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Benôıt Libert
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Abstract

Nowadays, the design of new cryptographic schemes follows the mod-

ern methodology of provable security. This approach requires to first

clearly set out a formal model for the security of the scheme. Next, a

“reductionist” proof is needed to show that the only way to break the

scheme with a significant probability is either to attack an insecure com-

ponent or to solve a computationally hard mathematical problem.

Pairings are bilinear mappings defined over groups wherein the dis-

crete logarithm problem is hard. They are usually instantiated with

carefully chosen elliptic curves. For the last couple of years, they have

been found to provide plenty of applications in the design of crypto-

graphic protocols. The most salient examples were probably the ap-

pearance of tripartite key agreement protocols, identity-based encryp-

tion schemes, where any arbitrary public identifier can be used as a

public key, and digital signature schemes producing short signatures.

This thesis deals with pairing-based cryptographic protocols ensur-

ing the same functionalities as the latter two kinds of primitives. In a

first part, we deal with efficiency and (provable) security issues in iden-

tity based encryption (IBE) schemes and related concepts. We show two

efficient variants of the Boneh-Franklin IBE and discuss the feasibility of

using such schemes to construct of certificateless public key encryption

systems.

A second part describes new digital signatures supporting identity-

based public keys. One of these new constructions can be modified at

a very low cost to simultaneously ensure the confidentiality of authenti-

cated messages. The resulting signature/encryption scheme is supported

by security proofs and enjoys an impressive efficiency for such a scheme.

The last part of this work considers several constructions to jointly

achieve signature and encryption in a traditional public-key setting. For

each of them, we give security reductions in a suitable model of security.
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Notations and abbreviations

Notations

G Cyclic group of prime order (depending on the context, cyclic

groups will be noted additively (G,+) or multiplicatively (G, ·))

1G Identity element for the group operation of G

G
∗ Set of non-zero elements in group G (or G\{1G} for short)

Z Set of integers

N Set of natural numbers

Zq Set of integers {0, 1, . . . , q − 1}

Z
∗
q Set of elements having a modular multiplicative inverse in Zq

Fr Finite field of r elements

∈ Membership of a set

∈R Membership of a randomly and uniformly distributed sample

from a set

:= Assignment of a value to a variable
R← Assignment of a random and uniformly chosen value from a set

≡ Congruence modulo an integer

⊕ Bitwise exclusive OR

e Asymmetric pairing mapping

ê Symmetric pairing mapping

{0, 1}t Set of strings of t bits

{0, 1}∗ Set of strings of arbitrary but finite length

⊥ Rejection symbol returned by a decryption algorithm to

indicate that a ciphertext is invalid

|| denotes the concatenation operation: a||b ∈ {0, 1}n0+n1

stands for the concatenation of a ∈ {0, 1}n0 and b ∈ {0, 1}n1
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2 NOTATIONS AND ABBREVIATIONS

Abbreviations

1m-CDHP One more Computational Diffie-Hellman problem

ANON-IBSC-CCA Ciphertext anonymity against chosen-ciphertext

attacks for identity based signcryption

AUTH-IBSC-CMA Ciphertext authentication against chosen-message

attacks for identity-based signcryption

AUTH-SC-CMA Ciphertext authentication against chosen-message

attacks for signcryption

BDHP Bilinear Diffie-Hellman problem

CA Certification Authority

co-CDHP co-Diffie-Hellman problem

co-BDHP co-Bilinear Diffie-Hellman problem

co-DDHP co-Decision Diffie-Hellman problem

CDHP Computational Diffie-Hellman problem

CBE Certificate-Based Encryption

CLE Certificateless Encryption

CL-PKC Certificateless Public Key Cryptography

CRL Certificate revocation list

DLP Discrete logarithm problem

DBDHP Decision Bilinear Diffie-Hellman problem

DDHP Decision Diffie-Hellman problem

DEM Data Encapsulation Mechanism

ECDLP Elliptic curve discrete logarithm problem

ECUF-IBSC-CMA Existential ciphertext unforgeability against chosen-

message attacks for identity-based signcryption

ESUF-IBSC-CMA Existential signature unforgeability against chosen-

message attacks for identity-based signcryption

ESUF-SC-CMA Existential signature unforgeability against chosen-

message attacks for signcryption

EUF-CMA Existential unforgeability against chosen-

message attacks

Gap-BDHP Gap Bilinear Diffie-Hellman problem

GDHP Gap Diffie-Hellman problem

HIBE Hierarchical Identity-Based Encryption

IBE Identity-Based Encryption

IBI Identity-Based Identification

IBS Identity-Based Signature

IBSC Identity-Based Signcryption



NOTATIONS AND ABBREVIATIONS 3

IBUS Identity-Based Undeniable Signature

ID-PKC Identity-Based Public Key Cryptography

iff if and only if

IND-CCA Indistinguishability against chosen-ciphertext attacks

IND-CPA Indistinguishability against chosen-plaintext attacks

IND-IBSC-CCA Indistinguishability against chosen-ciphertext attacks

for identity-based signcryption

IND-ID-CCA Indistinguishability against chosen identity and

ciphertext attacks

IND-ID-CPA Indistinguishability against chosen identity and

plaintext attacks

IND-SC-CCA Indistinguishability against chosen-ciphertext attacks

for signcryption

IND-sID-CCA Indistinguishability against selective identity and

chosen-ciphertext attacks

IND-sID-CPA Indistinguishability against selective identity and

chosen-plaintext attacks

NMA No-message attack

KEM Key Encapsulation Mechanism

KGC Key Generation Center

p-BDHIP p-Bilinear Diffie-Hellman Inversion problem

p-DHIP p-Diffie-Hellman Inversion problem

OAEP Optimal Asymmetric Encryption Padding

PKE Public Key Encryption

PKCS Public Key Cryptography Standards

PKG Private Key Generator

PKI Public Key Infrastructure

PPT Probabilistic Polynomial Time

PSS-R Probabilistic Signature Scheme with message

Recovery

p-SDHP p-Strong Diffie-Hellman problem

RMA Random Message Attacks

SC-SUF-CMA Strong ciphertext unforgeability against chosen-

message attacks for signcryption

SC-INDK-CCA Key indistinguishability against chosen-

ciphertext attacks for signcryption

SSL Secure Socket Layer

TA Trusted authority





Introduction

1. Motivations and scope of this thesis

Over the last decades, the expansion of the Internet has significantly

simplified the exchange of information between remote users. However,

this in turn has led to an explosive growth in threats over the networks

such as electronic eavesdropping, fraud, and identity thefts. In order to

be immune against such threats, valuable resources must be protected

in several ways: when two parties are communicating, they want to en-

sure that the data they exchange are not eavesdropped (confidentiality),

that they are not altered by a third-party (data integrity), and that the

sender is actually who he claims to be (entity authentication). Cryptog-

raphy is the science that addresses these various concerns.

Two kinds of cryptographic schemes can be distinguished. The first

one falls in the area of secret key or symmetric cryptography where re-

mote entities communicate using a shared secret key that they both use

to encrypt or decrypt messages. The second one pertains to the area of

public key or asymmetric cryptography where each user has a public key

made available on the Internet and a matching private key that should

be computationally infeasible to recover given the public key. Asymmet-

ric schemes enjoy the advantage that remote users do not have to first

agree on a shared secret key before communicating: the sender only has

to obtain his correspondent’s public key to send him an encrypted mes-

sage or verify his digital signature on a message. These properties are

really attractive in networks of numerous users where shared symmetric

keys would have to be distributed between each pair of user willing to

communicate with each other if only symmetric cryptography primitives

were available.

This thesis focuses on the design and the security of public key cryp-

tographic schemes for privacy, authentication and sometimes simultane-

ously for both of these functionalities. Our work was more precisely

5



6 INTRODUCTION

dedicated to the study of the applications of bilinear mappings that,

although originally used for cryptanalytic purposes [147, 86], found a

couple of applications in the design of public key cryptographic proto-

cols [19]. Among those “positive applications”, the most salient ones

were perhaps the design of tripartite key exchange protocols [118], dig-

ital signature algorithms producing short signatures [43, 37, 227] and

the construction of identity-based encryption schemes by Boneh-Franklin

[40] and subsequently by other authors [35, 36, 38, 217]. An important

part of our work was related to this kind of public key scheme wherein

any arbitrary string such as email addresses can be used as public keys.

Many cryptographic protocols involve public key as well as secret

key operations. The design of such reliable cryptographic protocols has

turned out to be a highly non-trivial task. It must not only employ

sturdy cryptographic primitives, but also has to integrate them in such

a way that their security is preserved. A sound approach to evaluate

the security of cryptographic schemes or protocols already exists. This

approach is called “provable security” and stems from pioneering works

by Goldwasser and Micali [90] and, later on, by Goldwasser, Micali and

Rivest [105] respectively for public key encryption schemes and digital

signatures. In the provable security approach, one ensures the security

of a given cryptographic scheme by presenting a “reduction” between the

properly defined security notion for the scheme and the intractability of

some well-studied problem (such as the discrete logarithm or the integer

factoring problem) that is thought to be difficult. Since Goldwasser and

Micali’s work [90], numerous achievements have followed this approach

which has become a paradigm of cryptographic research. In accordance

with it, we strove to provide security proofs in a reasonable model of

computation for the various schemes that we studied.

2. Organization of the work

This thesis is divide into four distinct parts.

• Part 1 contains material that will be used in the three other

parts of the thesis.

- Chapter 1 gives definitions for various discrete logarithm-

related hard problems and intractability assumptions on

which the security of our cryptographic schemes provably
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relies. It also summarizes the properties of bilinear map-

pings that are used as building blocks of our schemes. In

order to intuitively justify the relevance of the security

models that we consider for our protocols, this chapter fi-

nally recalls the strongest formal security models for public

key encryption and digital signatures.

- Chapter 2 introduces the concept of identity-based cryp-

tography that is investigated in parts 2 and 3. It contains

a brief summary of the main outstanding results that have

been achieved in this striding out area.

• Part 2 contains new results on identity-based encryption and

the related certificateless encryption paradigm of Al-Ryami and

Paterson [6].

- Chapter 3 describes two variants of the Boneh-Franklin

identity based encryption schemes. It shows how to speed

up the decryption operation and/or shorten ciphertexts

at the expense of having the security rely on a stronger

assumption. Those results were published in the ACNS

2005 conference [136].

- Chapter 4 describes recent unpublished results regarding

generic constructions of certificateless encryption schemes

using identity based cryptosystems. It also proposes a new

pairing-based scheme that is slightly faster than the ones

proposed so far.

• Part 3 is about identity-based signatures (IBS).

- Chapter 5 first proposes a new IBS scheme which is more

efficient than all previous pairing-based proposals. It also

gives a new security proof for an existing scheme already

proven secure by Bellare, Namprempre and Neven [28].

The new proof enjoys a much tighter reduction than the

original one. The first result is taken from a joint pa-

per with Paulo Barreto and Noel McCullagh that was ac-

cepted at Asiacrypt 2005 [21]. The second result was never

published and is only available on the Cryptology ePrint

Archive [133].
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- Chapter 6 describes a special purpose IBS which was the

first example of an identity-based undeniable signature

(IBUS) with a security proof in the random oracle model.

It was published at the Cryptography Track of the RSA

2004 conference [134].

- Chapter 7 studies several schemes jointly performing sig-

nature and encryption in an identity-based public key set-

ting. It summarizes results from a paper published at the

2003 Information Theory Workshop [131] and another pa-

per (written with Paulo Barreto and Noel McCullagh) re-

cently accepted at Asiacrypt 2005 [21]. We compare our

schemes to other existing ones from efficiency and security

points of view. Our second construction requires stronger

computational assumptions than previous ones in its secu-

rity proofs but happens to be the fastest scheme proposed

so far.

• Part 4 is devoted to the study of other cryptosystems for joint

signature and encryption in a traditional public key setting.

- Chapter 8 describes three schemes based on various Diffie-

Hellman related assumptions. The first two ones are con-

structed on signature schemes that make use of bilinear

maps. They are taken from papers published respectively

at PKC 2004 [132] and SCN 2004 [135]. The third scheme

is constructed on the Schnorr signature scheme and has

never been published. It does not rely on bilinear maps

and can be instantiated with more general groups as we

will see.



Part 1

Preliminary topics





CHAPTER 1

Generalities

Abstract. This chapter provides some formal definitions as well

as technical background that will be used in the forthcoming

chapters. These preliminary definitions are mainly related to

bilinear maps, security notions for public key cryptography

primitives and provable security.

1. Public key cryptography

The most spectacular development in the history of cryptography

came in 1976 when W. Diffie and M. Hellman published their seminal

paper [78] introducing the concept of public key cryptography where

each entity has a public key e and a corresponding private key d which

should be computationally infeasible to compute given e. This paper

also provided a new and ingenious method for key exchange, the se-

curity of which is based on the intractability of the discrete logarithm

problem. Such a paradigm avoids remote entities wishing to confiden-

tially communicate to meet each other to agree on a secret encryption

key.

Although Diffie and Hellman had no practical realization of a public-

key encryption scheme at that time, the idea was clear and it enjoyed

an extensive interest from the cryptographic research community. In

1978, Rivest, Shamir, and Adleman [187] discovered the first practical

method, now referred to as RSA, to obtain public-key encryption and

signature schemes. The RSA scheme is based on another hard math-

ematical problem, the intractability of factoring large integers. More

precisely, the RSA assumption is the hardness of inverting the trapdoor

permutation fRSA(x) = xe mod N , where N = pq is the product of two

large primes and e is an integer which is prime to ϕ(N) = (p−1)(q−1),

without knowing the prime factors p and q. The basic “textbook” RSA

encryption of a message x ∈ Z
∗
N was c = xe mod N and could be undone

11
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by the legitimate recipient computing x = cd mod N using a private ex-

ponent d such that ed ≡ 1 (mod ϕ(N)). Besides, the same trapdoor

function also yields a technique to digitally sign a message x ∈ Z
∗
N :

the signer simply uses his private exponent d to compute a signature

σ = f−1
RSA(x) = xd mod N that can be subsequently verified by checking

that x = σe mod N . The discovery of RSA was quickly followed by the

appearance of the Rabin [184] trapdoor function fRab(x) = x2 mod N

which consists of a modular squaring using a composite modulus of se-

cret factorization. This function is no longer a permutation but enjoys

interesting advantages. Unlike RSA, inverting it is provably as hard as

factoring the modulus N = pq and it also turned out to be an interesting

number theoretic primitive for encryption and signature.

Those applications of hard mathematical problems to cryptography

revitalized efforts to find more efficient methods to factor large inte-

gers. The eighties saw major advances in this area but none which

rendered the RSA system insecure. Another class of powerful and prac-

tical public-key schemes was found by El Gamal [96] in 1985. These are

based on the discrete logarithm problem. The search for new public-

key schemes, improvements to existing cryptographic mechanisms, and

proofs of security is continuing at a rapid pace. The feasibility of secure

cryptosystems based on other hard problems than factoring or comput-

ing discrete logarithms was studied with more or less success in the late

seventies [145, 149] and more recently in [173, 4, 104, 112, 11]. Other

more encouraging constructions based on assumptions related to fac-

torization or discrete logarithms were also studied in the late nineties

[159, 160, 169, 172].

2. Discrete logarithms and Diffie-Hellman problems

Since all cryptosystems studied in this thesis rely on groups where

the discrete logarithm and Diffie-Hellman problems are supposed to be

hard, we begin by first recalling their definition.

Definition 1.1 For a security parameter k ∈ N, let (G, ·) be a cyclic

group of order q > 2k and let g be a generator of G. The discrete

logarithm problem (DLP) is, given a random y ∈R G, to find the

unique x ∈ Zq such that y = gx.
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Although easy in some particular cases (such as (Zq,+)), solving

this problem is known to require exponential time in k < log2|G| in

black-box groups [163, 197]. In prime order subgroups G of multiplica-

tive groups Z
∗
p, the best known algorithms [148] take sub-exponential

time in k. On subgroups of randomly chosen elliptic curves, the best

known algorithms are exponential and elliptic curves are thus especially

interesting for the implementation of cryptographic protocols as they al-

low shorter key sizes for the same security level w.r.t. implementations

in finite fields Z
∗
p. By now, except for weaker kinds of curves such as

‘anomalous’ [193, 201] or ‘supersingular’ curves, 160-bit elliptic curve

public keys offer about the same security as a 1024-bit RSA modulus.

In their founding paper [78] proposing the idea of public key cryp-

tography, Diffie and Hellman introduced what is now usually called “the

Diffie-Hellman problem” (DHP).

Definition 1.2 Let (G, ·) be a cyclic group of order q > 2k and a gener-

ator g. The computational Diffie-Hellman problem (CDHP) is,

given (g, ga, gb) for a, b ∈R Z
∗
q, to compute gab.

Although not harder than DLP, this problem is commonly accepted

as a hard problem: Nechaev [163] and Shoup [197] showed its exponen-

tial complexity for generic1 algorithms. Salient results of Maurer and

Wolf [142] additionally showed that in certain groups and under partic-

ular conditions, there exists a polynomial reduction from DLP to DHP.

The hardness of the computational Diffie-Hellman problem is re-

ferred to as “computational Diffie-Hellman assumption”. A stronger

assumption is formalized by the next definition that considers the prob-

lem of deciding whether or not a given group element is the solution of

a Diffie-Hellman instance.

Definition 1.3 Let (G, ·) be a cyclic group of order q > 2k and a

generator g. The decision Diffie-Hellman problem (DDHP) is,

given (g, ga, gb, gc) for a, b, c ∈R Z
∗
q, to decide whether c ≡ ab (mod q).

In other words, the problem is to distinguish the distribution D1 =

1The generic model is an idealized computational model wherein an attacker may

only access the group operations as black-box function calls, and may not meaning-

fully operate on encodings of group elements. While this model cannot capture the

most efficient attacks on the discrete logarithm in specific instantiations of groups, it

does provide evidence that the considered computational problems are hard.
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{(g, ga, gb, gab)|a, b R← Z
∗
q} of “Diffie-Hellman quadruples” from the dis-

tribution D2 = {(g, ga, gb, gc)|a, b, c R← Z
∗
q} of “random quadruples”.

Both of these assumptions are necessary to establish the security

(against passive attacks) of the famous Diffie-Hellman key exchange pro-

tocol which enable remote parties A et B to agree on a secret. The

protocol consists for A in sending B (resp. for B in sending A) a group

element ga for a randomly chosen a R← Z
∗
q (resp. a group element gb

for a random b R← Z
∗
q) in such a way that A can eventually compute

KAB = (gb)a (resp. B eventually computes KAB = (ga)b).

Although Shoup [197] showed that there exists no generic algorithm

to solve the DDHP in black box groups (and that a reasonable confidence

can be invested into the DDH assumption), the decision Diffie-Hellman

problem is believed to be strictly easier than its computational coun-

terpart. Maurer and Wolf indeed showed in 1998 [141] that no generic

algorithm reduces CDHP to DDHP. In other terms, there is a gap be-

tween the hardness of the computational Diffie-Hellman problem and

the complexity of its decisional variant.

This observation led Okamoto and Pointcheval [168] to introduce the

Gap Diffie-Hellman assumption that informally states that the CDH

problem remains hard even in the presence of a black box algorithm

solving DDH.

Definition 1.4 ([168]) The Gap Diffie-Hellman problem (GDHP)

in a cyclic group (G, ·) of order q is, given (g, ga, gb) for a, b ∈R Z
∗
q, to

compute gab with the help of an oracle distinguishing the distributions

D1 = {(g, ga, gb, gab)|a, b R← Z
∗
q} and D2 = {(g, ga, gb, gc)|a, b, c R← Z

∗
q}

with probability 1.

Although the intractability of the Gap Diffie-Hellman problem was

much less studied than that of the computational problem, it is believed

to be a reasonable assumption. The results of Maurer and Wolf [141]

show that it holds in a generic model of computation [197].

3. Pairings

This subsection formally defines the tools that will be used by pro-

tocols described throughout this thesis. Those tools have enjoyed a

tremendous interest from the research community. Since the seminal
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paper published by Joux [118] who showed how they yield a one-round

tripartite Diffie-Hellman protocol, pairings have provided a couple of

applications (referenced in [19]) such as identity based encryption [40],

short signatures [43, 37, 227],. . .

3.1. Formal definition of bilinear map groups

Concretely, a pairing is a bilinear map defined over elliptic curve

subgroups. These groups were first thought to be unsuitable for crypto-

graphic purposes because of the Menezes-Okamoto-Vanstone [147] and

Frey-Rück reductions [86] that transform the ECDL problem on a curve

E(Fr) into to a discrete logarithm problem in a small extension Frα of

the base field.

It indeed turns out that pairings are infeasible to compute over sub-

groups of random curves where the parameter α, called “embedding

degree of the group”(i.e. the smallest integer α for which the order q

of the group divides rα − 1), is usually huge. Any elliptic curve group

must have a reasonably small embedding degree α in order for a bilinear

map to be computable on it. Therefore, the MOV and Frey-Rück re-

ductions are both known [146, 86] to take probabilistic polynomial time

over pairing-friendly curves and to eventually provide probabilistic sub-

exponential time algorithms for the ECDLP problem.

Nevertheless, using such curves is now believed to be reasonable if

security parameters are adapted to render infeasible the computation

of logarithms in the related extension field Frα . In 2000, Joux [118]

showed how to employ pairing-friendly curves in his tripartite protocol

and was followed by Boneh and Franklin [40] who showed a concrete

implementation of their identity based encryption scheme using them.

Definition 1.5 Let k be a security parameter and q be a k-bit prime

number. Let us consider groups (G1,+), (G2,+) and (GT , ·) of the same

prime order q and let P,Q be generators of respectively G1 and G2.

We say that (G1,G2,GT ) are asymmetric bilinear map groups if

there exists a bilinear map e : G1 × G2 → GT satisfying the following

properties:

1. Bilinearity: ∀ (S, T ) ∈ G1×G2, ∀ a, b ∈ Z, we have the relation

e(aS, bT ) = e(S, T )ab.

2. Non-degeneracy: ∀ S ∈ G1, e(S, T ) = 1 ∀ T ∈ G2 iff S = 1G1 .
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3. Computability: ∀ (S, T ) ∈ G1×G2, e(S, T ) is efficiently com-

putable.

4. There exists an efficient, publicly computable (but not necessar-

ily invertible) isomorphism ψ : G2 → G1 such that ψ(Q) = P .

Such bilinear map groups are known to be instantiable with ordinary

elliptic curves such as MNT curves [155] or a kind of curves studied by

Barreto and Naehrig [23]. In practice, G1 is a q-order cyclic subgroup

of such a curve E(Fr) while G2 is a subgroup of E(Frα), where α is

the embedding degree of the curve. The group GT is the set of qth

roots of unity in the finite field Frα . In this case, the trace map can

be used as an efficient isomorphism ψ as long as G2 is properly chosen

[203] within E(Frα). It should be noted that some pairing based crypto-

graphic schemes (e.g. [43, 37, 39]) do not explicitly require a computable

isomorphism ψ but their security proof does.

The property of computability is ensured by Miller’s famous and for

a long time unpublished algorithm [152, 153] which will not be detailed

here. In q-order cyclic subgroups of curves of embedding degree α, its

complexity is dominated by O(log q) operations in the extension field

Frα containing the group GT . Computing a pairing is thus significantly

more expensive than computing an elliptic curve scalar multiplication.

Using a naive implementation of Miller’s algorithm, a pairing computa-

tion is more than α2 slower than a scalar multiplication on E(Fr). On

the other hand, a recent paper by Scott [192] showed that most opti-

mized algorithms for an embedding degree α = 2 end up with a running

time which is from twice to four times as long as an RSA decryption.

However, pairing-based cryptographic protocols usually strive to mini-

mize the number of pairing calculations they involve.

Some protocols (such as [99]) need symmetric pairings where G1 =

G2 and ψ is the identity mapping.

Definition 1.6 Let us consider groups (G1,+) and (G2, ·) of the same

prime order q > 2k for a security parameter k ∈ N. We say that (G1,G2)

are symmetric bilinear map groups if there exists a bilinear map

ê : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ P,Q ∈ G1, ∀ a, b ∈ Z, ê(aP, bQ) = ê(P,Q)ab.

2. Non-degeneracy: ∀ P ∈ G1, ê(P,Q) = 1 ∀ Q ∈ G1 iff P = 1G1 .

3. Computability: ∀ P,Q ∈ G1, ê(P,Q) is efficiently computable.
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Those symmetric pairings have the additional commutativity prop-

erty: for any pair P,Q ∈ G1, ê(P,Q) = ê(Q,P ). Admissible symmetric

mappings of this kind can be derived from the Weil and Tate pairings

using special endomorphisms called ‘distortion maps’ that are known

[212] to only exist on a particular kind of curve termed ‘supersingular’

in the literature2.

While supersingular curves probably allow the most efficient imple-

mentations of several protocols (such as [99] for instance), they may be

more susceptible to attacks than ordinary curves. Indeed, several opti-

mization tricks for them [20] require to use fields of small characteristic.

The problem is that MOV and Frey-Rück reductions end up with a dis-

crete logarithm problem in a finite field that is much easier to solve [67]

than in fields of large characteristic and similar size. Such a threat is

usually thwarted by increasing field sizes to maintain a sufficient level

of security. That is why protocols where bandwidth requirements have

to be minimized [43, 37, 39] usually avoid supersingular curves when

possible.

This led several research papers (see [43, 41, 37, 39, 24, 93] for

a few examples) to describe new cryptographic protocols in terms of

asymmetric pairings fitting definition 1.5 and instantiable with ordinary

curves. Although some of these scheme [43, 41, 37, 39, 93] do not ex-

plicitly require the existence of an efficiently computable isomorphism

ψ : G2 → G1, their security proofs need such a mapping to rely on

a fairly natural assumption. Recent results of Smart and Vercauteren

[203] highlighted that, if one is willing to benefit from the most efficient

pairing calculation algorithms for ordinary curves [22], there is no known

choice of groups G2 for which a computable isomorphism ψ : G2 → G1

exists if a hash function H : {0, 1}∗ → G
∗
2 should be able to efficiently

map arbitrary strings onto G
∗
2 (without trivially multiplying a generator

of G2 by a random multiplier) at the same time.

As a result, unless one is willing to accept somewhat unnatural com-

putational assumptions for their security, it is likely that the most prac-

tical way to implement several pairing based protocols (including those

2In fact, a curve E(Fr) is said to be supersingular if its number of points #E(Fr)

is such that t = q + 1 − #E(Fr) is a multiple of the characteristic of Fr.
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of [45, 24, 58, 131, 93]) is to use symmetric pairings. Unless stated other-

wise, the protocols studied in the forthcoming chapters will be described

using the kind of bilinear map groups that we deemed to be the most

appropriate.

3.2. Consequences of pairings

Pairings have important consequences on the hardness of certain

variants of the Diffie-Hellman problem. For instance, symmetric pair-

ings lead to a strict separation between the intractability of the Compu-

tational Diffie-Hellman problem and the hardness of the corresponding

decision problem.

Definition 1.7 The Computational Diffie-Hellman (CDH) prob-

lem in symmetric bilinear map groups (G1,G2) is to compute abP ∈ G1

given (P, aP, bP ) ∈ G
3
1. The Decision Diffie-Hellman (DDH) prob-

lem in symmetric bilinear map groups (G1,G2) is, given (P, aP, bP, cP ) ∈

G
4
1, to decide whether c ≡ ab mod q.

As noted by Joux and Nguyen [119], the DDH problem is easy in any

symmetric bilinear map group. Indeed, to decide whether c ≡ ab mod q

given (P, aP, bP, cP ), it suffices to check whether ê(P, cP ) = ê(aP, bP ).

Galbraith and Rotger [92] recently gave an algorithm to construct dis-

tortion maps and thus groups fitting definition 1.6 for any supersingular

curve. It thus turns out that the DDH problem is easy on all such curves.

On the other hand, the CDH problem is still assumed to be hard on

them where it becomes equivalent to Okamoto and Pointcheval’s Gap

Diffie-Hellman problem [168].

In [43], similar problems were formalized in the setting of asymmetric

bilinear map groups. We note that the hardness of these problems does

not depend on the existence of a computable isomorphism ψ : G2 → G1.

Definition 1.8 ([43]) The Computational co-Diffie-Hellman (co-

CDH) problem in asymmetric bilinear map groups (G1,G2) is to com-

pute abP1 ∈ G1 given (P1, P2, aP1, bP2) ∈ G1 × G2 × G1 × G2. The

Decision co-Diffie-Hellman (co-DDH) problem in asymmetric bi-

linear map groups (G1,G2) is, given (P1, P2, aP1, bP2, cP1) ∈ G1 ×G2 ×

G1 ×G2 ×G1, to decide whether c ≡ ab mod q.
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Similarly to what happens in symmetric pairing groups, the co-DDH

problem is easy in asymmetric bilinear map groups: given as input

(P1, P2, aP1, bP2, cP1), one can decide whether c = ab by checking if

e(aP1, bP2) = e(cP1, P2). According to the terminology of [168], those

groups are called Gap co-Diffie-Hellman groups. In chapter 8, we present

two protocols taking advantage of the separation between the co-DDH

and co-CDH problems.

We finally note that, while the hardness of the co-CDH and co-DDH

problems does not depend on whether an isomorphism ψ : G2 → G1

is computable, the Decision Diffie-Hellman problem in G2 (which is

to decide whether (P2, aP2, bP2, cP2) satisfies c ≡ ab mod q) is easy

whenever such an isomorphism exists. In contrast, very few things are

known about the hardness of the DDH problem in G1 (i.e. distinguish-

ing (P1, aP1, bP1, abP1) from (P1, aP1, bP1, cP1)) in asymmetric bilinear

map groups. Although it appears to be hard as long as ψ : G2 → G1

is computationally one-way (such a requirement may hold for known

instantiations of ψ with the trace map over MNT curves), its possible

intractability was deemed ‘a risky assumption’ in [39]. Leaving the secu-

rity of a cryptosystem rely on it would be hazardous as nothing is really

known on the hardness of the DDH problem on MNT curves defined on

their base field.

3.3. Bilinear map problems

Pairings also have their own related problems. The bilinear Diffie-

Hellman problem was implicitly suggested by Joux in [118] and formal-

ized by Boneh and Franklin [40].

Definition 1.9 ([118, 40]) The Bilinear Diffie-Hellman problem

(BDHP) in symmetric bilinear map groups (G1,G2) is to compute

ê(P, P )abc ∈ G2 given (P, aP, bP, cP ) ∈ G
4

1 .

The co-Bilinear Diffie-Hellman problem (co-BDH) in asymmet-

ric bilinear map groups (G1,G2,GT ) is to compute e(P1, P2)
abc ∈ GT

given (P1, aP1, bP1) ∈ G
3

1 and (P2, aP2, cP2) ∈ G
3

2 .

These problems have both decisional counterparts (called DBDHP

and co-DBDHP for short) which respectively consist in distinguishing
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between the distributions

D1 := {(P, aP, bP, cP, ê(P, P )abc)|a, b, c R← Z
∗
q}

D2 := {(P, aP, bP, cP, ê(P, P )z)|a, b, c, z R← Z
∗
q}

in symmetric bilinear map groups and

D1 := {(P1, aP1, bP1, P2, aP2, cP2, e(P1, P2)
abc)|a, b, c R← Z

∗
q}

D2 := {(P1, aP1, bP1, P2, aP2, cP2, e(P1, P2)
z)|a, b, c, z R← Z

∗
q}

in asymmetric ones. The BDHP was used by Boneh and Franklin [40]

to prove the security of their identity based encryption scheme. Its in-

tractability as well as the hardness of the DBDHP are also necessary

conditions for the security of Joux’s tripartite protocol. Both assump-

tions were used to prove the security of many cryptographic construc-

tions such as [7, 49, 35, 36, 45, 217].

4. Security models for public key cryptography primitives

The present section intends to recall formal models that are com-

monly believed to be required for public key encryption schemes and

digital signatures. The first known methods to construct those primi-

tives were the RSA [187] and Rabin [184] trapdoor functions that were

recalled in the introduction of this chapter. As we will see, those mathe-

matical tools alone do not suffice to provide cryptographic constructions

reaching the required security levels.

4.1. Security notions for public key encryption

Formally, a public key encryption scheme is a triple (K, Epk,Dsk)

where K(.) is a probabilistic key generation algorithm returning key

pairs (pk, sk) on input of a security parameter k, Epk(.) is an (ideally

probabilistic3) encryption algorithm producing ciphertexts from plain-

texts (and optionally some randomness) while Dsk(.) is the determinis-

tic decryption algorithm that, on input of a ciphertext, either returns

a plaintext or the special symbol ⊥ if no plaintext corresponds to the

ciphertext.

3As the rest of this thesis always considers probabilistic encryption algorithms,

the notation Epk(m, r) shall always denote the result of encrypting the message m

using the randomness r
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The weakest security requirement for a public key encryption scheme

is to be computationally one-way: given an encryption c = Epk(m) under

a public key pk of some messagem, it should be infeasible to findm with-

out the private decryption key sk. Encryption schemes satisfying this

(very weak) criterion are said to be one-way against chosen-plaintext at-

tacks (OW-CPA) and the plain RSA encryption scheme where Epk(m) =

me mod N is believed to be so. This security level is definitely not suf-

ficient in practice: from an information theoretic point of view, cipher-

texts are generally required not to reveal any bit of information about

the clear message. It should even be infeasible to decide whether or not

a ciphertext is an encryption of a given plaintext. That is why schemes

such as the one of Goldwasser and Micali [90] wherein encryption algo-

rithms are probabilistic provide more security than deterministic ones.

We here recall the definitions of semantic security [90] and adaptive

chosen-ciphertext security [185] for probabilistic public key encryption

schemes. Both notions are formalized by a so-called “find-then-guess”

game where an adversary runs in two stages.

Definition 1.10 A public key encryption scheme (K, Epk,Dsk) is se-

cure against chosen-plaintext attacks (or has the IND-CPA security also

called semantic security) if no probabilistic polynomial time (PPT) ad-

versary has a non-negligible advantage in the game below:

1. Given k, the challenger CH runs the key generation algorithm

K(k) to obtain a key pair (pk, sk). The adversary A is given

the public key pk while the private key sk is kept secret.

2. (find stage) A outputs two messages m0,m1 and gets a cipher-

text C∗ = Epk(mb), for a random b R← {0, 1} chosen by CH.

3. (guess stage) A eventually outputs a bit b′ and wins if b′ = b.

Her advantage is

Advind-cpa(A) := 2× Pr[b′ = b]− 1

where the probability is taken over the random choices of the

challenger and the adversary.

The above definition intuitively captures the requirement that a ci-

phertext should reveal no information (not even a single bit) about the

plaintext to the adversary in the sense that she should be unable to
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distinguish which element of a very small plaintext set (of say two el-

ements) corresponds to a given ciphertext. The basic “textbook” RSA

encryption scheme obviously fails to reach this security level because it

is deterministic and deciding which plaintext is encrypted by a given

ciphertext is easy.

In realistic situations, adversaries might obtain information by ob-

serving plaintexts associated with particular ciphertexts. The previous

model is thus believed to need some enhancements consisting in provid-

ing the adversary with a black box Dsk(.) which is a decryption oracle

extracting plaintexts from adversarially chosen ciphertexts. The result-

ing strengthened model is formalized by the following definition.

Definition 1.11 ([185]) A public key encryption scheme (K, Epk,Dsk)

is secure against adaptive chosen-ciphertext attacks (or has the IND-

CCA2 security) if no probabilistic polynomial time (PPT) adversary has

a non-negligible advantage in the game below:

1. Given k, the challenger CH runs the key generation algorithm

K(k) to obtain a key pair (pk, sk). The adversary A is given

the public key pk while the private key sk is kept secret.

2. (find stage) A is given access to a decryption oracle Dsk(.)

which, given a ciphertext C returns a plaintext m or a rejec-

tion message ⊥. She may present her queries adaptively: each

decryption request may depend on the obtained answers for pre-

vious ones. At some point, she outputs two messages m0,m1

and gets a ciphertext C∗ = Epk(mb), for b R← {0, 1}.

3. (guess stage) A issues new decryption queries on any ciphertext

but C∗. She eventually outputs a bit b′ and wins if b′ = b. Her

advantage is

Advind-cca(A) := 2× Pr[b′ = b]− 1

where the probability is taken over the random choices of both

A and the challenger.

The above definition obviously only makes sense if the adversary

is prohibited from requiring the decryption of the challenge ciphertext

C∗ during the guess stage. This model was introduced by Rackoff and

Simon [185] as an extension of the weaker notion of security against non-

adaptive attacks (or IND-CCA1 security) that were initially considered
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by Naor and Yung [162]. In these weaker attacks, adversaries are re-

stricted to only issue decryption queries before receiving the challenge

ciphertext. The latter non-adaptive security level was studied in 1990

as an enhancement of the notion of semantic security.

In order to give a concrete example of a cryptosystem that is secure

in the sense of definition 1.10 but not in the scenario of definition 1.11,

we mention the El Gamal encryption scheme [96] where ciphertexts have

the form 〈gr,m · yr〉, where g is the generator of a prime order group

G and (y = gx, x) is the public/private key pair. Its semantic security

is known [210] to be equivalent to the decision Diffie-Hellman (DDH)

assumption if the message m is encoded as a group element (if G = 〈g〉

is a q-order subgroup of Z
∗
p, leaving plaintexts lie in Z∗

p\G would be

insecure as A could simply win the game of definition 1.10 by choosing

m0 as a square in Z
∗
p and m1 as a non-square). On the other hand, the

system is trivially insecure against adaptive chosen-ciphertext attacks.

Indeed, a given challenge ciphertext C = 〈c1, c2〉 can be turned into an-

other encryption of the same message C ′ = 〈c1 ·g
r′ , c2 ·y

r′〉 (for a random

r′ R← Z) that an IND-CCA2 adversary can submit as a legal decryption

query during the guess stage. This example illustrates the power granted

to adversaries by leaving them access to the decryption oracle through-

out the guess stage. The actual status of El Gamal against IND-CCA1

attacks is unknown.

In 1998, Bellare et al. [27] gave evidence that, in an adaptive chosen-

ciphertext scenario where attackers may issue post-challenge decryption

queries, the indistinguishability (IND-CCA2) property is equivalent to

the non-malleability [83] (NM-CCA2) which is the computational infea-

sibility of turning a ciphertext into another one encrypting the same

plaintext (as in the aforementioned attack against El Gamal) or a dif-

ferent plaintext which satisfies some known relation w.r.t. the first one.

4.2. Security notions for digital signatures

Digital signatures are the electronic counterpart of handwritten sig-

natures for digital documents. They should be devised in such a way

that changing a single bit to either m or s in a message-signature pair

(m, s) renders this pair invalid.

More formally, a digital signature is a triple (K,Ssk,Vpk) where K(.)
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is a probabilistic key generation algorithm returning key pairs (pk, sk)

on input of a security parameter k, Ssk(.) is a (possibly probabilistic)

signature issuing algorithm and Vpk(.) is the deterministic signature ver-

ification algorithm that, on input of a message m and a purported sig-

nature σ, returns either 1 or 0 depending on whether the signature is

accepted or not.

Attacks against digital signature schemes can be classified according

to the goals of the adversary and to the resources that she can use. The

goals are diverse and include:

- Disclosing the private key of the signer. This is the most drastic

attack. It is called a total break.

- Constructing an efficient algorithm that is able to sign any mes-

sage without the private key with a significant probability. This

is called a universal forgery attack.

- Finding a single message/signature pair. This is called the

existential forgery.

Proper digital signature algorithms should be immune even to existential

forgeries. The basic RSA signature scheme where signatures are com-

puted as σ = md mod N using the private exponent d are not secure

against existential forgeries as anyone can simply choose σ R← Z
∗
N and

compute a matching message m = σe mod N to obtain an existential

forgery (m,σ). In order to obtain existentially unforgeable signatures

from the RSA permutation, a suitable pre-processing (such as the Full

Domain Hash and Probabilistic Signature Schemes described in [31]) in-

volving hash functions should be applied to the message.

