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ABSTRACT
Forward-secure signatures (FSS) prevent forgeries for past
time periods when an attacker obtains full access to the
signer’s storage. To simplify the integration of these primi-
tives into standard security architectures, Boyen, Shacham,
Shen and Waters recently introduced the concept of forward-
secure signatures with untrusted updates where private keys
are additionally protected by a second factor (derived from
a password). Key updates can be made on encrypted ver-
sion of signing keys so that passwords only come into play
for signing messages.

The scheme put forth by Boyen et al. relies on bilinear
maps and does not require the random oracle. The latter
work also suggested the integration of untrusted updates
in the Bellare-Miner forward-secure signature and left open
the problem of endowing other existing FSS systems with
the same second factor protection.

This paper solves this problem by showing how to adapt
the very efficient generic construction of Malkin, Micciancio
and Miner (MMM) to untrusted update environments. More
precisely, our modified construction - which does not use
random oracles either - obtains a forward-secure signature
with untrusted updates from any 2-party multi-signature in
the plain public key model. In combination with Bellare and
Neven’s multi-signatures, our generic method yields imple-
mentations based on standard assumptions such as RSA,
factoring or the hardness of computing discrete logarithms.
Like the original MMM scheme, it does not require to set a
bound on the number of time periods at key generation.

Categories and Subject Descriptors: E.3 [Data]: Data
Encryption – Public Key Cryptosystems

General Terms: Design, Security, Performance.

1. INTRODUCTION
If not appropriately dealt with, key exposures are likely to

ruin the efforts of the research community towards devising
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more sophisticated and secure cryptographic systems. They
seem unavoidable in the modern age of ubiquitous comput-
ing with the ever-increasing use of mobile and unprotected
devices. It is indeed generally much easier to break into
users’ private storage than to find out their secret by actual
cryptanalytic techniques. Hence, it turns out that the only
way to cope with such a threat is to contain the damage
when private keys are exposed.

In the public key setting, the past recent years saw the
exploration of various techniques addressing the problem
by means of key evolving protocols where public keys re-
main fixed throughout the lifetime of schemes whereas pri-
vate keys are updated at discrete time intervals. This line
of research was initiated by Anderson’s suggestion [3] of
forward-secure mechanisms that aim at preserving the se-
curity of past time periods after a private key theft. Sub-
sequently introduced key-insulated [15, 16] and intrusion-
resilient [23] security paradigms strive to protect communi-
cations not only preceding, but also following break-ins by
storing part of the key material in a separate device.

Anderson’s original flavor of key evolving security was for-
malized by Bellare and Miner [4] who gave proper defini-
tions of forward-secure signatures (FSS) and proposed two
constructions. The first one was a generic method with log-
arithmic complexity in the number of periods built on any
signature. Their second scheme extended Fiat-Shamir sig-
natures [18] into a FSS scheme with signatures of constant
(i.e. independent of the lifetime of the scheme) size but lin-
ear cost in signature generation and verification. This num-
ber theoretic method was improved by Abdalla-Reyzin [2]
and Itkis-Reyzin [22], the latter work notably achieving op-
timal signing and verification at the expense of slower key
updates using Guillou-Quisquater signatures [20]. Kozlov
and Reyzin [26] finally showed another method with fast
updates and a great online/offline efficiency. Meanwhile,
forward security was also considered in special kinds of sig-
nature schemes [1, 35]. On the other hand non-trivial re-
alizations of forward-secure public key encryption schemes
remained elusive until the work by Canetti, Halevi and Katz
[13] that was improved by Boneh, Boyen and Goh [10].

Among generic FSS schemes that start from any digital
signature, Anderson’s storage-demanding construction [3]
was improved by Krawczyk [25] into a scheme requiring con-
stant private storage (though the overall storage remained
linear). Using Merkle trees [29] in a suitable fashion, Malkin,
Micciancio and Miner [28] interestingly described another
system with an essentially unbounded number of time peri-



ods: the maximal number of periods did not have to be set
at key generation and the complexity of their scheme was
rather (and moderately) depending on the number of past
periods. Besides, their technique (often called MMM) was
quite efficient. Not only did it outperform previous generic
constructions, but it also beat number theoretic schemes in
at least one metric when implemented with similar param-
eters. A practical evaluation of the efficiency of all these
schemes can be found in [14].

Forward-secure signatures with untrusted updates.In
many existing software environments (such as GNU-PG or
S/MIME), private keys are additionally proctected by an ex-
tra secret which is possibly derived from a password. In or-
der to facilitate the integration of forward-secure primitives
into such existing software architectures, Boyen, Shacham,
Shen and Waters [12] suggested a new a forward-secure sig-
nature where private keys are additionally shielded by a sec-
ond factor. Their scheme allows for an automated update
procedure of encrypted keys: the user holding the second
factor does not have to intervene in operations where the
update algorithm is programmed to move forward in time a
blinded version of the key at the beginning of each period.
The second factor is only needed for signing messages as in
many typical implementations of digital signatures. Beyond
the usual forward security requirement, such a scheme pre-
vents an adversary just in possession of the encrypted key
to forge signatures for past, current and future periods.

The compatibility of key-evolving signatures with a sec-
ond factor protection surprisingly remained overlooked un-
til [12]. When FSS schemes are designed for very fine time
granularities, it is handy to leave the implemented software
automatically carry out updates at pre-scheduled instants.
In realistic settings however, key management techniques
should take into account the possible weaknesses of the com-
puting environment. In particular, key-evolving signatures
should be endowed with a safeguard against maliciously con-
trolled computing platforms. Otherwise, adversaries may be
able to delay the clock of signers’ computers and thereby ob-
tain a key that should have been erased for instance.

While the usual model [4] of forward security captures one
aspect of exposures (i.e. the user’s storage), “untrusted up-
dates” introduced in [12] deal with a potential exposure of
the computing environment. In forward-secure signatures,
a second factor protection thus especially strengthens sig-
natures as evidence of the signer’s intentionality of actually
signing the message.

The concrete implementation of forward-secure signature
with untrusted updates (FSS-UU) suggested in [12] enjoys a
provable security in the standard model, as opposed to the
random oracle model [5]. It simultaneously offers a very at-
tractive efficiency, notably featuring constant-size signatures
and at most log-squared complexity in other metrics. On
the other hand, it makes use of a very specific mathematical
setting consisting of groups equipped with a bilinear map-
ping (a.k.a. pairing) whose computation remains expensive
(from twice to four times as slow as RSA in currently most
optimized implementations). Boyen et al. [12] also showed
how to simply obtain untrusted updates in the Bellare-Miner
[4] factoring-based FSS scheme and the same key-blinding
method is easily seen to apply to the Abdalla-Reyzin sys-
tem [2] as well. Unfortunately, these methods both suffer
from linear complexities for signing and key generation and
directly applying the same idea to the Itkis-Reyzin scheme

[22] removes its attractive performance advantages. The au-
thors of [12] left open the problem of efficiently achieving un-
trusted updates in other existing forward-secure signatures.

