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Abstract. Intrusion-resilient signatures are key-evolving protocols that
extend the concepts of forward-secure and key-insulated signatures. As
in the latter schemes, time is divided into distinct periods where private
keys are periodically updated while public keys remain fixed. Private keys
are stored in both a user and a base; signature operations are performed
by the user while the base is involved in periodic updates. Such a system
remains secure after arbitrarily many compromises of both modules as
long as break-ins are not simultaneous. Besides, when they simultane-
ously occur within some time period, past periods remain safe. In this
work, we propose the first intrusion-resilient signature in the standard
model (i.e. without random oracles) which provides both short signatures
and at most log-squared private storage in the number of time periods.
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1 Introduction

Key exposures seem to be inevitable and containing their damage is an extremely
important issue in cryptography. The late nineties and the past recent years wit-
nessed the exploration of various approaches to address the problem.

Among them, the concept of intrusion-resilient security [26] strives to com-
bine the benefits of forward-security [3, 5], key-insulated [17, 18] and proactive
[36, 23] security paradigms. As in [3, 5, 17, 18], intrusion-resilient systems involve
public keys that remain unchanged throughout the lifetime of the protocol while
private keys evolve at the beginning of discrete time intervals. Like key-insulated
schemes, they involve a physically-secure (but computationally-limited) device
called base where certain keys are stored. These keys are used to periodically up-
date the user’s short-term secret which is used to sign or decrypt messages. As in
[17, 18], this is accomplished so as to preserve the security of past and future time
periods when the signer is compromised (unlike forward-secure cryptosystems [3,
5, 13] that only protect past time periods). Besides, the intrusion-resilient model
preserves the security in case of compromise of both the signer and the base as
long as they are not simultaneously broken into. Moreover, the security of past
(but not future) periods is retained after such a simultaneous attack.

⋆ This author acknowledges the DGTRE’s First Europe Program of the Walloon
Region in Belgium for its financial support.



Security in this strong adversarial model is achieved via frequent refreshes
(akin to proactive mechanisms [36, 23]) of base and user keys within each time
period: the base changes its key and sends a refresh message to the user who in
turn refreshes his key accordingly. Refreshes may take place at arbitrary times
and are transparent to signature verifiers or message senders. They are meant to
prevent attackers compromising the base and the user without a refresh in be-
tween to threaten the security of other time periods. Besides, when an adversary
learns simultaneous base and user keys, the scheme “becomes” forward-secure
in that past time periods remain safe.

In [26], Ikis and Reyzin proposed the first intrusion-resilient signature which
is based on the GQ signature scheme [21] and resorts to the idealized random or-
acle model [6] which is known [12] to only provide heuristic arguments. Promptly
later, Itkis [27] described a generic construction of intrusion-resilient signature
using any ordinary digital signature and without employing random oracles. In
2003, Dodis et al. put forward the first intrusion-resilient public key encryption
scheme [15] built on the forward-secure cryptosystem of Canetti et al. [13] which
itself stems from the hierarchical identity-based encryption (HIBE) scheme of
[19], the latter being an extension of [9]. They subsequently explained [16] how
to generally obtain such a primitive from forward-secure cryptosystems with suit-
able properties. In 2004, Malkin, Obana and Yung [33] showed an equivalence re-
lation between key-insulated, intrusion-resilient and proxy signatures [34]. They
proved that all these primitives imply forward-secure signatures. Their results
imply the existence of all these kinds of signatures in the standard model since
key-insulated signatures are known [18] to be implied by identity-based signa-
tures [38] which exist in the standard model [37]. However, in intrusion-resilient
and forward-secure signatures obtained by applying the generic constructions of
[33] to some key-insulated scheme, private keys have linear length in the number
of time periods. Hence, we may hope for more efficient non-generic constructions.

In this paper, we propose an intrusion-resilient signature which is secure in
the standard model and has at most poly-logarithmic complexity (in the number
of stages) in all parameters. It utilizes bilinear maps and features constant-size
signatures. For practical numbers of periods, public keys are not significantly
longer than in a scheme derived from [37] using generic conversions of [33].
Our method combines Waters’s signature [39] with a hierarchical key derivation
technique borrowed from [8]. We first construct a special kind of forward-secure
signature with suitable “homomorphic” properties which is of independent in-
terest1. We then achieve an intrusion-resilient scheme by applying a generic
conversion suggested by Dodis et al. [16] in the setting of public key encryption
and which is easily seen to apply for signature schemes as well. The resulting
system yields much shorter signatures than Itkis’s generic method [27]: in the
latter implemented over N stages, each signature contains a sequence of log N

1 After the completion of this work, we were informed that our forward-secure signa-
ture was independently discovered in [10] where it was provided with an additional
property.



one-time signatures2 [31] and their public keys (that are typically very long).
In the following, section 2.1 defines a proper model for special forward-secure

signatures that serve our purposes. Section 2.2 recalls definitions and secu-
rity notions for intrusion-resilient signatures. Our forward-secure scheme and
its intrusion-resilient variant are respectively analyzed in sections 3 and 4.

