can explore different regions of the phase space,
which are characterised by larger overlap values, while the strength of the bias κ mostly controls
the amplitude of the fluctuations of Q̂. Umbrella sampling controls the amplitude of the overlap
fluctuations and it makes them small-enough to be sampled more accurately.

For a given reference configuration rN0 and a temperature T , we run ns ∈ [23, 35] simula-
tions in parallel with umbrella potentials {Wk}k=1...ns of identical curvature κ and of centers
{Qref

k }k=1...ns in order to sample the entire range of overlap values between 0 and 1, see Fig. III.2.
In 2d, we consider systems of moderate size (typically, up to N = 250) and simulations are thus
very slow when a large bias strength κ is imposed [306]. In consequence, in the 2d system,
we use a smaller value of the bias strength κ (see Tab. III.1) which results in a significant
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overlap between adjacent biased distributions of the order parameter (see Sec. 2.4). In 3d in-
stead, we consider unprecedently large system sizes (typically, up to N = 2400) for such a type
of simulations to investigate the thermodynamic limit because strong finite-size effects are ex-
pected close to a critical point or a first order transition [307, 308]. In order for our reweighting
scheme to scale adequately with N , we use a large bias strength κ (see Tab. III.1) to narrow
the fluctuations (see Sec. 2.5).

For each biased simulation, the system is first equilibrated for −trelax < t < 0. Equilibration
is ensured by checking that the simulations which are started from two distinct initial conditions
converge towards the same stationary state [180, 309]. Then, the statistical properties of the
overlap are measured for 0 < t < teq. In 3d, we monitor the mean-squared displacement

∆̂(t) = 1
N

N∑
i=1
|ri(t)− ri(0)|2, (III.8)

and we check that at the end of the sampling, it exceeds a target value of 10 [54]. In 2d,
due to the strong Mermin-Wagner fluctuations3 which induce large collective translational dis-
placements [312, 313], we instead follow the time evolution of the bond-orientational correlation
function and we require that it has decreased to 0. The latter is defined as

Cψ6(t) = 1
N

N∑
j=1

ψ
(j)
6 (t)

[
ψ

(j)
6 (0)

]∗
, (III.9)

where the star denotes the complex conjugate. Its computation requires the definition of the
single-particle quantity

ψ
(j)
6 (t) = 1

nj(t)

nj(t)∑
l=1

ei6θjl(t), (III.10)

where nj(t) is the number of neighbours of particle j at time t, which are the particles l which
fulfill the condition |rj(t) − rl(t)|/σjl < 1.33, and where θjl(t) is the angle between the x-axis
and the line joining the centers of the two neighbours j and l [182]. Because this correlation
is rotationally-invariant, the choice of the x-axis is made without any loss of generality. These
criteria in 2d and 3d guarantee that the particles have sufficiently moved and that the system
explores the phase space ergodically.

We emphasise that thanks to the small temperature T0 of the reference configurations and
the swap algorithm, the thermalisation is achieved for each umbrella simulation without par-
allel tempering [314]. The latter corresponds to rarely exchanging the configurations of two
adjacent umbrella simulations while respecting detailed balance to ease exploration of the phase
space. However, its implementation requires that the probability distributions of the order pa-
rameter from two adjacent umbrella simulations (adjacent values of Qref) significantly overlap.

3As the overlap Q̂ is defined from the positions of the particles, it may also suffer from the large
and spurious displacements which are associated with the Mermin-Wagner fluctuations. This would
result in the impossibility for the 2d system to be localised. All order parameters of mean-field theory
(for instance the mean-squared displacement [126]) have the same issue. These large displacements are
known to increase with the temperature and (logarithmically) with the system size [310]. For the system
sizes and the temperatures which are considered here, these Mermin-Wagner fluctuations are expected
to be irrelevant. For instance, the translational (self-intermediate scattering function, see Chap. VI) and
orientational (Cψ6 , see later) correlation functions are very similar and the relaxation times which are
extracted from the two functions closely follow each other when varying the temperature [311].
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Here, instead, we can choose a large curvatuve κ which results in non-overlapping probability
distributions of the order parameter, see Fig. III.2.

Thanks to the umbrella sampling, we have turned from one complicated problem to ns
simpler tasks as we have shrunk the amplitude of the overlap fluctuations in each umbrella
window. We have thus “divided” the problem. We now need to use the statistics from the
different simulations to “conquer” and to reconstruct the unconstrained probability distribution
P(Q; rN0 ). This is the object of the next two sections which present histogram reweighting
procedures.

2.4 Multi-histogram reweighting

In 2d, we implement a method which was used in Ref. [181, 209, 213, 241] to compute
P(Q; rN0 ) from the ns different biased simulations and which requires that the biased distri-
butions of the order parameter from consecutive umbrella simulations overlap significantly. It
relies on the multiple histogram method, which was first developed with the aim of extrapolating
the thermodynamic properties of the Ising model at temperatures at which the system was not
directly simulated [294, 315, 316]. This method has since been extended to arbitrary collective
variables (such as the overlap) and several potential biases and it is known as the Weighted
Histogram Analysis Method (WHAM) [317, 318].

For the kth biased simulation at a temperature T with a reference configuration rN0 , the
empirical histogram of the overlap is

Nk(Q)
nk

= 1
Zk
P(Q; rN0 )e−βWk(Q), (III.11)

with nk the total number of times the overlap was stored during the kth biased simulation and Zk
a normalisation constant. As a consequence, from one biased histogram, it is in principle possible
to determine the unconstrained probability distribution P(Q; rN0 ) of the overlap by inverting the
above equation. However, during a simulation of finite duration teq, only a restricted range of
overlap values is sampled and in practice, we can only use the above equation to determine
P(Q; rN0 ) in the range in which the histogram has non-zero values. But, as clearly visible from
Fig. III.2, this range changes from one simulation to the other, and by combining the different
estimates of P(Q; rN0 ) from each umbrella simulation, we can reconstruct the unconstrained
overlap probability distribution on the entire range [0, 1].

The reconstruction from Eq. (III.11) requires to know the partition functions Zk which are
a priori unknown. One possibility would be to first measure the unconstrained probability
distribution by a direct simulation of the liquid (without umbrella potential). Then one has
to tune by hand the partition functions, by starting from the histograms Nk(Q) which overlap
with P(Q; rN0 ), in order to obtain a collapse of the different fragments of the distribution [319,
320] (see Chap. VII). This method which is quite simple in spirit is hardly automated. As the
reweighting has to be repeated for each reference configuration, we prefer a systematic method
to compute P(Q; rN0 ) and to determine the partition functions self-consistently.

As a reconstruction of the unconstrained overlap probability distribution from all the biased
distributions seems possible, we seek P(Q; rN0 ) as a linear combination of its estimate from each
separate biased histogram, namely,

P(Q; rN0 ) =
ns∑
k=1

ykn
−1
k ZkNk(Q)eβWk(Q), (III.12)
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where {yk}k=1...ns are unknown coefficients which verify the condition
∑
k yk = 1. To determine

the coefficients yk, we require that the statistical error on the above estimate is minimum. As
the different histograms are measured independently, the squared statistical error on P(Q; rN0 )
can be expressed as a function of the squared statistical errors on the biased histograms, and it
reads

δP(Q; rN0 )2 =
ns∑
k=1

y2
kn
−2
k Z

2
kδNk(Q)2e2βWk(Q). (III.13)

To estimate the statistical error on the biased histogram Nk(Q), we make a gedankenexper-
iment. We assume that we have performed nh times the same simulation with the same bin
center Qref

k during which we have measured nk times the value of the overlap. For instance, this
would correspond to simulations with different initial conditions or different sequences of ran-
dom numbers for swap moves. Then, for each bin, the statistical error is given by the variance
over the nh histograms. If we denote by brackets [·] the average over the nh simulations, the
statistical error on the biased histogram is given by [321]

δNk(Q)2 = gk [Nk(Q)]
{

1− [Nk(Q)]
nk

}
, (III.14)

with gk the statistical inefficiency. The latter is given by gk = 1 + 2τk/∆tk with τk the autocor-
relation time of the overlap for the kth simulation and ∆tk the constant time interval between
two measures of the overlap. If the bin width is small-enough, or if the overlap range which is
covered during the kth simulation is sufficiently large, then [Nk(Q)]� nk and we obtain for the
statistical error on the unconstrained probability distribution of the overlap

δP(Q; rN0 )2 = P(Q; rN0 )
ns∑
k=1

y2
kn
−1
k gkZkeNβWk(Q). (III.15)

To minimise the above expression with respect to the yk’s with the constraint that their sum
equals 1, we minimise the Lagrangian L = δP(Q; rN0 )2− ν

∑
k yk, with ν a Lagrange multiplier.

By using that
∑
k yk = 1 to determine the Lagrange multiplier, we finally obtain

P(Q; rN0 ) =

ns∑
k=1

g−1
k Nk(Q)

ns∑
k=1

nkg
−1
k Z

−1
k e−βWk(Q)

. (III.16)

We have thus derived an equation to compute the unconstrained probability distribution
from the biased histograms and which can be easily automated. Nevertheless, this estimate of
P(Q; rN0 ) still requires the partition functions Zk. In fact, they can be computed self-consistently
by using Eq. (III.11), by summing over all bins and by inserting the above equation, i.e.,

Zk =
ˆ 1

0
dQ

ns∑
k′=1

g−1
k′ Nk′(Q)

ns∑
k′=1

nk′g
−1
k′ Z

−1
k′ e

−β[Wk′ (Q)−Wk(Q)]
. (III.17)
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We have checked that the statistical inefficiencies are not varying much among the different
biased simulations (we choose ∆tk = dt), and we can simplify the above equations by setting
gk = 1 for all k.

Eq. (III.17) are solved self-consistently by starting from Zk = 1 for all k. The iteration is
stopped when the relative change in the partition functions between two iterations is less than
10−10. To avoid overflows or underflows, the partition functions are rescaled at each iteration by
the geometric average of the minimum and the maximum partition functions over all simulations.
In practice, the convergence of the partition functions is fast and the result of the reweighting
procedure weakly depends on the cutoff criterion to stop the iteration [294]. Once the partition
functions are converged, the unconstrained probability distribution can be readily obtained from
Eq. (III.16) on the entire range [0, 1]. We have thus been able to measure exponentially small
probabilities in N which correspond to large-overlap values.

The accuracy of the WHAM requires a significant overlap between the adjacent histograms.
As the width of the histograms is expected to shrink with N as 1/

√
N , increasing the system

size requires a larger number of simulations. We could tackle this effect by decreasing the
bias curvature κ but this may be problematic as it also decreases the driving force towards
configurations with untypically large-overlap values. In 2d, the system sizes that we have used
are moderate (typically, up to N = 250), and the multi-histogram method is suitable. In 3d,
we perform a finite-size scaling analysis for large systems (typically, up to N = 2400), and the
system size is systematically varied. We thus turn to another reweighting procedure in 3d that
we present in the next section.

2.5 Gaussian ensemble reweighting

In the 3d system, we want to implement a method which scales not too fast with system
size and in particular which does not require an increasing number of simulations when N
increases. The method is similar in spirit to the umbrella integration [322] or the Gaussian
ensemble [323, 324], and it does not require a significant overlap between adjacent umbrella
probability distributions of the order parameter. Instead of setting κ to a small-enough value to
have overlapping adjacent biased histograms, we apply a bias with a large curvature κ in order
for the biased histograms to display a sharp peak at their most probable value which we denote
by Q∗k for k = 1 . . . ns. Taking the logarithm of Eq. (III.11), differentiating with respect to Q,
and evaluating at the most probable value yield

V ′(Q∗k; rN0 ) = −W
′
k(Q∗k)
N

= κ
(
Qref
k −Q∗k

)
, (III.18)

where the prime denotes the derivative with respect to Q, and where V (Q; rN0 ) is the random
Franz-Parisi (FP) potential for a given reference configuration rN0 which is defined in Eq. (II.11).
Equivalently, it stands for the large deviation rate function of P(Q; rN0 ), i.e.,

P(Q; rN0 ) ∝ e−NβV (Q;rN0 ), (III.19)

see also Eq. (II.12).

We note at this point that the normalisation constants Zk have disappeared from the ex-
pression of the unconstrained probability distribution, while they represented a difficulty in the
reweighting procedure of the previous section. As a result, for each simulation, we just need to
measure the most probable value of the overlap. We end up with ns estimates of the derivative
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Fig. III.3 | Principle of the Gaussian ensemble reweighting for the 3d system with N = 1200,
T = 0.22 and the other parameters which are given in Tab. III.1. (a) Derivative of the large
deviation rate function V (Q; rN0 ) at the discrete most probable values {Q∗k}k=1...ns and its cubic
spline interpolation. (b) Unconstrained probability distribution P(Q; rN0 ) (ε = 0) which is obtained
by integrating the cubic spline and by using Eq. (III.19). Distributions Pε(Q; rN0 ) ∝ P(Q; rN0 )eNβεQ
of the overlap for finite values of ε = 0.2, 0.3, 0.4, 0.5 are also represented, see Eq. (III.5). (c) Skewness
γ

(1)
k [see Eq. (III.21)] and kurtosis γ(2)

k [see Eq. (III.22)] of the biased histograms Nk(Q) as a function
of the bias center Qref

k .

of V (Q; rN0 ) at different points. As Qref(Q∗) is a smooth function4, we interpolate it by using
a cubic spline [238, 325]. In other words, Qref(Q∗) is locally approximated by a third-degree
polynomial function. Finally, the cubic spline can be integrated analytically to reach V (Q; rN0 )
up to an additive constant which is chosen so that V (Q; rN0 ) is zero at its global minimum:

V (Q; rN0 ) = κ

ˆ Q

Qrand

Qref(Q∗)dQ∗ − 1
2κ
(
Q2 −Q2

rand

)
. (III.20)

The full procedure is represented in Fig. III.3 (a). The unconstrained probability distribution
is eventually obtained from Eq. (III.19), see Fig. III.3 (b). Once again, we stress that, with this
procedure, we are able to sample the large deviation rate function of P(Q; rN0 ) on the full range
of overlap values and as a result to measure arbitrary small probabilities.

We now explain how to determine the most probable value of the overlap for a given biased
simulation during the course of the simulation, without actually measuring the histogramNk(Q).
This is because we want to avoid systematic errors which are related to the bin width. Our goal is
to derive an expression for the most probable value from quantities which are directly accessible
during a simulation, such as the cumulants of the overlap. To obtain more insight about this

4We have implicitly assumed that the curvature κ is the same for all the umbrella simulations, but
the reweighting formula can be straightforwardly extended if not.
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relation, we show in Fig. III.3 (c) the skewness

γ
(1)
k = 〈(Q̂− 〈Q̂〉k)3〉k

〈(Q̂− 〈Q̂〉k)2〉3/2k

, (III.21)

and the kurtosis
γ

(2)
k = 〈(Q̂− 〈Q̂〉k)

4〉k
〈(Q̂− 〈Q̂〉k)2〉2k

− 3, (III.22)

where 〈.〉k denotes the thermal average with the biased Hamiltonian Ĥb[rN ; rN0 ] with the um-
brella potential Wk. They are both close to 0, which is their expected value if the overlap is
distributed according to a Gaussian. Besides, the kurtosis remains small for all the biases while
the skewness is larger for extreme values of Qref .

Therefore, we reasonably assume that the biased histograms are well approximated by [323]

Nk(Q) ∝ e−αk(Q−Q∗k)2+ξk(Q−Q∗k)3 ∝
[
1 + ξk(Q−Q∗k)3

]
e−αk(Q−Q∗k)2

, (III.23)

where the third-order term is considered as a perturbation from the Gaussian limit (ξk = 0) and
it is non-zero for extreme values of Qref only. We restrict ourselves to expansions at the first
order in ξk, which are correct if ξkα

−3/2
k � 1. We use the proxy in Eq. (III.23) to compute the

three first cumulants of the overlap, which read, at the leading order in ξk,

〈Q̂〉k = Q∗k + 3ξk
4α2

k

,

〈(Q̂− 〈Q̂〉k)2〉k = 1
2αk

,

〈(Q̂− 〈Q̂〉k)3〉k = 3ξk
4α3

k

.

(III.24)

Inserting the second and third equations into the first one yields for the most probable value:

Q∗k = 〈Q̂〉k −
〈(Q̂− 〈Q̂〉k)3〉k
2〈(Q̂− 〈Q̂〉k)2〉k

. (III.25)

In particular, we note that the above equation gives Q∗k = 〈Q̂〉k when the biased histogram
is symmetric and almost Gaussian. In addition, the small parameter in the above expansions
ξkα
−3/2
k =

√
2γ(1)

k is directly related to the skewness of the biased histogram. Fig. III.3 (c) shows
that this parameter is indeed smaller than 1, which makes our approach fully self-consistent.
Expansions at any order could be done but they require to measure an increasing number of
cumulants of the overlap in each biased simulation, which may give rise to larger statistical
errors if teq is not large-enough and to a larger noise in the calculation of the derivative of the
FP potential, see Eq. (III.18).

The Gaussian approximation is even more accurate when κ is large. However, if κ becomes
too big, the amplitude of the force which derives from the umbrella bias and which is applied
on each particle grows, and the time step for the integration of the equations of motion must
be decreased to keep the same numerical accuracy and to continue to sample the phase space
correctly. Our choice of κ is the result of this compromise.

Overall, the computer study of the thermodynamics of coupled supercooled liquids is a
huge numerical effort as for a given reference configuration rN0 , a given temperature T and a
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given system size N , about 30 biased simulations are necessary. This represents a total num-
ber of simulations of about twenty thousands, when one multiplies the number of umbrella
simulations by the number of temperatures which we sample, the number of reference config-
urations and the number of system sizes we consider. The temperatures which we sample are
T = 0.40, 0.35, 0.30, 0.25, 0.22, 0.20, 0.15 in 3d and T = 0.30, 0.20, 0.12, 0.06 in 2d. The sys-
tem sizes which we consider are N = 300, 600, 1200, 2400 in 3d and N = 64, 125, 250 in 2d.
For visualisation, larger sizes are taken, namely, N = 10000 in 3d and N = 2000 in 2d. Finally,
the number of different reference configurations ranges from 10 at large temperatures to 25 at
the lowest temperatures.

We have introduced all the methods which are necessary to the study of the thermodynamics
of constrained supercooled liquids in d = 2, 3. Before presenting our results, we explain how
the thermodynamic properties can be extrapolated at temperatures that have not been directly
simulated. This is used in Sec. 5.2.

2.6 Temperature reweighting

In order to reduce the number of umbrella sampling simulations, we want to relate the Franz-
Parisi (FP) potential for a fixed reference configuration Ve(Q; rN0 ) at a target temperature Te to
the FP potential V (Q; rN0 ) at a temperature T [211, 212, 326] with Te close to T . In particular,
this strategy allows us to estimate the thermodynamic properties in 3d at temperatures T = 0.23
and T = 0.26 from the umbrella simulations which are done at temperatures T = 0.22 and
T = 0.25. It is only used in Sec. 5.2. We have checked that the temperature reweighting scheme
gives similar results to direct simulations at the target temperature.

As we want to do a reweighting in temperature, not only do we have to measure the statistical
properties of the overlap in the umbrella sampling simulations but also the statistics of the total
energy [294, 315, 316], namely,

Ĥtot[rN ; vN ] = 1
2m

N∑
i=1

v2
i + Ĥ[rN ], (III.26)

where vN = {vi}i=1...N are the velocities of the N particles and where Ĥ[rN ] is given by
Eq. (III.3). We advocate that Ve(Q; rN0 ) is derived from V (Q; rN0 ) by using the relation

Ve(Q; rN0 ) = Te
T
V (Q; rN0 ) + 1− Te/T

N
E1(Q; rN0 )− (1− Te/T )2

2NTe
E2(Q; rN0 ), (III.27)

in the limit of large N , where E1,2(Q; rN0 ) respectively stand for the average and the variance of
Ĥtot at a fixed value Q of the overlap and at the temperature T . In the course of the umbrella
simulations, the first cumulants of the total energy are directly measured. They represent
the evalutation of the quantities E1,2(Q; rN0 ) at the most probable value of the overlap Q∗k for
k = 1 . . . ns if the histogram Nk(Q) is sharp-enough. Eventually, a cubic spline interpolation is
performed to obtain E1,2(Q; rN0 ) for arbitrary values of Q, similarly to the procedure which is
used for the derivative of the FP potential.

To justify Eq. (III.27), we introduce the joint probability P(E,Q; rN0 ) of the total energy
and the overlap with the reference configuration in the unconstrained liquid at the temperature
T . We then make the reasonable assumption that the conditional probability of the total energy
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Fig. III.4 | Franz-Parisi (FP) potential for the 3d system (N = 600, left) and the 2d system (N = 64,
right) at several temperatures T for a fixed temperature T0 of the reference configurations (T0 = 0.06
in 3d and T0 = 0.03 in 2d). The curves have been shifted so that the absolute minimum of the FP
potential is zero. This absolute minimum corresponds to the most probable value of the overlap
between equilibrium unconstrained liquid configurations at temperatures T and T0 respectively. The
FP potential becomes more right-tailed as the temperature is decreased, and this reflects a lower
free energy cost for the overlap fluctuations. The FP potentiel is convex at high temperatures with
a single minimum at Q = Qrand but it becomes non-convex at lower temperatures (the dashed lines
are guide for the eye). This non-convexity is a finite-size effect which may indicate a first order
transition when the overlap is coupled to an external source ε.

given an overlap value Q is a Gaussian, so that the joint probability reads

P(E,Q; rN0 ) = P(Q; rN0 )× 1√
2πE2(Q; rN0 )

e−[E−E1(Q;rN0 )]2/[2E2(Q;rN0 )]. (III.28)

We can eventually derive the unconstrained probability distribution of the overlap at any target
temperature Te after reweighting and integration over the energies, namely,

Pe(Q; rN0 ) ∝
ˆ

dEP(E,Q; rN0 )e−(βe−β)E , (III.29)

with βe = 1/Te and where P(E,Q; rN0 ) is given by Eq. (III.28). The integration is straight-
forward to compute and Eq. (III.27) then follows from the definition of the FP potential, see
Eq. (III.19).

In the next section, we turn to the presentation of our numerical results. We first focus
on small-to-moderate size systems in both d = 2 and d = 3 and we show that they exhibit
mean-field remnants in both cases.

3. Mean-field-like behaviour in finite systems

3.1 Temperature evolution of the Franz-Parisi potential

We first start with the Franz-Parisi (FP) potential V (Q) which has been defined in Chap. II.
It represents the Landau free energy which quantifies the free energy cost for keeping liquid
configurations at a given overlap Q with a reference configuration. Equivalently, it stands for
the large deviation rate function of the unconstrained probability distribution of the overlap,
namely,

V (Q) = − T
N

lnP(Q; rN0 ) = V (Q; rN0 ), (III.30)
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Fig. III.5 | Isotherms 〈Q̂〉ε of the overlap order parameter for the 3d system (N = 600, left) and the
2d system (N = 64, right) when the external source ε is switched on at several temperatures T for a
fixed temperature T0 (T0 = 0.06 in 3d and T0 = 0.03 in 2d) of the reference configurations. Isotherms
are strictly increasing at high temperatures but they become almost flat at low temperatures, which
may be the evidence for a first order transition which ends in a critical point.

see also Eq. (II.12). We recall that the overline denotes the average over the disorder which is
represented by the reference configuration rN0 . The FP potential is defined up to an irrelevant
additive constant which is chosen here so that it vanishes at its absolute minimum.

We display the temperature evolution of the FP potential for a fixed temperature T0 of the
reference configurations in Fig. III.4. This picture is very reminiscent of the mean-field results
of the spherical p-spin, compare with Fig. II.3. In particular, we observe that the FP poten-
tial always displays an absolute minimum for Q = Qrand which represents the most probable
overlap value between two equilibrium configurations at temperatures T and T0 respectively.
The potential at high overlaps steadily decreases when decreasing the temperature. This re-
flects the lower free energy cost for large excursions of the overlap order parameter. The FP
potential is strictly convex at high temperatures. However, it becomes non-convex at the lowest
temperatures as in mean-field models (see the dashed lines). This feature is a finite-size effect
due to the small system sizes which are considered here, and convexity is necessarily restored in
finite-dimensional systems in the thermodynamic limit (N → +∞) [217].

In mean-field theory, the non-convexities of the FP potential are associated with a first-
order transition when a field ε is linearly coupled to the overlap. In finite dimensions, one
should analyse how the convexity of the FP potential is restored in the thermodynamic limit.
A phase transition in the phase diagram (ε, T ) only exists in the thermodynamic limit if the FP
potential displays a linear behaviour for intermediate overlap values, see Fig. II.2. Instead, the
transition is totally wiped out if the FP potential becomes strictly convex in the thermodynamic
limit. Complementary with the analysis of the convexity properties of the FP potential, one can
directly study the thermodynamics of a constrained liquid (with a finite ε). This is the object
of the next section.

3.2 Thermodynamic properties in the presence of a source ε

The isotherms for relatively small systems (N = 600 in 3d and N = 64 in 2d) are displayed in
Fig. III.5. They correspond to the external source ε versus the average order parameter 〈Q̂〉ε for
several temperatures T at a fixed temperature T0 of the reference configurations, see Eq. (II.6).
We recall that 〈.〉ε stands for the thermal average in the constrained liquid for a fixed reference
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Fig. III.6 | Disorder-averaged probability distribution Pε∗(Q; rN0 ) of the overlap Q for the 3d
system (N = 600, left) and the 2d system (N = 64, right) for ε = ε∗(T, T0) which maximises the
total variance of the overlap order parameter, several temperatures T and a fixed temperature T0
(T0 = 0.06 in 3d and T0 = 0.03 in 2d) of the reference configurations. The probability distribution is
single-peaked at large temperatures and broadens with decreasing the temperature which indicates
larger fluctuations of the order parameter. The probability distribution eventually becomes bimodal
at the lowest temperatures which is the expected distribution for a system that displays a phase
separation between the low- and the high-overlap phases, hence a first order transition.

configuration rN0 . Equivalently, the isotherms correspond to the first cumulant of the disorder-
averaged constrained probability distribution of the overlap. We remark that imposing a finite
positive (resp. negative) ε biases the overlap to larger (resp. smaller) values than its “random”
value Qrand. Isotherms are strictly monotonically increasing at large temperatures with an
inflexion point which corresponds to maximised thermal fluctuations at a fixed temperature T .
Indeed, we have seen in the previous chapter that for any value of ε, the slope of the tangent at the
isotherm represents the inverse of the connected susceptibility, see Eq. (II.7). As the temperature
decreases, we first note that the field ε beyond which the system is localised also decreases, as
the attraction between configurations has to counterbalance smaller thermal fluctuations (or
equivalently a smaller entropic cost). We also observe that the slope at the inflexion point of the
isotherm decreases until the isotherms almost plateau at the lowest temperatures. This directly
indicates growing fluctuations of the order parameter when decreasing the temperature.

This phenomenology is fully-consistent with phase coexistence at low temperatures betwen
low- and high-overlap phases which ends in a critical point at a larger temperature as predicted
from mean-field theory. For instance, the curves in Fig. III.5 are very reminiscent of the Van
der Waals isotherms for the liquid-gas transition when they are corrected by the Maxwell con-
struction [9]. The average overlap is here computed in the canonical ensemble in which ε is the
control parameter and they cannot show any loop even in small systems. The latter can only
be observed in the “microcanonical” iso-overlap ensemble which in this case is not equivalent
to the canonical ensemble. However, the interpretation of the thermodynamic behaviour from
the isotherms may be misleading because the isotherms in the canonical ensemble can become
strictly flat in the thermodynamic limit only. For finite-size disordered systems, they display a
residual slope of order 1/

√
N , see Eq. (III.32). In consequence, a finite-size analysis is necessary

to detect a true phase transition in the thermodynamic limit from mean-field remnants and it
is done in the next section.

Our numerical strategy not only enables us to carefully measure the average overlap but also
its average full probability distribution over the reference configurations Pε(Q; rN0 ) for any source
ε. Our discussion of the isotherms has revealed that at a fixed temperature, the connected sus-
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ceptibility displays a maximum for a given intermediate source, and that this maximum increases
with decreasing the temperature. In Chap. II, we have introduced another susceptibility which
quantifies the disorder fluctuations and which is known as the disconnected susceptibility. Both
susceptibilities are maximum around the same value of the external field, which corresponds
to the inflexion point of the isotherms, and we denote by ε∗(T, T0) the value of ε at which the
total susceptibility which is the sum of the connected and disconnected ones is maximum. We
then show in Fig. III.6 the disorder-averaged probability distribution of the overlap for several
temperatures T , a fixed temperature T0 of the reference configuration and ε = ε∗(T, T0). At
high temperatures, the distribution is almost Gaussian with a single peak at Q which is close to
its average value. Then, as the temperature decreases, the width of the distribution increases,
and this reflects larger overlap fluctuations as already inferred from the slope of the isotherms.
Eventually, the distribution becomes strongly bimodal for the lowest temperatures. This is ex-
actly what is expected if there is a phase separation between a delocalised phase and a localised
phase, which is associated with a first order transition line in the phase diagram (ε, T ).

The fact that the probability distribution becomes increasingly bimodal for a fixed system
size as the temperature is decreased represents evidence for the existence of a static (thermo-
dynamic) lengthscale which is associated with the overlap fluctuations and which grows as the
temperature is reduced. This is of course consistent with the existence of a critical point at
a finite temperature Tc, at which the lengthscale would diverge in the thermodynamic limit.
However, several other scenarios cannot be excluded so far, such as a divergence at zero tem-
perature only or a growth without a divergence of the correlation length, recall the schematic
phase diagrams in Fig. III.1. A finite-size analysis is required to assess what remains of the
mean-field-like behaviour which is found in 2d and 3d small systems in the thermodynamic limit.
This is the object of the next section.

4. Contrasting results in two and three dimensions through a finite-size
scaling analysis

4.1 System-size dependence of the overlap probability distribution

To confirm or infirm the existence of a first order transition line that ends in a critical
point, we first analyse the system-size dependence of the probability distribution Pε∗(Q; rN0 )
of the overlap for two different temperatures, see Fig. III.7. At the higher temperature in
3d (T = 0.30), the probability distribution is bimodal in small-enough samples (N . 1000)
but this behaviour disappears when considering large-enough systems, see the curve for N =
2400. For this temperature, the distribution is therefore expected to become Gaussian in the
thermodynamic limit. At the lower temperature in 3d (T = 0.15), the probability distribution of
the overlap is bimodal for all studied system sizes with two maxima at Q = Qlow and Q = Qhigh.
In addition, the distribution gets increasingly bimodal when the system size increases: the width
of the two peaks shrinks while the free energy barrier between the two maxima,

β∆F(T, T0) = ln


√
Pε∗(Qlow; rN0 ) Pε∗(Qhigh, rN0 )

Pε∗(Qmin; rN0 )

 , (III.31)

with Qmin the location in the relative minimum of the probability distribution in the range
[Qlow, Qhigh], grows. The probability distribution then appears to tend to a double Dirac distri-
bution in the thermodynamic limit. This gives support to the existence of a critical point at a

83



III. Phase diagram of constrained glass-forming liquids from simulations

0

2

4

6

0 0.2 0.4 0.6 0.8

3d
T = 0.30

P ε
∗
(Q

;r
N 0
)

Q

N= 300
600
1200
2400

0

1.5

3

4.5

0 0.2 0.4 0.6 0.8 1

2d
T = 0.12

P ε
∗
(Q

;r
N 0
)

Q

N= 64
125
250

0

4

8

12

16

20

0 0.2 0.4 0.6 0.8

3d
T = 0.15

10−6

10−4

10−2

100

0 0.2 0.4 0.6 0.8P ε
∗
(Q

;r
N 0
)

Q

N= 300
600
1200
2400

0

1

2

3

0 0.2 0.4 0.6 0.8 1

2d
T = 0.06

P ε
∗
(Q

;r
N 0
)

Q

N=64 N=125 N=250

Fig. III.7 | System-size evolution of the probability distribution Pε∗(Q; rN0 ) of the overlap in 3d
(left) and 2d (right) for ε = ε∗(T, T0) which maximises the total variance of the order parameter.
The distributions are shown for two different temperatures T and a fixed temperature T0 of the
reference configurations (T0 = 0.06 in 3d and T0 = 0.03 in 2d). In 3d, at the higher temperature
(T = 0.30), the probability distribution is bimodal for small systems but the free energy barrier
between the low- and high-overlap phases vanishes for larger systems. For the lower temperature
instead (T = 0.15), the probability distribution of the overlap becomes increasingly bimodal when
N gets larger, consistently with the existence of a first order transition in the thermodynamic
limit. The inset in the bottom left panel shows the probability distributions in logarithmic scale to
appreciate that the free energy barrier between the low-overlap and the high-overlap phases grows
with system size. Instead in 2d, for any temperature, the probability distribution which is bimodal
for small systems always turns to a single-peaked distribution for larger values of N .

finite temperature Tc ∈ [0.15, 0.30[. We want to stress that the system sizes we are dealing with
here are unprecedently larger than the ones which were considered in past studies on structural
liquids and which were limited to at most a few hundreds of particles [209, 213, 327]. Dealing
with too small systems then tends to overestimate the critical temperature Tc or it may even lead
to an erroneous conclusion regarding the existence of a critical point or a first order transition
(in d = 2 for instance, see below).

In 2d instead, the overlap probability distribution is bimodal in sufficiently small systems but
always narrows and it eventually becomes single-peaked in larger samples. Excluding the unlikely
scenario that bimodality reappears at even larger system sizes, this rules out the existence of
a critical point in 2d for T ≥ 0.06. We emphasise that thanks to the swap algorithm, we have
been able to prepare equilibrium configurations at T0 = 0.03 which is much lower than the
estimated experimental glass transition temperature Tg = 0.068. They represent equilibrium
configurations with an estimated (but unmeasurable) relaxation time of about 1037. Converted
into physical units, this corresponds to a relaxation time of about 1018 years which is larger than
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the age of the universe5. In addition, the lowest temperature that we can achieve here (T = 0.06)
is also below the extrapolated glass transition temperature. As a consequence, if a critical point
existed, and considering the small value of T0, it would likely be observed in the temperature
range that we have investigated. We cannot of course exclude the existence of a critical point
at still lower temperatures but at least in the temperature range down to the estimated glass
transition temperature, there is no signature of a critical point in the thermodynamic limit in the
2d system. Despite this negative answer, we note that we need to go to larger system sizes as the
temperature is decreased to recover a single-peaked probability distribution of the overlap. This
suggests that the previously mentioned static lengthscale which is associated with the overlap
fluctuations is indeed growing as the temperature is reduced. Therefore, even though these is no
phase transition in the phase diagram (ε, T ), the thermodynamics is nonetheless non-trivial as
the order parameter fluctuations and the associated static lengthscale increase with decreasing
the temperature.

We have focused on the case of a fixed T0. The same analysis of the system-size dependence
of the probability distribution can be performed for the case T = T0 and it confirms our findings,
see Appendix A. We show the absence of a critical point in 2d in the experimentally-relevant
temperature regime while in 3d, data are instead compatible with the existence of a critical
point but at a much lower temperature 0.085 ≤ Tc < 0.10 than for T0 = 0.06, close to the mode-
coupling crossover (Tmct = 0.095 in 3d) in agreement with previous numerical studies [209,
256].

In the next section, we proceed to a more detailed finite-size analysis in the case of a fixed
T0 and we give further evidence for the existence in the thermodynamic limit of a first order
transition at the lowest temperature in 3d (T = 0.15).

4.2 Finite-size scaling analysis in three dimensions indicates a first order
transition in the thermodynamic limit

To further confirm that the system is below a critical point and that it undergoes a first
order transition as a function of ε when T = 0.15 in the 3d system, and following the results of
statistical field theory [218, 250], we assess the validity of the scaling laws of the random-field
Ising model (RFIM) at its first order transition in the presence of an applied magnetic field. We
consider the constrained liquid in the phase coexistence region, namely, when a field ε = ε∗(T, T0)
is imposed. We first show in Fig. III.8 the system-size dependence of the connected and the
disconnected susceptibilities when they are evaluated at ε∗(T, T0). At a first order transition
region in the presence of quenched disorder, the finite-size scaling behaviour is given by [211,
212] χ

(con)
ε∗ (T, T0) ∼ Ld/2 ∼

√
N,

χ
(dis)
ε∗ (T, T0) ∼ Ld ∼ N.

(III.32)

We note in particular that the disconnected susceptibility dominates the connected susceptibility
in large systems, consistently with the fact that the large-scale physics of the RFIM is ruled by
disorder-induced fluctuations instead of thermal ones and a zero-temperature fixed point [263]
(see also Appendix A of Chap. II). Both relations are well satisfied by our data even though
errorbars are quite large for the largest system sizes.

We also study the size evolution of the free energy barrier ∆F(T, T0) between the low- and
5See Chap. VI for more details on how to translate simulation units into physical times.
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Fig. III.8 | Finite-size scaling analysis of the susceptibilities in 3d in the first order transition re-
gion. Plot of (a) the connected susceptibility χ(con)

ε∗ (T, T0) and of (b) the disconnected susceptibility
χ

(dis)
ε∗ (T, T0) at T = 0.15 for a fixed temperature T0 = 0.06 of the reference configurations. Full lines

are the results of a linear fit of the data. Data follow the peculiar scaling laws of random-field-like
systems, see Eq. (III.32). Errorbars are obtained thanks to the jacknife method when the average
over the disorder is performed [294].

the high-overlap phases, which is given by Eq. (III.31). This quantity should verify the following
scaling law if one assumes a planar interface between the two coexisting phases [328, 329]:

∆F(T, T0)
2Ld−1 = Υ(T, T0) +A

lnL
Ld−1 + B

Ld−1 . (III.33)

In this equation, A and B represent unknown coefficients, while the factor of 2 in the denomi-
nator of the left-hand side comes from using periodic boundary conditions. The above relation
illustrates that the free energy barrier per unit area should converge to the surface tension
Υ(T, T0) when L → +∞. When A = 0, standard scaling is recovered if one assumes that the
free energy cost scales as the surface area of the interface, which is planar. Here, we add an
extra lnL/Ld−1 dependence to account for massless modes due to the invariance of the free
energy cost with translations of the planar interface and contributions from non-planar inter-
faces [330]. For large-enough sizes (as it is the case here), the first factor dominates the other and
in Fig. III.9 (a), we show that ∆F(T, T0)/(2Ld−1) is indeed consistent with a linear behaviour
as a function of lnL/Ld−1. We extract a finite and positive surface tension Υ(T, T0) ' 0.0041
for T = 0.15. This guarantees the self-consistency of our ansatz and this confirms the phase
separation which is associated with the first order transition.

A snapshot of a configuration of the 3d system with N = 10000 at T = 0.15 for a fixed
temperature T0 = 0.06 of the reference configuration is shown in Fig. III.9 (b). This configu-
ration is obtained during a biased simulation with an umbrella potential that is chosen so that
the overlap is intermediate between Qlow and Qhigh (Q̂ ' 0.44) and a phase separation is then
expected. This configuration contributes to the minimum in the probability distribution of the
overlap at coexistence between the two phases and it is therefore very unlikely in a direct simu-
lation in the canonical ensemble. These configurations become more likely when performing an
umbrella sampling. This is equivalent to a sampling in a Gaussian ensemble [323, 324] which
interpolates between the canonical ensemble (with fixed ε) and the microcanonical ensemble
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Fig. III.9 | Analysis of the coexistence between the low- and the high-overlap phases in 3d in
the first order transition region. (a) Size-evolution of the free energy barrier between low- and
high-overlap phases ∆F(T, T0)/(2Ld−1), see Eq. (III.31). Data are consistent with a lnL/Ld−1

dependence, see Eq. (III.33). The intercept corresponds to the surface tension between the two
coexisting phases Υ(T, T0) ' 0.0041 for T = 0.15 and T0 = 0.06. Errorbars are obtained thanks to
the jacknife method when the average over the disorder is performed [294]. (b) Snapshot of a system
of N = 10000 in 3d for T = 0.15, Q̂ ' 0.44 and a fixed temperature T0 = 0.06 of the reference
configuration from a configuration which is obtained in the course of an umbrella simulation. The
particles are coloured according to their coarse-grained overlap q(`)

i with the reference configuration
(` = 1). A macroscopic phase separation is clearly visible.