Our contribution.We describe generic forward-secure sig-
natures with untrusted updates. We first show that un-
trusted updates can be simply obtained from any traditional
forward-secure signature. The idea is merely to sign a mes-
sage twice: once using a classical FSS scheme and a second
time using a regular (i.e. non forward-secure) digital sig-
nature, the private key of which is re-derived from a sec-
ond factor at each signing operation instead of being stored.
While very simple, this method induces a definite overhead
and we will of course be after more efficient constructions.

Extending the above idea a little further, we construct
FSS-UU schemes from bipartite multi-signatures [21]. Re-
call that these primitives are meant to allow several sign-
ers to jointly sign a common message. We start from any
2-party such signature satisfying appropriate security defi-
nitions and see it as a FSS-UU scheme with a single time
period. We then show how to bootstrap it by applying the
sum and product compositions of Malkin et al. [28] so as to
obtain FSS-UU schemes with more periods.

More precisely, when applied to a secure bipartite multi-
signature in Boldyreva’s model [9], the iterated sum compo-
sition of [28] provides a FSS-UU system with logarithmic-
size signatures. The basic idea of this construction is to ap-
ply the key updating technique of the sum composition to
only one of the two parties in the multi-signature and keep
the second key unchanged as a function of the second factor
throughout all periods. We also suggest efficiency tradeoffs
that can be obtained by combining this modified sum com-
position with non-generic FSS-UU schemes built on [4, 2].

In a second step, we show how to benefit from the full
power of the MMM construction if we start from a secure 2-
party signature in the plain public key model of Bellare and
Neven [7]. By adapting the sum-product composition of [28],
we interestingly obtain a generic construction of forward-
secure signature with untrusted updates for a practically un-
bounded number of periods. When combined with recently
suggested [7] multi-signatures built on Schnorr [34], Guillou-
Quisquater [20], Fiat-Shamir [18] or Ong-Schnorr [31], our
construction provides pairing-free schemes based on discrete
logarithm, RSA and factoring that enjoy the same efficiency
as traditional FSS signatures resulting from [28]. These con-
crete instantiations rely on the random oracle methodology
[5] only because underlying signatures do: our extension
of MMM does not introduce additional random oracle as-
sumptions. Hence, standard model multi-signatures fitting
the plain public key model of [7] would thus give rise to
new FSS-UU schemes without random oracles. This yields
answers to the open question, raised in [12], of how to effi-
ciently provide existing forward-secure signatures with the
untrusted update property.

In the forthcoming sections, we first recall definitions and
security notions for FSS-UU schemes in section 2. The
generic method for obtaining untrusted updates in any FSS
scheme in detailed in section 3 and section 4 describes our
efficient extension of the MMM method.

2. DEFINTIONS
A forward-secure signature scheme with untrusted up-

dates (FSS-UU) is made of the following algorithms.



Keygen(λ, r, T ): on input of a security parameter λ, a ran-
dom tape r and a number of time periods T , this ran-
domized algorithm returns a public key PK, the initial
encrypted signing key EncSK0 and a random second
factor secret decryption key DecK. The initial period
number is set to 0.

CheckKey(t, T, EncSKt, PK): is an algorithm used to check
the well-formedness of the private key EncSKt at pe-
riod t. The output is ⊤ if the latter was correctly
generated and ⊥ otherwise.

Update(t, T, EncSKt, PK): given a period number t and the
corresponding encrypted key EncSKt, this algorithm
returns an encrypted key EncSKt+1 for the next period
and erases EncSKt. It does not need the second factor
decryption key.

Sign(t, T, EncSKt, DecK, M, PK): takes as input a message
M , a period number t, the matching encrypted key
EncSKt and the second factor decryption key DecK. It
returns a signature σ. The period number t is part of
the latter.

Verify(t, T, PK, M, σ): takes as input the public key PK, a
period number t and a message M bearing an alleged
signature σ. It outputs ⊤ if the signature is correct
and ⊥ otherwise.

In these syntactic definitions, the validity test CheckKey

aims at completely validating a newly generated encrypted
key before erasing the old key. In practice, a check of EncSK

by the signing algorithm suffices and an additional validity
test at each update should only be performed at the signer’s
discretion to make sure that the signing process will not be
disrupted in the new period.

The obvious completeness requirement imposes that prop-
erly generated signatures are always accepted by the verifi-
cation algorithm.

The security model of [12] considers two orthogonal defi-
nitions that are both inspired from the well-known concept
of chosen-message security [19]. The first one considers a
game extending the usual notion of forward security as de-
fined by Bellare-Miner [4]. In the game that the adversary
plays against her challenger, she should be unable to forge
a signature pertaining to an unexposed stage even knowing
the second factor decryption key DecK.

Definition 1. The forward security notion captures the

negligible advantage of any PPT adversary in this game.

1. The challenger runs the key generation algorithm and

gives the public key PK and the second factor decryp-

tion key DecK to the forger F. The initial period num-

ber t is set to 0.

2. F adaptively interacts with the following oracles.

· Sign : at any time, the forger can ask for a sig-

nature on an arbitrary message M for the current

time period t.

· Update : once she decides to move forward in

time, the adversary queries the challenger that

runs the update algorithm and increments the pe-

riod number t.

· Break-in : at some period, the forger enters the

break-in phase and requests the challenger to re-

veal the current encrypted signing key EncSKt.

3. F comes up with a message M⋆ and a signature σ⋆

for some period t⋆. If t′ denotes the time period where

the break-in query was made, F is declared successful

provided Verify(t⋆, T, PK, M⋆, σ⋆) = 1, t⋆ < t′ and M⋆

was not queried for signature at period t⋆.

F’s advantage AdvFS(F) is her probability of victory taken

over all coin tosses. We say that she (t, qs, qu, ε)-breaks the

scheme if she has advantage ε within running in time t after

qs signing queries and qu update queries.

The second security notion, termed update security, cap-
tures the security against an adversary obtaining encrypted
signing keys for all periods but not the second factor decryp-
tion key. It mirrors the fact that, at any time, the encrypted
key EncSK is by itself useless to generate signatures.

Definition 2. The update security property is the neg-

ligible advantage of a PPT adversary in this game.

1. The challenger performs the key generation and gives

the public key PK and the initial encrypted key EncSKt

for period t = 0 to F. The second factor decryption

key DecK is held back from F.

2. F adaptively interacts with the following oracles.

· Sign : at any time, the forger can ask for a sig-

nature on an arbitrary message M for the current

time period t.

· Update : once she decides to move forward in

time, the adversary queries the challenger that

runs the update algorithm and increments the pe-

riod number t.

3. F outputs a message M⋆ and a signature σ⋆ for some

period t⋆. She wins if M⋆ was not queried for signature

at period t⋆ and Verify(t⋆, T, PK, M⋆, σ⋆) = 1.