2 Preliminaries

2.1 Key-evolving signatures

A key-evolving signature is a forward-secure signature [3, 5] where the user’s
secret key can be “divided” into a local key, only used in signing operation, and
an update key which is involved in key updates and not in signature generation.

Definition 1. A key-evolving signature is specified by the following algorithms.

Keygen: takes as input a security parameter λ and a number of time periods N .
It returns a public key pk and an initial user update key sk0.

Update: takes as input a period number i and the corresponding update key ski.
It returns SKi+1 = (lski+1, ski+1) where ski+1 is the next user update key
and lski+1 is the next user local key.

Sign: takes as input a message M , a period number i and the matching user
local key lski. It returns a signature σ.

Verify: takes as input pk, a period number i and a message M bearing some
purported signature σ. It outputs either 0 or 1.

The usual completeness requirement imposes Verify(pk, i,M, σ) = 1 whenever
σ = Sign(M, i, lski) and SKi = (lski, ski) = Update(ski−1).

Definition 2. A key-evolving signature over N stages is secure against chosen-
message attacks if no PPT adversary has non-negligible advantage in this game.

1. The challenger C runs the key generation algorithm to obtain (pk, sk0) and
gives pk to the forger F .

2. F interacts with the following oracles.

· An update-key oracle Oukey(sk0, .) which, on input of i ∈ {0, . . . , N−1},
returns ski (which is appropriately derived from sk0).
· A local-key oracle Olkey(sk0, .) which, on input of i, returns lski (which

is again appropriately derived from sk0).
· A signing oracle Osig(sk0, .) taking as inputs a period number i and a

message M . From sk0, it derives lski that is used to output a signature
σ on M for period i.

3. F comes up with a message M and a signature σ for some period i⋆. She
wins if Verify(pk, i⋆,M, σ) = 1 with these restrictions: M was not queried to
Osig; queries i to Oukey satisfy i > i⋆ and queries i′ to Olkey satisfy i′ 6= i⋆.

2 This can be reduced to log i, where i is the period number, as shown in [27].



F ’s advantage is her probability of victory taken over coin tosses of A and C. We
say that she (t, qs, ε)-breaks the scheme if she has advantage ε within running in
time t and after qs signing queries.

As its counterpart for encryption [16], this model is stronger than the standard
security model [5] of forward-secure signatures in that adversaries are allowed to
obtain local keys for any period but i⋆ (and not just for periods i > i⋆).

2.2 Intrusion-resilient signatures

An intrusion-resilient signature [26] scheme consists of the following algorithms.

Keygen: takes a security parameter λ, a number of periods N and a maximal
number of refreshes R in each period. It returns an initial user key SKS0.0,
an initial base key SKB0.0 and a public key PK.

Base Update: takes as input a current base key SKBi.r (for period i, after
r refreshes) and outputs the next base key SKBi+1.0 together with a key
update message SKUi.

User Update: is given a current signer key SKSi.r (for period i, after r re-
freshes) and an update message SKUi. It outputs the next user key SKSi+1.0.

Base Refresh: takes as input a current base key SKBi.r and outputs a refreshed
base key SKBi.r+1 along with a key refresh message SKRi.r.

User Refresh: takes a current signer key SKSi.r and a refresh message SKRi.r

to return a refreshed signing key SKSi.r+1.
Sign: given a message M , period/refresh numbers (i, r) and the matching signing

key SKSi.r, this algorithm generates a signature σ.
Verify: takes as input PK, a period number i and a message M with an alleged

signature σ. It outputs either 0 or 1.

Syntactically, in such a scheme, private keys are generated as follows:

Set (SKS0.0, SKB0.0, PK)← Keygen(λ, N, R).
For i = 0 to N − 1:

Set (SKBi+1.0, SKUi)← Base Update(SKBi.r)
SKSi+1.0 ← User Update(SKSi.r, SKUi).

For r = 0 to R− 1
Set (SKBi+1.r+1, SKRi+1.r)← Base Refresh(SKBi+1.r)

SKSi+1.r+1 ← User Refresh(SKSi+1.r, SKRi+1.r).

Keys SKSi.0 and SKBi.0 for 0 ≤ i ≤ N are never actually used or stored as
key generation is immediately followed by an update. Besides, each update is
followed by a refresh. Hence, adversaries may potentially access these keys:

SKS
∗ = {SKSi.r|1 ≤ i ≤ N, 1 ≤ r ≤ R},

SKB
∗ = {SKBi.r|1 ≤ i ≤ N, 1 ≤ r ≤ R},

SKU
∗ = {SKUi|1 ≤ i ≤ N − 1},

SKR
∗ = {SKRi.r|1 ≤ i ≤ N − 1, 0 ≤ r ≤ R− 1}\{SKR1.0}

For i > 1, SKRi.0 is sent together with SKUi−1. That is why it is accessible.
To define security, we provide a forger F with the following oracles:



- Osig, the signing oracles which, on input of period/refresh numbers (i, r) and
a message M , returns a signature σ.

