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Abstract. In this paper we describe a new identity-based signcryption
(IBSC) scheme built upon bilinear maps. This scheme turns out to be
more efficient than all others proposed so far. We prove its security in a
formal model under recently studied computational assumptions and in
the random oracle model. As a result of independent interest, we propose
a new provably secure identity-based signature (IBS) scheme that is also
faster than all known pairing-based IBS methods.

1 Introduction

Two fundamental services of public key cryptography are privacy and authentica-
tion. Public key encryption schemes aim at providing confidentiality whereas dig-
ital signatures must provide authentication and non-repudiation. Nowadays, no-
ticeably, many real-world cryptographic application require those distinct goals
to be simultaneously achieved. This motivated Zheng [39] to provide the cryp-
tographer’s toolbox with a novel cryptographic primitive which he called ‘sign-
cryption.’ The purpose of this kind of cryptosystem is to encrypt and sign data
in a single operation which has a computational cost less than that of doing
both operations sequentially. Proper signcryption schemes should provide confi-
dentiality as well as authentication and non-repudiation. As in conventional en-
cryption schemes, recovering the plaintext from a signcrypted message must be
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computationally infeasible without the recipients private key; as in conventional
digital signatures, it must be computationally infeasible to create signcrypted
texts without the senders private key.

Identity based cryptography has become a very fashionable area of research
for the last couple of years. The concept was originally introduced in 1984 by
Shamir [34] whose idea was that users within a system could use their online iden-
tifiers (combined with certain system-wide information) as their public keys. This
greatly reduces the problems with key management that have hampered the mass
uptake of public key cryptography on a per individual basis. While identity-based
signature schemes (IBS) rapidly emerged [20, 23] after 1984 (see [5] for a thor-
ough study of them), and despite another bandwidth-consuming proposal [18], it
is only in 2001 that bilinear mappings over elliptic curve were found to yield the
first fully practical identity-based encryption (IBE) solution [10]. Those bilinear
maps, or pairings, subsequently turned out to yield a plenty of cryptographic ap-
plications [2] among which several recent outstanding results on identity-based
encryption [7, 8, 21, 36].

Several identity-based signcryption algorithms have been proposed so far,
e.g. [11, 14, 16, 17, 26, 27, 30, 33, 37]. Within this handful of results, only [11, 14,
16, 17, 26, 37] consider schemes supported by formal models and security proofs in
the random oracle model [6]. Among them, Chen and Malone-Lee’s proposal [14]
happens to yield the most efficient construction.

The main contribution of this paper is to propose a new identity-based sign-
cryption scheme that even supersedes [14] from an efficiency point of view at
the expense of a security resting on stronger assumptions. The new construction
can benefit from the most efficient pairing calculation techniques for a larger
variety of elliptic curves than previous schemes. Indeed, recent observations [35]
pinpointed problems arising when many provably secure pairing based protocols
are implemented using asymmetric pairings and ordinary curves. Our proposal
avoids those problems thanks to the fact that it does not require to hash onto an
elliptic curve cyclic subgroup. As a result of independent interest, we discovered
a new identity-based signature that happens to be faster at verification than
previously known IBS schemes.

This paper is organized as follows. Section 2 presents the basic security the-
oretic concepts of bilinear map groups and the hard problems underlying our
proposed algorithms. We describe our identity-based signature scheme and prove
its security in section 3. We propose a new identity-based signcryption scheme
in section 4, and compare its efficiency to various schemes in section 5. We draw
our conclusions in section 6.

2 Preliminaries

2.1 Bilinear map groups and related computational problems

Let k be a security parameter and p be a k-bit prime number. Let us consider
groups G1, G2 and GT of the same prime order p and let P,Q be generators



of respectively G1 and G2. We say that (G1,G2,GT ) are bilinear map groups if
there exists a bilinear map e : G1×G2 → GT satisfying the following properties:

1. Bilinearity: ∀ (S, T ) ∈ G1 ×G2, ∀ a, b ∈ Z, e(aS, bT ) = e(S, T )ab.
2. Non-degeneracy: ∀ S ∈ G1, e(S, T ) = 1 for all T ∈ G2 iff S = O.
3. Computability: ∀ (S, T ) ∈ G1 ×G2, e(S, T ) is efficiently computable.
4. There exists an efficient, publicly computable (but not necessarily invertible)

isomorphism ψ : G2 → G1 such that ψ(Q) = P .

Such bilinear map groups are known to be instantiable with ordinary elliptic
curves such as those suggested in [29] or [4]. In this case, the trace map can be
used as an efficient isomorphism ψ as long as G2 is properly chosen [35]. With
supersingular curves, symmetric pairings (i.e. G1 = G2) can be obtained and ψ
is the identity.

The computational assumptions for the security of our schemes were pre-
viously formalized by Boneh and Boyen [9, 7] and are recalled in the following
definition.

Definition 1 ([9, 7]). Let us consider bilinear map groups (G1,G2,GT ) and
generators P ∈ G1 and Q ∈ G2.

The q-Strong Diffie-Hellman problem (q-SDHP) in the groups (G1,G2)
consists in, given a (q + 2)-tuple (P,Q, αQ,α2Q, . . . , αqQ) as input, finding
a pair

(

c, 1
c+αP

)

with c ∈ Z
∗
p.

The q-Bilinear Diffie-Hellman Inversion problem (q-BDHIP) in the
groups (G1,G2,GT ) consists in, given (P,Q, αQ,α2Q, . . . , αqQ), computing
e(P,Q)1/α ∈ GT .