F’s advantage AdvUS(F) is defined as in definition 1.

3. ACHIEVING UNTRUSTED UPDATES IN
ANY FORWARD-SECURE SIGNATURE

In the implementation proposed in [12], the second factor
DecK is not taken as input by the key generation algorithm
but is uniformly chosen by the latter in a set which is as
large as the private key space. It is assumed to be in turn
encrypted using a password that has sufficient entropy to
prevent offline dictionary attacks. Hence, this second factor
can also be the random seed used to generate a key pair
for an ordinary signature scheme. It follows that a forward-
secure signature ΠFS = (KeygenFS, UpdateFS, SignFS, VerifyFS)
can always be endowed with a second factor protection by
combining them with a regular (i.e. non-forward-secure)
digital signature Θ = (K,S ,V). The public key PK of the
FSS-UU scheme thus includes the public key PKFS of ΠFS

as well as the public key pk of Θ. At any period, the “en-
crypted” signing key EncSKt is the private key SKt of ΠFS

while the second factor DecSK is the seed used to gener-
ate (sk, pk). A signature on a message M is then given
by the concatenation σ = 〈SignFS(M, t, SKt),Ssk(t||M)〉 of



both signatures. Verification is obviously achieved by run-
ning both verification algorithms.

The security of the FSS-UU scheme in the sense of defini-
tion 1 directly follows from the forward security of ΠFS while
the update security, according to definition 2, is easily seen
to rely on the unforgeability of Θ against chosen-message
attacks [19].

We note that the construction is similar to another one
used in [16] in a related context to obtain strongly key-
insulated signatures. Combined with known results [4, 28],
it shows - not so surprisingly - the existence of forward-
secure signatures with untrusted updates and at most log-
arithmic complexity if digital signatures exist at all, which
amounts to assuming that one-way functions exist [33].

Although clearly not optimal from an efficiency point of
view, this method provides a fairly practical realization of
untrusted updates in the Itkis-Reyzin forward-secure signa-
ture [22] at the expense of almost doubling the signature
length. Recall that the latter scheme uses the Guillou-
Quisquater [20] signature with a different prime exponent
(that is part of the signature) for each time period. Un-
trusted updates can be achieved by including an indepen-
dent prime GQ exponent e as well as a power I = DecKe mod
N in the public key (the same RSA modulus N being used
in both schemes after the erasure of its prime factors). A
signature then includes an Itkis-Reyzin signature as well
as a proof of knowledge of DecK, a single Fiat-Shamir-like
[18] hash value acting as a challenge in both non-interactive
proofs in order to decrease the signature length.

4. EFFICIENT GENERIC CONSTRUCTIONS
FROM 2-PARTY SIGNATURES

In this section, we construct a FSS-UU scheme from two-
party multi-signatures [21] by extending the generic forward-
secure signatures of Malkin, Micciancio and Miner [28].

Formally, a 2-party multi-signature scheme consists of a
4-uple 2MS = (PGMS, KgMS, SignMS, VerifyMS) of algorithms.
Among these, PGMS is a common parameter generation al-
gorithm run by a central authority; KgMS is a user key gener-
ation algorithm independently run by each signer; SignMS is
a possibly interactive algorithm jointly run by both parties
(each of which taking his private key and the peer party’s
public key in addition to the message and public param-
eters) to sign a message while VerifyMS is the verification
algorithm allowing for the verification of a signature w.r.t.
both parties’ public keys. We emphasize that 2-party multi-
signatures are a more general primitive than 2-party sequen-
tial multi-signatures defined in [17] in that the signing pro-
cess is not necessarily non-interactive or sequential.

For the applications that we have in mind, we do not need
a multi-signature scheme with a complex key generation pro-
tocol such as the one of [30]. Actually, the first generic com-
position (termed ‘sum composition’ in [28]) does not even
require to consider a strong model as in [7]. With this first
composition, we can settle for schemes that are secure in
the registered public key model as defined in [9, 27]. In the
latter, the adversary is challenged on a single public key be-
longing to a honest signer and attempts to frame the latter
and wrongly accuse him of having jointly signed a message
with corrupt users. The attacker is allowed to generate her-
self public keys for corrupt signers. The registered public
key model deals with rogue key attacks by requiring the ad-

versary to reveal the matching private keys when registering
public keys that she creates for herself.

The second composition, called ‘product composition’ in
[28], is more difficult to adapt in the present context and
its extension does not appear to work in a fully generic and
black box fashion. Nevertheless, we show that it can be
applied if one of its component is a FSS-UU scheme ob-
tained by means of the sum composition applied to a bipar-
tite multi-signature in the plain public key model of Bellare
and Neven [7].

4.1 The Sum Composition
The sum composition of [28] is extended so as to provide

a FSS-UU scheme with 2T periods from two such schemes
having each T periods. When iterated log T times, it turns
a 2-party multi-signature (seen as FSS-UU with a single pe-
riod) into a forward-secure signature with untrusted updates
over T = 2τ periods that will be dubbed FSS-UU⊕ here.

The idea of the generic construction is to use two FSS-UU
schemes Σ0 = (Keygen0, CheckKey0, Update0, Sign0, Verify0)
and Σ1 = (Keygen1, CheckKey1, Update1, Sign1, Verify1) that
are both implemented with the same second factor decryp-
tion key DecK used as a global variable by algorithms Sign0

and Sign1. When the construction is applied log T times to
obtain T periods, the second factor DecK is chosen once-and-
for-all at the highest level setup and used as second factor in
both Σ0 and Σ1. When combined FSS-UU schemes Σ0 and
Σ1 have only one period (that is, 2-party multi-signatures
2MS0 and 2MS0), DecK is used as a random seed to gener-

ate the key pair (s̃k, p̃k) ← KgMS(DecK) to be used as the
second party key in both 2MS0 and 2MS1.

4.1.1 Description
Our notations are close to the ones of [28] and we use

the same ingredients. Namely, G denotes a length-doubling
forward-secure pseudorandom generator1 (as originally sug-
gested in [25]) and H is a collision-resistant hash function.
Finally, ε and a||b respectively stand for the empty string
and the concatenation of two binary strings a and b. When
subscripted by binary indexes or not, r always denotes a
random seed. We assume that seeds r, r0, r1 and second fac-
tors DecK are random strings of equal length.

At a high level, this construction starts from a bipartite
multi-signature 2MS and recursively applies the sum com-
position technique of [28] to generate keys for only one of
the two parties. The second party’s key pair is remains un-
changed throughout all periods and is derived from a second
factor DecK chosen in the setup phase. This factor is kept as
a global variable in all recursive steps and only comes into
play for signing messages.

At the setup of the scheme, the key generation algorithm
is called with arguments including T = 2τ and pk′ = ε. As
in [28], SKeygen and PKeygen denote algorithms carrying
out the same operations as Keygen but respectively erase
public and private outputs.