(with fixed overlap). For each particle, we compute a local overlap

qi =
N∑
j=1

w(|ri − r
(0)
j |/a), (III.34)

and we then coarse-grain this single-particle quantity by using an exponential window of size
` = 1, namely,

q
(`)
i =

∑
j qje

−rij/`∑
j e
−rij/`

, (III.35)

where the sums run over all the particles, and where rij = |ri − rj |. This procedure smoothes
out the spatial fluctuations of the order parameter [69]. We clearly observe that the system
segregates into two phases with distinct values of the overlap. However, the interface is not
perfectly planar and there are inhomogeneities of the overlap inside the high-overlap phase. In
any case, all the particles with a local overlap larger than the average form a single connected
cluster: their relative distance is smaller than 1.5 which corresponds to the first minimum in the
radial pair correlation function g(r) [30]. This snapshot illustrates what a phase separation in
this system looks like [256] and it strengthens the conclusion of the scaling analysis of the free
energy barrier in Eq. (III.33).
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Fig. III.10 | Finite-size scaling analysis in 2d. (a) Plot of Tχ(con)
ε∗ (T, T0) at T = 0.06 and T = 0.12

for a fixed temperature T0 = 0.03 of the reference configurations. The susceptibility decreases with
the system size and it presumably goes to a finite value in the thermodynamic limit for all the
temperatures. Errorbars are computed thanks to the jacknife method when the average over the
disorder is performed [294]. (b) Snapshot of a system of N = 2000 particles in 2d for T = 0.06,
Q̂ ' 0.48 and a fixed temperature T0 = 0.03 of the reference configuration from a configuration
which is obtained in the course of an umbrella simulation. The particles are coloured according to
their coarse-grained overlap q(`)

i with the reference configuration (` = 1). The system does not show
a macroscopic phase separation with a planar interface but small domains instead.

4.3 Finite-size scaling analysis in two dimensions shows no sign of phase
transition in the thermodynamic limit

We give further support to the absence of a first order transition in d = 2 in the thermody-
namic limit for the whole accessible temperature range. We study the system on the Widom
line, which we recall is defined as the location of the maxima of the total susceptibility in the
(ε, T ) plane. We plot in Fig. III.10 (a) the maximum of the connected susceptibility for the
two temperatures T = 0.12 and T = 0.06 and a fixed temperature T0 = 0.03 of the reference
configurations. We observe that, contrary to what is found for the 3d system, the susceptibility
decreases with the system size and it presumably converges to a finite value in the thermody-
namic limit. In real space, the system does not phase separate, as illustrated in Fig. III.10 (b)
where we display a snapshot of a configuration of N = 2000 particles which is obtained in the
course of an umbrella simulation at T = 0.06. Instead of a system-spanning phase separation,
the system at intermediate values of the overlap displays small domains which are characterised
by a small or a large overlap. The particles with an overlap larger than the average do not form
a single connected cluster. This is in contrast with the macroscopic phase separation in 3d.

Now that we have given strong evidence for the existence of a phase transition in 3d at a
non-zero temperature, we still need to locate more precisely and to characterise the universality
class of the critical point. This is the object of the next section.
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Fig. III.11 | Analysis of the susceptibilities in the 3d system close to the critical point. (a) Scatter
plot of the maximum value of the connected susceptibility χ(con)

ε∗ (T, T0) versus the maximum value
of the disconnected susceptibility χ

(dis)
ε∗ (T, T0) for a fixed temperature T0 = 0.06 of the reference

configurations. The random-field Ising model quadratic scaling (full line) is well satisfied. (b)-(c)
Finite-size scaling analysis close to the critical point in the 3d system. Plot of the (b) connected
and the (c) disconnected susceptibilities which are rescaled by L2−η and L4−η respectively as a
function of the reduced temperature t = T/Tc− 1 for a fixed temperature T0 = 0.06 of the reference
configurations. The data almost collapse (up to uncertainties) for Tc ' 0.17. The dashed lines
are guide for the eye. For all the panels, errorbars are obtained via the jacknife method when the
average over the disorder is performed [294].

5. Characterisation of the critical point in the three-dimensional system

5.1 Confirming random-field Ising model criticality via a finite-size scaling
analysis

In order to locate and to characterise the critical point in 3d, we focus on the analysis of
the finite-size behaviour of the connected and the disconnected susceptibilities [283]. When
approaching close enough to a critical point in a finite-size system, the correlation length satu-
rates at the linear size L of the system. As a result, on the Widom line, the susceptibilities for
ε = ε∗(T, T0) should verify the finite-size scaling relations [211]χ

(con)
ε∗ (T, T0) = L2−ηχ̃con(tL1/ν),

χ
(dis)
ε∗ (T, T0) = L4−ηχ̃dis(tL1/ν).

(III.36)

In the above expressions, χ̃con(x) and χ̃dis(x) represent scaling functions, η, η and ν are the
critical exponents of the 3d random-field Ising model (RFIM) universality class and t = T/Tc−1
is the reduced temperature. The RFIM in d > 2 has a critical point at zero temperature when
using the variance of the random field as the control parameter, see Appendix A of Chap. II. In
consequence, the critical exponents can be accurately measured by using an efficient algorithm
which generates the ground state of the RFIM for a given realisation of the random fields [264,
331, 332]. Thus, we build on these studies and we set the critical exponents in Eq. (III.36) to
their reported values that we round to two significant figures: η ' 0.52, η ' 1.04 and ν ' 1.37.
We note that η ' 2η [278]. The latter is not an exact equality [263] but the deviation in 3d is
very small and beyond the precision which is required here.
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Combining Eq. (III.32) and (III.36) and the approximate relation between η and η, we obtain
that the disconnected susceptibility scales as the square of the connected one. More precisely,
we expect that [270]

χ
(dis)
ε∗ (T, T0) ' ∆

Tc
χ

(con)
ε∗ (T, T0)2, (III.37)

where ∆ represents the variance of the effective random fields that emerge in the mapping from
the constrained supercooled liquid to the RFIM, and where Tc is the critical temperature, see
also Eq. (II.79). In Fig. III.11 (a), we show the scatter plot of the maximum of the connected
susceptibility versus that of the disconnected susceptibility in 3d for a fixed temperature T0 =
0.06 of the reference configurations. The above equation is well satisfied by our data. The
disconnected susceptibility is larger than the connected one at low-enough temperatures or for
large-enough system sizes, which means that the quenched disorder is relevant for the system.
This is a first evidence of random-field-like physics in the transition from the delocalised phase
to the localised phase.

We now turn to the direct finite-size scaling analysis of the two susceptibilities by means of
Eq. (III.36). In Fig. III.11 (b)-(c), we show the collapse of the properly rescaled connected and
disconnected susceptibilities as a function of the reduced temperature. The critical temperature
Tc remains the unique adjustable parameter to ensure the best data collapse on a master curve.
Even though mixing-field effects may be present [333, 334], we find that a good collapse is
obtained for Tc ' 0.17. This estimate of the critical temperature is found by minimising the
average quadratic difference between the rescaled data and an unknown master curve [335]. This
master curve is taken as a piecewise linear function which is built on a subset of the rescaled
data [336].

The good data collapse which is obtained by a rescaling and by using the known critical
exponents of the 3d RFIM confirms the existence in the 3d supercooled liquid of a critical
point at a finite temperature Tc and a finite source εc in the universality class of the RFIM.
This is in agreement with field-theoretical treatments [218]. In addition, from the prefactor of
the quadratic fit in Fig. III.11 (a) [compare with Eq. (III.37)], and by using our estimate of
the critical temperature, we obtain an estimate of the strength of the effective random fields√

∆ = 0.097. We remark that in the 3d RFIM, one knows from numerical simulations [264, 331]
that the disorder destroys the transition whenever

√
∆/J & 2.3, where J is the coupling constant

between Ising spins. Accessing the value of this ratio in the 3d liquid would therefore provide
an interesting consistency check. Unfortunately, although J may be in principle estimated
from the surface tension Υ(T, T0), the later must be computed at temperatures much below Tc,
because Υ(T, T0) vanishes at the critical point [331]. This is presently out of reach to computer
simulations of constrained glass-forming liquids.

5.2 Activated dynamics in the vicinity of the critical point

We now turn to the study of the dynamics of the constrained supercooled liquid in the
vicinity of the critical point, a study which has never been attempted before. We perform direct
simulations of the constrained liquid in the canonical ensemble (with fixed ε). The relaxation
of the fluctuations of the order parameter on approaching a critical point is characterised by a
slowing down and a divergence of the relaxation time exactly at criticality [281]. In the case of
the RFIM, the slowing down is anomalous and it is described by an activated dynamic scaling
according to which it is not the relaxation time that grows as a power law of the correlation
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length, as usual, but its logarithm, see Eq. (II.80). This is another consequence of the existence
of a zero-temperature fixed point.

In order to measure the slowing down of the relaxation of order parameter fluctuations,
the dynamics near the critical point at (εc, Tc) is investigated through the equilibrium overlap
autocorrelation function, namely,

Cε(t; rN0 ) = 〈(Q̂(t)− 〈Q̂〉ε)(Q̂(0)− 〈Q̂〉ε)〉ε
〈(Q̂(0)− 〈Q̂〉ε)2〉ε

, (III.38)

where we recall that 〈·〉ε denotes a thermal average at a temperature T in the presence of the
applied source ε for a fixed reference configuration rN0 . In addition, Q̂(t) is a short-hand notation
for

Q̂(t) = Q̂[rN (t); rN0 ], (III.39)

where rN (t) denotes the configuration of the constrained liquid at time t. The above correlation
function is a random function through the dependence on the reference configuration.

To study the dynamics, we run simulations of the 3d constrained liquid for a system size
N = 1200 by considering the swap algorithm with the Hamiltonian (III.6) for 25 different
samples rN0 , see Eq. (III.6). We approach the critical point from above, by using several pairs
(ε, T ) close to or at the Widom line ε∗(T, T0) as determined from the thermodynamic study of
the previous sections. The temperatures which we consider are T = 0.23, 0.25, 0.26. Lower
temperatures could not be investigated because the relaxation time corresponds to too-large
simulation walltimes. These disproportionately long relaxation times are a first indication in
favour of the existence of a critical slowing down (we recall that the mode-coupling crossover of
the unconstrained liquid is Tmct = 0.095 in 3d). For a fixed reference configuration rN0 , the liquid
is first equilibrated at a temperature T and a field ε, and one equilibrium configuration rNε is
then stored. Equilibration is checked as in the static study, namely, by running two simulations
from distinct initial conditions. Then, we run 60 simulations in the iso-configurational ensemble
by starting from the very same configuration rNε and with the initial velocities which are drawn
from the Maxwell-Boltzmann distribution at the temperature T [63, 337, 338]. We can then
compute Cε(t; rN0 ) from all runs and we extract the autocorrelation time τε(T ; rN0 ) when the
autocorrelation function equals 0.2. We self-consistently check afterwards that the simulations
have lasted at least 10 times the autocorrelation time.

We now want to relate τε(T ; rN0 ) to a measurable static quantity which characterises the
approach to the critical point. One expects an activated dynamic scaling of the form [339]

τε(T ; rN0 ) = τ0[ξε(T ; rN0 )]zec[ξε(T ;rN0 )]ψ , (III.40)

where τ0 and c are some constants, and where z is a dynamic exponent which describes a sub-
dominant behaviour, see Eq. (II.80). Instead of the correlation length ξε(T ; rN0 ) to which we do
not have direct access, we use the thermal susceptibility

χ(T )
ε (T ; rN0 ) = Nβ

[
〈Q̂2〉ε − 〈Q̂〉2ε

]
. (III.41)

This is a random property due to its dependence on rN0 , whose average over the reference
configurations gives the connected susceptibility. It is a self-averaging quantity and it should
scale as [ξε(T ; rN0 )]2−η, see Eq. (III.36). For the 3d RFIM, as η ' 2η, we have that 2 − η ' θ,
where θ is the temperature exponent, see Eq. (II.77). As the relation ψ = θ has also been
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for several samples rN0 , temperatures T , and sources ε close to the Widom line. Relaxation times
are obtained when the equilibrium autocorrelation function of the overlap equals 0.2. The latter
correlation has been measured by direct simulations of the constrained liquid in the canonical en-
semble. The colorbar encodes the relative distance of the couple (ε, T ) that is used for the simulation
from ε∗(T ; rN0 ) [field for which χ(T )

ε (T ; rN0 ) is maximum] in the ε-direction. All data collapse on a
master curve which is well fitted by Eq. (III.42) (dashed line), with c̃ ' 0.015, τ̃0 ' 88 and z ' 1.15.
The inset shows a tentative power law fit which obviously fails at high values of the susceptibil-
ity. (b) Disorder-averaged overlap autocorrelation function Cε(t; rN0 ) along the average Widom line
ε = ε∗(T, T0) for several temperatures. The full lines represent a fit to the empirical form which is
presented in Eq. (III.44), with C0 ' 0.54 and ϕ ' 8.2. The data are consistent with a logarithmic
stretching of the correlation functions, see Eq. (III.43).

shown [282], one has that [ξε(T ; rN0 )]ψ ∼ χ(T )
ε (T ; rN0 ). We therefore consider the following form

to relate the statics to the dynamics in the vicinity of the critical point:

τε(T ; rN0 ) = τ̃0[χ(T )
ε (T ; rN0 )]z/θec̃ χ

(T )
ε (T ;rN0 ), (III.42)

where τ̃0 and c̃ are new constants. We take θ ' 1.49 [331]. Whereas the dominant activated
scaling behaviour is independent of the simulated dynamics, the sub-dominant behaviour and
the prefactor can be modified by choosing an appropriate algorithm6. Here, the swap algorithm
is expected to speed up any pre-asymptotic dynamics and it thus enables one to approach the
critical point more closely [340]. In fact, we have found that the ordinary molecular dynamics
simulations are much too slow near the critical point so that the dynamics cannot be measured
for T ≤ 0.30 (we recall that the critical point is at Tc ' 0.17).

Fig. III.12 (a) shows the scatter plot of the relaxation time versus the thermal susceptibility.
The latter has been directly measured for temperature T = 0.25 and otherwise extrapolated by
using the direct measurements at T = 0.22 and T = 0.25 and the procedure of Sec. 2.6. The
data are coloured according to the difference between the field ε of the simulation and the locus
ε∗(T ; rN0 ) of the maximum of the thermal susceptibility. The data agree well with the prediction
of Eq. (III.42). In particular, even though the increase in the relaxation time is limited to a little
more than two orders of magnitude, it is sufficient to distinguish between an activated scaling
(main panel) and a conventional power law scaling (inset).

In a second stage, we also look at the average over the disorder of the autocorrelation function
along the average Widom line at several temperatures, namely, Cε(t; rN0 ) for ε = ε∗(T, T0).
Another prediction of the activated dynamic scaling in the RFIM is that the correlation function

6In other words, z and τ̃0 may depend on the algorithm.
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should be very stretched, on a logarithmic scale [271], namely,

Cε(t; rN0 ) = C̃(ln t/ ln τ(T )) (III.43)

with τ(T ) the autocorrelation time that is obtained when Cε(t; rN0 ) equals 0.2, and C̃(x) a
scaling function for which no theoretical prediction is available. We find that along the Widom
line, we can fit our data with an empirical form which has been previously used in RFIM-like
systems [341–343], namely,

C̃(x) = C0 exp(−xϕ), (III.44)

with C0 and ϕ two temperature independent adjustable parameters. As seen in Fig. III.12 (b),
the data at large times for all the temperatures agree well with this prediction. A rescaling by
using the variable t/τ(T ) as in conventional critical slowing down is instead inconsistent with
the data.

To finish, we mention that we have also investigated the dynamics of the system in the first
order transition region and we have consistently found the presence of hysteresis loops when
ε is changed at a finite rate and a fixed temperature T . We have also unsuccessfully looked
for avalanches which are typical of RFIM-like systems at zero temperature [344], namely, large
and sudden drops of the order parameter when changing the source. In the RFIM, avalanches
are well-defined at zero temperature [93] but they are likely blurred by thermal fluctuations
at higher temperatures [95]. Despite this limitation, our study of the dynamics of constrained
liquids is overall consistent with the existence of a RFIM-like critical point which terminates an
associated first order transition line in 3d.

6. Conclusions

We summarise all our findings in Fig. III.13 where we show the phase diagram of constrained
model supercooled liquids in d = 2, 3 in the thermodynamic limit. We represent the line ε∗(T, T0)
of the loci of the maxima of the total susceptibility in the phase diagram (ε, T ). In 3d, there is
a critical point at a finite temperature on this line for Tc ' 0.17 and εc ' 0.20, which separates
the first order transition line for T < Tc from the Widom line above the critical point. In 2d
instead, there is no sign of criticality and the phase diagram only displays a Widom line down to
the lowest achievable temperature (which, again, is below the extrapolated experimental glass
transition temperature). We note that the behaviour in 3d is consistent with the mean-field
prediction, compare with Fig. III.1 (a)-(b). Our results also confirm the recent field-theoretical
treatments beyond mean-field [196, 197, 218, 250] which have been reviewed in Chap. II, and
which predict that the behaviour of constrained liquids can be mapped onto the random-field
Ising model (RFIM). Accordingly, we have found no sign of a critical point in 2d as the lower
critical dimension of the RFIM is equal to 2, while we have clearly exhibited a critical point and
a first order transition with quenched disorder in 3d.

The results of this chapter are non-trivial for several reasons. On the one hand, our analysis
of relatively small systems has revealed that mean-field theory is remarkably robust in finite
dimensions. It means that the glassy slowdown of supercooled liquids is actually accompanied
by thermodynamic fluctuations of the overlap which represents the degree of similarity between
equilibrium configurations and which has been identified as the proper order parameter of the
mean-field glass transition. In particular, claims that the glass transition is merely of dynamic
nature are difficult to reconcile with what has been presented in this chapter. We also note that
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Fig. III.13 | Loci of the maxima of the total susceptibility ε∗(T, T0) in the phase diagram (ε, T )
for the 3d system (left) and the 2d system (right) for a fixed temperature T0 of the reference
configurations (T0 = 0.06 in 3d and T0 = 0.03 in 2d). In 3d, a critical point (full yellow square) at
Tc ' 0.17 and εc ' 0.20 separates the first order transition line (full line) below the critical point from
the Widom line (dashed line) above. In 2d instead, there is neither a critical point nor a first order
transition line but only a Widom line. In both panels, we give several indicative temperature scales:
the onset temperature of glassy behaviour (green disk), the mode-coupling crossover temperature
Tmct (pink up triangle), the extrapolated experimental glass transition temperature Tg (orange down
triangle) and the temperature T0 of the reference configurations (blue diamond).

studying small systems that display a mean-field-like phenomenology could be used in order to
measure the parameters that enter the replicated Landau-Ginzburg functional which has been
described in the previous chapter and to build an effective field theory for this system [52]. On
the other hand, the existence of a critical point in 3d was not guaranteed because it depends
on the strength of the effective disorder that is generated by the reference configurations, as
compared to the strength of the effective interactions between local overlaps (namely, the ratio√

∆/J). It would be interesting to repeat the analysis of this chapter for other model glass-
formers. This would enable one to give a quantitative measure of their relative “self-induced”
disorder

√
∆/J (see also Chap. V), and finally to compare these different glass-forming liquids.

For the first time, our results give very strong evidence for the existence in the thermodynamic
limit of a genuine critical point, with a first order transition line at lower temperatures. This
represents, to date, the only piece of the mean-field theory that survives not as a mere crossover
when finite-dimensional fluctuations are present.

At the mean-field level and in statistical field theory, the existence of a first order transition
and of a critical point in the phase diagram (ε, T ) is the natural consequence of the existence of
an entropy crisis at a Kauzmann transition TK. From one side, the fact that there is no critical
point in 2d forbids the existence of a finite Kauzmann temperature. This is consistent with the
results of Ref. [182] where it was shown that the configurational entropy for the very same system
vanishes at zero temperature only. Similarly, the point-to-set length, which quantifies the spatial
extent of amorphous order, can only diverge at zero temperature. This is consistent with our
results which show that a static lengthscale is growing along the Widom line but that it remains
finite in the accessible temperature range. In particular, studying the temperature evolution of
the size of the domains of low and high overlap along the Widom line in the 2d system could
be interesting [see Fig. III.10 (b)], see Chap. V. From the other side, the existence of a critical
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Fig. III.14 | System-size evolution of the probability distribution Pε∗(Q; rN0 ) of the overlap in
3d (left) and 2d (right) for ε = ε∗(T ) which maximises the total variance of the order parameter.
The distributions are shown for two different temperatures T in the case T = T0. In 3d, at the
higher temperature (T = 0.10), the probability distribution is always bimodal for the system sizes
which are considered but the free energy barrier between the two peaks decreases with larger N .
At the lower temperature (T = 0.085) instead, the free energy barrier grows with system size and
the distribution becomes increasingly bimodal. In 2d, at the larger temperature (T = 0.12), the
probability distribution is always single-peaked and it narrows when the system size increases. For
the lower temperature (T = 0.06), the overlap probability distribution goes from a slightly bimodal
shape to a single-peaked one when increasing N .

point at a finite temperature Tc in 3d is consistent with the existence of a finite Kauzmann
transition temperature but, however, does not prove it [243]. Yet, independent measurements
of the configurational entropy in the same 3d system seem to extrapolate to zero at a finite
temperature and, as a result, to corroborate the existence of a finite TK [114, 164].

Appendix A - Simulation results for the case of equal temperatures T =
T0

In this Appendix, we present numerical results for the case where the constrained and the
reference configurations are always at the same temperature (T = T0). We analyse the system-
size dependence of the disorder-averaged probability distribution of the overlap in both 2d and 3d
for two different temperatures, see Fig. III.14. It is very reminiscent of Fig. III.7 and the same
observations and conclusions hold. We remark that in 3d, the critical point and the associated
first order transition below remain but for a lower critical temperature Tc ∈ [0.085, 0.10[ and a
lower field εc ∈ [0.092, 0.125[, in agreement with the analytical results from mean-field theory
(see Fig. II.5) and with past studies [209, 256]. In 2d instead, we find that any singular
behaviour in the thermodynamics of constrained liquids disappears in the thermodynamic limit
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in the experimentally-relevant temperature regime. This result, along with the random-field
Ising model criticality which is predicted from statistical field theory, suggests the absence of
a transition at any finite temperature in d = 2. Interestingly, in 2d, even though there is not
a finite temperature critical point, the static correlation length which is associated with the
overlap fluctuations grows with decreasing T0. Indeed, for T = 0.12 for instance, the overlap
distribution is bimodal for N = 64 when the temperature of the reference configuration is fixed
at T0 = 0.03 while it is single-peaked for the case T = T0. As the effect of disorder should be
relevant at scales smaller than this static lengthscale this may be related to the high kinetic
stability of ultrastable glasses when they melt at high temperatures [99].

96



IV
Detailed analysis of the definition of
the overlap between liquid
configurations

The overlap, or similarity, between liquid configurations is at the core of the mean-field de-
scription of the glass transition, and it represents the order parameter for the random first order
transition from the liquid to the ideal glass. It has also proved to be useful when studying three-
dimensional glass-forming liquids, as emphasised in Chap. III, and it has revealed non-trivial
thermodynamic fluctuations at low temperatures. In liquids, the overlap involves a tolerance,
typically of a fraction a/σ of the average particle diameter, which is associated with how pre-
cisely similar two configurations must be for belonging to the same physically-relevant “state”.
We have not heretofore discussed the choice of the numerical value of the tolerance length. In-
stead, we have rather chosen a “reasonable” value which is similar to what was used in previous
studies. Here, we systematically investigate the dependence on the overlap fluctuations of the
tolerance length when it is varied over a large range. We mostly focus on the behaviour of the
system when the overlap is coupled to an external source ε and we study the influence of the
coarse-graining length a on the resulting phase diagram (ε, T ). We show that while the location
of the dynamical transition temperature Td and of the static Kauzmann transition temperature
TK (if present) is independent of a/σ, that of the critical point at (εc, Tc) largely depends on the
value of a/σ. We rationalise our findings by using liquid-state theory and the hypernetted chain
approximation for the correlation functions. We show in particular that a range of a/σ below
what is commonly considered maximises the temperature of the critical point Tc, by pushing
it up in a liquid region where the bulk viscosity is low. We also confirm the theoretical trends
thanks to computer simulations by using the same tools as in Chap. III. Finally, we discuss our
results and we emphasise what they reveal about the structure of the free energy landscape.
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The results of this chapter have been published in Ref. [295].

1. Introduction

At the mean-field level, glass formation from a liquid is described as a genuine thermodynamic
transition whose order parameter is the similarity or overlap between liquid configurations [12,
126]. In Chap. II, we have reviewed analytical calculations of the spherical p-spin model. It
is a mean-field model which displays similarities with the behaviour of structural glasses [116,
118, 122], in particular a transition from a replica symmetric liquid phase to a 1-step replica
symmetry broken glass phase [144] which is accompanied by a discontinuity in the overlap
between equilibrium configurations at the Kauzmann transition temperature TK. For this model,
the overlap is computed from a single-site quantity. More generally, for lattice models, such as the
plaquette models which are discussed in Sec. 5.2 of Chap. II, the overlap between configurations
is naturally computed by considering an on-site variable, namely, the product of the spins in two
configurations at each lattice site. One can further average this product over the whole sample
to obtain a global measure of the similarity between the two configurations. In the case of Ising
spins for example, the overlap takes values between −1 for a complete anti-correlation to +1
for a complete correlation [210]. A slightly different quantity, the bond overlap which considers
nearest neighbour pairs, has also been analysed [345].

For liquids, the definition of the overlap is not as straightforward because it requires to
account first for the permutations of identical particles and then for the fact that the particles
in two similar configurations never sit exactly at the same place because of thermal vibrations.
As a result, the following definition of the overlap between two configurations α and γ of N
atoms is chosen:

Q̂a[rNα , rNγ ] = 1
N

N∑
i,j=1

w(|rα,i − rγ,j |/a), (IV.1)

see also Eq. (II.1). We remind that w(x) is a window function which is 1 for x . 1 and 0 for
x & 1, typically a Heaviside step function or a smooth version of it. In a related procedure, the
overlap can be defined by discretising space [256, 327]: the sample is divided in small boxes with
a linear size a of the order of a fraction of the inter-particle distance and a discrete variable is
introduced in each box that takes the value 1 if a particle center is present and 0 otherwise. The
overlap then uses the product of these “on-site” variables in two different configurations and the
tolerance is now associated with the box size a.
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IV. Definition of the overlap between liquid configurations

We first note that the double sum in Eq. (IV.1) takes care of particle permutations. Then,
a tolerance length a has been introduced to consider that two configurations are similar if the
particle centers in the two configurations differ by at most a small but finite distance. To
emphasise the importance of this length in this chapter, we write the overlap in the above
equation with a subscript a. The tolerance length a has to be fixed, for instance by some
physical arguments [209, 213, 241, 346]. It is reasonable to identify this distance with the
typical amplitude of the vibrational motion of the particles, a length which is a fraction of
the average inter-particle distance. In consequence, in previous studies of model glass-forming
liquids (including ours in Chap. III), the cutoff a was taken such that a/σ = 0.2-0.3, which
seems a physically plausible value for a typical vibrational length. However, no one has so far
investigated what the effect of changing the ratio a/σ over a significant range is. The goal of
the present chapter is to fill this gap.

We now focus on the Franz-Parisi (FP) setting [148] which has been discussed at length in
the previous chapters. Namely, we consider the possibility to couple the overlap between the
configuration of a liquid and a reference configuration of the same liquid to an external source
ε to favour large values of the overlap. In mean-field theory, a line of first order transition
emerges from the Kauzmann transition (ε, T ) = (0, TK) in the phase diagram (ε, T ) and ends
in a critical point (εc, Tc) at higher temperature (see Chap. II). Strong evidence from computer
simulations also support its existence in 3d realistic model glass-formers (see Chap. III). In this
chapter, we consider another framework for the FP construction, namely, liquid-state theory in
the hypernetted chain approximation [151, 154, 155, 300, 301, 347, 348]. In the next section, we
present the general statistical mechanics framework.

2. Liquid-state theory in the theoretical Franz-Parisi construction

2.1 Computation of the constrained free energy

In this section, we explain how to compute the constrained free energy in the canonical
ensemble (with ε as a control parameter) by using results from liquid-state theory. The most
convenient way to compute the thermodynamics of constrained liquids for fixed ε is to intro-
duce n replicas of the constrained equilibrium configuration {rNa }a=1...n, as already explained in
Chap. II. The replica formalism thus amounts to considering an equilibrium liquid mixture of
n+ 1 components with Hamiltonian

Ĥrep,ε[{rNα }] = 1
2

n∑
α,γ=0

N∑
i,j=1

vαγ(rα,i, rγ,j |ε, a), (IV.2)

where the interaction potentials are given by

vαγ(r, r′|ε, a) = δαγ v(|r − r′|)− [(1− δα0)δγ0 + δα0(1− δγ0)]εw(|r − r′|/a), (IV.3)

with v(r) the pair potential between two particles and δαγ the Kronecker delta, which is equal to
1 if α = γ and to 0 otherwise. The first term represents the interaction between two particles in
a single replica, while the second term describes the attraction with the reference configuration.

In liquid-state theory, the free energy can be derived from the Morita-Hiroike functional
ΓMH [296, 298]. The computation of the latter relies on a diagrammatic expansion of the
one-particle densities ρ(1)

α (r) and the two-particle densities ρ(2)
αγ (r, r′) of the replicated (n+ 1)-

component liquid mixture [349]. Here, we consider the case where the reference configurations
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are taken at the same temperature and the same density as the constrained liquid for simplicity.
All the replicas thus have the same one-particle density ρ

(1)
α (r) = ρ(1)(r). The two-particle

densities are related to the pair correlation functions via [30]

ρ(2)
αγ (r, r′) = ρ(1)(r)ρ(1)(r′)[1 + hαγ(|r − r′|)], (IV.4)

where gαγ(r) = 1 + hαγ(r) is the conventional pair correlation function [30, 64], namely,

gαγ(r) = 1
Nρ(1)(r)

〈
∑
i,j

δ(r − rα,i + rγ,j)〉ε, (IV.5)

with r = |r| and the sums which run over i, j = 1 . . . N (with i 6= j if the two replicas α and γ
are the same).

Since we are interested in homogeneous phases, considering uniform one-densities ρ(1)(r) = ρ
is sufficient. The Morita-Hiroike functional (per unit volume) then reads [196, 197, 296, 350]

ΓMH[{hαγ}] = (n+ 1)ρ(ln ρ− 1) + 1
2ρ

2
n∑

α,γ=0

ˆ
dr[1 + hαγ(r)]βvαγ(r|ε, a)

+ 1
2ρ

2
n∑

α,γ=0

ˆ
dr[1 + hαγ(r)] {ln[1 + hαγ(r)]− 1}

+ 1
2
∑
p≥3

(−1)pρp

p

n∑
α1,...,αp=0

ˆ
dr2

ˆ
dr3 · · ·

ˆ
drphα1α2(r2)hα2α3(|r3 − r2|) · · ·hαpα1(rp)

+ 2PI,

(IV.6)

with vαγ(|r − r′| |ε, a) = vαγ(r, r′|ε, a), β = 1/T (the Boltzmann constant is set to unity),
and where 2PI denotes the sum of the two-particle irreducible diagrams which are formed with
density vertices that are linked by total correlation functions [296, 298]. Without these terms,
the above expression reduces to the well known hypernetted chain (HNC) approximation of
liquid-state theory [30]. We also note that the interaction potential with a dependence on ε and
a only appears in the second term of the right-hand side of Eq. (IV.6). As the purpose of this
chapter is to study the influence of the parameter a, we usefully isolate the terms which depend
on the potential to formally rewrite the Morita-Hiroike functional as

ΓMH[{hαγ}] = 1
2ρ

2
n∑

α,γ=0

ˆ
dr[1 + hαγ(r)]βvαγ(r|ε, a) + F [{hαγ}], (IV.7)

where F is independent of the pair potentials.

The equilibrium total correlation functions are obtained by looking for the stationary points
of the Morita-Hiroike functional,

δΓMH
δhαγ(r) = 0, or δF

δhαγ(r) = −1
2ρ

2βvαγ(r|ε, a), (IV.8)

for 0 ≤ α, γ ≤ n, where δ(.)/δhαγ(r) denotes the functional derivative with respect to the
correlation function hαγ(r) which is evaluated at the position r. As we are interested in the
liquid phase above the ideal glass transition and as we focus on homogeneous phases, we assume
replica symmetry between the n constrained replicas (replica 0 is different due to the attractive
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coupling) in the solution of the above equations and then take the limit n → 0. One thus
needs to consider 4 distinct functions, h∗11(r), h∗12(r), h∗00(r) and h∗01(r), where the superscript ∗
means that the functions correspond to the solutions of Eq. (IV.8). This is the equivalent of
the replica symmetric ansatz of Eq. (II.28). The latter involves two overlap parameters which
represent the overlap with the reference configuration and the overlap between two constrained
replicas. The correlation functions h∗01(r) and h∗12(r) play similar roles. The first one represents
the correlation function between the positions of the particles in the constrained liquid and in
the reference configuration, the second one the correlation function between the positions of
the particles in two different constrained replicas. Here we need to add two other correlation
functions which correspond to the self correlation functions in the reference configuration h∗00(r)
or in a constrained replica h∗11(r).

We want to focus on the correlation between the constrained replicas and the reference
one, i.e., on h01(r). This is because it is directly related to the overlap order parameter, see
Eq. (IV.13). To do this, one can solve the minimisation equations for h00(r), h11(r) and h12(r).
The solutions are then functionals of h01(r) and of the potential v(r), except h00(r) which only
depends on v(r) and is decoupled from the other total correlation functions in the limit n→ 0.
The solutions also depend on ρ and T but they do not explicitely depend on ε and a. We call
F [h01] the functional which results from replacing h00(r), h11(r) and h12(r) in F [{hαγ}] by their
solution. The Morita-Hiroike functional in the limit n→ 0 then reads

lim
n→0

{ΓMH[{hαγ}]− ΓMH,0
n

}∣∣∣∣
RS

= −ρ2
ˆ

dr[1 + h01(r)]βεw(r/a) + F [h01], (IV.9)

where RS denotes replica symmetry and where ΓMH,0 is the Morita-Hiroike functional for the
reference replica, which is evaluated for h∗00(r), and which is obtained by setting n = 0 in
Eq. (IV.6). The functional F [h01] is defined by the above equation and it is equal to

F [h01] = lim
n→0

{F{hαγ}]− ΓMH,0
n

}∣∣∣∣
RS

+ 1
2ρ

2
ˆ

dr[1 + h∗11(r)]βv(r). (IV.10)

The key point is that the functional F [h01] is independent of ε and a. On the other hand, the
function h∗01(r), which is now obtained as the solution of

δF [h01]
δh01(r) = ρ2βεw(r/a), (IV.11)

depends on ε and on a, see Eq. (IV.8). However, when ε = 0, the dependence on a drops out
because the right-hand side of the above equation is simply zero. We note that there is no factor
1/2 in the above equation because the correlation functions are symmetric, e.g., h10(r) = h01(r).
This equation could also be obtained by a direct differentiation of Eq. (IV.9) with respect to
h01(r).

Eventually, the replica symmetric free energy Fa(ε) which is introduced in Eq. (II.5) and
which corresponds to the free energy of the constrained liquid with fixed ε can be derived from
the functional F [h01] as

βFa(ε) = lim
n→0

{ΓMH[{hαγ}]− ΓMH,0
nρ

}∣∣∣∣
RS

= −ρ
ˆ

dr[1 + h∗01(r)]βεw(r/a) + 1
ρ
F [h∗01], (IV.12)

by using Eq. (IV.9). The division by ρ in the limit of the above equation comes from the fact
that the Morita-Hiroike functional is defined per unit volume. We have also emphasised the
dependence on the tolerance length of the free energy with the subscript a.
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At this stage, we can come to the Franz-Parisi potential Va(Q) that we also write with a
subscript a to emphasise its dependence on the tolerance length. This is the object of the next
section.

2.2 Computation of the Franz-Parisi potential

From Eq. (IV.1) and the definition of h01(r), the average overlap between the constrained
and the reference configurations can be expressed as

〈Q̂a〉ε = ρ

ˆ
dr[1 + h01(r)]w(r/a). (IV.13)

We recall that the brackets represent the thermal average for a given field ε and a fixed reference
configuration, while the overline stands for the average over the reference configurations. When
the constrained and the reference configurations are uncorrelated, h01(r) ≡ 0, and the overlap
takes its “random” value

Qa,rand = ρ

ˆ
drw(r/a). (IV.14)

If the canonical ensemble (with fixed ε) and the microcanonical ensemble (with fixed overlap)
are equivalent, which is the case outside the first order transition region, the Franz-Parisi (FP)
potential is obtained by a Legendre-Fenchel transform which yields

βVa(Q) = sup
ε
{βFa(ε) + βεQ} = βF (ε̃a) + βε̃aQ, (IV.15)

see Eq. (II.17). The field ε̃a, which depends on a, is such that the expression between brackets
is maximum, and thus corresponds to the field such that the canonical average of Q̂ is precisely
Q, see Eq. (II.6). Therefore, the FP potential reads, by using Eq. (IV.12),

βVa(Q) = −ρ
ˆ

dr[1 + h∗01(r)]βε̃aw(r/a) + 1
ρ
F [h∗01] + βε̃aQ. (IV.16)

As the “random” overlap varies significantly with a, the FP potential is more conveniently
expressed in terms of ∆Q = Q−Qa,rand rather than Q, and we obtain

βVa(∆Q) = −ρ
ˆ

r
h∗01(r)βε̃aw(r/a) + 1

ρ
F [h∗01] + βε̃a∆Q. (IV.17)

By definition of ε̃a, the two terms which explicitely depend on it cancel out, and we eventually
obtain

βVa(∆Q) = 1
ρ
F [h∗01], (IV.18)

where h∗01(r) is now considered as a function of ∆Q and a.

From the above discussion, we can give a practical way of computing the FP potential. For a
given value of ε, one can solve Eq. (IV.11) to obtain the correlation function h∗01(r). This amounts
to minimising the total Morita-Hiroike functional ΓHM. Then, the FP potential is computed
thanks to Eq. (IV.18) and the corresponding value of ∆Q = 〈∆Q̂a〉ε from Eq. (IV.13), namely,

〈∆Q̂a〉ε = 〈Q̂a〉ε −Qa,rand = ρ

ˆ
drh∗01(r)w(r/a). (IV.19)
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(a)
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〈∆Q̂a〉ε
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a(∆Q)

Fig. IV.1 | (a) Schematic representation of the Franz-Parisi (FP) potential Va(∆Q) when it is non-
convex. The region between the diamonds corresponds to the range over which the FP potential is
concave [V ′′a (∆Q) < 0]. The straight line represents the double-tangent construction to locate the
first order transition in the canonical ensemble (fixed ε). (b) Derivative of the FP potential and the
corresponding isotherm in the canonical ensemble which is obtained by the Maxwell construction of
equal areas, see Eq. (II.16). The diamonds correspond to the limit of metastability of the high- and
low-overlap branches in the canonical ensemble. The blue and red curves correspond to the average
order parameter when ε is increased or decreased from a high or low value and they may transiently
follow the metastable branches.

By scanning the range of ε, we can reconstruct the FP potential. At a high-enough temperature
T or a low-enough density ρ, Eq. (IV.11) has a unique solution for each value of ε and the full
curve of Va(∆Q) can be deduced by systematically varying ε. This is the situation above the
critical point in the phase diagram (ε, T ), or equivalently when the FP potential is convex, as the
ensembles are equivalent. At lower temperatures or higher densities, Eq. (IV.11) may have two
solutions1 which correspond to two distinct minima of the Morita-Hiroike functional and to two
different correlation functions h∗01(r). These two solutions give the stable and the metastable
branches of the isotherm 〈∆Q̂a〉ε in the canonical ensemble. This is the situation in the first
order transition region, or equivalently when the FP potential is no longer convex. In this case,
by finding both the stable and the metastable minima, not only are we able to reconstruct the
FP potential from Eq. (IV.18) when the two ensembles are equivalent, but also on the entire
range of overlap values over which the FP potential is convex, even though the two ensembles
are not equivalent, see Fig. IV.1. This range in particular includes the secondary minimum if
present.