Regarding adversarial resources, three different attack scenarii exist.

The weakest one is the no-message attack (NMA) wherein attackers only

know the public key pk of the signer. In the second, the attacker has ac-

cess to a list of valid message/signature pairs which she does not choose:

the list contains messages randomly and uniformly chosen. This attack

is termed random-message attack (RMA). The strongest attack scenario

provides an attacker with an oracle producing signatures on arbitrary

messages of her choice. Her endeavour, termed adaptive chosen-message

attack, is to produce an existential forgery on a message for which she

never obtains a signature from the oracle. This next definition formalizes



5. PROVABLE SECURITY 25

the de facto model of existential unforgeability against chosen-message

attacks introduced by Goldwasser, Micali and Rivest [105].

Definition 1.12 A digital signature scheme (K,Ssk,Vpk) is secure against

existential forgery against chosen-message attacks (or has the EUF-

CMA secure) if no PPT adversary F has a non-negligible advantage

in the game below:

1. Given k, the challenger CH runs the key generation algorithm

K(k) to obtain a key pair (pk, sk). The forger F is given the

public key pk while the challenger keeps sk to itself.

2. F is given access to a signature oracle Ssk(.) which, given a

message m returns a signature computed on m using the private

key sk. She may present her queries adaptively: each signing

query may depend on the results of previous ones.

3. F outputs a pair made of a message m and a purported signa-

ture σ on m. She wins the game if the verification algorithm

Vpk(.) returns 1 for the pair (m, s) and m was never the input

of a signing query during the game. Her advantage is defined as

her probability of victory taken over her coin tosses and those

of the challenger.

We also mention the existence of a stronger form of existential un-

forgeability introduced in [9] and only useful for some specific applica-

tions. In this model, the forger is allowed to produce a signature σ on

a message previously queried to the signing oracle. The restriction is

that the pair (m,σ) must differ from all pairs produced by the signing

oracle at stage 2. However, the standard form of existential unforgeabil-

ity against chosen-message attacks is widely believed to be sufficient for

most practical applications.

5. Provable security

Along the ever-increasing interest of the research community in pub-

lic key cryptography, there has been a graduate evolution tending to a

necessity to provide security proofs for asymmetric cryptosystems in

the sense that the existence of an attacker against them would imply a

probabilistic polynomial time algorithm to solve a hard number theoretic
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problem. The commonly assumed intractability of the latter implies the

non-existence of the attacker.

5.1. Hash functions

Hash functions are one of the most fundamental tools in cryptog-

raphy. They essentially allow to produce digests of fixed length from

arbitrary sequences of bits. They can very efficiently map strings of

(ideally) arbitrary length onto elements of particular encodings such as

finite field elements or elliptic curve points. Except when their range

has a special algebraic structure (such as the cyclic subgroup of a finite

field or an elliptic curve), they can be implemented much more efficiently

than even simple arithmetic operations such as a modular exponentia-

tion.

Those functions are obviously not injective (their range being usually

much smaller than their domain). Nevertheless, they must be devised in

such a way that finding collisions (that is two domain elements having

identical images) is computationally infeasible. More precisely, a hash

function h : {0, 1}∗ → {0, 1}ℓ must have the following properties, the

strongest of those being the last one.

(1) Pre-image resistance: given x ∈ {0, 1}ℓ it should be infeasible

to find an element m ∈ {0, 1}∗ such that x = h(m).

(2) Second pre-image resistance: given m ∈ {0, 1}∗, it must be

computationally infeasible to find m′ 6= m ∈ {0, 1}∗ such that

h(m) = h(m′).

(3) Collision resistance: it should be computationally infeasible to

find a pair m,m′ ∈ {0, 1}∗ such that h(m) = h(m′).

The design of hash functions fitting the above constraints is highly non-

trivial. The last few months saw the discovery of several attacks against

widely employed hash functions. The very popular MD-5 [188], and

SHA-1 [164] hashing algorithms were very recently proved [216, 215] not

to be collision resistant.

5.2. The random oracle model

In 1993, motivated by the perspective of proving the security of ef-

ficient protocols, Bellare and Rogaway introduced the random oracle
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model [29] that was previously implicitly suggested in [84]. In this com-

putational model, hash functions are used as black box by attackers for

whom they are indistinguishable from perfectly random functions. For

completeness, we here recall a definition taken from [29].

Definition 1.13 Formally, a random oracle R is a map from {0, 1}∗

to {0, 1}∞ chosen by selecting each bit of R(x) uniformly and indepen-

dently, for every x. Of course no actual protocol uses infinitely long out-

puts, this just saves us from having to say how long “sufficiently long” is.

When restricting ourselves to functions of fixed-length ranges, a random

oracle H : {0, 1}∗ → {0, 1}k is a random hash function of range {0, 1}k

and the domain of which is a set of strings of variable lengths.

In reductionist security proofs, the output of a random oracle is un-

predictable by an adversary. The latter is thus provided with an oracle

access to random oracles: whenever she wants to know the value of a

hash function at some point of its domain, she has to explicitly query

an oracle producing a random output for each new input4.

In security reductions, the behaviour of these oracles is simulated by

an algorithm attempting to solve a random instance of a hard number

theoretic problem. Random oracles are indeed “programmed” in such

a way that parts of the random-looking inputs of the hard problem are

passed to the adversary with the hope that the latter’s result will yield

the searched solution. This model of computation thus allows additional

degrees of freedom in security proofs.

Although it is well known that security in the random oracle model

does not imply security in the real world as showed by several papers

(see [48] or [26] for instance) exhibiting pathological cases of provably

secure schemes for which no secure implementation exists, it still seems

to be “a good engineering principle” to give security proofs ‘at least’ in

the random oracle model when proposing a new asymmetric cryptosys-

tem. It gives heuristic arguments rather than formal proofs that the

protocol is not inherently flawed.

4When multiple random oracles are involved in a protocol, all of these have to

be independently selected. Simple natural encodings provide as many independent

random oracles as needed from a single one.
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6. The standard model

Several cryptographic protocols do not employ random oracles and

have security proofs “in the real-world”, but their security usually relies

on stronger assumptions and/or they are computationally more expen-

sive than random oracle-using schemes. The most famous and practical

secure constructions in the standard model are the Cramer-Shoup pub-

lic key encryption [71, 74] and signature schemes [72] and the short

signatures of Boneh and Boyen [37]. The early nineties saw other cryp-

tosystems such as the one of Dolev, Dwork and Naor [83] that are also

provably IND-CCA2 in the standard model but they are too inefficient

to be used in practice. The Cramer-Shoup proposal was the first fairly

efficient one but it is still more than twice slower than El Gamal [96].

Its generalization [73] and the variant given by Kurosawa and Desmedt

[123] are also expensive. The Cramer-Shoup signature [72] has a secu-

rity proof under a stronger assumption than the hardness of inverting

the RSA function and it is also twice slower than RSA-based signature

schemes in the random oracle model [31]. Finally, the Boneh-Boyen sig-

nature scheme [37] enjoys a great efficiency for a construction that is

provably secure in the standard model (a signature generation requires

a single elliptic curve scalar multiplication whereas a verification entails

a single pairing computation). Nevertheless, its security relies on a new

strong Diffie-Hellman-related assumption which we also use in chapter 8.

Regarding provable security in the standard model, we also mention

a certain form of identity based encryption schemes [195, 40] that can

be transformed into public key encryption which are provably secure

against chosen-ciphertext attacks in the standard model. More details

about them will be given in the next chapter.



CHAPTER 2

Identity based cryptography

Abstract. We give formal definitions of identity based encryp-

tion and signature schemes. We provide motivations for the

concept as well as several examples of constructions and discuss

their efficiency.

1. Introduction

Since the appearance of public key cryptography in 1976, the threat

of “man-in-the-middle attacks” has been a great concern for the research

community that was led to devise certification methods to provide users

with confidence in the authenticity of public keys they are using. These

guarantees took the form of digital certificates signed by trusted enti-

ties called Certification Authorities (CAs) which aimed at vouching for

the fact that a given public key actually belongs to its alleged owner.

It was the birth of Public Key Infrastructures (PKIs) that deployed

mechanisms to manage these digital certificates throughout the lifetime

of their corresponding keys. Unfortunately, these certificate-based in-

frastructures turned out to be very heavy to deploy, cumbersome to

use and non-transparent for the end-user. Indeed, trust problems arise

when a digital certificate is signed by an authority whose public key

is not already trusted by the user of the certified public key: in such

a case, the user is led to validate an entire chain of digital certificates

before acquiring confidence in the authenticity of a given key and, fur-

thermore, finding such a chain of certificates between the enquired key

and a trusted one is not a trivial problem. The treatment of certifica-

tion paths has also been a critical issue in PKIs and softwares like web

browsers are sometimes unable to deal with it. This might incur real

security concerns at the establishment of an SSL connection, when the

certificate of the server has to be validated by the client’s browser.

29
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Other problems with PKIs is the fact that certificates are not deliv-

ered for free in many situations and their cost is making public key own-

ers reluctant to enquire for them and, from a robustness point of view,

their lack of fault tolerance: when a private key exposure happens, no

easy solution allows to repair it nor to limit the damage it involves: the

corresponding certificate must be invalidated by using black lists called

Certificate Revocation Lists (CRLs) that must be periodically checked

by users who want to ensure that the key they are about to use has not

been compromised.

In order to bypass the trust problems encountered in conventional

Public Key Infrastructures, Shamir introduced in 1984 [195] the con-

cept of identity based cryptography where a public key can be a binary

string identifying its owner non-ambiguously (e.g. an e-mail address, an

IP address combined to a user-name, a social security number,...). The

motivation of this kind of scheme was to simplify key management and

remove the need of public key certificates as much as possible: since

a key is the identity of its owner, there is no need to bind them by a

digital certificate and a public repository containing a list of user names

and their associated public keys becomes useless since public keys are

human-memorizable. End users do not have to enquire for a certificate

for their public key. The only things that still must be certified are the

public keys of trusted authorities called private key generators (PKGs)

that have to generate private keys associated to users’ identities thanks

to their secret key (unlike conventional public key schemes, users do not

generate their key pair themselves). This does not completely remove

the need of certificates but, since many users depend on the same au-

thority, this need is drastically reduced.

One inconvenience of these systems is their inherent key escrow fea-

ture. Indeed, since trusted authorities called private key generators

(PKGs) have to deliver private keys to users after having computed

them from their identity information and from a master secret key, these

PKGs are able to sign messages on behalf of or to decrypt ciphertexts

intended to any user depending on them. This key escrow property led

the research community to investigate alternative paradigms keeping the

advantages of identity based cryptography without involving an author-

ity in which a too great amount of confidence must be invested. Among

others, we mention the works of Girault [101], Brown et al. [46] and,
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more recently, Gentry [98] and Al-Riyami-Paterson [6]. The last model

will be discussed further in chapter 4.

Several practical solutions for identity based signatures (IBS) rapidly

appeared after 1984 [84, 106, 190] but finding a practical identity based

encryption scheme (IBE) remained an open challenge until 2001 de-

spite some attempts [77, 143, 115, 211, 209]. The latter proposals either

require tamper-proof hardware, expensive private key generation oper-

ations for PKGs or end-users who are assumed not to collude to expose

the authority’s master key. The first practical construction came in 2001

when Boneh and Franklin [40] proposed to use pairings to achieve an

elegant identity based encryption method. Another one was suggested

by Cocks [66] the same year. This second method relies on simpler

mathematics but, as we will see, it turns out to be much less practical

regarding the size of ciphertexts.

Other identity based signature and key agreement schemes based on

pairings were proposed after 2001 ([51],[202],[111],. . . ). We also mention

the existence of many other proposals of identity based cryptographic

protocols from pairings. They are not discussed here but are referenced

in [19].

In this chapter, section 2 formally defines the concepts IBE and

IBS schemes. The famous Boneh-Franklin pairing based IBE scheme

is described in section 3. Section 4 then gives two example of identity

based protocols which do not use pairings but rather simple modular

arithmetic operations. For completeness, section 5 then discuss the hi-

erarchical extension of the concept of identity based encryption. Some

recent results about provably secure identity based encryption in the

standard model are finally summarized in section 6.

2. Components of identity based cryptosystems

We here recall the formalism introduced in [40] for identity based

encryption. Such a primitive consists of the following algorithms.

Setup: is a probabilistic algorithm run by a private key generator

(PKG) that takes as input a security parameter to output a

public/private key pair (Ppub,mk) for the PKG (Ppub is its pub-

lic key and mk is its master key that is kept secret).
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Keygen: is a key generation algorithm run by the PKG on input of a

master key mk and a user’s identity ID to return the user’s

private key dID.

Encrypt: this probabilistic algorithm takes as input a plaintext M, a

recipient’s identity ID and the PKG’s public key Ppub to output

a ciphertext C.

Decrypt: is a deterministic decryption algorithm that takes as input a

ciphertext C and the private decryption key dID to return a

plaintext M or a distinguished symbol ⊥ if C is not a valid

ciphertext.

In the case of identity based signatures, the last two algorithms are

Sign: given a message M, the PKG’s public key and a private key dID,

the signature generation algorithm generates a signature on M.

Verify: is a signature verification algorithm that, given an alleged sig-

nature σ on a message M for an identity ID, outputs either 1

or 0 depending on whether the signature is acceptable or not.

3. The Boneh-Franklin identity based encryption scheme

Figure 2.1 describes the simplest version of the scheme. This version

is only provably secure against chosen-plaintext attacks and has some

similarities with El Gamal’s cryptosystem [96]. Boneh and Franklin

showed that applying the Fujisaki-Okamoto generic transformation [89]

allows turning this basic scheme into a chosen-ciphertext secure one in

an extended security model (detailed in chapter 3).

3.1. The scheme

The consistency is easy to check: if the sender correctly encrypted

the message, we have U = rP and

ê(U, dID) = ê(rP, sQID) = ê(Ppub, QID)r = grID.

Boneh and Franklin [40] proved in the random oracle model that,

when padded with the Fujisaki-Okamoto transformation [89], the above

scheme is secure against adaptive chosen-ciphertext attacks if the Bi-

linear Diffie-Hellman problem is hard (although a flaw in the security

reduction was recently discovered and fixed in [93]).

The crucial information is the PKG’s master key: all the system’s
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Setup: given a security parameter k, the PKG chooses symmetric bilinear

map groups (G1,G2) of prime order q > 2k, a generator P of G1,

a master key s ∈ Z
∗
q and the associated public key Ppub = sP .

The plaintext space is M = {0, 1}n for a fixed n while C = G
∗
1 ×

{0, 1}n is the ciphertext space. Hash functions H1 : {0, 1}∗ →

G
∗
1 and H2 : G2 → {0, 1}

n are also chosen. The system public

parameters are

params = (G1,G2, ê, n, P, Ppub,H1,H2).

Keygen: given identity ID ∈ {0, 1}∗, the PKG computes QID = H1(ID) ∈

G1 and dID = sQID ∈ G1 that is given to the user as a private key.

Encrypt: to encrypt a message M ∈ M, the sender uses the recipient’s

public identifier QID = H1(ID) ∈ G1 as follows:

(1) He/she picks a random r ∈ Z
∗
q .

(2) He/she computes gID = ê(Ppub, QID) ∈ G2.

The ciphertext C = 〈rP,M ⊕H2(g
r
ID)〉 is sent to the receiver.

Decrypt : given a ciphertext C = 〈U, V 〉, the receiver uses his/her private

key dID to decrypt by computing M = V ⊕H2(ê(U, dID)).

Figure 2.1. The BasicIdent scheme

privacy is compromised if that master key is ever stolen by an attacker.

In order to avoid having a single point of failure and remove the built-in

key escrow, Boneh and Franklin showed it was possible to split the PKG

into several partial PKGs in such a way that these partial PKGs jointly

generate a discrete logarithm key pair in a threshold fashion and each

of them eventually holds a share of the master key. Users then have to

visit a minimum of t-out-of-n honest PKGs to obtain a share of their

private decryption key. These shares can then be recombined into a full

decryption key thanks to a Lagrange interpolation as in Shamir’s secret

sharing scheme [194]. An alternative to this approach was suggested by

Chen et al. [57] who imagined a setting with n different PKGs, each

having their own master key/public key pair and issuing private keys

associated to users’ identities independently: a user’s full private key

was simply the sum of the n received independent private keys while the

full public key of the scheme was the sum of the n PKGs’ public keys.
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3.2. Any IBE implies a digital signature

As explained in [40], any IBE system can be generically turned into

a signature scheme where a signature σ on a message M is simply the

private key (computed according to the Keygen algorithm) for the iden-

tity M (the public key being the system-wide public key Ppub). It can

be verified by simply encrypting a random message M ′ under Ppub for

the identity M and the signature is accepted if the obtained ciphertext

decrypts into M ′ when using σ as a decryption key.

The verification algorithm is thus somewhat surprisingly probabilis-

tic. Nevertheless, the description of the signature scheme can here be

re-written in such a way that a signature σ = sH1(M) ∈ G1 can be

verified by checking that ê(P, σ) = ê(Ppub, H1(M)) where s is the pri-

vate key and Ppub plays the role of the public key. When implemented

with asymmetric bilinear map groups over MNT curves [155], the latter

signature algorithm is nothing but the Boneh-Lynn-Shacham signature

[43] that provides signatures as short as 171 bits for the same security

level as 320-bit Schnorr signatures [191].

3.3. Another pairing-based IBE

In 2003, Sakai and Kasahara [189] suggested a different IBE scheme

using bilinear maps. In the simplest description of their scheme, the

private key associated to an identity ID is dID = (1/(s+h1(ID)))P , where

s is the master key and h1 : {0, 1}∗ → Z
∗
q denotes a hash function. The

key extraction algorithm implicitly defines a signature scheme where

signatures can be verified by checking that ê(h1(ID)P + Ppub, dID) =

ê(P, P ). The security of this signature scheme was proved by Boneh

and Boyen [37] and independently by Zhang et al. [227].

Their IBE system encrypts ciphertexts having the form

C = 〈U, V 〉 = 〈rh1(ID) + rPpub,M ⊕ h2(ê(P, P )r)〉

for a random r ∈ Z
∗
q . The plaintext can be recovered by computing

M = V ⊕ h2(U, dID). The scheme has the advantage not to involve a

pairing calculation in the encryption algorithm (as ê(P, P ) can be in-

cluded among the system-wide public parameters) nor to hash identities

onto a cyclic elliptic curve subgroup: it only uses (more efficient) stan-

dard hash functions having a finite field as a range.
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On the other hand, the security of the Sakai-Kasahara IBE relies on

a stronger computational assumption than the BDH assumption. This

stronger assumption will also be used in chapters 4 and 7 of this thesis.

A security proof was given by Chen and Cheng [55] who adapted the

techniques of Boneh-Boyen [37, 35] in a fairly straightforward manner.

4. Identity based schemes from simple modular arithmetic

This section shows that identity based schemes can be devised with-

out pairings by presenting two simple examples: the Guillou-Quisquater

[106] IBS and Cocks’s IBE scheme [66]. Both are obtained from modu-

lar arithmetic and their security relies on the intractability of factoring

large integers. The first one uses the RSA trapdoor permutation while

the second one is based on quadratic residues.

4.1. The Guillou-Quisquater signature scheme

This scheme is derived from a three round identification scheme. It

was proposed in 1988 and is depicted in figure 2.2.

To verify the consistency of the scheme, we note that

u ≡ seIℓ ≡ (kaℓ)eIℓ ≡ ke(aeI)ℓ ≡ ke ≡ r (mod n).

Hence u = r and then h(m‖u) = h(m‖r). This signature scheme is ob-

tained from the Guillou-Quisquater identification protocol (GQ) using

the Fiat-Shamir heuristic [84]1. That is why the output of the hash

function h must be smaller than e (the set of challenges is Ze in the

underlying identification protocol).

The public exponent is taken as a prime for provable security pur-

poses. The redundancy function R can be instantiated with a hash

function. It aims at preventing attacks that could take advantage of

multiplicative relations between identities. In order to avoid birthday

1A canonical 3-move identification scheme is a protocol (between a prover and

a verifier) producing transcripts (Cmt, Ch, Rsp) which are “proofs of knowledge” of a

private key sk. They are made of a commitment Cmt computed by the prover using a

secret value r, a challenge Ch sent by a verifier and a response Rsp computed by the

prover using the secret value r, the challenge and his private key sk. The transcript is

validated (or rejected) by the verifier using the public key pk of the prover. The Fiat-

Shamir heuristic turns such an interactive proof into a signature scheme by setting

the challenge Ch as a hash value of the message to sign and the commitment Cmt.
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Setup: given a security parameter k0, the private key generator (PKG)

picks two k0/2-bit primes p and q and computes n = pq. It also

picks a prime number e ∈ Zϕ(n) such that gcd(e, ϕ(n)) = 1 and

chooses a cryptographic hash function h :→ Ze and a redundancy

function R : {0, 1}∗ → Z
∗
n. The pair (n, e) is its public key while

the pair (p, q) is kept secret and is its master key. The public

parameters are

params := {k0, n, e, R, h}

Keygen: given a user’s identity ID, the PKG computes I = R(ID) ∈ Z
∗
n and

a ∈ Z
∗
n such that Iae ≡ 1 (mod n). The obtained a is returned

to the user as a private key.

Sign : given a message M , the signer does the following:

(1) Pick a random k ←R Z
∗
n and compute r = ke mod n

(2) Compute ℓ = h(M‖r) ∈ Ze

(3) Calculate s = kaℓ mod n

The signature on m is the pair (s, ℓ)

Verify: : to verify a signature (s, ℓ) on M ,

(1) Compute I = R(ID) from the signer’s identity ID.

(2) Compute u = seIℓ mod n.

(3) Accept the signature if ℓ = h(M‖u) .

Figure 2.2. The GQ-IBS scheme

attacks on the hash function, it is recommended to use public exponents

e of at least 160 bits (in the corresponding identification scheme, shorter

exponents are allowed). The security parameters should be at least 1024

or 2048 to avoid attacks trying to factor the modulus.

The GQ signature scheme can be proved to be existentially unforge-

able provided it is hard to invert the RSA function by using the proof

technique of Pointcheval and Stern [182, 183]. The security of the under-

lying identity based identification (IBI) protocol was studied by Bellare,

Namprempre and Neven [28] in a suitable model of security for IBI

schemes.

From a general point of view, all identity based signatures can be

viewed as non-interactive proofs of knowledge of a signature on a message

which is nothing but the signer’s identity. In the present case, the GQ

signature scheme is a non-interactive proof of knowledge of an RSA sig-

nature. Many pairing-based IBS schemes are rather proofs of knowledge
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of a Boneh-Lynn-Shacham [43] signature on the signer’s identity.

The GQ scheme is one of the most efficient known identity based sig-

natures. Several other known IBS (see [33, 84, 170, 85, 28] for instance)

have a comparable efficiency as they only use simple arithmetic opera-

tions. In contrast, the only known reasonable proposal of IBE system

using such simple mathematics was discovered by Cocks [66] in 2001. It

unfortunately suffers from being highly bandwidth-consuming as bits of

plaintext have to be separately encrypted. This prevents it from being

really usable in practice. This illustrates that IBE systems are generally

harder to construct than IBS schemes.

4.2. Cocks’s IBE

This encryption scheme was discovered by Cocks [66] roughly at the

same time as the Boneh-Frankin IBE. It is based on quadratic residues

and on the properties of the Jacobi symbol for Blum integers (i.e. com-

posite numbers n that are a product of two primes p and q such that

p ≡ q ≡ 3 (mod 4). The signature scheme that is implicitly used in the

private key extraction algorithm is a Rabin-type [184] signature.

For encrypting 128-bit symmetric keys, the scheme is reasonably

computationally cheap: the sender’s computing time is dominated by

2× 128 Jacobi symbol evaluations and 2× 128 modular inversions. The

receiver just has to compute 128 Jacobi symbols since he/she knows

which of a or −a is the square of his/her private key. The drawback of

the scheme is its bandwidth overhead: for a 1024-bit modulus n and a

128-bit symmetric transport key, at least 2×16 Kb need to be transmit-

ted if all encrypted key bits are sent together. Ciphertexts are eventually

2048 times longer than encrypted symmetric keys.

Cocks did not give a security proof in a formal model but informally

showed that his construction is secure against chosen-plaintext attacks

under the Quadratic Residuosity Assumption (i.e. the hardness of de-

ciding whether or not a random integer a such that
(

a
n

)

= 1 is a square

or not).
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Setup: the PKG picks prime numbers p and q such that p ≡ q ≡ 3 (mod 4),

computes their product n = pq that is made public together with

a hash function H : {0, 1}∗ → Z
∗
n. The PKG’s master key is (p, q).

Keygen: given an identity ID, the PKG computes a chain of hash values

starting from ID until obtaining a = H(H(H . . . (ID))) ∈ Z
∗
n such

that
(

a
n

)

= 1. For any such a ∈ Z
∗
n, either a or −a is a square in

Z
∗
n. It is easy to verify that r = a

n+5−(p+q)
8 mod n satisfies a =

r2 mod n or a = −r2 mod n depending on whether
(

a
p

)

=
(

a
q

)

= 1

or
(

a
p

)

=
(

a
q

)

= −1. The obtained r is returned to the user as a

private key.

Encrypt: the sender A ignores which of a or −a is a square in Z
∗
n. We first

assume we are in the case a = r2 mod n. A generates a symmetric

transport key K and encrypts the plaintext M with it. Each bit

x of that symmetric key is then encrypted before being sent to

the receiver B. To do this, A encodes x in {−1, 1} rather than in

{0, 1} and does the following.

(1) Pick a random t ∈ Z
∗
n such that

(

t
n

)

= x.

(2) Compute s = (t+ a
t
) mod n (since

(

t
n

)

6= 0, t is invertible in

Zn) and send it to B.

Since A does not know which of a or −a is the square of B’s

decryption key, A has to repeat the above process for a new t

and, this time, send s = (t− a/t) mod n. Hence, 2|n| bits, where

|x| denotes the bitlength of x, have to be transmitted for each bit

of the symmetric key.

Decrypt: B recovers x as follows. Given that

t(1 + r/t)2 ≡ t+ 2r +
r2

t
≡ t+ 2r +

a

t
≡ s+ 2r (mod n),

B can compute
(

s+2r
n

)

=
(

t
n

)

= x and recover x using his/her

private key r thanks to the multiplicative properties of the Ja-

cobi symbol. Once the symmetric key K is obtained in clear, the

ciphertext can be decrypted.

Figure 2.3. The Cocks IBE scheme

5. Hierarchical identity based cryptography

A shortcoming of the Boneh-Franklin IBE is that in a large network,

the PKG’s key generation task rapidly becomes a bottleneck when many

private keys have to be computed and secure channels have to be estab-

lished to transmit them to their legitimate owner. To overcome this
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problem, a solution is to set up a hierarchy of PKGs in which each PKG

only computes private keys for entities (other PKGs or end-users) im-

mediately below it in the hierarchy. In such hierarchies, entities are rep-

resented by a vector of identifiers (i.e. a concatenation of their identifier

to those of all their ancestors’ ones: for example a child of 〈ID1, . . . , IDi〉

has an address 〈ID1, . . . , IDi, IDi+1〉) instead of a single identifier as in

the Boneh-Franklin scheme.

5.1. The Gentry-Silverberg hierarchical scheme

In figure 2.4, we give an example, proposed by Gentry and Silverberg

[99], of such a hierarchical IBE (HIBE) that can be viewed as a scalable

extension of Boneh and Franklin’s proposal (both schemes are identical

if the hierarchy has a single level). Unlike another 2-level hierarchical

scheme proposed by Horwitz and Lynn [113], this one supports multiple

levels. Lower-level PKGs (i.e. PKGs other than the Root PKG located

at the top of the hierarchy) generate private keys for their children by

using some information coming from their ancestors together with a

private information that is only known to them. Each of them then

adds some information to the secret parameters of their children.

In our notation, Leveli is the set of entities at level i, Level0 denotes

the sole Root PKG. The simplified version of the scheme is made of the

following algorithms.

The consistency of the scheme follows from the following equations:

ê(U0, St) = ê(P0, P1)
rs0 ê(P0, P2)

rs1 . . . ê(P0, Pt)
rst−1

= ê(Q0, P1)
rê(Q1, P2)

r . . . ê(Qt−1, Pt)
r

= grê(Q1, U2) . . . ê(Qt−1, Ut)

and ê(U0,St)
∏t

i=2 ê(Qi−1,Ui)
= gr for the g computed by Alice at the encryption.

The present version of the scheme is a simplified one reaching only

the chosen-plaintext security level. To convert it into a chosen-ciphertext

secure one, the Fujisaki-Okamoto generic transformation [89] is simply

applied to it. Unlike the 2-level solution proposed by Horwitz and Lynn

in 2002, the resulting scheme provably resists to a collusion between any
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Root Setup: given a security parameter k, the root PKG chooses symmet-

ric bilinear map groups (G1,G2) of prime order q > 2k, a generator

P0 ∈ G1, a master key mk := s0
R← Z

∗
q and sets Q0 = s0P0. It

selects hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}
n

for some n denoting the size of plaintexts. The public parameters

are

params := (G1,G2, ê, P0, Q0,H1,H2).

Lower Level Setup: An entity Et at level Levelt randomly picks st
R← Z

∗
q

and keeps it secret.

Keygent−1: at level Levelt, we consider an entity Et of address

(ID1, . . . , IDt), where (ID1, . . . , IDi), for 1 ≤ i ≤ t − 1, is the ad-

dress of its ancestor at Leveli. Let S0 be the unit element of G1.

At Levelt−1, the father Et−1 of Et generates Et’s private key as

follows:

(1) It computes Pt = H1(ID1, . . . , IDt) ∈ G1.

(2) Let St = St−1 + st−1Pt =
∑t

i=1 si−1Pi be Et’s secret point

which then depends on secret elements St−1 and st−1 ∈ Zq

of Et−1.

(3) Et−1 also transmits Qi = siP0 ∈ G1 to Et for 1 ≤ i ≤

t− 1 (it has computed Qt−1 = st−1P0 itself and has received

Q0, . . . , Qt−2 from its ancestors).

Et’s private key is (St, Q1, . . . , Qt, st). The part (St, Q1, . . . , Qt−1)

is received from its father Et−1 and it generates the components

st and Qt = stP0 itself.

Encrypt: to encrypt a message M ∈ M for an entity Et of address

(ID1, . . . , IDt),

(1) Compute Pi = H1(ID1, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t.

(2) Randomly pick r ∈ Zq and compute the ciphertext

C = [rP0, rP2, . . . , rPt,M ⊕H2(g
r)] with g = ê(Q0, P1).

Decrypt: Et receives C = [U0, U2, . . . , Ut, V ] ∈ C. To decrypt it, he/she

computes

V ⊕H2

(

ê(U0, St)
∏t

i=2 ê(Qi−1, Ui)

)

= M.

Figure 2.4. The Gentry-Silverberg HIBE scheme

number of dishonest users (i.e. a set of users pooling their private in-

formation in an attempt to threaten the confidentiality of messages sent
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to a honest user). It is showed in [99] how to turn the above encryption

scheme into a hierarchical identity based signature and how to shorten

the ciphertexts produced by the scheme (as well as the signatures pro-

duced by the derived hierarchical signature issuing protocol).

The drawback of the Gentry-Silverberg scheme is that its computa-

tional cost and the size of ciphertexts are proportional to the depth of

the receiver in the hierarchy. A solution to this problem was recently

found by Boneh, Boyen and Goh [38] who showed an example of an

HIBE system with constant size ciphertexts and constant encryption

and decryption costs.

6. Identity based encryption in the standard model

Recent works of Boneh-Boyen [36] and Waters [217] showed that it

was possible to devise identity based encryption schemes that have se-

curity proofs without random oracles.

These results followed from observations of Canetti, Halevi and Katz

[49] who introduced a weaker model (called ‘selective-ID’ model) of

chosen-plaintext and chosen-ciphertext attacks for (hierarchical) IBE

schemes than the model originally considered by Boneh and Franklin

[40]2. Canetti et al. [49] showed the existence of a certain form of hier-

archical IBE schemes that are provably secure against chosen-plaintext

and ‘selective-ID’ attacks (also termed ‘IND-sID-CPA attacks’) without

random oracles. The same authors [50] subsequently showed a generic

transformation that turns any ‘selective-ID chosen-plaintext secure’ IBE

in the standard model into a traditional public key encryption scheme

that is fully IND-CCA2 in the standard model. Another generic con-

version ending up with shorter ciphertexts was subsequently given by

Boneh and Katz [42].

Both generic transformations were further used by Boneh and Boyen

[35] to convert their ‘IND-sID-CPA’ HIBE of ℓ levels into a provably

‘selective-ID chosen-ciphertext secure’ (or ‘IND-sID-CCA2’ secure) HIBE

scheme of ℓ− 1 levels. At Crypto’04, Boneh and Boyen put forward the

2Intuitively, in the ‘selective-ID’ attack model, the adversary has to announce at

the beginning of the game (even before seeing the public parameters) the target iden-

tity under which her challenge ciphertext will be encrypted at the challenge phase. As

we will see in chapter 3, the stronger model of Boneh and Franklin allows adversaries

to adaptively choose the target identity at the challenge phase.
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first random oracle-free construction of IBE system that is provably se-

cure against chosen plaintext attacks (or IND-ID-CPA secure) in the

strongest model of Boneh-Franklin. Their scheme can be scaled into a

2-level hierarchical construction which yields (through the techniques of

Canetti et al. or Boneh-Katz) a fully secure IND-ID-CCA2 (see chapter

3 for a formal definition of this security notion) IBE in the standard

model. Unfortunately, their scheme is much too inefficient to be used

in practice: for recommended parameters, an encryption requires about

160 elliptic curve scalar multiplications. A more efficient construction

was provided by Waters [217] at Eurocrypt’05: encrypting a message

only entails a few group operations but this scheme features a very long

sequence of public parameters. For the security level of a 1024-bit RSA

modulus and using supersingular curves, the system-wide public key is

made of 42000 bits (more than 40 times the size of an RSA modulus).

This shows again that provably secure cryptosystems in the standard

model tend to be more expensive than random oracle-using ones. Both

the Boneh-Boyen [36] and Waters systems have security proofs under

the Decisional Bilinear Diffie-Hellman (DBDH) assumption defined in

chapter 1.
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CHAPTER 3

Variants of the Boneh-Franklin IBE

Abstract. This chapter presents two methods to improve the

efficiency of the Boneh-Franklin identity-based encryption scheme

without affecting its security against chosen-ciphertext attacks.

The first one enables a faster decryption at the expense of using

a stronger assumption to prove the security of the scheme. The

second one additionally allows reducing the length of ciphertexts

and requires a strongly secure symmetric encryption scheme as

a building block. The latter scheme has the noticeable feature

that no validity checking must be performed at decryption as all

elements of the ciphertext space are valid ciphertexts. In other

words the encryption mapping is surjective as for the variants of

OAEP recently studied by Phan and Pointcheval.

1. Introduction

As mentioned in chapter 2, finding a practical identity-based en-

cryption scheme (IBE) remained a long-standing open challenge until

two independent works of Boneh-Franklin [40] and Cocks [66] issued in

2001. Among those two solutions, Boneh and Franklin’s one happens to

be the most practical one, especially from a bandwidth point of view.

In their paper, they extended the usual notions of chosen-plaintext

and chosen-ciphertext security to the context of identity-based encryp-

tion through a model where adversaries may adaptively choose the iden-

tity on which they want to be challenged after having obtained private

keys for other arbitrary identities. This extension of usual security mod-

els was motivated by the need to prove that any collusion of dishonest

end-users does not threaten the master information stored by authorities

and does not harm the secrecy of messages intended to honest users.

In the model of security against chosen-ciphertext attacks, a max-

imal power is granted to adversaries who additionally have access to a

decryption oracle returning plaintexts or rejection messages on input of

45
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ciphertext-identity pairs. In order to enhance the security of their con-

struction in such a way that it provably withstands chosen-ciphertext at-

tacks, Boneh and Franklin applied a random oracle-using generic trans-

formation due to Fujisaki and Okamoto [89] which is well known to

convert weakly secure traditional public key encryption schemes into

cryptosystems that are secure against chosen-ciphertext attacks.

Since their enhanced IBE system (named FullIdent in [40]) falls into

a context which is slightly different from a traditional public key set-

ting, Boneh and Franklin had to formally establish in the random oracle

model that the Fujisaki-Okamoto conversion also applies to their con-

text. A flaw was very recently discovered by Galindo [93] in one of the

steps of their security proof. He explained how to fix the problem and

showed that the security result provided by the generic transformation

of [89] remains correct. In the same paper [93], Galindo used another

transformation due to Fujisaki and Okamoto [88] to obtain another en-

hancement of the Boneh-Franklin construction. He then pinpointed that

his new enhanced identity-based cryptosystem features a tighter security

reduction (but from a stronger assumption) than the repaired reduction

for the Boneh-Franklin scheme.

The contribution of the present chapter is to extend the results of [40]

and [93] by putting forward two other chosen-ciphertext secure enhance-

ments of Boneh and Franklin’s basic IBE (called BasciIdent in [40] and

in the previous chapter) that avoid some overheads which are present

in the constructions of [40] and [93]. Indeed, these works employ the

Fujisaki-Okamoto transformations [88, 89] that both imply a significant

additional computational effort for receivers w.r.t. the weakly secure

primitive to which they are applied. This overhead is actually induced

by the necessity of re-encrypting decrypted ciphertexts using some spe-

cific randomness in order to check their validity in chosen-ciphertext

security concerns.

In our first proposal, the decryption operation is essentially as ef-

ficient as its counterpart in BasicIdent and ciphertexts have the same

length as in the FullIdent scheme. The validity checking of a ciphertext

is performed by simply computing a hash function and no re-encryption

is required. As explained further in this chapter, other generic secu-

rity enhancing transformations could be applied to BasicIdent without

entailing a re-encryption but ciphertexts would be significantly longer
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than those of our scheme.

Our second proposal is a hybrid construction involving a strongly

secure symmetric encryption scheme. If the latter is length-preserving

(that is if symmetrically encrypted ciphertexts are not longer than plain-

texts), ciphertexts are as short as those of BasicIdent. In this case, the

hybrid construction has the particularity that all elements of the cipher-

text space are accepted as valid ciphertexts and have a corresponding

plaintext. Other public key encryption schemes with the same surprising

feature were previously discovered by Phan and Pointcheval [176, 177]

but our construction happens to be the first example of an identity-based

scheme of this kind.

The rest of this chapter is organized as follows: section 2 formally

defines the hard problem on which the security of our schemes provably

relies. It then recalls the definition of Boneh and Franklin’s identity-

based extension of the notion of chosen-ciphertext security. Section 3

recalls the specification of the Fujisaki-Okamoto transformation and the

description of Boneh and Franklin’s FullIdent scheme. Our two construc-

tions are detailed in section 4: subsection 4.1 shows the first one which

may be regarded as an extension of a construction originally designed

by Bellare and Rogaway [29] whereas the hybrid extension of BasicIdent

is described in subsection 4.2.

2. Preliminaries

2.1. Underlying hard problem

This section defines a hard problem that is a variant of the Bilinear

Diffie-Hellman problem recalled in chapter 1 and on which the security

of our scheme is showed to rely.

Definition 3.1 Given symmetric bilinear map groups (G1,G2) of prime

order q > 2k for a security parameter k ∈ N, the Gap Bilinear

Diffie-Hellman Problem (Gap-BDH) in (G1,G2) consists in, given

(P, aP, bP, cP ), computing ê(P, P )abc with the help of a decision oracle

distinguishing the distribution D1 := {(P, aP, bP, cP, ê(P, P )abc)|a, b, c R←

Z
∗
q}, that is called distribution of “BDH tuples”, from the distribution of

random tuples D2 := {(P, aP, bP, cP, h)|a, b, c R← Z
∗
q , h

R← G2}.

This problem is an intuitively natural generalization of the Gap

Diffie-Hellman problem [168] recalled in chapter 1. It was used in [134]
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for the first time and subsequently in [127, 128, 14]. In this chapter, we

two IBE schemes which are secure in the strongest sense provided the

Gap-BDH problem is hard.