1A forward-secure PRG is one where seeds are periodically
refreshed and where the exposure of the seed at a given pe-
riod leaks no computable information about pseudorandom
sequences generated in past periods. Efficient constructions
of such generators from regular PRGs exist [8].



Keygen(λ, r, T, pk′)
If (pk′ = ε and T > 1) /* initialization */
cp← PGMS(λ);
(r, DecK)← G(r);

/* DecK is kept as a static global variable */

(s̃k, p̃k)← KgMS(DecK);

pk′ ← (cp, p̃k);
endif
If (T = 1)
(sk, pk)← KgMS(r);
Return

(
EncSK = 〈sk, 0, pk, ε〉, PK = (pk′, H(pk, ε))

)
;

else
(r0, r1)← G(r);
(EncSK0, PK0)← Keygen0(λ, r0, T/2, pk′);
PK1 ← PKeygen1(λ, r1, T/2, pk′);
Parse PK0 as (pk′, pk0) and PK1 as (pk′, pk1);
PK← (pk′, H(pk0, pk1));

endif
Return (〈EncSK0, r1, pk0, pk1〉

︸ ︷︷ ︸

EncSK

, PK);

CheckKey
(
t, T,

EncSK
︷ ︸︸ ︷

〈EncSK
′, r1, pk0, pk1〉, PK

)

Parse PK as (pk′, h);
Output ⊥ if h 6= H(pk0, pk1);
Set PK0 = (pk′, pk0) and PK1 = (pk′, pk1);
If (T = 1)

Let pk = pk0 and sk = EncSK′;
Return ⊥ if r1 6= 0, pk1 6= ε or (sk, pk)
is not a valid key pair for 2MS;
Return ⊤;

endif
If (t < T/2)

return CheckKey0

(
t, T/2, EncSK′, PK0

)
;

else
return CheckKey1

(
t− T/2, T/2, EncSK′, PK1

)
;

endif

Update
(
t, T,

EncSK
︷ ︸︸ ︷

〈EncSK
′, r1, pk0, pk1〉, PK

)

If (t = T − 1) erase EncSK and return “no period left”;
Parse PK as (pk′, h);
Output ⊥ if h 6= H(pk0, pk1);
Set PK0 = (pk′, pk0) and PK1 = (pk′, pk1);
If (t + 1 < T/2)

EncSK′ ← Update0

(
t, T/2, EncSK′, PK0

)
;

else
If (t + 1 = T/2)

EncSK′ ← SKeygen1(λ, r1, T/2, pk′); r1 ← 0;
else

EncSK′ ← Update1

(
t− T/2, T/2, EncSK′, PK1

)
;

endif
endif

Sign
(
t, T,

EncSK
︷ ︸︸ ︷

〈EncSK
′, r1, pk0, pk1〉, DecK, M, PK

)

At the initial stage of the recursion, set M ←M ||t;

Parse PK as (pk′, h) and pk′ as (cp, p̃k);
Output ⊥ if h 6= H(pk0, pk1);
Set PK0 = (pk′, pk0) and PK1 = (pk′, pk1);
If (T = 1)

Let pk← pk0 and sk← EncSK′;
Return ⊥ if r1 6= 0, pk1 6= ε or (sk, pk)
is not a valid key pair for 2MS;

(s̃k, p̃k)← KGMS(DecK);

Return ⊥ if p̃k differs from the 2nd part of pk′;
Run SignMS on M on behalf of both parties

using sk, s̃k and cp to generate σ′;
Return 〈σ′, pk, ε〉;

endif
If (t < T/2)

σ′ ← Sign0(t, T/2, EncSK′, DecK, M, PK0)
else

σ′ ← Sign1(t− T/2, T/2, EncSK′, DecK, M, PK1)
Return (〈σ′, pk0, pk1〉

︸ ︷︷ ︸

σ

, t)

Verify
(
t, T, PK, M,

σ
︷ ︸︸ ︷

〈σ′, pk0, pk1〉
)

Parse PK as (pk′, h) and pk′ as (cp, p̃k);
Output ⊥ if h 6= H(pk0, pk1);
If (T = 1)

Return ⊥ if pk1 6= ε;

Return VerifyMS(cp, pk0, p̃k, M, σ′);
endif
Set PK0 = (pk′, pk0) and PK1 = (pk′, pk1);
If (t < T/2)

Return Verify0(t, T/2, PK0, M, σ′);
else

Return Verify1(t− T/2, T/2, PK1, M, σ′);

4.1.2 Security
To prove the update security of FSS-UU⊕, we could sim-

ply show that a 2-party signature can be seen as a FSS-UU
with one period and separately prove that the sum composi-
tion of any two FSS-UU schemes (such as the one described
in [12] for instance) using the same second factor yields an-
other such scheme with more periods. However, in the proof
of update security (theorem 4.4) for the second composition,
we will use the details of the proof of the next theorem.
Moreover, we obtain a more efficient (i.e. independent of T
in terms of probability) reduction by analyzing the security
of the whole iterated composition as we do here.

Theorem 4.1. If the underlying 2-party multi-signature

2MS is secure against chosen-message attacks in the regis-

tered public key model, the sum composition provides up-

date security. Namely, an update security adversary F im-

plies a chosen-message attacker B having identical advan-

tage AdvUS(F) over 2MS within comparable running time.

Proof. We show an algorithm B mounting a chosen-
message attack against of a 2-party multi-signature scheme
2MS = (PGMS, KgMS, SignMS, VerifyMS) in the registered pub-
lic key model by interacting with an adversary F against
the update security of FSS-UU⊕. Algorithm B faces a chal-
lenger C that hands her a public key p̃k for 2MS.

At any time, B is allowed to register arbitrary public keys



pk and is then requested to reveal the matching private key
sk. She may also trigger a joint execution of the signing
protocol with C, the latter running the 2-party protocol on
behalf of the honest signer p̃k while she plays the role of the
(registered) corrupt signer pk.
F ’s input consists of a public key for the iterated sum com-

position over T periods. The latter is generated following
almost exactly the specification of the scheme. Namely, B
recursively runs Keygen but defines pk′ = (cp, p̃k) using her

own challenge public key p̃k instead of generating a key pair
(s̃k, p̃k) from a second factor DecK. In other words, at the
first run of Keygen, B skips line 5 of algorithm Keygen and
defines pk′ using her own input at line 6. Since DecK only
comes into play at the initial execution of Keygen, recursive
calls of the latter go through as in the real game. When-
ever B needs to create a new key pair (sk, pk) for the 2MS

scheme, she registers it in the game that she plays against
her own challenger C and discloses sk. The whole key gen-
eration entails the registration of log T key pairs for 2MS.
Eventually, the initial “encrypted” private key EncSK0 for
period 0 in FSS-UU⊕ is obtained and given to F who starts
issuing queries.