2.3 Generic properties of the Franz-Parisi potential with respect to the
tolerance length

We are now in a position to discuss two generic properties of the Franz-Parisi (FP) potential
as a function of the cutoff parameter a.

On the one hand, if the FP potential has several extrema, as it does in mean-field treatments,
the value of ε at which these extrema are obtained is zero, see Eq. (IV.11) and Eq. (IV.18). As
stressed above, the functions h∗01(r) are then independent of a and they correspond to the

1More precisely, Eq. (IV.11) can have three solutions but one of them is a maximum of the Morita-
Hiroike functional and is thus unstable.
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various extrema of the functional F [h01]. The temperature and the density at which these
extrema appear and disappear as well as the value of the associated free energy are intrinsic
properties of F [h01] and therefore they do not depend on a. As a result, neither Td at which an
horizontal inflexion point appears in the FP potential nor TK at which the two minima of the FP
potential become of equal depth depend on the choice of a. However, the value of the overlap
at these extrema depends on a through Eq. (IV.13). Requiring for physical consistency that the
value of ∆Q at the secondary minimum (that is denoted by ∆Qg = Qa,g −Qa,rand in Chap. II)
which corresponds to the emerging glass phase is positive may put an upper bound on the value
of a, but this does not correspond to a real physical singularity: this point is illustrated and
discussed in more detail below. In addition, the complexity, which represents the free energy
cost to constrain the liquid within a single metastable state and which corresponds to the height
of the secondary minimum in the FP potential, must also be independent of a.

On the other hand, the critical point at Tc in the plane (ε, T ) that we have mentioned
in the introduction and studied at length in the simulations of Chap. III corresponds to the
temperature at which the FP potential recovers strict convexity in mean-field approximations
or in large-enough finite-dimensional systems (see Chap. II). In other words, there is a critical
value ∆Qc of the overlap and a critical field εc such that


βcV

′
a(∆Qc) = βcεc,

βcV
′′
a (∆Qc) = 0,

βcV
′′′
a (∆Qc) = 0,

(IV.20)

with βc = 1/Tc, see Eq. (II.20). Generically, not only ∆Qc, but also εc and Tc should now depend
on a. The location of the critical point, and as a consequence of the whole first order transition
line in the phase diagram (ε, T ), therefore varies with the choice of a. Actually, in the theory
of critical phenomena, the non-universal quantities, such as the location of the critical point,
are well known to depend on the short-range fluctuations due to the microscopic details of a
system, and hence on a [242]. Instead, the universality class of the critical point is controlled by
long-range, potentially scale-free, fluctuations and should instead be independent of a. However
here, the situation is more subtle because the properties (Td or TK) on the ε = 0 axis of the phase
diagram are also independent of a, and this applies whether or not the system is at criticality.

In the next section we illustrate the above described generic features in the case of an
approximate mean-field treatment which is based on the hypernetted chain closure of liquid-
state theory.

3. Hypernetted chain approximation and the Franz-Parisi potential

3.1 Presentation of the hypernetted chain closure

The hypernetted chain (HNC) approximation is one of the standard tools of liquid-state
theory to describe the structure and the thermodynamics of liquids. It amounts to neglecting
the two-particle irreducible diagrams in the Morita-Hiroike functional in Eq. (IV.6) [296, 298].
With this simplification, the functional F [h01] can be written by using the Fourier transforms
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of the correlation functions and reads

F [h01] = ρ(ln ρ− 1) + 1
2ρ

2
ˆ

dr[1 + h∗11(r)]{ln[1 + h∗11(r)]− 1 + βv(r)}

+ ρ2
ˆ

dr[1 + h01(r)]{ln[1 + h01(r)]− 1} − 1
2ρ

2
ˆ

dr[1 + h∗12(r)]{ln[1 + h∗12(r)]− 1}

+ ρ

ˆ dq

(2π)3

{
h∗11(q)− ρ

2h
∗
11(q)2 − ρh01(q)2 + ρ

2h
∗
12(q)2 − 1

ρ
ln{1 + ρ[h∗11(q)− h∗12(q)]}

+ ρh01(q)2

[1 + ρh∗00(q)]{1 + ρ[h∗11(q)− h∗12(q)]} −
h∗12(q)

1 + ρ[h∗11(q)− h∗12(q)]

}
,

(IV.21)
where q denotes the wave vector (with q = |q|), and where we keep the same notation for the
functions in Fourier and in real spaces. The minimisation equations in Eq. (IV.8) can be cast
in a more familiar form by introducing the direct correlation functions cαγ(r) that are related
to the total correlation functions by the Ornstein-Zernicke equations [30]. By assuming again
replica symmetry in the limit n→ 0, one finds in Fourier space [351, 352]:

1 + ρh00(q) = 1
1− ρc00(q) ,

1 + ρhcon(q) = 1
1− ρccon(q) ,

h12(q) = [1 + ρhcon(q)]2
{
c12(q) + ρ[1 + ρh00(q)]c01(q)2} ,

h01(q) = [1 + ρh00(q)][1 + ρhcon(q)]c01(q),

(IV.22)

where the “connected” correlation functions can be introduced, namely, hcon = h11 − h12 and
ccon = c11 − c12

2. The HNC closure which is derived from the minimisation equations can then
be written as 

c00(r) = −βv(r) + h00(r)− ln[1 + h00(r)],

c11(r) = −βv(r) + h11(r)− ln[1 + h11(r)],

c12(r) = h12(r)− ln[1 + h12(r)],

c01(r) = βεw(r/a) + h01(r)− ln[1 + h01(r)].

(IV.23)

From the solution of these equations, one obtains the free energy βFa(ε) [see Eq. (IV.12)] and
the Franz-Parisi (FP) potential [see Eq. (IV.18)], whereas the overlap difference with the random
limit ∆Q is given by Eq. (IV.19).

The HNC approximation is of mean-field character as it leads to a non-convex potential
at low-enough temperatures for glass-forming liquids and then sustains infinitely long-lived
metastable states [354]. It has already been well studied in the context of the glass transi-
tion [151, 154, 155, 300, 301, 347, 348], including a calculation of the FP potential [154, 155].
Our purpose is not to repeat all of these calculations but to investigate the role of the cutoff
parameter a in the definition of the overlap.

2In the context of disordered systems, h12 and c12 are also called the “disconnected” correlation
functions [353].
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3.2 Models and methods for the numerical resolution of the integral equa-
tions

We consider different single-component liquid models in three dimensions in which the par-
ticles all have the same diameter σ. We deal with two different interaction potentials: a hard
sphere model with the interaction potential

v(r) =
{

+∞ for r < σ,
0 otherwise, (IV.24)

and a soft sphere model with the pair potential

v(r) =

v0

(
σ

r

)12
+ κ0 + κ2

(
r

σ

)2
+ κ4

(
r

σ

)4
for r ≤ 1.25σ,

0 otherwise.
(IV.25)

The latter has already been introduced3 in Chap. III, see Eq. (III.1). The control parameter is
the density ρ in the hard sphere case and the temperature T in the soft sphere case (in this case,
the density is set to ρσ3 = 1). For the threshold function in the definition of the overlap [see
Eq. (IV.1) or Eq. (IV.13)], we have chosen the continuous window function w(x) = e−x

4 ln 2 as in
Chap. III. In the hypernetted chain approximation where we consider homogeneous configura-
tions, the liquid never crystallises and it always forms an ideal glass through a thermodynamic
phase transition at a low-enough temperature TK or a high-enough density ρK.

Correlation functions in real space are defined on a linear mesh of size dr = σ/128 for
a/σ ≥ 0.1 and dr = σ/512 otherwise (to ensure that a/dr > 10), with a large distance cutoff
of L = 8σ. We have checked that taking a larger cutoff distance and/or a smaller mesh size
only leads to very small quantitative changes of our results. The functions in Fourier space are
defined on the reciprocal mesh of step 2π/L. Eq. (IV.22) and (IV.23) are solved iteratively. This
requires to compute the Fourier transform and its inverse. In 3d and for spherically-symmetric
functions, this procedure is easily implemented by using the fast sine transform algorithm [238]
which relies on the following formulas for a correlation function h(r) and its Fourier transform
h(q) [347]: 

qh(q)
2π = 2

ˆ +∞

0
dr sin(qr)rh(r),

rh(r) = 1
π

ˆ +∞

0
dq sin(qr)qh(q)

2π .

(IV.26)

In particular, one can directly work with the functions rh(r) and qh(q)/(2π) and the sine trans-
form of one function is the other one up to a prefactor.

The iterative resolution of Eq. (IV.22) and (IV.23) is done by using the Picard’s method
and works in the following way [151]. From the correlation functions {c(k)

αγ (r), h(k)
αγ (r)} in real

space at iteration k, we compute the Fourier transforms of the direct correlation functions
{c(k)
αγ (q)}. Then, thanks to Eq. (IV.22), we compute the total correlation functions {h(k+1)

αγ (q)}
in Fourier space at the next iteration step. After that, the inverse Fourier transforms of the new
total correlation functions {h(k+1)

αγ (r)} are computed and the new direct correlation functions
{c(new)
αγ (r)} are obtained from Eq. (IV.23). Eventually, to smooth changes in the correlation

3We remind that the constants κ0, κ2 and κ4 ensure that v(r) and its two first derivatives are
continuous at r = 1.25σ.
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functions between two iterations, we take as direct correlation functions {c(k+1)
αγ (r)} for the next

iteration c(k+1)
αγ (r) = ηc

(new)
αγ (r) + (1− η)c(k)

αγ (r) with η = 0.1. The iteration is stopped when the
total relative change in all the direct correlation functions between two consecutive iterations,
namely,

∑
αγ

ˆ
dr[c(k+1)

αγ (r)− c(k)
αγ (r)]2

ˆ
drc(k)

αγ (r)2
, (IV.27)

is below a threshold of 10−10. As the equations for the reference replica are uncoupled from the
others, we can compute h00(r) independently for each temperature T and density ρ and then
deal with the three other ones by using h00(r) and c00(r) as inputs.

For a given value of a and a given density ρ (in the hard sphere case) or a given temperature
T (in the soft sphere case), we follow the recipe which is pictured in Fig. IV.1 to compute the

Franz-Parisi (FP) potential and the phase diagram (ε, T ). We compute the curves 〈∆Q̂a〉ε
(±)

from Eq. (IV.19) by increasing the source ε from 0 (+) or decreasing it from a high-enough value
(-). The first order transition region is detected when there is a range of ε values for which the
two curves for increasing and decreasing ε differ. With this procedure, we are able to locate the
critical point with an arbitrary degree of precision. In the following, we restrict ourselves to a
precision of 10−3 for ρcσ

3 and 10−5 for βcεc in the hard sphere case and of 10−3 for Tc/v0 and
10−5 for εc/v0 in the soft sphere case.

Before presenting our results, we comment on the replica symmetric ansatz we consider here.
Such as the spherical p-spin, replica symmetry breaking effects are expected for intermediate
values of the overlap [222] and even close to the absolute low-overlap minimum when approaching
the Kauzmann transition from above. We have not tried to solve the hypernetted chain equations
with a more general one-step replica symmetry breaking ansatz which would require another
correlation function h13(r) for replicas that belong to the same metastable state along with a
real parameter x for the size of the blocks with off-diagonal elements h13(r) in the matrix of the
correlation functions between the replicas. The replica symmetry breaking effects are nonetheless
expected to be more limited than for the spherical p-spin [148] because the FP potential cannot
be computed anyway in a given range of intermediate values of the overlap because of ensemble
inequivalence. We may under-estimate the FP potential at high densities or low temperatures,
but its shape is expected to remain qualitatively similar when replica symmetry breaking effects
are taken into account.

3.3 Temperature evolution of the Franz-Parisi potential and phase diagram
(ε, T )

We now illustrate in Fig. IV.2 the behaviour of the Franz-Parisi (FP) potential Va(∆Q) for
the hard sphere system as the density increases for two different values of the cutoff parameter,
namely, a/σ = 0.2 and a/σ = 0.5. The potential has a similar shape and evolution as first
found in Ref. [154, 155]. We observe that the FP potential at high densities is not obtained
on the entire range [0, 1] because of ensemble inequivalence which is discussed in Sec. 2.2. We
nonetheless note that we are able to construct a curve which is not equal to its convex envelop
by following the metastable solutions of the hypernetted chain (HNC) equations. In particular,
we can detect the secondary minimum in Va(∆Q) when it exists.
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Fig. IV.2 | Evolution with the density of the Franz-Parisi potential Va(∆Q) in the hypernetted
chain (HNC) approximation for a three-dimensional hard sphere system, the two replicas of same
density ρ = ρ0, and two different values of the cutoff parameter a, namely, (a) a/σ = 0.2 and (b)
a/σ = 0.5. In both panels, the up and the down triangles mark the values of ∆Q at the dynamical
transition (spinodal of the metastable glass minimum) and the critical point in the plane (ε, T ),
respectively. For both figures, the color code is the same and it is given by the colorbar in panel
(a). The dotted lines represent the region where there is no replica symmetric solution to the HNC
equations in the canonical ensemble.

At ρKσ
3 = 1.203 the potential has two minima of equal height and the high-overlap minimum

becomes metastable as ρ decreases until it disappears in a saddle point at ρdσ
3 = 1.183 (above

the value of 1.17 which is given in Ref. [154, 155] but in agreement with the value which is
provided in Ref. [151]). At still lower densities, the potential retains a non-convex shape down
to some critical density ρcvx = ρc at which convexity is eventually recovered. This temperature
evolution of the FP potential is what is expected for glassy systems in mean-field which display
a random first order transition, see Fig. II.3 (a) for comparison. By comparing the two panels
of Fig. IV.2, we stress that the values of ρK and ρd do not depend on the choice of a as we have
already emphasised. However, those of the overlap at the metastable minimum do depend on
a. We also find, as we further describe below, that the value of the critical density ρc depends
on a significantly.

In Fig. IV.3 we show the phase diagram of the hard sphere model in the (βε, (ρσ3)−1) plane
for the same two values of a as in Fig. IV.2. As we have already explained in Chap. II, the
non-convexities of the FP potential give rise to a line of first order transition which emerges
from the thermodynamic glass transition at ε = 0 and ρ = ρK. The line ends in a critical point
at (βcεc, (ρcσ

3)−1). As clearly seen, the location of the line is different for the two values of a,
and that of the critical endpoint as well.

4. Hypernetted chain results for the critical endpoint

4.1 Evolution of the critical point with the tolerance length

Overall, the results of the previous section are consistent with previous studies on structural
liquids within the hypernetted chain (HNC) approximation and also with mean-field theory [151,
154, 155, 347]. In particular, constrained liquids in the HNC approximation display a line of
first order transition from the Kauzmann point which ends in a critical point that is associated
with the return to convexity of the Franz-Parisi potential. In this section, we systematically
investigate the dependence on a of the critical point in the HNC framework. The critical
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3)−1). The line of first order transition has been obtained thanks to the Maxwell
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(±)

.

density ρc(a) for hard spheres or the critical temperature Tc(a) for soft spheres along with the
critical overlap ∆Qc(a) are determined by the two last conditions in Eq. (IV.20), while (βcεc)(a)
is obtained from the first equality in Eq. (IV.20). Their variation with a is shown in Fig. IV.4,
panels (a)-(c) for the hard sphere system and panels (d)-(f) for the soft sphere case.

We first analyse the variation with a of the critical density ρc(a) for hard spheres and the
critical temperature Tc(a) for soft spheres. Both quantities vary by a large amount: more than
15 % for ρc and a factor of 2 for Tc over the covered range of a. For comparison, we recall
that within HNC the relative change between ρd and ρK for hard spheres is 1.7 %. Similarly,
we have found that the relative change between Td and TK for soft spheres is about 14 %4.
Furthermore, the evolution of either ρc or Tc with a is non-monotonic with a minimum in ρc
for a ' 0.08σ and a maximum in Tc for a ' 0.09σ. By choosing a/σ around 0.08-0.09, one can
then move the critical point in the liquid phase quite significantly away from the dynamic and
the thermodynamic glass transitions, as compared to the conventional choice of a = 0.3σ.

We now look at the values of the source or coupling εc(a) [or rather of (βcεc)(a)] and of the
overlap Qc(a) [or rather of the difference ∆Qc(a) with the random value] at the critical point.
Their variations with a are non-monotonic, with a minimum in βcεc and a maximum in ∆Qc
around a ' 0.35σ, both for the hard sphere and the soft sphere systems. In particular, we
observe that their behaviour is of different trend as the one of ρc or Tc. We also note that the
variation with a of the location of the critical point is not given by a simple physical argument.
Indeed, one could naively expect the source at the critical point εc to be a decreasing function
of the coarse-graining parameter a. Smaller lengthscales a lead to a localisation of the atoms in
the constrained liquid in a smaller volume and may require larger fields. This is indeed what
is observed at small values of a but the behaviour at larger values of a clearly contradicts this
naive expectation. The observed non-monotonic trend and the detailed evolution at small a and
large a are much more involved, and this stems from the non-trivial structure and variation with
a of the pair correlation functions.

Before discussing these two limits, we show in Fig. IV.5 the HNC total correlation functions
4For our model, Td/v0 = 0.0535 and TK/v0 = 0.0464 are obtained via the temperature evolution of

the Franz-Parisi potential, similar to Fig. IV.2.
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Fig. IV.4 | Variation with the cutoff parameter a in the hypernetted chain approximation of (a)
the critical density ρc(a), of (b) the critical value of the source (βcεc)(a), of (c) the overlap difference
∆Qc(a) at the critical point for the three-dimensional hard sphere system for the the two replicas
of equal density and of (d) the critical temperature Tc(a), of (e) the critical value of the source
(βcεc)(a) and of (f) the overlap difference ∆Qc(a) at criticality for soft spheres and the two replicas
of equal temperature.

h01,c(r), h12,c(r), and h11,c(r) at criticality for a wide range of values of a in the case of the hard
sphere system (we now drop the superscript ∗). We first note that due to the hard-core exclusion,
h11,c(r) = −1 for r < σ. We see that h11,c(r) does not vary much with a and that it reflects
the liquid structure with periodic peaks of spacing σ which correspond to the consecutive shells
around a given particle at r = 0. We also remark that the maximum in h11,c(r) (which is marked
with a full disk) is non-monotonic with a, and that the highest maxima are obtained for low or
high values of a. This is a direct consequence of the fact that ρc(a) is a non-monotonic function
of a and that it is also maximum for high or low values of a. In fact, we have found that h11,c(r)
is always very similar to h00,c(r) which we recall do not depend on a but only on ρc(a), see
Appendix A. On the other hand, h01,c(r) and h12,c(r) have a non-trivial r dependence on a scale
r ∼ a < σ. This amounts to the fact that if there is a particle at r = 0 in a constrained replica,
e.g., replica 1, then there is a non-zero probability to find a particle at a distance smaller than a
in another constrained replica, e.g., replica 2, or in the reference replica 0. At larger distances, we
observe periodic peaks of spacing σ due to the underlying structure of the liquid. Interestingly,
we observe that the value of the two correlation functions at small r � a varies significantly
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Fig. IV.5 | Total correlation functions (a) h11,c(r), (b) h12,c(r), and (c) h01,c(r) versus r/σ (on a
linear scale for the first panel and on a logarithmic scale for the two last ones) at criticality for a
wide range of values of a for hard spheres in the hypernetted chain approximation and for the two
replicas of equal density. In panel (a) the full disk marks the maximum value in h11,c(r).

with a as it strongly increases as a decreases when a ≤ 0.2σ. In particular, this means that if
two constrained replicas have a given finite overlap with the reference configuration, then their
mutual overlap is also finite and non-zero.

4.2 Behaviour at small values of the tolerance length

We now focus on the limit in which a → 0+, where as seen from Fig. IV.4 and Fig. IV.5,
∆Qc(a) seems to go to 0 whereas (βcεc) (a) and the values of h01,c(r) and h12,c(r) for r � a seem
to diverge. To make some progress in trying to rationalise this limiting behaviour, we assume
that ρc(a) and Tc(a) remain strictly positive and finite when a → 0+, which is compatible
with the data in Fig. IV.4 (a) and Fig. IV.4 (d). We also assume that the total correlation
functions h01,c(r) and h12,c(r) can be decomposed into a part that varies on the scale of a, whose
amplitude grows as a → 0+, and a part that varies on the scale of σ, whose amplitude goes to
zero as a→ 0+ (we remind that when a = 0, the replicas are decoupled, i.e., h12 = h01 ≡ 0 and
h11 = h00). The function h11,c(r) on the other hand only varies on the scale of σ with a O(1)
amplitude, and so does h00,c(r) (which is independent of a).

Through heuristic arguments in the limit a → 0+ (see Appendix A), we derive that a
consistent solution of the equations is obtained for the total correlation functions at criticality
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Fig. IV.6 | Limit a→ 0+ of the hypernetted chain calculation in the case of hard spheres for the two
replicas of equal density. (a) Plot of ∆Qc(a)/(4πa3/3), h01,c(r → 0) and h12,c(r → 0) versus a/σ on
a double logarithmic scale. The continuous lines show the expected a−3/2| ln a|1/2 dependence. (b)
(βcεc)(a) on a linear scale versus a/σ on a logarithmic scale along with the expected | ln a| behaviour
(continuous line). (c) βc(a)Va(∆Qc(a)) on a linear scale versus a/σ on a logarithmic scale along
with the expected a3/2| ln a|3/2 trend (continuous line).

in the form 

h01,c(r) = a−3/2| ln a|1/2ĥ01(r/a) + a3/2| ln a|1/2h̃01(r/σ),
h12,c(r) = a−3/2| ln a|1/2ĥ12(r/a) + a3/2| ln a|1/2h̃12(r/σ),
h11,c(r) = h̃00(r/σ) +O

(
a3| ln a|

)
,

h00,c(r) = h̃00(r/σ),

(IV.28)

where all the functions ĥαγ(x) and h̃αγ(x) have an amplitude and a range of O(1). With the
above ansatz, one finds for the critical overlap

∆Qc(a→ 0+) ∼ a3/2| ln a|1/24πρc(0+)
ˆ ∞

0
dxx2w(x)ĥ01(x), (IV.29)

and for the critical source, by using the HNC closure equations (IV.23),

(βcεc) (a→ 0+) ∼ β̂ε| ln a|, (IV.30)

with β̂ε a constant. In particular, one finds that

βc(a)Va(∆Qc(a)) ' (βcεc∆Qc) (a) ∼ (a| ln a|)3/2 × 4πρc(0+)β̂ε
ˆ ∞

0
dxx2w(x)ĥ01(x) (IV.31)

when a→ 0+.

We compare the above predictions with the numerical solution of the HNC equations for
small a in Fig. IV.6 for the hard sphere system. Similar trends are observed for the soft sphere
case. The limit when r → 0 of the correlations functions are assimilated at their value for r = dr.
We observe that ∆Qc(a)/(4πa3/3), h01,c(r → 0), and h12,c(r → 0) all diverge as a−3/2| ln a|1/2
[panel (a)], that (βcεc)(a) diverges as | ln a| [panel (b)] and that βc(a)Va(∆Qc(a)) vanishes as
a3/2| ln a|3/2 [panel (c)], as expected from the above equations. Even though the results agree
with the predictions correctly, data at lower values of a could be beneficial to have further
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Fig. IV.7 | Result for the metastable glass minimum of the Franz-Parisi potential in the hypernetted
chain approximation for hard spheres at a density ρσ3 = 1.193 which is intermediate between ρd
and ρK and the two replicas of equal density ρ = ρ0: (a) total correlation function h01,g(r) and (b)
difference in overlap ∆Qg with the global minimum as a function of a, see Eq. (IV.32).

confirmation. However, we have not succeeded in obtaining the position of the critical point
for a < 0.04. Several reasons can be found. On the one hand, when a → 0, all the singular
features of the Franz-Parisi potential become concentrated on a very narrow region as ∆Qc → 0
and finding the critical point accurately becomes more difficult. On the other hand, for smaller
values of a the critical point may be described by a one-step replica symmetry breaking ansatz
and thus cannot be obtained with our more simple replica symmetric solution.

4.3 Behaviour at large values of the tolerance length

Finally, we discuss the case of large values of a. As can be seen from Fig. IV.4 (c) and
Fig. IV.4 (f), the overlap difference ∆Qc(a) with its random value [which gives the location
of the stable liquid minimum of the Franz-Parisi (FP) potential] decreases as a increases for
a/σ & 0.35 and seems to stick to a finite value for a/σ ' 0.55. For a & 0.55, the numerical
solutions of Eq. (IV.22) and (IV.23) become more difficult to follow even for ρ ≥ ρd (or T ≤ Td).
At the same time, the hypernetted integral equations do not seem to be driven to any singularity.

To try to understand this behaviour, we first analyse the behaviour of the metastable mini-
mum when it exists, i.e., beyond the dynamical transition. As we have already noted, the total
correlation functions at the minima of the FP potential are independent of a. We introduce
∆Qg(a) the difference between the overlap at the metastable glass minimum and that at the
global minimum for ρ ≥ ρd. By using Eq. (IV.19), it equals

∆Qg(a) = 4πρ
ˆ +∞

0
drr2w(r/a)h01,g(r), (IV.32)

with h01,g(r) the total correlation function between a constrained replica and the reference one at
the secondary minimum of the FP potential, which again is independent of a. In Fig. IV.7 (a),
we show h01,g(r) for the hard sphere model at a density ρd < ρ < ρK. We clearly observe that
it becomes negative for r & 0.35σ. Hence, if a becomes too large, the integral in Eq. (IV.32)
can become negative for some values of a. This is directly shown in Fig. IV.7 (b) where we plot
∆Qg as a function of a: it is positive for small values, then it turns negative for a/σ ≥ 0.556,
it becomes positive again for a/σ ≥ 0.938 and it eventually weakly oscillates around a slightly
positive value. This is found for all the densities above ρd. The value a∗/σ for which ∆Qg(a) first
turns negative does not vary much with density: it is equal to 0.5576 at ρd and to 0.555 at ρK.
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the equation r∗(a) = a crosses the data for a ' 0.39.

In consequence, while the underlying physics is unchanged, by changing the cutoff parameter
in the definition of the overlap, one can switch from correlated replicas at the metastable glass
minimum (∆Qg > 0) to anti-correlated replicas (∆Qg < 0). For physical reasons, working with
∆Qg > 0 and restricting the range of a to a < a∗ seem more pleasant, but this restriction is not
motivated by the presence of a physical singularity.

From the above considerations, we can rationalise the evolution of the critical point as a/σ
approaches values close to 0.55. By replacing for simplicity the smooth w(r/a) by a discontinuous
step function, we can rewrite the critical value of the overlap as

∆Qc(a) ' 4πρc(a)
ˆ a

0
drr2h01,c(r). (IV.33)

The maximum in ∆Qc(a) [see Fig. IV.4 (c) and Fig. IV.4 (f)] should then appear in the close
vicinity of the value of a for which a = r∗(a), where r∗(a) is the lowest value of r for which
h01,c(r) = 0. This quantity is plotted in Fig. IV.8. We observe that the equality a = r∗(a) is
obtained for a ' 0.39σ, consistently with the position of the maximum in ∆Qc(a) at amax/σ '
0.35. For a > amax, ∆Qc(a) decreases because the integral involves negative values of h01,c(r).
As a result, when ∆Qc becomes too small, all the non-trivial features of the FP potential become
concentrated essentially in a point and one can no longer numerically solve Eq. (IV.20), such as
in the case of small values of a. However, this is not associated with any physical phenomenon.

We now discuss what happens when a is further increased above 0.55. For a small range
of values of a, namely, for 0.555 ≤ a ≤ 0.5576 (see above), an unrealistic behaviour of the
phase transition line between low-overlap and high-overlap phases is expected, which includes
a divergence and a change of sign of ε along the first order transition line between ρd and ρK.
Then, for larger values of a (but still lower than the next value of a for which ∆Qg vanishes),
a well behaved first order transition line should be found, yet with a critical endpoint which is
characterised by ∆Qc(a) < 0 and βc(a)εc(a) < 0. This is confirmed by the results in Fig. IV.9
which are obtained in the three-dimensional hard sphere model and for a value of the cutoff
parameter a = 0.73σ. In Fig. IV.9 (a), we plot the FP potential, which has the same behaviour
as in Fig. IV.2 except that all its noticeable characteristics are located in the range ∆Q < 0.
In particular, we still find that the FP potential develops an inflexion point at ∆Qg < 0 with
a horizontal tangent line at the dynamical transition and a symmetric double-well structure at
the Kauzmann transition. In addition, as the FP potential displays non-convexities, a critical
point is indeed found but with βcεc < 0 and a negative critical overlap difference, as illustrated
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Fig. IV.9 | Results for three-dimensional hard spheres in the hypernetted chain (HNC) approxi-
mation, a/σ = 0.73, and the two replicas of equal density. (a) Franz-Parisi potential for various
densities which are indicated by the colorbar. The dotted lines represent the regions where there is
no replica symmetric solution to the HNC equations in the canonical ensemble. The up and down
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tively. (b) Phase diagram in the ((ρσ3)−1, βε) plane with the critical point which is emphasised
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.

in Fig. IV.9 (b). A corresponding line of first order transition is found in the region of negative
source and it converges to the Kauzmann transition at zero source.

We have so far developed a complete description of the evolution of the critical point with
the coarse-graining parameter a in the limit of liquid-state theory in the hypernetted chain
approximation. In the next section, we confront these results with computer simulations by
using the methods of Chap. III to assess their degree of generality.

5. Confronting the hypernetted chain results with computer simulations

To complement the detailed but approximate analysis that we have obtained through the
hypernetted chain (HNC) treatment, we turn to the three-dimensional glass-forming liquid model
of soft spheres which is studied in Chap. III, and we perform computer simulations with the
swap algorithm to accelerate the thermalisation. The computer model is very similar to the
soft sphere case of our above analytical calculations, but two differences must be noted. On
the one hand, the simulations deal with a continuous polydisperse mixture and non-additive
cross-diameters to avoid crystallisation and fractionation [54]. On the other hand, the computer
simulations of Chap. III are mostly performed for the case of a fixed temperature of the reference
configurations T0/v0 = 0.06 close to the extrapolated glass transition temperature in order to
push to higher temperatures the critical point. Instead, the above analytical calculations in
the HNC approximation are obtained for the case T = T0. To allow for a comparison with
HNC predictions, we repeat the HNC calculations for the case where T0 6= T is held fixed and
for the single-component soft sphere liquid. To be quantitatively similar with the choice of
the temperature of the reference configurations in the simulations, we consider an intermediate
T0 between Td and TK, namely, T0/v0 = 0.0499 and we then solve the equations of the HNC
approximation. In this situation, the correlation functions for the reference replica are computed
once and for all independently and they are then used as an input for the subsequent calculations
with a source ε.
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In the simulations, the statistical properties of the overlap are computed by using an um-
brella sampling and a subsequent reweighting [283], see Chap. III for details about the methods.
This strategy enables us to compute the Franz-Parisi potential but also all the thermodynamic
properties of the liquid when it is coupled to the quenched reference configuration with an
arbitrary applied source ε. In particular, for each temperature in the simulations, we can de-
termine the disorder-averaged probability distribution Pε(Q; rN0 ) of the overlap for the value of
the source ε = ε∗(T, T0) that maximises the total susceptibility (i.e., the total variance of the
order parameter). These distributions are shown in Fig. III.6 for a system of size N = 600
particles with a = 0.22σ. We notice that the probability distribution of the overlap becomes
bimodal for temperatures significantly above the critical temperature Tc. We recall that for
the same value of a, Tc ' 0.17 while the distributions are already bimodal for T ≤ 0.30. As a
result, above the critical point (along the “Widom line”) and as long as the overlap distribution
is bimodal, we can study the overlap fluctuations by restricting the integration over the overlap
values to one of the two peaks [211]. In the following, we focus on the low-overlap connected
susceptibility χ(con, low)

ε at ε = ε∗(T, T0) for each temperature T of the constrained liquid, which
represents the disorder-averaged amplitude of the thermal fluctuations of the order parameter
in the low-overlap “phase”.

Rigorously, as already emphasised in the previous chapter, the location of the critical point
in a simulation study can only be found through a finite-size scaling analysis. For instance, by
taking into account the dependence on a, the low-overlap connected susceptibility on the Widom
line should scale as

χ
(con, low)
ε∗ (T, T0) = BaL

2−ηχ̃con, low(yatL1/ν), (IV.34)

with t = T/Tc(a) − 1 the reduced temperature, L ∝ N1/3 the linear size of the system, η and
ν some critical exponents, χ̃con,low(x) a universal scaling function, and Ba and ya a-dependent
constants, see Eq. (III.36). We recall that statistical field theory arguments predict that the
critical point is in the universality class of the random-field Ising model (RFIM) [218, 250],
and this is confirmed by our results in Chap. III. Therefore, η and ν should be taken as the
critical exponents of the 3d RFIM. The scaling function χ̃con,low(x) has a maximum for x = x∗

which can be understood by studying the two limits of low and high temperatures. On the
one hand, at a temperature T which is smaller than Tc, the probability distribution of the
overlap at ε∗(T, T0) is composed of two well-separated and narrow peaks. The width of the
peaks decreases with decreasing the temperature, which makes χ(con, low)

ε∗ smaller and smaller as
T is reduced. For T larger than Tc but not too large, the overlap probability distribution at
ε∗(T, T0) is bimodal. When T is raised, the peaks merge and the free energy barrier between the
low- and the high-overlap peaks vanishes, which leads to a decrease in χ(con, low)

ε∗ with increasing
T . The position of the maximum in the connected susceptibility corresponds to a temperature
T ∗(a, L) = Tc(a)(1 + x∗L−1/ν/ya). If one assumes that ya depends only slightly on a, the
measure of T ∗(a, L) at a fixed system size (N = 600 in the remaining of this section) gives a
reasonable proxy for the evolution of the critical temperature with a, but the absolute value of
the temperature is too high.

A comparison between the results of the simulations and the HNC calculations is shown in
Fig. IV.10. The trends as a decreases are very similar, in particular a sharp increase in the
temperature is found. The HNC prediction for the critical temperature Tc(a) passes through
a maximum around a/σ ' 0.09 whereas the simulation data appear to plateau at the lowest
studied values. It is unclear if this difference would persist at even lower values of a in the
simulations or with a better determination of the critical temperature. However, studying such
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Fig. IV.10 | Comparison between the results of computer simulations of a size-polydisperse mixture
ofN = ρL3 = 600 (ρσ3 = 1 with σ the average diameter of the particles) soft spheres with a reference
configuration at a low temperature T0 = 0.06v0 and the results of the hypernetted chain (HNC)
calculations for a single-component soft sphere liquid (ρσ3 = 1 with σ the diameter of the particles)
with a reference configuration at a temperature T0 = 0.0499v0. (a) Location of the maximum of
the low-overlap connected susceptibility T ∗(a, L) for the simulations and of the critical temperature
Tc(a) for the HNC calculations. The temperature T ∗(a, L) in simulations has been bounded by
running simulations at different temperatures T and this provides our errorbar for the estimate of
T ∗(a, L). (b) Estimates of the source on the Widom line (βε)∗(a, L) = ε∗(T ∗(a, L), T0)/T ∗(a, L) in
the simulations and of the critical source (βcεc) (a) in the HNC calculations. (c) Plot of the average
overlap difference with the random limit ∆Q∗(a, L) at the temperature T ∗(a, L) and the source
ε∗(T ∗(a, L), T0) in the simulations and of the overlap difference at criticality ∆Qc(a) in the HNC
approximation. Errorbars on T ∗(a, L) propagate to (βε)∗ and ∆Q∗(a, L) but they are not reported.

small values of a becomes computationally prohibitively costly as one has to reduce the time
step in the integration of the equations of motion due to the increasing forces which derive
from the umbrella potential when a decreases. The agreement is also good when comparing
the evolution of the critical value of the source βε. For both simulation and HNC results, this
quantity first decreases with increasing a. The HNC prediction for (βcεc)(a) reaches a minimum
for a/σ ' 0.35 and it subsequently increases with a slowly while it seems to plateau in the
simulations. However, for the latter, the critical point falls in a temperature range for which
the equilibration becomes difficult to ensure, even with the swap algorithm. Consequently, we
cannot state whether the quantity (βε)∗ in the simulations would eventually increase when a gets
even larger, or whether this tendency would remain with a better determination of the critical
point. Finally, the evolution of ∆Qc(a) strengthens the agreement between the simulations and
the HNC calculations. In both cases, we observe an increase with a at small values of a, which
is followed by a maximum for a/σ ' 0.35, and a subsequent decrease. This indicates that
our above discussion about the a-dependence of h01,c(r) also seems to hold in the numerical
simulations.

The evolutions with a in the simulations and in the HNC treatment of a three-dimensional
glass-forming liquid are thus in qualitative agreement. This is in spite of expected discrepan-
cies that we list now. First, although the interaction potential has the same analytical form in
both cases, the numerical study is performed with continuous size-polydisperse systems to avoid
crystallisation and demixing, while the HNC calculations are done in a monodisperse system.
Besides, the HNC equations are mean-field-like and they lack non-trivial long-range fluctua-
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tions. Finally, finite-size effects close to the critical point may depend on a, which may lead to
varying systematic errors in the determination of Tc(a) in computer simulations from T ∗(a, L).
Nevertheless, the results of this section overall suggest that the fate of the critical point and of
the first order transition line with finite ε when varying a goes beyond the HNC approximation.

6. Discussion

6.1 Dependence of the overlap fluctuations on the tolerance length

In this chapter, we have studied the influence of the coarse-graining length a on the definition
of the overlap or similarity which describes the complex free energy landscape of glassy systems
and which also provides the order parameter for the glass transition at the mean-field level. We
have more precisely focused on the dependence of the overlap fluctuations on the parameter
a/σ in three-dimensional models of glass-forming liquids by relying on the hypernetted chain
(HNC) approximation of liquid-state theory. We have shown that while the dynamical and
thermodynamic glass transitions in this mean-field-like approximation are independent of a/σ,
the whole phase diagram which involves a transition between a low-overlap phase and a high-
overlap one in the presence of an applied source ε strongly depends on the value of a/σ. We
have rationalised through analytical and numerical arguments the evolution of the location of the
critical point ending the transition line between low-overlap and high-overlap phases for small
and large values of a/σ and we have also confirmed the theoretical predictions by computer
simulations of a three-dimensional size-polydisperse glass-forming liquid.

At the level of the HNC approximation, but also in computer simulations, we have clearly
shown that the critical temperature Tc is pushed up by a factor of 2 or more for values of a/σ
that are significantly lower than the values a/σ ' 0.2-0.3 which were systematically taken in
previous studies of the overlap in glass-forming liquids. The critical point then appears in the
liquid region where the viscosity is low and the equilibration may be significantly faster. A
similar effect is found when the density is the control parameter but the relative change is of
course smaller although still of the order of 10 %. This represents an important practical asset
for computer simulations. Indeed, it offers the possibility to fasten the simulations in the context
of the study of the phase diagram (ε, T ), and therefore to consider larger system sizes than the
ones that have been considered so far, for instance in the purpose of a finite-size scaling analysis
as we do in Chap. III.

However, there are practical limitations to taking too small values of a/σ. In molecular dy-
namics simulations, the magnitude of the forces which are exerted by the reference configuration
when ε > 0 (or when considering umbrella sampling techniques) increases with decreasing a,
which implies to reduce the time step in the integration of the equations of motion. On the
other hand, in Monte Carlo simulations, significant variations of the overlap are triggered by
smaller amplitudes of the particle displacements as a/σ is reduced, which require trial moves
of smaller size. The trade-off between shifting up the critical temperature and maximising the
algorithmic efficiency (simulated physical time versus computer walltime) therefore leads to an
operational optimum value of a, which is around 0.1σ.

Choosing a around 0.1σ would then significantly accelerate the computer simulations of
constrained supercooled liquids. In addition, this choice could prove useful for glass-forming
liquid models for which the swap algorithm is inefficient and cannot provide reference equilibrium
configurations at a low temperature T0 to shift up the critical temperature. Indeed, almost all
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previous simulation attempts [156, 209, 213, 256] to study the critical point in 3d model glass-
formers, with the typical choice a/σ ' 0.2-0.3 and both the reference and the constrained
replicas at the same temperature, were limited in practice to temperatures above the putative
critical temperature Tc and to rather small system sizes. Indeed, Tc seems to fall close to the
mode-coupling crossover which represents the lowest temperature for which the equilibration can
be ensured in a reasonable computer walltime without using the swap algorithm. By choosing
an optimised value of a in the definition of the overlap, one could more convincingly study the
existence and the properties of the critical point in a variety of models of glass-forming liquids.
This may be useful to quantify the “self-induced” disorder in different liquids (see Chap. III).