2.2. Security notions for identity-based encryption

The model of adaptive chosen-ciphertext security was extended by

Boneh and Franklin themselves [40] to the setting of identity-based en-

cryption. Their model also considers a “find-then-guess” game between

a challenger and an adversary who may adaptively choose the identity

on which she will be challenged after having corrupted several arbitrary

identities by asking a key extraction oracle for the private key associated

to them. The model obviously imposes the restriction that such adver-

saries are disallowed to request the private key of the target identity.

Definition 3.2 An identity-based encryption scheme (IBE) is said to be

adaptively chosen-ciphertext secure (IND-ID-CCA2) if no proba-

bilistic polynomial time (PPT) adversary has a non-negligible advantage

in the following game.

1. The challenger runs the Setup algorithm on input of a secu-

rity parameter k and sends the domain-wide parameters to the

CCA-adversary A.

2. In a find stage, A starts probing the following oracles:

- Key extraction oracle: given an identity ID, it returns the

extracted private key associated to it.

- Decryption oracle: given an identity ID ∈ {0, 1}∗ and a

ciphertext C, it generates the private key dID associated to

ID and returns either a plaintext M ∈M or a distinguished

symbol ⊥ indicating that the ciphertext was not correctly

formed.

A can present her queries adaptively in the sense that each

query may depend on the answer to previous ones. At some

point, she produces two plaintexts M0,M1 ∈ M and a target

identity ID∗ for which she has not corrupted the private key in

stage 2. The challenger computes C = Encrypt(Mb, ID
∗), for a

random hidden bit b R← {0, 1}, which is sent to A.

3. In the guess stage, A asks new queries as in the find stage but

is restricted not to issue a key extraction request on the target
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identity ID∗ and cannot submit C to the decryption oracle for

the identity ID∗. Eventually, A outputs a bit b′ and wins if

b′ = b.

A’s advantage is defined as Adv(A) := 2× Pr[b′ = b]− 1.

The above definition formalizes the strongest notion of security for

IBE systems. A strictly weaker one called chosen-plaintext security (or

IND-ID-CPA security in this context) is formalized by an identical game

except that adversaries are not equipped with a decryption oracle but

are still provided with a private key extraction oracle.

3. Identity-based encryption with chosen-ciphertext security

The simplest version of the Boneh-Franklin IBE, that was called Ba-

sicIdent in [40] and in the previous chapter, does not meet the security

level captured by definition 3.2. Indeed, from a given challenge cipher-

text C = 〈A,B〉 = 〈rP,mb⊕h2(ê(Ppub, QID)r)〉 where mb ∈ {0, 1}
n is the

message chosen by the challenger among m0,m1 at step 3, a straight-

forward attack consists in computing an encryption C ′ = 〈A,B′〉 of the

logical negation of mb (by simply setting B′ as the bitwise exclusive OR

of B and the bitstring 1n = 11 . . . 1) and asking for the decryption of C ′

at some moment of the guess stage1. The latter attack can be prevented

by appending a checksum2 to the ciphertext or through a generic trans-

formation such as Fujisaki and Okamoto’s one [89] as done in the paper

by Boneh and Franklin [40].

The Fujisaki-Okamoto conversion is the following: given a public

key encryption scheme Π := (K, Epk,Dsk) that satisfies the very weak

requirement of one-wayness against chosen-plaintext attacks (OW-CPA:

that is the infeasibility of recovering the plaintext when observing a ci-

phertext), a hybrid chosen-ciphertext secure scheme Πhy = (K, Ehypk ,D
hy
sk )

is obtained through the following transformation:

Ehypk (m,σ) = 〈Epk(σ,H(σ,m)), H ′(σ)⊕m〉

and

1Such an attack is actually a form of malleability as the decryption of C′ is

related to the plaintext corresponding to C in a known manner.
2This is basically the idea of the REACT generic conversion [167] and the con-

struction put forward by Bellare and Rogaway [29] for trapdoor permutations.
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Dhysk (A,B) = B ⊕H ′(σ) if Epk(σ,H(σ,B ⊕H ′(σ)))

and ⊥ otherwise

where σ = Dsk(A) and H,H ′ are random oracles of appropriate domain

and range. The transformation is very powerful as it provably turns a

very weak primitive into a strongly secure one. Unfortunately, it in-

volves a computational penalty for the receiver who has to re-encrypt

the result of the decryption operation (perfomed using the decryption

algorithm of the weakly secure scheme) in order to check the integrity

of the ciphertext.

When applied to the BasicIdent IBE, the generic transformation pro-

duces an IBE scheme called FullIdent which is provably IND-ID-CCA2

secure under the bilinear Diffie-Hellman assumption as shown in [40, 93].

Setup: given security parameters k and k1 so that k1 is polynomial in

k, the PKG runs this algorithm to output a prime q such that

2k−1 < q < 2k, symmetric bilinear map groups (G1,G2) of order

q, hash functions h1 : {0, 1}∗ → G1, h2 : G2 → {0, 1}
k1 , h3 :

{0, 1}n+k1 → Z
∗
q and h4 : {0, 1}k1 → {0, 1}n. It finally picks a

master key mk := s R← Z
∗
q and the public key Ppub := sP ∈ G1.

The system-wide public key is then

params := {q, k, k1,G1,G2, P, Ppub, e, h1, h2, h3, h4, n}

where n denotes a bound on the size of plaintexts.

Keygen: given a user’s identity ID ∈ {0, 1}∗, the PKG computes QID =

h1(ID) ∈ G1 and returns a private key dID = sQID ∈ G1.

Encrypt: to encrypt a message M under the system-wide public key Ppub

and an identity ID ∈ {0, 1}∗, compute QID = h1(ID) ∈ G1, pick a

random σ R← {0, 1}k1 and output the ciphertext

C =
〈

rP, σ ⊕ h2(g
r
ID),m⊕ h4(σ)

〉

where gID = ê(Ppub, QID) ∈ G2 and r = h3(σ,m).

Decrypt: given C = 〈U, V,W 〉 ∈ G1 × {0, 1}
n+k1 , compute ω = ê(U, dID) ∈

G2, σ = V ⊕ h2(ω) ∈ {0, 1}k1 and m = W ⊕ h4(σ) ∈ {0, 1}n. The

algorithm outputs m ∈ {0, 1}n if U = rP with r = h3(σ,m) and

⊥ otherwise.

Figure 3.1. The FullIdent scheme

Fortunately, in the present case as well as in some particular prob-

abilistic cryptosystems such as El Gamal’s one, receivers do not need
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to perform a complete re-encryption upon decryption but may simply

check whether U = rP with r = h3(σ,M). A simple additional scalar

multiplication in G1 is thus needed w.r.t. to the decryption algorithm

of BasicIdent. Nevertheless, avoiding this additional elliptic curve mul-

tiplication would be interesting as the speed of the decryption oper-

ation would be significantly increased: for example, if we believe the

implementation measurements given in [171] for supersingular curves

in characteristic 3 using a Pentium 4 2.4 GHz, an elliptic curve scalar

multiplication in projective coordinates requires about 25% of the time

to compute a Tate Pairing. Removing the final scalar multiplication in

the decryption operation can offer an efficiency improvement of 20%.

The relative gain is smaller for ordinary curves. However, as discussed

in chapter 7, a recent work [203] tends to show that the best way to

implement the Boneh-Franklin IBE is to use supersingular curves if the

security is required to rely on a fairly natural assumption.

4. Avoiding the re-encryption in IBE

This section presents two methods to ensure the chosen-ciphertext

security of Boneh and Franklin’s system [40] without requiring a re-

encryption for validity checking upon decryption and without having to

encode a piece of ciphertext as a long element of G2. The price to pay

for this efficiency improvement is the need of a stronger computational

assumption in the security proof of the enhanced scheme: while the orig-

inal FullIdent construction is secure under the Bilinear Diffie-Hellman

assumption, the security of our constructions is proved assuming the

intractability of the Gap Bilinear Diffie-Hellman problem.

We have to mention that other generic transformations such as RE-

ACT [167] or GEM [70] could be applied to BasicIdent or to some of its

variants to turn them into fully secure identity-based encryption schemes

without requiring the receiver to perform a re-encryption for validity

checking concerns. Unfortunately, these two transformations should be

applied to an OW-PCA3 variant of BasicIdent for which a part of the

3More precisely, this notion would be an identity-based flavored extension of the

One-Wayness against Plaintext-Checking Attacks characterizing schemes that remain

computationally one-way even in the presence of an oracle deciding whether a given

ciphertext encrypts a given message. See [167] for a more formal definition.
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ciphertext is obtained by multiplying the message with a G2 element

that has a representation of at least 1024 bits for recommended para-

meters (see [40] or [43] for details). More precisely, REACT or GEM

would have to be applied to a variant of the BasicIdent scheme where

plaintexts are encoded as G2 elements and ciphertexts have the form

C := 〈rP,M · ê(Ppub, QID)r〉.

Although it is possible to compress the representation of those G2 ele-

ments to third of their length on supersingular curves using the tech-

niques of Barreto and Scott [24], ciphertexts would remain significantly

longer than in our schemes even if a compression technique with a ratio

of 1/3 was applied in variants of the scheme padded with REACT or

GEM. Our bandwidth improvements remain significant w.r.t. to imple-

mentations allowed by REACT/GEM and pairing compressions for BN

curves [23] (which shorten pairing values from 1920 to 320 bits).

4.1. An extension of the Bellare-Rogaway construction

This first method introduces a minimal amount of redundancy in

ciphertexts (only 160 additional bits are needed w.r.t to BasicIdent) and

is actually an extension of a construction originally designed by Bellare

and Rogaway [29] for trapdoor permutations. This construction pro-

duces ciphertexts of the form E(m, r) = 〈f(r),m⊕G(r), H(m, r)〉, where

f : D → D is a trapdoor permutation over some domainD, r is a random

element of D and G,H are random oracles. Actually, this construction

(that was previously generalized in [167] into a generic conversion from

a weakly secure encryption scheme to a chosen-ciphertext secure one)

can be instantiated with more general number theoretic primitives. For

example, it can protect the El Gamal [96] cryptosystem from chosen-

ciphertext attacks. The latter enhanced encryption scheme is then very

similar to the repaired version of the Zheng-Seberry [229] cryptosystem

that was proven secure in [17] under the Gap Diffie-Hellman assumption.

The construction may be applied to the Boneh-Franklin identity-based

encryption scheme as well. The resulting scheme is called XBR-IBE as a

shorthand for eXtended Bellare-Rogaway like IBE.

Including elements U and ID among the inputs of the h2 hash func-

tion is not mandatory but allows a more efficient reduction in the secu-

rity proof detailed hereafter. The scheme remains secure if the rightmost
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Setup: given security parameters k and k1 so that k1 is polynomial in

k, the PKG runs this algorithm to output a prime q such that

2k−1 < q < 2k, chooses symmetric bilinear map groups (G1,G2)

of order q, a generator P ∈ G1, hash functions h1 : {0, 1}∗ → G1,

h2 : {0, 1}∗ → {0, 1}k1 and h3 : G2 → {0, 1}
n. It finally picks a

master key mk := s R← Z
∗
q and the public key Ppub := sP ∈ G1.

The system-wide public key is then

params := {q, k, k0,G1,G2, P, Ppub, e, h1, h2, h3, n}

where n denotes a bound on the size of plaintexts.

Keygen: given a user’s identity ID ∈ {0, 1}∗, the PKG computes QID =

h1(ID) ∈ G1 and returns a private key dID = sQID ∈ G1.

Encrypt: to encrypt a message m under the system-wide public key Ppub

and an identity ID ∈ {0, 1}∗, compute QID = h1(ID) ∈ G1, pick a

random r R← Z
∗
q and output the ciphertext

C =
〈

rP,m⊕ h3(g
r
ID), h2(m||rP ||ID||g

r
ID)
〉

where gID = ê(Ppub, QID) ∈ G2.

Decrypt: given C = 〈U, V,W 〉 ∈ G1 × {0, 1}
n+k1 , compute ω = ê(U, dID) ∈

G2 and m = V ⊕ h3(ω) ∈ {0, 1}n. The algorithm outputs m ∈

{0, 1}n if W = h2(m||U ||ID||ω) and ⊥ otherwise.

Figure 3.2. The XBR-IBE scheme

part of the ciphertext is computed as W = h2(m||g
r
ID) but the reduction

then involves a number of calls to the decision oracle which is quadratic

(instead of linear) in the number of adversarial queries.

Theorem 3.1 Let us assume that an IND-ID-CCA2 adversary A has

an advantage ǫ over XBR-IBE when running in a time τ , asking qhi

queries to oracles hi (i = 1, 2, 3), qD decryption queries and qKE key

extraction queries. Then there exists a PPT algorithm B solving the

Gap-BDH problem with an advantage

AdvGap-BDH(B) ≥
1

e(qKE + 1)

(

ǫ−
qD

2k−1

)

within time τ ′ ≤ τ + (qh1 + qKE)τmult + 2(qh2 + qh3)Φ where τmult is the

cost of a scalar multiplication in G1, Φ denotes the cost of a call to the

DBDH oracle and e is the base of the natural logarithm.
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Proof. Let (aP, bP, cP,ODBDH) be a random instance of the Gap-

BDH problem where ODBDH(.) denotes a decision oracle4 that, given

(aP, bP, cP, ω), answers 1 if ω = ê(P, P )abc and 0 otherwise. We set

out the description of an algorithm B using the latter oracle to extract

ê(P, P )abc from its interaction with A.

B initializes the adversary A with the system-wide public key Ppub =

aP and simulates her view as explained below. W.l.o.g., we assume that

h1 queries on identities are distinct and that any key extraction, decryp-

tion or h2 query involving an identity is preceded by an h1 query on the

same identity.

- h1 queries on an identity ID: B flips a coin ∈ {0, 1} taking the

value 0 with probability qKE/(qKE + 1) and the value 1 with

probability 1/(qKE + 1). If coin = 0, B returns uP ∈ G1 for

some u R← Z
∗
q and answers u(bP ) ∈ G1 if coin = 1. In both

cases, a triple (ID, u, coin) is stored in a list L1.

- Private key queries: when the private key associated to an iden-

tity ID ∈ {0, 1}∗ is requested, B recovers the triple (ID, u, coin)

from L1. If coin = 1, B aborts since it is unable to coherently

answer the query. Otherwise, it returns uPpub as a private key.

- h2 queries: for such queries (mi||Ui||IDi||ωi) indexed by integers

i ∈ {1, . . . , qh2}, B does the following:

- if oracle h2 was already queried on the same input, the

previously defined value is returned.

- Otherwise, B recovers QIDi from list L1 and probes its

decision oracle ODBDH(.):

- if ODBDH(P, Ppub, Ui, QIDi
, ωi) = 1,

· if Ui = cP and QIDi
= h1(IDi) = ui(bP ) for

some known ui ∈ Z
∗
q , then B halts and outputs

ω
1/ui

i ∈ G2 as a result.

· Otherwise, a random string Wi
R← {0, 1}k1 is

sampled.

4It is actually a restricted decision oracle as one of its inputs never changes

between all queries. The actual assumption is thus slightly weaker than the Gap-

BDH one.
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· B obtains the value µi = h3(ωi) ∈ {0, 1}
n by

issuing an h3 query on its own.

· B computes Ci = 〈Ui, Vi,Wi〉 = 〈Ui,mi⊕µi,Wi〉

and stores a record 〈(mi||Ui||IDi||ωi),Wi, Vi〉 into

list L2 in order to anticipate subsequent decryp-

tion queries. The random string Wi is finally

returned to A.

- if ODBDH(P, Ppub, Ui, QIDi
, ωi) = 0, B simply re-

turns a random Wi
R← {0, 1}k1 and stores a 4-uple

〈(mi||Ui||IDi)||ωi),Wi,−〉 in L2 where the symbol −

means that no potential ciphertext is associated to

this random oracle query.

- h3 queries are simply responded with the previously defined

value if it exists and with a new random uniformly sampled

string µi
R← {0, 1}n otherwise. A list L3 is then updated to

store the input of the query and its answer.

- Decryption queries: at any moment, B can also ask for the

decryption of a ciphertext C = 〈U, V,W 〉 ∈ G1 × {0, 1}
n+k1

for an identity ID. To simulate the behavior of the decryption

oracle, B checks whether list L2 contains a tuple of the form

〈(m||U ||ID||ω),W, V 〉 for some m ∈ {0, 1}n, ω ∈ G2. If so, the

corresponding m ∈ {0, 1}n is returned as a plaintext. Other-

wise, the ciphertext is declared invalid and a rejection message

⊥ is returned. Clearly, in the whole simulation, the probabil-

ity to wrongly reject a ciphertext is at most qD/2
k1 . Indeed,

the probability that A produces a ciphertext 〈U, V,W 〉 and an

identity ID for which W = h2(V ⊕ h3(ω)||U ||ID||ω), where ω

denotes the relevant G2 element ê(U, ah1(ID)), without asking

for the hash value of V ⊕ h3(ω)||U ||ID||ω is at most 1/2k1 .

When A decides that phase 1 is over, she outputs an uncorrupted iden-

tity ID∗ together with a pair of messages (m0,m1). At that moment, if

h1(ID
∗) was not defined as a known multiple u∗(bP ) ∈ G1 of bP , B fails

as any subsequent interaction with A is useless.

Otherwise, it constructs the challenge ciphertext C∗ = 〈cP, V ∗,W ∗〉
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for randomly sampled strings V ∗ R← {0, 1}n and W R← {0, 1}∗. The sim-

ulation fails if the pair (C∗, ID∗) was queried to the decryption oracle

at the first stage (but the probability for this to happen is smaller than

qD/2
k). Otherwise C∗ is sent to A that is unable to realize that C∗ is

not an encryption of m0 nor m1 as long as she does not query h2 on the

input (md||cP ||ID||ω
∗) or h3 on ω∗ for d ∈ {0, 1} and ω∗ = ê(P, P )abcu

∗
.

If such an event occurs, the simulation is not perfect anymore but it does

not matter. Indeed, in this case, the relevant G2 element ê(P, P )abcu
∗

is

made available to B that can then extract the Gap-BDH solution (as it

knows u∗).

On the other hand, if the simulation does not fail, A’s view is in-

distinguishable from a real attack environment and, in the latter case,

ω∗ is very likely to be submitted to oracles h2 or h3 at some point of

the game. Indeed, let Fail denote the event that B fails in providing a

consistent simulation of A’s environment and, for any event E, we call

pr[E] the conditional probability Pr[E|¬Fail]. In a real game, we have

Pr[d′ = d] = (ǫ+ 1)/2 and thus pr[d′ = d] = (ǫ+ 1)/2. If AskH3 denotes

the event that the hash value of ω∗ is asked to h3 and AskH2 the event

that (md||cP ||ID||ω
∗) is queried to h2, we have

pr[d′ = d] = pr[d′ = d|AskH2 ∨ AskH3]pr[AskH2 ∨ AskH3]

+ pr[d′ = d|¬(AskH2 ∨ AskH3)]pr[¬(AskH2 ∨ AskH3)]

≤ pr[AskH2 ∨ AskH3] +
1

2
(1− pr[AskH2 ∨ AskH3])

as pr[d′ = d|¬(AskH2∨AskH3)] = 1/2 (because if none of AskH2 or AskH3

occurs, A’s view is independent of m0 and m1 and she cannot do better

than guessing with probability 1/2) and hence

pr[AskH2 ∨ AskH3] ≥ ǫ.

When coming back to non-conditional probabilities, we find

Pr[(AskH2 ∨ AskH3) ∧ ¬Fail] ≥ ǫ Pr[¬Fail].

The probability Pr[¬Fail] remains to be assessed. We know that event

¬Fail requires the following conditions to be simultaneously satisfied.

E1: B does not abort as a result of a private key extraction query.
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E2: B does not abort during the challenge phase because of A’s

choice for her target identity ID∗.

E3: B does not fail because the constructed challenge C∗ was pre-

viously queried to the decryption oracle for the identity ID∗.

E4: B does not provide an incorrect simulation because of a wrongly

rejected ciphertext.

The above events are clearly independent. We already observed that

Pr[E4] ≥ 1 − qD/2
k and Pr[E3] ≥ 1 − qD/2

k. We also have Pr[E1] =

(1 − 1/(qKE + 1))qKE ≥ 1/e (as shown in the proof technique of [68])

and Pr[E2] = 1/(qKE +1). Putting those observations together, we find

that Pr[¬Fail] ≥ e−1(qKE + 1)−1(1− qD/2
k)2 and we finally obtain

Pr[(AskH2 ∨ AskH3) ∧ ¬Fail] ≥
1

e(qKE + 1)

(

1−
qD
2k
)2
ǫ

>
1

e(qKE + 1)

(

ǫ−
qD

2k−1

)

.

When the adversary halts (it is reasonable to expect that she does

not enter an infinite loop if her environment looks consistent) and pro-

duces a result, the latter is ignored: if B did not obtain the searched

Gap-BDH solution ê(P, P )abc when handling h2 queries at some moment

of the simulation, it can expect to find the relevant element ê(P, P )abcu
∗

among the inputs of h3 queries made by A. For all entries 〈ωi, h3,i〉

(i = 1, . . . , qh3) contained in L3, it checks whether

ODBDH(P, aP, u∗(bP ), cP, ωi) = 1

and outputs ω
1/u∗

i if the latter condition holds for some i ∈ {1, . . . , qh3}.

�

The above reduction is more efficient than the one obtained from

the BDH assumption through the Fujisaki-Okamoto transform [89] in

the original IBE. Although our proof relies on a stronger assumption,

we believe that this fact has a certain theoretical interest because, as

argued in [121], a tight reduction from a given assumption might be

preferable to a loose reduction from a potentially weaker assumption.

On the other hand, the Gap-BDH assumption does not appear as a much

stronger assumption than the (already non-standard) BDH assumption.

Interestingly, if we compare our security reduction for Hybrid-IBE

with the one of Galindo [94, 93] for another variant of the Boneh-Franklin
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IBE obtained through the first Fujisaki-Okamoto transform [88], we find

that ours is as efficient as Galindo’s one (which relies on the DBDH

assumption) but our construction happens to be more efficient as no

re-encryption is needed for the receiver.

4.2. A hybrid identity-based encryption scheme

In provable security purposes, motivated by the design of public

key encryption schemes that can be shown to reach the widely admit-

ted required level of security against adaptive chosen-ciphertext attacks

[185] in the random oracle model [29], Bellare and Rogaway introduced

the notion of plaintext-awareness [30]. This notion captures the gen-

eral idea of rendering a decryption oracle useless by making impossible

the creation of valid ciphertexts by the adversary. In very recent works

[176, 177], Phan and Pointcheval gave evidence that chosen-ciphertext

security is achievable without plaintext-awareness and showed designs

of public key encryption schemes that are secure in the strongest sense

[185] in the random oracle model although all ciphertexts are valid and

have a corresponding plaintext.

Meanwhile, Kurosawa and Matsuo [126] showed how to turn the

DHIES [2] hybrid construction into a redundancy-free encryption system

in the standard model (but under the strong and non-standard oracle

Diffie-Hellman assumption that actually looks as strong as the random

oracle model) by removing the message authentication code (MAC) from

it and replacing the IND-CPA symmetric encryption scheme by an IND-

CCA one. Their approach is actually a combination of a key encapsu-

lation mechanism (KEM)5 [74, 75] with a symmetric encryption scheme

that was also proven secure in the random oracle model by Cramer and

Shoup [74] under a more standard assumption.

In this section, we extend the technique of Kurosawa and Matsuo to

the identity-based setting in the random oracle model and show a hybrid

5This primitive was introduced by Shoup [198, 199] and can be thought of as a

public key encryption scheme that takes no plaintext as input but rather produces

an encapsulation of a randomly chosen symmetric key which is intended to be used

as a symmetric encryption key by a suitable data encapsulation mechanism (DEM).

The combination of a KEM with a DEM yields a traditional public key encryption

scheme.
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variant of BasicIdent that reaches the IND-ID-CCA2 security level with-

out introducing redundancies in ciphertexts that are thus shorter than

in FullIdent and XBR-IBE. As in the latter, no re-encryption is required

for receivers and the decryption operation is thus also more efficient than

in FullIdent.

In the forthcoming paragraphs, we first formally describe the level

of security that is required for the symmetric part of our hybrid con-

struction and we recall the description of the hybrid Hashed El Gamal

encryption scheme that is obtained by combining Cramer and Shoup’s

Hashed El Gamal KEM with a super pseudo-random permutation. We

then set out our hybrid IBE and we provide a detailed security proof in

the random oracle model.

4.2.1. Required security notion for ciphers

As the modification of DHIES presented in [126], our modification

of the Boneh-Franklin IBE [40] makes use of a symmetric cipher (i.e. a

deterministic length-preserving symmetric encryption scheme) that is se-

cure against chosen-ciphertext attacks instead of one that is only secure

against passive attacks (as required by the Fujisaki-Okamoto transform

[89] which just uses a “one-time-pad”6 in the original FullIdent scheme).

Recall that a symmetric encryption scheme is a triple of algorithms

SE = (K,E,D). The key generation algorithm K generates a key

k R← {0, 1}λ for a security parameter λ. The encryption algorithm E

takes a key k and a plaintext m to produce a ciphertext c = E(k,m).

The decryption algorithm takes a key k and a ciphertext c to return

m/reject = D(k, c). In the definition of chosen-ciphertext security for

symmetric encryption schemes, the adversary can query a decryption

oracle D(k, .) as well as an encryption oracle E(k, .). We recall below a

security notion for ciphers that is considered in [178] and [126].

Definition 3.3 A symmetric cipher (E,D) is secure in the IND-CCA

sense if no PPT adversary A has a non negligible advantage in the

following game:

1. The challenger chooses a key k R← {0, 1}λ.

6A “one-time-pad” is a bitwise exclusive OR of the message with a secret key of

identical length.
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2. A queries the encryption oracle E(k, .) and the decryption or-

acle D(k, .). She then outputs messages (m0,m1) that were

not submitted to E(k, .) (which is deterministic) and receives a

c∗ = E(k,mb) for b R← {0, 1}.

3. A issues new queries as in step 2 but is disallowed to ask for

the decryption of c∗ and the encryptions of m0 and m1.

4. A eventually outputs a guess b′ for b. Her advantage is

Advsym(A) := 2× Pr[b′ = b]− 1.

This notion of indistinguishability can also be defined at lower levels

of passive adversaries who have no oracle access at all or to chosen-

plaintext attackers (also termed IND-CPA attackers) who have only ac-

cess to encryption oracles.

The CMC [107] and EME [108] modes of operations are both length

preserving and they were shown to be secure in the sense of IND-CCA

assuming that the underlying block cipher is a strong pseudo-random

permutation (AES could be used for instance).

4.2.2. The Hashed El Gamal cryptosystem

Keygen: given security parameters k and λ such that λ is polynomial

in k, this algorithm chooses a cyclic group G of prime order

q > 2k and a generator g ∈ G. It also selects a private

key x R← Z
∗
q and computes y = gx ∈ G. The public key

contains y, a hash function H : G × G → {0, 1}λ and the de-

scription of a symmetric encryption scheme (E,D) of keylength λ.

Encrypt: to encrypt a message m, pick a random r R← Z
∗
q and output the

ciphertext

C = 〈gr, ESK(M)〉

where SK = H(gr, yr) ∈ {0, 1}λ

Decrypt: given C = 〈A,B〉 ∈ G1 × {0, 1}
n, the recipient returns M =

DSK(B) where SK = H(A,Ax).

Figure 3.3. The Hashed El Gamal hybrid encryption scheme

In [74], Cramer and Shoup established the security of the above

variant of the El Gamal [96] cryptosystem in the random oracle model

under the Gap Diffie-Hellman assumption assuming that the symmetric
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encryption scheme is itself secure against chosen-ciphertext attacks.

They explained that the scheme remains secure if the symmetric

key is derived from a hash value of the sole group element yr but a

more efficient reduction is obtained by deriving the key from the pair

(gr, yr). Indeed, in the security proof the number of calls to the decision

Diffie-Hellman oracle is linear (instead of quadratic) in the number of

adversarial random oracle queries.

If the Hashed El Gamal KEM is combined with a symmetric en-

cryption scheme without redundancy such as Desai’s scheme [76] or any

super pseudorandom permutation [107, 108], it directly yields a public

key encryption scheme where all elements of the ciphertext space are ac-

cepted as valid ciphertexts and have a corresponding plaintext. The next

subsection presents a straightforward extension of Cramer and Shoup’s

result to the Boneh-Franklin IBE.

4.2.3. A hybrid variant of the Boneh-Franklin IBE

Setup: given security parameters k and λ so that λ is polynomial in k, this

algorithm chooses a k-bit prime number q, symmetric bilinear map

groups G1 and G2 of order q, a generator P ∈ G1, hash functions

H1 : {0, 1}∗ → G1, H2 : G
2

1 ×G2 → {0, 1}
λ, as well as a chosen-

ciphertext secure cipher (E,D) of keylength λ. It finally picks

a master key mk := s R← Z
∗
q and the corresponding public key

Ppub := sP ∈ G1. The system-wide public key is

params := {q,G1,G2, P, Ppub, e,H1,H2, G, n,E,D, λ, l}

where n denotes a bound on the size of plaintexts.

Keygen: given a user’s identity ID ∈ {0, 1}∗, the PKG computes QID =

h1(ID) ∈ G1 and returns a private key dID = sQID ∈ G1.

Encrypt: to encrypt a message M under the system-wide public key Ppub

and an identity ID ∈ {0, 1}∗, compute QID = h1(ID) ∈ G1, pick a

random r R← Z
∗
q and output the ciphertext

C = 〈rP,ESK(M)〉

where SK = h2(QID, rP, ê(Ppub, QID)r) ∈ {0, 1}λ

Decrypt: given C = 〈A,B〉 ∈ G1 × {0, 1}
n, the recipient returns M =

DSK(B) where SK = h2(QID, A, ê(A, dID)).

Figure 3.4. Our Hybrid-IBE scheme
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This subsection presents another secure modification of the Boneh-

Franklin IBE that is (almost) as efficient as BasicIdent. On one hand the

new scheme, that we call Hybrid-IBE, produces shorter ciphertexts than

FullIdent and than XBR-IBE while, as in the latter, the receiver does not

have to compute a scalar multiplication in G1 upon decryption.

We mention that redundancy-free IBE schemes may also be obtained

with the OAEP 3-round generic construction [177] but the security could

only be proved in a relaxation of the security model of definition 2 and

ciphertexts would also be longer than those of Hybrid-IBE. The security

of the latter is shown by the theorem below for which the proof uses a

similar technique to [74].

Theorem 3.2 Let us assume that an IND-ID-CCA2 adversary A has an

advantage ǫ over Hybrid-IBE when running in time τ , asking qhi queries

to oracles hi (i = 1, 2), qD decryption queries and qKE key extraction

queries. Then, for any 0 ≤ ν ≤ ǫ, there either exists

- a PPT algorithm B to solve the Gap-BDH problem with an

advantage

AdvGap-BDH(B) ≥
1

e(qKE + 1)

(

ǫ−
qD
2k
− ν
)

within time τ ′ ≤ τ + (qh1 + qKE)τmult + qDτsym + qh2Φ.

- an attacker that breaks the IND-CCA security of the symmetric

encryption scheme (E,D) with advantage ν within a time τ ′

where τmult is the cost of a multiplication in G1, τsym denotes the com-

plexity of a symmetric decryption, Φ stands for the cost of a call to the

decision oracle and e is the base of the natural logarithm.

Proof. Let (aP, bP, cP,ODBDH) be an instance of the Gap-BDH prob-

lem. As in the proof of theorem 3.1, ODBDH(.) is a decision oracle that,

on input (aP, bP, cP, ω), answers 1 if ω = ê(P, P )abc and 0 otherwise. We

describe an algorithm B using A and ODBDH(.) to compute ê(P, P )abc.

Algorithm B initializes A with the system-wide public key Ppub = aP

and simulates her view as explained below. W.l.o.g., we assume that H1-

queries are distinct (otherwise, a list may be used to store inputs and

responses) and that any key extraction, decryption or H2 query involv-

ing an identity comes after a H1-query on the same identity.
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- H1 queries: for such a query on an identity ID, B flips a bit

coin ∈ {0, 1} taking the value 0 with probability ξ and the

value 1 with probability 1− ξ. If coin = 0, B returns uP ∈ G1

for some u R← Z
∗
q and it answers u(bP ) ∈ G1 if coin = 1. In

both cases, a triple (ID, u, coin) is stored in a list L1.

- Private key queries: when the private key associated to an iden-

tity ID ∈ {0, 1}∗ is requested, B recovers the triple (ID, u, coin)

from L1. If coin = 1, B aborts since it is unable to coherently

answer the query. Otherwise, it returns uPpub as a private key.

- Queries to H2(.): according to a proof technique already used

in [74, 199, 75] for KEMs, these queries are processed using

three lists L2,a, L2,b and L2,c which are initially empty:

- L2,a contains triples (QIDi
, Ai, ωi) to which a hash value

was previously assigned and the corresponding digest h2,i ∈

{0, 1}λ.

- L2,b contains triples (QIDi , Ai, ωi) such that a quadruple

(QIDi , Ai, ωi, h2,i) exists in L2,a for some h2,i ∈R {0, 1}
λ

and ODBDH(P,QIDi , Ai, Ppub, ωi) = 1.

- L2,c will contain triples (QIDi
, Ai, h2,i) for which B has im-

plicitly assigned a value h2,i
R← {0, 1}λ to H2(QIDi

, Ai, ωi)

although it does not know the unique element ωi ∈ G2 for

which ODBDH(P,QIDi , Ai, Ppub, ωi) = 1.

More precisely, when A submits a triple (QID, A, ω) to H2(.),

- B first checks if L2,a contains a tuple (QID, A, ω, h2) for

some h2 ∈ {0, 1}
λ (meaning the a hash value was previ-

ously assigned to the same input). If it does, h2 is returned.

- Otherwise, B submits (P,QID, A, Ppub, ω) to the ODBDH(.)

oracle which decides whether it is a valid BDH tuple.

- If it is, then:

- If A = cP and coin = 1 (i.e. H1(ID) was defined

to be u(bP )), B halts and outputs ω1/u which

is the searched solution. We denote by AskH2

the event that such a hash query is made .

- Otherwise, B continues and adds (QID, A, ω) in

L2,b.
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- If L2,c contains a triple (QID, A, h2) for some

h2 ∈ {0, 1}
λ, the tuple (QID, A, ω, h2) is stored

in L2,a and h2 is returned to A. Otherwise, B

continues.

- It selects a string h2
R← {0, 1}λ, inserts the tuple

(QID, A, ω, h2) into L2,a and answers h2 to A.

- Decryption queries: upon receiving a ciphertext C = 〈A,B〉 ∈

G1 × {0, 1}
n and an identity ID, the simulator B does the fol-

lowing:

- it checks if (QID, A, ω) exists in L2,b for some ω ∈ G2.

If it does, B retrieves the tuple (QID, A, ω, h2) from L2,a

and returns the symmetric decryption Dh2(B) of B using

h2 ∈ {0, 1}
λ as a symmetric key. Otherwise, it continues.

- It tests whether L2,c contains a triple (QID, A, h2) for some

string h2 ∈ {0, 1}
λ. In this case, the latter is used to

compute a symmetric decryption Dh2(B) that is returned

as a result. Otherwise, a random h2
R← {0, 1}λ is chosen

and (QID, A, h2) is inserted into L2,c (B thereby implicitly

assigns the hash value h2 to the oracle H2 on the unique

input (QID, A, ω) for which ODBDH(P,QID, A, Ppub, ω) =

1 although the relevant ω ∈ G2 is still unknown) while

Dh2(B) is returned to A.

After the find stage, A comes with messages M0,M1 ∈ {0, 1}
n and a

target identity ID∗. Let (ID∗, u∗, coin∗) be the corresponding triple in

L1. If coin∗ = 0, B aborts and reports ”failure” because, in such a situa-

tion, A is of no help in B’s endeavour. Otherwise, it sets A∗ = cP ∈ G1,

checks whether L2,c contains a triple (QID∗ , A∗, h∗2) for QID∗ = h1(ID
∗)

and some h∗2 ∈ {0, 1}
λ (if not, B inserts it for a string h2

R← {0, 1}λ

of its choice) to compute a symmetric encryption B∗ = Eh∗2(Md), for

d R← {0, 1}, and return the challenge C∗ = 〈A∗, B∗〉. In the unlikely

event (its probability is less than qD/2
k) that C∗ was previously sub-

mitted to the decryption oracle for the identity ID∗, B aborts.

At the second stage, B processes all queries as above and A eventu-

ally produces a bit d′. In a real game, we have Pr[d′ = d] = (ǫ + 1)/2

and, provided the simulation is perfect, the latter equality still holds

as A’s view is indistinguishable from a real environment. It can be



4. AVOIDING THE RE-ENCRYPTION IN IBE 65

showed that the simulation is imperfect with a probability smaller than

e−1(qKE + 1)−1(1− qD/2
k). Indeed, let us define the following events:

E1: B does not abort as a result of a private key extraction query.

E2: B does not abort during the challenge phase because A chooses

a target identity ID∗ for which coin∗ = 0.

E3: B does not fail because the constructed challenge C∗ was pre-

viously queried to the decryption oracle for the identity ID∗.

Those events are independent. We observed that Pr[E3] ≥ 1 − qD/2
k.

We also have Pr[E1] = (1 − 1/(qKE + 1))qKE ≥ 1/e (as shown in the

proof technique of [68]) and Pr[E2] = 1/(qKE + 1). It comes that if

Fail = ¬E1∨¬E2∨¬E3, we have Pr[¬Fail] = e−1(qKE+1)−1(1−qD/2
k).

On the other hand, if AskH2 does not occur and thus ifA never makes

the relevant h2(QID∗ , A∗, ω∗) query during the game, the only way for

her to produce a correct guess for d is to succeed in a chosen-ciphertext

attack against the symmetric cipher (E,D): indeed, in the latter case,

each decryption query on a ciphertext C ′ = (A∗, B), with B 6= B∗, for

the target identity ID∗ corresponds to a symmetric decryption request

for a completely random key SK∗. It follows that, if (E,D) is a chosen-

ciphertext secure symmetric encryption scheme, the event AskH2 is very

likely to happen and B is able to extract the Gap-BDH solution.

More formally, for any event E, if we denote by pr[E] the conditional

probability Pr[E|¬Fail], we have

pr[d′ = d] = pr[d′ = d|AskH2]pr[AskH2] + pr[d′ = d|¬AskH2]pr[¬AskH2]

≤ pr[AskH2] + pr[d′ = d|¬AskH2](1− pr[AskH2])

and, since pr[d′ = d] = (ǫ + 1)/2 and pr[d′ = d|¬AskH2] ≤ (ν + 1)/2, it

comes that

ǫ+ 1

2
≤
ν + 1

2
+

1− ν

2
pr[AskH2] ≤

ν + 1

2
+

1

2
pr[AskH2]

and hence pr[AskH2] ≥ ǫ− ν. When going back to non-conditional prob-

abilities, we find the announced lower bound

Pr[AskH2 ∧ ¬Fail] ≥
1

e(qKE + 1)

(

1− qD2−k
)(

ǫ− ν
)

>
1

e(qKE + 1)

(

ǫ−
qD
2k
− ν
)

on B’s probability of success. �
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We observe that the above reduction is exactly as efficient as XBR-

IBE’s one and it additionally produces shorter ciphertexts thanks to the

absence of redundancy.

As for Galindo’s IBE [94, 93], an essentially optimal reduction can

be obtained for Hybrid-IBE by applying a trick suggested in [121] at the

expense of an additional pairing computation at encryption. A similar

hybrid technique can be applied to a 1-level certificate-based [98] encryp-

tion scheme as well as to a variant of the new certificateless encryption

scheme [6] recently proposed in [7].