3 A new identity-based signature

We here present a new identity-based signature that is significantly more efficient
all known pairing based IBS schemes as its verification algorithm requires a single
pairing calculation. This efficiency gain is obtained at the expense of letting the
security rely on a stronger assumption than other provably secure pairing based
IBS [12, 15, 24].

Setup: given a security parameter k, the PKG chooses bilinear map groups
(G1,G2,GT ) of prime order p > 2k and generators Q ∈ G2, P = ψ(Q) ∈ G1,
g = e(P,Q). It then selects a master key s R← Z

∗
p, a system-wide public key

Qpub = sQ ∈ G2 and hash functions H1 : {0, 1}∗ → Z
∗
p, H2 : {0, 1}∗×GT →

Z
∗
p. The public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e, ψ,H1,H2}

Keygen: for an identity ID, the private key is SID = 1
H1(ID)+sP .

Sign: in order to sign a message M ∈ {0, 1}∗, the signer



1. picks a random x R← Z
∗
p and computes r = gx,

2. sets h = H2(M, r) ∈ Z
∗
p,

3. computes S = (x+ h)SID.

The signature on M is σ = (h, S) ∈ Z
∗
p ×G1.

Verify: a signature σ = (h, S) on a message M is accepted iff

h = H2(M, e(S,H1(ID)Q+Qpub)g
−h).

The scheme can be thought of as an identity-based extension of a digital sig-
nature discussed in two independent papers [9, 38]. More precisely, the method
for obtaining private keys from identities is a simplification of a method sug-
gested by Sakai and Kasahara ([33]).

In [25], Kurosawa and Heng described an identity-based identification (IBI)
protocol that implicitly suggests an IBS described in appendix E and which can
be proven secure under the same assumption as our proposal. It turns out that
ours is slightly faster than the Kurosawa-Heng IBS in the signature generation.

At Eurocrypt’04, Bellare, Namprempre and Neven established a frame-
work [5] for proving the security of a large family of identity-based signatures
and they only found two schemes to which their framework does not apply. The
present one does not either fall into the category of schemes to which it applies.
Indeed, it can be showed that our IBS does not result from the transformation of
any convertible standard identification or signature scheme (in the sense of [5])
unless the q-SDHP is easy. A direct security proof is thus needed.

3.1 Security results

We recall here the usual model [5, 12, 15, 19, 24] of security for identity-based
signatures which is an extension of the usual notion of existential unforgeability
under chosen-message attacks [22].

Definition 2 ([12]). An IBS scheme is existentially unforgeable under
adaptive chosen message and identity attacks if no probabilistic polynomial time
(PPT) adversary has a non-negligible advantage in this game:

1. The challenger runs the setup algorithm to generate the system’s parameters
and sends them to the adversary.

2. The adversary F performs a series of queries to the following oracles:
- Key extraction oracle: returns private keys for arbitrary identities.
- Signature oracle: produces signatures on arbitrary messages using the

private key corresponding to arbitrary identities.
3. F produces a triple (ID∗,M∗, σ∗) made of an identity ID∗, whose private

key was never extracted, and a message-signature pair (M∗, σ∗) such that
(M∗, ID∗) was not submitted to the signature oracle. She wins if the verifi-
cation algorithm accepts the triple (ID∗,M∗, σ∗).

The next lemmas establish the security of the scheme under the q-SDH assump-
tion. Lemma 1 [12] allows to only consider a weaker attack where a forger is
challenged on a given identity chosen by the challenger. The proof of lemma 2
relies on the forking lemma [31, 32].



Lemma 1 ([12]). If there is a forger F0 for an adaptively chosen message and
identity attack having advantage ǫ0 against our scheme when running in a time
t0 and making qh1

queries to random oracle h1, then there exists an algorithm F1

for an adaptively chosen message and given identity attack which has advantage
ǫ1 ≤ ǫ0

(

1− 1
2k

)

/qh1
within a running time t1 ≤ t0. Moreover, F1 asks the same

number key extraction queries, signature queries and H2-queries as F0 does.

Lemma 2. Let us assume that there is an adaptively chosen message and given
identity attacker F that makes qhi

queries to random oracles Hi (i = 1, 2) and qs
queries to the signing oracle. Assume that, within a time t, F produces a forgery
with probability ǫ ≥ 10(qs + 1)(qs + qh2

)/2k. Then, there exists an algorithm B
that is able to solve the q-SDHP for q = qh1

in an expected time

t′ ≤ 120686qh2
(t+O(qsτp))/(ǫ(1− q/2

k)) +O(q2τmult)

where τmult denotes the cost of a scalar multiplication in G2 and τp is the cost
of a pairing evaluation.

Proof. See appendix A. ⊓⊔

The combination of the above lemmas yields the following theorem.

Theorem 1. Let us assume that there exists an adaptively chosen message and
identity attacker F making qhi

queries to random oracles Hi (i = 1, 2) and qs
queries to the signing oracle. Assume that, within a time t, F produces a forgery
with probability ǫ ≥ 10(qs + 1)(qs + qh2

)/2k. Then, there exists an algorithm B
that is able to solve the q-SDHP for q = qh1

in an expected time

t′ ≤ 120686qh1
qh2

(t+O(qsτp))/(ǫ(1− q/2
k)) +O(q2τmult)

where τmult and τp respectively denote the cost of a scalar multiplication in G2

and the required time for a pairing evaluation.

4 Fast identity-based signcryption

4.1 Formal model of identity-based signcryption

The formal structure that we shall use for identity-based signcryption schemes
is the following.