- Osec, the key exposure oracle which
1. on input of (“s”,i.r) for 1 ≤ i ≤ N , 1 ≤ r,≤ R, outputs SKSi.r.
2. on input of (“b”,i.r) for 1 ≤ i ≤ N , 1 ≤ r,≤ R, outputs SKBi.r.
3. on input of (“u”,i) for 1 ≤ i ≤ N − 1, outputs SKUi and SKRi+1.0.
4. on input of (“r”,i.r) for 1 ≤ i ≤ N , 1 ≤ r,≤ R, outputs SKRi.r.

It is reasonable to impose adversaries to “respect erasures” in that values that
should have been erased may not be queried or used in signature generation:

- (“s”, i.r) must be queried before (“s”, i′.r′) if (i′.r′) > (i.r);3

- (“b”, i.r) must be queried before (“b”, i′.r′) if (i′.r′) > (i.r);
- (“b”, i.r) must be queried before (“r”, i′.r′) if (i′.r′) > (i.r);
- (“b”, i.r) must be queried before (“u”, i′) if i′ > i.

For a set Q of key exposure queries, a signing key SKSi.r is said to be Q-exposed
if one of the following is true:

- (“s”, i.r) ∈ Q;
- r > 1, (“r”, i.r − 1) ∈ Q and SKSi.r−1 is Q-exposed;
- r = 1, (“u”, i− 1) ∈ Q and SKSi−1.R is Q-exposed;
- r < R, (“r”, i.r) ∈ Q and SKSi.r+1 is Q-exposed;

A completely analogous definition is given for Q-exposure of a base key SKBi.r.
The scheme is said (i⋆, Q)-compromised if SKSi⋆.r is Q-exposed, for some r, or
if SKSi′.r and SKBi′.r are both Q-exposed for some i′ < i⋆. We say that an
adversary is successful if, after polynomially-many queries to the above oracles,
she produces a message-signature pair (M⋆, σ⋆) for some period i⋆ provided M⋆

was not queried to Osig for period i⋆ and the scheme is not (i⋆, Q)-compromised.

2.3 Bilinear maps

Groups (G, GT ) of prime order p are called bilinear map groups if there is a
mapping e : G×G→ GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 6= 1GT

whenever g, h 6= 1G.

We require the intractability of the following problem in bilinear map groups.

Definition 3. The ℓ + 1-Diffie-Hellman Problem (ℓ + 1-DH) in a group G

generated by g is to compute g(aℓ+1) ∈ G given (g, ga, ga2

, . . . , g(aℓ)) ∈ G
ℓ+1.

For the applications we have in mind, the strength of the ℓ + 1-DH assumption
does not depend on the number of adversarial queries. Instead, it mildly depends
on the number of time periods in the lifetime of the protocol as the parameter ℓ
is logarithmic in this number of periods. Hence, this assumption is quite reason-
able for any realistic number of periods (such as N ≤ 215). However, it sounds
much weaker than related assumptions used in [7, 40] where the counterpart of
parameter ℓ may be as large as 230 (instead of ℓ ≈ 15 here).

3 We write (i′.r′) > (i.r) when i′ > i or i′ = i and r′ > r.



3 A new key-evolving signature without random oracles

Intuitively, the scheme uses the hierarchical key derivation method of [8] in the
context of signatures. It can be thought of as using the signature analogue of the
concept of Binary Tree Encryption suggested by Canetti, Halevi and Katz [13].
As in [30, 15], we associate time periods with leaves of the tree. To achieve a key-
evolving signature in the standard model, we only need a “binary tree signature”
which is selective-node [13] and adaptive-message secure (i.e. the adversary has
to choose the node to attack ahead of time but can adaptively choose her target
message). That is why we implement our hierarchical signature with Waters’s
signature [39] (which is secure against adaptive chosen-message attacks [20] in
the standard model) at the lowest level.

In the description below, we imagine binary tree of height ℓ where the root
(at depth 0) has label ε. When a node at depth ≤ ℓ has label w, its children are
labeled with w0 and w1. Besides, 〈i〉 stands for the ℓ-bit representation of integer
i. The leaves of the tree correspond to successive time periods in the obvious
way, stage i being associated with the leaf labeled by 〈i〉. Periods are indexed
from 0 to N−1 with N = 2ℓ−1. As in [30, 15], signatures are generated using the
private key of node 〈i〉 at stage i where the full private key also includes node
keys for all right siblings for nodes on the path from 〈i〉 to the root. The latter
key material allows for key updates from period i to the next one.

Keygen: given security parameters λ, n ∈ N and a number of stages N = 2ℓ−1,

1. choose bilinear map groups (G, GT ) of order p > 2λ and g ∈ G.

2. Compute g1 = gα for a random α R← Z
∗
p. Choose g2, g3, h1, . . . , hℓ

R← G,

u′, u1, . . . , un
R← G and compute Z = e(g1, g2).

3. Select a collision-resistant hash function h : {0, 1}∗ → {0, 1}n.

4. Define functions F : {0, 1}≤ℓ → G, G : {0, 1}n → G as

F (w) = g3 ·
k

∏

j=1

h
wj

j G(m) = u′ ·
n

∏

j=1

u
mj

j

where w = w1 . . . wk and m = m1 . . . mn (wi,mj ∈ {0, 1} for all i, j).
The public key is

pk = {g, Z, g1, g2, g3, h1, . . . , hℓ, u
′, u1, . . . , un}.