Update queries: whenever F wants to move to the next
time period, B simply runs the update algorithm that does
not need the second factor DecK (which is unknown to B).
All “encrypted” private key elements that ever have to be
actually stored by a signer (that is, all keys but the private

key s̃k that matches p̃k and is presumably derived from the
second factor) are computable by B that can perfectly an-
swer update queries.

Signing queries: at any period t, F may query her chal-
lenger B to sign a message M . To answer such a request, B
triggers the recursive signing algorithm and follows its spec-
ification before the last step of the recursion (when T = 1).
Upon entering the latter stage, the “encrypted” private key
has the shape EncSK = 〈sk, 0, pk, ε〉 where (sk, pk) is a valid
key pair for 2MS and must have been registered to C by
construction. Since (sk, pk) was registered, B may query
her challenger C to obtain a multi-signature σ′ on M w.r.t
public keys pk and p̃k. The triple (σ′, pk, ε) is set as the re-
sult of the final call in the recursion and allows completing
the signature generation.

Forgery: eventually, a successful adversary F is expected
to forge a valid signature σ⋆ = (〈σ′⋆, pk⋆

0, pk⋆
1〉, t

⋆) on a mes-
sage M⋆ for a period t⋆ during which M⋆ was not the input
of a signing query. Then, B executes the recursive veri-
fication and key checking algorithms until reaching the fi-
nal stage T = 1 where the “encrypted” key has the shape
EncSK = 〈sk, 0, pk, ε〉. Note that, unless a collision is found
on the hash chain ending with H(pk⋆

0, pk⋆
1) (which is part

of the public key of FSS-UU⊕), the pair (sk, pk) must have
been registered by construction. Since F did not query M⋆

for signature at period t⋆, B did not query C for obtaining
a 2-party multi-signature on the augmented message M⋆||t⋆

(recall that the signing algorithm appends the period num-
ber to the message at the initial recursion stage). It follows
that B wins against C by outputting M⋆||t⋆ along with the
pair (sk, pk) and the 2-party signature embedded in the in-
ner part of σ′⋆.

Theorem 4.2. If the 2MS scheme is secure against chosen-

message attacks, the FSS-UU⊕ construction provides for-

ward security. Namely, for an instantiation of FSS-UU⊕

over T periods, an adversary F reaching advantage AdvFS(F)
within running time t after qs and qu signing and update

queries implies a chosen-message attacker with advantage

AdvFS(F)/T over 2MS within time t′ ≤ t + qst
MS
Sng + qutMS

Kg ,

where tMS
Sng and tMS

Kg respectively denote the time complexities

of signing and key generation algorithms in 2MS.

Proof. The result almost directly follows from the re-
sult of Malkin et al. for the sum composition (i.e. theorem
3 in [28]) since a FSS-UU scheme is nothing but a tradi-
tional forward-secure signature when the adversary gets to
know the second factor DecK as in the game of definition 1.
However, the construction combines 2-party multi-signature
schemes (instead of regular digital signatures) at the bottom
of the recursion. To be complete, we must prove that 2-
party multi-signatures indeed implement single-period FSS-
UU schemes at the last step of the signing algorithm.

An adversary F against the forward security of a FSS-
UU with one period is given the public key PK and the
second factor DecK but is not allowed to make a break-in
query. We thus consider a forger B against a 2MS scheme
that receives a public key pkMS from her challenger C. Her
goal is to use F to break the security of 2MS. At the be-
ginning of the game that she plays against C, she registers
the key pair (s̃k, p̃k) ← KgMS(DecK) for a randomly cho-

sen second factor DecK. She then defines pk′ = (cp, p̃k)
(where cp are public parameters of 2MS obtained from C)
and starts F on input of a public key PK = (pk′, H(pkMS, ε))
and DecK. The “encrypted private key” is implicitly defined
as EncSK = 〈skMS, 0, pkMS, ε〉 (but B does not know skMS).

Whenever F asks for a signature on a message M , B
queries her own challenger C to obtain a 2-party signature
σ′ on M for signers pkMS and p̃k. Note that she can run the
joint signing protocol on behalf of the latter since she knows
s̃k. Having received σ′, she hands the signature 〈σ′, pkMS, ε〉
back to F .

After polynomially many queries, F outputs a forgery
〈σ′⋆, pk⋆MS, ε〉 for a new message M⋆. Unless H is not

collision-resistant, we must have pk⋆MS = pkMS and σ′⋆ must
be a valid multi-signature on M⋆ for public keys pkMS and
p̃k. It obviously follows that B succeeds whenever F does.

The result and claimed bounds directly derive from theo-
rem 3 in [28], which implies that the sum of two FSS schemes
with T periods yiels a FSS schemes with 2T stages.

We note that theorems 4.1 and 4.2 remain true if FSS-
UU⊕ is applied to a multi-signature scheme in the model of
[7] where forgers are not required to register public keys that
they create for themselves or to prove the knowledge of their
private key. Any secure multi-signature in the model of [7]
is indeed also secure in the registered public key model.

However, considering the latter allows us to securely in-
stantiate FSS-UU⊕ with Boldyreva’s short multi-signature
[9], that extends Boneh-Lynn-Shacahm signatures [11], or
the standard model scheme of Lu et al. [27], which builds
on the Waters signature [36].

In the latter case, we obtain an interesting alternative to
[12] in the standard model. It indeed enjoys a security rest-
ing on the classical Diffie-Hellman assumption in bilinear
map groups instead of the related assumption used in [12],
the strength of which logarithmically depends on the num-
ber of periods (that only affects the reduction cost here).
Verification is also faster than in [12] since it entails two



bilinear map evaluations (instead of 3). The disadvantages
are the length of signatures, that contain log T hash values2,
and the slower key generation (which is linear in T ).

4.1.3 Efficiency Tradeoffs with Hybrid Schemes
The above sum composition admits several efficiency trade-

offs if we combine it with appropriate concrete FSS-UU
schemes with more than one time period at the final stage
of the iterated composition.

For instance, we can obtain signatures of sub-logarithmic
size at the expense of a logarithmic complexity for sign-
ing and verifying. This is possible using the following ex-
tension of the Abdalla-Reyzin number theoretic scheme [2].
The recursive key generation algorithm initially generates
a Blum integer N = pq (i.e. a product of large primes
p, q such that p = q = 3 mod 4) and discards its factoriza-

tion. It also chooses a second factor DecK
R← Z

∗
N and sets

p̃k = DecK2
ℓ(s+1)

mod N and pk′ = (N, p̃k) where s = log T
and ℓ is a security parameter. We have to replace multi-
signatures at recursive final steps with an instance of the
following FSS-UU scheme inspired from the one suggested
in section 6 of [12].

Keygen(ℓ, r, s) : randomly choose S0
R← Z

∗
N and compute

U = S2
ℓ(s+1)

0 mod N . Set EncSK = 〈S0, 0, U, ε〉 and
PK = (pk′, H(U, ε)).