Setup: is a probabilistic algorithm run by a private key generator (PKG) that
takes as input a security parameter to output public parameters params and
a master key mk that is kept secret.

Keygen: is a key generation algorithm run by the PKG on input of params and
the master key mk to return the private key SID associated to the identity
ID.

Sign/Encrypt: is a probabilistic algorithm that takes as input public parameters
params, a plaintext message M , the recipient’s identity IDR, and the sender’s
private key SIDS

, and outputs a ciphertext σ = Sign/Encrypt(M,SIDS
, IDR).



Decrypt/Verify: is a deterministic decryption algorithm that takes as input
a ciphertext σ, public parameters params, the receiver’s private key SIDR

and (optionally) a sender’s identity IDS before returning a valid message-
signature pair (M, s) or a distinguished symbol ⊥ if σ does not decrypt into
a message bearing signer IDS ’s signature.

Unlike recent works of [11, 14] that present two-layer designs of probabilistic
signature followed by a deterministic encryption, our construction is a single-
layer construction jointly achieving signature and encryption on one side and
decryption and verification on the other side. Although the description of our
scheme could be modified to fit a two-layer formalism, we kept the monolithic
presentation without hampering the non-repudiation property as, similarly to
[11, 14], our construction enables an ordinary signature on the plaintext to be
extracted from any properly formed ciphertext using the recipient’s private key.
The extracted message-signature pair can be forwarded to any third party in
such a way that a sender remains committed to the content of the plaintext.

Unlike models of [11, 14] that consider anonymous ciphertexts, the above one
assumes that senders’ identities are sent in the clear along with ciphertexts.
Actually, receivers do not need to have any a priori knowledge on whom the
ciphertext emanates from in our scheme but this simply allows more efficient
reductions in the security proofs. A simple modification of our scheme yields
anonymous ciphertexts and enables senders’ identities to be recovered by the
Decrypt/Verify algorithm (which only takes a ciphertext and the recipient’s pri-
vate key as input).

Definition 3. An identity-based signcryption scheme (IBSC) satisfies the mes-

sage confidentiality property (or adaptive chosen-ciphertext security: IND-
IBSC-CCA) if no PPT adversary has a non-negligible advantage in the following
game.

1. The challenger runs the Setup algorithm on input of a security parameter k
and sends the domain-wide parameters params to the A.

2. In a find stage, A starts probing the following oracles:
- Keygen: returns private keys associated to arbitrary identities.
- Sign/Encrypt: given a pair of identities IDS, IDR and a plaintext M , it

returns an encryption under the receiver’s identity IDR of the message
M signed in the name of the sender IDS.

- Decrypt/Verify: given a pair of identities (IDS , IDR) and a ciphertext σ,
it generates the receiver’s private key SIDR

= Keygen(IDR) and returns
either a valid message-signature pair (M, s) for the sender’s identity IDS
or the ⊥ symbol if, under the private key SIDR

, σ does not decrypt into
a valid message-signature pair.

3. A produces two plaintexts M0,M1 ∈ M and identities ID∗
S and ID∗

R.
She may not have extracted the private key of ID∗

R and she obtains C =
Sign/Encrypt(Mb, SID∗

S
, ID∗

R, params), for a random a bit b R← {0, 1}.
4. In the guess stage, A asks new queries as in the find stage. This time, she

may not issue a key extraction request on ID∗
R and she cannot submit C to

the Decrypt/Verify oracle for the target identity ID∗
R.



5. Finally, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Adv(A) := 2× Pr[b′ = b]− 1.

The next definition, given in [11], considers non-repudiation w.r.t. signatures
embedded in ciphertexts rather than w.r.t. ciphertexts themselves.

Definition 4. An identity-based signcryption scheme (IBSC) is said to be ex-

istentially signature-unforgeable against adaptive chosen messages and ci-
phertexts attacks (ESUF-IBSC-CMA) if no PPT adversary can succeed in the
following game with a non-negligible advantage:

1. the challenger runs the Setup algorithm on input k and gives the system-wide
public key to the adversary F .

2. F issues a number of queries as in the previous definition.
3. Finally, F outputs a triple (σ∗, ID∗

S , ID
∗
R) and wins the game if the sender’s

identity ID∗
S was not corrupted and if the result of the Decrypt/Verify ora-

cle on the ciphertext σ∗ under the private key associated to ID∗
R is a valid

message-signature pair (M∗, s∗) such that no Sign/Encrypt query involved
M∗, ID∗

S and some receiver ID′
R (possibly different from ID∗

R) and resulted
in a ciphertext σ′ whose decryption under the private key SID′

R
is the alleged

forgery (M∗, s∗, ID∗
S).

The adversary’s advantage is its probability of victory.

In both of these definitions, we consider insider attacks [1]. Namely, in the
definition of message confidentiality, the adversary is allowed to be challenged on
a ciphertext created using a corrupted sender’s private key whereas, in the notion
of signature non-repudiation, the forger may output a ciphertext computed under
a corrupted receiving identity.

4.2 The scheme

Our scheme is obtained from an optimized combination of our IBS scheme with
the most basic version of the Sakai-Kasahara IBE ([33, 13]) which is only secure
against chosen-plaintext attacks when used as an encryption-only system. This
allows performing the signature-encryption operation without computing a pair-
ing whereas only two pairings have to be computed upon decryption/verification.