The matching root secret key skε = gα
2 is not stored but is directly used

to derive lower level node keys.

5. Set sk0 =
(

gα
2 gr0

3 , gr0 , hr0
2 , . . . hr0

ℓ

)

and sk1 =
(

gα
2 (g3h1)

r1 , gr1 , hr1
2 , . . . hr1

ℓ

)

with r0, r1
R← Z

∗
p. Using sk0, recursively apply algorithm Extract (defined

below) to obtain node keys sk01, sk001, . . . sk0ℓ−11.

6. The initial private update key is sk0 = {sk1, sk01, sk001, . . . , sk0ℓ−11}.



Extract (skw1...wk−1
) : to generate private keys for its children, a node at level

k − 1 parses its private key into

skw1...wk−1
= (a0, a1, bk, . . . , bℓ) =

(

gα
2 · F (w1 . . . wk−1)

r′

, gr′

, hr′

k , . . . , hr′

ℓ

)

.

For j = 0, 1, it chooses a random tj
R← Z

∗
p and computes

skw1...wk−1j =
(

a0 · b
j
k · F (w1 . . . wk−1j)

tj , a1 · g
tj , bk+1 · h

tj

k+1, . . . , bℓ · h
tj

ℓ

)

=
(

gα
2 · F (w1 . . . wk−1j)

rj , grj , h
rj

k+1, . . . , h
rj

ℓ

)

where rj = r′ + tj .

Update (SKi, i + 1) : (where i < N − 1)

1. Parse 〈i〉 as i0i1 . . . iℓ with i0 = ε. Parse SKi into

(lski, ski) =
(

sk〈i〉, {ski0...ik−11}ik=0

)

(where lsk0 is undefined if i = 0) and erase sk〈i〉.
2. If iℓ = 0, SKi+1 simply consists of remaining node keys:

SKi+1 =
(

lski+1, ski+1) = (ski0...iℓ−11, {ski0...ik−11}ik=0,k<ℓ

)

.

Otherwise, let k̃ < ℓ be the largest index such that ik̃ = 0. Let i′ =

i0 . . . ik̃−11. Using ski′ (which is available as part of ski), recursively
apply Extract to obtain node keys ski′1, ski′01, . . . , ski′0ℓ−k̃−11 and finally
sk〈i+1〉 = sk

i′0ℓ−k̃ . Erase ski′ and return remaining keys as SKi+1.

Sign (i, SKi,M): let 〈i〉 = i1 . . . iℓ. Parse SKi into
(

sk〈i〉, {ski0...ik−11}ik=0

)

and

lski = sk〈i〉 into (a0, a1) = (gα
2 · F (i1 . . . iℓ)

r, gr) (which is a key of level ℓ).

This algorithm computes m = h(M), chooses s R← Z
∗
p and returns

(σ0, σ1, σ2) = (a0 ·G(m)s, a1, g
s) = (gα

2 · F (i1 . . . iℓ)
r ·G(m)s, gr, gs) .

Verify (M, i, PK, σ) : let 〈i〉 = i1 . . . iℓ. The purported signature σ = (σ0, σ1, σ2)
on m = h(M) ∈ {0, 1}n is accepted if and only if

e(σ0, g)

e(F (i1 . . . iℓ), σ1)e(G(m), σ2)
= Z.

The completeness is checked by noting that

e(σ0, g) = e(g1, g2) · e (F (i1 . . . iℓ), g
r) · e (G(m), gs) .

From an efficiency point of view, signature and verification take constant time
while key update requires O(ℓ2) exponentiations. The verification cost amounts
to a product of three pairings (which is much faster to compute than 3 sequential
pairings as discussed in [22]). Combining the hierarchical key derivation of [8]
with Waters’s signature at the lower level allows for constant-size signatures.



With ℓ = 15 and for a typical parameter n = 160, the public key consists of
179 elements of G and one element of GT . If we instantiate the scheme with
asymmetric pairings e : G × G

′ → GT (over elliptic curves such as those of [4]
or [35]), we may obtain signatures of 3 × 160 = 480 bits while public keys can
be stored within 40 Kb (which remains acceptable in many settings).

Since Waters’s signature has a large public key, it is fairly cheap to turn it into
a forward-secure signature as we did. Indeed, our scheme performs interestingly
w.r.t. the one obtained by applying the MMM [32] construction to Waters’s
scheme with the motivation to obtain forward-secure signatures in the standard
model under soft computational assumptions (details are given in the full version
of the paper). However, it answers open questions raised in section 9.1 of [28]
as it offers constant-size signatures and at most log-squared complexity in all
parameters in the absence of random oracles. It also improves on many previous
non-generic schemes [5, 2, 11, 25] which all have some linear cost in N (at least
in key generation). The only exceptions are [14, 24, 29] where signatures have
logarithmic size.