5. Conclusion

This chapter presented two simple methods to increase the efficiency

of Boneh and Franklin’s famous identity-based encryption scheme. The

first method is an extension of Bellare and Rogaway’s construction [29]

for trapdoor permutations. It only offers a computational gain at de-

cryption. The second method which is a hybrid construction addition-

ally provides shorter ciphertexts but requires using a symmetric scheme

that is secure against chosen-ciphertext attacks. If the latter is a cipher

(that is a deterministic and length-preserving encryption algorithm),

the hybrid construction yields a first example of secure identity-based

cryptosystem without redundancy in the sense of Phan and Pointcheval

[176, 177]: all elements of the ciphertext space correspond to some plain-

text.



CHAPTER 4

Generic constructions of certificateless

encryption in the strongest model and an

efficient scheme

Abstract. Certificateless cryptography (CL-PKC) is a con-

cept that aims at enjoying the advantages of identity based

cryptography without suffering from its inherent key escrow. Sev-

eral methods were recently suggested to generically construct a

certificateless encryption (CLE) scheme by combining identity

based schemes with ordinary public key cryptosystems. Whilst

the security of a sequential composition of this kind was proved in

a weakened security model, we show that all these constructions

are insecure against chosen-ciphertext attackers in the strongest

model of security given by Al-Riyami and Paterson. We show

how to easily fix these problems and give a method to achieve

generic CLE constructions which are provably CCA-secure in the

random oracle model. We finally propose a new efficient pairing-

based scheme that performs better than previous proposals with-

out pre-computation. We also prove its security in the random

oracle model.

1. Certificateless cryptography

In 2003, Al-Riyami and Paterson [6] invented a paradigm called cer-

tificateless public key cryptography (CL-PKC) which is intermediate

between identity-based [195, 40] and traditional PKI-supported cryptog-

raphy. The concept was introduced to suppress the inherent key-escrow

property of identity-based cryptosystems (ID-PKC) without losing their

most attractive advantage which is the absence of digital certificates and

their important management overhead.

Independently of [6] and a little bit earlier, Gentry [98] introduced a

different but related concept named certificate based encryption (CBE)

for which a signature analogue was studied in [120]. This approach is

67
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closer to the context of a traditional PKI model as it involves a certifi-

cation authority (CA) providing an efficient implicit certification service

for clients’ public keys.

Although very different at first glance, the CBE and CL-PKC con-

cepts were first argued [6] to be closely related and both constructions of

[6, 98] use the properties of pairings. A subsequent work of Yum and Lee

considered the relations between identity-based (IBE), certificate based

(CBE) and certificateless encryption schemes (CLE) and established a

result of essential equivalence [224] between the three primitives but this

result does not hold for the strongest security model developed in [6] for

CLE schemes. The same authors also proposed generic constructions

of certificateless signatures [223] and encryption schemes [222] but only

established the security of their designs in security models that are seem-

ingly weakened w.r.t. the original model considered in [6] for the public

key encryption case.

A more recent work [7] thoroughly investigated the connections be-

tween the CLE and CBE paradigms by proposing a simplified defini-

tion and a revised security model for certificate based encryption before

proving that any secure certificateless encryption (CLE) scheme can be

turned into a secure CBE in the amended model. The authors of [7] also

identified some potential weaknesses remaining in the amended model

and argued that a purely generic conversion from secure CBE schemes

in the latter model to some secure CLE counterpart in the appropriate

CL-PKC model is very unlikely to exist.

Among other related recent results, we mention a paper [59] describ-

ing a quite similar scheme to [7], a flawed construction of authenticated

encryption [130] and another work that investigates identity-based and

certificateless extensions of key encapsulation mechanisms [32]. A very

recent paper by Baek et al. [13] also showed how to devise a certificate-

less encryption scheme without pairings. The latter construction enjoys

a better efficiency than pairing-based proposals [6, 7, 59] but is sup-

ported by a weaker security model and prevents users from generating

their public key independently from the system’s authority.

The contribution of the present chapter to the area of certificateless

cryptography is two-fold. It first identifies some weaknesses in generic

constructions independently considered in [5] and [222]. It shows that

one of these flaws is also present in the second provably secure CLE
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scheme of Al-Riyami and Paterson [7] where it can be very easily fixed.

The chapter then explains how to obtain generic constructions which are

provably secure in the random oracle model. It does so by first giving a

generic random oracle-using conversion to turn any CLE scheme which

is only secure against chosen-plaintext attacks into an IND-CCA scheme

in the full model of Al-Riyami and Paterson.

The second contribution of the chapter is to describe a new efficient

pairing-based scheme yielding some advantages over previous construc-

tions [6, 7, 59, 32]: its encryption operation does not require to compute

any pairing (only the decryption algorithm does) and is thus significantly

faster than in previous proposals [6, 7, 59, 32]. The security proof of the

new scheme is nevertheless obtained under a stronger computational as-

sumption than for previous schemes in the literature.

In the forthcoming sections of this chapter, we first review the for-

mal definition and adversarial model of CLE schemes in section 2 where

the original construction of Al-Riyami and Paterson [6] is also recalled.

Section 3 illustrates the power of their security model by showing how

generic constructions studied so far are insecure in it. We explain in sec-

tion 4 how to repair them and we prove the security of the fixed construc-

tions in the random oracle model. Our new certificateless cryptosystem

is then depicted in section 5 where security proofs in the random oracle

model are detailed.

2. Formal models and examples

We now recall the components of a certificateless encryption scheme

before detailing the relevant formal security model [6].

2.1. Definition of certificateless encryption (CLE) schemes

Definition 4.1 A certificateless encryption scheme (CLE) is a 7-uple

of algorithms which are the following:

Setup: is a probabilistic algorithm run by a Key Generation Cen-

ter (KGC), that, given a security parameter k, returns a ran-

domly chosen master key mk and a list of public parameters

params.
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Partial-Private-Key-Extract: is a possibly probabilistic algorithm,

run by the KGC, that takes as input a user’s identifier IDA and

the master key mk to return his/her partial private key dA.

Set-Secret-Value: is a probabilistic algorithm that, given a list

of public parameters params, returns a randomly chosen secret

value xA for that user. This algorithm and the next two ones

are performed by the user himself.

Set-Private-Key: is a deterministic private key generation algo-

rithm that, given public parameters params, an user’s partial

private key dA and secret value xA, outputs a private key SA.

Set-Public-Key: is a deterministic public key generation algo-

rithm that, given public parameters params and a user’s secret

value xA, computes his/her public key pkA. Given params, it

must be publicly verifiable that pkA is well-formed1.

Encrypt: is a probabilistic algorithm taking as input a plaintext m,

parameters params, a receiver’s identity IDA and his public key

pkA to produce a ciphertext C = Encrypt(m, params, IDA, pkA).

Decrypt: is a deterministic algorithm that, given a ciphertext C,

a list of public paramaters params and user IDA’s private key,

outputs a plaintext m or a distinguished symbol ⊥.

For consistency, it is obviously required that Decrypt(C, params, SA) = m

whenever C = Encrypt(m, params, IDA, pkA) for all messages m ∈ M

and public keys pkA = Set-Public-Key(params, xA) for which the private

key is SA = Set-Private-Key(params,Partial-Private-Key-Extract(IDA), xA)

and the secret value is xA = Set-Secret-Value(params).

Unlike Setup and Partial-Keygen that are run by a Key Generation

Center (KGC), algorithms Set-Secret-Value, Set-Pr-Key and Set-Pub-Key

are executed by the user. The latter’s private key is thus not computable

by the KGC and key escrow is not inherent.

The recent pairing-free scheme of Baek et al. [13] fits a slightly dif-

ferent model where users have to obtain their partial private keys before

generating their public key (actually, a part of the latter is computed

by the KGC and included in the partial private key). This approach is

1Hereby, we mean that public keys are usually required to have a special struc-

ture. As we shall see in concrete examples, they might be elements of a particular

group or they might be made of a pair of group elements satisfying a special relation.



2. FORMAL MODELS AND EXAMPLES 71

closer to the “self-certified” paradigm [101] which is another approach

suggested by Girault in 1991 to use public key cryptography without

traditional digital certificates and without involving an escrow author-

ity. As explained in [6], the self-certified schemes presented in [101] are

structurally somewhat similar to certificateless schemes that have been

studied so far [6, 7, 59, 27]. In a self-certified scheme, an entity chooses

its own private key sk and the corresponding public key pk and delivers

pk to a trusted authority (TA). The TA combines pk with the identity ID

of that entity to produce a witness w. This witness may just be the TA’s

signature on a combination of pk and ID as in [101]. Given w, ID and

the TA’s public key, anyone can retrieve pk, whereas only the TA can

extract the witness w from pk and ID. The scheme thus provide implicit

certification in the sense that the receiver’s public key is incorporated

in the witness w and can be retrieved from it using the TA’s public key

and the receiver’s identity: in some sense, the witness can be viewed as

a light-weight certificate that contains the receiver’s public key.

Self-certified schemes have an advantage over certificateless ones in

that the communication between an entity and the TA does not need to

be confidential: there are no partial private keys to be transported to

entities. Moreover, the self-certified paradigm requires investing fewer

trust in authorities than within a certificateless system. But, as we will

see, all certificateles schemes can be modified to allow the detection of

dishonest authorities. They then reach the level 3 in the hierarchy of

[101]. On the other hand, except a particular scheme named “implicit

certification scheme” that was proven secure by Brown et al. [46], self-

certified schemes that have been studied so far do not enjoy security

proofs in formal models.

2.2. Security model

In [6], two kinds of adversaries are distinguished against CLE schemes.

A Type I adversary is not given the KGC’s master key but is enabled

to replace public keys of arbitrary identities with other public keys of

her choice (provided those public keys have the correct form). Consid-

ering such an adversarial behavior seems very natural as, in the absence

of digital certificates, anyone can alter public directories by replacing

end-users’ public keys with other ones without being caught nor even

detected. Similarly to attackers against identity-based cryptosystems,
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Type I adversaries can also ask for partial and full private keys of arbi-

trary identities.

In contrast, a Type II adversary knows the KGC’s master key (and

thus does not need a partial key exposure oracle) and may still obtain

full private keys for arbitrary identities but is disallowed to replace pub-

lic keys during the game.

For both types of adversary, depending on the attack that is con-

sidered (chosen-plaintext or chosen-ciphertext attacks), we may provide

them or not with an additional oracle decrypting adversarially chosen

ciphertexts for the private key associated to arbitrary identities.

In the chosen-ciphertext scenario, the authors of [6] consider de-

cryption oracles that should be able (thanks to suitable knowledge ex-

tractors) to output consistent answers even for identities whose public

key has been replaced with other ones for which they do not know the

matching private key. The latter requirement might a priori appear too

strong to the reader but the authors of [6] argue that decryption queries

involving identities whose public keys have been replaced with arbitrary

other ones are far more useful to a Type I attacker (and especially when

the latter does not know the private key associated to the new public

key). Anyway, our new construction of section 5 perfectly supports this

constraint that turns out to be one of the noticeable strengths of the

model and that does not exist in the certificate based formalism.

In the security analysis of generic constructions in section 3.2, we will

illustrate the importance of considering adversaries who replace public

keys instead of merely corrupt their owner and learn his/her secret value.

Definition 4.2 ([6]) A CLE scheme is IND-CCA secure if no proba-

bilistic polynomial time (PPT) adversary A of Type I or II has a non-

negligible advantage in the following game:

1. Given a security parameter k, the challenger runs Setup(k) and

then delivers the resulting parameters params to A who also

receives the master key mk if she is of Type II. Otherwise, mk

is kept secret.

2. A is given access to

- a public key broadcast oracle Public-Key-Broadcast taking

as input identities and returning the associated public keys.
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- a partial key exposure oracle Partial-Private-Key-Extract (if

she is of Type I as such an oracle is useless otherwise) re-

turning partial private keys associated to users’ identities.

- a private key exposure oracle Private-Key-Extract revealing

private keys of entities whose public key was not replaced.

- a decryption oracle Decrypt which, given a ciphertext and

an identity (C, ID), returns the decryption of C using the

private key associated to the current value of entity ID’s

public key.

If A is of Type I, she has also access to a public key replacement

oracle Public-Key-Replace which, given an identifier ID and a

valid public key pk′, replaces user ID’s public key with pk′)

3. A outputs messages m0,m1 and an identity ID∗ of uncorrupted

private key. If A is of Type I, ID∗ may not have been queried to

both oracles Public-Key-Replace and Partial-Private-Key-Extract.

She gets a ciphertext C∗ = Encrypt(mb, params, ID∗, pk∗) where

b R← {0, 1} and pk∗ is the public key currently associated to ID∗.

4. She then issues a new sequence of queries but is disallowed

to ask for the decryption of C∗ for the combination (ID∗, pk∗)

under which mb was encrypted at step 3. Moreover no pri-

vate key exposure query can be made on ID∗ at any time and,

in a Type I attack, ID∗ may not be submitted to both oracles

Public-Key-Replace and Partial-Private-Key-Extract.

5. A eventually outputs a bit b′ and wins if b′ = b. As usual, her

advantage is Advind−cca
CLE (A) := 2× Pr[b′ = b]− 1.

The above definition captures a chosen-ciphertext scenario where

maximal power is granted to adversaries. The weaker chosen-plaintext

security (or IND-CPA security) notion is formalized by a similar game

where attackers have no decryption oracles.

The security models considered in [222, 13] are weaker in the sense

that they forbid Type I attackers to ever extract the partial private key

of the target entity. The above model allows them to do so if they do

not additionally replace the associated public key. Besides, the model

of [222] only imposes challengers to correctly handle decryption queries

for entities whose public key was not replaced.

From here on, we will stick to the strong model of definition 4.2.
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2.3. Review of some previous CLE schemes

In order to provide the reader with a concrete example of a certifi-

cateless scheme, the next figure recalls the first solution put forth by

Al-Riyami and Paterson in [6]. An improvement of the latter construc-

tion is then recalled.

2.3.1. The Al-Riyami-Paterson scheme

The description given in figure 4.1 is obtained by applying the Fujisaki-

Okamoto [89] conversion to a simpler version that is only secure against

chosen-plaintext attacks. The resulting scheme, called FullCLE, reaches

the chosen-ciphertext security in the sense of definition 4.2.

The correctness of the scheme directly stems from the bilinearity of

the map:

ê(U, SA) = ê(rP, xAsh1(IDA)) = ê(xAsP, h1(IDA))r.

The security relies on the so-called generalized Bilinear Diffie-Hellman

assumption that was introduced in [6] and which is the infeasibility of

finding a pair 〈Q, ê(P,Q)abc〉 ∈ G1 ×G2 given 〈P, aP, bP, cP 〉.

The purpose of the first step of the encryption algorithm is to verify

that the public key is correctly formed (i.e. that its components XA

and YA have equal discrete logarithms for the bases P and Ppub). This

public key validation procedure turns out to be expensive as it involves

two pairing evaluations but it must fortunately only be performed once

at the first use of a public key.

If the detection of dishonest authorities is required, the partial pri-

vate key generation algorithm can be modified in such a way that entity

A’s partial private key is dA = sh1(IDA||pkA). This alternative partial

private key generation provides a kind of implicit certification of the en-

tity’s public key. Dishonest KGCs that issue several partial private keys

for the same identity can then be detected and the scheme thus reaches

the level 3 in Girault’s hierarchy [101]. Interestingly, secure channels are

no longer necessary between end-users and the KGC but entities then

have to choose their secret value and set out their public key before

obtaining their partial and full private keys.
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Setup: given security parameters k and k1 where k1 is polynomial in

k, this algorithm chooses a k-bit prime number q, symmetric

bilinear map groups (G1,G2) of order q, a generator P ∈ G1

and hash functions h1 : {0, 1}∗ → G1, h2 : G2 → {0, 1}k1 ,

h3 : {0, 1}n+k1 → Z
∗
q and h4 : {0, 1}k1 → {0, 1}n. A master key

mk := s R← Z
∗
q and a public key Ppub = sP ∈ G1 are also chosen.

The public parameters are

params := {q, k, k1,G1,G2, P, Ppub, ê, h1, h2, h3, h4, n,M, C}

where M := {0, 1}n, C := G1 × {0, 1}
n+k1 are cleartext and

ciphertext spaces.

Partial-Private-Key-Extract: takes as input entity A’s identifier IDA ∈

{0, 1}∗ and extracts A’s partial private key dA = sh1(IDA) ∈ G1.

Set-Secret-Value: given params and A as inputs, this algorithm picks

xA ∈ Z
∗
q which is returned as user A’s secret value.

Set-Private-Key: given params, user A’s partial private key dA ∈ G1 and

his secret value xA ∈ Z
∗
q , this algorithm computes the private

key SA = xAdA = xAsh1(IDA) ∈ G1.

Set-Public-Key: this algorithm takes as input params and entity A’s secret

value xA ∈ Z
∗
q and produces A’s public key

pkA := 〈XA = xAP, YA = xAPpub〉 ∈ G1 ×G1.

Encrypt: to encrypt m ∈ {0, 1}n using the identifier IDA ∈ {0, 1}
∗ and the

public key pkA = 〈XA = xAP, YA = xAPpub〉,

(1) Check that ê(YA, P ) = ê(Ppub,XA).

(2) Pick σ R← {0, 1}k1 , set r = h3(σ,m) ∈ Z
∗
q and compute the

ciphertext

C = 〈U, V,W 〉 = 〈rP, σ ⊕ h2(ê(YA, h1(IDA))r),m⊕ h4(σ)〉

Decrypt: given a ciphertext C = 〈U, V,W 〉 ∈ C,

(1) Use SA to recover σ = V ⊕h2(ê(U, SA)) ∈ {0, 1}k1 and then

m = W ⊕ h4(σ) ∈ {0, 1}n.

(2) Compute r = h3(σ,m) ∈ Z
∗
q , return m if U = rP and ⊥

otherwise.

Figure 4.1. The FullCLE scheme

2.3.2. An improvement of FullCLE

In [7], the inventors of the certificateless paradigm proposed a variant

(named FullCLE∗) of their scheme that is significantly more efficient than

FullCLE in situations where few messages must be encrypted using a
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Setup: is the same as in FullCLE except that 5 hash functions are in-

volved: h1 : {0, 1}∗ → G1, h2 : G2 → {0, 1}k1 , h′2 : G1 →

{0, 1}k1 , h3 : {0, 1}n+k1 → Z
∗
q , h4 : {0, 1}k1 → {0, 1}n. A master

key mk := s R← Z
∗
q and a public key Ppub = sP ∈ G1 are also

chosen. The public parameters are

params := {q, k, k1,G1,G2, P, Ppub, ê, h1, h2, h
′
2, h3, h4, n,M, C}

where M := {0, 1}n, C := G1 × {0, 1}
n+k1 are cleartext and

ciphertext spaces.

Partial-Private-Key-Extract: is unchanged as well as Set-Secret-Value.

Set-Private-Key: given params, user A’s partial private key dA ∈ G1 and

his secret value xA ∈ Z
∗
q , the full private key is the pair SA =

(xA, dA) ∈ Z
∗
q ×G1.

Set-Public-Key: this algorithm takes as input params and entity A’s secret

value xA ∈ Z
∗
q and produces A’s public key YA = xAP ∈ G1.

Encrypt: to encrypt m ∈ {0, 1}n using the identifier IDA ∈ {0, 1}
∗ and the

public key pkA = YA = xAP ,

(1) Check that Y q
A = 1G1

.

(2) Pick σ R← {0, 1}k1 , set r = h3(σ,m) ∈ Z
∗
q and compute the

ciphertext

C = 〈U, V,W 〉 = 〈rP, σ ⊕ h2(ê(Ppub, h1(IDA))r)⊕ h′2(rYA),m⊕ h4(σ)〉

Decrypt: given a ciphertext C = 〈U, V,W 〉 ∈ C,

(1) Compute σ = V ⊕ h2(ê(U, dA)) ⊕ h′2(xAU) ∈ {0, 1}k1 and

then m = W ⊕ h4(σ) ∈ {0, 1}n.

(2) Compute r = h3(σ,m) ∈ Z
∗
q , return m if U = rP and ⊥

otherwise.

Figure 4.2. The FullCLE∗ scheme

given public key. In FullCLE∗, public keys are made of a single group

element and checking their validity only requires an elliptic curve scalar

multiplication but the encryption phase itself entails an additional scalar

multiplication in G1. The plaintext is actually scrambled twice using two

distinct superposed one-time masks and, in some sense, the scheme may

be regarded as an optimized composition of the Boneh-Franklin IBE

with an El Gamal-like encryption.

In order to achieve the security in the sense of definition 4.2, the

authors of [7] again applied the Fujisaki-Okamoto conversion [89] recalled

in chapter 3. As shown in the next section, this does not suffice as some
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special care is needed to integrate IBE systems with traditional public

key encryption schemes in order to design secure CLE schemes.

3. On the power of public key replacement oracles

This section highlights the strength of the security model in the

chosen-ciphertext scenario. We first exemplify that allowing decryp-

tion queries even for entities whose public key has been replaced does

harm the security of FullCLE∗. We also show how to very easily fix

the problem. We then explain how attacks by public key replacements

may compromise the security of generic constructions of certificateless

encryption.

3.1. The FullCLE∗ case

We here find that a Type I adversary AI can easily break the non-

malleability of FullCLE∗ in the scenario of definition 4.2 by replacing

twice the target identity’s public key. In more details, if the challenge

ciphertext is C∗ = 〈U∗, V ∗,W ∗〉 and x∗ denotes the secret value of the

target identity ID∗ (that can be known to a Type I adversary A replacing

entity ID∗’s public key before the challenge phase), the attacker can re-

place the target identity’s public key with x′P after the challenge phase

and then ask for the decryption of C ′ = 〈U∗, V ∗⊕h2(x
∗U)⊕h2(x

′U),W ∗〉

(which is an encryption of the same plaintext as C∗ for the combination

(ID∗, x′P )). Since decryption queries remain allowed even for entities of

replaced public key, AI can issue a decryption query on C ′ 6= C for the

identity ID′ and recover the plaintext.

Attackers replacing public keys are thus able to take advantage of

multiplicative relations between those public keys and parts of cipher-

texts. Fortunately, such an attack is easily thwarted by hashing the

recipient’s public key along with his identity and the pair (σ,m) at step

2 of the encryption algorithm: the encrypting multiplier r is thus ob-

tained as r = h3(σ,m, IDA, pkA). A variant of FullCLE∗ independently

proposed by Cheng and Comley [59] is immune to the latter “multiplica-

tive” attack because it scrambles σ with a hash value of both rYA and

ê(Ppub, QIDA
)r instead of using separate masks. FullCLE and another re-

cently proposed certificateless encryption scheme [32] are also immune

to the latter “multiplicative” attack. Interestingly, this attack does not
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work anymore if the alternative private key generation method (recalled

in section 2.3.1) is used to bind public keys to identities. Neither does it

against the certificate-based encryption scheme obtained from FullCLE∗

using the generic transformation of Al-Riyami and Paterson [7].

These observations shed new light on the power of adversaries who

are able to replace entities’ public keys rather than simply obtaining

their secret value from user-corrupting oracles. Actually, the FullCLE∗

scheme remains secure in a model in which attackers cannot replace pub-

lic keys but are rather provided with an oracle returning secret values

of arbitrary identities. The latter model is thus strictly weaker than the

one captured by definition 4.2.

3.2. The case of generic constructions

In [5] and [222], generic constructions of certificateless encryption

were independently proposed. Their idea is basically to combine strongly

secure identity-based and traditional public key encryption schemes in

a sequential or parallel fashion. More precisely, if ΠIBE and ΠPKE re-

spectively denote an IBE and an ordinary public key encryption system,

a CLE scheme ΠCLE can be obtained with the sequential composition

depicted in figure 4.3 and named Generic-CLE-1. Its security was proved

by Yum and Lee [222] in a weak model where adversaries are restricted

not to issue a partial key exposure query on the target identity ID∗ (re-

call that such a query is allowed in the strong model if the public key

associated to ID∗ is never replaced) nor to require the correct decryption

of ciphertexts encrypted under identities of replaced public keys.

This construction is insecure against Type I attacks in the full model

of definition 4.2 even if its building blocks ΠIBE and ΠPKE are each IND-

CCA secure in their model. We show it using simple arguments such

as those given in [80] against the security of naive multiple-encryptions.

Let C∗ = EIBEID∗ (EPKEpk∗ (m∗
b)) be the challenge ciphertext in the game of

definition 4.2 where m∗
b (for a random bit b ∈ {0, 1}) denotes one of

the messages produced by the adversary AI in her challenge request.

Assume that AI never replaces the public key of ID∗ but rather extracts

the partial private key dID∗ after the challenge phase. She then obtains

E1 = DIBEdID∗
(C∗) = EPKEpk∗ (mb) and she may compute another encryption

C ′ = EIBEID∗ (E1) 6= C∗ of the same plaintext and obtain m∗
b .
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Setup: is an algorithm running the setup algorithms of both ΠIBE and

ΠPKE . The message space of ΠCLE is the message space of

ΠPKE while its ciphertext space is the one of ΠIBE . Both

schemes have to be compatible in the sense that the plaintext

space of ΠIBE must contain the ciphertext space of ΠPKE .

Partial-Private-Key-Extract: is the private key generation algorithm of

ΠIBE .

Set-Secret-Value and Set-Public-Key: run the key generation algorithm

of ΠPKE to obtain a private key sk and a public key pk. The

former is the secret value and the latter becomes the public key.

Set-Private-Key: returns SA := (dA, skA) where dA is obtained by run-

ning the key generation algorithm of ΠIBE for the identity IDA

and skA is entity A’s secret value obtained from ΠPKE ’s key

generation algorithm.

Encrypt: to encrypt m ∈ MPKE using the identifier IDA ∈ {0, 1}
∗ and

the public key pkA,

(1) Check that pkA is a valid public key for ΠPKE .

(2) Compute and output the ciphertext C = EIBE
ID (EPKE

pkA
(m))

where EIBE
ID and EPKE

pkA
respectively denote the encryption

algorithms of ΠIBE and ΠPKE for the identity ID and the

public key pkA.

Decrypt: to decrypt C using SA = (dA, skA),

(1) Compute DIBE
dA

(C) using the decryption algorithm of

ΠIBE . If the result is ⊥, return ⊥ and reject the ciphertext.

(2) Otherwise, compute DPKE
skA

(DIBE
dA

(C)) using the decryption

algorithm of ΠPKE and return the result.

Figure 4.3. The Generic-CLE-1 construction

This does not contradict the result of Yum and Lee [222] since they

considered a weaker security model in which attackers may not extract

the partial private key for the target identity ID∗.

In [5], a reverse-ordered composition (that we call Generic-CLE-2)

where ciphertexts have the form C = EPKEpkA
(EIBEID (m)) is suggested.

This composition is vulnerable against an attacker replacing the target

entity’s public key before the challenge phase. Knowing the secret value

sk∗ in the challenge phase, the adversary obtains EIBEID∗ (mb) that is re-

encrypted into C ′ = EPKEpk∗ (EIBEID∗ (mb)) 6= C∗ which may be submitted to

the decryption oracle even though entity ID∗’s public key was replaced
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in the model of [6].

In [5], a ‘parallel’ construction (that we will call Generic-CLE-3) was

also considered. It encrypts a plaintext m into

C = 〈EPKEpkA
(m1), E

IBE
ID (m2)〉

wherem1 andm2 are subject to the constraintm = m1⊕m2. This paral-

lel approach is vulnerable to a similar attack to those outlined by Dodis

and Katz [80] against multiple-encryption schemes: if C∗ = 〈E∗1 , E
∗
2 〉 is

the challenge ciphertext in the IND-CCA game, both kinds of adversaries

AI or AII may first request the decryption of C ′
1 = 〈E∗1 , E

IBE
ID (0IBE)〉

and then the decryption of C ′
2 = 〈EPKEpk (0PKE), E∗2 〉, where 0PKE and

0IBE are plaintexts made of zeros in ΠIBE and ΠPKE . By combining

the results m′
1 and m′

2 of both decryption requests into m′
1 ⊕ m

′
2, the

adversary AI gets back the plaintext encrypted in C∗. This attack works

even if ΠIBE and ΠPKE are both IND-CCA secure and it does not even

require AI to replace any public key. Unlike the previous two attacks,

it also works in the weaker models of [59, 222].

In [80], Dodis and Katz gave generic techniques to thwart such at-

tacks and build IND-CCA secure (possibly parallel) multiple-encryption

schemes from public key encryption schemes which are individually IND-

CCA. They showed that their methods apply to the design of certificate-

based encryption schemes [98] without resorting to the random oracle

model. Because of the strong constraint imposed on decryption oracles

in definition 4.2, those techniques do not seem to directly apply in the

present context (although they do so in the relaxed models considered

in [59, 222]). In simulation-based security proofs, the difficulty is that

the simulator does not know the secret value of entities whose public key

was replaced. It is to note that, unlike the attack outlined against

FullCLE∗, the first and third attacks do not use the full power of the

security model of [6].

4. Secure Generic constructions in the random oracle model

We now explain how to obtain generic constructions that withstand

the attacks outlined in section 3.2 and that are provably secure in the

random oracle model.

We first show a generic random oracle-using transformation that
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turns any IND-CPA certificateless encryption scheme into a secure CLE

system in the chosen-ciphertext scenario of definition 4.2. We then show

that all the generic compositions recalled in section 3.2 are IND-CPA if

they start from chosen-plaintext secure IBE and PKE schemes.

4.1. From chosen-plaintext to chosen-ciphertext security

This transformation is a modification of the first conversion of Fu-

jisaki and Okamoto [88] which is known to provide IND-CCA secure

public key encryption schemes from IND-CPA ones. Given an IND-CPA

secure cryptosystem Π = (K, Epk,Dsk), the original Fujisaki-Okamoto

conversion basically encrypts the plaintext along with a random string

using a hash value of them as a randomness: the enhanced encryption

algorithm of Π′ = (K, Epk, Dsk) is

Epk(m,σ) = Epk(m||σ,H(m||σ))

for a random string σ. The matching decryption algorithm is

Dsk(C) = m if C = Epk(m||σ,H(m||σ))

and ⊥ otherwise

where (m||σ) = Dsk(C). Our adaptation of this conversion simply con-

sists in hashing the recipient’s identity and his public key along with the

message and the random string in the enhanced encryption algorithm.

The second Fujisaki-Okamoto [89] conversion, which is used in the

FullCLE and FullCLE∗ schemes, can be customized in the same way to

be generically applied in the certificateless setting. Although this sec-

ond transformation is the most powerful one (as it only starts from a

public key encryption scheme that is one-way against chosen-plaintext

attacks), we prefer using the first one [88] which is simpler, uses fewer

random oracles and is sufficient for our purposes.

To handle decryption queries of the chosen-ciphertext attacker, the

strategy of the plaintext extractor is essentially the following: for every

new random oracle query on a string (m||σ||pk||ID), it returns a random

value r and runs the encryption algorithm of the weakly secure CLE

scheme with the identity ID and the public key pk (that may have been

replaced or not) to encrypt (m||σ) using the randomness r. The result-

ing ciphertext C is stored in a list. By doing so, the simulator anticipates
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subsequent decryption queries, knowing that any valid ciphertext was

previously computed and stored in the list with high probability.

Theorem 4.1 Let ΠCLE be an IND-CPA certificateless encryption scheme

and suppose that

Eparams
ID,pk (M,R) and Dparams

SID

are its encryption and decryption algorithms where ID and pk respectively

denote the recipient’s identity and his public key, M is a message of

n + k0 bits, R is a random string of ℓ bits while SID is the recipient’s

private decryption key. Then, an IND-CCA certificateless scheme Π
CLE

can be obtained using modified encryption and decryption algorithms

E
params
ID,pk (m,σ) = Eparams

ID,pk (m||σ,H(m||σ||pk||ID))

where H : {0, 1}∗ → {0, 1}ℓ is a random oracle, m ∈ {0, 1}n is the

plaintext and σ ∈ {0, 1}k0 is a random string. The modified decryption

algorithm is

D
params
SID

(C) = m if C = Eparams
ID,pk (m||σ,H(m||σ||pk||ID))

and ⊥ otherwise

where (m||σ) = Dparams
SID

(C).

More precisely, assume that a Type I (resp. Type II) IND-CCA

attacker A has an advantage ǫ against Π
CLE

when running in a time τ ,

making qD decryption queries and qH random oracle queries. It implies

a Type I (resp. Type II) IND-CPA attacker B with an advantage

ǫ′ > (ǫ− qH/2
k0−1)(1− 2−ℓ0)qD

against ΠCLE when running in a time τ ′ < τ +O(qHτE), where τE is the

cost of the original encryption algorithm and

ℓ0 = log2

(

min
m∈{0,1}n+k0

ID,pk

[#{Eparams
ID,pk (m, r)|r ∈ {0, 1}ℓ}]

)

is the logarithm of the cardinality of the smallest set of encrypted values

that can be obtained for fixed plaintext, identity and public key.

Proof. The proof is quite similar to the one of theorem 3 in [88] but

we have to show that the adapted conversion generically works in our

context. We outline how B uses A to succeed in a chosen-plaintext

attack against her challenger CH. B starts by forwarding to A the

public parameters (together with the KGC’s master key in the scenario
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of a Type II attack) she obtains from CH. Recall that ΠCLE can be

itself a random oracle-using scheme. All random oracles pertaining to

ΠCLE are thus controlled by CH. The chosen-ciphertext attacker A has

also access to a decryption oracle and an additional random oracle H

that are simulated by B as follows:

- random oracle queries related to ΠCLE as well as public key

broadcast, public key replacement (in the case of Type I at-

tacks) and partial/full private key exposure queries are passed

to CH whose answers are relayed to A.

- Whenever A submits a string (m||σ||pk||ID) to the H oracle,

B first checks if H was previously queried on the same input

and returns the previously answered value if it was. Other-

wise, B returns a randomly chosen r R← Z
∗
q . She then runs the

encryption algorithm of ΠCLE to compute

C = Eparams
ID,pk (m||σ, r)

which is a Π
CLE

encryption of m under the public key pk and

the identity ID using the randomness σ ∈ {0, 1}k0 (as well as a

ΠCLE encryption of (m||σ) for the randomness r). In order to

anticipate subsequent decryption queries, a record containing

the input (m||σ||pk||ID) as well as the returned r and the cor-

responding ciphertext C is then stored in a list LH . Note that

B might need CH to answer queries for random oracles related

to ΠCLE to be able to compute C.

- Decryption queries: when A submits a ciphertext C and an

identity ID, B first recovers the public key pk currently as-

sociated to ID (by issuing a public key broadcast query to

CH). She then searches in list LH for a tuple of the form

((m||x||pk||ID), r, C) in order to return the corresponding m if

such a tuple exists and ⊥ otherwise.

When A decides that phase 1 is over, she outputs messages (m0,m1)

and an identity ID∗ (whose private key was not exposed and that was

not submitted to both Public-Key-Replace and Partial-Private-Key-Extract

oracles). At that point, B obtains the current value pk∗ of the public

key associated to ID∗ (by issuing a Public-Key-Broadcast query to CH)
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before randomly choosing two strings σ0, σ1
R← {0, 1}k0 and in turn send-

ing her challenge request (M0 = (m0||σ0),M1 = (m1||σ1), ID
∗) to CH.

The latter then returns a ΠCLE encryption C∗ of Mb = (mb||σb) for the

identity ID∗ and the currently associated public key pk∗ using some coin

r∗ R← Z
∗
q .

As in the proof of theorem 2 in [88], if A ever queries H on the

input (md||σd||pk∗||ID∗) for d ∈ {0, 1}, B halts and outputs the corre-

sponding bit d as a result which is very likely to be correct in this case:

since A has absolutely no information on σb (b being the complement

bit of b), one can show as in [88] that A only asks for the hash value

H(mb||σb||pk∗||ID∗) with probability qH/2
k0 throughout the game). On

the other hand, if such an H-query never occurs, B outputs exactly the

same result b′ as A does and obviously succeeds against CH if A yields

a correct guess b′ = b.

The probability for B to wrongly reject a ciphertext during the game

is smaller than 1− (1−2−ℓ0)qD . Indeed, for a given decryption query on

a ciphertext C and an identity ID, assume that (m||σ) = Dparams
SID

(C) and

does not figure (together with ID and pk) in list LH . The probability

that H(m||σ||pk||ID) takes a value encrypting (m||σ) into C is at most

2−ℓ0 (as at most 2ℓ−ℓ0 distinct random values r ∈ R may encrypt a given

ciphertext into the same ciphertext by the definition of ℓ0) .

It comes that B’s advantage against CH is at least

ǫ′ > (ǫ− qH/2
k0−1)(1− 2−ℓ0)qD

and that her running time is bounded by τ ′ < τ + O(qHτE) where τE

is the time complexity of the encryption algorithm of the basic scheme

ΠCLE . She also has to issue qD + 1 public key broadcast oracle queries

to CH and qH queries to random oracles pertaining to ΠCLE . �

4.2. Generic IND-CPA secure compositions

From now, we only have to consider generic constructions that are

only secure against chosen-plaintext attacks. By applying to them the

random oracle-using conversion, we end up with provably secure generic

constructions in the random oracle model.

Let ΠIBE = (SetupIBE ,KeygenIBE , EIBE ,DIBE) be an IBE scheme

and ΠPKE = (KPKE , EPKEpk ,DPKEsk ) be a traditional public key encryp-

tion scheme.
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Theorem 4.2 If ΠIBE is IND-ID-CPA and ΠPKE is IND-CPA, then

the Generic-CLE-1 is IND-CPA.

To prove the above theorem, we need to separately consider Type I

and Type II adversaries.

Lemma 4.1 A Type I IND-CPA adversary AI having an advantage ǫ

against Generic-CLE-1 implies either an IND-ID-CPA adversary with ad-

vantage ǫ/(2qID) against ΠIBE or an IND-CPA adversary with advan-

tage ǫ/(2qID) against ΠPKE, where qID is the total number of distinct

identities involved in AI ’s requests.

Proof. We show how to construct from AI an adversary B that either

performs an IND-ID-CPA attack against ΠIBE or an IND-CPA attack

against ΠPKE . We assume that challengers CIBE , CPKE for both games

are available to B.

We distinguish two kinds of Type I adversaries:

Type I-A adversaries: choose to replace the public key asso-

ciated to the target identity ID∗ at some moment of the game

(they thus cannot ask for the corresponding partial private key).

Type I-B adversaries: do not replace the public key of the tar-

get identity ID∗ but rather decide to ask for the associated par-

tial private key at some moment.

Before the initialization phase, B has to guess which kind of Type I

adversary A will be during the game. She thus begins by choosing a

random bit c R← {0, 1}. If c = 0, B bets on a Type I-A attack from A.

She chooses to play against CIBE and aborts CPKE . If c = 1, she hopes

that A will act as a Type I-B adversary and rather plays against CPKE .

In B’s interaction with AI , we call IDi the ith distinct identity that is

the subject of a query (hash query, full or partial key extraction, public

key replacement or even challenge query) made by AI . Let qID be the

total number of distinct identities involved in some query (including the

unique challenge query). The adversary B randomly chooses an index

ℓ ∈ {1, . . . , qID}. Depending on the bit c, the setup phase is performed

in two different ways:

Case c = 0: B generates the public parameters of the KGC for

the CLE scheme. Those include the public parameters params
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of ΠIBE which are generated by CIBE and the space of public

keys of ΠPKE .

Case c = 1: B runs herself the Setup algorithm of ΠIBE to obtain

a master key mk and public parameters params including a

system-wide public key Ppub. The KGC’s public parameters

also include the description of the public key space of ΠPKE .

Before sending them to AI , B also obtains a challenge public

key pk∗ from its challenger CPKE .

We call H the event that AI chooses to be challenged on the target

identity IDℓ. We denote by F0 the event that she extracts the partial

private key for IDℓ and we let F1 be the event that she replaces the

public key of entity IDℓ at some point of the attack.

As in the proof techniques of [5, 6, 7] B uses a strategy which is

roughly the following. If c = 0 and events F0 and H occur, B will have

to abort (as it will have failed in guessing which kind of Type I adversary

is played by AI) exactly as if F1 and H both occur while c = 1. On

the other hand, a private key extraction query on the identity IDℓ also

causes B’s abortion whereas if either ¬F0 ∧ H or ¬F1 ∧ H occurs, B’s

success probability will be related to that of A.