6.2 Connections with the structure of the free energy landscape

In this section, we address the physical meaning, if any, of the dependence that we have found
on the tolerance parameter a in the definition of the similarity between liquid configurations,
beyond its practical outcomes. The physical idea behind the definition of the overlap order
parameter is to define some sort of metric between configurations that allows one to sort them
in “metastable states”, when the liquid is in equilibrium at a temperature T . At the mean-field
level, where metastable states are well defined, the distinguishing property of such states is
not their free energy density and their number (as quantified by the configurational entropy) is
an important factor [139]. But, how exactly similar should two liquid configurations be to be
considered as belonging to the same state in the complex landscape? Varying the tolerance a is
a way to check how the properties of the coarse-grained landscape depend on the more or less
strict definition of the similarity, hence on the coarse-graining length.

We have found that the shape of the phase diagram in the (ε, T ) plane for the case T = T0
is very robust with the choice of the tolerance a. However, the non-monotonic dependence of
the location of the first order transition line (except TK) and of its critical endpoint implies for
instance that at a given temperature between TK and T (max)

c = maxa{Tc(a)}, there is a range
of tolerance a for which one always finds a value of the applied source ε at which coexistence
between low-overlap and high-overlap phases exists, whereas for the complementary domain
of a one is above the critical point and a unique phase is found whatever the applied source.
Above T (max)

c there are no more singularities in the thermodynamics of constrained liquids and
hence no more signatures of a complex free energy landscape, whatever the choice of a. This
temperature5 is therefore a candidate for a purely static definition of the “onset temperature”
below which glassy features starts to set in. Then, the value of a for which this maximum is
achieved should represent the typical displacement magnitude of the particles in order for the
system to fall in another “metastable state”. In lattice models or mean-field spin glasses, the
above onset temperature would be the unique value of Tc in the case T = T0.

This new definition of the onset temperature could then be confronted with other landscape-
inspired ones. To do so, we come back to the case of the spherical p-spin model which is
discussed in Chap. II. The latter behaves similarly as mean-field structural glasses, in particular it
undergoes a one-step replica symmetry breaking transition at a temperature TK, and metastable
states rule its thermodynamics below a higher temperature Td [116–120]. Meanwhile, some
metastable states survive above the dynamical transition at Td and the ones which dominate

5Of course here, we have only considered one window function, namely, w(x) = e−x
4 ln 2. A more

complete definition of the onset temperature would be to take the maximum in the critical temperature
over the window functions and over the tolerance lengths.
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the thermodynamics at TK cease to exist for TTAP/J =
√

2/(py)(1 − 2/p)p/2−1 = 0.792 for
p = 3 [with y solution of 1/p = −y(1 − y + ln y)/(1 − y)2 and J the strength of the coupling
between spins] [131, 145, 146, 148, 152, 210, 233]. This temperature scale then represents another
measure of a static onset temperature below which the glassy behaviour settles. By comparing
with the critical temperature for the p-spin model (with p = 3) in the case T = T0 which is
Tc/J = Tcvx/J = 0.772, we note that TTAP > Tc which is sensible as the transition from the
delocalised phase to the localised one is controlled by a competition between the configurational
entropy and the attraction energy between the replicas. As a consequence, the two estimates are
somehow close but not equal. At least, they both indicate that the structure of the landscape is
changing at much higher temperatures than the other temperature scales, namely, Td and TK.
We should also note that contrary to TTAP which is only well defined in the mean-field limit
and which requires to be able to compute a TAP free energy (a task which has been impossible
so far for structural liquids [126]), our definition of the onset temperature is also valid in finite
dimensions. Finally, we can also compare our definition of the onset temperature to another
landscape-inspired one but which relies on the potential energy landscape rather than the free
energy landscape. One can look at the out-of-equilibrium gradient descent dynamics, i.e., the
zero-temperature dynamics, from equilibrium configurations at a finite temperature T . It is
usually found that the long-time limit energy of the system (in the so-called inherent state)
converges to a value that depends on T only if T is below a threshold temperature that can
also be considered as an onset temperature [355, 356]. In the case of the pure p-spin model,
the onset temperature which is obtained from the gradient descent dynamics is actually equal
to the dynamical transition temperature. This is a peculiarity of pure p-spin models which do
not display temperature chaos. However, mixed p-spin models indeed have a high-temperature
onset temperature [357] which is well above the dynamical transition temperature. This could
be compared to TTAP or Tc for mixed p-spin models.

The above discussion naturally leads to come back to the question of the configurational
entropy which corresponds to the logarithm of the number of “metastable states” per unit
particle. In a mean-field setting, the configurational entropy is obtained as the difference in
the Franz-Parisi (FP) potential between the metastable and the stable minima for temperatures
between Td and TK, and is independent of the choice of a/σ. In a 3d glass-former, there are no Td
and no metastable minimum in the FP potential. Instead, at low temperatures, the FP potential
is non-convex (see Fig. III.4) in small systems or marginally convex in the thermodynamic limit
with a linear behaviour (see Fig. II.2). However, there is still a special point, namely, the high-
overlap limit of the straight segment (or of the double-tangent construction in small systems),
that can serve as a proxy for the value of the overlap in the “metastable minimum”. One can
thus tentatively define a configurational entropy as the difference in the FP potential between
this point and the stable minimum [114, 181, 241]. What the results of this chapter show is that
this estimate of the configurational entropy depends on the choice of a/σ, because the nature or
the size of the states that are counted may change with it. In other words, the FP potential is no
longer singular in finite dimensions and the choice of the overlap value to compute the difference
in the FP potential with respect to the stable minimum is now a-dependent. One may invoke at
this point a physical constraint to fix the value of a and provide the “most reasonable” counting
by setting a to some typical vibrational length6. However, and as the practical measurements
of the configurational entropy in the computer simulations of glass-forming liquid models are

6For instance, one could consider the height of the plateau in the equilibrium mean-squared displace-
ment, at least at temperatures for which the plateau is indeed observed.
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currently an important research topic [114, 164, 181, 182, 190, 241, 358], the question should
certainly be investigated more thoroughly.

We finally stress that we have considered here the static overlap between equilibrium config-
urations, with no reference to the dynamics. One can also investigate the similarity between a
configuration at a given time t′, and the same configuration which has evolved under the dynam-
ics of its constituents, after an elapsed time t [359]. In Eq. (IV.1), rα,i and rγ,j are then replaced
by ri(t′) and rj(t + t′). This time-dependent overlap is similar to the intermediate scattering
function in Chap. I. Consequently, the fluctuations of this time-dependent overlap correspond
to the four-point dynamic susceptibility χ4(t) and they are useful to describe the spatially het-
erogeneous nature of the dynamics and the growing extent of dynamic correlations as one cools
a glass-forming liquid [51]. In this case too, the definition of the overlap involves a tolerance a,
but the physical significance and the effect of the latter are more readily understandable than
what has been presented in this chapter [360]. If a/σ is too small, the involved dynamics is con-
trolled by only weakly-coupled vibrations and the dynamic correlations remain small. On the
opposite, if a/σ is large, one encounters the rather unphysical feature that a particle from the
configuration at time t′ can overlap with several other particles at time t+ t′. In between there
is an optimal value of the ratio (around 0.3) for which the spatial correlations in the dynamics
grow bigger. The study of the dynamics of supercooled liquids at very low temperatures and
the associated dynamic heterogeneities are studied in more details in Chap. VI.

Appendix A - Analysis of the hypernetted chain equations in the limit of
vanishing tolerance length

In this Appendix, we study the equations of liquid-state theory in the hypernetted chain
(HNC) approximation in the limit a → 0 in order to derive the scaling laws of Sec. 4.2. When
a/σ → 0+, the correlation functions should vary on two very different scales. On the scale r/σ
one expects a perturbation from the case a = 0 whereas a singular behaviour should appear on
the scale r/a. We then consider the following ansatz at the critical point:


h01,c(r) = f̂1(a)ĥ01(r/a) + f̃1(a)h̃01(r/σ),
h12,c(r) = f̂2(a)ĥ12(r/a) + f̃2(a)h̃12(r/σ),
h11,c(r) = h̃

(0)
11 (r/σ) + f̃3(a)h̃(1)

11 (r/σ),
h00,c(r) = h̃00(r/σ),

(IV.35)

where the hat and tilde correlation functions have an amplitude and a range of O(1) and where
the prefactors are functions of the tolerance a. Except for h̃00 which is independent of a, they
could still have sub-dominant terms in a as we have shown explicitly for h̃11. In Fourier space,
the above expressions translate into


h01,c(q) = a3f̂1(a)ĥ01(qa) + f̃1(a)σ3h̃01(qσ),
h12,c(q) = a3f̂2(a)ĥ12(qa) + f̃2(a)σ3h̃12(qσ),
h11,c(q) = σ3h̃

(0)
11 (qσ) + f̃3(a)σ3h̃

(1)
11 (qσ),

h00,c(q) = σ3h̃00(qσ),

(IV.36)

where for simplicity we keep the same notation for the functions in real and Fourier spaces.
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Fig. IV.11 | Plot on a double logarithmic scale of the total correlation functions (a) h01,c(r) and (b)
h12,c(r) versus r/σ at criticality for a/σ = 0.04 in the case of hard spheres in the hypernetted chain
approximation for the two replicas of equal density. A decoupling of scales is clearly visible between
the range r ∼ a where a monotonic decrease is observed and the range r ∼ σ where oscillations due
to the underlying liquid structure occur (the dashed line marks r = a).

We expect that the prefactors which express the dependence on a→ 0+ satisfy


f̂1(a), f̂2(a) → +∞,

a3f̂1(a), a3f̂2(a) → 0,
f̃1(a), f̃2(a), f̃3(a) → 0.

(IV.37)

The first equation indicates that the amplitude of the correlation functions h01,c(r) and h12,c(r)
should diverge as a → 0 as seen from Fig. IV.5. The last one instead indicates that the
corresponding terms are perturbations of the case a = 0 if ρc(a) or Tc(a) are not singular when
a→ 0. Finally, the second equation indicates that the critical overlap difference with the random
value vanishes when a→ 0 in agreement with Fig. IV.4 (c) and Fig. IV.4 (f).

The tilde functions which vary on the scale σ should keep track of the liquid structure and
peak in Fourier space around 2π/σ. On the other hand, the hat functions are expected to behave
roughly as the function w and decay in Fourier space on a scale q ∼ 1/a, see Fig. IV.11. As a
result, a complete separation of scales between the hat and tilde functions requires 2π/σ � 1/a.
This is of course verified in the limit a→ 0+ but this is more difficult to achieve in the numerical
solution of the HNC equations. For instance, when a/σ = 0.06, 2πa/σ is still about 0.38, which is
smaller but not much smaller than 1, and corrections to the asymptotic analysis of the functions
should then be expected. By using the separation of the scales a and σ, the HNC closure
in Eq. (IV.23) then leads to direct correlation functions that have a similar structure as their
counterparts in Eq. (IV.35). They are given at the first dominant orders by


c01,c(r) =

{
f̂1(a)ĥ01(r/a)− ln[1 + f̂1(a)ĥ01(r/a)] + f̂3(a)β̂εw(r/a)

}
+ f̃1(a)2c̃01(r/σ),

c12,c(r) =
{
f̂2(a)ĥ12(r/a)− ln[1 + f̂2(a)ĥ12(r/a)]

}
+ f̃2(a)2c̃12(r/σ),

c11,c(r) = c̃
(0)
11 (r/σ) + f̃3(a)c̃(1)

11 (r/σ),
c00,c(r) = c̃00(r/σ),

(IV.38)
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where 

c̃01(r/σ) = h̃01(r/σ)2/2,
c̃12(r/σ) = h̃12(r/σ)2/2,
c̃

(0)
11 (r/σ) = −βv(r) + h̃

(0)
11 (r/σ)− ln[1 + h̃

(0)
11 (r/σ)],

c̃
(1)
11 (r/σ) = h̃

(1)
11 (r/σ)h̃(0)

11 (r/σ)/[1 + h̃
(0)
11 (r/σ)],

c̃00(r/σ) = −βv(r) + h̃00(r/σ)− ln[1 + h̃00(r/σ)],

(IV.39)

and where we have assumed that, at criticality, when a→ 0+,

(βcεc)(a) = f̂3(a)β̂ε with f̂3(a)→ +∞. (IV.40)

As mentioned above, the functions ĥ01(r/a) and ĥ12(r/a) are expected to behave roughly as
w(r/a), i.e., to decay essentially monotonically on a scale of O(1). As a result, we rewrite{

ln[1 + f̂1(a)ĥ01(r/a)] ' ln[f̂1(a)]F̂1(r/a),
ln[1 + f̂2(a)ĥ12(r/a)] ' ln[f̂2(a)]F̂2(r/a),

(IV.41)

where the functions F̂1,2 have an amplitude and a range of O(1). For instance, if ĥ01(r/a) is
approximated by a step function, the function F̂1(r/a) verifies F̂1(r/a) ' ĥ01(r/a)/ĥ01(0).

In Fourier space, the expressions in Eq. (IV.38) become
c01,c(q) =

{
a3f̂1(a)ĥ01(qa)− a3 ln[f̂1(a)]F̂1(qa) + a3f̂3(a)β̂ε w(qa)

}
+ f̃1(a)2σ3c̃01(qσ),

c12,c(q) =
{
a3f̂2(a)ĥ12(qa)− a3 ln[f̂2(a)]F̂2(qa)

}
+ f̃2(a)2σ3c̃12(qσ),

c11,c(q) = σ3c̃
(0)
11 (qσ) + f̃3(a)σ3c̃

(1)
11 (qσ),

c00,c(q) = σ3c̃00(qσ) .
(IV.42)

We now consider the Ornstein-Zernike equations [Eq. (IV.22)] that can be studied for q ∼
1/a� 2π/σ and for q ∼ 2π/σ � 1/a separately. First, the relation between h01,c(q) and c01,c(q)
reads

a3f̂1(a)ĥ01(qa) + f̃1(a)σ3h̃01(qσ) =

[1 + σ3ρh̃00(qσ)][1 + σ3ρh̃
(0)
11 (qσ) + f̃3(a)σ3ρh̃

(1)
11 (qσ)− a3f̂2(a)ρĥ12(qa)− f̃2(a)σ3ρh̃12(qσ)]

× {a3f̂1(a)ĥ01(qa)− a3 ln[f̂1(a)]F̂1(qa) + a3f̂3(a)β̂ε w(qa) +O
(
f̃1(a)2

)
}.

(IV.43)
The decoupling between the two scales in Fourier space is achieved when a → 0+ if all the
h̃αγ(qσ)’s go to zero fast enough when qσ → ∞. It is expected that they indeed do so at least
as fast as 1/(qσ)2, as in the Ornstein-Zernike approximation [30]. In this case, one can totally
neglect the contributions of the tilde terms when expanding for q ∼ 1/a → +∞ as a → 0. In
this framework, the above equation implies that

a3f̂1(a)f̂2(a)ρĥ12(qa)ĥ01(qa) + ln[f̂1(a)]F̂1(qa) = f̂3(a)β̂ε w(qa). (IV.44)

From the above equation, we can directly deduce that f̂3(a) is sub-leading with respect to f̂1(a).
By using this result, we now obtain another equation from Eq. (IV.43) when q ∼ 2π/σ, namely,

a3f̂1(a)ĥ01(q = 0){1− [1 + σ3ρh̃00(qσ)][1 + σ3ρh̃
(0)
11 (qσ)]}+ f̃1(a)σ3h̃01(qσ) = 0, (IV.45)
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where the right-hand side only contains terms that are sub-dominant with respect to a3f̂1(a)
and/or f̃1(a) and is thus set to 0. The above equation therefore implies that f̂1(a) and f̃1(a) are
both non-zero and verify

f̃1(a) = a3f̂1(a). (IV.46)

It also implies that

σ3h̃01(qσ) = ĥ01(q = 0){[1 + σ3ρh̃00(qσ)][1 + σ3ρh̃
(0)
11 (qσ)]− 1}, (IV.47)

with an unimportant choice of normalisation of the functions.

We now proceed in a similar way for the Ornstein-Zernike equation that relates h12,c(q) and
c12,c(q). It reads

a3f̂2(a)ĥ12(qa) + f̃2(a)σ3h̃12(qσ) =

[1 + σ3ρh̃
(0)
11 (qσ) + f̃3(a)σ3ρh̃

(1)
11 (qσ)− a3f̂2(a)ρĥ12(qa)− f̃2(a)σ3ρh̃12(qσ)]2

×
{
a3f̂2(a)ĥ12(qa)− a3 ln[f̂2(a)]F̂2(qa) +O

(
f̃2(a)2

)
+ ρ[1 + σ3ρh̃00(qσ)][a3f̂1(a)ĥ01(qa) + o

(
a3f̂1(a)

)
]2
}
,

(IV.48)

where we have again used that f̂3(a) is negligible with respect to f̂1(a). When q ∼ 1/a, we can
neglect the contributions of the tilde functions again to obtain

a3f̂1(a)2ρĥ01(qa)2 = 2a3f̂2(a)2ρĥ12(qa)2 + ln[f̂2(a)]F̂2(qa). (IV.49)

The above equation implies that a3f̂1(a)2 is at best of the same order as a3f̂2(a)2 when a→ 0.
In particular, it implies that a3f̂1(a)2 is negligible with respect to f̂2(a). Therefore, by using
this statement and by considering the Ornstein-Zernike equation for h12,c and c12,c in the case
q ∼ 2π/σ, we obtain

a3f̂2(a)ĥ12(q = 0){1− [1 + σ3ρh̃
(0)
11 (qσ)]2}+ f̃2(a)σ3h̃12(qσ) = 0, (IV.50)

where the right-hand side is sub-dominant with respect to a3f̂2(a) and f̃2(a) and is thus set to
0. This implies that

f̃2(a) = a3f̂2(a), (IV.51)

and that
σ3h̃12(qσ) = ĥ12(q = 0){[1 + σ3ρh̃

(0)
11 (qσ)]2 − 1}, (IV.52)

with an unimportant choice of normalisation of the functions.

Although Eq. (IV.44) and Eq. (IV.49) could have several possible solutions, a non-trivial
solution is obtained by assuming that in each of these equations all the terms are of the same
order. This gives {

a3f̂1(a)f̂2(a) ∼ f̂3(a) ∼ ln[f̂1(a)],
a3f̂1(a)2 ∼ a3f̂2(a)2 ∼ ln[f̂2(a)],

(IV.53)

whose solution is then, at the leading order when a→ 0+,{
f̂1(a) ∼ f̂2(a) ∼ a−3/2√| ln a|,

f̂3(a) ∼ | ln a|.
(IV.54)
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Fig. IV.12 | Total correlation functions h11,c(r) and h00,c(r) versus r/σ at criticality for a/σ = 0.04
in the case of hard spheres in the hypernetted chain approximation and for the two replicas of equal
density. The two functions nearly coincide.

Finally, we consider the Ornstein-Zernike equation relating hcon,c(q) and ccon,c(q)7, namely,

1 + σ3ρh̃
(0)
11 (qσ) + f̃3(a)σ3ρh̃

(1)
11 (qσ)− a3f̂2(a)ρĥ12(qa)− f̃2(a)σ3ρh̃12(qσ) ={

1− σ3ρc̃
(0)
11 (qσ)− f̃3(a)σ3ρc̃

(1)
11 (qσ) + f̃2(a)ρĥ12(qa)− a3 ln[f̂2(a)]ρF̂2(qa) +O

(
f̃2(a)2

)}−1
.

(IV.55)
At the leading order this immediately leads to

1 + σ3ρh̃
(0)
11 (qσ) = 1

1− σ3ρc̃
(0)
11 (qσ)

, (IV.56)

and since the HNC closures for c̃(0)
11 and c̃00 have the same form, to

h̃
(0)
11 (qσ) = h̃00(qσ), (IV.57)

which is well verified by our numerical solution of the HNC equations (see Fig. IV.12).

In addition, by using Eq. (IV.57) as well as Eq. (IV.52), we find at the next-to-leading order
and when q ∼ 2π/σ that

f̃3(a)σ3{h̃(1)
11 (qσ)− [1+σ3ρh̃00(qσ)]2c̃(1)

11 (qσ)} = a3 ln[f̂2(a)]F̂2(q = 0)[1+σ3ρh̃00(qσ)]2. (IV.58)

By assuming that the terms on both sides of the equation are of the same order, Eq. (IV.58)
leads to

f̃3(a) = a3 ln[f̂2(a)] ∼ a3| ln a|, (IV.59)

at the leading order when a→ 0+, and to

σ3h̃
(1)
11 (qσ) = [1 + σ3ρh̃00(qσ)]2[σ3c̃

(1)
11 (qσ) + F̂2(q = 0)]. (IV.60)

The above derivation provides the expressions which are given in Sec. 4.2.

7We recall that the connected correlations are hcon,c = h11,c − h12,c and ccon,c = c11,c − c12,c.
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V
Local fluctuations of the
“self-induced” disorder in
glass-forming liquids

Glass-forming liquids are intrinsically disordered and their disorder-induced fluctuations are
believed to be important to understand their equilibrium properties, their dynamic behaviour
and their non-equilibrium driving, as suggested by the multiple analogies between glass-forming
liquids and the random-field Ising model. However, contrary to the latter, the disorder in super-
cooled liquids is not a priori quenched as it is rather “self-induced”. Few studies have addressed
the characterisation and the quantification of the effective disorder at the mesoscopic scale be-
tween the single-particle level and the macroscopic scale. The objective of this chapter is to
present a numerical method to measure the local fluctuations of the “self-induced” effective dis-
order in glass-forming liquids. It consists in linearly biasing the overlap or similarity between
a liquid configuration and a reference configuration of the same liquid in a randomly-centered
small cavity with an external field. The field which is required for the liquid to have a locally
high overlap with the reference configuration represents a proxy for the local entropic cost (con-
figurational entropy) to remain close to the reference configuration, and we show that it displays
large spatial fluctuations. We analyse the spatial and the statistical properties of these fluctu-
ations and we show that they are well described by a generalised Gumbel distribution with an
exponential tail at large localising fields. We rationalise this tail by invoking an additional free
energy surface cost due to the mismatch in the density profiles between the cavity when it is
confined close to the reference configuration and the exterior. Finally, we describe several future
directions of study. In a first line of thought, we would like to assess the correlation between these
thermodynamic local fluctuations and local structural properties of the reference configurations.
In a second line of thought, we aim at trying to connect the measured thermodynamic fluctu-
ations with the dynamic heterogeneities which are universally encountered in the equilibrium
dynamics of supercooled liquids when approaching their glass transition temperature.
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V. Local fluctuations of the Franz-Parisi potential

This chapter describes a still ongoing work.

1. Introduction

Mean-field theory accounts for the dynamic and the thermodynamic properties of supercooled
liquids by the existence of a rugged free energy landscape with an exponentially large number of
metastable minima (see Chap. I) [122]. The logarithm of this number (per unit particle) is the
configurational entropy Σ(T ) and it vanishes at the Kauzmann transition temperature TK, where
a genuine thermodynamic phase transition to the ideal glass phase occurs with a jump in the
average overlap order parameter, namely, the similarity between equilibrium configurations [126].
This behaviour is elegantly encompassed in the temperature evolution of the Franz-Parisi (FP)
potential (see Chap. II) which represents the free energy cost to constrain the global overlap
between the configuration of a liquid and a quenched reference configuration of the same liquid
to have a given value [148]. Equivalently, it stands for the large deviation rate function of the
unconstrained probability distribution of the overlap [213].

The FP potential V (Q; rN0 ) is a random quantity through the choice of the reference con-
figuration rN0 . At the mean-field level, its first cumulant V (Q) = V (Q; rN0 ) shows a double-well
structure at TK with two minima of equal depth. The low-overlap (resp. high-overlap) mini-
mum at Q = Qrand (resp. Q = Qg) corresponds to the average overlap for two uncorrelated
(resp. correlated) copies or replicas, i.e., to replicas that belong to different metastable min-
ima (or states) in the free energy landscape (resp. the same metastable state). Above TK, the
high-overlap minimum becomes metastable and disappears at the dynamical (mode-coupling)
transition Td. In the temperature range TK < T < Td, the difference in height between the
two minima of the FP potential corresponds to the free energy cost to constrain the liquid in
the metastable state of the reference configuration and it thus equals TΣ(T ). Above Td, the
FP potential has a single minimum for Q = Qrand but it keeps a non-convex shape up to an
“onset temperature” Tc. For T > Tc, the FP potential is convex with a single minimum [156].
As already explained in Chap. II, non-convexities of the FP potential directly translate into
thermodynamic transitions when the overlap order parameter with a reference configuration is
linearly coupled to a source ε. A line of first order transition emerges from the thermodynamic
glass transition at (0, TK) and ends in a critical point at (εc, Tc) [153]. In finite dimensions, the
FP potential must be convex but it may develop a linear behaviour for intermediate overlap
values which still corresponds to a first order phase transition in the plane (ε, T ).

The average FP potential captures the average thermodynamics of the liquid but not the
sample-to-sample fluctuations which are induced by the change in the reference configura-
tion [208]. These fluctuations are nonetheless interesting. For instance, in an archetypal mean-
field spin glass model which displays similarities with glass-forming liquids, namely, the p-spin
model [117, 221], the random FP potential V (Q; rN0 ) can still display a secondary minimum
above the dynamical transition temperature when the reference configuration is very stable,
e.g., when the latter is sampled in the metastable states which survive above Td [239] (see also
Chap. IV). These sample-to-sample fluctuations are expected to be crucial in finite dimensions.
The argument was already given in Chap. II and relies on the mosaic state of the random first or-
der transition (RFOT) theory, i.e., the finite-dimensional formulation of mean-field theory [124,
144]. We reformulate it here by using the FP potential, see Fig. V.1 [196]. In finite dimensions,
one can formally divide the liquid into small blobs of linear size equal to the average point-to-set
(PTS) length, which corresponds to the linear extent of amorphous order and the lengthscale
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V. Local fluctuations of the Franz-Parisi potential

Fig. V.1 | Schematic representation of a system which is divided in several blobs of linear size
smaller than the average point-to-set length. The local Franz-Parisi potential fluctuates from one
domain to another, and these large fluctuations stand for the “self-induced” disorder in glass-forming
liquids. Figure from Ref. [196].

below which metastable states remain well defined in finite-dimensional glass-forming liquids.
The blobs can be in one of the many metastable states and the FP potential in each blob can
be non-convex. However, fluctuations of the PTS length (or equivalently of the configurational
entropy) are expected and the FP potential should thus fluctuate from one blob to another. In
blobs of smaller configurational entropy, or equivalently of FP potential with a deeper secondary
minimum, large overlap values are more likely. Therefore, the fluctuations of the FP potential
are equivalent to a random field which is linearly coupled to the overlap with the reference
configuration in each blob [254].

This analogy was put on firmer grounds recently, as already mentioned in Chap. II. By
considering a model Landau-Ginzburg functional to describe the overlap fluctuations in glass-
forming liquids close to TK and ε = 0, the latter was mapped onto a replicated action which
derives from a random Hamiltonian in the universality class of the random-field Ising model
(RFIM) [196, 197]. The mapping was also shown to hold on the whole first order transition
line for ε > 0 in the phase diagram (ε, T ) and at the critical point at (εc, Tc) [218, 250], if
they survive finite-dimensional fluctuations [206]. However, there is a difference between glass-
forming liquids and the RFIM as the disorder in glass-forming liquids is generated by the system
itself and the nature of the quenched random field is more elusive. This makes the definition
and the quantification of disorder in glass-formers more delicate. There are strong consequences
of this analogy between glass-forming liquids and the RFIM which have already been reported
in the previous chapters. In particular, random fields destroy long-range order in 2d [249]: the
existence of a finite temperature Kauzmann entropy crisis is therefore forbidden and the FP
potential must be strictly convex in the thermodynamic limit at any finite temperature. On the
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opposite, the Kauzmann transition can survive in 3d if the strength of the effective disorder is
not too large [331]. Consequently, the FP potential can be marginally non-convex at low-enough
temperatures and the mean-field phase diagram (ε, T ) can survive as such. These predictions
have been confirmed in Chap. III by means of computer simulations.

Therefore, quantifying the strength of the effective disorder in glass-forming liquids is impor-
tant. For instance, it could allow for a determination of the fate of the unreachable Kauzmann
transition in finite dimensions. We have already proposed a way to give a quantitative measure
of the effective disorder in supercooled liquids by studying constrained liquids near the critical
point at (εc, Tc) in Chap. III. The method relies on measuring the ratio of the standard deviation
of the random fields to the strength of the coupling constant between spins in the effective RFIM
which describes the physics of the overlap close to the critical point [218]. This protocol provides
a single number whose value might constrain the existence of the Kauzmann transition [196,
197]. However, we have been unable to apply the method completely as the computation of the
effective coupling constant between spins requires simulations at very low temperatures. In addi-
tion, this protocol does not allow for the study of the temperature evolution of the “self-induced”
disorder nor of its spatial organisation (see Fig. V.1).

A more complete and intuitive determination of the “self-induced” disorder in glass-forming
liquids requires to study the spatial fluctuations of a static and coarse-grained RFOT-like quan-
tity, e.g., the local configurational entropy or the local PTS length. However, local static prop-
erties are usually computed at the single-particle level and they may eventually be averaged over
larger lengthscales to yield a coarse-grained quantity, see however Ref. [361, 362] for a coarse-
grained and collective quantity in the context of the rheology of glasses. Instead, in this chapter,
we want to propose a coarse-grained and static quantity which can be measured in equilibrium
conditions and which is not built from a single-particle quantity. In addition, in the framework
of the RFOT theory, the local static fluctuations, for instance of the configurational entropy, are
directly related to the dynamic heterogeneities with the regions of larger configurational entropy
able to relax faster [174, 195]. The correlation between the statics and the dynamics has been
mostly investigated in the extreme cases of the single-particle and of the macroscopic scales by
running simulations in the so-called isoconfigurational ensemble [62, 63]. This corresponds to
different trajectories which start from the same initial condition and which are generated by
running the dynamics with different initial particle velocities in molecular dynamics or different
sequences of random numbers in Monte Carlo simulations [64]. The correlation between dy-
namic properties and structural quantities which are computed from the initial configuration of
the particles is eventually assessed. At the single-particle level, a single-particle propensity is
defined as the average of a single-particle dynamic quantity (e.g., the displacement magnitude
or the self-overlap of a given particle) over the trajectories and the correlation with the static
single-particle quantities is subsequently assessed [65–71]. At the macroscopic scale, a structural
quantity is defined for the bulk initial condition and is then correlated to the bulk relaxation
time which is extracted from the average over the trajectories of a global dynamic property
(e.g., the self-intermediate scattering function or the global self-overlap) [190, 363]. However,
the correlation between the dynamics and the statics at the mesoscopic scale would be worth
studying. In particular, according to the RFOT theory, the generalised Adam-Gibbs relation
[see Eq. (I.30)] between the local relaxation time and the local configurational entropy (or the
local PTS length) should hold [124, 144], and studying such a connection could be a more severe
test of the ability of the RFOT theory to describe glass formation in finite dimensions.

In this chapter, we propose a new way of measuring the intrinsic disorder in supercooled
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Fig. V.2 | Window function ψ(x) to define the local overlap, see Eq. (V.1). The parameter δ is
introduced to smooth out the variations of the window function at the boundaries of the cavity
(x = 1). Equivalently, 1 + δ stands for the linear extent (in units of the cavity radius R) over which
the source ε is imposed. The dashed-dotted curve is the window function to define the core overlap,
see Eq. (V.6).

liquids by directly probing the spatial fluctuations of the random FP potential. This requires to
deal with small systems (ideally of linear extent similar to the PTS length) in order to remove
the long-range finite-dimensional fluctuations [206]. In consequence, two different numerical
strategies can be implemented to measure these fluctuations. On the one hand, bulk systems
with periodic boundary conditions can be considered. This choice of boundary conditions limits
the extent of the spatial fluctuations to the linear size of the system and also avoids surface ef-
fects [64]. This is what was done in Ref. [52] and in the previous chapter. However, small samples
of supercooled liquids tend to crystallise more easily, even when dealing with size-polydisperse
systems. This imposes a lower bound on the sizes which can be achieved in simulations. In
addition, when dealing with periodic boundary conditions, neither the spatial organisation of
the fluctuations of the FP potential nor the role of the boundaries can be assessed. Indeed, in
the qualitative picture of Fig. V.1, the FP potential in the different blobs are assumed to be
independent. Accordingly, for a given blob, this suggests that the FP potential should be taken
as the average over all the realisations of the boundaries.

We thus turn to another method which consists in introducing a local probe in a bulk
system with periodic boundary conditions (significantly larger than the PTS length) to measure
the FP potential in a small spherical cavity of radius R roughly similar to the PTS length while
performing an annealed average over its boundary. This method is directly inspired from the
sketch in Fig. V.1. We describe the general formalism in the next section, and we compare it
with the conventional cavity construction to define the PTS length [124, 144].

2. General formalism

We first define in the spherical cavity which is centered at a position x a local overlap between
a liquid configuration rN and a reference configuration rN0 of the same liquid, namely,

Q̂(R)
x [rN ; rN0 ] =

∑
i,j w(|ri − r0,j |/a)ψ(|ri − x|/R)∑

i ψ(|ri − x|/R) , (V.1)

where the sums run over all the particles i, j = 1 . . . N . The window function w(x) and the
tolerance length a are discussed extensively in Chap. IV. We have defined another window
function ψ(x) which is typically 1 for x . 1 and 0 otherwise to select the particles in the cavity,
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i.e., the particles with |ri−x| . R, see Fig. V.2. We then define the Franz-Parisi (FP) potential
in the cavity at a temperature T for a fixed reference configuration rN0 ,

V (R)
x (Q; rN0 ) = − T

ρVdRd
lnP(R)

x (Q; rN0 ), (V.2)

where ρ is the number density, Vd the volume of the unit sphere in d dimensions, and where ρVdRd
represents the average number of particles in the cavity, see Eq. (II.12). We have also introduced
the probability distribution P(R)

x (Q; rN0 ) of the local overlap with the reference configuration rN0
[which is given by Eq. (V.1)] in the cavity of radius R at a position x, namely,

P(R)
x (Q; rN0 ) = 〈δ(Q̂(R)

x [rN ; rN0 ]−Q)〉 =

ˆ
drNe−βĤ[rN ]δ(Q̂(R)

x [rN ; rN0 ]−Q)
ˆ

drNe−βĤ[rN ]
, (V.3)

with β = 1/T (the Boltzmann constant is set to 1) and Ĥ[rN ] the Hamiltonian of the bulk
liquid. In the above formula, 〈.〉 stands for the thermal average at the temperature T . We note
that this definition amounts to an annealed average over the boundaries, i.e., over the positions
of the particles outside the cavity.

In order to reveal the thermodynamic fluctuations of the local overlap, we introduce a field
ε which is linearly coupled to the overlap with the reference configuration rN0 in the cavity of
radius R, as already done for the global overlap in bulk glass-forming liquids. In this case, the
system evolves with the biased Hamiltonian1

Ĥ(R)
ε,x [rN ; rN0 ] = Ĥ[rN ]− (ρVdRd)× εQ̂(R)

x [rN ; rN0 ]. (V.4)

Equivalently, the particles inside the cavity feel an attraction with the particles in the reference
configuration. The particles outside the cavity of radius R do not instead feel any attraction and
the exterior of the cavity thus behaves as a reservoir of particles. In other words, our construction
amounts to imposing a local field ε which is linearly coupled to the space dependent overlap
field with the reference configuration. This indeed corresponds to an annealed average over the
boundaries.

We comment on the qualitative behaviour of the system when it is coupled to a local field.
For temperatures T > TK (if the latter exists), the average overlap between equilibrium config-
urations is Qrand � 1. As a result, our setting is in spirit equivalent to a cavity which is free
to evolve with the constraint that the overlap on the boundary is close to 02. Whatever the
size of the cavity with respect to the point-to-set (PTS) length, the local overlap between the
cavity and the reference configuration is always close to Qrand � 1 for small-enough fields ε.
One has to increase ε in order to create an inhomogeneous overlap profile and to force the cavity
to have a larger overlap with the reference configuration, i.e., to be localised close to the refer-
ence configuration. As a result, the value of the localising field ε∗(R)(x; rN0 ) corresponds to an
estimate of the local configurational entropy Σ(x; rN0 ), namely, ε∗(R)(x; rN0 ) ' TΣ(x; rN0 ). We
stress that the localising field (and the local configurational entropy) is a local property of the

1We note that the factor of N in front of the biasing term has been consistently replaced by the
average number of particles in the cavity of radius R, namely, ρVdRd with ρ the number density and Vd
the volume of the unit sphere in d dimensions.

2This is not rigorously true, see Fig. V.3.
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reference configuration only, as we average over the positions of the particles in the constrained
liquid (both in the cavity and outside).

We finally mention that our method is different from the usual cavity method to measure
the PTS length (see the gedankenexperiment in Chap. I) [124, 144, 179, 180]. In the latter, a
configuration rN0 is prepared at a temperature T . Then, all the particles are frozen except the
ones in a cavity of radius R which are free to explore the phase space at the temperature T . There
is not an imposed field ε and the overlap on the boundaries of the cavity is thus fixed to 1 (if one
considers the initial configuration rN0 as the reference configuration). The control parameter is
instead the radius R of the cavity. For small cavities, i.e., for cavities of smaller radius than the
local PTS length, the overlap field is slightly inhomogeneous and it converges to a high value
close to 1 at the center (which corresponds to the overlap for the “metastable glassy minimum”
Qg of the FP potential). Instead, for larger cavities than the local PTS length, the overlap field
strongly decreases when approaching the center of the cavity to reach the “random” overlap
value Qrand � 1. Nevertheless, our method and the usual cavity setting are both expected to
reveal the local fluctuations of the PTS length, or equivalently of the configurational entropy, by
systematically changing the position of the center x of the cavity. One advantage of our method
is that confined cavities are usually much slower to relax and to explore the phase space than
the bulk liquid [178]. On the opposite, we expect that in our method the exterior of the cavity
which is free to evolve represents a reservoir of particles and does not hinder the relaxation of
the particles in the cavity.

3. Model and methods

We simulate the size-polydisperse model glass-forming liquid [54] which is introduced in
Chap. III with the Hamiltonian (V.4) by using the hybrid scheme which combines molecular
dynamics with a thermostat and swap Monte Carlo moves [55]. The overlap is defined with
the window function w(x) = e−x

4 ln 2 and the tolerance length a = 0.22 as in Chap. III. The
other window function ψ(x) in the definition (V.1) of the local overlap should be smooth on the
boundary of the cavity. Indeed, in the course of a simulation, the particles can enter or leave
the cavity and discontinuities in the forces that are exerted on the particles should be avoided.
We choose

ψ(x) =


1 if x ≤ 1,

e−(x−1)4 − e−δ4

1− e−δ4 + c′2(x− 1)2 + c′3(x− 1)3 if 1 < x ≤ 1 + δ,

0 otherwise,

(V.5)

with δ = 0.07 (see Fig. V.2), and where the constants c′2 and c′3 enforce that ψ(x) and its first
derivative are continuous at x = 1 and x = 1 + δ, i.e., c′2 = −δc′3 and c′3 = 4δe−δ4

/(1 − e−δ4).
The choice of δ results from the compromise between a smooth evolution of the forces that are
exerted on a particle when it leaves or enters the cavity and the sharp definition of the region
of space where the field ε is imposed.