Setup: given k, the PKG chooses bilinear map groups (G1,G2,GT ) of prime
order p > 2k and generators Q ∈ G2, P = ψ(Q) ∈ G1, g = e(P,Q) ∈ GT . It
then chooses a master key s R← Z

∗
p, a system-wide public key Qpub = sQ ∈

G2 and hash functions H1 : {0, 1}∗ → Z
∗
p, H2 : {0, 1}∗ × GT → Z

∗
p and

H3 : GT → {0, 1}
n. The public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e, ψ,H1,H2,H3}

Keygen: for an identity ID, the private key is SID = 1
H1(ID)+sQ ∈ G2.

Sign/Encrypt: given a message M ∈ {0, 1}∗, a receiver’s identity IDB and a
sender’s private key SIDA

,



1. Pick x R← Z
∗
p, compute r = gx and c = M ⊕H3(r) ∈ {0, 1}

n.
2. Set h = H2(M, r) ∈ Z

∗
p.

3. Compute S = (x+ h)ψ(SIDA
).

4. Compute T = x(H1(IDB)P + ψ(Qpub)).

The ciphertext is σ = 〈c, S, T 〉 ∈ {0, 1}n ×G1 ×G1.

Decrypt/Verify: given σ = 〈c, S, T 〉, and some sender’s identity IDA,

1. Compute r = e(T, SIDB
), M = c⊕H3(r), and h = H2(M, r).

2. Accept the message iff r = e(S,H1(IDA)Q+Qpub)g
−h. If this condition

holds, return the message M and the signature (h, S) ∈ Z
∗
p ×G1.

If required, the anonymity property is obtained by scrambling the sender’s
identity IDA together with the message at step 1 of Sign/Encrypt in such a
way that the recipient retrieves it at the first step of the reverse operation.
This change does not imply any computational penalty in practice but induces
more expensive security reductions. In order for the proof to hold, IDA must be
appended to the inputs of H2.

4.3 Security results

The following theorems claim the security of the scheme in the random oracle
model under the same irreflexivity assumption as Boyen’s scheme [11]: the signa-
ture/encryption algorithm is assumed to always take distinct identities as inputs
(in other words, a principal never encrypts a message bearing his signature using
his own identity).

Theorem 2. Assume that an IND-IBSC-CCA adversary A has an advantage ǫ
against our scheme when running in time τ , asking qhi

queries to random oracles
Hi (i = 1, 2, 3), qse signature/encryption queries and qdv queries to the decryp-
tion/verification oracle. Then there is an algorithm B to solve the q-BDHIP for
q = qh1

with probability

ǫ′ >
ǫ

qh1
(2qh2

+ qh3
)

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

within a time τ ′ < τ+O(qse+qdv)τp+O(q2h1
)τmult+O(qdvqh2

)τexp where τexp and
τmult are respectively the costs of an exponentiation in GT and a multiplication
in G2 whereas τp is the complexity of a pairing computation.

Proof. See appendix B. ⊓⊔

Theorem 3. Assume there exists an ESUF-IBSC-CMA attacker A that makes
qhi

queries to random oracles Hi (i = 1, 2, 3), qse signature/ encryption queries
and qdv queries to the decryption/verification oracle. Assume also that, within
a time τ , A produces a forgery with probability ǫ ≥ 10(qse + 1)(qse + qh2

)/2k.
Then, there is an algorithm B that is able to solve the q-SDHP for q = qh1

in
expected time

τ ′ ≤ 120686qh1
qh2

τ +O((qse + qdv)τp) + qdvqh2
τexp

ǫ(1− 1/2k)(1− q/2k)
+O(q2τmult)

where τmult, τexp and τp denote the same quantities as in theorem 2.



Proof. See appendix C. ⊓⊔

We now restate theorem 2 for the variant of our scheme with anonymous
ciphertexts. The simulator’s worst-case running time is affected by the fact that,
when handling Decrypt/Verify requests, senders’identities are not known in ad-
vance. The reduction involves a number of pairing calculations which is quadratic
in the number of adversarial queries.

Theorem 4. Assume that an IND-IBSC-CCA adversary A has an advantage ǫ
against our scheme when running in time τ , asking qhi

queries to random oracles
Hi (i = 1, 2, 3), qse signature/encryption queries and qdv queries to the decryp-
tion/verification oracle. Then there is an algorithm B to solve the q-BDHIP for
q = qh1

with probability

ǫ′ >
ǫ

qh1
(2qh2

+ qh3
)

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

within a time τ ′ < τ + O(qse + qdvqh2
)τp + O(q2h1

)τmult + O(qdvqh2
)τexp where

τexp, τmult and τp denote the same quantities as in previous theorems.

Proof. See appendix D. ⊓⊔

Theorem 3 can be similarly restated as its reduction cost is affected in the same
way.

A formal proof of ciphertext anonymity in the model of [11] will be given in
the full version of this paper for the anonymous version of the scheme.

We concede that even the latter variant does not feature all the properties
of the systems of Boyen ([11]) or Chen-Malone-Lee ([14]). For example, it does
not have the ciphertext unlinkability property ([11, 14]): it seems infeasible for
anyone to use his private key to embed a given message-signature pair into a
proper ciphertext intended to himself. We were also unable to formally estab-
lish the ciphertext authentication property according to which a ciphertext is
always signed and encrypted by the same person and cannot be subject to a
kind of ‘man-in-the-middle’ attack. Nevertheless, the scheme does seem to have
this property because of the same reason that precludes the ciphertext unlinka-
bility property.

Overall, we believe that the scheme does satisfy the main requirements that
might be desired in practice. In our opinion, it suffices to implement most prac-
tical applications and its great efficiency renders it more than interesting for
identity-based cryptography.