Throughout the game, AI ’s queries are dealt with as follows:

- queries to Public-Key-Broadcast on input IDν (i.e. the νth dis-

tinct identity to be ever involved in some query): B returns the

previously assigned public key if it exists. Otherwise,

- in the case c = 0: B runs the key generation algorithm

KPKE of ΠPKE to obtain a key pair (pkν , skν). The public

key pk is returned and the triple (IDν , skν , pkν) is stored in

a list Lpub.

- in the case c = 1: if ν = ℓ, B returns the challenge public

key pk∗. If ν 6= ℓ, B responds with a public key pkν ob-

tained from the KPKE algorithm and stores the matching

private key skν in an entry (IDν , skν , pkν) of Lpub.

- queries to Partial-Private-Key-Extract on an input IDν :
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- in the case c = 0: if ν = ℓ, then B stops and declares

”failure”. Otherwise, she asks CIBE for the private key

dIDν associate to IDν and passes the answer back to AI .

- in the case c = 1, B normally runs the partial key genera-

tion algorithm as she knows the master key.

- queries to Private-Key-Extract on an input IDν : if ν = ℓ, B fails.

Otherwise, from the specification of the Public-Key-Broadcast

simulator, it comes that B necessarily knows the associated

secret value skν which can be recovered from Lpub (recall that

such a query is only authorized if entity IDν ’s public key was

not replaced).

- if c = 0, B asks CIBE for the private key dIDν of the identity

IDν . She then returns the full private key (dIDν , skν).

- if c = 1, B extracts the partial private key herself (using

the master secret mk) and then the full private key using

the known secret value skν retrieved from Lpub.

- queries to Public-Key-Replace for some identity IDν and public

key pk′: if ν = ℓ and c = 1, B fails. Otherwise, she ensures that

pk′ has the right form and, if so, replaces the corresponding

triple of Lpub with (IDν , ?, pk′) (where ? stands for an unknown

secret value).

At some moment, A ends the first phase by outputting a target iden-

tity ID∗ together with messages m0,m1 taken from the plaintext space

MPKE of ΠPKE . If ID∗ 6= IDℓ, B fails. Otherwise, two distinct strate-

gies are used to build a challenge ciphertext for the entity IDℓ and the

current value pkℓ of the associated public key (which is pk∗ in the case

c = 1).

Case c = 0 : B encrypts both m0 and m1 into c0 = Epkℓ
(m0) and

c1 = Epkℓ
(m1) which are sent to CIBE together with the target

identity ID∗ as a challenge request. The resulting challenge

C∗ = EIBEID∗ (cb) (where b ∈ {0, 1} is a random bit chosen by

CIBE) is transmitted to AI .

Case c = 1 : B sendsm0 andm1 as a challenge request to CPKE .

The latter responds with a ciphertext c∗ = Epk∗(mb) (for a

random bit b ∈ {0, 1}) which is in turn encrypted by B into
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C∗ = EIBEID∗ (c∗) that is given to AI .

In the second phase, AI ’s environment is simulated as previously. Even-

tually, AI outputs a bit b′ which is produced by B as a result. Clearly,

if the simulation has not failed and if AI is successful, so is B.

The latter’s advantage can be assessed by a similar reasoning to

lemma 2 of [6]: B reaches a failure state in the following situations:

0. For i = 0, 1, if Fi occurs while c = i. We call these events Hi.

1. Because of a private key exposure query for the identity IDℓ.

We let F2 denote this event.

2. Or because A chooses a target identity ID∗ 6= IDℓ. This corre-

sponds to the event ¬H.

As in [6], event H implies ¬F2 so that

Pr[B does not abort] = Pr[¬H0 ∧ ¬H1 ∧H]

= Pr[¬H0 ∧ ¬H1|H]Pr[H] =
1

qID
Pr[¬H0 ∧ ¬H1|H]

=
1

qID
(1− Pr[H0|H]− Pr[H1|H])

where the last equality follows from the fact that Pr[H0 ∧ H1|H] = 0.

On the other hand, as in [6], we have

Pr[Hi|H] = Pr[(c = i) ∧ Fi|H] =
1

2
Pr[Fi|H]

since the event Fi|H is independent of the event (c = i). Finally, as

Pr[F0 ∧F1|H] = 0, we have Pr[F0|H] + Pr[F1|H] ≤ 1 and it comes that

Pr[B does not abort] ≥
1

2qID
.

�

Lemma 4.2 A Type II IND-CPA adversary AII having an advantage ǫ

against Generic-CLE-1 implies an IND-CPA adversary B with advantage

ǫ/qID against ΠPKE, where qID is the total number of distinct identities

involved in AI ’s requests.

Proof. We describe how B uses A to break the chosen-plaintext secu-

rity of ΠPKE .

B first runs the Setup algorithm of ΠIBE to obtain a KGC’s key
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pair (Ppub,mk) and public parameters params. She also selects an in-

dex ℓ R← {1, . . . , qID} where qID is the total number of identities involved

in some query (including the challenge query) and obtains a challenge

public key pk∗ from its challenger CPKE . The adversary AII is launched

with params, and mk as inputs.

AII then performs a polynomially bounded number of queries han-

dled as follows.

- queries to Public-Key-Broadcast on input IDi (we call IDi the

ith distinct identity involved in some query): if i = ℓ, B re-

turns pk∗. Otherwise, she runs the key generation algorithm

KPKE to obtain a key pair (pki, ski) and returns pki. The triple

(IDi, pki, ski) is stored in a list Lpub.

- queries to Partial-Private-Key-Extract on an input IDi: we as-

sume that IDi was previously submitted to Public-Key-Broadcast

(otherwise, B can still make the latter query for itself). If i = ℓ,

B aborts. Otherwise, she knows the corresponding secret value

ski (stored in Lpub) and the partial private key dIDi (which is

computable using the master key mk) and returns the private

key (dIDi , ski).

At the challenge step, A outputs messages (m0,m1) and a target iden-

tity ID∗. At that point, B aborts if ID∗ 6= IDℓ. Otherwise, she for-

wards (m0,m1) as a challenge query to CPKE which responds with

c∗ = Epk∗PKE(mb) for a random bit b ∈ {0, 1}. The latter cipher-

text is further encrypted into C∗ = EIBEID∗ (c∗) and given as a challenge

to AII .

Adversarial queries in the guess stage are treated as in the find stage

and AII ’s final result b′ ∈ {0, 1} is output by B as a guess for the hid-

den bit of CPKE . Clearly, if AII is successful, so is B. The latter has

a probability of 1/qID to successfully guess the identity on which AII

produces her attack. Moreover, if B is lucky and correctly guesses, she

never aborts when answering a private key extraction query. It comes

that, if AII has an advantage ǫ, B has an advantage ǫ/qID. �

The proofs of chosen-plaintext security of Generic-CLE-2 and Generic-

CLE-3 are very similar and omitted here. In lemmas 4.1 and 4.2, qID can

be the number of random oracle queries for hash functions mapping
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identifiers onto cyclic subgroups or finite fields if we assume that any

query involving a given identity comes after a hash query on it.

This shows how to obtain secure generic constructions in the random

oracle model. In the case of Generic-CLE-1, if the encryption schemes

of ΠPKE and ΠIBE use distinct sets of randomness R1 and R2, the

enhanced CLE scheme should use a random oracleH : {0, 1}∗ → R1×R2

so that an encryption of a plaintext m using the random string σ is given

by

E
CLE
ID,pk(m||σ) = EIBEID (EPKEpk (m||σ, r1), r2)

where (r1||r2) = H(m||σ||pk||ID). In the case of Generic-CLE-3, we have

E
CLE
ID,pk(m||σ) = 〈EPKEpk (m1, r1), E

IBE
ID (m2, r2)〉

with m1 ⊕m2 = m||σ.

5. A new efficient construction

We here present our new efficient certificateless encryption scheme.

The security of our construction is proved to rely on the intractability of

the following problem that was introduced in [35] by Boneh and Boyen.

Definition 4.3 ([35]) The p-Bilinear Diffie-Hellman Inversion

problem (p-BDHI) consists in, given 〈P, αP, α2P, . . . , αpP 〉 ∈ G
p+1
1 ,

computing ê(P, P )1/α ∈ G2.

The p-Bilinear Diffie-Hellman assumption is the intractability of the

above problem. It was used by Boneh and Boyen [35] to prove the secu-

rity of a selective-ID [49] secure identity-based encryption scheme in the

standard model. Its decisional variant (i.e. the infeasibility of distin-

guishing ê(P, P )1/α from random elements of G2 even after having seen

〈P, αP, α2P, . . . , αpP 〉) was more recently studied in [82] where lower

bounds were given on its hardness in generic groups.

5.1. The scheme

This new scheme is called NewFullCLE to distinguish it from its sim-

plest form NewBasicCLE that only reaches the chosen-plaintext secu-

rity level. In this construction, partial private keys are signatures com-

puted using a signature scheme independently considered in [37] and

[227] unlike previous CLE schemes [6, 7, 59] that use partial private

keys computed according to Boneh et al.’s short signature algorithm
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Setup: given security parameters k,k0 so that k0 is polynomial in k,

this algorithm chooses a k-bit prime number q, symmetric bi-

linear map groups (G1,G2) of order q, a generator P ∈ G1

and hash functions h1 : {0, 1}∗ → Z
∗
q , h2 : G

2
2 → {0, 1}

n+k0 ,

h3 : {0, 1}∗ → Z
∗
q . A master key mk := s R← Z

∗
q and a pub-

lic key Ppub = sP ∈ G1 are also chosen. The group element

g = ê(P, P ) ∈ G2 is also included among the public parameters

which are

params := {q, k, k0,G1,G2, P, Ppub, g, ê, h1, h2, h3, n,M, C}

where M := {0, 1}n, C := G1 × {0, 1}
n+k0 respectively denote

cleartext and ciphertext spaces.

Partial-Private-Key-Extract: takes as input entity A’s identifier IDA and

extracts A’s partial private key dA = 1
s+h1(IDA)P ∈ G1.

Set-Secret-Value: given params and A as inputs, this algorithm picks

xA
R← Z

∗
q which is returned as user A’s secret value.

Set-Private-Key: given params, user A’s partial private key dA ∈ G1 and

his secret value xA ∈ Z
∗
q , this algorithm returns the pair SA =

(xA, dA) ∈ Z
∗
q ×G1 as a private key.

Set-Public-Key: takes as input params and entity A’s secret value xA ∈ Z
∗
q

and produces A’s public key pkA := yA = gxA ∈ G2.

Encrypt: to encrypt m ∈ {0, 1}n using the identifier IDA ∈ {0, 1}
∗ and the

public key pkA = yA = gxA , the sender

(1) Checks that yq
A = 1G2

.

(2) Picks σ R← {0, 1}k0 , computes r = h3(m||σ||pkA||IDA) ∈ Z
∗
q

and the ciphertext is

C = 〈c1, c2〉 = 〈rh1(IDA)P + rPpub, (m||σ)⊕ h2(g
r||yr

A)〉

Decrypt: given a ciphertext C = 〈c1, c2〉 ∈ C, the receiver uses his partial

private key dA to compute ω = ê(c1, dA) and then (m||σ) =

c2 ⊕ h2(ω||ω
xA) ∈ {0, 1}n+k0 . The message is accepted iff c1 =

r(h1(IDA)P + Ppub) with r = h3(m||σ||pkA||IDA) ∈ Z
∗
q .

Figure 4.4. The NewFullCLE scheme

[43]. The NewFullCLE scheme is constructed on the Sakai-Kasahara IBE

[189, 55, 56] which bears itself similarities with the second selective-ID

secure identity-based encryption scheme that was proved secure with-

out random oracles by Boneh and Boyen [35]. As for the Cheng-Chen
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[55] variant of the Sakai-Kasahara IBE, its security proof holds in the

random oracle model [29]. The correctness of the above construction is

easy to check as we have

ê(rh1(IDA)P + rPpub, dA)

= e
(

r(s+ h1(IDA))P,
1

s+ h1(IDA)
P
)

= ê(P, P )r.

Including gr among the inputs of h2 in step 2 of the encryption algo-

rithm is necessary to achieve a security reduction under the p-BDHI

assumption. The string (m||σ) could be hidden by a hash value of only

yrA but the security would have to rely on a newly defined unnatural

assumption.

Interestingly, hashing gr along with yrA is no longer necessary if the

scheme is transformed into a certificate-based encryption scheme in the

sense of Gentry [98]. This is due to particularities of the certificate-based

security model which are not detailed here.

5.2. Efficiency discussions

As for the second CLE scheme proposed by Al-Riyami and Paterson

[7], the validity of the public key can be checked very efficiently. As in

FullCLE∗, assuming that the bilinear map groups (G1,G2) are chosen by

a higher level authority and commonly used by several distinct KGCs,

end-users may generate their public key independently of any authority

in the system.

The encryption algorithm only entails two exponentiations in G2

and a multi-exponentiation in G1. The receiver has to compute a pair-

ing, a single exponentiation in G2 and multi-exponentiation in G1. The

decryption operation may be optimized by the receiver who can pre-

compute and store h1(IDA)P + Ppub in such a way that a simple scalar

multiplication in G1 suffices to verify the validity of the ciphertext. Such

a pre-computation also enables to speed up the encryption operation for

senders who encrypt several messages under the same public key. Their

workload then becomes comparable to the complexity of an El Gamal

[96] encryption.

From a computational point of view, NewFullCLE has the same ef-

ficiency as FullCLE∗ [7] if pre-computations are used in both schemes

(although NewFullCLE might be more efficient on curves of embedding
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degree 2 as an exponentiation in G2 is cheaper than a scalar multiplica-

tion in G1 in this case) as the pairing can be computed in advance for

each identity in FullCLE∗. However, our construction performs better in

the absence of pre-computations as its encryption procedure does not

compute any pairing. The encryption algorithm is also faster than its

counterpart in schemes of [59, 32] for similar parameters and without

pre-computations. Moreover, NewFullCLE does not need a special (and

much less efficient) hash function mapping strings onto a cyclic group

(and it thus benefits from a faster partial private key generation algo-

rithm) while all schemes have comparable complexities at decryption.

Regarding key sizes, users’ public keys lie in G2 and thus have longer

representations (typically 1024 bits without optimizations) than ele-

ments in G1. However, pairing compression techniques due to Barreto

and Scott [24] allow to compress them to the third (say 342 bits) of

their original length on supersingular curves in characteristic 3 or even

to 1/6 of their length using ordinary curves such as those of Barreto

and Naehrig [23]. Those compression techniques additionally increase

the speed of exponentiations in G2.

The version of the scheme depicted in section 5.1 uses symmetric

pairings that can only be instantiated with supersingular curves. How-

ever, it can be described in terms of asymmetric pairings and ordinary

curves as well. In environments where bandwidth is of primary concern,

it might be desirable to minimize the size of ciphertexts even at the

expense of a long system-wide public key (which is less likely to transit

across the network). In such a setting, it is then preferable to instantiate

the scheme with asymmetric bilinear map groups (G1,G2,GT ) and ordi-

nary curves such as MNT curves or BN curves [155, 23]. In this case, a

publicly computable but non-necessarily invertible isomorphism such as

the one specified by definition 1.5 must be available. Users’ public keys

still lie in GT while the system-wide public key and entities’ partial pri-

vate keys should respectively be Ppub = sP2 and dA = 1/(h1(IDA)+s)P2

for generators P2 ∈ G2 and P1 = ψ(P2) ∈ G1. In that bandwidth-

optimized version of the scheme, users’ public keys can be about 512-bit

long on MNT curves [155] or even shorter on BN curves [23]. Cipher-

texts are 331 bits longer than plaintexts if k0 = 160.
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5.3. Security results

As announced, we give a proof of security under the p-Bilinear Diffie-

Hellman Inversion assumption.

Theorem 4.3 If hash functions hi (i = 1, 2, 3) are modelled as random

oracles, the NewFullCLE scheme is secure in the sense of definition 4.2

under the p-BDHI assumption.

Setup: given security parameters k and k0 so that k0 is polynomial

in k, this algorithm outputs a k-bit prime q, the descrip-

tion of symmetric bilinear map groups (G1,G2) of order q,

a generator P ∈ G1 and hash functions h1 : {0, 1}∗ → Zq,

h2 : G
2

2 → {0, 1}
n. The algorithm also selects a master key

mk := s R← Z
∗
q and sets Ppub = sP ∈ G1 as the correspond-

ing public key. The ciphertext space is C := G1 × {0, 1}
n

while the space of plaintexts is M := {0, 1}n. The public

parameters also contain g = ê(P, P ) ∈ G2:

params := {k, k0, q,G1,G2, P, Ppub, g, ê, h1, h2, n,M, C}.

Partial-Private-Key-Extract: is the same as in NewFullCLE just like

Set-Secret-Value, Set-Private-Key and Set-Public-Key.

Encrypt: to encrypt m ∈ {0, 1}n using identifier IDA ∈ {0, 1}
∗ and

the public key pkA = yA = gxA ∈ G2 , the sender

(1) Checks that yqA = 1G2 .

(2) Chooses a random r R← Z
∗
p and computes the ciphertext

C = 〈c1, c2〉 = 〈rh1(IDA)P + rPpub,m⊕ h2(g
r||yrA)〉

Decrypt: given a ciphertext C = 〈c1, c2〉 ∈ C, the receiver computes

ω = ê(c1, dA) and then m = c2 ⊕ h2(ω||ω
xA) ∈ {0, 1}n.

Figure 4.5. The NewBasicCLE scheme

The proof of the above theorem is rather long. In a first step, lemma

4.3, which is a simple corollary of theorem 4.1, shows that an IND-CCA

attacker of Type I or II against NewFullCLE implies the same type of

chosen plaintext attacker against a simplified version of the scheme called

NewBasicCLE. In a second step, the proof separately considers both kinds

of adversaries to establish the chosen-plaintext security of NewBasicCLE.
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For Type II adversaries, we only need the weaker 1-BDHI assumption

(that is, the hardness of the p-BDHI problem with p = 1).

Lemma 4.3 A Type I (resp. Type II) IND-CCA attacker A having an

advantage ǫ against NewFullCLE when running in a time τ , making qD

decryption queries and qhi queries to oracles hi (i = 1, 2, 3) implies a

Type I (resp. Type II) IND-CPA attacker B with an advantage

ǫ′ > (ǫ− qh3/2
k0−1)(1− 2−k)qD

against NewBasicCLE when runnning in a time τ ′ < τ + O(qh3τmult),

where τmult is the maximum of the costs of a scalar multiplication in G1

and an exponentiation in G2, and making qD + 1 public key broadcast

queries, qh1 + qh3 queries to h1 and qh2 + qh3 queries to h2.

The following theorem claims that Type I adversaries are harmless

against NewFullCLE as a Type I attacker would imply a PPT algorithm

solving the p-BDHI problem with a non-negligible probability.

Lemma 4.4 Assume that a Type I IND-CCA attacker A has an ad-

vantage ǫ over NewFullCLE when running a time τ , making qhi queries

to random oracles hi (i = 1, 2, 3), qD decryption queries, qpk public key

queries, qke private key extraction queries. Then there is an algorithm

B solving the p-BDHI problem, for p = qh1, with a probability

ǫ′ >
1

2(qh1 + qh3)(qh2 + qh3)
(ǫ− qh3/2

k0−1)(1− 2−k)qD

within a time τ ′ < τ + O((q2h1
+ qke + qpk + qD + qh3)τexp) where τexp

is the maximum of the costs of a scalar multiplication in G1 and an

exponentiation in G2.

The proof of lemma 4.4 combines the assertions of lemma 4.3 and lemma

4.5 below which claims that a chosen-plaintext adversary of Type I im-

plies an algorithm solving the p-BDHI problem.

Lemma 4.5 Suppose that a Type I IND-CPA adversary AI has an

advantage ǫ over NewBasicCLE when running in a time τ , asking qhi

queries to random oracles hi (i = 1, 2), qke private key extraction queries

and qpk public key queries. Then there exists an algorithm B to solve the

p-BDHI problem with p = qh1 with an advantage ǫ′ > ǫ/2(qh1qh2) and

within a time τ ′ < τ +O((q2h1
+ qke + qpk)τmult) where τmult denotes the

cost of a scalar multiplication in G1.
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Proof. Algorithm B takes as input 〈P, αP, α2P, . . . , αpP 〉 and under-

takes to extract ê(P, P )1/α from its interaction with AI . W.l.o.g., we

can assume that AI issues up to qpke = qh1 − 1 = p − 1 partial private

key extraction queries because, if qpke is strictly less than qh1 − 1, the

simulator can still issue dummy queries to the partial key generation

oracle on its own.

We distinguish the same two kinds of Type I adversaries as in the

proof of lemma 4.1:

Type I-A adversaries: replace the public key for the target

identity ID∗ at some point (and cannot ask for the correspond-

ing partial private key).

Type I-B adversaries: rather decide to ask for the partial pri-

vate key of the target identity ID∗ at some moment.

Before the initialization phase, B has to guess which kind of Type I

adversary AI will be. It thus chooses a random bit c R← {0, 1}. If c = 0,

B bets on a Type I-A attack from AI whereas it hopes that AI will

behave as a Type I-B adversary if c = 1. It also selects an index ℓ R←

{1, . . . , qh1}, elements Iℓ
R← Z

∗
q and w1, . . . , wℓ−1, wℓ+1 . . . , wqh1

R← Z
∗
q .

For i = 1, . . . , ℓ− 1, ℓ+ 1, . . . , qh1 , it computes Ii = Iℓ − wi. Depending

on the value of c, the setup phase is performed differently:

Case c = 0: B uses its input to compute a generator H ∈ G1 and

a KGC’s public key Ppub := xH, for some x ∈ Z
∗
q , such that it

knows all of the qpke pairs (Ii, (1/(Ii+x))H) for i 6= ℓ as in the

proof technique of [37]. To do so, B expands the polynomial

f(z) =
∏p
i=0,i6=ℓ(z + wi) =

∑p−1
j=0 cjz

j ∈ Zq[z] to obtain the

coefficients. A generator H ∈ G1 and another group element

U = αH ∈ G1 are then obtained as

H =

p−1
∑

j=0

cj(α
jP ) = f(α)P

U =

p
∑

j=1

cj−1(α
jP ) = αf(α)P = αH.

As in [37], qpke = p − 1 pairs
(

wi, Hi = (1/(wi + α))H
)

are

obtained by expanding fi(z) = f(z)/(z + wi) =
∑p−2

j=0 djz
j for
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i ∈ {1, . . . , p}\{ℓ} and computing

Hi =

p−2
∑

j=0

dj(α
jP ) = fi(α)P

=
(

f(α)/(α+ wi)
)

P =
(

1/(α+ wi)
)

H.

The KGC’s public key Ppub is chosen as

Ppub = −U − IℓH = (−α− Iℓ)H

so that its (unknown) private key is implicitly set to x =

−α − Iℓ ∈ Z
∗
q . For all i ∈ {1, . . . , p}\{ℓ}, we have (Ii,−Hi) =

(

Ii, (1/(Ii +x))H
)

. The attacker AI then receives public para-

meters including a generator H and the master public key Ppub.

Case c = 1: B simply picks a random x R← Z
∗
q and starts A with

public parameters params containing the generator H = αpP ∈

G1 and Ppub = xH = x(αpP ) ∈ G1 as a KGC’s public key. By

doing so, B knows the KGC’s master key and is able to answer

any subsequent partial key extraction query.

As in lemma 4.1, we define H as the event that AI chooses to be chal-

lenged on the target identity IDℓ. We call F0 the event that she extracts

the partial private key for IDℓ and we let F1 denote the event that she

replaces the public key of entity IDℓ at some point of the attack.

As in the proof techniques of [5, 6, 7] and lemma 4.1, B uses a mixed-

strategy which is roughly the following. If c = 0 and events F0 and H

occur, B will have to abort (as it will have failed in guessing which kind

of Type I adversary is played by AI) exactly as if F1 and H both occur

while c = 1. On the other hand, a private key extraction query on the

identity IDℓ also leads B to a failure state whereas if either ¬F0 ∧ H or

¬F1 ∧H occurs, B’s success probability will be related to that of AI .

The simulator B then initializes a counter ν to 1 and starts AI on the

input params. Throughout the game, adversarial queries are answered

as follows (we assume that all h1 queries are distinct and that AI pro-

duces her attack on an identity ID∗ for which she asks for the hash value

h1(ID
∗)):
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- random oracle queries on h1 (we call IDν the input of the νth

query): B answers Iν and increments ν.

- random oracle queries on h2: for all such queries on inputs

γ0,l||γ1,l, for l = 1, . . . , qh2 , B returns a randomly sampled ele-

ment h2,l from {0, 1}n and stores (γ0,l, γ1,l, h2,l) into a list L2.

If the same query is asked a second time, B of course responds

with the previously defined value.

- queries to Public-Key-Broadcast on input IDν (i.e. the νth iden-

tity submitted in a h1-query): B first looks into the list Lpub to

check whether a public key was previously assigned to entity

IDν . If so, the latter key is returned. Otherwise,

- in the case c = 0: B picks lν
R← Z

∗
q and responds with the

public key yν = ê(H,H)lν .

- in the case c = 1: if ν = ℓ, B returns the public key yℓ =

ê(P, P ) which equals ê(H,H)
1

α(2p) . If ν 6= ℓ, B responds

with yν = ê(H,H)lν , for some lν
R← Z

∗
q , as in the situation

c = 0.

In both cases a triple (IDν , lν , yν) is stored in Lpub (if ν = ℓ, lν

is unknown in the case c = 1).

- queries to Partial-Private-Key-Extract on an input IDν :

- in the case c = 0: if ν = ℓ, then B halts and declares ”fail-

ure”. Otherwise, it knows that h1(IDν) = Iν and returns

−Hν =
(

1/(Iν + x)
)

H ∈ G1.

- in the case c = 1, B behaves as specified by the partial key

generation algorithm as it knows the master key.

- queries to Private-Key-Extract on an input IDν : if ν = ℓ, B

aborts. Otherwise, from the specification of the Public-Key-

Broadcast simulator, it comes that B necessarily knows the as-

sociated secret value lν (recall that such a query is only autho-

rized if entity IDν ’s public key was not replaced).

- if c = 0, B additionally knows that the partial private key

−Hν and can thus compute the full private key (lν ,−Hν).

- if c = 1, B extracts the partial private key itself (using the

master secret x) and then the full private key using lν .
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- queries to Public-Key-Replace for some identity IDν and public

key pk′ = y′ν : if ν = ℓ and c = 1, B halts and declares ”failure”.

Otherwise, it ensures that pk′ is a G2 element and, if so, replaces

the corresponding triple of Lpub with (IDν , ?, yν) (where ? stands

for an unknown element of Z
∗
q).

When AI decides that the first phase is over, she outputs a target iden-

tity ID∗ together with messages m0,m1 ∈ {0, 1}
n. If ID∗ 6= IDℓ, B fails.

Otherwise, two distinct strategies are used to build a challenge cipher-

text for the entity IDℓ and the current public key pk∗ = y∗.

Case c = 0 : B draws σ R← Z
∗
q and a random string c∗2

R← {0, 1}n

to return the ciphertext C∗ = 〈c∗1, c
∗
2〉 where c∗1 = −σH ∈ G1.

If we define ρ = σ/α (α being the unknown element defining

B’s input) and since x = −α− Iℓ, we can check that

c∗1 = −σH = −αρH = (Iℓ + x)ρH = ρIℓH + ρPpub,

so that c∗1 appears as the first part of a ciphertext for the ran-

domness ρ ∈ Z
∗
q . Realizing that c∗2 is not a scrambling of m0 nor

m1 would requireAI to ask for the hash value h2(ê(H,H)ρ||y∗ρ)

and such an event would provide B with the searched p-BDHI

solution as we will see.

Case c = 1 : B picks λ R← Z
∗
q and c∗2

R← {0, 1}n to return C∗ =

〈c∗1, c
∗
2〉 where

c∗1 = λ
(

Iℓ(α
p−1P ) + x(αp−1P )

)

= λα−1(IℓH + Ppub)

where Iℓ = h1(IDℓ). Without issuing a h2-query on the input

(ê(H,H)λα
−1
||ê(P, P )λα

−1
), AI is unable to recognize that C∗

is not an encryption of m0 nor m1 and such an event would

obviously provide B with the solution to the p-BDHI problem.

In the second phase, B simulates AI ’s environment exactly as in phase

1. AI finally ends the game by outputting a bit b′ that is ignored. With

standard arguments, it can be shown that a successful attackerAI is very

likely to query the h2 oracle on a relevant input γ (which is ê(H,H)ρ if

c = 0 and ê(P, P )λα
−1

if c = 1) at some moment of the simulation if the

latter is indistinguishable from a real attack environment.

To produce a result, B selects a random entry 〈γ0, γ1, .〉 from the list
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L2 so that, with probability 1/qh2 , γ0 or γ1 is the relevant G2 element.

Again, two cases can be distinguished:

- if c = 0, we have γ0 = ê(H,H)ρ = ê(P, P )f(α)2σ/α and B can

extract the p-BDHI solution by noting that, if γ∗ = ê(P, P )1/α,

then

ê(H,H)1/α = γ∗(c20)ê
(

p−2
∑

i=0

ci(α
iP ), c0P

)

ê
(

H,

p−2
∑

j=0

cj+1(α
j)P
)

.

- if c = 1, γ1 = ê(P, P )λ/α and γ∗ = γ
1/λ
2 is the p-BDHI solution.

We can now assess B’s advantage by a similar reasoning to lemma 2 of

[6]: B reaches a failure state in the following situations:

0. For i = 0, 1, if Fi occurs while c = i. We call these events Hi.

1. Because of a private key exposure query for the identity IDℓ.

We let F2 denote this event.

2. Or because A chooses a target identity ID∗ 6= IDℓ. This corre-

sponds to the event ¬H.

As in [6], event H implies ¬F2 so that

Pr[B does not abort] = Pr[¬H0 ∧ ¬H1 ∧H] = Pr[¬H0 ∧ ¬H1|H]Pr[H]

=
1

qh1

Pr[¬H0 ∧ ¬H1|H]

=
1

qh1

(1− Pr[H0|H]− Pr[H1|H])

where the last equality follows from the fact that Pr[H0 ∧ H1|H] = 0.

On the other hand, as in [6], we have

Pr[Hi|H] = Pr[(c = i) ∧ Fi|H] =
1

2
Pr[Fi|H]

since the event Fi|H is independent from the event (c = i). Finally, as

Pr[F0 ∧F1|H] = 0, we have Pr[F0|H] + Pr[F1|H] ≤ 1 and it comes that

Pr[B does not abort] ≥
1

2qh1

.

On the other hand we saw that if B does not fail, it solves the p-BDHI

problem with probability 1/qh2 (whatever is the value of c). A lower

bound on its advantage is then given by ǫ′ > ǫ/(2qh1qh2).

Its running time is dominated by O(q2h1
) operations in the prepara-

tion phase and in the solution extraction phase (where 2 pairings must
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also be computed), qpk scalar multiplications in G1 to answer public key

broadcast queries and again qke scalar multiplications to respond to full

key extraction queries.

�

Theorem 4.4 Assume that a Type II IND-CCA attacker AII has an ad-

vantage ǫ against NewFullCLE when running a time τ , making qhi queries

to random oracles hi (i = 1, 2, 3), qD decryption queries, qpk public key

broadcast queries, qke full private key extraction queries. Then there

exists an algorithm B to solve the 1-BDHI problem with a probability

ǫ′ >
1

e(qke + 1)(qh2 + qh3)
(ǫ− qh3/2

k0−1)(1− 2−k)qD

within a time τ ′ < τ +O((qh3 + qke + qpk + qD)τexp) where e is the base

for the natural logarithm and τexp denotes the maximum time to perform

a scalar multiplication in G1 and an exponentiation in G2.

The proof again applies lemma 4.3. Lemma 4.6 then just needs to

show that a chosen plaintext (or IND-CPA) attacker of Type I against

the simplified NewBasicCLE scheme allows solving the the 1-BDHI prob-

lem (i.e. the p-BDHI problem with p = 1).

Lemma 4.6 Let us assume that a Type II IND-CPA adversary AII has

an advantage ǫ against NewBasicCLE when running in a time τ , asking

qhi queries to random oracles hi (i = 1, 2), qke private key extraction

queries and qpk public key broadcast queries. Then there is an algorithm

B to solve the 1-BDHI problem with advantage ǫ′ > ǫ/(e(qke + 1)qh2)

within a time τ ′ < τ + O((qke + qpk)τmult) where e is the base for the

natural logarithm and τmult is the cost of a scalar multiplication in G1.

Proof. We start by describing the algorithm B taking as input 〈P, αP 〉

and using AII as a subroutine to compute ê(P, P )1/α.

B first chooses a generator H = αP and generates the KGC’s key

pair (Ppub,mk) = (sH, s) ∈ G1 × Z
∗
q itself. The adversary A is launched

with public parameters including the KGC’s master key mk = s.

In the find stage, AII performs a polynomially bounded number of

queries to random oracles h1 and h2, to the public key broadcast oracle

and to the private key extraction oracle.

- random oracle queries are answered in a standard fashion by

uniformly choosing a random element from the appropriate
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range and storing the inputs/outputs of these queries into lists

L1 and L2.

- queries to Public-Key-Broadcast on input IDi (we call IDi the

input of the ith public key broadcast query): to answer such

a query, B draws ℓi
R← Z

∗
q . According to Coron’s proof tech-

nique [68], it then returns the public key yi = ê(H,H)ℓi with

probability qke/(qke+1) and the public key yi = ê(P, P )ℓi with

probability 1/(qke + 1).

- queries to Partial-Private-Key-Extract on an input ID: we as-

sume that ID was previously submitted to Public-Key-Broadcast

(otherwise, B can still make the latter query for itself). If the

corresponding public key y was set to ê(H,H)ℓ for some known

ℓ, B responds with the pair (ℓ, (1/(s + h1(ID)))H). Otherwise

(i.e. if y was set as an unknown power of ê(H,H)), B aborts.

At the challenge step, AII outputs messages (m0,m1) and a target iden-

tity ID∗. At that point, if the corresponding public key was not fixed as

y∗ = ê(P, P )ℓ
∗

for some known ℓ∗ ∈ Z
∗
q , B aborts. Otherwise, it picks

µ R← Z
∗
q and c∗2

R← {0, 1}n and returns C∗ = 〈c∗1, c
∗
2〉, where

c∗1 = µ(H1(ID
∗)P + sP ) = µα−1(H1(ID

∗)H + Ppub).

Unless asking oracle h2 for the hash value of (γ0||γ1) = (.||, ê(P, P )ℓ
∗µα−1

),

AII is unable to recognize that C∗ is not an encryption of m0 nor m1

and such an event would obviously provide B with the solution to the

1-BDHI problem.

On the other hand, with standard arguments, we can show that,

if the simulator perfectly emulates a genuine attack environment and

since AII is assumed to be a distinguisher of advantage ǫ, she queries

the h2 oracle on the relevant G2 element γ at some moment of the game

with probability ǫ. At the end of the latter, she halts and produces a

result that is ignored by B that randomly selects an element from list

L2 and extracts the G2 element that was the input of the corresponding

h2-query. With a probability 1/qh2 , this element is γ1 = ê(P, P )ℓ
∗µα−1

and B then outputs γ
1

µℓ∗

1 which is the searched 1-BDHI solution.

In an analysis of B’s advantage, its probability not to fail in answer-

ing a private key extraction query is at least (1− 1/(qke + 1))qke > 1/e

while its probability not to abort in the challenge phase is 1/(qke + 1).
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On the other hand, its running time is dominated by 2qpk scalar multi-

plications to answer public key broadcast queries and qke other multi-

plications to respond to private key extraction queries. �

The combination of lemmas 4.6 and 4.3 establishes the result claimed

by theorem 4.4.

6. Conclusion

This chapter showed that it was not trivial to generically construct

a certificateless cryptosystem which is secure in the strongest model

by combining a secure identity based encryption scheme with a tra-

ditional public key cryptosystem. It pinpointed security problems in

three simple generic constructions and fixed them using a generic con-

version (inspired from the Fujisaki-Okamoto transformation) ensuring

the security in the strong model given any scheme only withstanding

chosen-plaintext attacks. We finally described a new scheme offering

computational advantages over previous pairing-based constructions.
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CHAPTER 5

Identity-Based Signatures

Abstract. This chapter contains two results about identity based

signature (IBS) schemes. The first one is a new construction

based on bilinear maps that is more efficient than all previous

ones as its verification algorithm only requires to compute one

pairing. We give a security proof for this new scheme under the

p-Diffie-Hellman Inversion (p-DHI) assumption that has been re-

cently used by several papers in the literature. The second re-

sult shows a new security proof for a scheme that was previously

proven secure by Bellare, Namprempre and Neven. The new proof

features a tighter security reduction in the random oracle model

than any other known IBS.

1. Related work on IBS schemes

As previously mentioned in this thesis, the decade that followed

Shamir’s seminal paper [195] saw the appearance of several digital sig-

nature schemes supporting identity-based public keys. These include the

Fiat-Shamir [84] and the Guillou-Quisquater [106] identity-based signa-

tures (IBS) and others [33, 100, 170]. After the famous paper published

by Boneh and Franklin [40] that showed how pairings may be practical in

the design of identity-based cryptographic schemes, many pairing-based

IBS schemes were proposed [190, 174, 111, 51, 219].

Although the concept of identity-based signature is already 21 years

old, a formal definition of security for IBS schemes was only considered

in 2003 by Cha and Cheon [51] who extended the usual notion of exis-

tential unforgeability against chosen-message attacks (EUF-CMA) [105]

and proved the security of their scheme in this model. Independently of

[51], Dodis, Katz, Xu, and Yung [81] defined a class of standard signature

schemes that they call ’trapdoor’, and then presented a random-oracle-

using transformation turning any secure ’trapdoor standard signature’

scheme into an IBS scheme that is provably secure in the model of Cha

107
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and Cheon [51]. Security proofs for several existing IBS schemes, includ-

ing those of [84, 106, 170, 111] may be obtained by observing that these

are the result of applying the transformation of [81] to some underlying

trapdoor standard signature already proven secure in the literature.

All such known trapdoor standard signatures have security proofs

based on the powerful forking lemma [182, 183] or alternative proof

techniques [165, 1] that pertain to signature schemes derived from some

honest-verifier zero-knowledge identification scheme using the Fiat-Shamir

heuristic [84]. It thus happens that all known IBS schemes can be

thought of as being derived from some identity-based identification (IBI)

scheme. Somewhat strangely, a provable security treatment of IBI schemes

remained lacking until 2004, when two independent works [124, 28] gave

formal security models for IBI schemes for the first time. In [124], Kuro-

sawa and Heng showed how to turn a special kind of digital signature

schemes into an IBI scheme which is secure against passive attacks (that

is, where an adversary has access to an oracle returning transcripts of

the interactive protocol but cannot directly play the cheating verifier in

a run of the protocol before attempting to impersonate a prover as she

could in an active attack).

On the other hand, at Eurocrypt 2004, Bellare, Namprempre and

Neven [28] defined a general framework to provide security proofs for a

large family of IBS schemes. Their framework proceeds by considering

the security against passive, active and concurrent attacks1 of underlying

’convertible’ identifications schemes (i.e. standard identification proto-

cols that can be converted into identity-based ones) or by using the prov-

able security of underlying ’convertible standard signature’2 schemes. In

the same paper, they show that the existential unforgeability of any con-

vertible standard signature in the usual model [105] implies the security

of the resulting identity-based signature in the sense of Cha and Cheon

[51]. Their framework allowed them to establish the security of several

IBS schemes including [195, 33, 85, 166] and a variant of [190], the se-

curity status of which was unknown before. Except the scheme of [100]

1That is, attacks where an adversary can play the cheating verifier against several

concurrent executions of the same prover before attempting to impersonate the latter.
2The latter notion characterizes signature schemes that can be turned into an

IBS scheme and is a generalization of Dodis et al.’s notion of ’trapdoor signature

scheme’ [81].
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for which they found an attack, their framework implies the security of

all known IBS schemes (even a recent one proposed in [60]) except a

scheme proposed by Okamoto in [166] and a new one which they pro-

posed themselves as a simplification of [166]. The reason for this is that

the schemes of [166, 28] do not seem to derive from any convertible iden-

tification scheme and direct security proofs were needed for them.