For a given position x of the cavity center, a given reference configuration rN0 which is
prepared at a temperature T0 thanks to the swap algorithm, a given temperature T and a given
field ε, the radial overlap field 〈q(r; rN0 )〉ε is inhomogeneous, see Fig. V.3 for an example in 2d,
where 〈.〉ε stands for the thermal average with the Hamiltonian Ĥ(R)

ε,x [rN ; rN0 ]. We observe that
the overlap profile is maximum for r ≤ R and that it decays at large distances to its random
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Fig. V.3 | Overlap profile in a 2d system in and near one cavity of radius R = 2.8 when the local
overlap in the cavity with a reference configuration rN0 , which has been sampled at a temperature
T0 = 0.03, is biased with a field ε. The exterior of the cavity instead evolves without any ther-
modynamic constraint. The brackets stand for the thermal average at a temperature T = 0.1 and
for a spherical spatial average. The system size is N = 2000, which corresponds to a linear size
L ' 45 (the number density is ρ = 1). The black dashed line marks the radius R of the cavity,
the black dotted line corresponds to the vanishing of the window function ψ(r/R) at r = (1 + δ)R,
hence the linear extent over which the field ε is imposed, and the red dashed-dotted line stands for
the half-radius of the cavity. The overlap profiles are found to decay to the random overlap value
Qrand ' 0.16 at large distances on a typical lengthscale which is larger than the lengthscale over
which the field ε is imposed. The overlap at the center of the cavity (r = 0), or equivalenty the core
overlap which is averaged over space for r ≤ R/2, increases with larger ε.

value Qrand = ρSda
dΓ(d/4)/[4(ln 2)d/4](' 0.16 in 2d), with Sd the surface of the unit sphere in d

dimensions and Γ(x) the Euler Gamma function. The overlap profile at the center of the cavity
also clearly increases with increasing ε. However, we note that the overlap is not constant in the
cavity, i.e., we already observe a significant decrease in the overlap for r ≤ R when ε increases.
As a result, and similarly to studies on the point-to-set length, we define a core overlap for a
given cavity of radius R at a position x [175], namely,

Q̂(R)
c,x [rN ; rN0 ] =

∑
i,j w(|ri − r0,j |/a) θ(R/2− |ri − x|)∑

i θ(R/2− |ri − x|) , (V.6)

where θ(x) represents the Heaviside step function (see Fig. V.2). The variations of the core
overlap are expected to be sharper with ε and likely yield to a more precise definition of the
localising field for which the fluctuations of the core overlap are maximum. In other words, we
define the localising field ε∗(R)(x; rN0 ) as

ε∗(R)(x; rN0 ) = argmaxε{〈Q̂(R) 2
c,x 〉ε − 〈Q̂(R)

c,x 〉2ε}. (V.7)

However, we stress that ε is coupled to the average overlap in the cavity, not to the core overlap.

We now explain how to measure the localising field for a given position x of the cavity of
radius R, for a given temperature T , and a given reference configuration rN0 . This requires to
measure the thermal fluctuations of the core overlap for any ε and eventually to locate their
maximum. We thus turn to histogram reweighting techniques [315–318, 364]. We perform ns
simulations with fields {εk}k=1...ns , we measure nk times the local overlap (V.1) and the core
overlap (V.6) and we compute their normalised joint histograms Nk(Q,Qc) for k = 1 . . . ns.
Then, the joint probability distribution of the local and the core overlaps in the cavity of radius
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R at a position x for a field ε and a reference configuration rN0 reads

P(R)
ε,x (Q,Qc; rN0 ) = 〈δ(Q̂(R)

x −Q)δ(Q̂(R)
c,x −Qc)〉ε =

ns∑
k=1

nkNk(Q,Qc)

ns∑
k=1

nkZ−1
k eβρVdR

d(εk−ε)Q
, (V.8)

where the partition functions Zk are computed self-consistently by iterating the following for-
mula:

Zk =
ˆ 1

0
dQ
ˆ 1

0
dQc

ns∑
k′=1

nk′Nk′(Q,Qc)

ns∑
k′=1

nk′Z−1
k′ e

βρVdR
d(εk′−εk)Q

. (V.9)

More details about the reweighting procedure can be found in Chap. III. The probability distri-
bution of the core overlap is then derived from the joint distribution:

P(R)
ε,x (Qc; rN0 ) =

ˆ 1

0
dQP(R)

ε,x (Q,Qc; rN0 ) =
ˆ 1

0
dQ

ns∑
k=1

nkNk(Q,Qc)

ns∑
k=1

nkZ−1
k eβρVdR

d(εk−ε)Q
. (V.10)

Finally, its second cumulant, namely, the variance of the core overlap, can be computed to yield
the localising field ε∗(R)(x; rN0 ), see Eq. (V.7).

By biasing the local overlap with different fields ε, we are able to sample efficiently the overlap
fluctuations and to scan the entire range of overlap values in the range [0, 1]. In other words,
the histogram reweighting procedure also allows for a sampling of the tails of the distribution
of the local overlap in the unconstrained cavity and for a computation of the Franz-Parisi (FP)
potential via

P(R)
x (Q; rN0 ) =

ˆ 1

0
dQcP(R)

ε=0,x(Q,Qc; rN0 ) =
ˆ 1

0
dQc

ns∑
k=1

nkNk(Q,Qc)

ns∑
k=1

nkZ−1
k eβρVdR

dεkQ

, (V.11)

see Eq. (V.2).

For each position x of the cavity and each field ε, the equilibration is ensured as in Chap. III
by checking that the simulations from two different initial conditions converge to the same
stationary state. Once the stationary state is obtained, we verify that the cavity explores the
phase space ergodically. We monitor the identity of the particles in the cavity (i.e., the particles
i with |ri−x| < R). We define the ratio of the number of particles in the cavity at time t which
already were in the cavity at time 0 to the number of particles in the cavity at time 0 and we
check that it has decreased to 0.

In the following, we focus on two-dimensional systems (d = 2). Indeed, we note in Fig. V.3
that the decorrelation length of the overlap profile is larger than the length over which the
field ε is imposed. In other words, the overlap profile extends outside the cavity on a typical
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lengthscale equal to the average inter-particle distance. In consequence, even though the overlap
with the reference configuration is biased in the cavity of radius R only, this affects an effective
number of particles which is larger than the average number of particles in the cavity. The ratio
of the effective number of particles which are affected to the number of particles in the cavity
scales as (1 + 1/R)d and therefore it increases with d and decreases with R. In consequence,
we choose d = 2 to minimise this effect and to actually perform a local measure of the FP
potential. This also eases the visualisation of the local fluctuations of ε∗(R)(x; rN0 ) and allows
for the construction of 2d maps.

The size of the system must be taken sufficiently larger than the radius of the cavity in
order for the cavity not to feel the periodic boundary conditions. The cavity radius also should
exceed several particle average diameters in order to measure coarse-grained quantities. We
thus consider cavities of radius R = 4 (we recall that the distances are expressed in units of
the average particle diameter) in a system of linear size L = 24. This choice corresponds to an
average number of 50 particles in the cavity while the total number of particles in the system
is N = 576. For each reference configuration which is equilibrated at a temperature T0, we
run simulations at a temperature T for different positions x of the center of the cavities on
a grid of linear spacing u = R/2 = 2 in both directions of space. This represents a total of
(L/u)2 = 144 positions of the cavities for a given reference configuration rN0 . For each cavity,
we simulate about 10-15 different values of ε to reconstruct the FP potential and the cumulants
of the local and the core overlaps adequately. This represents a parallelisable task of more
than a thousand simulations for a given reference configuration. Eventually, more statistics are
obtained by repeating the above procedure for several reference configurations.

Most of the results are shown for the case T = T0 with temperatures which range from the
onset of glassy behaviour Ton ' 0.20 to the extrapolated laboratory glass transition temperature
Tg ' 0.07 (see Chap. III for the temperature scales of the 2d system and Chap. VI for their
definition). Previous measurements of the point-to-set length in the same system show that it
midly increases from ξPTS ' 1.97 at T = 0.2 to ξPTS ' 3.34 at T = 0.07 [182]. We thus note
that ξPTS is always much smaller than the linear size L of the system but close to the radius R
of the cavities with the choices of L and R that we have made.

4. Thermodynamic spatial fluctuations

4.1 Fluctuations of the Franz-Parisi potential

We start by showing the results for a given reference configuration rN0 in Fig. V.4 for the
case T = T0 = 0.1 which is between the mode-coupling crossover [136] and the extrapolated glass
transition temperature. In Fig. V.4 (a), we display the variation of the average core overlap
with ε for four different locations of the center of the cavity. For all the cavities, we observe
a monotonic increase in the average core overlap with ε. The isotherms display an inflexion
point which corresponds to the location of the maximum in the core overlap fluctuations for
ε = ε∗(R)(x; rN0 ) (see Chap. II). We note significant spatial fluctuations of the isotherms and
accordingly of the localising field ε∗(R)(x; rN0 ) which are shown in Fig. V.4 (b). The map has
been computed from the estimates of ε∗(R)(x; rN0 ) in the 144 cavities via an extrapolation on a
lattice of thinner spacing dr = 0.05 by using an exponential weight of characteristic lengthscale
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Fig. V.4 | (a) Isotherms of the core overlap 〈Q̂(R)
c,x 〉ε for four different cavities. The symbols represent

the simulation results while the full curves are obtained via a histogram reweighting. We observe
spatial fluctuations of the isotherms, and consequently of the localising field ε∗(R)(x, rN0 ) (location
of the inflexion point) which are summarised in the map of panel (b). This result is obtained for a
single reference configuration in 2d, with N = 576 (L = 24), R = 4 and T = T0 = 0.1.

` = u/2 = 1, i.e., for any y ∈ [0, L]d:

ε∗(R)(y; rN0 ) =
∑

x ε
∗(R)(x; rN0 )e−|x−y|/`∑

x e
−|x−y|/` , (V.12)

where the sums run over all the positions x of the cavities. In Fig. V.4 (b), we observe non-
trivial fluctuations which form domains of spatially-correlated values of the localising field with
a typical linear extent equal to 2-3 particle diameters.

We now turn to the statistical properties of the localising field which are obtained for many
reference configurations rN0 in the case T = T0. In Fig. V.5 (a), we plot its average ε(R)

c,1 (T ) =
〈〈ε∗(R)(x; rN0 )〉〉 and its standard deviation ε(R)

c,2 (T ) = [〈〈ε∗(R)(x; rN0 )2〉〉−〈〈ε∗(R)(x; rN0 )〉〉
2
]1/2 as

a function of the temperature T , where the symbol 〈〈.〉〉 stands for an average over the location
of the cavities for a fixed reference configuration rN0 while the overline denotes an average over
the reference configurations. Both cumulants of the localising field have been divided by the
temperature because the relevant control parameter in the Boltzmann weight is βε (the Boltz-
mann constant is set to unity). We observe that the first cumulant decreases with decreasing
the temperature, by about 30 % between the onset temperature of glassy behaviour and the
glass transition temperature. The variation of the standard deviation with the temperature is
more difficult to determine from the data because of the high statistical errors but the latter
also looks to decrease when decreasing the temperature, by about 13 %. Accordingly, the ratio
of the standard deviation ε(R)

c,2 (T ) to the average localising field ε(R)
c,1 (T ) seems to increase while

decreasing the temperature, which indicates larger relative static fluctuations at lower temper-
atures. However, better statistics would be valuable to clarify the dependence of the cumulants
of the localising field on the temperature.

In order to gain more insight on the fluctuations of the local field, we consider the probability
distribution p(R)(ε) of the localising field which is computed over several reference configurations
for different temperatures T = T0, see Fig. V.5 (b). We observe that the histograms for all the
temperatures from the onset temperature of glassy behaviour down to Tg follow a master curve
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c,2 (T ) of the localising field for several tem-
peratures which range from the experimental glass transition temperature to the onset temperature
of glassy behaviour and for the case T = T0. Both quantities have been divided by the temperature
(the Boltzmann constant is set to unity). The standard deviation has been multiplied by 7 in order
to cover a similar range as the first moment. Errorbars are computed thanks to the jacknife method
when the average over the reference configurations is performed [294], they are too small to be
seen for the first cumulant. The inset represents the ratio of the standard deviation to the average
localising field, namely, ε(R)

c,2 (T )/ε(R)
c,1 (T ), with respect to the temperature T . (b) Histograms p(R)(ε)

of the localising field for the case T = T0. The data have been rescaled by ε(R)
c,2 (T ) and plotted as a

function of [ε− ε(R)
c,1 (T )]/ε(R)

c,2 (T ), see Eq. (V.13). They follow a master curve which is well fitted by
a generalised Gumbel distribution with a single adjustable parameter α ' 1.3, see Eq. (V.14).

when they are plotted as a function of [ε− ε(R)
c,1 (T )]/ε(R)

c,2 (T ) and rescaled by ε(R)
c,2 (T ), i.e.,

p(R)(ε) =
[
ε
(R)
c,2 (T )

]−1
F

ε− ε(R)
c,1 (T )

ε
(R)
c,2 (T )

 , (V.13)

where the prefactor comes from the normalisation of the distribution and where F(x) is a
temperature independent function. The histograms display a temperature independent large tail
at high values of ε which decays exponentially while the low-ε part of the histogram decreases
sharply and faster than an exponential. The fluctuations of the localising field are therefore right-
tailed and non-Gaussian, and they are well approximated by a generalised Gumbel distribution
with a single free parameter α [365], i.e.,

F(x) = µαα
α

Γ(α) e
−α(z+e−z), z = µα(x+ λα), (V.14)

with 
µα =

√
1

Γ(α)
d2Γ
dα2 (α)−

[ 1
Γ(α)

dΓ
dα(α)

]2
,

λα = 1
µα

[
lnα− 1

Γ(α)
dΓ
dα(α)

]
.

(V.15)

The parameters of the generalised Gumbel distribution involve the Euler Gamma function Γ(α)
and its two first derivatives which read for n ≥ 1:

Γ(α) =
ˆ +∞

0
dt tα−1e−t,

dnΓ
dαn (α) =

ˆ +∞

0
dt tα−1e−t(ln t)n.

(V.16)
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Fig. V.6 | Franz-Parisi (FP) potentials V (R)
x (Q; rN0 ) in cavities of radius R = 4 at a temperature

T = 0.07 for a fixed reference configuration rN0 which has been sampled at T0 = 0.04. The FP
potential V (Q; rN0 ) for a single reference configuration in a bulk system with periodic boundary
conditions of linear size L = 2R = 8 at the same temperatures is also represented for comparison:
it is smaller at large overlap values and it displays more pronounced non-convexities.

The best estimate of α ' 1.3 for fitting our data has been found by minimising the sum χ2(α)
of the residuals, namely, the quadratic difference between the rescaled histograms at all the
temperatures and the master curve. However, our estimate of α suffers from large uncertainties,
and for instance the values α = 1 or α = π/2 (see later) perform almost equally well, even
though the corresponding values of χ2(α) are slightly higher.

When α is an integer, this distribution is usually encountered in extreme-value statistics and
describes the fluctuations of the αth largest value in an ensemble of independent and identically
distributed random variables [366]. The generalised Gumbel distribution was also interpreted
as the distribution of the infinite sum of independent and exponentially distributed random
variables [367]. It was first found in the XY model [368] for the distribution of the average
magnetisation at the critical point [369] and has now been displayed in several other strongly
correlated systems, for instance turbulence [370] and interface growth [371], with an apparent
universal reported value α = π/2 ' 1.57. However, the connection between our system and these
phenomena is not clear. Indeed, in the latter, the Gumbel distribution describes the fluctuations
of a global spatially averaged variable [372]. On the opposite, here, we have found that the field
which is linearly coupled to the overlap with a reference configuration is distributed according
to a generalised Gumbel distribution, while the distribution of the overlap is almost symmetric
at any temperature.

4.2 Influence of the boundaries

To understand the origin of this non-Gaussian distribution of the localising field, we com-
pare our protocol with the simulations of small systems with periodic boundary conditions. In
Ref. [52], an almost Gaussian distribution of the localising field was found. As the only differ-
ence between the protocols is the existence of boundaries, the latter should be responsible for
the emergence of a tail at large values of ε. By using the change in ensembles in Chap. II, the
boundary should also impact the Franz-Parisi (FP) potential V (R)

x (Q; rN0 ) in the cavities for a
fixed reference configuration rN0 . In Fig. V.6, we display the FP potentials for several cavities
of radius R = 4 at a temperature T = 0.07 for a given reference configuration rN0 which has
been sampled at a temperature T0 = 0.04. We choose a lower temperature of the reference
configuration as this may lead to more pronounced non-convexities of the FP potential at a
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fixed temperature T (for the influence of the temperature T0, see Chap. II and Chap. III). The
FP potential in the different cavities is directly compared to the FP potential for a system with
periodic boundary conditions which has been computed via the methods that are presented in
Chap. III. The temperatures T and T0 are the same in both cases and the size of the bulk
liquid is chosen to be similar to the size of the cavities: the bulk liquid is taken of linear size
L = 2R = 8 which corresponds to a total number N = 64 of particles. We observe that the FP
potential in the cavities is not as non-convex as its counterpart in small systems with periodic
boundary conditions. This suggests that the annealed average over the boundaries is likely to
destabilise the metastable glassy phase in the cavity. Qualitatively, this comes from the fact that
when ε increases, the overlap profile penetrates more and more outside the cavity (see Fig. V.3)
and in consequence a larger field is required in order to localise the cavity close to the reference
configuration. In other words, not only ε∗(R)(x; rN0 ) reflects the configurational entropy cost to
enforce a large overlap within the cavity but it also takes a contribution from the free energy
cost to smooth out the mismatch in the density fields just outside the cavity. This is similar
to the contribution of the surface tension in the nucleation argument of the random first order
transition theory [124, 144]. This rationalises the emergence of a tail in p(R)(ε) at large values
of ε in Fig. V.5 (b) (as the localising field is the slope of the tangent line at the FP potential)
and this suggests that the generalised Gumbel distribution should merely be considered as a
convenient fitting function. If our intuition is correct, then the shape of the distribution p(R)(ε)
is likely to change upon increasing the radius R of the cavity to tend to its counterpart in sys-
tems with periodic boundary conditions, because the relative weight of the surface free energy
cost is expected to scale as R−(d−θ), with θ ≤ d− 1 [122, 124, 144, 175].

5. Conclusions and perspectives

5.1 Statistics of the local Franz-Parisi potential

In this chapter, we have presented a new method to measure the local fluctuations of the
Franz-Parisi (FP) potential which represents the free energy cost to maintain the local overlap
or similarity between a liquid configuration and a reference configuration of the same liquid at a
given value. In the framework of the random first order transition (RFOT) theory, namely, the
finite-dimensional version of the mean-field theory of glass formation, the local configurational
entropy, which corresponds to height of the secondary minimum of the FP potential, behaves as a
random field which is linearly coupled to the local overlap between equilibrium configurations, as
the mapping of glass-forming liquids onto the random-field Ising model (RFIM) suggests [196,
197]. The static and spatial fluctuations of the local overlap in a cavity of radius R can be
magnified by coupling the latter to an external field ε, while the exterior is free to evolve without
any thermodynamic constraint. We have revealed non-trivial fluctuations of the field ε∗(R)(x; rN0 )
which is needed to localise a patch of radius R close to a reference configuration, namely, to
induce a large local overlap. We have shown that these fluctuations are spatially correlated, i.e.,
they form domains of about 2-3 particle average diameters. A more accurate computation of the
correlation length of the localising field remains to be done to assess its temperature evolution.
In particular, the latter should be comparable to the one of the point-to-set (PTS) length
which quantifies the typical linear extent of amorphous order in glass-forming liquids and the
lengthscale below which mean-field metastable states are well defined in finite dimensions. The
correlation length of the localising field and the PTS length seem roughly similar but we need to
accumulate more data to confirm this point [182]. In addition, we have shown that the average
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and the standard deviation of the localising field ε∗(R)(x; rN0 ) both decrease when decreasing
the temperature, while their ratio seems to increase. We have argued that the fluctuations of
this field represent a reasonable proxy for the spatial variations of the configurational entropy.
Our results are therefore compatible with a decrease in the local configurational entropy and
an increase in its relative fluctuations. This is overall consistent with the RFOT theory which
predicts that the average configurational entropy decreases with the temperature and vanishes
at the Kauzmann transition (if it exists) while its standard deviation remains finite at the
Kauzmann transition: the relative fluctuations of the configurational entropy are thus expected
to diverge at the putative Kauzmann transition [168].

We have also studied the distribution p(R)(ε) of the fluctuations of ε∗(R)(x; rN0 ) which is well
approximated by a temperature independent generalised Gumbel distribution when the data are
properly rescaled and for all the temperatures that range from the onset temperature of glassy
behaviour down to the extrapolated experimental glass transition temperature. Interestingly,
the distribution displays an exponential right tail which corresponds to regions of very large
localising field. However, the form of the distribution is likely to be caused by the presence of
the boundary and the fact that ε∗(R)(x; rN0 ) not only must overcome the free energy penalty to
localise a given region of the liquid close to the reference configuration but also the free energy
cost to smooth out the density mismatch between the cavity and the exterior. This point deserves
a more thorough investigation to properly account for the precise shape of the distribution
p(R)(ε) along with the scaling form in Eq. (V.13). In particular, the latter predicts that the
skewness or the excess kurtosis (see Chap. III) of the localising field should be independent3 of
the temperature T . In addition, we have advocated that the shape of the distribution, especially
its exponential tail, should depend on the radius R of the cavity: a systematic investigation of
the R dependence of p(R)(ε) is left for future work.

Even though these preliminary results are encouraging, our setting is worth comparing to a
similar one in which the exterior of the cavity is frozen in a configuration which has a random
overlap with the reference configuration. This corresponds to a quenched average over the
boundaries. In particular, this strategy might be able to confirm or infirm our interpretation of
the results and to disentangle the two sources of fluctuations which are captured by ε∗(R)(x; rN0 ),
namely, fluctuations of the local configurational entropy and of the surface free energy cost.
However, this protocol is far more demanding. On the one hand, cavities with frozen boundaries
are much slower than their bulk counterpart [178], and an accurate sampling would require
longer simulations and/or more clever algorithms, for instance parallel tempering [180, 314]. On
the other hand, an average over the realisations of the boundaries must be taken for a fixed
reference configuration and for each cavity, which multiplies the total number of simulations.

Finally, we come back to the usual cavity setting, as discussed before, which is inspired from
the RFOT theory and which consists in freezing all the particles outside a cavity of radius R while
the particles inside the cavity are free to relax in the presence of the amorphous boundary [124,
144, 175, 178–180, 182, 185]. This amounts to forcing a large overlap close to 1 with the reference
configuration on the boundary of the cavity (in this case ε = 0). By decreasing the radius R of
the cavity, a crossover from a low to a high overlap at the center of the cavity is found for R
equal to the PTS length. When varying the location of the cavity, the crossover radius fluctuates
and these fluctuations of the local PTS length also reflect local static fluctuations. The local
fluctuations of the PTS length may be related to the fluctuations that we have put forward in this

3For instance, the generalised Gumbel distribution with α ' 1.3 implies that the skewness should be
approximately equal to 0.99 at any temperature.
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Fig. V.7 | (a) Same as Fig. V.4 (b). (b) Map of the local overlap in a bulk liquid of N = 576
particles at a temperature T = 0.1 with the same reference configuration as in panel (a) (T0 = 0.1).
Be careful that the map shows 1 − q(x; rN0 ). The two maps are highly correlated (the Pearson
correlation rqε is about −0.64), which means that the regions of high localising field correspond to
the regions of small overlap when the average global overlap is fixed.

chapter, namely, the fluctuations of the localising field ε∗(R)(x; rN0 ). In particular, the regions
of larger PTS length shoud be correlated with the regions of lower localising field. An analysis
of the similarities and the differences between our method and the usual cavity construction is
also left for future work.

5.2 Correlation with structural indicators and the dynamic heterogeneities

Our protocol reveals static fluctuations of the localising field ε∗(R)(x; rN0 ). The cavities of
larger (resp. smaller) ε∗(R)(x; rN0 ) correspond to regions where the overlap is likely to be lower
(resp. higher) and somehow to hotter (resp. colder) zones. A structural characterisation of these
regions could be interesting, for instance by measuring the correlation between the localising field
and several structural indicators [373], such as the local orientational order [69], the machine
learning based softness [374], the vibrational modes, the local energy, the local density [67] or
the local yield stress [361, 362]. Except for the latter, all of the previously mentioned quantities
are defined at the single-particle level and assessing their connection with ε∗(R)(x; rN0 ) requires
a coarse-graining, see later.

As a first step to assess the physical relevance of the fluctuations of the localising field, we
have used umbrella sampling simulations in order to force the bulk liquid to have a global finite
overlap with the reference configuration

Q̂[rN ; rN0 ] = 1
N

N∑
i=1

qi[rN ; rN0 ] = 1
N

N∑
i,j=1

w(|ri − r0,j |/a), (V.17)

where qi is the overlap of particle i, see Chap. III. More precisely, we have run simulations of
the liquid with the Hamiltonian

Ĥb[rN ; rN0 ] = Ĥ[rN ] + 1
2Nκ(Q̂[rN ; rN0 ]−Qref)2, (V.18)

with κ = 0.3 and where Qref controls the average value of the global overlap. In 2d and for large-
enough samples, the system displays small domains of low and high overlap with the reference
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configuration, see Fig. V.7 (b). The map has been obtained from the measure of the average local
overlap of each particle 〈qi〉b (where 〈.〉b denotes an average with the Hamiltonian Ĥb[rN ; rN0 ]
for a fixed reference configuration rN0 and a fixed temperature T ) via an extrapolation on a
lattice of spacing dr = 0.05 by using an exponential weight of characteristic lengthscale ` = 0.5,
i.e., for any y ∈ [0, L]d:

q(y; rN0 ) =
∑
i〈qi〉be−|ri−y|/`∑
i e
−|ri−y|/` , (V.19)

where the sums run over i = 1 . . . N . The reference configuration is the same as in Fig. V.4 (b)
[see also Fig. V.7 (a)] and the center of the umbrella potential has been chosen to maximise
the correlation (see later). The domains of large overlap seem to coincide with the regions
of small ε∗(R)(x; rN0 ): when the overlap is fixed, the domains of low (resp. high) overlap are
preferably pinned on the regions of high (resp. low) field. In 2d, there is no phase transition in
the phase diagram (ε, T ) when the global overlap Q̂[rN ; rN0 ] is coupled to a field ε, see Chap. III.
According to our discussion in Chap. II, fixing the global overlap to Q is thus equivalent to
imposing a uniform field ε in the sample such that the average overlap is Q. Therefore, when the
global overlap is biased via an external field, the system displays micro-domains. The domains
of high overlap are located in the regions where ε∗(R)(x; rN0 ) < ε as the global field is high
enough to switch to a locally high-overlap state. The regions of localising field ε∗(R)(x; rN0 ) > ε
remain instead in a locally delocalised state. These results are encouraging but their robustness
needs to be systematically checked by changing the reference configuration, the temperature
or the dimension. In particular, in 3d and at low-enough temperatures, the system displays a
macroscopic phase separation when its global overlap is fixed (see Fig. III.9), and the correlation
with the localising field is worth assessing in this case. In particular, the domains of low or high
overlap are rough and their shape could maybe be rationalised because their interfaces are pinned
by large or small values of the localising field, as for random-fields systems [375].

Moreover, the regions of higher localising field somehow represent hotter regions, hence
regions which should relax faster than the bulk. This suggests to study the potential connection
between the thermodynamic fluctuations which are presented in this chapter and the dynamic
heterogeneities which are universally found in supercooled liquids at low temperatures, as already
discussed in the introduction. This requires to define a dynamic quantity for each cavity whose
correlation with ε∗(R)(x; rN0 ) may then be assessed. A first and simple way of characterising
the dynamics of the cavities consists in coarse-graining the single-particle propensity which
is obtained from the iso-configurational runs of the physical dynamics (without swap) that
start from the reference configuration and with randomised initial velocities [62, 63]. One can
be interested in the equilibrium dynamics (with T = T0) but also in the out-of-equilibrium
melting dynamics of very stable reference configurations which are instantaneouly heated at a
higher temperature T (T > T0). In particular, rare regions from which the transformation to
the supercooled liquid initiates may be correlated with the regions of relatively high localising
field [205, 376].

We are currently measuring the correlation between the fluctuations of the Franz-Parisi po-
tential and coarse-grained mesoscopic static or dynamic properties. As correlations can suffer
from large uncertainties when data are interpolated [377], we do not propose an interpolation
scheme to define ε∗(R)(x; rN0 ) at the single-particle level but we instead coarse-grain single-
particle quantities at the cavity lengthscale, as explained above. For a single-particle quantity
ωi[rN0 ] which is defined in the reference configuration (for instance the propensity, the orienta-
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Fig. V.8 | (a) Same as Fig. V.4 (b). (b) Map of the local bond-breaking correlation in a bulk liquid
of N = 576 particles at a temperature T = 0.1 for the relaxation dynamics from the same reference
configuration as in panel (a) (T0 = 0.1). Be careful that the map displays 1 − CB(t,x; rN0 ). The
two maps seem to be correlated (the Pearson correlation rCBε is about −0.42). The time t has been
chosen to maximise the correlation, and corresponds to t/τα ' 1.5 × 10−2, where the α-relaxation
time τα is extracted from the isoconfigurational average of the bulk orientational correlation function,
see Eq. (III.9).

tional order, the energy, etc.), we first define an associated cavity quantity

ω(R)(x; rN0 ) =
∑
i ωi[rN0 ] θ(R− |r0,i − x|)∑

i θ(R− |r0,i − x|) , (V.20)

where the sums run over all particles i = 1 . . . N , by averaging ωi[rN0 ] over all the particles which
are in the cavity [we recall that θ(x) denotes the Heaviside step function]. For the propensity,
ωi[rN0 ] also depends on time and the positions of the particles in the previous formula are the
ones at the initial time. Eventually, the temperature dependent Pearson correlation rωε(T ) with
the localising field can be computed by averaging over the position x of the cavities and the
reference configurations rN0 , i.e.,

rωε(T ) = 〈〈ω(R)(x; rN0 )ε∗(R)(x; rN0 )〉〉 − 〈〈ω(R)(x; rN0 )〉〉 〈〈ε∗(R)(x; rN0 )〉〉[
〈〈ω(R)(x; rN0 )2〉〉 − 〈〈ω(R)(x; rN0 )〉〉

2
]1/2 [

〈〈ε∗(R)(x; rN0 )2〉〉 − 〈〈ε∗(R)(x; rN0 )〉〉
2
]1/2 .

(V.21)

We have obtained preliminary results but we hope to collect new data in the following
weeks to present for the PhD defense. In Fig. V.8, we show a map of the local bond-breaking
correlation ωi = CiB(t) for the isoconfigurational physical (without swap) and unconstrained
(with ε = 0) dynamics which is initiated from the same reference configuration as in Fig. V.4.
The definition of CiB(t) is given in Chap. VI, see Eq. (VI.9). Briefly, this number monitors
the change in the environment of a given particle i: the particles which have relaxed and
escaped their initial position are characterised by a bond-breaking correlation which is close
to 0, the others have a bond-breaking correlation which is close to 1. The time t has been
chosen to maximise the correlation with the localising field, and is about two decades before the
α-relaxation time. Accordingly, the average over the sample of the bond-breaking correlation
is about 0.9, which means that only 10 % of the particles have relaxed. We observe a non-
zero anti-correlation between the map of the localising field and the map of the bond-breaking
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correlation: the particles which relax the first are preferably located in the cavities with the
larger localising fields. The correlation is found to decay to 0 both at early and late times,
which suggests that the localising field is predictive of the first dynamic events, namely, the
relaxation of some regions of the sample few decades before the bulk. This is compatible with
the results which are presented in Chap. VI, especially with the interplay between activation
and dynamic facilitation in this system.
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VI
Escaping “metastable states”:
watching 1 millisecond of the
equilibrium relaxation in supercooled
liquids

In this chapter, we combine the swap Monte Carlo algorithm to long multi-CPU molecular
dynamics simulations to analyse the equilibrium dynamics of model bulk supercooled liquids over
a time window of 10 decades and for temperatures down to the experimental glass transition
temperature Tg. We start with ensemble-averaged time correlation functions which slow down
and which display a plateau that extends over several decades when decreasing the temperature.
We then show that more interesting features can be found either by computing the relaxation
spectrum in the Fourier domain, or by quenching into the inherent structures and by obtaining
the corresponding inherent structure mean-squared displacement. Both procedures reveal non-
trivial motions at much shorter timescales than the bulk relaxation time for temperatures close
to Tg. These short-time processes manifest themselves into a power law signal in the relaxation
spectrum which is known as the “excess wing”. The latter has been documented in many
experimental studies but its observation in simulations of glass-forming liquids in equilibrium
conditions is a major novelty. Equivalently, in the inherent structure mean-squared displacement,
the short-time processes which populate the excess wing contribute to a systematic sub-diffusive
behaviour. We then use the possibility which is offered by computer simulations to study
the dynamics at the single-particle level and we reveal strong dynamic heterogeneities at times
much smaller than the α-relaxation time. These heterogeneities enable us to distinguish between
mobile and immobile particles at short times. A detailed spatio-temporal analysis reveals that
the structural relaxation starts in rare, localised regions of mobile particles which form clusters.
They are characterised by a power law waiting time distribution which directly accounts for
the emergence of a power law in the relaxation spectra or a sub-diffusive signal in the inherent
structure mean-squared displacements. We further analyse the dynamics at longer times and we
show that the structural relaxation proceeds via dynamic facilitation from these initially relaxed
regions. In particular, we find that the motion of the particles is persistent and correlated among
neighbours, and that the effect of dynamic facilitation becomes stronger as Tg is approached.
Overall, our results show that the structural relaxation in glass-forming liquids near Tg can
now be analysed in computer simulations over experimentally relevant time and temperature
windows. They mainly reveal that the dynamics in deeply supercooled liquids is controlled by
two minimal ingredients, namely, (i) rare and time-distributed events which likely occur via
thermal activation, and (ii) mobility coarsening thanks to dynamic facilitation.
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The work of this chapter is done in collaboration with C. Scalliet. Some of these results have
already been the object of an article which is currently under review, see Ref. [378].

1. Introduction

In the previous chapters, we have studied the free energy landscape of glass-forming liquids
from a thermodynamic point of view. Our analysis has been based on mean-field concepts
like metastable states, configurational entropy or constrained thermodynamics. We have shown
in Chap. III by using computer simulations that mean-field theory is remarkably robust in
finite dimensions as the thermodynamics of constrained glass-forming liquids is similar to the
mean-field behaviour. This is consistent with other works which focused on the measure of the
configurational entropy [114, 164, 181, 241] or of the point-to-set length [178–180]. Therefore,
in finite dimensions, the dynamic slowdown at the origin of the glass transition is accompanied
by increasing thermodynamic fluctuations of a well chosen order parameter, namely, the overlap
or similarity between equilibrium configurations, which becomes correlated on an increasing
lengthscale as the temperature decreases.

At the mean-field level, there is also a clear connection between the statics of a glass-forming
liquid at low temperatures and its equilibrium dynamics (see Chap. I). Indeed, as the liquid
is cooled down to the dynamical transition temperature, the equilibrium relaxation time τα(T )
diverges because the system remains stuck in one of the many metastable states whose number
becomes exponential in system size precisely at this temperature [126]. In physical dimensions
instead, both statements cannot be correct as such. On the one hand, metastable states be-
come ill-defined because free energy barriers are not extensive and they do not diverge in the
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thermodynamic limit [144]. On the other hand, the dynamical (or mode-coupling) transition
at Tmct ' Td is avoided and it becomes a mere crossover. This avoided transition is advocated
to be due to the activated events and the fact that below Tmct the system can escape the free
energy minima, see Chap. I. However, the nature and the properties of these non-perturbative
activated events remain elusive [125, 184]. In addition, even though the glass transition in finite
dimensions is accompanied by growing static fluctuations, their connection with the dynamics
is still an open question. In a complementary line of thought, the dynamic facilitation theory,
which is inspired from the study of kinetically constrained models, accounts for the structural
relaxation by the diffusion of rare defects without resorting to static properties [112].

To address these questions and to test the various theories of the glass transition, computer
simulations are a powerful asset. On the one hand, they allow one to study the dynamics at
the single-particle level and in consequence to reveal the microscopic processes responsible for
the relaxation. On the other hand, they can measure mean-field-inspired thermodynamic ob-
servables. For instance, dynamic facilitation has been well documented in computer simulations
at moderately low temperatures [379–381]. The connection between the α-relaxation time and
the configurational entropy or the point-to-set length has also been investigated [190]. However,
in simulations, dynamic studies are typically limited to short timescales, about 5 decades of
increase in the relaxation time, and therefore the equilibrium dynamics can be only analysed
down to the mode-coupling (avoided) transition or just below. This is problematic since for
instance the previously mentioned activated events are expected to control the dynamics below
the mode-coupling crossover, even though they may still exist above Tmct [382]. In addition, the
influence of facilitation has not been assessed at lower temperatures, nor its relative role with
respect to thermal activation.

On the opposite, experiments have access to the dynamics of supercooled liquids over 12
decades of increase in the relaxation time. However they usually lack microscopic resolution
and thermodynamic measurements are often harder to relate to mean-field-like quantities. A
huge number of works has been dedicated to the measure of the dielectric spectra χ′′(ω) of
glass-forming liquids in the frequency domain [383], see Chap. I. They have revealed that the
dynamic slowdown as monitored by the increase in the α-relaxation time is accompanied by
richer relaxation spectra [384, 385]. At high temperatures, the spectra usually display a single
peak at high frequencies which corresponds to a Debye (exponential) relaxation on the GHz
or the picosecond ranges. As the temperature is lowered, the spectra broaden and they form
two peaks which reflect the two-step decay of the equilibrium correlation functions in the time
domain. The first peak lies in the GHz range and it is attributed to the microscopic relaxation,
namely, the first decay on the picosecond range of the correlation functions to a well defined
plateau in the time domain. The second peak in the dielectric spectra is at much lower frequency
and it stands for the stretched exponential relaxation of the correlation functions in real time.
The position of the peak ωα = 1/τα shifts towards lower frequencies when the temperature is
decreased, and this stands for the dynamic slowing down and the increase in the α-relaxation
time. When decreasing the temperature, the low-frequency peak becomes increasingly large and
much wider than what would be expected from a stretched exponential relaxation. The signal
takes the form of a power law χ′′(ω) ∼ ω−σ for ωτα � 1 with an exponent 0.2 ≤ σ ≤ 0.4 which
decreases when decreasing the temperature [43]. On logarithmic scales, this signal resembles
an “excess wing” of the α-peak. At Tg, the wing extends over the Hz-MHz range with an
“amplitude” of about 1 % of the α-peak.

Even though the signal in dielectric spectra could be very complex due to extra microscopic
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processes which originate from the chemical details of the materials [45], the “excess wing” seems
to be a universal feature of the dielectric spectra of glass-forming liquids close to Tg [46–49] and
it can help testing the predictions which come from different theories of the glass transition.
Indeed, a complete theory of the glass transition must account for the shape of the relaxation
spectra (and not only for the shift of the low-frequency peak or the increase in the α-relaxation
time), and this requires insights from computer simulations to elucidate the dynamics at the
microscopic scale. However, the excess wing has never been observed in computer simulations
because of the impossibility to deal with experimentally-relevant time and temperature ranges.
This has led to a collection of phenomenological models to rationalise the shape of the relaxation
spectra which rely on more or less reasonable physical motivations rather than on undisputable
facts. One class of models accounts for the excess wing by coupling the structural relaxation to
another degree of freedom [386–388]. A second class of models relies on heterogeneous dynamics
of static [389–395] or of purely dynamic origin [396].

Recently, the swap Monte Carlo algorithm was developed [54]. It allows for the fast equi-
libration of computer models down to arbitrarily low temperatures. It has already been used
to extend the range of temperatures over which thermodynamic quantities can be computed
in equilibrium conditions. However, the equilibrium physical (without swap) dynamics has not
so far been investigated. The objective of this chapter is to fill this gap. In this chapter, we
show that we are now able to access time and temperature ranges which are similar to what is
achieved in experiments. We compute relaxation spectra close to Tg from simulations and we
show that they also display excess wings. We then use the single-particle resolution of computer
simulations to unravel the two main features of the equilibrium dynamics in model deeply su-
percooled liquids down to the extrapolated experimental glass transition temperature, namely,
dynamic heterogeneities and dynamic facilitation.

2. Model and methods

2.1 Model and numerical strategy

We study the equilibrium dynamics of the system which is described in Sec. 2.2 of Chap. III.
By using the hybrid scheme that combines molecular dynamics simulations with swap Monte
Carlo moves [55], one can equilibrate the system down to very low temperatures. Then, via
the swap algorithm, we generate ns ∈ [200, 450] independent equilibrium configurations at tem-
peratures T which range from the onset temperature of glassy behaviour down to Tg. In this
chapter, we define the onset temperature as the highest temperature where the evolution of the
α-relaxation time with the temperature departs from its high-temperature Arrhenius behaviour
τα(T ) ∝ eEon/T (where Eon is an adjustable parameter and where the Boltzmann constant is set
to unity) [285–287].