5 Efficiency discussions and comparisons

In [35], Smart and Vercauteren pointed out problems that arise when several
pairing based protocols are implemented with asymmetric pairings. They showed
the difficulty of finding groups G2 allowing the use of the most efficient pairing



calculation techniques for ordinary curves [3] if arbitrary strings should be ef-
ficiently hashed onto them and efficient isomorphism ψ : G2 → G1 must be
available at the same time. As a consequence, several protocols have to be im-
plemented with groups for which no efficient isomorphism ψ : G2 → G1 is
computable and their security eventually has to rely on somewhat unnatural
assumptions.

Except [33] that has no security proof (and actually has several known secu-
rity problems [28]), all known identity-based signcryption schemes would require
to hash onto G2 if they were instantiated with asymmetric pairings. Our scheme
avoids this problem since it does not require to hash onto a cyclic group. It thus
more easily benefits from optimized pairing calculation algorithms. For example,
section 4 of [35] yields an example of group G2 for which techniques of [3] can
be used and where efficient isomorphisms are available.

Table 1. Efficiency comparison

Sign/Encrypt Decrypt/Verify

signcryption scheme exp mul pairings time (ms) exp mul pairings time (ms)

Boyen ([11]) 1 3 1† 9.37 2 4† 12.66

Chow-Yiu-Hui-Chow¶ ([16]) 2 2⋆ 7.24 1 4⋆ 11.88

Libert-Quisquater¶♠ ([26]) 2 2⋆ 7.24 1 4⋆ 11.88

Nalla-Reddy♦⊲⊳ ([30]) 1 2 1† 8.43 1 3† 9.06

Malone-Lee♣ ([27]) 3 1‡ 5.47 1 3 9.06

Chen-Malone-Lee ([14]) 3 1‡ 5.47 1 3 9.06

Sakai-Kasahara♣ ([33]) 2 1+1§ 6.41 1 2 9.37

Libert-Quisquater⊲⊳ ([26]) 3 1‡ 5.47 1 2 6.41
ours 1 2 2.65 1 2 6.09

Sign Verify

signature scheme exp mul pairings time (ms) exp mul pairings time (ms)

Chow-Yiu-Hui-Chow ([16]) 2 1‡ 3.60 2† 6.41

Heß([24]) 1 2 2.50 1 2† 6.41
Cha-Cheon ([12]) 2 1.87 1 2 6.41

ours 2 1.56 1 1 3.60

(†) One pairing is precomputable, incurring for each user a storage cost of one GT element for each

other user in the system.

(‡) One pairing is precomputable, incurring for each user a storage cost of one GT element for each

other user in the system, plus one GT exponentiation.

(⋆) Two pairings are precomputable, incurring for each user a storage cost of one GT element for

each user in the system, plus two GT exponentiations.

(§) One of the scalar multiplications is done in 〈Q〉 rather than 〈P 〉 where (P,Q) generates E[p].

(¶) Universally verifiable scheme (i.e. supports public ciphertext validation).

(♣) These schemes suffer from security problems as mentioned in [26, 28].

(♠) This scheme does not provide insider-security for the message-confidentiality criterion.

(♦) This scheme has no security proof.

(⊲⊳) This construction can only authenticate messages from the receiver’s point of view.



We now assess the comparative efficiency of several identity-based signcryp-
tion schemes, implemented according to their original descriptions. Table 1 sum-
marises the number of relevant basic operations underlying several identity-based
signcryption and signature schemes, namely, GT exponentiations, scalar point
multiplications, and pairing evaluations, and compares the observed processing
times (in milliseconds) for a supersingular curve of embedding degree k = 6 over
F397 , using implementations written in C++ and run on an Athlon XP 2 GHz.
Subtleties in the algorithms determine somewhat different running times even
when the operation counts for those algorithms are equal. We see from these
results that our proposed algorithms rank among the fastest schemes.

6 Conclusion

We have described efficient and provably secure signature and signcryption
schemes that are faster than any pairing-based scheme previously proposed in
the literature. The latter can be instantiated with either named or anonymous
ciphertexts and is more convenient than previous proposals for implementations
with asymmetric pairings.
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A Proof of lemma 2

Proof. We first show how to provide the adversary with a consistent view and
we then explain how to apply the forking lemma.

Algorithm B takes as input (P,Q, αQ,α2Q, . . . , αqQ) and aims to find a pair
(c, 1

c+αP ). In a setup phase, it builds a generator G ∈ G1 such that it knows

q − 1 pairs (wi,
1

wi+α
G) for w1, . . . , wq−1 ∈R Z

∗
p. To do so,

1. It picks w1, w2, . . . , wq−1
R← Z

∗
p and expands f(z) =

∏q−1
i=1 (z +wi) to obtain

c0, . . . , cq−1 ∈ Z
∗
p so that f(z) =

∑q−1
i=0 ciz

i.

2. It sets generators H =
∑q−1
i=0 ci(α

iQ) = f(α)Q ∈ G2 and G = ψ(H) =
f(α)P ∈ G1. The public key Hpub ∈ G2 is fixed to Hpub =

∑q
i=1 ci−1(α

iQ)
so that Hpub = αH although B does not know α.

3. For 1 ≤ i ≤ q − 1, B expands fi(z) = f(z)/(z + wi) =
∑q−2
i=0 diz

i and

q−2
∑

i=0

diψ(αiQ) = fi(α)P =
f(α)

α+ wi
P =

1

α+ wi
G. (1)

The pairs (wi,
1

α+wi
G) are computed using the left member of (1).