In the random oracle model, we can even get constant-size public keys as
elements g2, g3, h1, . . . , hℓ can be derived from a random oracle (as noticed in [8])
and the function G may be also replaced by an independent random oracle. In
this case, verification becomes logarithmic since evaluating F (i1 . . . iℓ) requires to
compute ℓ hash values on G (which has non-negligible cost unlike hash operations
over Z

∗
p). To retain constant-time verification, we can keep g2, g3, h1, . . . , hℓ (but

not u′, u1, . . . , un) in the public key. In summary, the random oracle model yields
either constant-size public keys or constant-time verification.

We also observe that ideas from [32] can be applied to support an arbitrary
polynomial number of time periods: the number of stages does not have to be
known when initializing the scheme.

Theorem 1. Assuming that a forger F can (t, qs, ε)-break the scheme, there is
an algorithm B that (t′, ε′)-breaks the ℓ + 1-Diffie-Hellman assumption where

ε′ ≥
ε

4Nqs(n + 1)
t′ ≤ t + O(qstexp),

texp denoting the time complexity of an exponentiation in G.

Proof. We outline an algorithm B using the forger F to find zℓ+1 = g(aℓ+1) given

(z1, z2, . . . , zℓ) = (ga, g(a2), . . . , g(aℓ)).
At the outset of the game, the simulator B chooses i⋆ R← {1, . . . , N − 1} as

a guess for the time period to be attacked by F . It parses i⋆ into 〈i⋆〉 = i⋆1 . . . i⋆ℓ
and prepares public parameters so as to handle all adversarial queries.

Preparation: to generate the public key, B picks γ R← Z
∗
p and sets g1 = z1 = ga,

g2 = zℓ · g
γ = gγ+(aℓ). The (unknown) root secret key is thereby implicitly set

to skε = ga
2 = gaγ+(aℓ+1) = zγ

1 · zℓ+1. Then, B chooses γ1, . . . , γℓ, δ
R← Z

∗
p and

defines g3 = gδ
∏ℓ

j=1 z
i⋆
j

ℓ−j+1 and hj = gγj /zℓ−j+1 for j = 1, . . . , ℓ.



Next, B picks κ ∈ {0, . . . , n} and defines τ = 2qs. We assume4 τ(n + 1) < p
which implies 0 ≤ κτ < p. Algorithm B also selects x′ R← Zτ and a vector
(x1, . . . , xn) of elements with xi ∈ Zτ for all i. It also chooses at random an
integer y′ R← Zp and a vector (y1, . . . , yn) with yj ∈ Zp for all j. For ease of
analysis, we consider functions

J(m) = x′ +
n

∑

i=1

mixi − κτ and K(m) = y′ +
n

∑

i=1

miyi.

taking as input strings m ∈ {0, 1}n. Remaining public parameters are chosen as

u′ = gx′−κτ
2 gy′

ui = gxi

2 gyi for 1 ≤ i ≤ n

which means that, for any m ∈ {0, 1}n, G(m) = u′ ·
∏n

i=1 umi

i = g
J(m)
2 · gK(m).

F is challenged on (g, Z, g1, g2, g3, h1, . . . , hℓ, u
′, u1, . . . , un) with Z = e(g1, g2).

Deriving node keys: B has to compute node private keys for right siblings
(whenever they exist) of all nodes on the path from the root to 〈i⋆〉 (we call
this path “crucial path”). For all indexes k ∈ {1, . . . , ℓ} such that i⋆k = 0, to

generate a private key for node i⋆|k = i⋆1 . . . i⋆k−11, B first picks r̃ R← Z
∗
p. If we

define r = r̃ + ak ∈ Z
∗
p, B is able to compute

ski⋆|
k

=
(

ga
2 ·

(

g3 · h
i⋆
1

1 . . . h
i⋆
k−1

k−1 hk

)r
, gr, hr

k+1, . . . , h
r
ℓ

)

.

We indeed observe that

(

g3 · h
i⋆
1

1 . . . h
i⋆
k−1

k−1 hk

)r

=



gδ+
∑ k−1

j=1 γji⋆
j +γk · z−1

ℓ−k+1 ·
ℓ

∏

j=k+1

z
i⋆
j

ℓ−j+1





r

where the second term in the product of the right hand side member equals

z−r
ℓ−k+1 = z−r̃

ℓ−k+1 · z
−ak

ℓ−k+1 = z−r̃
ℓ−k+1/zℓ+1

so that ga
2 ·

(

g3 · h
i⋆
1

1 . . . h
i⋆
k−1

k−1 hk

)r
can be computed as

zγ
1 ·

(

gr̃ · zk

)δ+
∑ k−1

j=1 γji⋆
j +γk · z−r̃

ℓ−k+1 ·

ℓ
∏

j=k+1

(

zr̃
ℓ−j+1 · zℓ−j+k+1

)i⋆
j .

Besides, elements gr = gr̃ · zk and hr
j =

(

gr̃ · zk

)γj
/
(

zr̃
ℓ−j+1 · zℓ−j+k+1

)

(for
j = k + 1, . . . , ℓ and when k < ℓ) are all computable from available values.