Each equilibrium configuration is then taken as the initial condition of a conventional multi-
CPU molecular dynamics (MD) simulation (without swap). The ns independent simulations
run for up to 2× 109 MD steps, which corresponds to a walltime of about one week when using
2 CPUs. We present quantitative results in 3d for a system size N = 1200. We have verified
that our results were not a finite-size artefact by running simulations in 3d for systems of size
N = 10000. These larger systems are also used for visualisation purposes. Our results also seem
to hold in 2d when the right observables are considered (cf. Mermin-Wagner fluctuations).
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From an average over the ns runs1 at a given temperature, we can determine different dy-
namic observables that are discussed in the next section. We stress that this procedure allows for
accessing the equilibrium dynamics because simulations are run from initial equilibrium condi-
tions which are generated through the swap algorithm. This strategy saves simulation walltime,
namely, the time to generate equilibrium configurations. Indeed, with modern computers, the
number of MD steps which can be done for a few number of CPUs and a simulation walltime
of one week is about 109 MD steps with an optimised choice of the time step dt. At the onset
temperature, the relaxation time usually represents 102 MD steps. This means that by starting
from equilibrium configurations which are generated by the swap algorithm, one can directly
observe the 7 first decades of the increase in the relaxation time. In conventional simulations
instead, one first has to prepare equilibrium configurations by running the physical dynamics.
A usual criterion consists in letting the system equilibrate at a temperature T for at least 10τα
and up to 102τα, with τα the α-relaxation time at this temperature. As a consequence, one
cannot measure the one to two last decades of glassy slowdown anymore and instead one only
observe the usual 5 decades of the increase in the relaxation time.

2.2 Dynamic observables

To quantify the glassy dynamics in the system, we first focus on time correlation functions
and we analyse the temperature behaviour of the self-intermediate scattering function

Fs(t) = 1
N

〈
N∑
i=1

cos
[
q ·
(
ri(t)− ri(0)

)]〉
. (VI.1)

The brackets stand for the ensemble average over the ns trajectories which initiate from equi-
librium configurations at a temperature T , along with a spherical average over all wave vectors
q such that |q| = 6.9, which corresponds to the first peak in the total structure factor. The
sum runs over all particles, and ri(t) denotes the position of particle i at time t. The structural
relaxation time τα is defined by Fs(τα) = e−1. Errorbars are computed thanks to the jacknife
method when the average of the ns runs is computed [294].

In order to compare with experiments directly, we define a relaxation spectrum from the
simulations in the frequency domain by assuming that the dynamics can be described by a
superposition of exponential/Lorentzian processes with a distribution of timescales Π(ln τ). The
relaxation spectrum then reads [398, 399]

χ′′(ω) =
ˆ +∞

−∞
Π(ln τ) ωτ

1 + (ωτ)2 d ln τ, (VI.2)

with ω the angular frequency. We can approximate the above distribution of timescales by

Π(ln τ) ' − dFs
d ln t(ln τ), (VI.3)

which amounts to assimilating the self-intermediate scattering function to a persistence func-
tion [396].

The computation of the relaxation spectra χ′′(ω) first requires to differentiate the correlation
function with respect to the natural logarithm of time. This is done by using a first-order finite

1This procedure was called the “swarm” relaxation in Ref. [397].
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difference approximation. During the ns simulations, configurations are stored at logarithmically
spaced times {tk}k=1...n, and we thus have that

dFs
d ln t(tk) = Fs(tk)− Fs(tk−1)

ln tk − ln tk−1
if k > 1. (VI.4)

The integral in Eq. (VI.2) can then be evaluated by using the right-hand (rectangle) rule at any
angular frequency ω, i.e.,

χ′′(ω) = −
n∑
k=2

dFs
d ln t(tk)

ωtk
1 + (ωtk)2 ln(tk/tk−1). (VI.5)

However, the error on the numerical integration gets larger at small frequencies when the com-
plete decorrelation of the self-intermediate scattering function is not observed (at temperatures
close to Tg), as the integral becomes dominated by the long-time behaviour of Fs(t). The error
also increases at large frequencies due to the time discretisation. Computing χ′′(ω) only at
discrete angular frequencies ωk = 2π/tk for k = 1 . . . n is enough to guarantee a small-enough
error and a fine-enough spacing in the frequency range. Errorbars on the relaxation spectrum
are estimated by computing the typical amplitude of the spectrum which is obtained from a
random Gaussian signal of zero mean and of standard deviation equal to the maximum over
time of the uncertainty on Fs(t).

Complementary with the time correlation functions and the relaxation spectra, we also
monitor the mean-squared displacement (MSD)

∆̂(t) = 1
N

〈
N∑
i=1
|ri(t)− ri(0)|2

〉
. (VI.6)

If the particles all vibrate around their initial position, then ∆̂(t) is a non-zero constant. This
is what is usually observed at intermediate times for glassy systems (after the ballistic regime)
because all the particles are trapped in the cages which are formed by their neighbours. In
order to filter these vibrations, we use a strategy which was already devised in Ref. [400, 401].
We quench at different times (including t = 0) the configuration rN (t) of the system to its
corresponding inherent state (IS) rNIS(t). This is achieved by minimising the total potential
energy Ĥ[rN ] thanks to a conjugate-gradient algorithm. From the time series of the positions in
the IS, an inherent structure mean-squared displacement (IS-MSD) ∆̂IS(t) is defined similarly to
Eq. (VI.6). If all the particles vibrate around a given position, then the structure of the system is
expected to be unchanged and ∆̂IS(t) to remain very small. In addition, if few particles perform
non-trivial displacements and escape their cage, the mean-squared displacement ∆̂(t) is likely
to be blind to these as it is dominated by the overwhelming majority of particles which vibrate
in their cages. Thus, the variations of ∆̂IS(t) may reveal non-trivial displacements of particles
which lead to changes in the structure above thermal vibrations. Such as correlation functions,
errorbars on the mean-squared displacements are computed thanks to the jacknife method when
the average over the ns independent runs is performed.

2.3 Mobility at the single-particle level

The above dynamic observables determine the average dynamics. In order to study the
dynamic heterogeneities, we look at the distribution of the displacements of the particles, namely,
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the self-part of the van Hove distribution

Gs(r, t) = 1
N

〈
N∑
i=1

δ(r − |ri(t)− ri(0)|)
〉
, (VI.7)

with δ(x) the Dirac delta function. Its second moment with respect to space at fixed time
t represents the mean-squared displacement ∆̂(t). This distribution can be defined either for
the normal dynamics or for the inherent structure (IS) dynamics, and in the latter case, the
distribution is denoted by Gs,IS(r, t). Dynamic heterogeneities correspond to the coexistence of
regions of space in which particles move freely with frozen areas, and consequently of mobile
and immobile particles whose definition must be specified (see Chap. I).

We consider several mobility definitions. The first one is based on the displacements: a
particle is said to be mobile at time t if its displacement in the inherent structure is larger than
a given threshold that we extract from the properties of the above van Hove distribution. It is
introduced in Sec. 4.1. The second definition relies on a bond-breaking correlation function to
detect changes in the environment of individual particles. It is used for visualisation purposes
only. At time t = 0, we compute the number ni and the identity of particle i’s neighbours. Two
particles i and j are considered as neighbours at time 0 if rij/σij < 1.485, which corresponds to
the first minimum in the total rescaled pair correlation function

g̃(x) = 1
Nρ

〈
N∑

i,j=1
i 6=j

δ(rij/σij − x)
〉
, (VI.8)

with ρ the density, rij = |ri − rj | and σij the interaction cross-diameter of particles i and j. At
time t > 0, we define the bond-breaking correlation of particle i,

CiB(t) = ni(t|0)
ni

, (VI.9)

as the fraction of remaining neighbours of particle i, with ni(t|0) the number of particles which
were neighbours of particle i at time 0 and which are still its neighbours at time t. To avoid
a spurious signal that we attribute to particles that lose their farthest neighbours because of
thermal vibrations, we define the neighbours at time t with a slightly larger cutoff than at time 0,
namely, rij/σij < 1.7 [402]. At time 0, CiB(t) = 1 by definition. Then, as the relaxation proceeds,
the particles experience rearrangements which affect their local environment. In consequence,
the particles which have relaxed lose their neighbours at the initial time and they have CiB(t) = 0.
Therefore, a particle i is considered as mobile at time t if CiB(t) is below a given threshold. This
threshold is also discussed in Sec. 4.1. In particular, it is chosen so that the two alternative
definitions of mobility give sets of mobile particles with a significant overlap and which are then
consistent with each other.

Finally, we consider connected clusters of mobile particles. Two mobile particles at time
t belong to the same cluster if their relative distance at this time in the inherent structure is
smaller than 1.5, which corresponds to the first minimum in the total radial pair correlation
function g(r) (see Chap. IV).

2.4 Dictionary to confront experiment and simulation timescales

Thanks to the swap algorithm and the use of many initial configurations, we can measure
two more decades of the increase in the structural relaxation time in computer simulations,
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as compared to previous studies. In addition, we can prepare equilibrium configurations at
very low temperatures. We have advocated that we are now able to directly compete with
experiments and we detail this now. In particular, we explain how we transform simulation
relaxation times τα into their experimental counterparts in seconds. Experimental measurements
of the temperature evolution of τα in various glass-forming liquids show that at really high
temperatures, the relaxation time is about 1 ps. As already mentioned before, the data in
this high-temperature regime follow an Arrhenius law which extends over about 2 decades [287,
403], before the growth of the α-relaxation time when decreasing the temperature becomes
super-Arrhenius. Thus, the relaxation time in a large number of experimental molecular liquids
at the onset temperature Ton is about τon ' 100 ps, i.e., 10−10 s. In simulations, we can also
measure this onset temperature Ton and we find Ton = 0.2 in 3d. At this temperature, the
α-relaxation time approximately equals τon ' 3 (or 3× 102 MD steps).

Therefore, we use this value to set the dictionary between the simulations and the experi-
ments. We express simulation times in units of τon and we directly obtain the physical time in
seconds by multiplying by 10−10. For instance, conventional computer simulations (without the
swap) are able to reach τα/τon ' 104-105, which represents a physical time of about 1 µs, hence
a poor degree of supercooling with respect to experimental conditions. On the opposite, with
the swap algorithm, we can measure the seven first decades of the increase in the relaxation
time, namely, τα/τon ' 106-107. The latter corresponds to a physical time of about 1 ms, hence
the title of this chapter. Finally, we later argue that we are able to prepare equilibrium configu-
rations of relaxation time τα/τon ' 1011 thanks to the swap algorithm, hence a physical time of
10 s. We recall that in experiments, the glass transition temperature is usually defined when the
α-relaxation time reaches 100 s. As a consequence, we are in a position to study the equilibrium
dynamics of a model glass-former for τα in the range [10−11, 101] s, such as experimental studies.
We present our results in the next section.

3. Equilibrium correlation functions towards the glass transition

3.1 Time correlation functions

In Fig. VI.1 (a), we show the equilibrium self-intermediate scattering function Fs(t) at several
temperatures. The curves for all the temperatures display the well-known two-step decay, with
a first decrease to a plateau due to the ballistic motion at times t ' τon, which is followed by
the structural relaxation that covers several orders of magnitude in time when the temperature
is decreased over a small temperature window. At the largest temperature T = 0.095 for which
we display the self-intermediate scattering function, the liquid already has a relaxation time of
about 104, which corresponds to the longest time that is achievable without the swap algorithm.
As a consequence, the combination of the swap algorithm and the “swarm” relaxation clearly
enables us to surpass all previous studies of the dynamics of model glass-formers in computer
simulations.

We note in Fig. VI.1 (a) that we are indeed able to measure the 6-7 first decades of glassy
slowdown for temperatures T ≥ 0.0793. We report in Fig. VI.1 (b) the value of the α-relaxation
which is rescaled by its value at the onset temperature, and which grows as the temperature
is decreased. A power law fit of the data τα ∝ (T − Tmct)−γ [136] locates the mode-coupling
crossover at Tmct = 0.095 (with γ ' 2.3) but it obviously fails at fitting the data at lower
temperatures. This is the manifestation of the fact that in finite dimensions, the mode-coupling
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Fig. VI.1 | (a) Self-intermediate scattering function Fs(t) versus time for different temperatures
T which range from the mode-coupling crossover Tmct = 0.095 almost down to the experimental
glass transition temperature Tg. A first decay to a plateau due to thermal vibrations is observed.
At high-enough temperatures, we can observe the complete decorrelation with a second stretched
exponential relaxation. At lower temperatures instead, the relaxation time exceeds the simulation
window and only the beginning of the relaxation is observed. Errorbars are too small to be visible.
(b) Rescaled α-relaxation time τα by its value τon at the onset temperature as a function of the
inverse temperature 1/T . This time has been directly measured when Fs(τα) = e−1 (Data), or
obtained via a time-temperature superposition (TTS) at low T when a sufficient decorrelation is
observed. The dashed-dotted curve shows a power law fit to determine the location of the mode-
coupling crossover and the straight line represents an Arrhenius fit which models the data well
at low temperatures. The vertical dashed line marks the extrapolated laboratory glass transition
temperature Tg = 0.056.

dynamical transition becomes a mere crossover. Below Tmct, and in the temperature range
0.0793 ≤ T ≤ 0.095 in which we observe a sufficient decorrelation over the accessible time
window, we can fit the second step of the relaxation in Fs(t) by a stretched exponential of the
form [32]

Fs(t) = F0e
−(t/τ)β , (VI.10)

with F0, τ and β fitting parameters. We find that τ varies by several orders of magnitude
and it closely follows τα. On the opposite, the amplitude of the plateau F0 slightly increases
upon lowering the temperature while the stretching exponent β ' 0.56 turns out to be almost
temperature independent. We use this property in order to extrapolate the relaxation at lower
temperatures where the correlation function still significantly decorrelates but does not reach the
threshold value to measure τα. We perform a time-temperature superposition (TTS) in which
starting from high temperatures, we rescale both axes of Fig. VI.1 (a) in order to obtain a
collapse of the data. This allows for an extrapolation of the relaxation time over 2 more decades
when it is too large to be measured [404], see Fig. VI.1 (b).

Our results for τα (Data +TTS) are well-described by an Arrhenius behaviour τα ∝ eEa/T ,
with Ea an activation energy (Ea ' 2.67), which yields the extrapolated laboratory glass tran-
sition temperature Tg ' 0.056 when τα/τon = 1012. In the following, we use this Arrhenius
fit to extrapolate τα when it is too large to be measured. The Arrhenius trend is believed to
represent a safe extrapolation of the relaxation time and consequently a lower bound of the
actual relaxation time and of the extrapolated glass transition temperature [54].

Thus, in the range 0.059 ≤ T ≤ 0.095, we are probing the dynamics below Tmct and almost
down to Tg in a similar range as in experiments. In the next section, we directly confront with
experiments by computing the relaxation spectrum of Eq. (VI.2).
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Fig. VI.2 | Relaxation spectra χ′′(ω) with respect to the angular frequency ω, as defined by
Eq. (VI.2). For the two lowest temperatures, the spectrum has been computed after smoothing the
curve of Fs(t). A first high-frequency peak is observed for all the temperatures which corresponds to
the first decay in Fs(t) to its plateau value. At high temperatures, a second peak is observed, which
stands for the second step of the relaxation in Fs(t), see Fig. VI.1 (a). The dashed lines correspond to
the α-peak prediction when Fs(t) is modelled by a stretched exponential with a stretching exponent
β = 0.56 and with τα which is extrapolated from the Arrhenius fit of Fig. VI.1 (b), see Eq. (VI.10).
The straight line is a power law of the form ω−σ with an exponent σ = 0.38 which approximates
the data well. The color code is the same as in Fig. VI.1 (a). Errorbars are of order 4× 10−4.

3.2 Emergence of “excess wings” in the relaxation spectra near the glass
transition

From Fs(t), we can compute χ′′(ω) as an equivalent of the experimental dielectric loss, see
Eq. (VI.2). The data from the different temperatures are shown in Fig. VI.2. For the two
lowest temperatures, namely, T = 0.059 and T = 0.062, the data for Fs(t) are noisy and weakly
decreasing, and this leads to numerical artefacts in the computation of the relaxation spectrum.
Therefore, for these two temperatures, we have smoothed the self-intermediate scattering func-
tion before computing the spectrum by using a smoothed cubic spline interpolation [405]. The
spectra all have a first peak which is located at ωon ' 1/τon with a weak temperature depen-
dence, and which accounts for the ballistic regime and the decrease in Fs(t) to its plateau value.
For temperatures T ≥ 0.09, we detect a second peak at much lower frequency ωα ' 1/τα which
corresponds to the structural relaxation and to the second step in the decay of Fs(t). At lower
temperatures however (T ≤ 0.085), this α-peak is no longer present in the achievable frequency
window. Still, the data systematically increase at low frequencies for all the temperatures, which
indicates that relaxation processes are taking place.

As Fs(t) is well-fitted by a stretched exponential [see Eq. (VI.10)] with a known value of β
and τα which is extrapolated from the Arrhenius fit in Fig. VI.1 (b), we are able to predict
the α-peak when it cannot be measured directly, and we plot it with dashed lines in Fig. VI.2.
It behaves as a power law with exponents 1 and −β at low and high frequencies respectively.
This behaviour is similar to the empirical Cole-Davidson curve which is often used to fit the
main peak in the experimental dielectric spectra [40] (see Chap. I). For T ≥ 0.075, the low-
frequency part of the spectrum is well approximated by the α-peak prediction which comes from
the stretched exponential. However, at lower temperatures, we clearly see that the relaxation
spectra systematically lie above the prediction from the stretched exponential fit. Instead, the
signal shows a power law behaviour χ′′(ω) ∼ ω−σ in the range ω ∈ [10−6, 10−3], with an exponent
0.34 ≤ σ ≤ 0.38 which slightly increases with T , and which is much smaller than the stretching
exponent β [we recall that the α-peak scales as χ′′(ω) ∼ ω−β at high frequencies].
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Fig. VI.3 | Mean-squared displacement in the normal dynamics ∆̂(t) (full lines) and in the inherent
structures ∆̂IS(t) (full lines with symbols). The dashed and dashed-dotted lines respectively magnify
the ballistic regime at microscopic times and the diffusive regime at larger times and high-enough
temperatures. The mean-squared displacements for the normal dynamics and the inherent structures
coincide in the diffusive regime. Instead, a sub-diffusive behaviour with a systematic growth is clearly
visible in the time evolution of ∆̂IS(t) in the plateau regime of the normal dynamics. The color code
is similar to Fig. VI.1 (a). Errorbars are too small to be visible.

As a result, for temperatures close to Tg, the spectra of glass-forming liquids are not merely
composed of two peaks which stand for the microscopic motion at short times (large frequencies)
and the structural relaxation at larger times (lower frequencies). At intermediate frequencies,
there is an excess signal which is very similar to the experimental excess wing. We observe that
this signal is one hundred times smaller than the main α-peak and that it covers a range of
frequencies ω ∈ [10−6, 10−3] which corresponds to a range of physical frequencies [104, 107] Hz.
As a consequence, this excess signal has the same trend, frequency range and amplitude as excess
wings which are observed in experiments. In Appendix A, we study the fate of the power law
signal in our numerical spectra in the out-of-equilibrium dynamics of glasses of different stability
to further confirm the similarity with experimental findings.

Consequently, Fig. VI.2 represents the first observation of excess wings in computer simula-
tions of equilibrium model glass-formers to date. We stress that the wing becomes clearly visible
only at temperatures T & Tg, which explains why it has not been reported before in computer
simulations of spherical particles. This observation strengthens the universal character of the
excess wing but it also implies that there is no need for an extra degree of freedom to observe
excess signals in the relaxation spectra, which is a key assumption for some of the models that
try to account for the excess wings.

3.3 Sub-diffusive motion in the inherent structure mean-squared displace-
ments

The processes which lead to the excess wing at intermediate frequencies correspond to pro-
cesses at intermediate times which take place over several decades, when Fs(t) develops a plateau.
They are thus masked by the vibrations of the particles but they are revealed once translat-
ing the data into the Fourier domain, via the time derivative in Eq. (VI.2). Another way of
revealing these processes is to quench to the inherent states, as we explain now. In Fig. VI.3,
we represent the mean-squared displacement (MSD) ∆̂(t) (full lines). The data clearly show
the ballistic regime at early times with ∆̂(t) ∼ t2. At large times, diffusion takes place for
T ≥ 0.09, with ∆̂(t) ∼ t. At lower temperatures, the diffusive regime leaves the simulation
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Fig. VI.4 | van Hove distribution of displacements in the inherent structures Gs,IS(r, t) when
∆̂IS(t) = 1.5×10−2. The dashed-dotted line is an exponential fit of the tail of the distribution. The
inset shows a comparison of the van Hove distribution in the normal dynamics (MD) and in the
inherent structures (IS) for T = 0.07. They agree at large displacements but the peak at r = 0 is
significantly narrower and higher in the inherent structures because thermal vibrations are partially
filtered. The color code is given in Fig. VI.1 (a).

window and we can only observe the beginning of the escape from the plateau. In Fig. VI.3,
we also display the inherent structure mean-squared displacement (IS-MSD) ∆̂IS(t) with full
lines and symbols (see Sec. 2). Both mean-squared displacements coincide at large times and in
consequence the quenching protocol leaves unaffected the diffusive regime because the system
has escaped from its initial structure. At intermediate times instead, ∆̂IS(t) is much smaller
than ∆̂(t) by 2 orders of magnitude. This large difference reveals that the main contribution to
the MSD in the plateau regime represents vibrations of particles in the cages which are formed
by their neighbours, without any significant change in the structure. The quenching protocol
masks these vibrations partially, similarly to the computation of χ′′(ω) at the level of the time
correlation function. In the plateau regime, and at all the temperatures down to Tg, we observe
that ∆̂IS(t) systematically increases with a sub-diffusive behaviour [401]. We conclude that at
these timescales which are much smaller than τα, not only the particles vibrate in their cages,
but they also perform non-trivial displacements which lead to structural changes, as revealed by
quenching the configuration into its inherent structure. At Tg, these processes occur as fast as
t ∼ τon and they continue up to the longest time we can simulate. This corresponds to a time
regime and an amplitude similar to the excess wing.

We thus conclude from the two previous sections that going to the Fourier domain or to the
inherent structures filters trivial the thermal vibrations of the particles in the cages which are
formed by their neighbours. This emphasises that in the plateau regime of the time correlation
functions, non-trivial processes occur and give rise to a wing in the relaxation spectra or to a sub-
diffusive behaviour in the inherent structure mean-squared displacements. In the next section,
we study the real-space organisation and the statistical properties of the particle motions which
contribute to the relaxation much before the bulk.

4. Short-time relaxation much before the bulk

4.1 Dynamic heterogeneities and mobility classification

To have more intuition about the events which contribute to the relaxation and which occur
much before the bulk, we analyse the dynamics at the single-particle level. In Fig. VI.4, we plot
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Fig. VI.5 | Snapshot which shows how the relaxation initiates in a 3d system of N = 10000 at a
temperature T = 0.07 (τα/τon = 6× 107 or 6 ms in physical time). The snapshot is taken at a time
t = 106 (t/τα = 5 × 10−3). Only the mobile particles (according to the bond-breaking criterion)
which belong to clusters of size larger than 4 particles are represented. The particles are coloured
according to the common logarithm of their relaxation time log τ iα = ln τ iα/ ln 10, i.e., the first time
t at which their bond-breaking correlation verifies CiB(t) < 0.55. The diameter of the particles is
set to 1.5 (distance criterion to belong to the same cluster) in order to more easily see the clusters.
We observe that the birth of clusters is time-distributed on a logarithmic scale and that the clusters
tend to grow in a hierarchical way as the relaxation proceeds.

the van Hove distribution of displacements in the inherent structures when ∆̂IS(t) = 1.5× 10−2,
which broadly corresponds to the beginning of the escape from the plateau in the normal mean-
squared displacement. For all the temperatures, the distribution displays a strong peak around
r = 0, which stands for the vibrations of the particles around the position they occupied at t = 0.
At these timescales much smaller than τα, we already observe that the van Hove distribution is
very broad. On the one hand, for temperatures T ≤ 0.07, the distribution displays a secondary
maximum for r ' 0.9 which stands for the particles that replace their neighbours: the location
of the maximum approximately coincides with the position of the main peak in the total pair
correlation function g(r). On the other hand, the van Hove distribution shows an exponential
tail which includes displacements that exceed the average inter-particle distance.

Consequently, as T decreases, the dynamic heterogeneities become more pronounced, even
at very short timescales t � τα. A large majority of particles is immobile, these particles have
small displacements (a fraction of their diameter) and they populate the high peak at r = 0
of Gs,IS(r, t). They coexist with a tiny fraction of mobile particles with displacements that can
be larger than several times their diameter, and which corresponds to the second peak and the
exponential tail in Gs,IS(r, t). In the following, we define mobile particles at time t as the particles
with a displacement in the inherent structure larger than 0.8 at time t. The corresponding
threshold for CiB(t) is 0.55. These mobile particles have escaped their initial position and they
thus participate to the signal in the inherent structure mean-squared displacements and to the
excess wing in the relaxation spectra. Their fraction at early times is very small as the tail and
the second peak in Gs,IS(r, t) are both of much lower amplitude than the main peak at r = 0.
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Fig. VI.6 | Spatio-temporal distribution of clusters of mobile particles. (a) Average number of
clusters nc(t) of mobile particles (displacement in the inherent structure larger than 0.8). This
number first grows with time before it reaches a maximum and it finally decreases towards 1 when
all the particles have escaped from their initial position. At very low temperatures, the number of
clusters grows as a power law with a similar exponent as the exponent of the excess wing, namely,
0.38 (straight line). (b) Average number of mobile particles n(t) per cluster. The data increase and
they reach the total number of particles N at late times. The vertical dashed lines mark the time tc
at which nc(t) is maximum for 0.07 ≤ T ≤ 0.095. For both panels, the color code is the same and
it is provided in Fig. VI.1 (a).

This fraction of mobile particles can be estimated by computing the area below the curve of
the van Hove distribution for r > 0.8 and reads 0.8 % for T = 0.059 and ∆̂IS = 1.5 × 10−2,
consistently with the amplitude of the excess wing and the inherent structure mean-squared
displacement.

Now that we are able to identify the mobile particles which are responsible for the early
relaxation, we analyse their distribution in both space and time in the next section to understand
how the relaxation proceeds much before the bulk.

4.2 Birth and growth of independent clusters

We start by a qualitative analysis of a snapshot of a system of N = 10000 particles, see
Fig. VI.5. For visualisation, we turn to the mobility definition which is based on the bond-
breaking correlation. The snapshot is taken in the time and the temperature regimes for which
there is a deviation between the numerical relaxation spectrum and its stretched exponential
prediction, namely, T = 0.07 (which corresponds to an α-relaxation time of 6 ms) and t/τα =
5×10−3. We observe that at this time, the sample is populated by rare, localised and independent
regions of mobile particles. We also observe that the birth of these clusters of mobile particles
is distributed in time on a logarithmic scale. In other words, as the relaxation proceeds, new
clusters appear independently throughout the simulation box. Indeed, in Fig. VI.5, the particles
are colored according to the common logarithm2 of the first time τ iα at which their bond-breaking
correlation CiB is below 0.55. Some clusters are formed around red particles which relax as fast
as t = 103 (τα = 2×108), while others are only made of blue particles and they only appear two
decades after. Finally, we note that the clusters are not of a single color but instead red particles
are surrounded by yellow/green particles, themselves surrounded by blue particles. This suggests
that the clusters also grow as the relaxation proceeds and this is the manifestation of dynamic
facilitation in the system. In fact, the mobile particles tend to make their neighbours more

2We define the common logarithm of τ as log τ = ln τ/ ln 10 with ln τ the natural logarithm of τ .
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Fig. VI.7 | Distribution of the common logarithm of the appearance time of the clusters of mobile
particles Πapp(log τ) up to an irrelevant normalisation factor. The mobile particles are defined by
the fact that their displacement in the inherent structure is larger than 0.8. The data are plotted
as a function of t/τα, where τα is directly measured or is extrapolated thanks to the Arrhenius fit
in Fig. VI.1 (b). At very low temperatures, the distribution is well approximated by a power law
Πapp(log τ) ∼ τ0.38 with the same exponent as the excess wing and the number of clusters (straight
line). The color code is provided in Fig. VI.1 (a).

mobile at later times and in consequence mobility propagates throughout the sample.

At this stage, one can envision two different ways for the system to relax: (i) creation of
new clusters of mobile particles or (ii) growth of the already born clusters. We now analyse the
first process quantitatively, and we leave the second one for the next section. We come back to
the system of N = 1200 with the mobility definition which is based on the displacements in the
inherent structures. In Fig. VI.6, we show the average number of clusters nc(t) and the average
number of particles per cluster n(t) as a function of time. The number of clusters first increases
with time for all the temperatures while their average size midly grows from 1 to less than
ten particles. This is the direct manifestation of the fact that rare localised regions of mobile
particles appear independently in the sample. At later times instead, the number of clusters
decreases towards 1 while their size reaches the total number of particles N in the system.
Indeed, when t→ +∞, the system is composed of a single cluster because all the particles have
escaped from their initial position. As a result, the number of clusters reaches a maximum at
t = tc which is visible for T ≥ 0.07 and which otherwise leaves the simulation time window. This
time broadly corresponds to the time at which the average size of clusters starts to skyrocket.
We have checked that these behaviours are not finite-size artefacts. The number of clusters is
extensive in system size, which means that the absolute value of nc(t) is proportional to the size
N of the system, but the time and the temperature evolution is independent of the system size.
Similarly, the average size of clusters n(t) is independent of the system size at short times but it
obviously scales linearly with N at later times, and its time evolution is also independent of N .

When the maximum in the number of clusters is reached at a time which is too large to
be measured, we observe that nc(t) grows as a power law, namely, nc(t) ∼ t0.38 with a similar
exponent as the one of the excess wing in Fig. VI.2. On the opposite, the average size of
clusters is very small in this regime, at most 7-8 particles. This suggests that the appareance of
rare clusters rather than their growth is responsible for the signal at intermediate frequencies in
the relaxation spectra (wings) or at intermediate times in the inherent structure mean-squared
displacements. In addition, the fact that nc(t) grows as a power law means that the appearance
of the clusters is not characterised by a mere characteristic time but instead it is described
by a distribution of timescales which covers several decades. This is what we directly check
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Fig. VI.8 | Distribution of cluster sizes (number of particles) P(n, tc) at the time tc where the
number of clusters is maximum. The data are consistent with a temperature independent power
law of exponent −1.8 which is cut at large cluster sizes because of finite-size effects. The color code
is the same as in Fig. VI.1 (a).

by measuring the distribution of the common logarithm of the appearance time of the clusters
Πapp(log τ), see Fig. VI.7. For T ≤ 0.07, we cannot measure the whole distribution which is
thus determined up to an irrelevant normalisation constant.

At high temperatures, the distribution is already very broad and it covers about 6 orders of
magnitude. The first clusters appear as early as 10−4τα and they thus relax much before the
bulk. The distribution peaks near 10−1τα, and it has a cutoff around 101τα. As T is lowered,
the distribution displays a power law tail for τ � τα over several decades with an almost
constant exponent Πapp(log τ) ∼ τ0.38. This distribution proves that the appearance of clusters
is time-distributed but it also rationalises the behaviours which are observed in Fig. VI.2 and
Fig. VI.6 (a). Indeed, the distribution of the common logarithm of the appearance time of
clusters should be related to the number of clusters by the equality

Πapp(log τ) ∼ τ dnc
dt (τ), (VI.11)

where the factor τ comes from the jacobian, namely, d log τ ∝ dτ/τ . As a result, if Πapp(log τ) ∼
τ0.38 then nc(t) ∼ t0.38 which is consistent with the result in Fig. VI.6 (a). In addition, as the
relaxation at short times is dominated by the growth of the number of clusters rather than that
of their average size, it is reasonable to approximate the distribution in Eq. (VI.2) for t � τα
by the distribution of the appearance time of clusters. Then, a mere change of variables leads
to χ′′(ω) ∼ ω−0.38 in agreement with Fig. VI.2. This demonstrates that the high-frequency
power law in the relaxation spectrum and the sub-diffusive behaviour in the inherent structure
mean-squared displacement close to Tg are the direct consequences of the relaxation of a sparse
population of clusters which is characterised by a broad distribution of relaxation times.

So far, we have focused on the early stages of the relaxation. We explain in the next section
how relaxation proceeds from these small clusters of mobile particles via dynamic facilitation.

5. Dynamic facilitation towards the α-relaxation

5.1 Mobility percolation

The way the sample fully relaxes relies on dynamic facilitation. This is already visible in
the snapshot in Fig. VI.5 where we see that the clusters are composed of particles of different
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relaxation times from the lowest at their core to the largest at their boundaries. This suggests
that mobility propagates from neighbours to neighbours and that it gradually invades the system.
This picture is also fully consistent with the results in Fig. VI.6. Indeed, the distribution of
the appearance time of the clusters shows a cutoff for t = 10τα. However, at this time, the
correlation function Fs(t) has not fully relaxed and it still equals about 0.1. This means that
10 % of the sample is still immobile. This suggests that at longer times, no new cluster of mobile
particles appears but instead immobile regions are progressively invaded from their boundaries
via dynamic facilitation. This is also consistent with the evolutions of the number and of the
size of clusters. For t > tc (where tc stands for the location of the maximum in the number of
clusters), nc(t) decreases while n(t) fastly grows, consistently with the fact that the clusters start
to merge and that the mobility percolates in the system. This fact is directly demonstrated in
Fig. VI.8 where we show the size distribution of clusters P(n, t) at the maximum in the number
of clusters, namely, for t = tc. We observe that it follows a power law behaviour P(n, tc) ∼ n−1.8

which is exponentially cut at large cluster sizes. The exponential cutoff is due to a finite-size
effect (we have confirmed this point by running simulations with systems of size N = 10000)
while the power law trend is indeed characteristic of the percolation transition, even though
the exponent is different from the one of the random percolation [406]. This trend has also
been found in previous studies of dynamic facilitation at higher temperatures [406–411]. We
confirm here that it still holds at lower temperatures where the contrast between the mobile and
immobile particles becomes clearer.

Our results are consistent with mobility percolation in the entire sample from rare regions
of mobile particles to the entire bulk system. In the next section, we analyse the mechanisms
which are responsible for dynamic facilitation or mobility percolation.

5.2 Multiple relaxations and mobility propagation

In order to quantify the role of facilitation in the dynamics, we compare this scenario to
the opposite one in which we assume that the system relaxes because of the succession of
independent events. We then define xm(t) = Nm(t)/N the average fraction of particles which
are mobile (with the criterion on the displacement in the inherent structures) in the interval
[0, t], and xvm(t) = Nvm(t)/N the average fraction of particles which are mobile in both intervals
[0, t] and [t, 2t]. If the dynamics could be described by the relaxation of independent events,
then the probability to be mobile in both intervals would be the product of the probabilities to
be mobile in each interval, i.e., xvm(t) = xm(t)2. Instead, larger values of xvm(t) indicate that
the particles can relax several times and that their motion is persistent and hence facilitated.
One could argue that the fraction of very mobile particles can be over-estimated because of
particles which move reversibly, namely, which come back at their initial position, and which
do not participate to the relaxation. In order to take into account this effect, we also introduce
the fraction xrev(t) = Nrev(t)/N of mobile particles in the range [0, t] which come back to their
initial position in the range [t, 2t]. To decide whether a particle has performed a reversible
motion, we look if its displacement in the inherent structures between 0 and 2t is such that
|rIS,i(2t)− rIS,i(0)| < 0.5, which corresponds to the first minimum in the van Hove distribution
of the displacements in the inherent structures, see Fig. VI.4.

We thus introduce the ratio

c(t) = xvm(t)− xrev(t)− xm(t)2

xm(t)− xm(t)2 . (VI.12)
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Fig. VI.9 | (a) Ratio c(t) [see Eq. (VI.12)] as a function of time, where xm(t) represents the fraction
of particles which is mobile in the range [0, t] (with the criterion on the displacement in the inherent
structure), while xvm(t) is the number of particles which are mobile in the two intervals [0, t] and
[t, 2t]. Time is rescaled by τα which is directly measured from Fs(t) or which is deduced from
the Arrhenius extrapolation in Fig. VI.1 (b). The data display a maximum for t/τα ' 1. The
dashed lines mark the maximum in the number of clusters where mobility percolation sets in. (b)
Probability for a particle to undergo a reversible motion as a function of t/τα. This probability
is equal to the ratio xrev(t)/xm(t), where xrev(t) is the fraction of particles which are mobile in
the range [0, t] and which come back to their initial position in the range [t, 2t]. The fraction of
particles which move reversibly decreases as the relaxation proceeds and it plateaus for t� τα with
an enhanced probability to have a reversible motion as the temperature decreases. The color legend
is similar for both panels and it is provided in Fig. VI.1 (a).

The numerator vanishes if the dynamics in the ranges [0, t] and [t, 2t] are independent and if
one assumes that the probability that a particle comes back to its initial position is negligible if
the dynamics proceeds via independent events. The denominator is for normalisation purposes
and it ensures that c(t) lies between 0 and 1. The results are presented in Fig. VI.9 (a) versus
t/τα. We note that c(t) first increases with time, which means that the mobile particles which
undergo irreversible motions in a given interval are also mobile irreversiblely in the next one with
a higher and higher probability. This implies that the mobility is persistent in the system, in the
sense that a mobile particle undergoes several relaxations. We also observe that c(t) decreases
and is likely to vanish when t becomes larger than typically several τα. This is because the
displacements of the particles in the ranges [0, t] and [t, 2t] become irreversible and uncorrelated
in this case. As a result, c(t) exhibits a maximum which turns out to be close to τα: the
probability for a particle to be mobile in the interval [t, 2t] given it was mobile in the range
[0, t] is maximum. We finally remark that the full curve of c(t) shifts to higher values when
T decreases, which suggests that the dynamics is even more persistent when decreasing the
temperature.

Even though reversible particle motions do not participate to the relaxation, they give in-
dication on how particle motion proceeds. In Fig. VI.9 (b), we show the ratio of the fraction
of very mobile particles which have a reversible motion to the fraction of mobile particles. This
ratio thus corresponds to the probability for a particle to come back to its initial position in the
range [t, 2t] given that it has escaped from it in the range [0, t]. We observe that this fraction
consistently decreases with time. At short times, particles try to escape their initial position
but this attempted relaxation is sometimes a failure and the particles come back to their ini-
tial cages. At later times instead, as the particles have multiplied trials to escape their cages
and as other particles have already managed to relax, an irreversible relaxation becomes more
probable (the probability for a particle to be immobile in the range [t, 2t] given it was mobile
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Fig. VI.10 | Displacement-weighted pair correlation function gu(r, t) for t = tc which corresponds
to the location of the maximum in the number of clusters, hence to mobility percolation in the
system. We represent the equilibrium pair correlation function g(r) at T = 0.07 for comparison (it
varies weakly with the temperature). The color code is similar to Fig. VI.1 (a).

in the range [0, t] also decreases as the relaxation proceeds). For all the temperatures, and even
though our data are noisy, we observe that the ratio xrev(t)/xm(t) plateaus for t� τα, and the
amplitude of the plateau increases as the temperature decreases, from 0.1 at T = 0.095 to 0.25
at T = 0.059. This suggests that the motion of the particles become increasingly reversible at
short times as the temperature decreases and that the first dynamic events actually correspond
to very frequent motions of the particles which rarely lead to an actual relaxation.