A contribution of the present chapter is to propose a new prov-

ably secure identity-based signature, discovered in the course of a joint

work [21] with Paulo Barreto and Noel McCullagh, that does not ei-

ther fall into the category of schemes to which the framework of [28]

applies. Indeed, it can be shown that our scheme does not derive from

a convertible scheme unless a recently studied computational assump-

tion [37] is false. The new scheme happens to be more efficient than

any previous pairing-based IBS schemes as its verification algorithm re-

quires to compute a single bilinear map whereas all previous proposals

[190, 111, 51, 219] require at least two pairing computations for the ver-

ifier. This improvement is obtained at the expense of a security resting

on the p-Diffie-Hellman Inversion assumption [37, 227] which is stronger

than the now well-studied Computational Diffie-Hellman assumption on

which the security of the schemes [190, 111, 51, 60] provably relies. Our

scheme, called DHI-IBS as a shorthand for “Diffie-Hellman Inversion-

based Identity-based Signature”, is proved secure using Pointcheval and

Stern’s forking lemma [182, 183].

The latter lemma is known to only provide loose reductions in the

sense that it only allows turning a forger with advantage ǫ into a Turing

machine solving a hard problem within a comparable running time with

a probability O(ǫ2/qH), where qH denotes a bound on the number of

random oracle queries made by the forger. In the case of DHI-IBS, it

leads us to a loose reduction under a Diffie-Hellman related assumption

that is potentially stronger than the usual Diffie-Hellman problem. If

one is willing to accept the p-Diffie-Hellman Inversion assumption as

being reasonable and if one accepts that even a loose but polynomial

reduction from it yields sufficient guarantees, one can settle for using

DHI-IBS. On the other hand, some people from the research community

who are concerned with concrete security might accept to pay a loss of

efficiency to obtain stronger security bounds. Indeed, the last couple of

years saw the rise of a new trend consisting of providing tight security
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reductions for asymmetric cryptosystems (see [31] or [180] for instance).

This led several authors to provide new security proofs for systems that

were already well known to be secure in the random oracle model or

for some of their variants [68, 69, 150]. Some authors even devised new

schemes that, although seemingly less efficient than existing ones at first

sight, provide much better security guarantees for the same security pa-

rameters and are then eventually more efficient for a similar desired level

of security [103, 121, 61].

A second contribution of the present chapter is to show that a modifi-

cation of the Sakai-Ogishi-Kasahara IBS (called SOK-IBS here) that was

already proven secure in [28], has a much tighter security proof under the

Diffie-Hellman assumption than the bounds given in [28]: we give a new

proof in which an attacker with advantage ǫ implies a polynomial time

algorithm for the Diffie-Hellman problem with an advantage O(ǫ/qKE),

qKE being a bound on the number of identities corrupted by the forger,

and we stress that a fully optimal reduction from a potentially stronger

but reasonable assumption exists. According to [121], we think that a

tight reduction from a given assumption is preferable to a loose reduc-

tion w.r.t. a weaker assumption. Prior to this result, Kurosawa and

Heng [124] claimed to achieve an improved security result for the Cha-

Cheon IBS [51]. They exhibited a reduction from the Diffie-Hellman

problem to a chosen-message attacker that is still quite loose: an at-

tacker with a given advantage ǫ is used to build an algorithm to solve

the Diffie-Hellman problem with probability O(ǫ2/qKEq
2
H) where qKE is

the number of identities corrupted by the adversary and qH the number

of hash queries. We believe that this can be improved to O(ǫ2/qKEqH)

which remains a looser bound than ours for SOK-IBS.

The chapter is organized as follows. Section 2 recalls the usual for-

mal model of identity-based signatures. Our new scheme is described in

section 3.1 and its security proof is given in section 4.1. Our improved

security reduction for SOK-IBS is detailed in section 5.

2. Formal definition and security model

We firstly recall the syntax that is commonly used for IBS schemes.

Definition 5.2 formalizes a security notion for IBS schemes that was

considered in [51, 81, 28] as an extension of the usual notion of existential

unforgeability under chosen-message attacks [105].
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Definition 5.1 An identity-based signature (IBS) scheme is a 4-uple of

algorithms which are the following ones:

Setup: is a probabilistic algorithm run by a PKG that takes as

input a security parameter to output a public/private key pair

(Ppub,mk) for the PKG (Ppub is its public key and mk is its

master key that is kept secret).

Keygen: is a key generation algorithm run by a PKG. It takes

as input the PKG’s master key mk and a user’s identity ID to

return the user’s private key dID.

Sign: given a message M , the PKG’s public key and a private key

dID, this algorithm generates a signature σ on M .

Verify: is a deterministic verification algorithm that, given an al-

leged signature σ on a message M for an identity ID, outputs

1 or 0 depending on whether the signature is accepted or not.

Definition 5.2 ([51]) An IBS scheme is said to be existentially un-

forgeable under adaptive chosen message and identity attacks if no PPT

adversary has a non-negligible advantage in this game:

1. The challenger runs the setup algorithm to generate the sys-

tem’s parameters and sends them to the adversary.

2. The adversary F performs a series of queries:

- Key extraction queries: F produces an identity ID and re-

ceives the private key SID corresponding to ID.

- Signature queries: F produces a message M and an iden-

tity ID and receives a signature on M that was generated

by the signature oracle using the private key corresponding

to the identity ID.

3. F eventually produces a triple (ID∗,M∗, σ∗) made of an iden-

tity ID∗, whose corresponding private key was never asked dur-

ing stage 2, and a message-signature pair (M∗, σ∗) such that

(M∗, ID∗) was never submitted to the signature oracle.

F wins if the verification algorithm accepts the triple (ID∗,M∗, σ∗). Her

advantage is defined to be her probability of victory taken over her coin-

tosses and the challenger’s ones.
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3. A faster identity-based signature from bilinear maps

Our new scheme is depicted in figure 5.1. Its security relies on the

hardness of the following problem that was introduced in [227].

Definition 5.3 ([37, 227]) The p-Diffie-Hellman Inversion Prob-

lem (p-DHIP) in (G1,G2) is, given (P,Q, αQ,α2Q, . . . , αpQ) as input,

to compute 1
αP .

The intractability of the latter problem for any PPT algorithm will

be referred to as the p-Diffie-Hellman Inversion assumption. At Euro-

crypt’04, Boneh and Boyen [37] introduced a related stronger assump-

tion called p-Strong Diffie-Hellman (p-SDH) assumption which consists

in finding a pair (c, 1
c+αP ) ∈ Zq ×G1 given the same inputs.

3.1. The scheme

Setup: given k, the PKG chooses a large prime p > 2k, asymmetric bilin-

ear map groups (G1,G2,GT ) of order p and an efficiently com-

putable isomorphism ψ : G2 → G1. It then selects generators

(P,Q) ∈ G1 × G2 with P = ψ(Q) and a master key s R← Z
∗
p to

compute the system-wide public key Qpub = sQ ∈ G2. Finally, it

chooses hash functions H1 : {0, 1}∗ → Z
∗
q , H2 : {0, 1}∗ × GT →

Z
∗
q . The public parameters are

params := {G1,G2,GT , P,Q,Qpub, e, ψ,H1,H2}.

Keygen: given a user’s identity ID, the PKG computes the associated pri-

vate key dID = 1
H1(ID)+s

P .

Sign: in order to sign a message M ∈ {0, 1}∗, the signer does the following:

(1) Pick a random x R← Z
∗
q , compute r = e(P,Q)x.

(2) Set h = H2(M, r) ∈ Z
∗
q .

(3) Compute S = (x+ h)dID.

The signature on M is σ = (h, S) ∈ Z
∗
q ×G1.

Verify: a signature σ = (h, S) on a message M is accepted if

h = H2(M, e(S,QID)e(P,Q)−h)

where QID = H1(ID)Q+Qpub.

Figure 5.1. The DHI-IBS scheme

The method for obtaining private keys from identities is a simplifi-

cation of a method suggested by Sakai and Kasahara [189]. The scheme
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can be thought of as a non-interactive proof of knowledge of a digital

signature computed using an algorithm discussed in two independent

papers [37, 227].

At Eurocrypt’04, Bellare, Namprempre and Neven established a

framework [28] to prove the security of a large family of identity-based

signatures and they only found two schemes to which their framework

does not apply. The present one does not either fall into the category of

schemes to which it applies. Indeed, it can be shown that our IBS does

not result from the transformation of any convertible standard iden-

tification or signature scheme (in the sense of [28]) unless the p-SDH

problem [37] is easy. A direct security proof is thus needed.

4. Comparison with a related scheme

Setup and Keygen are the same as in our scheme. The system-wide para-

meters are

params := {G1,G2,GT , P,Q,Qpub, e, ψ,H1,H2}.

Sign: to sign a message M ∈ {0, 1}∗, the signer does the following:

(1) Pick x R← Z
∗
p and compute r = e(P,QID)x ∈ GT .

(2) Set h = H2(M, r) ∈ Z
∗
p.

(3) Compute S = xP + hdID.

The signature on M is σ = (h, S) ∈ Z
∗
p ×G1.

Verify: a signature σ = (h, S) on a message M is accepted iff

h = H2(M, e(S,QID)e(P,Q)−h).

where QID = H1(ID)Q+Qpub.

Figure 5.2. The Kurosawa-Heng IBS scheme

Independently of our work, Kurosawa and Heng [125] described an

identity-based identification (IBI) protocol that has a security proof

in the standard model. This protocol implicitly suggests another IBS

scheme bearing some similarities with DHI-IBS and which can be proved

secure under the same assumption. It turns out that our scheme is

slightly faster in a signature generation than the Kurosawa-Heng IBS

which is here described. We indeed observe that, even if the signing al-

gorithm is optimized by pre-computing e(P,QID), it is still slower than
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ours in the last step.

Our more efficient DHI-IBS scheme may be extended in the same

way into a secure IBI in the standard model.

4.1. Security proof for DHI-IBS

The security proof relies on the forking lemma [182, 183]. As the

security model of IBS schemes enables a forger to adaptively choose her

target identity, we cannot directly apply the forking technique which is

related to signature schemes where an attacker is challenged on a fixed

public key chosen by her challenger. We must rather follow the approach

of [51] that first considers a weaker attack model where adversaries are

challenged on a given identity selected by the challenger. In [51], an IBS

scheme is said to be secure against existential forgeries on adaptively

chosen message and given identity attacks if no adversary has a non-

negligible advantage in the weaker model of attack.

Lemma 5.1 ([51]) If there is a forger A0 for an adaptively chosen mes-

sage and identity attack having advantage ǫ0 against our scheme when

running in a time t0 and making qh1 queries to random oracle h1, then

there exists an algorithm A1 for an adaptively chosen message and given

identity attack which has advantage ǫ1 ≥ ǫ0(1 −
1
2k )/qh1 within a run-

ning time t1 ≤ t0. Moreover, A1 asks the same number key extraction

queries, signature queries and H2 queries as A0 does.

Lemma 5.2 Let us assume that there is an adaptively chosen message

and given identity attacker F that makes qhi queries to random oracles

Hi (i = 1, 2) and qs queries to the signing oracle. Assume that, within

time t, F produces a forgery with probability ǫ ≥ 10(qs+1)(qs+ qh2)/2
k.

There exists an algorithm B that is able to solve the p-DHIP for p = qh1

in expected time

t′ ≤ 120686qh2(t+O(qsτp))/ǫ+O(q2h1
τmult)

where τmult denotes the cost of a scalar multiplication in G2 and τp is

the cost of a pairing evaluation.

Proof. The proof relies on the forking lemma. We first show how to

provide the adversary with a consistent view by coherently answering
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all of her queries and we then explain how to apply the forking lemma.

Algorithm B takes as input an instance (P,Q, αQ,α2Q, . . . , αpQ)

of the p-DHI problem in bilinear groups (G1,G2) and aims at find-

ing 1
αP . In a preparation phase, B builds generators H ∈ G2, G =

ψ(H) ∈ G1 and a domain-wide public key Hpub = xH ∈ G2 (for some

unknown element x ∈ Z
∗
q) such that it knows p− 1 pairs (Ii,

1
Ii+x

G) for

I1, I2, . . . , Ip−1 ∈R Z
∗
q . To do so,

1. It picks random elements I∗ R← Z
∗
q and w1, w2, . . . , wp−1

R← Z
∗
q

and expands the polynomial f(z) =
∏p−1
i=1 (z + wi) to obtain

coefficients c0, . . . , cp−1 ∈ Z
∗
q so that f(z) =

∑p−1
i=0 ciz

i. For

i = 1, . . . , p− 1, it also computes Ii = I∗ − wi ∈ Z
∗
q .

2. It sets H =
∑p−1

i=0 ci(α
iQ) = f(α)Q as a public generator of G2

and G = ψ(H) = f(α)P as a generator of G1. Another group

element H ′ ∈ G2 is then set to H ′ =
∑p

i=1 ci−1(α
iQ). We note

that H ′ = αH although B does not know α.

3. For i = 1, . . . , p − 1, B expands fi(z) = f(z)/(z + wi) =
∑p−2

i=0 diz
i that satisfy

1

α+ wi
G =

f(α)

α+ wi
P = fi(α)P =

p−2
∑

i=0

diψ(αiQ)

The p− 1 = qh1 − 1 pairs (wi, Gi = 1
α+wi

G) are then computed

by B according to the last member of the above equation.

The system-wide public key Hpub is chosen as

Hpub = −H ′ − I∗H = (−α− I∗)H

so that its (unknown) private key is implicitly set to x = −α− I∗ ∈ Z
∗
q .

For all i ∈ {1, . . . , p− 1}, we have (Ii,−Gi) = (Ii,
1

Ii+x
G).

The simulator B is then ready to answer F ’s queries along the sim-

ulation. It first initializes a counter ℓ to 0 and launches F on the input

(Hpub, ID
∗) for a randomly chosen challenge identity ID∗ R← {0, 1}∗.

- H1 queries: when F probes oracle H1 on an identity ID, B

returns I∗ if ID = ID∗. Otherwise, B increments ℓ by 1 and

answers Iℓ ∈ Z
∗
q . In the latter case, the pair (ID,−Gℓ) is stored

in a list L1.

- Key extraction queries for an identifier ID 6= ID∗: B recov-

ers the corresponding pair (ID,−Gℓ) in L1 for which −Gℓ was
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computed during the preparation phase. The latter element is

returned as a private key associated to ID and appears as a

valid private key from F ’s view.

- Signing query: upon receiving such a query on a message-

identity pair (M, ID), B picks random elements S R← G1, h
R←

Z
∗
q , computes

r = e(S,QID)e(G,H)−h,

where QID = H1(ID)H + Hpub is computed thanks to a value

H1(ID) recovered from list L1, and then backpatches to de-

fine the value H2(M, r) as h ∈ Z
∗
q . This simulation is similar

to those of all non-interactive honest verifier zero-knowledge

proofs (B of course fails if the hash value H2(M, r) is already

defined but such an event is very unlikely and its probability is

taken into account in the bounds given by the forking lemma).

We have explained how to simulate F ’s environment in a chosen-message

and given identity attack. We are ready to apply the forking lemma that

essentially says the following: consider a scheme producing signatures of

the form (M, r, h, S), where each of r, h, S corresponds to one of the three

moves of an honest-verifier zero-knowledge protocol. Let us assume that

a chosen-message attacker F forges a signature (M, r, h, S) in a time t

with probability ǫ ≥ 10(qs+1)(qs+qh)/2
k (k being a security parameter

so that h is uniformly taken from a set of 2k elements) when making qs

signature queries and qh random oracle calls. If the triples (r, h, S) can

be simulated without knowing the private key, then there exists a Turing

machine F ′ that uses F to produce two valid signatures (m, r, h1, S1),

(m, r, h2, S2), with h1 6= h2, in expected time t′ ≤ 120686qht/ǫ.

In our setting, from a forger F , we build an algorithm F ′ that replays

F a sufficient number of times on the input (Hpub, ID
∗) to obtain two

suitable forgeries 〈M∗, r, h1, S1〉, 〈M
∗, r, h2, S2〉 with h1 6= h2.

The reduction then works as follows. The simulator B runs F ′ to

obtain two forgeries 〈M∗, r, h1, S1〉, 〈M
∗, r, h2, S2〉 for the same message

M∗ and commitment r. If both forgeries satisfy the verification equation,

we obtain the relations

e(S1, QID∗)e(G,H)−h1 = e(S2, QID∗)e(G,H)−h2 ,
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with QID∗ = H1(ID
∗)H + Hpub = (I∗ + x)H = −αH. Then, it comes

that

e((h1 − h2)
−1(S1 − S2), QID∗) = e(G,H),

and hence T ∗ = (h1 − h2)
−1(S2 − S1) = 1

αG. From T ∗, B can proceed

as in [37] to extract σ∗ = 1
αP : it knows that f(z)/z = c0/z +

∑p−2
i=0 ciz

i

and eventually computes

σ∗ =
1

c0

[

T ∗ −

p−2
∑

i=0

ciψ(αiQ)

]

=
1

α
P

which is returned as a result.

It finally comes that, if F forges a signature in a time t with prob-

ability ǫ ≥ 10(qs + 1)(qs + qh2)/2
k, B solves the p-DHIP in expected

time

t′ ≤ 120686qh2(t+O(qsτp))/ǫ+O(q2h1
τmult)

where the last term accounts for the cost of the preparation phase. �

The combination of the above lemmas yields the following theorem.

Theorem 5.1 In the random oracle model, let us assume that there ex-

ists an adaptively chosen message and identity attacker A that makes

qhi queries to random oracles Hi (i = 1, 2) and qs queries to the signing

oracle. Assume that, within a time t, A produces a forgery with proba-

bility ǫ ≥ 10(qs+1)(qs+ qh2)/2
k. Then, there exists an algorithm B that

is able to solve the p-Diffie-Hellman Inversion Problem for p = qh1 in

an expected time

t′ ≤ 120686qh1qh2t/(ǫ(1− 1/2k)) +O(q2h1
τ)

where τ is the cost of a scalar multiplication in G2.

4.2. Efficiency comparisons

In order to assess the comparative efficiency of several schemes,

Paulo Barreto implemented them in accordance with their original de-

scriptions. Table 5.1 summarises the number of relevant basic opera-

tions: namely, exponentiations in GT , scalar point multiplications in

G1, and pairing evaluations. The same table compares the observed

processing times (in milliseconds) for a supersingular curve of embed-

ding degree k = 6 over F397 , using implementations written in C++ and

run on an Athlon XP 2 GHz. Subtleties in the algorithms determine
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somewhat different running times even when the operation counts for

those algorithms are equal. We see from these results that our system

beats the efficiency of the most efficient pairing-based schemes [111, 51],

especially in the verification algorithm which is about twice faster than

in [51].

Sign Verify

signature scheme exp mul pairings time (ms) exp mul pairings time (ms)

Heß[111] 1 2 2.50 1 2† 9.37

Cha-Cheon [51] 2 1.88 1 2 9.22

DHI-IBS 2 1.72 1 1 5.00

(†) One pairing is precomputable, incurring for the verifier a storage cost of one GT element
for each other user in the system, plus one GT exponentiation.

Table 5.1. Efficiency comparisons with other IBS schemes

4.3. Signatures with partial message-recovery

We note that our IBS scheme can be turned into a signature scheme

with partial message recovery using the technique of Zhang et al. [225]

who recently proposed a variant of Heß’s identity-based signature [111]

enabling partial message-recovery using a technique similar to the one

put forth by Abe and Okamoto [3] for Schnorr’s signature [191].

The latter technique can actually be applied to any Fiat-Shamir

like [84] signature scheme for which the signer’s commitment (i.e. the

quantity that is hashed together with the message and which is r in our

scheme) can be recovered from the signature upon verification of the lat-

ter. For example, for the Guillou-Quisquater [106] and Fiat-Shamir [84]

schemes, it allows sparing an overhead of 80 bits of bandwidth when com-

pared to a message-signature concatenation produced using the usual

signing procedures. This technique does not apply to all IBS schemes:

for example, the Cha-Cheon [51] and the Sakai-Ogishi-Kasahara [190]

schemes do not support it as their commitment cannot be recovered

from the signature by verifiers.

In contrast, the recovering of r is actually performed in the verifica-

tion algorithm of our scheme and it turns out that the partial message

recovery technique of [3] can be applied to it.
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5. Tighter security reductions for an existing IBS

Although concerned with the provable security of identity-based sig-

natures, the research community did not focus on providing really strong

security arguments for the various IBS proposed in the literature up to

now. Indeed, Paterson’s IBS [174] still has no formal security proof while

Cha-Cheon [51] and Heß [111] gave proofs under the Diffie-Hellman as-

sumption for their respective scheme. However, similarly to the security

proof of our DHI-IBS scheme, these proofs were both obtained through

Pointcheval and Stern’s forking lemma [182, 183] which does not yield

tight security reductions as mentioned by several previous papers in the

literature [103, 121, 62, 150].

Setup: given a security parameter k, the PKG chooses symmetric bilinear

map groups (G1,G2) of prime order q > 2k, a generator P of G1,

a master key s R← Z
∗
q and the associated public key Ppub = sP . It

also picks cryptographic hash functions of identical domain and

range H1,H2 : {0, 1}∗ → G
∗
1. The public parameters are

params := {G1,G2, ê, P, Ppub,H1,H2}.

Keygen: given a user’s identity ID, the PKG computes QID = H1(ID) ∈ G1

and the associated private key dID = sQID ∈ G1.

Sign: in order to sign a message M ,

(1) Pick r R← Zq, compute U = rP andH = H2(ID,M,U) ∈ G1.

(2) Compute V = dID + rH ∈ G1.

The signature on M is the pair σ = 〈U, V 〉 ∈ G1 ×G1.

Verify: given a signature σ = 〈U, V 〉 on a message M for an iden-

tity ID, the verifier computes QID = H1(ID) ∈ G1 and H =

H2(ID,M,U) ∈ G1. The signature is accepted if ê(P, V ) =

ê(Ppub, QID)ê(U,H) and rejected otherwise.

Figure 5.3. The SOK-IBS scheme

In this section we show that Bellare et al.’s [28] modification of the

Sakai-Ogishi-Kasahara IBS [190], which is described in figure 5.3, has

a much tighter security reduction under the Diffie-Hellman assumption

than any other known IBS. We point out that the latter actually corre-

sponds to a one level instantiation of a (randomized) version of Gentry

and Silverberg’s alternative hierarchical IBS [99]. This scheme is the
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same as the one obtained by applying Bellare et al.’s extended Fiat-

Shamir heuristic [28] to the SOK identity-based identification scheme.

Although derived from an IBI that is only secure against passive ad-

versaries (as shown in [28]), the modified SOK-IBS has better reductions

than other IBS schemes for which the underlying IBI is secure against

stronger attacks. Somewhat surprisingly, tighter security reductions can

be obtained for the same reason as the one for which the underlying IBI

scheme does not resist active attacks. Indeed, in the security proof, the

simulator actually mimics the behavior of an active attacker against the

IBI scheme through random oracle manipulations in order to perform

an online extraction of a Diffie-Hellman solution: the adversary does

not have to be rewinded in accordance with the forking technique unlike

what happens in security proofs of other known IBS.

From an efficiency point of view, the signature issuing algorithm

has almost the same complexity as Cha and Cheon’s one [51] while the

verification algorithm requires an additional pairing computation.

5.1. A new proof for SOK-IBS

This security analysis first presents a security reduction from the

Diffie-Hellman problem to a chosen-message attacker against SOK-IBS

that is more efficient than any other known security reduction (in-

cluding those given in [124],[28]) for existing identity-based signatures

([51],[111],etc.). In a second step, we explain how to achieve an essen-

tially optimal reduction from another Diffie-Hellman related assumption.

Theorem 5.2 If a forger F has an advantage ǫ over SOK-IBS when

running in a time t and asking qHi queries to random oracles Hi (i=1,2),

qKE private key extraction queries and qS signing queries, then the CDH

problem can be solved with an advantage

ǫ′ >
1

e(qKE + 1)

(

ǫ−
1

2k
(

qS(qH2 + qS) + 1
)

)

within a time t′ < t+O((qH1 +qH2 +qKE +qS)tm) where e is the base of

the natural logarithm and tm the cost of a scalar multiplication in G1.

Proof. We describe how a forger F can be used by a PPT algorithm

B to solve the CDH problem. Let (X = xP, Y = yP ) ∈ G1 × G1 be a

random instance of the CDH problem taken as input by B. The latter
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initializes F with Ppub = X as a system’s overall public key. The forger

F then starts performing queries such as those described in definition

5.2. These queries are answered by B as follows (we still assume that

any private key generation query or signature query involving an identity

comes after an H1-query for the same identity):

- H1-queries: when an identity ID is submitted to the H1 oracle,

as in Coron’s proof technique [68], B first picks u R← Z
∗
q . It then

returns uP ∈ G1 with probability qKE/(qKE +1) and uY ∈ G1

with probability 1/(qKE + 1).

- Key extraction queries: when F asks for the private key asso-

ciated to an identity ID, B returns uPpub = uX ∈ G1 if H1(ID
∗)

was fixed to uP ∈ G1. Otherwise, B outputs ”failure” and halts

because it is unable to coherently answer the query.

- H2-queries: when a tuple (ID,M,U) is submitted to oracle H2,

B first scans a list L2 to check whether H2 was previously de-

fined for that input. If yes, the defined value is returned. Oth-

erwise, B picks a random v R← Z
∗
q , stores the tuple (ID,M,U, v)

in list L2 and returns vP ∈ G1.

- Signature queries on a message M for an identity ID: F first

recovers the previously defined value QID = H1(ID) ∈ G1 from

L1. It then chooses t, ν R← Z
∗
q before setting V = tPpub = tX,

U = νPpub = νX and defining H2(ID,M,U) as ν−1(tP−QID) ∈

G1 (B halts and declares “failure” if H2 is already defined for

the input (ID,M,U)). The pair 〈U, V 〉 is returned to F and

appears as a valid signature from the latter’s point of view.

Eventually, F produces a message M∗, an identity ID∗ and a forgery

〈U∗, V ∗〉 for the pair (M∗, ID∗). If H1(ID
∗) was not fixed to a multi-

ple u∗Y of Y , for some known value u∗ ∈ Z
∗
q , then B outputs “failure”.

Otherwise, the list L2 must contain a record (ID∗,M∗, U∗, v∗) with over-

whelming probability (otherwise, B stops and reports “failure”). Hence,

since H∗ = H2(ID
∗,M∗, U∗) was defined to be v∗P ∈ G1, B knows that

ê(P, V ∗) = ê(X,QID∗)ê(U∗, H∗)

with H∗ = v∗P ∈ G1 and QID∗ = u∗Y ∈ G1 for some known elements

u∗, v∗ ∈ Z
∗
q . Then, it also knows that

ê(P, V ∗ − v∗U∗) = ê(X,u∗Y )
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and that u∗−1(V ∗ − v∗U∗) ∈ G1 is the solution to the CDH instance.

When assessing B’s advantage, its probability to fail in a signing

query because of a collision on H2 is at most qS(qH2 + qS)/2k (as L2

never contains more than qH2 + qS entries) while F ’s probability to

output a valid forgery 〈U∗, V ∗〉 on M∗ without asking the corresponding

H2(ID
∗,M∗, U∗) query is at most 1/2k. Finally, by a similar analysis

to Coron’s one [68], the probability for B not to fail in answering a

private key extraction query is at least (1− 1/(qKE + 1))qKE > 1/e. Its

probability not to fail because F chooses a “bad” target identity ID∗ is

1/(qKE + 1). Eventually, B’s advantage is at least

ǫ

e(qKE + 1)

(

1−
1

2k
(

qS(qH2 + qS) + 1
)

)

>
1

e(qKE + 1)

(

ǫ−
1

2k
(

qS(qH2 + qS) + 1
)

)

.

�

We note that the obtained reduction is tighter than for any previ-

ously known ID-based signature scheme: at this stage, our bound on

ǫ′ is already much better than Kurosawa and Heng’s one [124] which is

O(ǫ2/eqKEqH) when improved by replacing the quadratic degradation

factor in qH with a linear one3. As an example, for k = 160, if we

allow qH1 , qH2 < 260 and qKE , qS < 230, we have qS(qH2 + qS)/2k <

2 × 290/2160 = 2−69. Assuming that the advantage of any algorithm

in solving CDH within a time t is at most ǫ′ < 2−60, we obtain that

(ǫ− 2−69)/232 ≤ ǫ′ < 2−60 and the probability for an attacker to break

SOK-IBS within a time bound close to t is bounded by ǫ ≤ 2−28+2−69 <

2× 2−28 = 2−27.

We also compare key sizes that guarantee the infeasibility of break-

ing SOK-IBS and schemes to which the Kurosawa-Heng technique [124]

applies. The latter uses a forger running in time t′F to solve the CDH

problem in expected time t′CDH = O((qKEqH/ǫ
2)t′F ). We observed that

a forger running in a time tF against SOK-IBS yields an algorithm solv-

ing CDH in expected time tCDH = O((qKE/ǫ)tF ). To ensure the same

level of security as SOK-IBS, the Cha-Cheon scheme [51] thus needs a

security parameter which is about 2 × log2(qH/ǫ) ≈ 240 bits longer if

3We believe that it suffices to append the signer’s identity to the message hashed

along with the commitment in the signature generation to obtain this bound.
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both schemes are designed to ensure that no forger has a better advan-

tage than 2−60. When considering adversaries performing fewer than

280 operations, we find that k = 340 is sufficient for SOK-IBS whereas a

security parameter of k′ = 580 > 1.7× k is required for the Cha-Cheon

IBS. When taking into account that, for similar security parameters, the

verification algorithm of SOK-IBS is about 1.5 times as expensive as in

Cha-Cheon (3 pairing operations being involved instead of 2) and that

the complexity of Miller’s algorithm grows linearly with k, we find that

SOK-IBS is faster for both signing and verifying for a desired security

level.

We have to precise that such a comparison only makes sense if

both schemes are instantiated with symmetric pairings. Indeed, the

Cha-Cheon scheme lends itself much better to an implementation with

asymmetric pairings and ordinary curves aiming at minimizing the size

of signatures: in such a setting, a part of an SOK-IBS signature would

have to lie in a group of large representation.

5.2. An optimal reduction under a stronger assumption.

The theorem below shows that an optimal reduction exists from

the stronger one more Diffie-Hellman assumption which is defined as

follows.

Definition 5.4 ([34]) Given 〈P, aP 〉 ∈ G1 for an unknown a ∈ Zq,

a target oracle TG1 returning randomly chosen elements Yi ∈ G1 (for

i = 1, . . . , qt, qt being the exact number of queries to this oracle) as well

as a multiplication oracle HG1,a(.) answering aW ∈ G1 when queried

on an input W ∈ G1, the one more Diffie-Hellman problem (1m-

CDHP) is to produce a list ((Z1, 1), . . . , (Zqt , qt)) of qt pairs such that

Zi = aYi ∈ G1, for i = 1, . . . , qt, without making more than qt−1 queries

to the multiplication oracle.

The one more Diffie-Hellman assumption is the intractability

of the one more Diffie-Hellman problem for any PPT algorithm.

The above relaxation of the Diffie-Hellman problem was introduced

by Boldyreva in [34] and subsequently used in [124, 28] to prove the

security of interactive protocols.

In [94], inspired by a work of Koblitz and Menezes [122] who formal-

ized a new RSA-related problem to study the concrete security of RSA
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based signature schemes, Galindo considered another relaxation of the

Diffie-Hellman problem called CDH1(qKE , qH) problem. Roughly said,

given 〈P, aP 〉 and a list of elements Qi ∈ G1 for i ∈ {1, . . . , qKE + qH},

the latter consists in choosing up to qKE of those Qi for which one ob-

tains aQi and then producing a solution aQj for one of the qH remaining

Qj . This problem is not harder than the 1m-CDH problem as an oracle

solving the latter can easily be shown to help in solving the former in

polynomial time.

Although the best known reduction from the usual Diffie-Hellman

problem to its CDH1(qKE , qH) relaxation involves O(qKE) calls to a

CDH1(qKE , qH) oracle, Galindo [94] gave arguments according to which

the CDH and CDH1(qKE , qH) problems have similar complexities in

practice. When putting those considerations altogether, it comes that

a reasonable confidence can be invested in the one-more Diffie-Hellman

assumption.

Theorem 5.3 shows the existence of an algorithm solving the 1m-

CDH problem whith a probability which is, up to a negligible term, as

large as a forger’s advantage against SOK-IBS. The proof is quite simple.

Theorem 5.3 If a PPT chosen-message attacker F has an advantage

ǫ over SOK-IBS when running in a time t, asking qhi queries to random

oracles Hi (i=1,2), qKE private key generation queries and qS signing

queries, then there is an algorithm B to solve the 1m-CDHP with an

advantage ǫ′ > ǫ−
(

qS(qH2+qS)+1
)

/2k in a time t′ < t+O((qH2+qS)tm)

where tm is the cost of a scalar multiplication in G1.

Proof. Let 〈P,X = aP, TG1 ,HG1,a(.)〉 be an instance of the one more

CDH problem. To solve it, the simulator B runs F with the domain-

wide key Ppub = aP ∈ G1. The forger F then starts querying the various

oracles that are simulated as follows:

- queries on oracle H1: when a new identity IDi is submitted to

this oracle, B queries the target oracle TG1 (recall that this ora-

cle takes no input) and forwards the obtained random element

Yi ∈ G1 as an answer to F . The pair (IDi, Yi) is stored in a list

L1. If the same identity is submitted to H1 again, the stored

answer is returned.
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- Private key queries on identities IDi: we assume IDi was previ-

ously submitted to the H1 oracle. The corresponding Yi ∈ G1

that was obtained from TG1 is recovered from L1 and sent by

B to the multiplication oracle HG1,a(.) whose output aYi ∈

G1 is returned to F as a private key for IDi. The elements

(IDi, Yi, aYi) are stored in a list LE .

- H2 queries and signing queries are dealt with exactly as in the

proof of theorem 1.

Since F is assumed to produce a forgery for an uncorrupted identity ID∗,

and since we can assume that H1(ID
∗) was asked during the game, it

follows that the number qh1 of target oracle queries made by B is strictly

smaller than the number qkg of queries to HG1,a(.). Furthermore, the

private key dID∗ = V ∗−v∗U∗ associated to the uncorrupted identity ID∗

can be extracted from the produced forgery (M∗, 〈U∗, V ∗)〉 and from

the content of the list L2 (where H2(ID
∗,M∗, U∗) was defined to be

v∗P ∈ G1) since we have the equality ê(P, V ∗ − v∗U∗) = ê(X,Y ∗) and

Y ∗ is the value of H1(ID
∗) fixed by TG1 . �

6. Conclusion

This chapter gave two new results regarding identity-based signa-

tures. The first one is a new pairing-based scheme that is about twice

as fast as previous ones at verification. The second result is to show the

existence of improved security reductions for an existing scheme. The

latter can even be shown to be tightly related to a reasonable compu-

tational assumption, which seems to be a very rare feature for an IBS

scheme.





CHAPTER 6

An Identity-Based Undeniable Signature

Abstract. This chapter provides a first example of identity based

undeniable signature using pairings. We extend to the identity

based setting the security model for the notions of invisibility and

anonymity given by Galbraith and Mao in 2003 and we prove that

our scheme is existentially unforgeable under the Gap Bilinear

Diffie-Hellman assumption in the random oracle model. We also

prove that it has the invisibility property under the Decisional

Bilinear Diffie-Hellman assumption and discuss the efficiency of

the scheme.

1. Undeniable signatures

Undeniable signatures are a concept introduced by Chaum and van

Antwerpen in 1989 [53]. It is a kind of signatures that cannot be ver-

ified without interacting with the signer. They are useful in situations

where the validity of a signature should not be universally verifiable.

For example, a software vendor might want to embed signatures into

his products and allow only paying customers to check the authenticity

of these products. If the vendor actually signed a message, he must be

able to convince the customer of this fact using a confirmation protocol

and, if he did not, he must also be able to convince the customer that

he is not the signer thanks to a denial protocol. These proofs have to

be non-transferable: once a verifier is convinced that the vendor did or

did not sign a message, he should be unable to transmit this conviction

to a third party.

In some applications, a signer needs to decide not only when but also

by whom his signatures can be verified. For example a voting center can

give a voter a proof that his vote was actually counted without letting

him the opportunity to convince someone else of his vote. That is the

motivation of designated verifier proofs [116] for undeniable signatures.

This kind of proof involves the verifier’s public key in such a way that

127
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he is not able to convince a third party that a signer actually signed a

message or not because he is able to produce such a valid proof himself

using his private key. Several proof systems were proposed for unde-

niable signatures [87, 116, 181]. The use of designated verifier proofs

[116] can provide non-interactive and non-transferable confirmation and

denial protocols.

Several examples of undeniable signature schemes based on discrete

logarithms were proposed [53, 52, 54]. The original construction of

Chaum and van Antwerpen [53] was proved secure in 2001 by Okamoto

and Pointcheval [168] thanks to the use of a new kind of computa-

tional problem. Several convertible1 undeniable signatures were pro-

posed [44, 186, 151]. In 1997, Michels and Stadler proposed a convertible

undeniable signature scheme supporting designated-verifier verification.

RSA-based undeniable signatures were designed by Gennaro, Krawczyk

and Rabin [97] and Galbraith, Mao and Paterson [91]. In 2004, Mon-

nerat and Vaudenay [157, 156] proposed schemes based on the hardness

of other computational problems and, more recently, Laguillaumie and

Vergnaud [129] published a pairing-based scheme where all signatures

pertaining to a particular time-period can be converted into universally

verifiable signatures.

In an identity-based setting, an example of identity-based undeni-

able signature was proposed in [109] but it was found to be insecure in

[226]. A subsequent work [63] proposed a fix for the security flaw of the

latter scheme but even the repaired scheme has no security proof. In

a paper published at CT-RSA’04 [134], we showed the first example of

such a provably secure scheme.

Chaum, van Heijst and Pfitzmann introduced the notion of ’invisibil-

ity’ for undeniable signatures. Intuitively, it corresponds to the inability

for a distinguisher to decide whether a message-signature pair is valid for

a given user or not. The RSA-based schemes described in [91] and [97]

do not provide invisibility. In [90], Galbraith and Mao described a new

RSA-based undeniable signature that provides invisibility under the so-

called composite decision Diffie-Hellman assumption and they show that

1See [44]. Convertible undeniable signatures are undeniable signatures that can

be converted by the signer into universally verifiable signatures.
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invisibility and anonymity2 are essentially equivalent security notions for

undeniable signature schemes satisfying some particular conditions. In

this paper, we extend these two security notions to the identity-based

setting and we prove in the random oracle model that our scheme is

both existentially unforgeable and invisible under some reasonable com-

putational assumptions. Invisibility and anonymity can also be shown

to be equivalent in the context of identity-based cryptography; we will

not elaborate on this here.

In section 2, we first describe a formal model and security notions

related to identity-based undeniable signatures (IBUS). In section 3, we

describe the different components of our scheme. We then show their

correctness and discuss their efficiency. The rest of the chapter consists

of a security analysis of the scheme in the random oracle model.

2. Formal model of identity-based undeniable signature

An identity-based undeniable signature (IBUS) is made of five algo-

rithms.

Setup: the PKG takes as input a security parameter k and pro-

duces a public/private key pair (s, Ppub) and the system-wide

public parameters params. s is the system’s master key and

Ppub is the PKG’s public key that must be certified.

Keygen: given a user’s identity ID, the PKG uses its master se-

cret key s to compute the corresponding private key dID and

transmit it to the user through a secure channel.

Sign: given a message M ∈ {0, 1}∗ and his private key dID, the

signer generates a signature σ on M for his identity ID.

Confirm: is an algorithm that takes as input a message M ∈

{0, 1}∗, a designated verifier’s identity IDB ∈ {0, 1}
∗, the signer’s

private key dIDA
and a valid signature σ for the pair (M, IDA).