Private keys for right siblings of nodes in the crucial path yield update and
local keys for stages i > i⋆. In the same way, B can compute private keys for left
siblings whenever they exist. Namely, for all indexes k ∈ {1, . . . , ℓ} s.t. i⋆k = 1, a
private key for node i⋆|k = i⋆1 . . . i⋆k−10 is computable as

(

g3 · h
i⋆
1

1 . . . h
i⋆
k−1

k−1

)r

=



gδ+
∑ k−1

j=1 γji⋆
j · zℓ−k+1 ·

ℓ
∏

j=k+1

z
i⋆
j

ℓ−j+1





r

4 This is a realistic requirement as parameters should be chosen s.t. n ≥ 160, p > 2160

and it is common to suppose qs < 230.



and zr
ℓ−k+1 = zr̃

ℓ−k+1 · z
ak

ℓ−k+1 = zr̃
ℓ−k+1/zℓ+1. Once generated, those keys allow

extracting local keys for periods i < i⋆ − 1 which correspond to leaves at the
left of 〈i⋆〉 in the tree. Hence, B can compute all local keys for periods i 6= i⋆

and not only those for which i > i⋆. We note that B fails if F ever queries an
update key for some period i < i⋆. According the rules of definition 2, this can
only happen if B wrongly guesses which period will be attacked by F .

Signing queries: at any time, F may ask for signatures on messages for any pe-
riod number i. Those queries are answered using relevant private keys whenever
they are computable. To answer signing queries for period i⋆, B uses the same
strategy as in the security proof of Waters’s signature [39]. At the first message
M queried for stage i⋆, B chooses a random ri⋆

R← Z
∗
p that will be used to answer

all subsequent queries for period i⋆. If J(m) = 0 mod p, B aborts. Otherwise, it
picks s R← Z

∗
p and returns

σ = (σ0, σ1, σ2) =

(

g
−

K(m)
J(m)

1 · F (i⋆1 . . . i⋆ℓ )
ri⋆ ·G(m)s, gri⋆ , g

− 1
J(m)

1 · gs

)

.

If we define s̃ = s− a/J(m), we indeed have g
− 1

J(m)

1 · gs = gs̃ and

g
−

K(m)
J(m)

1 · F (i⋆1 . . . i⋆ℓ )
ri⋆ ·G(m)s = g

−
K(m)
J(m)

1 · F (i⋆1 . . . i⋆ℓ )
ri⋆ ·G(m)s̃ ·

(

ga
2 · g

K(m)
J(m)

1

)

= ga
2 · F (i⋆1 . . . i⋆ℓ )

ri⋆ ·G(m)s̃.

Forgery: if B does not abort and luckily guesses i⋆, F comes up with a forgery
σ⋆ = (σ⋆

0 , σ⋆
1 , σ⋆

2) on some new message m⋆ = h(M⋆) for stage i⋆. At that point,
B reports “failure” if J(m⋆) 6= 0 mod p. Otherwise, G(m⋆) = gK(m⋆) and

σ⋆
0 = ga

2 · F (i⋆1 . . . i⋆ℓ )
r · gsK(m), σ⋆

1 = gr, σ⋆
2 = gs

for some r, s ∈ Z
∗
p. Since F (i⋆1 . . . i⋆ℓ ) = gδ+

∑ ℓ
j=1 γji⋆

j , B can extract

ga(ℓ+1)

=
σ⋆

0

zγ
1 · σ

⋆
1

δ+
∑

ℓ
j=1 γji⋆

j · σ⋆
2

K(m⋆)
.

When analyzing B’s probability of success, we observe that it terminates
without aborting if, J(m) 6= 0 mod p for all signing queries m. As 0 ≤ κτ < p
and x′ +

∑n
i=1 mixi < τ(n + 1) < p, we note that J(m) = 0 mod p implies

J(m) = 0 mod τ (and thus J(m) 6= 0 mod τ implies J(m) 6= 0 mod p). Hence, to
simplify the analysis, we force B to abort whenever J(m) = 0 mod τ in a signing
query. Besides, B is successful if the target message satisfies J(m⋆) = 0 mod p.

More formally, let m′
1, . . . ,m

′
qs

be messages appearing in signing queries and
let us define events Ai : J(m′

i) 6= 0 mod τ and A⋆ : J(m⋆) = 0 mod p, the
probability that B does not fail is

Pr[¬abort] ≥ Pr[

qs
∧

i=1

Ai ∧A∗].

As J(m⋆) = 0 mod p implies J(m⋆) = 0 mod τ and given that, if J(m⋆) =
0 mod τ , there is a unique κ ∈ {0, . . . , n} that yields J(m⋆) = 0 mod p, we have



Pr[A⋆] = Pr[J(m⋆) = 0 mod τ ]Pr[J(m∗) = 0 mod p|J(m⋆) = 0 mod τ ] =
1

τ

1

n + 1
.