To explain why the dynamics becomes increasingly persistent as the temperature is lowered
or as the relaxation proceeds, we look at a displacement-weighted pair correlation function
gu(r, t) [412], namely,

gu(r, t) = 1
Nρu(t, 0)u(2t, t)

〈∑
i 6=j

ui(t, 0)uj(2t, t)δ(r − ri(0) + rj(0))
〉
, (VI.13)

where the sums run over i, j = 1 . . . N , where ui(t2, t1) = |rIS,i(t2) − rIS,i(t1)|, and where
u(t2, t1) = 〈N−1∑

i ui(t2, t1)〉. The prefactor in Eq. (VI.13) ensures that gu(r, t) converges to 1
in the large-r limit (we recall that ρ is the average number density which is equal to 1). If the
displacements in the ranges [0, t] and [t, 2t] are uncorrelated in space, then gu(r, t) should be
similar to the conventional pair correlation function g(r) at equilibrium at a temperature T [30].
Instead, positive correlations between displacements should lead to an enhanced displacement-
weighted pair correlation function. In Fig. VI.10, we plot gu(r, t) for several temperatures and
for t = tc where the number of clusters of mobile particles is maximum and where the mobility
percolates in the system. The equilibrium pair correlation functions are also represented to
assess the degree of correlation between the displacements of the particles. The correlation
gu(r, tc) shows a similar variation with the distance r as g(r), with several extrema because of
the underlying structure of the liquid. We note a shift in the position of the maxima in the
displacement-weighted pair correlation function towards lower distances which stands for the fact
that small particles are usually more mobile than the larger ones. We also clearly observe that
gu(r, tc) is much larger than the equilibrium pair correlation function at small distances. This
means that there is a correlation between the fact that a particle is mobile in the range [0, t] and
that its neighbours become mobile in the range [t, 2t]. The maximum in gu(r, tc) increases with
decreasing the temperature, which indicates that the correlation between the displacements of
the particles at unequal times increases as the temperature is lowered. The typical decay length
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of gu(r, tc) also seems to increase as T goes down (even though the linear size of the simulation
box is moderate), which is indicative of a growing dynamic correlation length.

Overall, this indicates that the motion of the mobile particles becomes more and more
persistent at low temperatures because the particles are able to make their neighbours mobile.
This is consistent with the fact that the mobility is coarsening and transmitting from particles to
their neighbours and in consequence that the dynamics is facilitated. The effect of facilitation
is most important close to the peak in c(t), namely, for t ' τα. In addition, the relative
contribution of facilitation in the relaxation process grows when T is lowered as emphasised by
the temperature evolution of the maximum in c(t) or its value at t = tc where the mobility
percolation settles.

Facilitation has already been discussed at length in the literature. Our quantification of
facilitation is very reminiscent of several already reported measurements even though the latter
were performed at much higher temperatures and they required more choices in the definition of
mobile particles. In particular, we believe that our ratio c(t) is close to the facilitation volume
around an excitation which was introduced in Ref. [379]. This facilitation volume was found
to be a non-monotonic function of time with a maximum whose amplitude was growing with
decreasing the temperature. In addition, the results of Fig. VI.9 and Fig. VI.10 resemble
previous analyses which were based on the measure of the probability distribution to find a
mobile particle in the interval [t, 2t] at a distance r from a particle which was mobile in the
range [0, t]. A ratio was defined by comparing the integrated probability distribution to the
expected one assuming no correlation in the displacements of the particles [381, 411].

6. Conclusions

6.1 Summary of the results

We summarise the main findings of this chapter. Thanks to the swap algorithm and long
conventional molecular dynamics simulations, we have been able to access the equilibrium dy-
namics of deeply supercooled liquids over a large time window. Computer simulations are now
in a position to directly compare with experiments while they have been at odds for several
decades. Thanks to filtering procedures, we have managed to reveal that at very low tempera-
tures the dynamics initiates from a weak population of diluted clusters whose waiting times are
power law distributed. This is in contrast to the average correlation functions which display a
plateau over several orders of magnitude. We have then seen how these small clusters facilitate
their neighbourhood in a hierarchical manner to construct the structural relaxation [413]. The
effect of facilitation seems more pronounced as the temperature is decreased. In Ref. [414], the
effect of facilitation was instead found to become weaker as the glass transition was approached
in a granular material. However, the analysis of Ref. [414] relied on tools which are very differ-
ent from ours [415]. Trying to repeat this analysis in our system may be valuable in order to
understand this seeming contradiction. The dynamics in other glass-formers may also be worth
studying to assess the robustness of the evolution of facilitation with the temperature.

Moreover, we have shown that the short-time processes which take the form of small clusters
are very reproducible, as shown by the evolution of the ratio c(t) in Sec. 5. Indeed, as the
dynamics is time-reversible, the ratio c(t) also quantifies how the forward (from t to 2t) and
the backward (from t to 0) dynamic heterogeneities look similar and therefore how predictible
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they are3. We first note that the predictability is maximum for times close to τα, in agreement
with past studies [72]. But interestingly, below the mode-coupling crossover, the dynamics
becomes reproducible at shorter and shorter timescales. This means that the first events which
are responsible for the excess wing are increasingly predictible as T approaches Tg from above.
Whether the events which account for the excess wing can be deduced from structural indicators,
such as the ones in Ref. [373], is left for future work.

In the next section, we discuss the consequences of our results on the shape of the relaxation
spectra.

6.2 Microscopic origin of the shape of the relaxation spectra

Our findings, which hold down to Tg, reveal that the dynamics can be described by two
minimal ingredients, namely, dynamic heterogeneities at short times and subsequent facilitation.
The first events appear independently throughout the sample while facilitation terminates the
structural relaxation and it helps relaxing the slowest regions. Therefore, as far as the relaxation
spectra are concerned, this suggests that what is called an “excess wing” is actually not an
excess process but the very beginning of the α-relaxation. Instead, the α-peak stands for the
relaxation of larger regions of the sample via dynamic facilitation. As a result, the α-peak is
the one that should be rather considered to be in excess of an underlying broader distribution
of timescales. Facilitation compresses the latter distribution by fastening all the slowest regions
of the sample and this naturally leads to an excess α-peak. In Ref. [378], we have devised a
minimal facilitated trap model to explain the shape of the relaxation spectra and to confirm the
above scenario. It is minimal in the sense that it is only built on dynamic heterogeneities and
dynamic facilitation. The system is composed of a collection of traps. Each trap is characterised
by an energy E > 0 which is distributed according to a normalised distribution ρ(E) and by
a relaxation time which is exponentially-distributed and of mean ∝ eβE (with β the inverse
temperature), as in the original trap model [194, 416]. On top of this, we add facilitation in a
mean-field way (see Ref. [417, 418] for a real space version). Whenever a trap relaxes, all the
other trap energies are shifted by a random amount while leaving unchanged the equilibrium
distribution P(E) ∝ ρ(E)eβE of energies. A new relaxation time is then computed for each
trap from its new energy. These random energy kicks result in the diffusion of the traps in the
energy space towards the most probable energy and thus in a faster relaxation. The spectrum
of the trap model can be computed analytically without facilitation and it can be measured
numerically when facilitation is implemented. We have found that the high-frequency range is
unaffected while the low-frequency part is highly compressed. This results in a more compressed
α-peak in the presence of dynamic facilitation.

We can also confront our numerical results to the collection of models which have already
been introduced to describe the shape of the experimental dielectric spectra. First, we emphasise
that the model under study in this chapter is a simple size-polydisperse glass-former of spherical
particles. As a result, the coupling between the translation of the particles and an extra degree
of freedom is not needed to account for the excess wing. Of course, such a coupling can exist
and may lead to even richer spectra with additional processes which take the form of a β-peak at
intermediate frequencies [419]. Instead, we have seen that the wing is due to small and localised
regions of mobile particles in a sea of quiescent particles, as already predicted by Johari and

3As we simulate the equilibrium dynamics, the configuration at time t is an equilibrium configuration
just like the initial configuration which is prepared with the swap algorithm.
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Fig. VI.11 | (a) Relaxation spectrum χ′′(ω) in systems which were equilibrated at a temperature
Ti and subsequently aged at a temperature T = 0.062 during tw = 2×106. The curve for Ti = 0.062
corresponds to the equilibrium curve, see Fig. VI.2. The spectra shift to lower values for a fixed
frequency ω ≤ 10−3 when Ti is decreased in agreement with the rarefaction of short-time processes
with increasing the glass stability. (b) Average number of clusters nc(t) of mobile particles (with the
same definition as in Fig. VI.6). The number of localised regions of mobile particles at short times
decreases for fixed time with increasing the stability, namely, with decreasing the initial temperature
Ti. For both panels, the color legend is similar and it is given in panel (a).

Goldstein several decades ago [420–422]. However, the origin of these dynamic heterogeneities
at much shorter times than the bulk relaxation time has not been investigated to discriminate
between all the models which account for the excess wing and this is left for future work. The
short-time processes are likely to be activated but studying their nature and their characteristics
would be interesting. This could also allow for a more deeply understanding of the interplay
between the dynamic facilitation theory [112] and the random first order transition theory [122,
144].

Appendix A - Suppression of the “excess wing” in stable glasses

Experiments on aging systems [384, 385, 423, 424] or ultrastable glasses [82, 425] suggest
that the excess wings in the relaxation spectra are suppressed with increasing the stability
of the sample: both their amplitude and the absolute value of the exponent in the power
law decrease. To assess the influence of the glass stability on short-time processes, we have
first prepared ns = 100 equilibrium initial conditions via the swap algorithm at temperatures
Ti = 0.07, 0.08, 0.10 close to and below the mode-coupling crossover. This variation in Ti allows
for probing systems with different degrees of stability. The swap algorithm is then turned off
and the configurations age at a temperature T = 0.062 during tw = 2×106 by using simulations
in the canonical ensemble with a Nosé-Hoover thermostat. The aging time corresponds to about
one week of simulation. We have restricted ourselves to sufficiently large tw in order to shift the
α-relaxation peak in the relaxation spectra outside the simulation window and in consequence
to maximise the frequency range over which the excess wing can be observed. We have also
checked that our measurements are not very sensitive to tw in the small range of values of tw
that we can achieve with simulations of reasonable walltime (between one day and one week).
After this aging procedure, we have measured the relaxation function Fs(t) and computed the
corresponding spectrum χ′′(ω) by using the methods which are described in Sec. 2: we have
run conventional molecular dynamics simulations by starting from the aged configurations at
T = 0.062.
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The results are presented in Fig. VI.11. Fig. VI.11 (a) shows the relaxation spectra χ′′(ω).
The curves shift towards lower values by one order of magnitude for a fixed frequency ω ≤ 10−3

in the range of initial temperatures that we have investigated. In addition, the exponent of the
power law which fits the signal at intermediate frequencies smoothly decreases from σ = 0.44 at
Ti = 0.10 to σ = 0.38 at Ti = 0.062. Overall, this suggests that more stable glasses have weaker
short-time processes and they are thus the slowest to relax, which result in a smaller excess wing.
To understand the effect of glass stability, we show the number of clusters of mobile particles in
Fig. VI.11 (b) (with the same definition as in Fig. VI.6). The data clearly show that the number
of relaxation events is strongly suppressed with enhanced glass stability. In addition, the number
of clusters of mobile particles grows as a power law with time with a similar exponent as the
excess wing. These observations strengthen the connections we have made in Sec. 4 between the
first rare and localised regions to relax and the excess wing in the relaxation spectra. We thus
expect even more events at short timescales for very poorly annealed glasses [426, 427]. These
events are fully irreversible and of non-equilibrium nature and they may lead to a secondary
β-peak in the relaxation spectra.
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VII
Article: Stable glassy configurations
of the Kob–Andersen model through
the swap Monte Carlo algorithm

The swap Monte Carlo algorithm allows for the preparation of highly stable glassy config-
urations for a number of glass-formers, but it is inefficient for some models, such as the much
studied binary Kob-Andersen (KA) mixture. This algorithm consists in exchanging the posi-
tions or equivalently the diameters of two randomly-chosen particles while respecting detailed
balance. However, in binary models, such as the KA mixture, the swap of unequal species is
almost always rejected because the difference in sizes is too large. Generalisations to the KA
model have been developed recently where the swap algorithm can instead be very effective.
These generalisations rely on the introduction of a small fraction of particles whose sizes inter-
polate between the sizes of the two types of particles in the binary mixture. In this chapter, we
show that these models can be used to considerably enhance the stability of glassy configurations
in the original KA model at no computational cost. We successfully develop several numerical
strategies both in and out of equilibrium to achieve this goal and we show how to optimise
them. We provide several physical measurements which indicate that the proposed algorithms
considerably enhance mechanical and thermodynamic stability in the KA model, including a
transition towards brittle yielding. Our results thus pave the way for future studies of stable
glasses by using the KA model.
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VII. Stable configurations of the KA model via the swap algorithm

1. Introduction

The swap Monte Carlo algorithm has become a powerful asset in the simulations of glass-
forming liquids for a broad (but incomplete) class of model glass-formers [54, 55, 429]. It
enables one to equilibrate supercooled liquids down to extremely low temperatures, even below
the extrapolated glass transition temperature [182]. In other words it allows one to explore
deeper regions of the free energy landscape in equilibrium configurations unlike other preparation
protocols like gradual cooling.

The Kob-Andersen (KA) model is a binary mixture of Lennard-Jones particles which was
devised to describe the generic physical properties of simple metallic glasses [430]. For this
well studied model, the swap Monte Carlo algorithm is however inefficient as the swap of unlike
species is almost always rejected [431]. Therefore, the simulation of the low-temperature proper-
ties of the KA model requires alternative methods, such as parallel tempering [432], simulations
on graphic cards [401, 432], ghost particle insertion [433], Wang-Landau algorithm [434], tran-
sition path sampling [433, 435], physical vapor deposition [436], or oscillatory shear [437–439].
However, none of these attempts could provide the type of speedup that the swap Monte Carlo
has provided in the models where it is efficient. There is thus a clear need to further develop
computational algorithms to produce more stable glassy configurations of the KA model.

Recently, generalised versions to the KA model have been introduced. They are called KA1
and KA2 models, they are very similar to the original KA model, and for these models, the
swap Monte Carlo algorithm is very efficient [440]. The strategy relies on introducing a small
amount of additional species to the binary KA mixture to enhance the swap efficiency. This
strategy is likely to allow for the investigation of properties of simple metallic glasses down to
the experimental glass transition, but not for the KA model itself. In this chapter, we instead
demonstrate that the production of very stable configurations within the KA1 model can in turn
be used to produce stable glassy configurations of the original KA model as well, for a modest
computational effort. The KA model is the most studied glass model and a huge number of
numerical tools have been developed for its analysis. Consequently, we aim at paving the way
for future studies of stable glass physics within the KA model.

In this chapter, we first define the various glass models we consider in Sec. 2. In Sec. 3, we
use histogram reweighting techniques to measure equilibrium properties of the KA model but
we show that equilibrium properties of the KA model can be deduced from simulations of the
KA1 model only for temperatures at which the KA model can be directly simulated. We thus
turn to non-equilibrium properties of KA glasses, as presented in Chap. I. In Sec. 4, we present
two annealing procedures to prepare stable configurations of the KA model from configurations
of the KA1 model whose stability we directly quantify in Sec. 5. We finally conclude in Sec. 6.

2. Models

We consider mixtures of particles i = 1 . . . N of different species which are characterised by
a number ωi ∈ [0, 1]. The interaction potential between two particles i and j is

v(rij |ωi, ωj) = 4εωiωj

(σωiωj
rij

)12

−
(
σωiωj
rij

)6
 , (VII.1)

which depends on the distance rij between the two particles. It also involves the interaction
strength εωiωj and the cross-diameter σωiωj , which both depend on the types ωi and ωj of the
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two particles. The potential is truncated and shifted to 0 at the cutoff distance 2.5σωiωj .

We focus on two related models. The first one is the standard Kob-Andersen (KA) model [430]
which is a 80:20 binary mixture of NA particles of type A (with ωi = 1) and NB particles of
type B (with ωi = 0). The interaction parameters are: εAB/εAA = 1.5, εBB/εAA = 1.0,
σAB/σAA = 0.8, and σBB/σAA = 0.88. Energies and lengths are expressed in units of εAA
and σAA respectively, and the Boltzmann constant is set to unity. We denote by HKA[rN ] the
corresponding Hamiltonian of the KA model.

We also consider an extended version of the KA model (KA1) by introducing a small fraction
δ = NC/(NA + NB) of particles of type C which interpolate continuously between A and B
particles. More precisely, the C particles are characterised by a uniform distribution of ωi ∈]0, 1[,
while the A (resp. B) particles are still associated with the type ωi = 1 (resp. ωi = 0). The
Hamiltonian of the KA1 model is

H1[rN ] = 1
2
∑
i 6=j

v(rij |ωi, ωj), (VII.2)

where the sums run over all particles i, j = 1 . . . N with i 6= j, and where the additional
interaction parameters are:

X1ωi = ωiXAA + (1− ωi)XAB,

X0ωi = ωiXAB + (1− ωi)XBB,

Xωiωj = ωijXAA + (1− ωij)XBB,

(VII.3)

with X = σ, ε and with ωij = (ωi + ωj)/2 [440]. We also define the Hamiltonian H0[rN ] the
system would have if the C particles with ωi ≤ 0.2 (resp. ωi > 0.2) were taken as B (resp.
A) particles. Thus, H0 is the Hamiltonian of the corresponding KA model, which is given by
Eq. (VII.2) where ωi is replaced by ω′i = 1− θ(1− ωi/0.2) and where θ(x) is the Heaviside step
function. Finally, we define

W[rN ] = H1[rN ]−H0[rN ] (VII.4)

as the difference between the KA1 and the KA energies for a given configuration of the KA1
model.

We study the KA1 model with NC = 5, NA = 800 and NB = 200 (so that δ = 0.5 %), at
a number density ρ = 1.2 under periodic boundary conditions. The model is studied by using
the swap Monte Carlo algorithm [54]. With probability p = 0.2, the identity of a randomly-
chosen particle i is exchanged with the one of another randomly-chosen particle j. Otherwise,
with probability 1− p, a standard translational move is performed in which the position ri of a
particle i is incremented by a random displacement δri which is drawn in a cube of linear size
0.15 around the origin [441]. The choice of p has been optimised in order to maximise the swap
efficiency, i.e., the ratio between the relaxation time of the system to the simulation walltime.
Both moves are accepted according to the Metropolis rule [64, 293]. The position of the center
of mass is held fixed.

Due to the large difference in diameters between the A and B particles, the swap moves are
inefficient in the KA model [431], whereas the introduction of a small fraction of C particles
makes the swap moves possible and results in a much faster relaxation [440]. The structural
relaxation time τα of the system is defined as the time value at which the self-intermediate
scattering function for the whole system, with a wave number which corresponds to the first
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maximum in the total structure factor, decays to the value e−1 (see Chap. VI). The α-relaxation
time is expressed in units of Monte Carlo (MC) steps, where 1 MC step corresponds to N
attempted moves. The lowest temperature for which we can ensure equilibration in the KA
model is T ' 0.415, whereas for the KA1 we can reach T ' 0.36 for a comparable numerical
effort of 108 Monte Carlo steps. In terms of τα, this represents a speedup factor of more than
102 over the standard KA model at the lowest temperature [440].

3. Reweighting equilibrium distributions

3.1 General formalism

The aim of this chapter is to access the low-temperature properties of the KA model from
simulations of the KA1 model only. We have seen in Chap. III that in computer simulations,
a system can be forced to sample untypical regions of the phase space. This is usually done
thanks to biased simulations, which rely on the umbrella sampling technique or which use
external sources that are coupled to well chosen collective variables [293, 305, 442]. By looking
at Eq. (VII.4), one can identify the KA1 model as a biased version of the KA model, where an
external field of amplitude equal to 1 has been coupled to the order parameterW. Therefore, by
using reweighting methods [294], we can potentially measure thermodynamic properties of the
KA model without actually simulating it. As we are able to thermalise the KA1 model to lower
temperatures than the original KA model, we may be able to access low temperatures where
only the KA1 model can reach equilibrium.

In particular, we focus on the probability distribution of the energy in the standard KA
model

P (E) = 〈δ(E −HKA)〉HKA =

ˆ
drNδ(E −HKA[rN ])e−βHKA[rN ]

ˆ
drNe−βHKA[rN ]

, (VII.5)

with δ(x) the delta function and 〈· · · 〉HKA the thermodynamic average at inverse temperature
β = T−1 for the Hamiltonian HKA. We then rewrite Eq. (VII.5) by using quantities which are
defined within the KA1 model, namely,

P (E) =

ˆ
drNδ(E −H0[rN ])e−βH1[rN ]+βW[rN ]

ˆ
drNe−βH1[rN ]+βW[rN ]

= 〈δ(E −H0)eβW〉H1

〈eβW〉H1

, (VII.6)

where now 〈· · · 〉H1 stands for the thermodynamic average for the Hamiltonian H1. We have
used Eq. (VII.4) and the fact that, by definition, H0 = HKA.

By introducing P
(1)
W (W ) = 〈δ(W − W)〉H1 the probability distribution of W in the KA1

model, by using the trivial identity eβW =
´

dWeβW δ(W −W) and the Kolmogorov definition
of a conditional probability [443], Eq. (VII.6) can be written as

P (E) =

ˆ
dWP

(1)
H0|W(E|W )P (1)

W (W )eβW
ˆ

dWP
(1)
W (W )eβW

, (VII.7)
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Fig. VII.1 | (a) Probability distributions P (1)
H1

, P (1)
H0

of energies H1 and H0 in the extended Kob-
Andersen (KA1) system at T = 0.45 along with the reweighted probability distribution P (E) [Rew.]
of the energy for the Kob-Andersen (KA) model which is obtained from Eq. (VII.7). The probability
distribution P (E) has also been directly measured in the KA model [KA] to check the quality of the
reweighting procedure. (b) Plot of P (1)

W (W )eβW with (red) and without (black) umbrella sampling.
The vertical dashed line marks the limit of W in the unbiased Monte Carlo simulations of the KA1
model. (c) Relaxation time τα of the system in the different umbrella simulations as a function of
〈W〉H1,W0

, the average value of W.

where P (1)
H0|W is the conditional probability of H0 given W in the KA1 model. The two distri-

butions in the right-hand side of Eq. (VII.7) can be measured in the course of a simulation of
the KA1 model and can be subsequently reweighted to obtain the probability distribution of
the energy in the KA model in the left-hand side. Thus, in principle, the properties of the KA
model can be obtained without ever performing a simulation of the KA model itself but by only
working with the KA1 model where the swap Monte Carlo works well.

In Fig. VII.1 (a), we show the distributions of H1 and H0 in the KA1 model, for a tem-
perature T = 0.45 for which the relaxation time of the KA model is τα/τon ' 2 × 102, with
τon ' 3×103 the relaxation time at the onset temperature Ton ' 0.70 of glassy behaviour (which
corresponds to the appearance of a two-step decay in the time dependence of correlation func-
tions). We also show P (E) which is directly measured in the KA model to assess the validity
of the reweighting procedure. The product P (1)

W (W )eβW plays a crucial role in the reweight-
ing scheme as emphasised by Eq. (VII.7). However, as shown in Fig. VII.1 (b), this quantity
exponentially increases without bounds in the range of W that is being explored in a direct
simulation of the KA1 model. This finding indicates that a direct application of Eq. (VII.7)
is not possible with this set of data, as the tails of the distributions which are involved in the
various integrands are not appropriately sampled. This limitation becomes increasingly difficult
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to tackle when δ increases, which explains why we chose the smallest value δ = 0.5 % that was
studied in Ref. [440].

3.2 Umbrella sampling simulations

To overcome this sampling issue, we need to force the system to visit untypical larger values
of W. To this end, we use umbrella sampling techniques [293, 442], as already implemented in
the study of glass-forming liquids in the Franz-Parisi setting, see Chap. III. We perform several
simulations of the KA1 model in parallel, and each simulation is run with a biased Hamiltonian
of the form

H1,W0 [rN ] = H1[rN ] + κ(W[rN ]−W0)2, (VII.8)

with κ = 0.05 the strength of the bias, in order to be able to sample values of the energy
difference W around W0 ∈ [−17.5, 20]. By combining the different umbrella simulations, we can
extend the range over which P (1)

H0|W and P (1)
W are measured. The former remains identical when

the phase space is sampled with the Hamiltonian H1,W0 . On the opposite, the latter is obtained
by histogram reweighting as

P
(1)
W (W ) = Z(W0)P (1,W0)

W (W )eβκ(W−W0)2
, (VII.9)

with P (1,W0)
W the probability density of W with the bias and Z(W0) an unknown normalisation

constant [364]. For two consecutive values of W0, the ratio of these normalisation constants
can be estimated from the range of overlapping values of the biased probabilities [319, 320],
without resorting to the heavy machinary of WHAM (as used in Chap. III) [294, 317, 318]. We
first measure the unbiased probability distribution P (1)

W which is well normalised. Then, for the
umbrella simulations which sample a range of W which overlaps with the range of the unbiased
distribution, we tune the normalisation constant Z(W0) in order for P (1)

W that is computed from
Eq. (VII.9) to be “glued” so that it matches with the unbiased distribution on their mutual
range. This procedure is eventually iterated for the successive umbrella simulations. Finally,
the most accurate value is kept for each bin. In Fig. VII.1 (b), we show that P (1)

W (W ) exp(βW )
is now bounded with a maximum for W ' 0. This implies that the integrals in Eq. (VII.7) are
dominated by configurations withW ' 0, i.e., KA-like configurations. After umbrella sampling,
Eq. (VII.7) can now be numerically evaluated to obtain an accurate estimate of P (E), see
Fig. VII.1 (a).

We have shown that thermodynamic properties of the KA model can be computed from
simulations of the KA1 model, which can involve the efficient swap moves. However, these
measurements rely on umbrella sampling simulations, and care must be taken that these biased
simulations are all performed in equilibrium conditions. To ensure a proper sampling in the
umbrella simulations, we measure the relaxation time τα as a function of 〈W〉H1,W0

, the average
value of W, see Fig. VII.1 (c). It turns out that τα increases from its value in the KA1 model
to its value in the KA model when 〈W〉H1,W0

' 0, and it increases further for positive values.
The biased KA1 system visits KA-like configurations when 〈W〉H1,W0

' 0, for which the swap
algorithm is inefficient, despite the fact that the acceptance rate of swap moves is actually very
high. This means that the frequently-accepted swap moves in the biased KA1 model do not
accelerate the equilibration when sampling KA-like configurations.

Therefore, the strategy devised here does work correctly, and numerical results for the KA
model can be obtained without ever simulating it. However it can only be implemented at
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sufficiently high temperatures, as one needs to achieve equilibration times close to the one of the
KA model itself to implement the reweighting procedure. In other words, at equilibrium, we can
measure P (E) by using the KA1 model only in a range of temperatures for which it can directly
be measured in the KA model as well, as a continuous chain of equilibrium simulations which
interpolate between the KA1 and the KA models is needed. There is thus no computational
advantage. In the next section, we see how we can use equilibrium stable KA1 configurations
to gain information about the KA model at low temperatures while relaxing the constraint to
remain in equilibrium conditions.

4. Annealing procedures to generate glassy Kob-Andersen configura-
tions

To produce useful results for the KA model by using only the KA1 model, one needs to
smoothly transform KA1 data into KA ones. If this is done in fully equilibrium conditions, a
bottleneck is necessarily encountered as the final steps involve being in equilibrium within a
system close to the KA model. This is always problematic, as the swap Monte Carlo algorithm
does not work well in this regime.

In this section, we again transform the KA1 results (which benefit from the swap algorithm)
into the KA ones (which do not), but we relax the constraint that the final configurations are
at equilibrium. To this end, we develop two annealing procedures to smoothly transform in
a finite amount of time very stable KA1 configurations into KA ones. The hope is that the
gain in stability in the first steps is not completely lost during the annealing procedure, and in
consequence new regions in the free energy landscape of the KA model may be explored.

In method I, we perform simulations with the Hamiltonian H1,W0 and we linearly increase
the value of the bias W0 up to W0 = 0 (the system is then close to the KA model) in a total
number of Monte Carlo steps tMC. Initially, the value of W0 is set to the instantaneous value of
W in the initial configuration. We eventually switch the Hamiltonian to H0, which is equivalent
to treating the final configuration as a genuine KA configuration. In this method, the KA1 model
is thus gradually biased by using the umbrella sampling Hamiltonian in Eq. (VII.8) towards the
KA model.

In method II, we do not rely on umbrella sampling and we always use the unconstrained KA1
Hamiltonian. We gradually convert the minority species C particles into A or B particles, and
we therefore achieve the desired H1 → H0 annealing. In practice, we run simulations with the
Hamiltonian H1 and at each MC step, with probability pω = 1/50, we pick up one C particle at
random and we increase (resp. decrease) its type ωi by a small increment dω if initially ωi > 0.2
(resp. ωi ≤ 0.2). Otherwise, with probability 1 − pω, we perform translational or swap moves
according to the procedure which is presented in Sec. 2. The increment dω is chosen so that
after an average number of tMC MC steps, the C particles are all converted into either A or B
particles. We can then switch the Hamiltonian to H0, which is again equivalent to treating the
final configuration as a genuine KA configuration.

In both methods, we transform the KA1 configurations into the KA configurations at a
constant temperature. More complicated annealing schemes could involve changing other pa-
rameters as well [444], but we remain at the least level of complexity for now. To compare the
relative efficiency of all our schemes, we use a similar computational effort for all the configura-
tions, which corresponds to a maximum simulation walltime of 2 weeks (about 108 Monte Carlo
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steps). Even though the annealing methods may look artificial regarding other preparation pro-
tocols (like gradual cooling or aging), the only thing that matters is that a genuine amorphous
KA glass is eventually obtained through the algorithm.

In order to implement our methods, we first prepare a series of equilibrium and glassy
configurations of the KA1 model for which equilibration is ensured down to T = 0.36. To produce
glassy configurations at even lower temperatures, we quench several equilibrium configurations
at T = 0.36 to a range of lower temperatures instantaneously, down to T = 0.30. Each of
these glasses subsequently ages during tw = 108. The equilibrium (for T ≥ 0.36) and aged
(for T < 0.36) KA1 configurations are then slowly annealed towards KA configurations by
using methods I and II. We use annealing times tMC from 9 × 105 to 7.5 × 107, to keep the
longest simulations to at most 108 Monte Carlo steps and to ensure a fair comparison between
all the protocols. To improve the statistics, we perform 30 independent simulations for each
temperature.

As a result of the annealing methods, we obtain an ensemble of KA configurations at various
temperatures, whose stability we can compare to direct simulations of the KA model over a sim-
ilar preparation timescale. For the comparison with directly prepared KA configurations, we use
either equilibrium configurations for T ≥ 0.415 (lowest temperature for which the equilibration
is ensured) while for T < 0.415, we quench equilibrium KA configurations at T = 0.415 down
to the desired temperature instantaneously and we let them age for 108 Monte Carlo steps.

5. Enhanced stability of the annealed glassy Kob-Andersen configura-
tions

In this section, we analyse the properties of the glassy KA configurations which are obtained
thanks to methods I/II and we compare them to the standard aged KA glasses.

5.1 Inherent structure energies

Our first strategy to quantify the stability of the KA configurations is to quench them to
T = 0 and to record the inherent structure (IS) energy per particle. In Fig. VII.2, we show the
average energy of the IS per particle eIS for (a) method I and (b) method II as a function of
the inverse temperature for three different annealing rates, which correspond to tMC = 9× 105,
9×106 or 7.5×107 (and dω = 10−4, 10−5 or 1.2×10−6 for method II). For a given rate, we have
checked the influence of the number of the C particles. We have found that for concentrations
which are larger than δ = 0.5 %, higher energy states are reached. This is why we only show
results for δ = 0.5 %. In addition, we clearly see that the lower annealing rates give lower IS
energies at a fixed temperature.

As a matter of comparison, we show two additional data sets in Fig. VII.2. The first one
represents the average IS energy of the KA1 model for the set of initial conditions which have
been described before. The second one corresponds to the IS energies which are directly obtained
in the KA model, as explained in the previous section. The annealing data clearly lie above the
data for the KA1 model. This suggests that during the annealing procedure, some of the initial
stability which is gained via the swap Monte Carlo algorithm is lost. However, the annealed
states lie much below the IS energies of the KA configurations which are obtained by direct
aging for a comparable numerical effort. Overall, this suggests that the annealing procedures I
and II at small rates lead to more stable KA states with lower IS energies.
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Fig. VII.2 | Average inherent structure energy per particle eIS for the Kob-Andersen (KA) model,
the extended Kob-Andersen (KA1) model along with the energies for KA configurations which are
annealed by using (a) method I and (b) method II at different rates as a function of the inverse
temperature T . The dashed blue line corresponds to eeq

IS(T ) = a/T+b which fits the equilibrium data
for the KA model (with a and b adjustable parameters). Fictive temperatures of aged or annealed
KA configurations are determined via the intersection between the dashed-dotted horizontal lines
and the straight line fit of the equilibrium data for the KA model. The legend is similar for the two
panels and it is given in panel (b).

5.2 Fictive temperatures

To further quantify the stability of the annealed states, we estimate their fictive temperature
Tf . To this end, we fit the temperature evolution of the equilibrium IS energy of the KA model
as eeq

IS(T ) = a/T + b (with a, b fitting parameters), which is shown by the dashed blue line in
Fig. VII.2 [188, 355].

We can then directly read-off the value of the fictive temperatures by the identification
eIS = eeq

IS(Tf). This is shown with the black and purple dashed-dotted lines in Fig. VII.2. We
find that in a direct KA simulation, the lowest IS energies correspond to Tf ' 0.386, whereas
the lowest IS energies for methods I and II give Tf ' 0.355. The latter is within 18 % of the
estimated experimental glass transition temperature for this system, namely, Tg ' 0.30. These
fictive temperature values confirm the enhanced stability of the annealed KA configurations.

5.3 Relaxation timescales

To determine the dynamic speedup which is gained by the above annealing protocols, we
convert the obtained IS energies (or equivalently fictive temperatures) into an equilibrium relax-
ation timescale. To do this, we first need to extrapolate the equilibrium relaxation time τα(T )
of the KA model to lower temperatures, to infer relaxation timescales that are too large to be
directly measured [404]. We use a parabolic fit of the temperature dependence of τα(T ) [188],
namely, τα,p(T ) = τ0,pe

J(1/T−1/Tp)2 (with τ0,p, J and Tp adjustable parameters). Consequently,
for each value of the IS energy in Fig. VII.2, we determine the corresponding fictive temperature
Tf (thanks to the method of the previous section), and we compute the extrapolated α-relaxation
time τα = τα,p(Tf) from the parabolic fit. In Fig. VII.3, we display the parametric plot τα(eIS)
for IS energies at various temperatures, either by direct aging in the KA model or by annealing
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Fig. VII.3 | Parametric plot of the estimated relaxation time τα versus the average inherent struc-
ture (IS) energy per particle eIS. The dashed line combines the estimate of τα(T ) by using a
parabolic fit with an affine dependence of eIS with 1/T . We can then report the IS energies which
are obtained by direct aging in the Kob-Andersen (KA) model, or by annealing the extended Kob-
Andersen (KA1) model with methods I and II at the lowest annealing rate (tMC = 7.5× 107), and
convert the IS energies into estimated relaxation times.

KA1 configurations with the slowest annealing rate. The lowest IS energies which are obtained
for the annealed configurations provide much larger estimates of the corresponding relaxation
timescales, with a speedup factor of about 102 - 103. Therefore, we conclude that the speedup
factor which is obtained for the KA1 model with δ = 0.5 % translates into a similar speedup for
the original KA model, for an equivalent computational effort.

We recall that this very large speedup factor is obtained while keeping constant the total
computational timescale for the preparation of the KA configurations. In other words, the
speedup which is offered by the present algorithms is totally costless, unlike all the other methods
which have been described in the introduction. We did not attempt to combine this approach
to any other technique, such as parallel tempering, graphic cards, or longer simulation times.
This would provide even more stable configurations, at the expense of increased computational
time and, for some of these methods, a different scaling of the efficiency with system size.

5.4 Calorimetric measurements

We next perform calorimetric measurements, in order to study the stability of the generated
glasses in the spirit of experiments on vapor-deposited ultrastable glasses [79, 445] (see Chap. I).
The idea is to monitor the onset temperature T0 at which the potential energy per particle e(T )
shows a brutal change of slope from its low-temperature glassy behaviour when the glass sample
is heated at a constant rate. Note that this temperature is different from the onset temperature
of glassy behaviour Ton which has been mentioned before, as T0 is a non-equilibrium, rate-
dependent quantity while Ton is measured at equilibrium.

In Fig. VII.4, we compare four different glasses at the same heating rate of 10−6. The first
one is obtained from an equilibrium configuration at T = 1.36 which is subsequently cooled
at a constant rate of 10−7. The second one represents a KA sample which is equilibrated at
T = 0.415 and which is subsequently aged at T = 0.36 during tw = 108. Finally, the third and
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Fig. VII.4 | Potential energy per particle e of various glasses that are heated at a constant rate
10−6: the liquid-cooled (LC KA) and the aged Kob-Andersen glasses show a relatively lower onset
temperature T0, as compared to the glasses which are generated by the two annealing methods I
and II from the extended Kob-Andersen (KA1) model. The onset temperatures T0 are marked by
arrows. For the liquid-cooled glass cooled at a constant rate 10−7, the cooling curve is also displayed.

the fourth ones correspond to annealed samples which are prepared thanks to methods I/II at
the same temperature T = 0.36 and the lowest annealing rate (with tMC = 7.5× 107). For the
liquid-cooled glass, we estimate the onset temperature T0 = 0.56. The well aged KA sample
shows a moderately larger onset temperature, namely, T0 = 0.58, while the two annealed glasses
display a higher T0 = 0.65, which again reflects the much larger kinetic stability which is reached
by using our new annealing methods.

5.5 Rheology

We finally examine the stability of the annealed KA configurations against shear deformation.
The stability of glassy configurations has recently been shown to qualitatively affect the nature of
the yielding transition, with a sharp ductile-to-brittle transition with increasing the stability [85,
89, 446–448] (see also Chap. I). This transition is characterised by the emergence, in large-enough
systems, of a macroscopic discontinuity in the stress-strain curves, which is accompanied by the
formation of a macroscopic failure that takes the form of a system-spanning shear band. Despite
scores of rheological studies of the KA model, this transition has not been observed in this model
so far [448].

To study the rheology of stable KA configurations, we need to prepare larger configurations.
We first produce very large KA/KA1 samples by replicating 33 systems of N = 1000/1005
particles to obtain larger samples of N = 27000/27135 particles. These replicated systems are
further aged for 106 MC steps at a temperature T = 0.36. The KA1 samples are then annealed
to KA configurations by using both methods I and II, with tMC = 5 × 104, pω = 1/50 and
dω = 5 × 10−3. From these KA configurations, we perform a constant-volume athermal quasi-
static shear protocol in the xz-plane with a strain increment ∆γ = 10−4 by using Lees-Edwards
periodic boundary conditions. Each strain increment is followed by an energy minimisation by
using the conjugate-gradient method.

In Fig. VII.5 (a), we present the stress-strain curves for three different samples for each
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Fig. VII.5 | (a) Stress-strain curves for aged Kob-Andersen (KA) and annealed samples with
methods I and II from the extended Kob-Andersen (KA1) mixture. We report three independent
loading curves for each case. The smooth stress overshoot of the aged KA glasses turns into a sharp
stress drop for the stable annealed samples. Snapshots of the non-affine displacement between
γ = 0 and γ = 0.11 for (b) a KA sample, (c) an annealed sample with method I and (d) an annealed
sample with method II. The color of the particles encodes the absolute magnitude of their non-affine
displacement in units of σAA.

of the three different preparation protocols (aged KA, methods I and II). In all cases, upon
increasing the strain, we observe an elastic regime, a weakening due to small plastic events, a
stress drop at the yielding transition, and finally a steady-state regime at large deformations.
For the aged KA samples, the yielding transition after the stress overshoot is the result of several
plastic events, which result in a modest stress drop and a relatively homogeneous strain field, see
snapshot in Fig. VII.5 (b). The two annealing protocols provide KA samples with a much lower
fictive temperature. This results in unique, sharp and macroscopic stress drops in the stress-
strain curves of all the samples, which are associated with system-spanning shear bands that are
formed within a single energy minimisation, and a highly heterogeneous plastic deformation field,
see snapshots in Fig. VII.5 (c)-(d). The strong shear localisation at the yielding transition is
correlated with the increased stability of the system [85, 89, 446–452], which further confirms that
the proposed annealing methods produce highly stable KA glass configurations and complement
other preparation protocols, like cycling shear at a finite temperature and a finite shear rate [437].