The output is a non-interactive and non-transferable proof that

σ is actually a valid signature on M for the identity IDA.

Deny: is a similar algorithm to Confirm but its input is an in-

valid signature σ for a given pair (M, IDA), the private key

dIDA
and the designated verifier’s identity IDB. Its output is a

2This security notion is related to the inability for an adversary to decide which

user generated a particular message-signature pair in a multi-user setting.
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non-interactive designated verifier proof that σ is not a valid

signature for the message M and the identity IDA.

The first security notion that we consider is close to the one for other

existing identity-based signatures: it is the notion of existential unforge-

ability under chosen-message attacks.

Definition 6.1 An identity-based undeniable signature (IBUS) scheme

is existentially unforgeable under chosen-message attacks if no PPT

adversary has a non-negligible advantage in the following game:

1. The challenger runs the setup algorithm to generate the system-

wide parameters and sends them to the adversary.

2. The adversary F performs a series of queries:

- Key extraction queries: F produces an identity ID and ob-

tains the matching private key dID.

- Signature queries: F produces a message M and an iden-

tity ID and receives a signature on M that is generated by

the signing oracle using the private key corresponding to

the public key ID.

- Confirmation/denial queries: F produces some message-

signature pair (M,σ), a purported signer’s identity IDA

together with an intended verifier’s identifier IDB which

are given to an oracle that runs the confirmation/denial

protocol using the private key dIDA
to either convince IDB

that σ is actually related to M and IDA or that it is not

(in a non-transferable way).

3. After a number of queries, F produces a tuple (IDA,M, σ) made

of an identity IDA, whose corresponding private key was not

asked at stage 2, and a message-signature pair (M,σ) that was

not trivially obtained from the signature oracle at stage 2 for

the identity IDA.

The forger F wins the game if she is able to provide a non-transferable

proof of validity of the signature σ for message M and identity IDA

for the identity of some uncorrupted verifier IDB. Her advantage is

defined as her probability of success taken over the coin-flippings of the

challenger and F .
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A second security notion for undeniable signatures was introduced

by Chaum, van Heijst and Pfitzmann [54] and is called ’invisibility’. In-

formally, this notion corresponds to the inability for a curious verifier

to decide whether a given signature on a given message was issued by

some signer even after having observed several executions of confirma-

tion/denial protocols by the same signer for other signatures. Galbraith

and Mao [90] proposed a general definition for this security notion. In

the identity-based setting, we need to strengthen it a little to consider

the fact that a dishonest user might be in possession of private keys

associated to other identities before trying to validate or invalidate an

alleged signature on a message for an identity without the help of the

alleged signer.

Definition 6.2 An IBUS scheme is said to satisfy the invisibility prop-

erty if no PPT distinguisher D has a non-negligible advantage against a

challenger in the following game:

1. The challenger performs the setup of the scheme and sends the

public parameters to D.

2. The distinguisher D issues a number of queries: key extraction

queries, signature queries and confirmation/denial queries of

the same kind as those of the previous definition. After a first

series of queries, D asks for a challenge: she produces a pair

(M, IDA) made of a message and an identity for which the as-

sociated private key was not asked. The challenger then flips

a coin b R← {0, 1}. If b = 0, the challenger sends D a valid

signature σ on M for the identity IDA. Otherwise, D receives

from the challenger a random element σ R← S taken at random

from the signature space S.

3. The distinguisher D then performs a second series of queries.

This time, she is disallowed to perform any confirmation/denial

query for the challenge (σ,M, IDA). Besides, she may not ask

for the private key associated to IDA. If the signing algorithm is

deterministic, she may not submit the pair (M, IDA) to the sign-

ing oracle at any time. Eventually, D outputs a bit b′ (that is 0

if D finds that (σ,M, ID) is a valid message-signature-identity

tuple and 1 otherwise) and wins the game if b = b′.

D’s advantage is defined as Advinv(D) := 2× Pr[b = b′]− 1.
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The above probability is taken over the coin flippings of the distin-

guisher D and the challenger. Similarly to what is done in [90], we also

consider the notion of anonymity which is slightly strengthened in the

identity-based setting

Definition 6.3 We say that an IBUS scheme satisfies the anonymity

property if no PPT distinguiser D has a non-negligible advantage in the

following game:

1. The challenger performs the setup of the scheme and sends the

public parameters to D.

2. The distinguisher D issues a number of key extraction, sig-

nature and confirmation/denial queries. After a first series

of queries, D produces a message M and a pair of identities

ID0, ID1 for which she did not obtain the matching private keys.

The challenger then flips a coin b R← {0, 1} and provides D with

a signature σ on M for the identity IDb.

3. The distinguisher D then issues new queries with the restric-

tion that she is disallowed to perform any confirmation/denial

query for the challenge σ on identities ID0, ID1 and to request

the private key associated to these identities. If the signature

issuing algorithm is deterministic, she may not request a signa-

ture on M for ID0 nor ID1 at any time. Eventually, D outputs

a bit b′ for which it finds that σ is a valid signature on M for

the identity IDb′.

D wins the game if b′ = b. Its advantage is defined as in definition 6.2.

It is shown in [90] that the notions of invisibility and anonymity are

essentially equivalent for undeniable and confirmer signature schemes

satisfying some particular properties. It is almost straightforward (by

using the techniques of [90]) to show that this equivalence also holds in

the identity-based setting. We will not do it here. In the next section,

we describe a first example of identity-based undeniable signature and

we just focus on proving its existential unforgeability and its invisibility

in the random oracle model.
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3. An identity-based undeniable signature

In a first step, we describe the signature issuing algorithm and we ex-

plain why it can be regarded as an adaptation of the Chaum-van Antwer-

pen scheme [53]. We will then describe algorithms to confirm valid sig-

natures and disavow invalid purported ones thanks to non-interactive

designated verifier zero-knowledge proofs.

3.1. The setup, key generation and signing algorithms

The first three algorithms of our scheme are depicted on the next

figure. The scheme is reminiscent of a variant of the Chaum-van Antwer-

pen scheme that was proved secure by Okamoto and Pointcheval [168]

under the Gap Diffie-Hellman assumption. Recall that, in the latter

scheme, public keys have the form y = gx where g is the generator of

a prime order cyclic group and a signature on a message m is given by

σ = h(m)x, the latter hash value h(m) being taken over the cyclic group

generated by g. To confirm (resp. deny) an alleged message-signature

pair, the signer produces a (possibly interactive) non-transferable zero-

knowledge proof of equality (resp. inequality) of the discrete logarithms

of y and σ w.r.t bases g and h(m).

Actually Chaum’s scheme can be generalized using any hard-to-

invert isomorphism f : G→ G
′ between groups G,G′ where computing

discrete logarithms is infeasible and which support the aforementioned

kind of non-transferable zero-knowledge proofs. In Chaum’s scheme,

such an isomorphism is provided by the discrete exponentiation in a

cyclic group. Using bilinear maps ê : G1 ×G1 → G2, a suitable isomor-

phism fP : G1 → G2 for a base P ∈ G1 can be fP (Q) = ê(P,Q) as well.

Indeed, we can check that inverting fP is difficult if the Diffie-Hellman

problem is intractable in the group generated by P .

Basically, in our scheme, the isomorphism fP maps the signer’s pri-

vate key dID onto a publicly computable quantity ê(Ppub, QID) (i.e. the

pairing of the system-wide public key and a hash value of the signer’s

identity) whereas a signature on a message M is the image of the private

key dID for the isomorphism fH2(M). In order to simplify the security

proofs, the hash function H2 takes as input a message M concatenated

to the signer’s identity and a random string which is only used to obtain

a better security reduction.
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Setup: given security parameters k and l so that l is polynomial in

k, the PKG chooses symmetric bilinear map groups (G1,G2) of

prime order q > 2k, a generator P of G1 and hash functions

H1 : {0, 1}∗ → G1,H2 : {0, 1}∗ → G1 that will be used in the

signing algorithm itself and H3,H4 : {0, 1}∗ → Z
∗
q which will be

respectively used in the confirmation and denial algorithms. It

chooses a master secret s R← Zq and computes Ppub = sP ∈ G1

that is made public. The system’s public parameters are

params := {q, k, l,G1,G2, ê, P, Ppub,H1,H2,H3,H4}.

Keygen: given a user’s identity ID, the PKG computes QID = H1(ID) ∈ G1

and the associated private key dID = sQID ∈ G1.

Sign: to sign a message M ∈ {0, 1}∗, the signer uses the private key

dIDA
associated to her identity IDA.

(1) She chooses r R← {0, 1}l to compute H2(M, r, IDA) ∈ G1.

(2) She then computes γ = ê(H2(M, r, IDA), dIDA
) ∈ G2. The

signature on M is given by

σ = 〈r, γ〉 = 〈r, ê(H2(M, r, IDA), dIDA
)〉 ∈ {0, 1}l ×G2.

Figure 6.1. Our IBUS scheme

The confirmation and denial algorithms, which are detailed in the

next two paragraphs, consist of non-interactive designated-verifier proofs

of equality or inequality of two pre-images of isomorphism fP and fH2(M).

3.2. The confirmation algorithm

The confirmation protocol is a pairing-based adaptation of a (re-

paired) designated verifier proof [116] proposed by Jakobsson, Sako and

Impagliazzo that allows a prover to convince a designated verifier of the

equality of two discrete logarithms. Actually, the original proof system

proposed by Jakobsson et al. suffers from a security flaw as well as

the quite similar one used by Galbraith and Mao. This was noticed by

F. Zhang, who also found how to easily fix these problems.

The algorithm produces a non-interactive and non-transferable proof

of equality of two inverses of the group isomorphisms fQ : G1 → G2, Q→

fQ(U) = ê(Q,U) with Q = P and Q = H2(M, r, IDA). In an execution

of the confirmation protocol, the verifier B takes the signature as valid
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Confirm: to verify a signature σ on a message M , a verifier of identity

IDB needs the help of the signer IDA. He sends her the pair

(M,σ), where σ = 〈r, γ〉 ∈ {0, 1}l × G2 is the alleged signature.

The alleged signer then runs the following confirmation protocol

to produce a non-interactive designated-verifier proof that σ is a

valid signature on M for her identity IDA:

(a) She first computes QIDB
= H1(IDB).

(b) She picks U,R R← G1 and v R← Zq and computes

c = ê(P,U)ê(Ppub, QIDB
)v ∈ G2

g1 = ê(P,R) ∈ G2 and g2 = ê(H2(M, r, IDA), R) ∈ G2.

(c) She takes the hash value h = H3(c, g1, g2,M, r, γ) ∈ Zq.

(d) She computes S = R− (h+ v)dIDA
.

The proof is made of (U, v, h, S) and is checked by the verifier

like this: he first computes c′ = ê(P,U)ê(Ppub, QIDB
)v and then

g′1 = ê(P, S)ê(Ppub, QIDA
)h+v and g′2 = ê(H2(M, r, IDA), S)γh+v.

He accepts the proof if and only if h = H3(c
′, g′1, g

′
2,M, r, γ).

Figure 6.2. A confirmation algorithm for IBUS

if he is convinced that fP (dIDA
) = ê(Ppub, QIDA

) and γ have identi-

cal pre-images for isomorphisms fP (.) = ê(P, .) and fH2(M,r,IDA)(.) =

ê(H2(M, r, IDA), .).

3.2.1. Completeness and soundness of the confirmation proof

It is easy to see that a correct proof is always accepted by the verifier

B: if (U, v, h, S) is correctly computed by the prover, we have ê(P, S) =

ê(P,R)ê(P, dIDA
)−(h+v) and ê(P, dIDA

) = ê(Ppub, QIDA
). We also have

ê(H2(M, r, IDA), R) = ê(H2(M, r, IDA), S)ê(H2(M, r, IDA), dIDA
)−(h+v).

In order to show the soundness, we notice that if a prover is able to

provide two correct answers S1, S2 for the same commitment (c, g1, g2)

and two different challenges h1 and h2, we then have the relations

ê(P, (h2 − h1)
−1(S1 − S2)) = ê(Ppub, QIDA

)

ê(H2(M, r, IDA), (h2 − h1)
−1(S1 − S2)) = γ

which indicate that inverses f−1
P (ê(Ppub, QIDA

)), f−1
H2(M,r,IDA)(γ) are equal.
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Deny: in order to convince a designated verifier of identity IDB that a

given signature σ = 〈r, γ〉 on a message M is not valid for her

identity,

(a) Entity IDA computes QIDB
= H1(IDB) ∈ G1 and picks U R←

G1, v
R← Zq to compute c = ê(P,U)ê(Ppub, QIDB

)v.

(b) She computes a commitment C =
( ê(H2(M,r,IDA),dIDA

)

γ

)ω
for

a randomly chosen ω R← Z
∗
q .

(c) She produces a NIZK proof that she knows a pair (R,α) ∈

G1 × Zq such that

(1) C =
ê(H2(M, r, IDA), R)

γα
and 1 =

ê(P,R)

ê(Ppub, QIDA
)α

To do this,

(1) She picks V R← G1, v
R← Zq to compute

ρ1 = ê(H2(M, r, IDA), V )γ−v ∈ G2

ρ2 = ê(P, V )y−v ∈ G2

where y = ê(Ppub, QIDA
).

(2) She computes h = H4(C, c, ρ1, ρ2,M, r, γ) ∈ Zq.

(3) She computes

S = V + (h+ v)R ∈ G1

s = v + (h+ v)α ∈ Zq.

The proof is made of (C,U, v, h, S, s). It can be verified by

the verifier of identity IDB who rejects the proof if C = 1

and otherwise computes c′ = ê(P,U)ê(Ppub, QIDB
)v, ρ′1 =

ê(H2(M, r, IDA), S)γ−sC−(h+v) and ρ′2 = ê(P, S)y−s where

y = ê(Ppub, QIDA
). The verifier accepts the proof if and only

if h = H4(C, c
′, ρ′1, ρ

′
2,M, r, γ).

Figure 6.3. A denial algorithm for IBUS

3.3. The denial algorithm

The denial protocol is an adaptation of a protocol proposed by Ca-

menisch and Shoup [47] to prove the inequality of two discrete loga-

rithms. This adaptation is a non-transferable proof of inequality of two

inverses of the group isomorphisms fQ : G1 → G2, Q→ fQ(U) = ê(Q,U)

with Q = P and Q = H2(M, r, IDA). The verifier B deems the signature
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invalid if he is convinced that fP (dIDA
) = ê(Ppub, QIDA

) and γ have dif-

ferent pre-images for isomorphisms fP (.) = ê(P, .) and fH2(M,r,IDA)(.) =

ê(H2(M, r, IDA), .).

3.3.1. Completeness and soundness of the denial proof

One easily checks that an honest prover is always accepted by the

designated verifier. To prove the soundness, one notices that if the

prover is able to provide a proof of knowledge of a pair (R,α) satisfying

equations (1), then the second of these equations implies R = αf−1
P (y)

with y = ê(Ppub, QIDA
) by the bilinearity of the map. If we substitute

this relation in the first equation of (1), it comes that

C =
( ê(H2(M, r, IDA), f−1

P (y))

γ

)α
.

As the verifier checks that C 6= 1, this implies ê(H2(M, r, IDA), f−1
P (y)) 6=

γ and the signature γ is actually invalid. The soundness of the proof of

knowledge in step (c) is easy to verify.

3.4. Non-transferability

In order for the non-interactive proofs to be non-transferable, they

need a trapdoor commitment Commit(U, v) = ê(P,U)ê(Ppub, QIDB
)v that

allows the owner of the private key dIDB
to compute commitment colli-

sions: indeed, given a tuple (U, v,Commit(U, v)), B can easily use dIDB

to find a pair (U ′, v′) such that Commit(U, v) = Commit(U ′, v′). This

is essential for the proof to be non-transferable: the verifier B cannot

convince a third party of the validity or of the invalidity of a signa-

ture since his knowledge of the private key dIDB
allows him to produce

such a proof himself. Indeed, given a message-signature pair (M,σ),

with σ = 〈r, γ〉 ∈ {0, 1}l × G2, B can choose S R← G1, x
R← Zq

and U ′ R← G1 to compute c = ê(P,U ′), g1 = ê(P, S)ê(Ppub, QIDA
)x,

g2 = ê(H2(M, r, IDA), S)γx and c = H3(c, g1, g2,M, r, γ). He can then

compute v = x − h mod q and U = U ′ − vdIDB
∈ G1 where dIDB

is the

verifier’s private key. (U, v, h, S) is thus a valid proof built by the veri-

fier with the trapdoor dIDB
. This trapdoor also allows him to produce

a false proof of a given signature’s invalidity using the same technique

with the denial protocol.
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3.5. Efficiency considerations

From an efficiency point of view, the signature generation algorithm

requires one pairing evaluation as a most expensive operation. The

confirmation and denial protocols are more expensive: the first one re-

quires four pairing evaluations (three if ê(Ppub, QIDB
) is cached in mem-

ory: this can be done if the verifier often performs confirmation/denial

queries), one exponentiation in G2 and one computation of the type

λ1P + λ2Q in G1. The verifier needs to compute three pairings (only

two if ê(Ppub, QIDA
) is cached), three exponentiations and three mul-

tiplications in G2. In the denial protocol, the prover must compute

five pairings (four if ê(Ppub, QIDB
) is cached), four exponentiations and

four multiplications in G2, one computation of the type λ1P + λ2Q

and some extra arithmetic operations in Zq. The verifier must com-

pute four pairings (three if ê(Ppub, QIDB
) is cached), two exponentia-

tions, one multi-exponentiation and three multiplications in G2. To

improve the efficiency of the confirmation and denial algorithms, one

can speed up the computation of commitments. Indeed, the prover can

pre-compute ê(P, P ) once and for all. To generate a commitment in

an execution of the confirmation protocol, he then picks u, v, x R← Zq

and computes c = ê(P, P )uê(Ppub, QIDB
)v, R = xP g1 = ê(P, P )x,

g2 = ê(H2(M, r, IDA), R). The answer to the challenge h must then be

computed as S = R − (h+ v)dIDA
and the proof is made of (u, v, h, S).

This technique can also be applied in the denial protocol. It allows re-

placing 2 pairing evaluations by 2 scalar multiplications, one exponenti-

ation and a multi-exponentiation in G2 (to compute c). A single pairing

evaluation is then required for the prover at each execution of the con-

firmation and denial protocols if verifier-related pairings ê(Ppub, QIDB
)

are pre-computed.

Globally, it turns out that a signature validation/invalidation is ex-

pensive for verifiers as three pairings have to be computed even if a pre-

computation is performed. Fortunately, recent server-aided verification

techniques [102] might be applied here. However, our IBUS proposal

remains the only provably secure solution so far.

If we consider the length of signatures, the binary representation of

a pairing is about 1024 bits long for recommended parameters [43] while

the length l of the binary string can be of the order of 160 bits. This
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provides us with signatures of about 1184 bits. This is roughly one half

of the size of the RSA-based undeniable signature proposed in [90] (this

scheme produces signatures of more than 2048 bits if 1024-bit moduli are

used). If we compare our scheme with the original undeniable signature

proposed by Chaum and van Antwerpen and proved secure by Okamoto

and Pointcheval [168], both lengths are similar if the Chaum-van Heijst

scheme is used over a group like Z
∗
p with |p| = 1024 (this is no longer

true if this scheme is used over a suitable3 elliptic curve).

3.6. Convertible signatures

It is easy to notice that issued signatures can be selectively turned

into universally verifiable signatures by the signer. In order to convert

a genuine signature σ = 〈r, ê(H2(M, r, IDA), dIDA
)〉, the signer Alice just

has to take a random x R← Zq and compute R = xP , g1 = ê(P, P )x, g2 =

ê(H2(M, r, IDA), R), the hash value h = H(g1, g2,M, r, γ) and the answer

S = R−hdIDA
. The proof, given by (h, S) ∈ Zq×G1, is easily universally

verifiable by a method similar to the verification in the confirmation

protocol. Alice can also give a universally verifiable proof that a given

signature is invalid for her identity by using the non-designated verifier

counterpart of the denial algorithm.

3.7. Removing key escrow

If one does not wish to invest too much trust in a PKG, the key es-

crow property can be removed from the scheme by turning it into a cer-

tificateless undeniable signature in accordance with the paradigm intro-

duced by Al-Riyami and Paterson [6]. In the obtained scheme, the signer

Alice first sets up her public key PA = 〈XA, YA〉 = 〈xAP, xAPpub〉 ∈ G
2
1

for a secret randomly chosen xA
R← Zq and request a partial private

key from a Key Generation Center (KGC). This KGC takes as input

PA, computes QA = H1(IDA, PA) ∈ G1 and the partial private key

DA = sQA ∈ G1.

Alice then sets her full private key as SA = xADA ∈ G1. A signa-

ture on a message M is then computed as σ = 〈r, ê(H2(M, r, IDA), SA)〉.

3“Suitable” here means ordinary as the Chaum-van Heijst scheme would be a

regular digital signature scheme similar to Boneh et al.’s one [43] if it was instantiated

with supersingular curves.



140 6. AN IDENTITY-BASED UNDENIABLE SIGNATURE

She can then validate or invalidate σ by proving the equality or inequal-

ity of the inverses of fH2(M,r,IDA)(.) = ê(H2(M, r, IDA), .) and fP (SA) =

ê(YA, QA) (that is publicly computable).

We do not give security proofs nor formal security models for the

obtained scheme here. The advantage of easy key management is lost

since the resulting scheme no longer supports human-memorizable public

keys. On the other hand, the key escrow, which is often an undesirable

feature in signature schemes, is removed as well as the need for public

key certificates.

4. Security proofs for IBUS

We first give a proof in the random oracle model that our identity

based undeniable signature is existentially unforgeable under adaptive

chosen-message attacks. We then provide a proof of its invisibility.

Theorem 6.1 If there exists an adversary F that can produce an ex-

istential forgery for IBUS with an advantage ǫ within a time t and

when performing qE key extraction queries, qS signature queries, qCD

confirmation/denial queries and qHi queries on hash oracles Hi, for

i = 1, . . . , 4, then there exists an algorithm B to solve the Gap Bilin-

ear Diffie-Hellman problem with an advantage

ǫ′ ≥
1

e(qE + 1)

(

ǫ−
qS(qS + qH2)

2l
−
qCD(qH3 + qCD)

2k−1

)

in a time t′ ≤ t+6τp+O((qE+qH1 +qH2 +qCD)τm+(qS+qCD)τe+qCDΦ)

where e is the base for the natural logarithm, τp denotes the time required

for a pairing evaluation, τm is the cost of a scalar multiplication in G1,

τe is the time to perform an exponentiation in G2 and Φ is the complexity

of a call to the DBDH oracle.

Proof. We show an algorithm B using the adversary F to solve a ran-

dom instance (P, aP, bP, cP,ODBDH) of the Gap Bilinear Diffie-Hellman

problem where ODBDH(.) denotes the corresponding decision oracle. Al-

gorithm B will simulate the behaviour of F ’s challenger in the game of

definition 6.1. It first provides F with system parameters params =

{q,G1,G2, ê, P, Ppub, H1, H2, H3, H4} such that Ppub = cP and where

H1, H2, H3 and H4 are random oracles.

F now performs a series of queries as described in definition 6.1. To
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deal with them, B uses lists LHi to keep track of answers to hash queries

on Hi for i = 1, . . . , 4. W.l.o.g., we can assume that hash queries on H1

are distinct and that every key extraction on an identity ID is preceded

by a random oracle query H1(ID). The queries made by F are handled

as follows:

- H1-queries on an identity IDi ∈ {0, 1}
∗ (we call IDi the input of

the ith H1-query): B first picks µi
R← Zq. It then flips a coin X

that is 0 with probability δ and 1 with probability 1 − δ (the

optimal value of δ will be determined further). B then inserts

the tuple (IDi, µi, X) into the list LH1 . If X = 1, B returns

H1(IDi) = µi(bP ) ∈ G1 to F (recall that b is unknown to B).

Otherwise, B returns H1(IDi) = µiP ∈ G1 as an answer.

- H2-queries on an intput (Mi, ri, IDi): B returns the previously

defined value if it exists. Otherwise, B picks di
R← Zq, returns

di(aP ) ∈ G1 and stores the information (Mi, ri, IDi, di, di(aP ))

into LH2 .

- key extraction queries for an identity IDi: B searches LH1 for

the triple (IDi, µ,X) that must exist. If X = 1, then B aborts

as it is unable to answer the query. Otherwise, B returns µPpub

to F as a private key for IDi.

- signing queries for a message Mi and an identity IDi: B first

chooses a random string r R← {0, 1}l and checks if LH2 already

contains a tuple (Mi, r, IDi, ., .). If it does, B fails (this happens

with probability at most (qS + qH2)/2
l as LH2 never contains

more than qS + qH2 elements). Otherwise, B takes a random

d R← Zq and inserts (Mi, r, IDi, d, dP ) into LH2 (in such a way

that a subsequent H2(Mi, r, IDi) query will receive dP as an

answer). Because of the assumptions made above, LH1 must

contain a triple (IDi, ., .) indicating which value QIDi
= H1(IDi)

was returned to F on her previously issued query. B then re-

turns σ = 〈r, ê(dPpub, QIDi)〉.

- confirmation/denial queries: at any time, F can produce a

message-signature pair (M,σ) together with identities IDA (the

one of the alleged signer) and IDB (the one of the designated

verifier) in a request for an execution of the confirmation/denial
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algorithm. To handle such a query, B first parses σ into 〈r, γ〉 ∈

{0, 1}l × G2. It then recovers QIDA
= H1(IDA) and H =

H2(M, r, IDA) respectively from LH1 and LH2 before resorting

to ODBDH(.) to check whether (P, Ppub, QIDA
, H, γ) is a valid

BDH tuple. If yes, a simulation of the confirmation algorithm is

provided to F . Otherwise, the latter receives a simulated out-

put of the denial algorithm. The non-interactive proofs pro-

vided by the latter two algorithms are very easy to simulate

exactly as any NIZK proof in the random oracle model. We do

not give the details here but we notice that B can fail to sim-

ulate the confirmation and denial protocols with a probability

smaller than (qH3 + qCD)2−k (we assume qH3 ≈ qH4). This oc-

curs if B has to set the value of H3 or H4 on a point where the

oracle was previously defined.

Eventually, F produces a triple (M, ID, σ) where σ = 〈r, γ〉 is a pur-

ported signature of a signer of identity ID on the message M . To win, F

must not have queried the private key for ID and must be able to pro-

duce a non-transferable proof of validity of σ. For the produced triple,

B searches LH1 and LH2 for records (ID, µ,X) (that must exist because

of the assumptions we made) and (M, r, ID, d,H). If X = 0 or if no

tuple (M, r, ID, d,H) exists in LH2 , then B declares “failure”. Other-

wise, if 〈r, γ〉 is a valid signature on M for the identity ID and if both

inverses f−1
P (ê(Ppub, QIDA

)) and f−1
H2(M,r,ID)(γ) are actually equal, then

B can compute γ
1

µd which is equal to the solution ê(P, P )abc of the Gap

Bilinear Diffie-Hellman problem (P, aP, bP, cP ).

We now assess B’s probability of success. The first way for B to

reach a failure state is to receive a key extraction query on an identity

IDi for which the random variable Xi was 1. A failure also happens if

the hash value H1(ID) of the identity involved in F ’s forgery was not set

to a known multiple of bP . If qE denotes the number of key extraction

queries made by F , it easily comes that the probability for B to avoid

these failure cases is at least δqE (1 − δ). If B uses the optimal values

δopt = qE/(qE + 1), this probability is greater than 1
e(qE+1) .

It is also possible that F does not queryH2(M, r, ID), where (M, r, ID)

is a part of its forgery, during the simulation. One easily sees that the

probability for this to happen is smaller than 1/2k. Finally, the attacker
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F can also produce a forgery (M, ID, 〈r, γ〉) for which she is able to give

a correct proof of validity but for which y = ê(Ppub, QID) = ê(P, dID),

γ = ê(H2(M, r, ID), d′ID) with dID 6= dID′ . Since F can provide a proof

(U, v, h, S) that (M, ID, 〈r, γ〉) is valid, we have

g1 = ê(P,R) = ê(P, S)ê(P, dID)h+v,

g2 = ê(H2(M, r, ID), R′) = ê(H2(M, r, ID), S)ê(H2(M, r, ID), d′ID)h+v

and then h = logdID−d
′
ID

(R−R′)−v. Such a situation only occurs if a hash

value H3(c, ê(P,R), ê(H2(M, r), R′)) is set to logdID−d
′
ID

(R−R′)−v by B.

The probability for this to happen is not greater than qH32
−k. Finally,

the probability for B to fail in the simulation of a confirmation/denial is

less than 2× qCD(qH3 + qCD)2−k (since we assumed that qH3 = qH4 and

lists LH3 and LH4 never contain more than qH3 + qCD and qH4 + qCD

elements respectively). This gives us the announced bound

1

e(qE + 1)

(

ǫ−
qS(qS + qH2)

2l
−
qCD(qH3 + qCD)

2k−1

)

.

The bound on the computation time derives from the fact that every

request on H1, H2 and every signing request or key extraction request

requires B to compute a scalar multiplication in G1. To handle con-

firmation/denial and signature queries, B can avoid pairing evaluations

by pre-computing ê(P, aP ), ê(P, bP ), ê(P, cP ), ê(aP, cP ), ê(aP, bP ) and

ê(bP, cP ) and performing exponentiations in G2. Each signing request

thus requires an exponentiation in G2 while each confirmation/denial

query entails a call to the decision oracle and 2 multi-exponentiations in

G2 to simulate the confirmation/denial protocol. This yields the bound

on B’s running time. �

In order for the proof to hold, we must have qH2 ≪ 2l, where l is the

size of the random salt r. As usual with identity-based signatures, the

reduction is not really efficient: for l = 160, if we take qE ≈ qCD ≤ 230

and qH3 < 260, we can drop the negligible term qCD(qH3 + qCD)21−k ≈

2−68 but we still end up with a bound ǫ′ ≥ 2−31(ǫ− 2−69). For technical

reasons, we cannot use the technique of Katz and Wang [121] to get

rid of the random salt r ∈ {0, 1}l. Actually, it would be incompatible

with the proof of theorem 6.2 which claims the scheme’s invisibility in

the sense of Galbraith and Mao (see [90]) under the Decisional Bilinear

Diffie-Hellman assumption.
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Theorem 6.2 In the random oracle model, IBUS satisfies the invisi-

bility property provided the decision Bilinear Diffie-Hellman problem is

hard. More formally, if we assume that no algorithm is able to forge a

signature in the game of definition 6.1 with a non-negligible probability

and if a distinguisher D has a non-negligible advantage ǫ in the game of

definition 6.2 when asking qE key extraction queries, then there exists a

distinguisher B that has an advantage

ǫ′ ≥
1

e(qE + 1)

(

ǫ−
qS(qS + qH2) + 1

2l
−
qCD(qH3 + qCD)

2k−1

)

for the DBDH problem within a time bounded as in theorem 6.1 except

that no decision oracle is used.

Proof. We assume there exists a distinguisher D that is able to de-

cide whether a signature on a message was actually issued by a signer

without the help of the latter. We show that such a distinguisher allows

building a PPT algorithm B that is able to solve the Decisional Bilinear

Diffie-Hellman problem with a non-negligible advantage by using D as

a subroutine.

Let (P, aP, bP, cP, z) be a random instance of the problem. B’s goal

is to decide whether z = ê(P, P )abc or not. B plays the role of D’s chal-

lenger in the game of definition 6.2. At the beginning of this game, B

fixes the system-wide parameters as in the proof of theorem 6.1 with

Ppub = cP ∈ G1. These system parameters are given to D that then

performs a polynomially bounded number of queries as explained in def-

inition 6.2. As in the proof of theorem 6.1, we assume that any signature

query or confirmation/denial query on an identity is preceded by a H1

oracle query on that identity. We now detail how B deals with queries

made by D. As in the proof of the previous theorem, B maintains lists

LH1 , LH2 and LH3 to keep track of the answers given to hash oracle

queries.

- H1-queries: are treated as in the proof of theorem 6.1.

- H2-queries: at any time D can ask the hash value of a tuple

(M, r, ID). When receiving such a query, B first checks if LH2

contains a tuple (M, r, ID, d, Y ) for some d ∈ Zq. If it does, B

returns dP ∈ G1 if Y = 0 and d(aP ) if Y = 1. Otherwise, B

picks a random d R← Zq, inserts the tuple (M, r, ID, d, 0) into

LH2 and returns dP ∈ G1 as an answer to the query.
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- H3 and H4-queries are treated in the simplest way by uniformly

sampling a random element from Z
∗
q .

- key extraction queries are handled as in theorem 6.1.

- signature queries are handled by B exactly as in the proof of

theorem 6.1. As in the latter, B can always provide a consistent

answer to this kind of query.

- confirmation/denial queries: at any time, D can produce a tuple

(M, ID, σ), where σ = 〈r, γ〉 ∈ {0, 1}l ×G2, and ask for a proof

that σ is a valid or invalid signature on M for the signer of

identity ID. Unlike what happens in the proof of theorem 6.1,

B is able to provide D with a consistent view with overwhelming

probability. Most of the time, it can reconstruct the legitimate

signature 〈r, γ′〉 on M for the signer of identity ID with the

random string r (this is due to the way that H2 oracle queries

are handled). The confirmation/denial protocol is simulated

exactly as in the proof of theorem 6.1.

After a first series of queries, D produces a message M and an un-

corrupted identity ID on which she wishes to be challenged. B then

constructs a challenge signature as follows: it takes a random string

r ∈ {0, 1}l and checks if LH2 contains a 4-uple (M, r, ID, .). If it does,

B aborts (such an event has a probability smaller than (qS + qH2)/2
l to

happen). Otherwise, B defines the hash value H2(M, r, ID) to be d(aP )

for a randomly chosen d R← Z
∗
q . The tuple (M, r, ID, d, 1) is then inserted

into LH2 . Because of the assumptions made above, a triple (ID, µ,X)

must exist in LH1 for some µ ∈ Zq. If X = 0, then B stops and outputs

“failure”. Otherwise, B computes γ = zdµ ∈ G2 and sets the challenge

signature as 〈r, γ〉. Clearly, if D is a good distinguisher and if z actually

equals ê(P, P )abc, then 〈r, γ〉 must appear as a valid signature for the

pair (M, ID).

At the second stage of the game, D issues a second series of queries

with the restriction that she is now disallowed to ask for the private

key associated to ID or to perform a confirmation/denial query for the

challenge (M, ID, 〈r, γ〉). The simulator B is able to handle confirma-

tion or denial queries with overwhelming probability: any signature
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(M, ID, 〈r, γ′〉) with γ 6= γ′ is declared invalid and the denial proto-

col is then simulated. The only case where F is provided with an in-

consistent view on a confirmation/denial query is the situation where

(P, aP, bP, cP, z) is not a DBDH tuple and where D queries the con-

firmation/denial oracle on a tuple (M, ID, 〈r, γ′〉) for which 〈r, γ′〉 is a

legitimate signature on M for the identity ID. This event only occurs

with negligible probability, since according to theorem 6.1, we assumed

that no PPT algorithm can produce a valid signature for a chosen mes-

sage on a chosen identity without knowing the private key.

Eventually, D outputs a bit b′ that is 0 if she finds that (M, ID, 〈r, γ〉)

is a valid tuple message-identity-signature and 1 if she finds that 〈r, γ〉 is

a random element of the signature space. If b′ = 0, then B outputs 1 as a

result to indicate that (P, aP, bP, cP, z) is a valid DBDH tuple. If b′ = 1,

it outputs 0, meaning that z is a random element of G2. One can easily

verify that, if D succeeds in distinguishing whether the challenge was an

actual signature, then B succeeds in distinguishing DBDH tuples.

B’s probability not to achieve a state of failure can be assessed in the

same way as in theorem 6.1 and we find that, if ǫ denotes D’s advantage

as a distinguisher, then B’s advantage in distinguishing DBDH tuples is

at least

ǫ′ ≥
1

e(qE + 1)

(

ǫ−
qS(qS + qH2) + 1

2l
−
qCD(qH3 + qCD)

2k−1

)

.

�

It is possible to directly show that the scheme also satisfies the

anonymity property in the random oracle model under the DBDH as-

sumption. However, since anonymity and invisibility are essentially

equivalent, the anonymity of our signature derives from its invisibility

property.

5. Conclusions

In this chapter, we showed a first construction for a provably secure

identity-based undeniable signature and we extended the panel of primi-

tives for identity-based cryptography. We provided a proof of existential

unforgeability under the Gap Bilinear Diffie-Hellman assumption. Our

construction and the underlying assumption for its security are inspired

from those of Chaum-van Antwerpen [53] and Okamoto-Pointcheval
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[168]. We also extended the notions of invisibility and anonymity of

Galbraith and Mao [90] to the identity-based setting and we proved the

invisibility of our scheme in the random oracle model under the Deci-

sional Bilinear Diffie-Hellman assumption.

We leave as an open problem to find a scheme that satisfies the in-

visibility property and is tightly related to a weaker assumption than

the hardness of the Gap-BDH problem.





CHAPTER 7

Joint Signature and Encryption in

Identity-Based Cryptography

Abstract. This chapter provides an analysis of several exist-

ing protocols ensuring both confidentiality and authentication of

messages in the context of identity-based cryptography. It first

shows a security flaw in the first scheme of this kind proposed

by Malone-Lee. It then presents a new construction and demon-

strates its security in a formal security model. The chapter then

presents two other improved constructions that were published af-

ter ours before describing a new provably secure scheme which is

noticeably more efficient than all previous ones.

1. Identity-based signcryption

Two fundamental services of public key cryptography are privacy

and authentication. Public key encryption schemes aim at providing

confidentiality whereas digital signatures must provide authentication

and non-repudiation. Nowadays, many real-world cryptographic appli-

cations require those distinct goals to be simultaneously achieved. This

motivated Zheng [228] to provide the cryptographer’s toolbox with a

novel cryptographic primitive which he called ‘signcryption’. The pur-

pose of this kind of cryptosystem is to encrypt and sign data in a single

operation which has smaller bandwidth requirements and computational

costs than those entailed by doing both operations sequentially. Proper

signcryption schemes should provide confidentiality as well as authen-

tication and non-repudiation. As in conventional encryption schemes,

recovering the plaintext from a signcrypted message must be computa-

tionally infeasible without the receiver’s private key; as in conventional

digital signatures, it must be computationally infeasible to create sign-

crypted texts without the private key of the sender.

Several identity-based signcryption (IBSC) algorithms have been

proposed so far, e.g. [45, 58, 64, 65, 131, 139, 161, 189, 220]. Within

149
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this handful of results, only [45, 58, 64, 65, 131, 220] consider schemes

supported by formal models and security proofs in the random oracle

model. Actually the first identity-based system simultaneously offering

data privacy and sender authentication was suggested by Lynn [137] who

extended the Boneh-Franklin scheme to build an efficient authenticated

IBE. Unfortunately, his scheme does not provide the non-repudiation

property as the recipient of a ciphertext is the only entity to be able to

ascertain the origin and validity of the ciphertext. Malone-Lee proposed

a method to overcome the latter limitation and achieved an identity-

based signcryption solution [139].

One of the contribution of the present chapter is to pinpoint a se-

curity flaw in Malone-Lee’s system and show how to fix it. Next to

this result published at ITW’03, we propose another scheme which is

immune to the attack that exists against the Malone-Lee scheme. This

chapter also discusses about several papers that followed our work, in-

cluding the IBSC scheme published by Boyen [45] at Crypto’03 and its

improvements put forth by Chen and Malone-Lee [58].

Among all schemes supported by security proofs in formal security

models, Chen and Malone-Lee’s proposal [58] happens to be the most ef-

ficient construction. Another contribution of this chapter is to propose a

new identity-based signcryption scheme that even supersedes [58] from

an efficiency point of view at the expense of the security resting on

stronger but reasonable assumptions.