CheckKey(t, s, EncSK, PK) : parse EncSK as 〈St, 0, U, ε〉. Re-

turn ⊤ if U = S2
ℓ(s+1−t)

t mod N and ⊥ otherwise.

Update(t, s, EncSK, PK) : parse EncSK as 〈St, 0, U, ε〉. Set

St+1 = S2
ℓ

t mod N and return 〈St+1, 0, U, ε〉.

Sign(t, s, EncSK, DecK, M, PK) : parse EncSK as 〈St, 0, U, ε〉
and conduct the following steps.

1. Pick R R← Z
∗
N and set Y ← R2

ℓ(s+1−t)

mod N .

2. Compute ω = H ′(Y, M) ∈ {0, 1}ℓ using a random
oracle H ′.

3. Unblind the key as S′
t ← St ·DecK2

ℓt

mod N and
compute Z ← R · S′ω

t mod N .

Return 〈σ′ = (ω,Z), U, ε〉.

Verify(t, s, PK, M, σ) : parse σ as 〈σ′ = (ω, Z), U, ε〉 and PK

as (pk′, H(U, ε)) where pk′ = (N, p̃k).

1. Compute Y ′ ← Z2
ℓ(s+1−t)

· (p̃k · U)−ω mod N .

2. Return ⊤ if ω = H ′(Y ′, M) and ⊥ otherwise.

Note that hashing the local index t along with the pair
(Y, M) to generate the Fiat-Shamir-like challenge using H ′

is useless since the global period number was already ap-
pended to M at the first recursive call to signing algorithm.

With s = log T , the above concrete scheme can be plugged
into the sum composition applied log T − log log T times
so as to obtain a hybrid concrete/generic scheme over T
periods with logarithmic complexity for signing and verify-
ing while signatures contain O(log T − log log T ) hash val-
ues. Signing and verification algorithms can be accelerated

2To minimize signature sizes, long public keys of [27, 36]
should be included in the public key of the FSS-UU scheme.
In this case, the public key component to be included in
each signature only consists of one group element.

by choosing s = log log T and iterating the composition
log T − log log log T times, which lengthens signatures (that
still keep sub-logarithmic size).

Note that we used the concrete forward-secure signature
of Abdalla-Reyzin [2] (which itself extends [31]) but we could
have utilized the Fiat-Shamir-based [18] scheme of Bellare-
Miner in the same way as originally suggested in [12]. Un-
fortunately, it would significantly increase the size of sig-
natures that would include long Fiat-Shamir public keys.
The Kozlov-Reyzin system [26], where signatures also prove
knowledge of the 2s+1−j -root of some public element, can be
hybridized in the same way to provide faster updates since a
single modular squaring (instead of ℓ) suffices. In this case,
signing is also faster since O(t) squarings suffice to compute
S′

t from St at the “key unblinding” of step 3.
Security proofs in the random oracle model under the

factoring assumption are easily obtained using the forking
lemma [32] combined with ideas from [2, 4].

Theorem 4.3. The above hybrid scheme has secure up-

dates in the random oracle model assuming that factoring

Blum integers is hard.

Proof. Detailed in the full version of the paper.

4.2 The Product Composition
The sum composition is sufficient to obtain forward se-

cure signatures with untrusted updates with T periods from
any FSS-UU scheme with only 1 period. However, to ben-
efit from the full power of the MMM construction (and no-
tably obtain a key generation of constant cost), we also need
a product composition like the one suggested in [28]. Re-
call that the latter combines two traditional forward-secure
signatures with respectively T0 and T1 periods into a FSS
scheme over T0 ·T1 stages. The idea is to use a new instance
of the second scheme Σ1 at each period (called epoch) of the
first scheme Σ0. At the beginning of each epoch, the newly
generated public key for Σ1 is certified by means of a signa-
ture from Σ0. In the product system Σ0 ⊗ Σ1, a signature
for period t consists of a signature generated using the Σ0

scheme at epoch ⌊t/T1⌋ as well as a signature and a public
key for the Σ1 scheme at period t mod T1.

The product composition is not directly adaptable to the
untrusted update setting in that we cannot obtain a FSS-UU
with T0 ·T1 periods by combining two such schemes with T0

and T1 periods. The difficulty is that the update algorithm
of Σ0 ⊗ Σ1 uses the signing algorithm of Σ0 which needs
the second factor DecK in an untrusted update setting. As
a consequence, the second factor would be involved in the
update algorithm of the product composition, which is what
we want to avoid.

Nevertheless, this section shows that a FSS-UU scheme
ΣUU

1 = (Keygen1, CheckKey1, Update1, Sign1, Verify1) result-
ing from the sum compostion can be combined with a regular
(i.e. without untrusted updates) forward-secure signature
Σ0 = (Keygen0, Update0, Sign0, Verify0) over T0 stages so as
to obtain a product scheme Σ0 ⊗ ΣUU

1 with T0 · T1 periods.
We insist that the result does not appear to be true in gen-
eral. A necessary condition is to use a scheme ΣUU

1 resulting
from the sum composition applied log T1 times. Moreover,
the proof of update security demands that the underlying 2-
party multi-signature be secure in the plain public key model

of [7], as opposed to the relaxed registered public key model
used in [9, 27]. Hence, it is not clear whether or not a



product combination of the scheme in [12] with a regular
forward-secure signature yields a FSS-UU scheme.

Since public keys of ΣUU
1 are certified using the signing

algorithm of a traditional FSS scheme at each epoch, the
second factor is not needed in the update algorithm of the
product Σ0 ⊗ΣUU

1 .

4.2.1 Description
In the resulting product system, called FSS-UU⊗ here-

after, the key generation algorithm randomly selects a sec-
ond factor DecK which is used in instances of ΣUU

1 through-
out all epochs. This factor is utilized as a random seed to
generate a key pair (s̃k, p̃k) for the 2-party multi-signature
scheme 2MS that serves as a building block to construct
ΣUU

1 . Note that p̃k and the public parameters cp of 2MS

are normally included in the public key of ΣUU
1 . However, in

order to minimize private key and signature sizes and avoid
unnecessary redundancies in the overall storage, we only in-
clude them as public key elements for FSS-UU⊗ = Σ0⊗ΣUU

1 .