Moreover,
Pr[

qs
∧

i=1

Ai|A
⋆] = 1−

qs
∑

i=1

Pr[¬Ai|A
⋆] = 1−

qs

τ
,

where the rightmost equality stems from the independence of Ai and A⋆ for any
i (hence Pr[¬Ai|A

⋆] = 1/τ). Putting the above together, we obtain

Pr[¬abort] = Pr[A⋆]Pr[

qs
∧

i=1

Ai|A
∗] =

1

τ(n + 1)

(

1−
qs

τ

)

=
1

4qs(n + 1)

thanks to the choice of τ = 2qs. Since B correctly guesses the index i⋆ of the
attacked stage with probability higher than 1/N , the claimed bound follows. ⊓⊔

4 Intrusion-resilient signatures without random oracles

In [16], Dodis et al. showed how to generically obtain intrusion-resilient schemes
from key-evolving cryptosystems where the key update algorithm satisfies a suit-
able homomorphic property. Although they proved the security of their conver-
sion in the context of encryption schemes, their proof simply goes through for
digital signatures (as detailed in the full version of the paper).

At a high level, the idea is to share the update key of a key-evolving signature
between the signer and the base so that the sharing for period i+1 can be derived
from that of period i. At stage i, the signer stores the local key lski (used in
signing operations) and his share of the update key sksi while the base stores the
other share skbi. This sharing ensures security against multiple compromises of
base and user keys. When each share of the update key is independently evolved
(using the update algorithm of the key-evolving scheme) at period i, shares of
update and local keys for period i + 1 are obtained. The update message SKUi

sent by the base is its evolved share of the local key. Thanks to the homomorphic
property of the update algorithm, the signer can combine SKUi with his own
share of the evolved local key to reconstruct the local key lski+1.

In our notation, when two vectors sks.w = (a0, a1, bk+1, . . . , bℓ) and skb.w =
(a′

0, a
′
1, b

′
k+1, . . . , b

′
ℓ) are node keys at level k in the hierarchy, we denote by

sks.w ⊙ skb.w the component-wise product (a0 · a
′
0, a1 · a

′
1, bk+1 · b

′
k+1, . . . , bℓ · b

′
ℓ).

Keygen: given security parameters λ, n ∈ N and a number of periods N = 2ℓ−1,

1. choose bilinear map groups (G, GT ) and g ∈ G. Set g1 = gα with α R← Z
∗
p.

2. Pick g2, g3, h1, . . . , hℓ
R← G, u′, u1, . . . , un

R← G and set Z = e(g1, g2).
3. Select a collision-resistant hash function h : {0, 1}∗ → {0, 1}n.
4. Define functions F : {0, 1}≤ℓ → G, G : {0, 1}n → G as

F (w) = g3 ·

k
∏

j=1

h
wj

j G(m) = u′ ·

n
∏

j=1

u
mj

j

where w = w1 . . . wk and m = m1 . . . mn (wi,mj ∈ {0, 1} for all i, j).
The public key is



PK = {g, Z, g1, g2, g3, h1, . . . , hℓ, u
′, u1, . . . , un}.

The root secret skε = gα
2 is used to derive lower level node keys.

5. Extract node keys for labels 0 and 1 at level 1. Namely, compute sk0 =
(

gα
2 gr0

3 , gr0 , hr0
2 , . . . hr0

ℓ

)

, sk1 =
(

gα
2 (g3h1)

r1 , gr1 , hr1
2 , . . . hr1

ℓ

)

for random

r0, r1
R← Z

∗
p. Using sk0, recursively apply algorithm Extract (defined

below) to generate keys sk01, sk001, . . . sk0ℓ−11. Consider the key set
S〈0〉 = {sk1, sk01, sk001, . . . , sk0ℓ−11}. For each skw ∈ S〈0〉, define skb.w =

skw ⊙ (R−1
w , 1, 1, ..., 1) and sks.w = skw ⊙ (Rw, 1, 1, ..., 1) with Rw

R← G.

6. Base and signer keys are SKB0.0 = {skb.1, skb.01, skb.001, . . . , skb.0ℓ−11}
and SKS0.0 = (−, {sks.1, sks.01, sks.001, . . . , sks.0ℓ−11}).

Extract (sk⋆.w1...wk−1
) : (where ⋆ = s or ⋆ = b) is an auxiliary algorithm used

by the base and the signer to derive node private keys. A node at level k− 1
parses its private key into sk⋆.w1...wk−1

= (a0, a1, bk, . . . , bℓ). For j = 0, 1, it

chooses a random tj
R← Z

∗
p and computes

sk⋆.w1...wk−1j =
(

a0 · b
j
k · F (w1 . . . wk−1j)

tj , a1 · g
tj , bk+1 · h

tj

k+1, . . . , bℓ · h
tj

ℓ

)

.

Base Update (SKBi.r, i + 1) : (where i < N − 1)

1. Parse 〈i〉 as i0i1 . . . iℓ with i0 = ε. Let SKBi.r = {skb.i0...ik−11}ik=0.
2. If iℓ = 0, the update message SKUi is the share skb.i0...iℓ−11 and the

updated base key is SKBi+1.0 = {skb.i0...ik−11}ik=0,k<ℓ. Otherwise, let

k̃ < ℓ be the largest index s.t. ik̃ = 0. Let i′ = i0 . . . ik̃−11. Using
skb.i′ (available as part of SKBi.r), recursively apply Extract to obtain
skb.i′1, skb.i′01, . . . , skb.i′0ℓ−k̃−11 and sk

b.i′0ℓ−k̃ which is the update message
SKUi. Erase skb.i′ and return SKUi = skb.〈i+1〉 and

SKBi+1.0 = {{skb.i0...ik−11}ik=0, k<k̃, skb.i′1, skb.i′01, . . . , skb.i′0ℓ−k̃−11}.