B is then ready to answer F ’s queries along the course of the game. It first
initializes a counter ℓ to 1 and launches F on the input (Hpub, ID

∗) for a randomly

chosen challenge identity ID∗ R← {0, 1}∗. For simplicity, we assume that queries
to H1 are distinct, and that any query involving an identifier ID is preceded by
the random oracle query H1(ID).



- H1-queries on an identity ID ∈ {0, 1}∗: B returns a random w∗ R← Z
∗
p if

ID = ID∗. Otherwise, B answers w = wℓ ∈ Z
∗
p and increments ℓ. In both

cases, B stores (ID, w) (where w∗ = w or wℓ) in a list L1.
- Key extraction queries on ID 6= ID∗: B recovers the matching pair (ID, w)

from L1 and returns the previously computed (1/(α+ w))G.
- Signature query on a message-identity pair (M, ID): B picks S R← G1, h

R←
Z
∗
p, computes r = e(S,QID)e(G,H)−h, where QID = H1(ID)H + Hpub, and

backpatches to define the value H2(M, r) as h ∈ Z
∗
p (B aborts in the unlikely

event that H2(M, r) is already defined).

We have explained how to simulate F ’s environment in a chosen-message and
given identity attack. We are ready to apply the forking lemma that essen-
tially says the following: consider a scheme producing signatures of the form
(M, r, h, S), where each of r, h, S corresponds to one of the three moves of a
honest-verifier zero-knowledge protocol. Let us assume that a chosen-message
attacker F forges a signature (M, r, h, S) in a time t with probability ǫ ≥
10(qs + 1)(qs + qh)/2

k (k being a security parameter so that h is uniformly
taken from a set of 2k elements) when making qs signature queries and qh ran-
dom oracle calls. If the triples (r, h, S) can be simulated without knowing the
private key, then there exists a Turing machine F ′ that uses F to produce two
valid signatures (m, r, h1, S1), (m, r, h2, S2), with h1 6= h2, in expected time
t′ ≤ 120686qht/ǫ.

In our setting, from a forger F , we build an algorithm F ′ that replays F a
sufficient number of times on the input (Hpub, ID

∗) to obtain two suitable forg-
eries 〈M∗, r, h1, S1〉, 〈M

∗, r, h2, S2〉 with h1 6= h2.
The reduction then works as follows. The simulator B runs F ′ to obtain two

forgeries 〈M∗, r, h1, S1〉, 〈M
∗, r, h2, S2〉 for the same message M∗ and commit-

ment r. At this stage, B recovers the pair (ID∗, w∗) from list L1. We note that
w∗ 6= w1, . . . , wq−1 with probability at least 1 − q/2k. If both forgeries satisfy
the verification equation, we obtain the relations

e(S1, QID∗)e(G,H)−h1 = e(S2, QID∗)e(G,H)−h2 ,

with QID∗ = H1(ID
∗)H +Hpub = (w∗ + α)H. Then, it comes that

e((h1 − h2)
−1(S1 − S2), QID∗) = e(G,H),

and hence T ∗ = (h1 − h2)
−1(S1 − S2) = 1

w∗+αG. From T ∗, B can proceed as

in [9] to extract σ∗ = 1
w∗+αP : it first obtains γ−1, γ0, . . . , γq−2 ∈ Z

∗
p for which

f(z)/(z + w∗) = γ−1/(z + w∗) +
∑q−2
i=0 γiz

i and eventually computes

σ∗ =
1

γ−1

[

T ∗ −

q−2
∑

i=0

γiψ(αiQ)

]

=
1

w∗ + α
P

before returning the pair (w∗, σ∗) as a result.
It finally comes that, if F forges a signature in a time t with probability

ǫ ≥ 10(qs + 1)(qs + qh2
)/2k, B solves the q-SDHP in expected time

t′ ≤ 120686qh2
(t+O(qsτp))/(ǫ(1− q/2

k)) +O(q2τmult)

where the last term accounts for the cost of the preparation phase. ⊓⊔



B Proof of Theorem 2

Proof. Algorithm B takes as input 〈P,Q, αQ,α2Q, . . . , αqQ〉 and attempts to
extract e(P,Q)1/α from its interaction with A.

In a preparation phase, B selects ℓ R← {1, . . . , qh1
}, elements Iℓ

R← Z
∗
p and

w1, . . . , wℓ−1, wℓ+1 . . . , wq
R← Z

∗
p. For i = 1, . . . , ℓ − 1, ℓ + 1, . . . , q, it computes

Ii = Iℓ − wi. As in the technique of [9] and in lemma 2, it sets up generators
G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another G2 element U = αG2 such that it knows
q − 1 pairs (wi,Hi = (1/(wi + α))G2) for i ∈ {1, . . . , q}\{ℓ}. The system-wide
public key Qpub is chosen as

Qpub = −U − IℓG2 = (−α− Iℓ)G2

so that its (unknown) private key is implicitly set to x = −α − Iℓ ∈ Z
∗
p. For all

i ∈ {1, . . . , q}\{ℓ}, we have (Ii,−Hi) = (Ii, (1/(Ii + x))G2).
B then initializes a counter ν to 1 and starts A on input of (G1, G2, Qpub).

Throughout the game, we assume that H1-queries are distinct, that the target
identity ID∗

R is submitted to H1 at some point and that any query involving an
identity ID comes after a H1-query on ID:

- H1-queries (let us call IDν the input of the νth one of such queries): B answers
Iν and increments ν.