Keygen(λ, r, T )
Choose T0, T1 s.t. T = T0 · T1;
cp← PGMS(λ);
(r,DecK)← G(r);

(s̃k, p̃k)← KgMS(DecK);

pk′ ← (cp, p̃k);
(r0, r1)← G(r);
(r′1, r

′′
1 )← G(r1);

(SK0, PKFS)← Keygen0(λ, r0, T0);
(EncSK0, PKUU)← Keygen1(λ, r′1, T1, pk′);
σ0 ← Sign0(0, T0, SK0, PKUU);
SK0 ← Update0(0, T0, SK0, PKFS);
PK← (pk′, PKFS);
Parse PKUU as (pk′, PK′);

/* PK′ is a hash value */
Return (〈SK0, σ0, EncSK0, PK

′, r′′1 〉
︸ ︷︷ ︸

EncSK

, PK);

CheckKey
(
t, T,

EncSK
︷ ︸︸ ︷

〈SK0, σ0, EncSK
′, PK

′, r〉, PK
)

Parse PK as (pk′, PKFS) ; Set PKUU ← (pk′, PK′);
Output ⊥ if (SK0, PKFS) is not a valid
key pair for Σ0 for period ⌊t/T1⌋ or if
Verify0(⌊t/T1⌋, T0, PKFS, PKUU, σ0) = ⊥;
Return CheckKey1

(
t mod T1, T1, EncSK′, PKUU

)
;

Update
(
t, T,

EncSK
︷ ︸︸ ︷

〈SK0, σ0, EncSK
′, PK

′, r〉, PK
)

If (t = T − 1) erase EncSK and return “no period left”;
Parse PK as (pk′, PKFS); Set PKUU ← (pk′, PK′);
If (t + 1 6= 0 mod T1)

EncSK′ ← Update1

(
t mod T1, T1, EncSK′, PKUU

)
;

else
/* initialization of a new epoch */

(r′, r)← G(r);
(
EncSK′, (pk′, PK′)

)
← Keygen1(λ, r′, T1, pk′);

σ0 ← Sign0

(
⌊t/T1⌋, T0, SK0, (pk′, PK′)

)
;

SK0 ← Update0(⌊t/T1⌋, T0, SK0, PKFS);
endif

Sign
(
t, T,

EncSK
︷ ︸︸ ︷

〈SK0, σ0, EncSK
′, PK

′, r〉, DecK, M, PK
)

Parse PK as (pk′, PKFS); Set PKUU ← (pk′, PK′);
σ1 ← Sign1(t mod T1, T1, EncSK′, DecK, M ||PK′||t, PKUU)
Return (〈PK

′, σ0, σ1〉
︸ ︷︷ ︸

σ

, t)

Verify
(
t, T, PK, M,

σ
︷ ︸︸ ︷

〈PK
′, σ0, σ1〉

)

Parse PK as (pk′, PKFS); Set PKUU ← (pk′, PK′);
Return ⊥ if Verify0(⌊t/T1⌋, T0, PKFS, PKUU, σ0) = ⊥;
Return ⊥ if

Verify1(t mod T1, T1, PKUU, M ||PK′||t, σ1) = ⊥;
Return ⊤;

When the subroutine Sign1 is called by the the signing
algorithm, the public key PK′ is included in the augmented
message M ||PK′||t in order to be consistent of the Bellare-
Neven security model for multi-signatures. When restricted
to bipartite signatures, the latter allows the adversary to
produce her forgery on a previously signed message for a
different second party of adversarially-chosen public key.

4.2.2 Security
When restricted to schemes involving two signers, the

model of [7] considers a game where a challenger C gen-

erates a key pair (s̃k, p̃k) for a single honest signer. The

public key p̃k is given to the adversary A. A polynomial
number of times, the latter chooses arbitrary messages M
and public keys pk to start a protocol instance with C. The
latter uses s̃k carry out operations on behalf of the honest
signer and interacts with A that plays the role of the cor-
rupt party. An arbitrary number of concurrent instances of
the protocol may be started. Upon termination, A outputs
an arbitrary public key pk⋆ along with a message-signature
pair (M, σ). She wins if σ is a valid signature on M for pub-

lic keys (pk⋆, p̃k) and C was never involved in an execution
of the protocol on message M with a co-signer of public
key pk⋆. The strength of the model lies in that A is not
required to hand over private keys matching adversarially-
chosen public keys in signing queries or in the forgery stage.

Theorem 4.4. If the underlying 2-party multi-signature

2MS is secure against chosen-message attacks in the plain

public key model, FSS-UU⊗ ensures update security. Namely,

an adversary F in the sense of definition 2 implies a chosen-

message attacker A having identical advantage AdvUS(F)
over 2MS within comparable running time.

Proof. We outline a chosen-message attacker A against
2MS = (PGMS, KgMS, SignMS, VerifyMS) using F as a subrou-
tine and which is successful (in the plain public key model)
whenever F is so. Algorithm A interacts with a challenger
C that gives her a challenge public key p̃k for 2MS.

At any time, A may start a joint execution of the signing
protocol with C which plays the role of the honest signer p̃k
whilst she emulates the unregistered corrupt signer pk.
F gets as input a public key for FSS-UU⊗ over T = T0 ·T1

stages. This public key is produced almost exactly as in
the key generation algorithm of FSS-UU⊗. Namely, A runs
Keygen but defines pk′ = (cp, p̃k) using her own challenge

public key p̃k as well as the public parameters cp received
from C instead of generating a pair (s̃k, p̃k) from a second



factor. In other words, A skips lines 2 to 4 in the above
description of Keygen and defines pk′ using her own input
at line 5. Since DecK is not involved in calls to Keygen0,
Keygen1, Sign0 or Update0, remaining operations of Keygen

are carried out as in the real game. The initial “encrypted”
private key EncSK0 for period 0 in FSS-UU⊗ is given to F
who starts making queries.

Update queries: since the second factor DecK is not in-
volved in update operations, A can perfectly answer update
queries as in the proof of theorem 4.1.

Signing queries: at any period t, F may query A to sign
a message M . To answer such a request, A can always
compute σ0 (the certificate for ΣUU

1 at epoch ⌊t/T1⌋) herself
since she knows the private key SK0 of Σ0 from the key
generation stage. To obtain σ1 (which is a signature on the
augmented message M ||PK′||t), she triggers the recursive
signing algorithm Sign1 and follows its specification until
entering the last step of the recursion (when T = 1). At
this point, A must query her challenger C to obtain a multi-
signature σ′ w.r.t her challenge public key p̃k and another
public key pk for which she knows the matching secret sk
that she chose herself (during the recursive key generation of
an instance of FSS-UU⊕) without being required to reveal it
when the update oracle was queried to enter epoch ⌊t/T1⌋.
This sub-key sk of EncSK′ allows her to play the malicious
party in her interaction with C. The resulting signature σ′

completes the recursion and allows her obtaining (σ1, PK′),
which finishes the signature generation.

Forgery: eventually, F is expected to produce a forgery
σ⋆ = (〈PK′⋆, σ⋆

0 , σ⋆
1〉, t

⋆) on a message M⋆ for some period
t⋆ during which M⋆ was not queried for signature.