6. Conclusions

In this chapter, we have examined the possibility of using the speedup which is offered by
the swap Monte Carlo algorithm in the extended Kob-Andersen (KA1) model to access low
energy states in the original Kob-Andersen (KA) model where swap moves are inefficient. An
equilibrium method introduces a bottleneck with equilibration times that are as large as in
the original KA model and therefore this method does not provide any significant speedup. We
have however introduced two non-equilibrium annealing methods that produce very stable glassy
configurations of the KA model at equivalent computational cost, with a speedup of about 2-3
orders of magnitude. The achieved glass states have a significantly lower inherent structure
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energy than the one of the glasses which are obtained by direct aging in the KA model, they
also have lower fictive temperatures, and calorimetric properties that indeed correspond to an
enhanced kinetic stability.

The behaviour under shear of the glassy configurations which are obtained thanks to our
new protocol is also consistent with an enhanced stability as compared to aged configurations.
In particular, our results demonstrate that brittle yielding can now be analysed in computer
simulations of metallic glasses as well as in experiments, and especially in the KA model which
is one of the most studied models. More precisely, we have demonstrated that the behaviour
of KA glasses can turn from ductile to brittle by tuning the degree of annealing of the configu-
ration before shearing. This result was first shown in size-polydisperse soft sphere systems [85]
(see Chap. I), and now in the KA model which mimics metallic glasses with a small number
of components. As a consequence, this new possibility opens interesting research avenues to
understand, for instance, the correlation between the deformation in the brittle regime and dif-
ferent structural indicators, such as the ones which were studied in Ref. [373], but also locally
favoured structures which are well documented in the KA model [363, 453]. In addition, within
the KA model, the influence of the attractive interaction forces between the particles on the
yielding behaviour could be investigated, by a direct comparison with a purely repulsive model,
namely, a model of particles which interact via the Weeks-Chandler-Andersen (WCA) poten-
tial [454]. These attractive forces are known to affect the equilibrium behaviour of glass-forming
liquids quantitatively [455] and experiments suggest that the rheology of attractive glasses is
also quantitatively different from their repulsive counterparts [456].

We have thus developed a computationally cheap method to produce KA glassy configura-
tions that are very stable, although being out of equilibrium, and which belong to regions of
the landscape that cannot be accessed by direct simulations of the KA model. Unlike parallel
tempering, transition path sampling, or ghost insertion method, the methods which are pro-
posed here scale very well with system size, and they are conceptually very simple. The present
algorithm thus out-performs these more complicated algorithms. This strategy is generic, and
it can be implemented in other glass-formers with a small number of components. In addition,
combining the annealing methods with a parallel tempering scheme or graphic card simulations
would allow for the production of even more stable systems. These would prove useful for further
investigations of physical properties of highly stable metallic glasses by using the well studied
KA model.
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This work has addressed several questions regarding the concept of metastable state which is
central in the mean-field theory of the glass transition and its finite-dimensional version, namely,
the random first order transition theory. Supercooled liquids and glasses are believed to evolve
in very rugged free energy landscapes with an exponentially large number of minima which
control their low-temperature properties from the thermodynamic and the dynamic points of
view. As a result, supercooled liquids and glasses share similarities with other current research
topics, e.g., jamming [457] or machine learning [458].

1. The thermodynamics of constrained glass-forming liquids

1.1 Conclusions

In Chap. I, we have first reviewed the concept of metastable states at the mean-field level.
Their number sharply becomes exponential in the system size below the mode-coupling (dynam-
ical) transition temperature, it decreases with decreasing then temperature and eventually gets
sub-exponential in the system size at the Kauzmann transition temperature where a genuine
thermodynamic phase transition to an ideal glass phase occurs. In Chap. II, we have then re-
viewed the Franz-Parisi construction in which one considers a supercooled liquid whose overlap
or similarity with a quenched reference configuration of the same supercooled liquid is linearly
coupled to a field ε. In this setting, the existence of metastable states directly translates into
a thermodynamic first order phase transition line from a delocalised phase of low overlap to a
localised phase of higher overlap which emerges from the random first order transition point at
T = TK and ε = 0 and which ends in a critical point at a higher temperature T = Tc and a finite
field ε = εc in the phase diagram (ε, T ) of glass-forming liquids.

In Chap. III, we have performed computer simulations in 2d and 3d by using importance
sampling techniques and reweighting schemes to study the fate of the phase diagram (ε, T ).
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Thanks to an original finite-size scaling analysis, we have revealed that the phase transition and
the critical point which are predicted at the mean-field level survive the introduction of finite-
dimensional fluctuations in 3d and are ruled by the physics of the random-field Ising model
(RFIM). In 2d instead, any transition is smeared out in the thermodynamic limit because the
disorder destroys long-range order. Overall, our study reveals that mean-field results are robust
in finite dimensions despite the fact that metastable states are no longer well defined in physical
dimensions. This also strengthens the connection between glass-forming liquids and the RFIM
which has been reported in different contexts.

In Chap. IV, we have studied the role of the tolerance length in the definition of the overlap,
i.e., the small displacement of the particles which is authorised to consider that two liquid
configurations are similar and that they belong to the same “metastable state”. We have shown,
within the hypernetted chain approximation of liquid-state theory, that the dynamical transition
and the Kauzmann transition are independent of the tolerance length which defines the overlap
but the whole phase diagram of constrained supercooled liquids for finite ε does depend on it, in
particular the location of the first order transition between the delocalised and localised phases
and the associated critical endpoint. The latter result has been confirmed thanks to computer
simulations. From a practical point of view, a clever choice of the coarse-graining length could
push the critical point and the first order phase transition higher in temperature to more easily
sample them. From a more conceptual point of view, the variation of the phase diagram with the
coarse-graining length gives information about the structure of the coarse-grained free energy
landscape. In particular, the definition of “metastable states” in finite dimensions depend on
the tolerance length in the definition of the overlap and so do the configurational entropy and
the point-to-set length.

In Chap. V, we have studied the spatial fluctuations of the Franz-Parisi potential by biasing
the local overlap between a configuration of a model glass-forming liquid and a reference config-
uration of the same liquid with a field. We have shown large spatial fluctuations of the field in
order to localise a given patch of a liquid close to the reference configuration, namely, to force a
large local overlap. The measure of these spatial fluctuations thus represents a quantitative as-
sessment of the “self-induced” disorder in glass-forming liquids. We believe that the distribution
of the localising field accounts for the spatial fluctuations of the local configurational entropy
and also of the local surface free energy penalty due to the mismatch in density profiles be-
tween the constrained cavity when close to the reference configuration and the free exterior. We
have finally paved the way towards a quantitative assessment of the correlation between these
thermodynamic local fluctuations with structural indicators of the reference configurations and
the dynamic propensity when measuring the bulk equilibrium or melting dynamics from the
reference configurations.

1.2 Perspectives

We have presented the first finite-size scaling analysis of the constrained thermodynamics of
supercooled liquids in the quenched Franz-Parisi setting. Repeating the complete analysis for
different model glass-formers would be interesting as the existence and the location of the phase
transitions in constrained supercooled liquids are expected to depend on the strength of the
“self-induced” disorder. The comparison of different liquids could further confirm the relation
between glass-forming liquids and the RFIM but also could allow for a quantitative comparison
of the effective disorder in different glass-formers. This measure of “self-induced” disorder could
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eventually be related to other properties of the equilibrium supercooled liquid or of the glass
phase. For instance, more intrinsically-disordered liquids are expected to be strong with an
Arrhenius-like increase of the α-relaxation time when decreasing the temperature while less
intrinsically-disordered liquids may display a super-Arrhenius behaviour [207]. In addition, we
have already reported in Chap. I that the yielding behaviour of glasses depends on the stability
of the initial state which behaves as an effective source of disorder [85]. It could be interesting
to compare models of different intrinsic disorder for a fixed kinetic stability.

Considering the pinning case could also be interesting: a fraction of particles c is pinned
to its position in an equilibrium configuration at a temperature T0 which can be equal to the
temperature of the constrained liquid or which can be held fixed [246]. The pinning protocol
shares similarities with the Franz-Parisi setting, in particular the existence of phase transitions
in the plane (c, T ) and of a critical point which should also be in the universality class of the
RFIM [250]. However, the nature of the first order transition line is different: it is a random first
order transition rather than a conventional first order transition. Our study could potentially
inspire work in this direction too.

Our work has also raised questions regarding the measure of the configurational entropy or
the point-to-set length in finite dimensional systems. From our comparison between mean-field
calculations and computer simulations, we expect that both quantities depend on the observable
which is used. In particular, when they are computed from the overlap and the Franz-Parisi
potential, they may vary with the tolerance length which is involved in the definition of the
overlap. Investigating this dependence in a systematic way would be valuable to reinforce our
understanding of these quantities but also of the definition of the metastable states in finite
dimensions.

Finally, we have been able to go beyond the bulk behaviour of supercooled liquids in order
to assess the local fluctuations of the field to localise a given region of the liquid close to a
reference configuration (hence to assess local fluctuations of the configurational entropy). In the
random first order transition theory, the regions of higher configurational entropy (or localising
field) are expected to be faster to relax. As a consequence, assessing the connections with
the dynamics could be interesting through the iso-configurational ensemble construction. In
particular, one could ask whether these local thermodynamic fluctuations are predictive of the
dynamics and over which timescales and lengthscales. This is a direction of study that we are
currently investigating.

2. The dynamics of supercooled liquids close to their glass transition

2.1 Conclusions

In Chap. VI, we have for the first time studied the dynamics of supercooled liquids close
to their glass transition temperature by using computer simulations. We have been able to
compute relaxation spectra which are similar to what is usually measured in experiments. We
have shown that the excess wing which appears in the spectra close to the glass transition
temperature directly originates from dynamic heterogeneities at very short times with respect
to the bulk relaxation time. These heterogeneities are formed by rare and small clusters of
mobile particles. The appearance time of these clusters is power law distributed on several
decades and this directly accounts for the existence of excess wings in the relaxation spectra.
The relaxation of the bulk then proceeds via mobility percolation in the entire system from these
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initially relaxed regions. Mobility invasion relies on dynamic facilitation with mobile particles
which undergo multiple relaxations but also which help their neighbours relaxing.

2.2 Perspectives

Our work has provided a clear description of how relaxation proceeds at low temperatures
in bulk supercooled liquids. But the nature of the first events which populate the excess wing
remains elusive. They are likely activated but their characterisation could be valuable. For
instance, what is their activation (free) energy? Are they simple events which are performed by
individual particles and which correspond to barrier crossings or are they already complicated
and collective processes? We have shown that the first relaxation events should be increasingly
predictible as the temperature is decreased, consequently are their locations related to static
properties which are encoded in the structure of the initial configuration?

Another line of questions concerns the relative role of facilitation as the temperature is
decreased. In particular, our results are in contradiction with the findings of Ref. [414] which
indicate that the effect of facilitation decreases as the temperature is decreased while activation
becomes more important. However, this difference might be explained by the fact that the
analysis of Ref. [414] relies on very different tools from ours. The investigation of several models
of glass-forming liquids at very low temperatures could help solving this paradox and clarifying
the temperature evolution of the facilitation processes.

3. The properties of the non-equilibrium glass phase

3.1 Conclusions

In Chap. VII, we have studied an extended version of the Kob-Andersen model in which the
swap algorithm is efficient to go deeper in the free energy landscape, contrary to the original
model. We have shown that some equilibrium properties of the original model can be computed
from simulations in the extended model, but this can only be achieved at temperatures at which
we can directly simulate the Kob-Andersen model, hence decreasing the interest of the method.
However, if we relax the requirement to remain at equilibrium, we have shown that annealing
schemes allow for transforming stable equilibrium configurations of the extended Kob-Andersen
model into glassy configurations of the original model which are more stable than configurations
that are obtained by direct aging for equivalent simulation walltimes. The stability of the
new generated Kob-Andersen glasses has been revealed by several indicators, including lower
inherent structure energies and fictive temperatures, brittle yielding and higher non-equilibrium
onset temperatures upon heating.

3.2 Perspectives

The Kob-Andersen model represents the archetypal computer model of metallic glasses with
a few number of components. Computer simulations have been mostly unsuccessfull to produce
stable metallic glasses so far or they require advanced simulation techniques, but we have filled
this gap. In consequence, properties of stable metallic glasses are now reachable in the context
of numerical studies, for instance brittle yielding or melting. In addition, as the Kob-Andersen is
the most studied model of glasses, many different properties are largely documented in the litera-
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ture. For instance, locally favoured structures have been reported, but also the non-perturbative
effects of the attractive component of the interaction potential between the particles have been
scrutinised. The non-equilibrium behaviour of stable glasses could thus be confronted with these
properties.
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1. Motivations

Dans le Chap. I et le Chap. II, nous présentons le contexte de recherche de la thèse. Nous
commençons par la phénoménologie de la transition vitreuse puis nous introduisons la théorie
champ moyen qui décrit le comportement vitreux des verres de spin avec désordre gelé et depuis
plus récemment les liquides surfondus (refroidis sous leur point de fusion sans cristalliser) en
dimension infinie. Finalement, nous décrivons les premiers éléments d’une théorie de la transition
vitreuse en dimension finie s’appuyant sur des concepts champ moyen connue sous le nom de
théorie RFOT (Random First Order Transition).

Nous commençons par rappeler les principaux éléments factuels associés à la transition vit-
reuse. Cette dernière concerne une grande variété de matériaux caractérisés par une croissance
significative (au moins exponentielle) de leur temps de relaxation ou de leur viscosité lorsqu’un
paramètre de contrôle (typiquement la température) est diminué sur un faible intervalle. Lorsque
le temps de relaxation τα(T ) excède le temps typique de l’expérience ou de la simulation, le sys-
tème tombe hors d’équilibre et forme un matériau solide amorphe, c’est-à-dire un verre. Il
n’existe pas de définition rigoureuse de la température de transition vitreuse, car cette dernière
dépend du protocole (par exemple la vitesse de refroidissement du liquide) et du temps typique
d’observation. Seule une définition empirique et pragmatique peut être donnée, et on choisit
usuellement τα(Tg) = 102 s (sachant que le temps de relaxation à haute température est de
l’ordre de 10−12 s à 10−10 s).

Non seulement le temps de relaxation augmente de façon significative, mais la dépendance
temporelle des fonctions de corrélation à l’équilibre évolue à mesure que la température diminue.
Ces dernières, notamment la fonction de corrélation des fluctuations de densité (fonction de
diffusion intermédiaire), passent d’une relaxation exponentielle sur une échelle de temps de
l’ordre d’1 ps à haute température à une relaxation en deux étapes à plus basse température avec
une première relaxation partielle vers un plateau sur une échelle de temps de l’ordre de 1 ps suivie
par une seconde relaxation structurelle α dont le temps de relaxation varie sur plusieurs ordres
de grandeur à mesure que la température diminue. La seconde relaxation devient également de
plus en plus étirée à mesure que la température diminue. Il en est de même des spectres de
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relaxation qui sont reliés aux fonctions de corrélation par le théorème de fluctuation-dissipation
à l’équilibre. À haute température, les spectres sont constitués d’un seul pic assimilable à
une Lorentzienne à environ 100 GHz. À plus basse température, les spectres montrent deux
pics, un à hautes fréquences correspondant à la première étape de la relaxation sur un temps
microscopique, suivi par un second pic α qui se décale vers les basses fréquences à mesure que
la température diminue et qui s’élargit. Proche de la température de transition vitreuse Tg,
le spectre de relaxation s’enrichit encore davantage avec l’émergence d’un signal à fréquences
intermédiaires entre le pic microscopique et le pic α (excess wing). Ce signal est dit en excès,
car si on modélise le pic α par une fonction de relaxation usuelle (Cole-Davidson ou Havriliak-
Negami), le signal à fréquences intermédiaires se situe au-dessus de la modélisation. Ce signal
aux fréquences intermédiaires n’apparaît que proche de la transition vitreuse et n’a été observé
que dans des expériences qui manquent d’une résolution à l’échelle élémentaire (nanoscopique
pour les verres structuraux). Ainsi, il n’existe pas de consensus quant à son origine.

La transition vitreuse est une transition dynamique, mais il est légitime de se demander si elle
n’est pas due à une transition thermodynamique sous-jacente, avec un temps de relaxation qui
divergerait à une température inférieure à la température de transition vitreuse expérimentale
dont la définition est purement empirique. Il y a 70 ans, Kauzmann a mis en évidence que
l’entropie d’excès représentant la différence entre l’entropie du liquide surfondu et l’entropie
du cristal à la même température variait de façon significative et s’annulait à une température
en dessous de la température de Kauzmann TK < Tg. Cette entropie d’excès a par la suite
été interprétée comme étant une entropie de configuration quantifiant le logarithme du nombre
d’« états amorphes » accessibles au liquide dont l’annulation suggère l’existence d’une transition
de phase thermodynamique vers une phase où un seul état amorphe est possible, celui du verre
idéal. Même si cette interprétation de l’entropie d’excès n’est pas rigoureuse, elle a motivé de
nombreux travaux théoriques aboutissant à la théorie champ moyen de la transition vitreuse
dans laquelle cette « crise entropique » se produit de façon exacte.

La théorie champ moyen des liquides surfondus décrit la thermodynamique et la dynamique
des liquides en dimension infinie. L’étude de la dynamique montre que le temps de relaxation
augmente en loi de puissance à basse température et diverge à une température finie dite de
transition dynamique Td. Sous cette température, l’espace des phases se scinde en un nombre
exponentiellement grand de composantes appelées états métastables et dans lesquelles le liquide
reste piégé indéfiniment. Pour T < Td, le temps de relaxation du liquide est véritablement infini,
l’espace des phases ne peut pas être exploré de manière ergodique et les états métastables sont
donc rigoureusement définis. Physiquement, ces états métastables correspondent à un ensemble
de configurations caractérisées par un même profil de densité moyen. En champ moyen, les états
métastables contrôlent la dynamique, la thermodynamique et les propriétés hors d’équilibre des
verres. Le logarithme de leur nombre, l’entropie de configuration, peut être calculé exactement,
et devient positif de façon discontinue à T = Td. Il décroît quand la température diminue jusqu’à
atteindre une seconde température dite de transition statique et notée TK en lien avec les travaux
de Kauzmann où l’entropie de configuration s’annule. À cette température, il se produit en
champ moyen une véritable transition de phase thermodynamique de la phase liquide à la phase
vitreuse idéale. Un bon paramètre d’ordre de cette transition est le degré de similarité ou le
recouvrement (overlap) entre configurations d’équilibre du liquide, qui saute de façon discontinue
à T = TK d’une valeur proche de 0 à une valeur proche de 1 quand la température diminue.

Une fois le bon paramètre d’ordre obtenu, il est naturel de définir l’énergie libre de Landau
associée. Cette dernière décrit le coût en énergie libre des fluctuations du recouvrement entre
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le liquide et une configuration de référence de même liquide, moyenné sur les configurations
de référence. Dans le contexte de la transition vitreuse, cette fonction de grande déviation
s’appelle le potentiel de Franz-Parisi (FP). Toute la thermodynamique des systèmes vitreux
est alors élégamment décrite par l’évolution en température du potentiel de FP. À T = TK,
celui-ci a deux minima de même profondeur correspondant à des valeurs de recouvrement entre
configurations d’équilibre proches de 0 et de 1. Le premier décrit le liquide et le second le
verre idéal. Quand T > TK, le minimum de haut recouvrement devient métastable vis-à-vis du
liquide. La différence entre les deux minima pour Td < T < TK représente le coût en énergie libre
pour localiser le liquide proche de la configuration de référence et est donc égal par définition à
l’entropie de configuration multipliée par la température. Le minimum secondaire du potentiel
de FP disparaît en un point col pour T = Td reflétant la disparition des états métastables.
Néanmoins, le potentiel de FP reste non convexe jusqu’à une température Tc > Td. Finalement,
por T > Tc, le potentiel de FP est convexe avec un seul minimum correspondant à un faible
recouvrement entre configurations d’équilibre et décrivant la phase liquide.

La théorie champ moyen de la transition vitreuse donne un cadre complet pour décrire les liq-
uides surfondus. En particulier, elle indique que la transition vitreuse dynamique s’accompagne
d’une signature thermodynamique, mais qui est inaccessible à l’équilibre. Cependant, en cou-
plant le recouvrement entre configurations d’équilibre à un champ ε, il est possible de stabiliser
la phase de haut recouvrement (vitreuse) à haute température. Les résultats de calculs champ
moyen montrent qu’une ligne de transition de phase du premier ordre dans le plan (ε, T ) émerge
de la transition vitreuse thermodynamique en champ nul (ε = 0 et T = TK) et s’achève par un
point critique à plus haute température et à champ non nul (εc, Tc). Cette température critique
correspond à la température à laquelle le potentiel de FP devient strictement convexe. En par-
ticulier, elle se trouve dans un régime accessible à l’équilibre (Tc > Td) et est la conséquence
directe d’une crise entropique à plus basse température. Ainsi, la thermodynamique contrainte
de liquides surfondus rend observable en champ moyen les modifications non triviales du paysage
d’énergie libre.

La description théorique des liquides en dimension finie est nettement plus ardue que la
théorie champ moyen. Cela vient du fait que les états métastables ne sont plus définis de façon
rigoureuse dans ce cas : leur durée de vie est finie et leur extension spatiale est limitée. Cela
implique notamment que la transition dynamique est évitée en dimension finie et l’ergodicité
est restaurée probablement jusqu’à T = TK grâce à des processus activés qui permettent au
liquide de s’échapper des états métastables. Le liquide pour T < Td est alors schématiquement
décrit par une mosaïque de sous-éléments de taille typique égale à la longueur de corrélation
statique (point-to-set), chaque portion du liquide étant dans un état métastable bien défini.
Cette longueur statique ξPTS(T ) décrit l’extension spatiale de l’ordre amorphe dans un liquide.
Elle croît à mesure que la température diminue et diverge à T = TK si la crise entropique survit
à l’introduction des fluctuations inhérentes à la dimension finie. Par conséquent, l’entropie
de configuration n’est rigoureusement définie que pour des échelles de longueur inférieures à
ξPTS(T ) et fluctue probablement spatialement dans le liquide. Certaines régions sont alors
caractérisées par une entropie de configuration locale plus faible et sont donc susceptibles d’avoir
un recouvrement plus grand avec la configuration de référence. Ainsi, ces fluctuations spatiales
de l’entropie de configuration représentent un champ aléatoire couplé au recouvrement. La
description de la thermodynamique des systèmes vitreux en dimension finie nécessite donc de
bâtir une théorie des champs du recouvrement entre configurations d’équilibre et qui tient compte
du désordre auto-induit. Des premières avancées ont été faites dans cette direction ces dernières
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années. Notamment, il est attendu de nombreuses analogies avec le modèle d’Ising en champ
aléatoire (RFIM).

Le travail de cette thèse participe à l’effort de définir et d’étudier les propriétés des états
métastables, ainsi que de déterminer leur pertinence dans la thermodynamique et la dynamique
des liquides surfondus en dimension finie par le prisme des simulations numériques et des calculs
analytiques. La description des résultats obtenus est l’objectif de la section suivante.

2. Résumé des résultats obtenus

2.1 Thermodynamique contrainte des liquides surfondus

Dans le Chap. II, nous étendons les études analytiques du p-spin sphérique, un modèle
champ moyen de verre de spin dont la thermodynamique et la dynamique sont similaires à celles
des liquides structuraux, avec l’existence d’une transition dynamique et d’une transition statique
associées à des non-convexités du potentiel de FP. Nous considérons la possibilité d’échantillonner
les configurations de référence à une température T0 fixée et différente de la température T du
liquide pour calculer le recouvrement du liquide. Nous montrons une diversité de diagrammes
des phases (ε, T ) quand le recouvrement entre le liquide à température T et la configuration de
référence préparée à T0 est couplé linéairement à un champ ε, et nous mettons notamment en
évidence que la ligne de transition de phase du premier ordre et le point critique pour ε > 0 se
produisent à plus haute température quand T0 est choisie entre Td et TK. Ces résultats seront
utilisés dans le chapitre suivant afin de faciliter l’étude de la thermodynamique contrainte des
liquides surfondus en dimension finie par les simulations numériques. Par la suite, nous allons
au-delà du comportement moyen et nous étudions analytiquement les fluctuations du potentiel
de FP. Nous montrons que pour toute valeur de T0, le point critique contraint (εc(T0), Tc(T0))
est décrit par la classe d’universalité du RFIM et nous montrons comment le désordre effectif
varie avec la température de la configuration de référence.

Dans le Chap. III, nous étudions le diagramme des phases (ε, T ) d’un liquide surfondu mod-
èle en dimensions d = 2, 3 par le biais de simulations numériques. Les résultats sont en majorité
obtenus pour une température T0 prise suffisamment basse afin de déplacer tous les éléments
potentiellement intéressants du diagramme des phases à plus haute température. Ces configu-
rations sont facilement générées à l’aide de l’algorithme du swap récemment développé et qui
permet d’équilibrer des liquides surfondus à des températures inférieures à la température de
transition vitreuse expérimentale (correspondant à une augmentation du temps de relaxation
microscopique de 12 ordres de grandeur par rapport à sa valeur à plus haute température où le
comportement vitreux commence à se manifester). Les résultats pour le cas T = T0 sont égale-
ment présentés en annexe. Pour explorer le diagramme des phases (ε, T ) et pour calculer avec
précision les propriétés thermodynamiques des liquides surfondus contraints, nous utilisons des
techniques d’échantillonnage avancées, à savoir l’échantillonnage parapluie (umbrella sampling)
et la repondération d’histogrammes (histogram reweighting), qui permettent de déterminer les
propriétés d’équilibre pour ε > 0 par le biais de simulations à ε = 0 seulement. Ceci est mo-
tivé par le fait que proche d’un point critique et d’une transition de phase du premier ordre,
l’exploration ergodique de l’espace des phases n’est plus garantie. Nous constatons que les mod-
èles à la fois en dimensions d = 2 et d = 3 présentent la phénoménologie de la théorie champ
moyen dans des systèmes raisonnablement petits. En particulier, le potentiel de FP est non
convexe tandis que les isothermes du recouvrement en fonction du champ ε et les distributions
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de probabilité du paramètre d’ordre deviennent bimodales à basses températures. Tout ceci est
cohérent avec l’existence d’une transition de phase du premier ordre se terminant à un point
critique à plus haute température. Cependant, en dimensions finies, d’importants effets de taille
finie sont attendus à proximité d’une transition de phase du premier ordre ou d’un point cri-
tique. Ainsi, nous effectuons une analyse en taille finie (finite size scaling) approfondie et nous
étudions l’évolution de la distribution de probabilité du paramètre d’ordre et des susceptibilités
en fonction de la taille du système. Cela nous permet de démontrer l’existence dans la limite
thermodynamique d’une ligne de transition du premier ordre en champ aléatoire pour ε fini
terminée par un point critique dans la classe d’universalité du RFIM en 3d. À l’inverse, le
système à 2d ne présente aucune transition dans la limite thermodynamique, en cohérence avec
la classe d’universalité du RFIM dont la dimension critique inférieure est égale à 2. Le com-
portement critique RFIM est confirmé par l’étude de la dynamique du liquide contraint en 3d
au voisinage de son point critique, qui est compatible avec une relaxation activée. Les résultats
de ce chapitre montrent donc que la théorie champ moyen et sa généralisation par la théorie
statistique des champs est remarquablement robuste en dimensions finies. En particulier, ils
impliquent l’absence d’une transition de Kauzmann en 2d à température finie alors qu’à 3d ils
ne contredisent pas l’existence d’une transition vitreuse thermodynamique à TK > 0. Ce travail
a donné lieu à une publication [283] et sera l’objet d’une seconde publication prochainement.

Dans le Chap. IV, nous étudions précisément la définition du paramètre d’ordre de la tran-
sition vitreuse thermodynamique, à savoir la similarité ou recouvrement entre configurations
d’équilibre. Dans les liquides, la définition du recouvrement implique une longueur de tolérance
a, généralement une fraction du diamètre moyen des particules, associée au déplacement typ-
ique autorisé pour considérer que deux configurations doivent appartenir au même « état mé-
tastable ». Dans le Chap. III, les simulations numériques ont été menées en choisissant une
longueur de tolérance « raisonnable » mais aucune étude n’a été menée pour étudier systéma-
tiquement son influence sur les fluctuations du recouvrement entre configurations d’équilibre, et
notamment sur les transitions statique à TK et dynamique à Td ainsi que sur le diagramme des
phases (ε, T ). Nous montrons d’une part que les positions des transitions dynamique et statique
sont indépendantes de a. D’autre part, nous mettons en évidence que la ligne de transition de
phase du premier ordre pour ε > 0 et le point critique à (εc, Tc) dépendent de façon non triviale
de a. Les résultats de ce chapitre sont en premier lieu obtenus en champ moyen en utilisant une
approximation de la théorie des liquides, à savoir l’approximation de la chaîne hyper-réticulée
(HNC). Ils sont par la suite confirmés par des simulations numériques analogues à celles du
Chap. III. Ils suggèrent notamment qu’une plage de valeurs de a inférieure à celle usuellement
considérée maximise la température Tc. D’un point de vue pratique, cela permettra d’accélérer
les simulations numériques pour l’étude de la thermodynamique contrainte des liquides dans le
futur. D’un point de vue plus conceptuel, cela suggère l’existence d’une échelle de température
supérieure à Td sous laquelle l’effet des états métastables commence à se manifester. Ce travail
a donné lieu à une publication [295].

Dans le Chap. V, nous allons au-delà de la thermodynamique moyenne des liquides surfon-
dus et nous étudions les fluctuations du potentiel de FP décrites par la physique du RFIM.
Cependant, contrairement à ce dernier, le désordre des liquides est auto-induit et plus difficile
à quantifier. L’objectif de ce chapitre est de présenter une méthode numérique pour répondre
à cet objectif. Elle consiste à coupler linéairement à un champ extérieur le recouvrement dans
une cavité sphérique entre le liquide et une configuration de référence. Nous mettons en évi-
dence d’importantes fluctuations spatiales du champ nécessaire pour localiser le liquide proche
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de la configuration de référence localement, ou encore pour imposer un haut recouvrement lo-
cal. Nous analysons les propriétés spatiales et statistiques de ces fluctuations et en particulier
nous montrons qu’elles sont correctement décrites par une distribution de Gumbel généralisée
caractérisée par une queue exponentielle à grandes valeurs de champ. Nous rationalisons cette
dernière en expliquant que le champ nécessaire à la localisation représente non seulement le
coût entropique pour être localisé proche de la configuration de référence, mais tient également
compte d’un coût supplémentaire en énergie libre en raison de la différence des profils de densité
entre l’intérieur de la cavité lorsqu’elle est confinée proche de la configuration de référence et
son extérieur (analogue à un terme de tension de surface). Ce chapitre décrit un travail en
cours et nous expliquons les investigations que nous sommes actuellement en train de mener.
D’une part, nous proposons d’évaluer la corrélation entre ces fluctuations thermodynamiques
locales et des propriétés structurelles locales de la configuration de référence. Dans un second
temps, nous suggérons d’essayer de relier les fluctuations thermodynamiques que nous mesurons
aux hétérogénéités dynamiques rencontrées universellement dans la dynamique d’équilibre des
liquides surfondus en étudiant la dynamique de relaxation des fluctuations de densité à partir
des configurations de référence.

2.2 Dynamique d’équilibre des liquides proches de leur transition vitreuse

Dans le Chap. VI, nous étudions la dynamique d’équilibre de liquides surfondus proches de
leur transition vitreuse expérimentale sur une échelle de temps de 10 décades. Pour cela, nous
combinons l’algorithme récent du swap à de longues simulations de dynamique moléculaire par-
allélisées. Alors que les fonctions de corrélation moyennes temporelles montrent un plateau qui
s’étend sur plusieurs décades, le calcul des spectres de relaxation et du déplacement carré moyen
dans les structures inhérentes donnent accès à des résultats plus riches. Les deux procédures
révèlent des mouvements non triviaux à l’échelle de quelques particules et à des échelles de
temps très courtes par rapport à la relaxation α. Ces processus donnent lieu à une loi de puis-
sance dans les spectres de relaxation, analogue à ce qui est observé expérimentalement (excess
wing). Son observation dans les simulations de liquides surfondus à l’équilibre est une nouveauté
majeure. De manière équivalente, dans le déplacement carré moyen des structures inhérentes,
les processus à temps courts contribuent à un comportement sous-diffusif. Nous révélons donc
de fortes hétérogénéités dynamiques à temps très courts par rapport à τα qui nous permet-
tent de distinguer les particules mobiles et immobiles. Une étude détaillée de la distribution
spatio-temporelle de ces hétérogénéités révèle que la relaxation structurelle commence dans des
régions diluées et localisées dont le temps d’apparition est distribué en loi de puissance. Cette
dernière permet d’expliquer directement l’émergence d’une loi de puissance dans les spectres de
relaxation ou d’un comportement sous-diffusif dans le déplacement carré moyen des structures
inhérentes. Nous analysons par la suite la dynamique à des temps plus longs et nous mon-
trons que la relaxation structurelle procède par facilitation dynamique à partir de ces régions
initialement plus mobiles. En particulier, nous constatons que le mouvement des particules est
persistant et corrélé entre voisins et que l’effet de la facilitation dynamique devient plus fort
à mesure que l’on s’approche de la transition vitreuse. Globalement, nos résultats montrent
que la relaxation structurelle dans les liquides surfondus peut maintenant être analysée dans
des simulations numériques pour des températures proches de Tg. Ils révèlent principalement
que la dynamique dans les liquides surfondus est le résultat de deux ingrédients minimaux, à
savoir (i) des événements rares et distribués dans le temps, se produisant vraisemblablement par
activation thermique et (ii) croissance des domaines qui ont relaxé par facilitation dynamique.
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Le projet décrit dans ce chapitre a été mené en collaboration avec C. Scalliet et a donné lieu
à une publication [378]. Il serait intéressant dans l’avenir de caractériser en détail les événe-
ments à temps courts responsables de la loi de puissance dans les spectres de relaxation (énergie
d’activation, géométrie, nombre de particules impliquées, etc.).

2.3 Propriétés hors d’équilibre des verres

Dans le Chap. VII, nous étudions une généralisation récente du modèle binaire de Kob-
Andersen (KA) qui est l’un des systèmes vitreux les plus employés en simulations. L’algorithme
du swap qui a été mis à profit dans différents chapitres de cette thèse est très efficace pour
les modèles dont les particules présentent une large dispersion de tailles et permet de générer
des configurations d’équilibre à des températures plus basses que ce qu’il est possible de faire
par des simulations numériques classiques. Il consiste à échanger aléatoirement le diamètre de
deux particules choisies aléatoirement en respectant le principe de balance détaillée. Cependant,
l’algorithme du swap est inefficace pour le modèle original de KA, car la différence de tailles
entre les deux types de particules composant le mélange binaire est trop grande. Dans les
généralisations du modèle de KA, l’algorithme du swap peut au contraire être très efficace. Ces
généralisations reposent sur l’introduction d’une faible fraction de particules dont les tailles sont
intermédiaires entre les tailles des deux types de particules du mélange binaire. Dans ce chapitre,
nous montrons que ces modèles peuvent être utilisés pour améliorer considérablement la stabilité
de configurations vitreuses du modèle original de KA. Nous développons avec succès plusieurs
stratégies numériques à la fois à l’équilibre et hors d’équilibre pour atteindre cet objectif. Nous
menons ensuite plusieurs mesures pour montrer que les configurations générées sont bien plus
stables que les verres obtenus directement à partir du modèle de KA par vieillissement. Nous
étudions notamment le comportement des verres sous chauffage et sous cisaillement, et nous
mettons en évidence une transition ductile-fragile lorsque la stabilité des verres augmente. Nos
résultats ouvrent ainsi la voie à de futures études de verres stables utilisant le modèle de KA. Ce
projet a été mené en collaboration avec A. D. S. Parmar et a donné lieu à une publication [428].
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États métastables dans des verres modèles

La mécanique statistique explique désormais les transitions de phase se produisant dans des substances simples à
l’équilibre thermodynamique. Néanmoins, la transition vitreuse, observée universellement dès lors qu’un liquide
est refroidi ou comprimé suffisamment rapidement pour éviter sa cristallisation, est toujours source d’intenses
recherches. Dans l’approximation de champ moyen, le ralentissement des systèmes vitreux est la conséquence
de l’émergence d’un paysage d’énergie libre rugueux avec un nombre exponentiellement grand de minima corre-
spondant aux états métastables. Ces derniers dictent également les propriétés thermodynamiques des liquides
surfondus ainsi que le comportement hors-équilibre des verres. Ils sont cependant mal définis au-delà du champ
moyen : ils ont une durée de vie finie et une extension spatiale limitée. Le travail de cette thèse participe à l’effort
de définir et de caractériser les états métastables en dimension finie par les simulations numériques et les travaux
analytiques. Nous exploitons dans un premier temps la thermodynamique contrainte des liquides surfondus dans
la construction de Franz et Parisi. La théorie champ moyen prédit que l’existence d’états métastables se manifeste
par une ligne de transition de phase et un point critique dans un diagramme des phases étendu. Nous utilisons
les simulations numériques et nous montrons que les résultats champ moyen survivent malgré l’introduction de
fluctuations de dimension finie. Nous sommes capables de caractériser le point critique et d’en donner sa classe
d’universalité ainsi que sa dimension critique inférieure. Nous étudions ensuite en détail la définition du paramètre
d’ordre associé à cette transition analytiquement et numériquement pour orienter d’éventuelles futures études,
mais également pour mieux comprendre la structure gros-grains du paysage d’énergie libre de verres modèles.
Finalement, nous nous intéressons à la thermodynamique des liquides surfondus en présence d’une contrainte
thermodynamique locale et nous révélons d’importantes fluctuations spatiales. Dans un second temps, nous étu-
dions la dynamique des liquides surfondus proches de leur transition vitreuse en mettant à profit un algorithme
récent pour générer des configurations d’équilibre de liquides modèles à très basses températures. Nous montrons
que la dynamique de relaxation résulte de l’apparition distribuée de régions mobiles qui croissent par facilitation.
Dans un troisième temps, nous étudions les propriétés de verres hors-équilibre, et nous mettons en place des
protocoles numériques qui permettent de générer des verres beaucoup plus stables que ceux obtenus usuellement
en simulations par vieillissement.

Mots-Clés : physique statistique des systèmes désordonnés, simulations numériques, théorie champ moyen,
construction de Franz-Parisi, dynamique d’équilibre des liquides surfondus, transition vitreuse.

Metastable states in model glass-formers

Statistical mechanics now explains the phase transitions occurring in simple substances at equilibrium. However,
the glass transition, which is universally observed when a liquid is cooled or compressed quickly enough to avoid
crystallization is still a source of intense research. At the mean-field level, the slowing down of glassy systems
is the consequence of the emergence of a rough free energy landscape with an exponentially large number of
minima corresponding to metastable states. These metastable states also dictate the thermodynamic properties
of supercooled liquids as well as the out-of-equilibrium behaviour of glasses. They are however ill-defined beyond
mean-field: they have a finite lifetime and a restricted spatial extension. This work contributes to the effort of
defining and characterising metastable states in finite dimensions thanks to numerical simulations and analytical
calculations. Firstly, we consider the constrained thermodynamics of supercooled liquids in the construction put
forward by Franz and Parisi. Mean-field theory predicts that the existence of metastable states manifests itself in
a phase transition line and a critical point in an extended phase diagram. We use numerical simulations and we
show that mean-field results survive despite the introduction of finite-dimensional fluctuations. We are able to
characterise the critical point and we study its universality class along with its lower critical dimension. We then
study the definition of the order parameter associated with this transition analytically and numerically in detail
to guide any future work but also to better understand the coarse-grained structure of the free energy landscape
of model glass-formers. We finally focus on the thermodynamics of supercooled liquids in the presence of a
local thermodynamic constraint and we reveal significant spatial fluctuations. Secondly, we study the dynamics of
supercooled liquids close to their glass transition by taking advantage of a recent algorithm to generate equilibrium
configurations of model liquids at very low temperatures. We show that the relaxation dynamics results from
the distributed appearance of mobile regions that grow thanks to dynamic facilitation. Thirdly, we study the
properties of non-equilibrium glasses, and we implement computer methods that allow us to generate much more
stable glasses than those usually obtained in aging simulations.

Keywords: statistical physics of disordered systems, numerical simulations, mean-field theory, Franz-Parisi
construction, equilibrium dynamics of supercooled liquids, glass transition.
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