- H2-queries on input (M, r): B returns the defined value if it exists and a
random h2

R← Z
∗
p otherwise. To anticipate possible subsequent Decrypt/Verify

requests, B additionally simulates random oracle H3 on its own to obtain
h3 = H3(r) ∈ {0, 1}

n and stores the information (M, r, h2, c = M ⊕ h3, γ =
r · e(G1, G2)

h2) in L2.

- H3-queries for an input r ∈ GT : B returns the previously assigned value if it
exists and a random h3

R← {0, 1}n otherwise. In the latter case, the input r
and the response h3 are stored in a list L3.

- Keygen queries on an input IDν : if ν = ℓ, then B fails. Otherwise, it knows
that H1(IDν) = Iν and returns −Hν = (1/(Iν + x))G2 ∈ G2.

- Sign/Encrypt queries for a plaintext M and identities (IDS , IDR) = (IDµ, IDν)
for µ, ν ∈ {1, . . . , qh1

}: we observe that, if µ 6= ℓ, B knows the sender’s private
key SIDµ

= −Hµ and can answer the query according to the specification of
Sign/Encrypt. We thus assume µ = ℓ and hence ν 6= ℓ by the irreflexivity
assumption. Observe that B knows the receiver’s private key SIDν

= −Hν by
construction. The difficulty is to find a random triple (S, T, h) ∈ G1×G1×Z

∗
p

for which
e(T, SIDν

) = e(S,QIDℓ
)e(G1, G2)

−h (2)

where QIDℓ
= IℓG2 + Qpub. To do so, B randomly chooses t, h R← Z

∗
p and

computes S = tψ(SIDν
) = −tψ(Hν), T = tψ(QIDℓ

) − hψ(QIDν
) where

QIDν
= IνG2 +Qpub in order to obtain the desired equality r = e(T, SIDν

) =
e(S,QIDℓ

)e(G1, G2)
−h = e(ψ(SIDν

), QIDℓ
)te(G1, G2)

−h before patching the
hash value H2(M, r) to h (B fails if H2 is already defined but this only hap-
pens with probability (qse + qh2

)/2k). The ciphertext σ = 〈M ⊕H3(r), S, T 〉



is returned.

- Decrypt/Verify queries on a ciphertext σ = 〈c, S, T 〉 for identities
(IDS , IDR) = (IDµ, IDν): we assume that ν = ℓ (and hence µ 6= ℓ by the ir-
reflexivity assumption), because otherwise B knows the receiver’s private key
SIDν

= −Hν and can normally run the Decrypt/Verify algorithm. Since µ 6= ℓ,
B has the sender’s private key SIDµ

and also knows that, for all valid cipher-
texts, logSIDµ

(ψ−1(S) − hSIDµ
) = logψ(QIDν )(T ), where h = H2(M, r) is the

hash value obtained in the Sign/Encrypt algorithm and QIDν
= IνG2 +Qpub.

Hence, we have the relation

e(T, SIDµ
) = e(ψ(QIDν

), ψ−1(S)− hSIDµ
) (3)

which yields e(T, SIDµ
) = e(ψ(QIDν

), ψ−1(S))e(ψ(QIDν
), SIDµ

)−h. We ob-
serve that the latter equality can be tested without inverting ψ as
e(ψ(QIDν

), ψ−1(S)) = e(S,QIDν
). The query is thus handled by computing

γ = e(S,QIDµ
), where QIDµ

= IµG2 + Qpub, and searching through list L2

for entries of the form (Mi, ri, h2,i, c, γ) indexed by i ∈ {1, . . . , qh2
}. If none

is found, σ is rejected. Otherwise, each one of them is further examined: for
the corresponding indexes, B checks if

e(T, SIDµ
)/e(S,QIDν

) = e(ψ(QIDν
), SIDµ

)−h2,i (4)

(the pairings are computed only once and at most qh2
exponentiations are

needed), meaning that (3) is satisfied. If the unique i ∈ {1, . . . , qh2
} satisfying

(4) is detected, the matching pair (Mi, 〈h2,i, S〉) is returned. Otherwise, σ is
rejected. Overall, an inappropriate rejection occurs with probability smaller
than qdv/2

k across the whole game.

At the challenge phase, A outputs messages (M0,M1) and identities (IDS , IDR)
for which she never obtained IDR’s private key. If IDR 6= IDℓ, B aborts. Otherwise,
it picks ξ R← Z

∗
p, c

R← {0, 1}n and S R← G1 to return the challenge σ∗ = 〈c, S, T 〉
where T = −ξG1 ∈ G1. If we define ρ = ξ/α and since x = −α − Iℓ, we can
check that

T = −ξG1 = −αρG1 = (Iℓ + x)ρG1 = ρIℓG1 + ρψ(Qpub).

A cannot recognize that σ∗ is not a proper ciphertext unless she queries H2 or
H3 on e(G1, G2)

ρ. Along the guess stage, her view is simulated as before and
her eventual output is ignored. Standard arguments can show that a successful
A is very likely to query H2 or H3 on the input e(G1, G2)

ρ if the simulation is
indistinguishable from a real attack environment.

To produce a result, B fetches a random entry (M, r, h2, c, γ) or 〈r, .〉 from
the lists L2 or L3. With probability 1/(2qh2

+ qh3
) (as L3 contains no more than

qh2
+qh3

records by construction), the chosen entry will contain the right element

r = e(G1, G2)
ρ = e(P,Q)f(α)2ξ/α, where f(z) =

∑q−1
i=0 ciz

i is the polynomial for
which G2 = f(α)Q. The q-BDHIP solution can be extracted by noting that, if
γ∗ = e(P,Q)1/α, then



e(G1, G2)
1/α = γ∗(c2

0
)e

(

q−2
∑

i=0

ci+1(α
iP ), c0Q

)

e
(

G1,

q−2
∑

j=0

cj+1(α
j)Q

)

.