As in the security proof of the original product composi-
tion (theorem 4 in [28]), we have to distinguish two cases.
Let SEEN denote the set {PK′

1, . . . , PK′
e} of public key com-

ponents for ΣUU
1 that F happens to observe within outputs of

signing queries. If PK′⋆ 6∈ SEEN , the inner multi-signature
of σ⋆

1 (which consists of a 2-party signature, a public key pk
and O(log T1) hash values) is a 2-party signature on a new
message M⋆||PK′⋆||t⋆||t⋆ mod T1 w.r.t. the challenge pub-

lic key p̃k and some other public key pk for which A may
not know the corresponding secret sk. However, this suffices
to break the unforgeability of 2MS in the plain public key
model (where A is not required to know or reveal the private
keys of maliciously generated public keys).

On the other hand, if PK′⋆ ∈ SEEN , σ⋆
1 necessarily con-

tains a multi-signature on message M⋆||PK′⋆||t⋆||t⋆ mod T1

(that was not previously queried since the pair (M⋆, t⋆) was
not involved in a signing query from F) w.r.t. public keys

p̃k and a public key pk of known secret key sk, which also
implies a breach in the security of 2MS.

Theorem 4.5. Assuming the security of the underlying

2MS scheme in the plain public key model and the forward-

security of Σ0 in the sense of Bellare-Miner, the FSS-UU⊗

composition is forward-secure in the sense of definition 1.

Namely, for a product scheme over T0 ·T1 periods, a forward

security adversary F has at most advantage

AdvFS(F) ≤ AdvFS(F0) + T0 · T1 · AdvMS(FMS)

after qs and qu signing and update queries within time

t′ ≤ max{t0 − qs · t
MS
Sng − T0 · T1 · t

MS
Kg ,

t1 − qs · t
MS
Sng − T0 · (T1 · t

MS
Kg + tFS

Sgn)},

where tFS
Sgn and tFS

Kg respectively denote the time complexi-

ties of signing and key generation algorithms in Σ0, tMS
Sng

and tMS
Kg stand for these costs in 2MS while AdvFS(F0) and

AdvMS(FMS) denote maximal advantages of a forward secu-

rity adversary F0 against Σ0 and a forger FMS against the

2MS scheme.

Proof. The result stems from the proof of theorem 4 in
[28]. As in theorem 4.2, it suffices to observe that FSS-UU
schemes become traditional forward-secure signatures when
the adversary knows DecK as in definition 1 and that FSS-
UU systems with one period can be implemented by 2-party
multi-signatures in the plain public key model.

4.3 Extending MMM
Recall that Malkin et al. [28] generically obtain forward-

secure signatures from any digital signatures by suitably in-
tegrating their sum and product compositions.

The salient property of the construction is that it does not
require to know the number of time period at key generation
time and allows for schemes with (virtually) unbounded life-
time: the only theoretical bound on the number of periods is
exponential in security parameters of underlying symmetric
primitives (i.e. a pseudorandom generator and a collision-
resistant hash function) and thus essentially impossible to
reach in practice. In all metrics, the MMM scheme never
exceeds a complexity that mildly (i.e. logarithmically) de-
pends on the number of periods elapsed so far.

In a nutshell, the construction is a product composition
Σ0 ⊗ Σ1 where epochs use instances of a FSS scheme Σ1

with increasingly large numbers of periods, which is what
allows for a complexity growing as time elapses instead of
depending on a maximal number of stages. During epoch j
the product scheme uses an instance of Σ1 with 2j periods
(obtained by j iterations of the sum composition). If ℓ is the
security parameter of underlying symmetric primitives, the
product involves ℓ epochs (i.e. a scheme Σ0 with ℓ periods re-
sulting from the sum composition applied log ℓ times) so that

the theoretical overall number of stages
∑ℓ−1

j=0
2j = 2ℓ − 1 is

far beyond the needs of any practical application.
From an efficiency point of view, resulting signatures at

time period t consist of only two digital signatures, two pub-
lic keys and log ℓ + log t hash values (more precisely, log ℓ
of them stem from the sum composition producing Σ0 and
remaining log t hash values pertain to a second sum com-
position at epoch j = O(log t) of the product). Signature
generation only requires to compute a digital signature and
verification entails the verification of 2 digital signatures as
well as log ℓ + log t hash operations. Public keys only con-
sist of a hash value while private keys logarithmically grow
as time goes by (their length is O(λ + (log ℓ + log t)ℓ) bits).
When amortized (we refer to [28] for more details), the cost
of an update operation at period t is given by O(λ2ℓ+ℓ2 log t)
and the complexity of the key generation algorithm only de-
pends on security parameters λ and ℓ.

By integrating our modified sum and product composi-
tions of sections 4.1 and 4.2 in the same way, we can obtain
a forward-secure signatures with untrusted updates enjoy-
ing identical performance. We first construct a regular FSS



scheme Σ0 with ℓ periods thanks to the original sum compo-
sition [28]. Then, we obtain a “twisted product” by using an
instance of ΣUU

1 with 2j periods at epoch j. Each instance
of ΣUU

1 should result from applying FSS-UU⊕ to any 2-party
multi-signature in the plain public key model. The Schnorr-
based [34] construction of [7] is a good candidate and so are
its alternative implementations based on RSA [20], factoring
[18, 31] or the Decision Diffie-Hellman assumption [24]. As
mentioned in [7], unrestricted aggregate signatures put forth
in [6] also give rise to multi-signatures in the plain public
key model that can be used here as well.

Again, several tradeoffs are possible. For instance, the
regular FSS scheme Σ0 in our “twisted product” can be a
number theoretic signature such as the one of Itkis-Reyzin
[22] instantiated over ℓ periods (recall that ℓ is the security
parameter of a symmetric primitive and is thus relatively
small w.rt. realistic numbers of periods T ). This removes
the need for including log ℓ hash values in signatures while
linear key generation and updates from the first version of
[22] are avoided. Of course, the same idea applies to the
original MMM system as well.

Our full construction currently applies to only a handful
of schemes. Also, the only known examples [7, 6] of multi-
signatures in the plain public key model rely on the ran-
dom oracle methodology [5]. To date, it turns out that we
can only take full advantage of the MMM construction with
random-oracle-using signatures. However, security proofs of
our modified sum and product compositions do not rely on
random oracles. We thus believe that our extension of MMM
is an additional incentive to seek after standard model real-
izations of multi-signatures in the plain public key model.

5. CONCLUSION
In this paper, we described new constructions of forward-

secure signature with the untrusted update property re-
cently put forth in [12]. Our generic construction from any
forward-secure signature is very simple but induces size and
computational overheads. By extending the very efficient
MMM sum-product composition however, we obtain a num-
ber of schemes based on various - non pairing-related - com-
putational assumptions and featuring very attractive per-
formance. This resolves an open problem raised in [12] that
called for efficient implementations of untrusted updates in
existing forward-secure signatures found in the literature.

When applied to the recently suggested multi-signatures
of Bellare-Neven [7], our extension of MMM notably pro-
vides FSS-UU schemes with a practically unbounded num-
ber of time periods. It does not introduce additional random
oracle assumptions either. Currently known instantiations
of these new “unbounded” systems rely on random oracles
only because the underlying multi-signatures do.
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