User Update (SKSi.r, SKUi, i + 1) : (with i < N − 1)

1. Let 〈i〉 = i0i1 . . . iℓ with i0 = ε. Parse SKSi.r as
(

sk〈i〉, {sks.i0...ik−11}ik=0

)

and erase sk〈i〉.

2. If iℓ = 0, then set SKSi+1.0 =
(

sk〈i+1〉, {sks.i0...ik−11}ik=0,k<ℓ

)

with

sk〈i+1〉 = sks.i0...iℓ−11⊙SKUi. Otherwise, let k̃ be the largest value with
ik̃ = 0 and let i′ = i0 . . . ik̃−11. Using sks.i′ (available in SKSi.r), ap-
ply Extract to obtain sks.i′1, sks.i′01, . . . , sks.i′0ℓ−k̃−11 and sk

s.i′0ℓ−k̃ which
allows reconstructing sk〈i+1〉 = sk

s.i′0ℓ−k̃ ⊙ SKUi. Set SKSi+1.0 as

(

sk〈i+1〉, {{sks.i0...ik−11}ik=0, k<k̃, sks.i′1, sks.i′01, . . . , sks.i′0ℓ−k̃−11}
)

and erase sks.i′ .

Base Refresh (SKBi.r) : let 〈i〉 = i0, . . . iℓ and SKBi.r = {skb.i0...ik−11}ik=0.
For all keys skb.w in SKBi.r, let sk′b.w = skb.w⊙ (R−1

w , 1, . . . , 1) for a random
Rw

R← G. Return SKBi.r+1 = {skb.w′ |skb.w ∈ SKBi.r} together with the
refresh message SKRi.r = {Rw|skb.w ∈ SKBi.r}.



User Refresh (SKSi.r, SKRi.r) : let SKSi.r =
(

sk〈i〉, {sks.i0...ik−11}ik=0

)

and
SKRi.r = {Rw|sks.w ∈ {sks.i0...ik−11}ik=0} with 〈i〉 = i0, . . . iℓ. For all shares
of node keys sks.w ∈ {sks.i0...ik−11}ik=0, set sks.w′ = sks.w ⊙ (Rw, 1, . . . , 1)
and return SKSi.r+1 =

(

sk〈i〉, {sks.w′ |sks.w ∈ {sks.i0...ik−11}ik=0}
)

.

Sign (i, SKSi.r,M): let 〈i〉 = i1 . . . iℓ. Parse SKSi.r into
(

sk〈i〉, {ski0...ik−11}ik=0

)

and sk〈i〉 as (a0, a1). Compute m = h(M), choose s R← Z
∗
p and return

(σ0, σ1, σ2) = (a0 ·G(m)s, a1, g
s) = (gα

2 · F (i1 . . . iℓ)
r ·G(m)s, gr, gs) .

Verify (M, i, PK, σ) : let 〈i〉 = i1 . . . iℓ and m = h(M) ∈ {0, 1}n. The signature
σ = (σ0, σ1, σ2) is accepted if and only if

e(σ0, g)

e(F (i1 . . . iℓ), σ1)e(G(m), σ2)
= Z.

This scheme is as efficient as the key-evolving scheme of section 3 in terms of
computational cost as well as signature/key sizes. In particular, it features pri-
vate keys of size O(ℓ2). Public keys also have logarithmic size but, for realistic
values of ℓ, the bulk of their length is the string u′, u1, . . . , un borrowed from
Waters’s signature scheme.

It is natural to compare our scheme with the one obtained by applying the
generic construction of [27] to Waters’s signature since assumptions of compa-
rable strength are needed for the security of both schemes. It turns out that
the generic method allows for faster verification but results in signatures of
prohibitive size (up to 106 bits for N ≤ 210) for many practical applications.
Besides, it does not yield shorter public keys as the large string u′, u1, . . . , un

should remain part of the public key to avoid including it within each signature.
We concede that [27] allows for faster key updates (which take constant time
if we neglect the time for verifying log N one-time signatures). However, our
construction should be preferred for all applications where signature sizes are
primary concern.

5 Conclusion

We proposed the first random oracle-free intrusion-resilient signature with short
constant-size signatures and at most log-squared complexity in all other para-
meters. It was built on Waters’s signature by a relative public key lengthening
which is quite moderate for any realistic number of time periods.

As an intermediate result, we described a new forward-secure signature with-
out random oracles which is of independent interest. Thanks to the “homo-
morphic” properties of Waters’s signature, this new efficient scheme can be ex-
tended into a very efficient forward-secure threshold signature (following ideas
of Abdalla et al. [1]) where no communication is required between servers dur-
ing the signing protocol. To the best of our knowledge, such a protocol did not
previously exist in the standard model.
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