In an analysis of B’s advantage, we note that it only fails in providing a
consistent simulation because one of the following independent events:

E1: A does not choose to be challenged on IDℓ.
E2: a key extraction query is made on IDℓ.
E3: B aborts in a Sign/Encrypt query because of a collision on H2.
E4: B rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/qh1
and we know that ¬E1 implies ¬E2. We also

already observed that Pr[E3] ≤ qse(qse + qh2
)/2k and Pr[E4] ≤ qdv/2

k. We thus
find that

Pr[¬E1 ∧ ¬E3 ∧ ¬E4] ≥
1

qh1

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

.

We obtain the announced bound by noting that B selects the correct element
from L2 or L3 with probability 1/(2qh2

+ qh3
). Its workload is dominated by

O(q2h1
) multiplications in the preparation phase, O(qse+qdv) pairing calculations

and O(qdvqh2
) exponentiations in GT in its emulation of the Sign/Encrypt and

Decrypt/Verify oracles. ⊓⊔

C Proof of Theorem 3

Proof. The proof is almost similar to the one of theorem 1. Namely, it shows
that a forger in the ESUF-IBSC-CMA game implies a forger in a chosen-message
and given identity attack. Using the forking lemma [31, 32], the latter is in turn
shown to imply an algorithm to solve the q-Strong Diffie-Hellman problem. More
precisely, queries to the Sign/Encrypt and Decrypt/Verify oracles are answered as
in the proof of theorem 2 and, at the outset of the game, the simulator chooses
public parameters in such a way that it can extract private keys associated to
any identity but the one which is given as a challenge to the adversary. By doing
so, thanks to the irreflexivity assumption, it is able to extract clear message-
signature pairs from ciphertexts produced by the forger (as it knows the private
key of the receiving identity ID∗

R). ⊓⊔

D Proof of Theorem 4

Proof. The simulator is the same as in theorem 2 with the following differences
(recall that senders’ identities are provided as inputs to H2).

- H2-queries on input (IDS ,M, r): B returns the previously defined value
if it exists and a random h2

R← Z
∗
p otherwise. To anticipate subsequent

Decrypt/Verify requests, B simulates oracle H3 to obtain h3 = H3(r) ∈
{0, 1}n+n0 (where n0 is the maximum length of identity strings) and stores
(IDS ,M, r, h2, c = (M‖IDS)⊕ h3, γ = r · e(G1, G2)

h2) in list L2.



- Decrypt/Verify queries: given a ciphertext σ = 〈c, S, T 〉 and a receiver’s iden-
tity IDR = IDν , we assume that ν = ℓ because otherwise B knows the
receiver’s private key. The simulator B does not know the sender’s identity
IDS but knows that IDS 6= IDν . It also knows that, for the private key SIDS

,
logSIDS

(ψ−1(S)− hSIDS
) = logψ(QIDν )(T ), and hence

e(T, SIDS
) = e(ψ(QIDν

), ψ−1(S)− hSIDS
), (5)

where h = H2(IDS ,M, r) is the hash value obtained in the Sign/ Encrypt
algorithm and QIDν

= IνG2 + Qpub. The query is handled by searching
through list L2 for entries of the form (IDS,i,Mi, ri, h2,i, c, γi) indexed by
i ∈ {1, . . . , qh2

}. If none is found, the ciphertext is rejected. Otherwise, each
one of these entries for which IDS,i 6= IDν is further examined by checking
whether γi = e(S,H1(IDS,i)Q+Qpub) and

e(T, SIDS,i
)/e(S,QIDν

) = e(ψ(QIDν
), SIDS,i

)−h2,i . (6)

(at most 3qh2
+ 1 pairings and qh2

exponentiations must be computed),
meaning that equation (5) is satisfied and that the ciphertext contains a
valid message signature pair if both relations hold. If B detects an index
i ∈ {1, . . . , qh2

} satisfying them, the matching pair (Mi, 〈h2,i, S〉) is returned.
Otherwise, σ is rejected and such a wrong rejection again occurs with an
overall probability smaller than qdv/2

k.
⊓⊔

E The Kurosawa-Heng identity-based signature

We describe here the IBS scheme that can be derived from a modification of the
Kurosawa-Heng [25] identity-based identification scheme using the Fiat-Shamir
heuristic [20].

Setup and Keygen are the same as in our scheme described in section 3. The
public parameters are

params := {G1,G2,GT , P,Q, g,Qpub, e, ψ,H1,H2}.
We also define QID = H1(ID)Q+Qpub.

Sign: to sign a message M ∈ {0, 1}∗, the signer does the following:

1. picks x R← Z
∗
p and computes r = e(P,QID)x ∈ GT ,

2. sets h = H2(M, r) ∈ Z
∗
p,

3. computes S = xP + hSID.

The signature on M is σ = (h, S) ∈ Z
∗
p ×G1.

Verify: a signature σ = (h, S) on a message M is accepted iff

h = H2(M, e(S,QID)g−h).

The above IBS can be proven secure under the q-Strong Diffie-Hellman assump-
tion. Even in its optimized version where e(P,H1(ID)Q+Qpub) is pre-computed
by the signer, its signature generation algorithm happens to be slightly more
expensive than our scheme’s one which requires a simple scalar multiplication
at step 3.