The new construction was discovered in a joint work with Paulo

Barreto and Noel McCullagh. We argue that it can benefit from the

most efficient pairing calculation techniques for a larger variety of ellip-

tic curves than previous schemes. Indeed, recent observations [203] pin-

pointed problems arising for many provably secure pairing-based proto-

cols when implemented using asymmetric pairings and ordinary curves.

Our proposal avoids those problems thanks to the fact that it does not

require to hash onto an elliptic curve cyclic subgroup. It is actually

obtained from an optimal randomness re-use in the DHI-IBS identity-

based signature (IBS) that was studied in chapter 5. In an analysis of

the scheme’s efficiency, we show that it is more than twice as fast as

Chen and Malone-Lee’s one on the sender’s side and about 33% more

efficient for receivers. It does not enjoy all of the properties of the Chen-

Malone-Lee proposal but we believe that it does suffice to implement
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most practical applications.

This chapter is organized as follows. Section 2 presents theoretical

concepts and formal security models that suitable IBSC schemes should

comply with. The Malone-Lee IBSC is described and analyzed in section

3. We describe our IBSC scheme and prove its security in section 4. The

improvements provided by Boyen and Chen-Malone-Lee are recalled in

section 5. We then describe our faster scheme in section 6, and compare

its efficiency to various schemes in section 6.3.

2. Formal models for identity-based signcryption

We here describe the formal structure that we shall use for identity-

based signcryption (IBSC) schemes. We then discuss about related se-

curity notions that have been used in several papers in the literature.

2.1. General formalism

Definition 7.1 Just like encryption-only identity-based systems, IBSC

schemes are made of four algorithms which are the following.

Setup: is a probabilistic algorithm run by a private key generator

(PKG) that takes as input a security parameter to output a

master secret key mk and public parameters params that include

a system-wide public key.

Keygen: is a key generation algorithm run by the PKG on input

of params and the master key mk to return the private key dID

associated to the identity ID.

Sign/Encrypt: is a probabilistic algorithm that takes as input pub-

lic parameters params, a message M , the recipient’s identity

IDR, and the sender’s private key dIDS
, and outputs a cipher-

text σ = Sign/Encrypt(M,dIDS
, IDR).

Decrypt/Verify: is a deterministic decryption algorithm that takes

as input a ciphertext σ, public parameters params, the receiver’s

private key dIDR
and (optionally) a sender’s identity IDS before

returning a plaintext M together with auxiliary information al-

lowing a third party to be convinced of its origin or a distin-

guished symbol ⊥ if σ does not properly decrypt into a mes-

sage accompanied by suitable authenticating information for the

sender IDS.
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For consistency purposes, we impose the obvious constraint that if σ =

Sign/Encrypt(m, dIDS
, IDR), then the output of the Decrypt/Verify(.) for

the triple (σ, IDS , dIDR
) contains a plaintext m and additional informa-

tion allowing the receiver to convince a third party that the plaintext

actually emanates from the sender.

We mention the existence of schemes such as those proposed in [45,

58] where the Decrypt/Verify algorithm only takes as input the ciphertext

and the recipient’s private key: the sender’s identity is recovered together

with the message in the course of the decryption/verification process.

This syntactical difference characterizes schemes in which ciphertexts

are meant not to convey any clear information identifying their recipient

or originator.

2.2. Security notions for IBSC schemes

Malone-Lee defines extended security notions for identity-based sign-

cryption schemes (IBSC). These notions are chosen-ciphertext security

(i.e. indistinguishability against adaptive chosen ciphertext attacks) and

ciphertext unforgeability against adaptive chosen-message attacks.

Definition 7.2 An identity-based signcryption scheme (IBSC) satisfies

the message confidentiality property (or adaptive chosen-ciphertext

security: IND-IBSC-CCA) if no PPT adversary has a non-negligible

advantage in the following game.

1. The challenger runs the Setup algorithm on input of a security

parameter k and sends the domain-wide parameters params to

the adversary A.

2. In a find stage, A starts probing the following oracles:

- Keygen: returns private keys for arbitrary identities.

- Sign/Encrypt: given a pair of identities IDS, IDR and a

plaintext M , it returns an encryption under the receiver’s

identity IDR of the message M signed in the name of the

sender IDS.

- Decrypt/Verify: given a pair of identities (IDS , IDR) and a

ciphertext σ, it generates the receiver’s private key dIDR
=

Keygen(IDR) and returns either a pair (M, s) made of a

plaintext M and transferable authenticating information
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for the sender’s identity IDS or the ⊥ symbol if σ does not

properly decrypt under the private key dIDR
.

Once she decides that this stage is over, A produces two plain-

texts M0,M1 ∈ M and identities ID∗
S and ID∗

R. She may not

have extracted the private key of ID∗
R and she obtains C =

Sign/Encrypt(Mb, dID∗
S
, ID∗

R, params), for a random b R← {0, 1}.

3. In the guess stage, A issues new queries. This time, she may

not issue a key extraction request on ID∗
R and she cannot sub-

mit C to the Decrypt/Verify oracle for the target identity ID∗
R.

Finally, A outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Adv(A) := 2× Pr[b′ = b]− 1.

It must be noted that the above definition considers insider attacks

in the sense of [9]: the adversary may choose to be challenged on a

sender’s identity ID∗
S for which she previously learnt the matching pri-

vate key or to request the latter at some point of the guess stage.

The original definition of message confidentiality given by Malone-

Lee [139] does not allow the attacker to corrupt the private key of ID∗
S at

any time. This enhancement was introduced by Boyen [45] for the first

time. Its motivation is to devise schemes in which an attacker stealing

the private key of a user is unable to gain any information about mes-

sages previously signed and encrypted by that user1.

A scheme supporting the latter enhanced form of message confiden-

tiality will be said to be insider secure in this chapter. In contrast, a

scheme that is only secure in the sense of Malone-Lee’s original defini-

tion [139] will be said to be outsider secure.

Regarding the properties of authentication and non-repudiation, the

following definition was introduced in [139] to formalize the inability of

any adversary to create a ciphertext containing a message authenticated

by some user without knowing the latter’s private key.

1This property was sometimes referred to as “forward security” in several papers

in the literature. We here prefer using the terminology of ‘insider security’ introduced

in [9] to avoid confusion with the quite different forward security property in the sense

of [10] for key evolving protocols.
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Definition 7.3 An IBSC scheme is said to be existentially cipher-

text unforgeable against adaptive chosen messages attacks (ECUF-

IBSC-CMA) if no PPT adversary has a non-negligeable advantage in

the following game.

1. The challenger runs the Setup algorithm with a security para-

meter k and gives the system parameters to the adversary.

2. The adversary F issues a polynomially bounded number of re-

quests exactly as in the previous definition.

3. Finally, F produces a triple (σ∗, ID∗
S , ID

∗
R) that was not obtained

from the Sign/Encrypt oracle during the game and for which the

private key of ID∗
S was not exposed. The forger wins the game if

the result of Decrypt/Verify(σ∗, dID∗
S
, ID∗

R) is not the ⊥ symbol.

The adversary’s advantage is simply her probability of victory.

We note that the above definition also considers a form of ’insider

security’ in the sense of [9] since the adversary is allowed to expose the

private key corresponding to the recipient’s identity IDR for which the

produced ciphertext must be valid. This condition is necessary to ob-

tain the non-repudiation property and to prevent a dishonest recipient

to send a ciphertext to himself on Alice’s behalf and attempt to convince

a third party that Alice was the sender.

Nevertheless, it is natural to wonder whether it is really useful to

require the notion of non-repudiation for a ciphertext rather than simply

for the plaintext that it contains. Indeed, the former kind of authenti-

cation implies that the authenticating information returned by the De-

crypt/Verify algorithm does not directly pertain to the clear message

embedded in the ciphertext. This might render difficult the task of re-

ceivers who want to convince a third party of the sender’s authorship for

an extracted plaintext. For example, the original public key construc-

tion suggested by Zheng [228] in 1997 requires the receiver to produce

a (possibly non-interactive) zero-knowledge proof of equality of discrete

logarithms and such a requirement was subsequently showed to entail

security concerns [110, 175].

On the other hand, if the recipient can extract a regular signature on

the plaintext from the ciphertext, the non-repudiation property is eas-

ily obtained as noted by Boyen [45] at Crypto’03. The next definition,
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given in [45], considers non-repudiation w.r.t. signatures embedded in

ciphertexts rather than w.r.t. ciphertexts themselves.

Definition 7.4 An IBSC scheme is said to be existentially signature-

unforgeable against adaptive chosen messages attacks (ESUF-IBSC-

CMA) if no PPT adversary can succeed in the following game with a

non-negligible advantage:

1. The challenger runs the Setup algorithm on input k and gives

the system-wide public key to the adversary F .

2. F issues a number of queries as in definition 7.2.

3. Finally, F outputs a triple (σ∗, ID∗
S , ID

∗
R) and wins the game

if the sender’s identity ID∗
S was not corrupted and if the re-

sult of the Decrypt/Verify oracle on the ciphertext σ∗ under the

private key associated to ID∗
R is a valid message-signature pair

(M∗, s∗) such that no Sign/Encrypt query involving M∗, ID∗
S

and some receiver ID′
R (possibly different from ID∗

R) resulted in

a ciphertext σ′ whose decryption under the private key dID′
R

is

the alleged forgery (M∗, s∗, ID∗
S).

The adversary’s advantage is her probability of victory.

As stressed by [45], considering non-repudiation only w.r.t. signa-

tures is useful if one is willing to devise schemes providing detachable

signatures that should be unlinkable to the ciphertext they were con-

veyed in: anyone seeing a valid message-signature pair can use his/her

private key to encrypt it into a valid signcryption under his/her public

key as formalized by the following definition.

Definition 7.5 ([45]) An IBSC scheme has the ciphertext unlinka-

bility property if there exists a polynomial time algorithm that, given a

receiver’s private key dIDR
and a message M bearing a signature s for

some sender’s name IDS, can produce a valid ciphertext σ intended to

IDR in such a way that the private key dIDR
decrypts σ into the signature

pair (M, s) for the identity IDS.

Constructions satisfying the latter criterion allow a sender to always

deny having created a given ciphertext even though he always remains

committed to the content of the plaintext.
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A complementary notion to the latter was termed ciphertext authen-

tication and means that a receiver is always convinced that a ciphertext

was (jointly) signed and encrypted by the same person.

Definition 7.6 An IBSC scheme has the ciphertext authentication

property against adaptive chosen messages and ciphertexts attacks (AUTH-

IBSC-CMA) if no PPT adversary can succeed in the following game with

a non-negligible advantage:

1. the challenger runs the Setup algorithm on input k and gives

the system-wide public key to the adversary F .

2. F issues a number of queries as in the previous definition.

3. Finally, F outputs a ciphertext σ∗ together with a pair of iden-

tities (ID∗
S , ID

∗
R) and wins the game if the private keys of ID∗

S

and ID∗
R were not extracted and if the ciphertext σ∗ was not

trivially obtained from a request to the Sign/Encrypt oracle.

The adversary’s advantage is again her probability of victory.

Intuitively, this notation is complementary to the one of cipher-

text unlinkability in the sense that it prevents ciphertexts to be subject

to man-in-the-middle attacks: no receiver can turn an extracted valid

message-signature pair into a ciphertext intended to another receiver

without knowing the latter’s private key.

In [45], Boyen finally introduced a notion called ciphertext anonymity

which is close to Bellare et al.’s definition of key privacy [25]. It formal-

izes the intuitive feature that ciphertexts convey no information about

who their sender is nor about whom they are intended to.

Definition 7.7 ([45]) An IBSC scheme has the ciphertext anonymity

property against chosen-ciphertext attacks (or ANON-IBSC-CCA) if no

PPT adversary has a non-negligible advantage in the following game.

1. The challenger runs the Setup algorithm on input of a security

parameter k and sends the domain-wide parameters params to

the adversary A.

2. In a find stage, A starts probing the same oracles as in def-

inition 7.2. Once she decides that this stage is over, A pro-

duces a plaintext M ∈ M and four identities ID∗
S,0, ID

∗
S,1 and

ID∗
R,0, ID

∗
R,1 subject to the rule that she may not have extracted
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the private key of ID∗
R,0 nor ID∗

R,1. She obtains the challenge

C = Sign/Encrypt(M,dID∗
S,b
, ID∗

R,b′ , params), for independent ran-

dom bits b, b′ R← {0, 1}.

3. In the guess stage, A makes new queries but may not issue a key

extraction request on ID∗
R,0 nor ID∗

R,1 and she cannot submit C

to the Decrypt/Verify oracle for identities ID∗
R,0, ID

∗
R,1. Finally,

A outputs a pair of bits (d, d′) and wins if (b, b′) = (d, d′).

A’s advantage is defined as Adv(A) := Pr[(b, b′) = (d, d′)]− 1/4.

When simultaneously ensured, the properties of ciphertext unlink-

ability and anonymity may be useful for senders, acting as news corre-

spondent in hostile area, who wish to authenticate confidential content

without revealing anything about the channel that is used nor the mo-

ment or circumstances under which the transmission is taking place.

3. The Malone-Lee signcryption scheme and its (in)security

Setup: given a security parameter k, the PKG chooses symmetric bilinear

map groups (G1,G2) of primer order q > 2k, a generator P of G1,

hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Z
∗
q , H3 : G2 →

{0, 1}n. It chooses a master-key s R← Z
∗
q and the matching public

key is Ppub = sP . The system-wide parameters are

params := (G1,G2, n, ê, P, Ppub,H1,H2,H3).

Keygen: given an identity ID, the private key is dID = sH1(ID) ∈ G1.

Sign/Encrypt: given a plaintext M , a sender’s private key dIDR
and the

receiver’s public key QIDR
= H1(IDR),

(1) Pick x R← Z
∗
q to compute U = xP ∈ G1.

(2) Compute r = H2(M,U) ∈ Z
∗
q and V = xPpub + rdIDS

∈ G1.

(3) Scramble M into W = M ⊕H3(ê(Ppub, QIDR
)x) ∈ {0, 1}n.

The ciphertext is 〈U, V,W 〉 ∈ G1 ×G1 × {0, 1}
n.

Decrypt/Verify: given 〈U, V,W 〉, the sender’s identity QIDR
= H1(IDR) ∈

G1 and the receiver’s private key dIDR
,

(1) Compute M = W ⊕H3(ê(U, dIDR
)) and then r = H2(M,U).

(2) If ê(P, V ) = ê(U + rQIDS
, Ppub), return the plaintext M to-

gether with the pair 〈U, V 〉. Otherwise, return ⊥.

Figure 7.1. The ML-IBSC scheme
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The consistency of the scheme stems from the relation

ê(U, dIDR
) = ê(xP, sQIDR

) = ê(xsP,QIDR
) = ê(xPpub, QIDR

).

Once the receiver has obtained M from the ciphertext 〈U, V,W 〉, he can

convince a third party that the message M emanates from the sender as

we have

ê(P, V ) = ê(P, rdIDS
+xPpub) = ê(sP, xP + rQIDS

) = ê(Ppub, U + rQIDS
)

In [139], Malone-Lee claimed that his scheme has the message confi-

dentiality property (against outsider attacks) and gave informal security

arguments. In a paper published at ITW’03 [131], we pinpointed a se-

curity flaw in the scheme which is even insecure against passive attacks

where adversaries have no access to Sign/Encrypt or Decrypt/Verify or-

acles. The obvious reason is that a signature on the plaintext appears

in the ciphertext. We indeed noticed that the scheme is the result of

a combination of the simplified version of Boneh and Franklin’s IBE

cryptosystem (see chapters 2 and 3 for details: this version only has the

IND-ID-CPA level of security) with the signature scheme below.

Setup and Keygen are the same as above.

Sign: to sign a message M, Verify: given σ = 〈U, V 〉,

(1) Choose x R← Z
∗
q and (1) Compute r = H(M,U)

compute U = xP (2) Accept the signature if

(2) Compute r = H(M,U)

(3) Compute V = xPpub + rdIDS
ê(P, V ) = ê(Ppub, U + rQIDS

)

The signature on M is σ = 〈U, V 〉

Figure 7.2. The IBS scheme underlying ML-IBSC

This signature is a variant of Heß’s identity-based signature [111].

The ciphertexts produced by Malone-Lee’s scheme may be thought of as

a concatenation of a signature and a ciphertext (this approach is some-

times called “encrypt-and-sign” in the literature) except that they aim

at taking advantage of a randomness re-use for the sake of efficiency. As

a result, the scheme cannot achieve the semantic security as any attacker

can simply verify the signature on both of the plaintexts M0 and M1 in

the game of definition 7.2 and find out which one matches to the chal-

lenge ciphertext. Although, the scheme can offer a reasonable security
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for some applications, it is not IND-IBSC-CCA (nor even IND-IBSC-

CPA) secure in its current version. A similar observation was made in

[196] regarding the Bao-Deng signcryption scheme [18] and another one

suggested by Yum and Lee [221]. The authors of [196] pointed out that

as soon as a signature on the plaintext is visible in the ciphertext, the

scheme cannot be semantically secure. All systems resulting from the

encrypt-and-sign approach have the same inherent weakness.

In the next section, we explain how to overcome this weakness and

describe a signcryption scheme that is secure against (outside) chosen-

ciphertext attacks.

4. A new identity-based signcryption scheme

In [228], Zheng showed how to use the randomness of DSA-like signa-

tures for encryption purposes if both the sender and the receiver choose a

public key within a cyclic prime order group. Unfortunately, his scheme

does not offer non-repudiation. Bao and Deng [18] showed how to over-

come the latter shortcoming but their modification renders the scheme

semantically insecure as pinpointed in [196]. We here show that a vari-

ant of Heß’s identity-based signature (which may be regarded as an

adaptation of Schnorr’s signature using the Tate pairing rather than the

discrete exponentiation as a group isomorphism and was shown in [28]

to be secure against existential forgery under adaptive chosen-message

attacks in the random oracle model) can also be used as a building block

to obtain an efficient and secure identity-based signcryption scheme.

4.1. Description of the scheme

The consistency follows from the bilinearity of the map. We have

the relations

ê(P, S)ê(Ppub, QIDS
)r = ê(P, Ppub)

x

ê(S,QIDR
)ê(QIDS

, dIDR
)r = ê(Ppub, QIDR

)x.

Any third party (such as a firewall as explained in [95]) can be

convinced of the message’s origin by recovering k1 and checking that

r = H(c, k1) according to equation 2. The knowledge of the plaintext m

is not required for the public verification of the origin of a ciphertext.

On the other hand, it might be difficult for the receiver to convince a
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Setup: given security parameters k and λ, the PKG chooses symmetric

bilinear map groups (G1,G2) of prime order q > 2k, a generator

P of G1, hash functions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}
λ,

H3 : {0, 1}n×G2 → Z
∗
q . It chooses a master-key s R← Z

∗
q , computes

the matching public key Ppub = sP and finally selects a symmet-

ric encryption scheme (E,D) of key length λ. The system-wide

parameters are

params := (k, λ,G1,G2, n, ê, P, Ppub,H1,H2,H3)

where n denotes the size of plaintexts.

Keygen: given an identity ID, the private key is dID = sH1(ID) ∈ G1.

Sign/Encrypt: given a plaintext m ∈ {0, 1}n, his private key dIDR
and the

receiver’s public key QIDR
= H1(IDR), the sender

(1) picks x R← Z
∗
q and computes k1 = ê(P, Ppub)

x ∈ G2, k2 =

H2(ê(Ppub, QIDR
)x) ∈ {0, 1}λ,

(2) computes c = Ek2
(m) ∈ {0, 1}n, r = H3(c, k1) ∈ Z

∗
q and

S = xPpub − rdIDS
∈ G1.

The ciphertext is 〈c, r, S〉 ∈ {0, 1}n × Zq ×G1.

Decrypt/Verify: given 〈c, r, S〉 and the sender’s identity QIDR
= H1(IDR) ∈

G1 and the receiver’s private key dIDR
, the receiver computes

(2) k′1 = ê(P, S)ê(Ppub, QIDS
)r.

and rejects the ciphertext if r 6= H3(c, k
′
1). Otherwise, he com-

putes τ = ê(S,QIDR
)ê(QIDS

, dIDR
)r, k′2 = H2(τ) ∈ {0, 1}

λ and

the plaintext m = Dk′
2
(c) ∈ {0, 1}n is recovered. The receiver

may then forward m together with the ciphertext 〈c, r, S〉 and the

ephemeral symmetric encryption key k′2 to any third party that

can verify that the ciphertext (using equation (2)) and the plain-

text m (by checking that m = Dk′
2
(c)) both emanate from the

entity of identity IDS .

Figure 7.3. The NewIBSC scheme

third party that the sender is the author of a particular plaintext m.

To do this she has to forward the ephemeral decryption key k′2 to the

third party. For security reasons, it is mandatory to use a symmetric

encryption scheme (E,D) for which it is impossible to find a secret key

mapping a chosen plaintext m to a given ciphertext c. Indeed, if the

plaintext was simply scrambled by a hash value of ê(Ppub, QIDR
)x as
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in the Malone-Lee scheme in the signcryption algorithm, the recipient

would be unable to convince anyone that the plaintext was created by

the sender (as revealing τ would disclose ê(QIDS
, dIDR

) and compromise

the secrecy of any subsequent communication between entities IDS and

IDR). The plaintext non-repudiation procedure thus turns out to be

somewhat problematic.

It is important to insist that replacing r = H3(c, k1) with r =

H3(m, k1) in step 2 of the Sign/Encrypt algorithm would induce the

same obstacle to the semantic security as in the Malone-Lee scheme. In

[95], a similar modification was made to the Bao-Deng construction and

it is likely that it enhances its security in the same way.

4.2. Efficiency

This scheme is almost as efficient as Malone-Lee’s method (since the

pairing ê(P, Ppub) does not depend on users or messages and can always

be pre-computed) and it can be slightly more efficient when users often

have to communicate between each other (pairings ê(Ppub, QIDB
) and

ê(QIDA
, dIDB

) can be pre-computed by the sender and the receiver once

and for all and cached in memory). In this case, the most expensive

operations of the Sign/Encrypt algorithm are two exponentiations in G2

and a computation of the type aP + bQ ∈ G1. The Decrypt/Verify op-

eration only requires two pairing evaluations and two exponentiations.

With pre-computations, both schemes have a similar efficiency for the

signature/encryption as well as for the decryption/verification proce-

dure.

4.3. Security

The security proofs provided here assume that the Sign/Encrypt and

Decrypt/Verify algorithms always take distinct identities as input. In

other words, a sender can never jointly sign and encrypt a message for

him/herself. A similar assumption was made by Boyen in his Crypto’03

paper where it was referred to as the “irreflexivity assumption”.

4.3.1. Message confidentiality

Theorem 7.1 In the random oracle model, we assume we have an IND-

IDSC-CCA adversary called A that is able to distinguish ciphertexts

during the game of definition 7.1 with an advantage ǫ when running
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in a time t and asking at most qHi queries to random oracles Hi (for

i = 1, . . . , 3), qke key extraction queries, qse signature/encryption queries

and qdv queries to the Decrypt/Verify oracle. Then, for any 0 ≤ ν ≤ 1,

there either exists

- an algorithm B solving the Bilinear Diffie-Hellman problem in

a time t′ < t+O(qse)tp +O(qke)tm with an advantage

ǫ′ >
ǫ− ν

(qH2 + qse + qdv)(qse + qdv)
(qH1

2

)

(

1−
(qse + 1)(qse + qh3)

2k

)

- a passive (in the sense of definition 3.3) adversary B′ that

breaks the semantic security of the symmetric scheme within

a time t′ with an advantage ν

where tp denotes the computation time of the bilinear map and tm stands

for the cost of a scalar multiplication in G1.

Proof. Algorithm B receives a random instance (P, aP, bP, cP ) of the

Bilinear Diffie-Hellman problem and attempts to compute ê(P, P )abc.

It will run A as a subroutine and act as the challenger in the game

of definition 7.2. In order to keep track of answers to A’s queries to

random oracles H1, H2 and H3, B maintains lists L1, L2 and L3 that

are initially empty. We assume that any query to Sign/Encrypt or De-

crypt/Verify involving a pair of identities happens after that A queried

oracle H1 on these identities. Random oracle queries on H1 are also sup-

posed to be distinct. Any key extraction query on an identity is assumed

to come after a hash query on the same identity. We also assume that A

never makes a Decrypt/Verify query on a ciphertext obtained from the

Sign/Encrypt oracle (as, otherwise, the simulator can coherently answer

the request using information stored when emulating the Sign/Encrypt

oracle) and that both of the identities involved in the challenge step are

submitted to oracle H1 at some point of the simulation.

At the beginning of the game, B provides A with public parameters

including Ppub = cP (where c is unknown to B). Then, B randomly

chooses two distinct indexes i, j R← {1, . . . , qH1}. The attacker A is-

sues a polynomially bounded number of H1-queries on identities of her

choosing. At the ith H1-request, B answers by H1(IDi) = aP . At the

jth, it responds with H1(IDj) = bP . Since aP and bP belong to a ran-

dom instance of the BDH problem, A’s view will not be modified by
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these changes. Hence, the private keys dIDi
and dIDj

(which are not

computable by B) are respectively acP and bcP . The solution of the

BDH problem is thus given by ê(QIDi , dIDj ) = ê(dIDi , QIDj ). For requests

H1(IDe) with e 6= i, j, B chooses be
R← Z

∗
q , stores the pair (IDe, be) in

list L1 and returns H1(IDe) = beP .

We now explain how the other kinds of requests are treated by B.

H2-queries: for an input ge ∈ G2, B searches list L2 for a pair

(ge, Re). If such a pair exists, B returns Re, otherwise it returns

a random Re
R← {0, 1}n and inserts the pair (ge, R) into L2.

H3-queries: for an input (ce, ke): B checks if list L3 contains a

tuple (ce, ke, re). If it does, B returns re. Otherwise, it responds

with r R← Zq and inserts the triple (ce, ke, r) into L3.

Key extraction requests: when A asks for the private key of

an identity IDA, if IDA = IDi or IDA = IDj , then B fails and

stops. If IDA 6= IDi, IDj then the list L1 must contain a pair

(IDA, d) for some d (meaning thatH1(IDA) was set to dP ). The

private key corresponding to IDA is then dPpub = cdP which is

returned to A.

Sign/Encrypt queries: at any time, the attacker A may issue

a signature/encryption request for a plaintext M and identities

IDA and IDB. If IDA 6= IDi, IDj , B computes the private key

dIDA
associated to IDA by running the key extraction algorithm

and simply runs the algorithm Sign/Encrypt(M,dIDA
, QIDB

).

In the case IDA = IDi or IDA = IDj but IDB 6= IDi, IDj , B

has to simulate the execution of Sign/Encrypt(M,dIDA
, QIDB

)

as follows. It chooses r R← Zq and S R← G
∗
1 and computes

k′ = ê(P, S)ê(Ppub, QIDA
)r, τ = ê(S,QIDB

)ê(QIDA
, dIDB

)r where

dIDB
is the private key corresponding to IDB (B may obtain

it from the key extraction algorithm as IDB 6= IDi, IDj). It

queries oracle H2 for itself to obtain k2 = H2(τ) and computes

c = Ek2(M). It then checks if L3 already contains a triple

(c, k′, r′) with r′ 6= r. In this case, B fails (this happens with

a probability smaller than qse(qh3 + qse) throughout the entire

simulation). Otherwise, B stores (c, k′, r) in L3 before returning

the ciphertext (c, r, S) which appears valid from A’s point of
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view.

If (IDA, IDB) = (IDi, IDj), B first chooses r∗ R← Z
∗
q and

S∗ R← G1. It computes

k′1 = ê(P, S∗)ê(Ppub, QIDA
)r

∗
= ê(P, S∗)ê(cP, aP )r

∗

and picks τ∗ R← G2, k
′
2

R← {0, 1}n and calculates c∗ = Ek′2(M).

It then checks if list L3 already contains a triple (c∗, k′1, r
′) such

that r′ 6= r∗. If it does, B aborts and reports “failure”. Oth-

erwise, it stores (c∗, k′1, r
∗) into L3 and (τ∗, k′2) into L2 and

returns the ciphertext σ∗ = (c∗, r∗, S∗) to A.

The latter will be unable to recognize that σ∗ is not a prop-

erly signed and encrypted message unless she queries oracle H2

on ê(S∗, QIDA
)ê(P, P )abcr

∗
. Such an event would allow B to ex-

tract the solution ê(P, P )abc which it is looking for. In order to

be able to take advantage of such an event, B stores a record

(r∗, S∗) into a special list which we call “the critical list” LC .

Decrypt/Verify queries: when A requires to decrypt and verify

a ciphertext σ′ = (c′, r′, S′) for identities IDA and IDB, the

simulator B first checks its validity (which is publicly verifi-

able) by calling oracle H3 on its own. The rejection sym-

bol ⊥ is answered to A if σ′ does not pass the verification

test. Otherwise, we observe that, if (IDA, IDB) 6= (IDi, IDj)

and (IDA, IDB) 6= (IDj , IDi), B can compute the pairing value

ê(QIDA
, dIDB

) which is needed to coherently answer the query.

We thus assume (IDA, IDB) = (IDi, IDj) (the case (IDA, IDB) =

(IDj , IDi) is tackled with in the same way). The simulator B

then picks a random k′2
R← {0, 1}λ to compute m′ = Dk′2

(c′)

and returns m′ to A. Clearly, A will not recognize that m′ is

not the right plaintext extracted from σ′ unless she queries H2

on the input ê(S′, QIDA
)ê(P, P )abcr

′
and such an event would

reveal ê(P, P )abc to B. The latter thus stores the pair (r′, S′)

into the list LC .

Once A decides to enter the challenge phase, she chooses a pair of un-

corrupted target identities. With a probability at least 1/
(qH1

2

)

, this pair

is (IDi, IDj) (as we assume that A chooses to be challenged on a pair of
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identities for which she asks for the hash value either before or after the

challenge phase). If A does not select IDi and IDj as target identities, B

fails.

When A produces her two plaintexts m0 et m1, B chooses a random

bit b R← {0, 1}. It also picks r∗ R← Z
∗
q , S

∗ R← G1 and k′2
R← {0, 1}λ to

compute

k′1 = ê(P, S∗)ê(Ppub, QIDA
)r

∗
= ê(P, S∗)ê(cP, aP )r

∗
,

and cb = Ek′2(mb). It then verifies as above if L3 already contains an

entry (cb, k
′
1, r

′) such that r′ 6= r∗. If yes, B aborts and declares “failure”

(this happens with a probability smaller than (qse + qh3)/2
k). Other-

wise, the tuples (cb, k
′
1, r

∗) and (r∗, S∗) are respectively stored into L3

and LC . The ciphertext σ∗ = (cb, r
∗, S∗) is then returned as a challenge.

A then performs a second series of queries which is treated in the

same way as the first one. At the end of the simulation, she pro-

duces a bit b′ which is ignored. To produce a result, B fetches random

pairs (τ∗, k∗2) and (r∗, S∗) respectively from lists L2 and LC to compute

(τ∗/ê(S∗, bP ))1/r
∗

which is produced as a result and matches ê(P, P )abc

with probability
1

(qH2 + qse + qdv)(qse + qdv)

(as L2 and LC always contain respectively less than 1/(qH2 + qse +

qdv) and 1/(qse + qdv) elements by construction). Indeed, provided the

simulation is indistinguishable from a real game, if A never issues an H2-

query that pertains to ê(QIDi
, dIDj

) = ê(P, P )abc, the only way for her to

guess the hidden bit b is to succeed in a chosen-plaintext attack on the

symmetric encryption scheme (E,D). In more details, let Fail denote

the event that B fails and Ask be the event that a H2-query related to

ê(QIDi , dIDj ) is issued at some point. When using the notation pr[A] to

denote the conditional probability Pr[A|¬Fail], we can write

pr[b′ = b] = pr[b′ = b|Ask]pr[Ask] + pr[b′ = b|¬Ask]pr[¬Ask]

≤ pr[Ask] + pr[b′ = b|¬Ask](1− pr[Ask]).

We note that pr[b′ = b|¬Ask] = (ν + 1)/2 is nothing but A’s probability

to succeed in a chosen-plaintext attack against the symmetric scheme

(E,D) for a random key. It then comes that

ǫ+ 1

2
≤
ν + 1

2
+

1− ν

2
pr[Ask] ≤

ν + 1

2
+

1

2
pr[Ask]
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which yields pr[Ask] ≥ ǫ− ν and thus Pr[Ask∧¬Fail] ≥ (ǫ− ν)Pr[¬Fail].

We now have to assess B’s probability of success. We observed that

B fails in the following situations

E1: A asks for the private key associated to IDi or IDj before the

challenge phase.

E2: A does not choose the pair (IDi, IDj) as target identities.

E3: a collision on H3 occurs when B at a Sign/Encrypt query or

at the challenge phase.

We have Pr[E3] ≤ (qse + 1)(qse + qh3)/2
k. We already observe that

Pr[¬E2] =
(qh1

2

)

and we note that ¬E2 implies ¬E1. We thus find

Pr[¬Fail] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3] =
(

1−
(qse + 1)(qse + qh3)

2k

) 1
(qH1

2

)

which yields the announced bound. �

The obtained bound on algorithm B’s advantage is quite loose. We

note that, in terms of tightness, a more efficient (but still loose) reduction

can be achieved under the stronger Decisional Bilinear Diffie-Hellman

assumption recalled in chapter 1. We do not give the details here.

4.3.2. Ciphertext unforgeability

Setup and Keygen are the same in our scheme.

Sign: to sign a message M, Verify: given σ = 〈r, S〉,

(1) Choose x R← Z
∗
q and (1) Compute

compute u = ê(P, P )x u′ = ê(P, S)ê(Ppub, QIDS
)r

(2) Compute r = H3(M,u) (2) Accept the signature if

(3) Compute S = xP − rdIDS
r = H3(M,u′)

The signature on M is σ = 〈r, S〉

Figure 7.4. The Heß-IBS scheme

The ciphertext unforgeability property appears to directly derive

from the existential unforgeability of Heß’s identity-based signature (for

which formal proofs were given in [111, 81, 28]). Indeed, in a ciphertext

(c, r, S), the components (r, S) are a Heß-like signature on the encrypted

message c (though the scheme is different from a basic encrypt-then-sign

composition in that the symmetric encryption is performed using a key

derived from a quantity depending on the same randomness as the one

used in the signature part (r, S)). Forging a ciphertext (c, r, S) in the
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name of an uncorrupted signer’s identity thus looks like producing a

message-signature pair for Heß’s signature.

However, we have to formally establish this fact in the sense of de-

finition 7.3. To do so, we adopt the same proof strategy as Cha and

Cheon [51] who first show that a successful adversary in the game of

definition 7.3 implies a forger in a weaker attack where the adversary is

challenged on a given sender’s identity selected by the challenger at the

outset of the game.

Lemma 7.1 If there is a forger A0 for an adaptively chosen message and

identity attack having advantage ǫ0 over our IBSC scheme when running

in a time t0 and making qhi queries to random oracle hi (i = 1, 2, 3),

then there exists an algorithm A1 for an adaptively chosen message and

given identity attack which has advantage ǫ1 ≥ ǫ0(1 −
1
2k )/qh1 within a

running time t1 ≤ t0. Moreover, A1 performs the same number of key

extraction queries, signature/encryption queries and H2, H3-queries as

A0 does.

Again, the proof is quite similar to Cha and Cheon’s one [51]. In a

second step, lemma 7.2 shows that an adversary in the weaker attack

scenario implies an algorithm solving the Diffie-Hellman problem in the

random oracle model. The proof uses the forking lemma [182, 183].

Lemma 7.2 Let us assume that there is an adaptively chosen message

and given identity attacker F that makes qhi queries to random oracles

Hi (i = 1, 2, 3) and qse queries to the signature/encryption oracle and qdv

calls to the decryption/verification oracle. Assume that, within a time

t, F produces a forgery with probability ǫ ≥ 10(qse + 1)(qse + qh2)/2
k.

Then, there exists an algorithm B that is able to solve the CDHP in G1

within an expected time

t′ ≤ 120686qh3(t+O((qse + qdv)τp))/ǫ

where τp is the cost of a pairing evaluation.

Proof. Algorithm B takes as input a random Diffie-Hellman instance

(A = aP, b = bP ) ∈ G1 ×G1. It starts F on the system-wide public key

Ppub = aP and for a fixed sender’s identity IDS . We first show how it

can provide F with a consistent environment and we then explain how
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it uses the forking lemma to extract abP ∈ G1. Adversarial queries are

dealt with as follows.

H1-queries: for an identity IDi ∈ {0, 1} (we let IDi denote the in-

put of the ith H1-query), B returns bP if IDi = IDS . Otherwise,

it chooses µi
R← Z

∗
q and returns µiP .

H2-queries: for an input ge ∈ G2, B returns the previously de-

fined value if it exists and a random string Re
R← {0, 1}n oth-

erwise.

H3-queries: for an input (c, k): B checks if list L3 contains a

triple (c, k, r). If it does, B returns r. Otherwise, it responds

with a random r R← Zq and inserts (ID, c, k, r) into L3.

Key extraction requests: when F asks for the private key of

IDi (which differs from IDS), B retrieves the value µi for which

H1(IDi) = µiP and returns µiPpub = µi(aP ).

Sign/Encrypt queries: at any time, the attacker A may issue

a signature/encryption request for a plaintext M and a pair

of identities IDA and IDB. If IDA 6= IDS , B knows the pri-

vate key dIDA
corresponding to IDA and can simply run the

Sign/Encrypt algorithm according to its specification. We thus

assume IDA = IDS . Because of the irreflexivity assumption, we

know that IDB 6= IDS and B thus knows the matching private

key dIDB
for IDB. It can thus compute γ = ê(QIDA

, dIDB
) =

ê(bP, dIDB
). It then simulates the Sign/Encrypt algorithm by

choosing r, S R← Z
∗
q × G1 and computing τ = ê(S,QIDB

)γr,

k1 = ê(P, S)ê(Ppub, QIDA
)r. It obtains k2 = H2(τ) through

simulation of H2, computes c = Ek2(M) and backpatches to

set the hash value H3(c, k1) to r (the simulation fails if H3 is

already defined but such an event occurs with negligible prob-

ability taken into account by the bounds given by the forking

lemma). The ciphertext (c, r, S) is then returned to F .

Decrypt/Verify queries: when A requires to decrypt and verify

a ciphertext σ′ = (c′, r′, S′) for identities IDA and IDB, the

simulator B first checks its publicly verifiable validity by calling

oracle H3 on its own. A rejection notification is sent to A if

σ′ does not pass the verification test. Otherwise, we observe

that, if IDB 6= IDS , B can answer the query with probability
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1 as it knows the receiver’s private key dIDB
. We thus assume

IDB = IDS and hence IDA 6= IDS (thanks to the irreflexivity

assumption) which implies that B knows the sender’s private

key dIDA
and can calculate γ = ê(dIDA

, QIDB
) = ê(dIDA

, bP ),

τ ′ = ê(S′, QIDB
)γr

′
, obtain k′2 = H2(τ

′) via simulation of H2

before finishing the job by returning m = Dk′2
(c).

We have showed how to simulate F ’s environment in a chosen-message

and given identity attack scenario. We are ready to apply the forking

lemma as a forged ciphertext (c, r, S) produced by the forger for a re-

ceiver’s identity can be parsed into a signature (r, S) onto the message c.

Let us assume that the attacker F forges a ciphertext (c, r, S) for a recipi-

ent’s identity IDR in a time t with probability ǫ ≥ 10(qse+1)(qse+qh3)/2
k

when making qse signature/encryption requests and qh3 random oracle

calls. As all oracles can be simulated without knowing the private key

of the challenge identity IDS , then there exists a Turing machine F ′ that

uses F to produce two valid signatures (c, k1, r1, S1), (c, k2, r2, S2) for the

same receiver’s identity IDR
2, where k1 = k2 = ê(P, Si)ê(Ppub, QIDS

)ri

for i = 1, 2 and with r1 6= r2, in expected time t′ ≤ 120686qh3t/ǫ.

The verification equation then leads us to write

ê(P, S1)ê(Ppub, QIDS
)r1 = ê(P, S2)ê(Ppub, QIDS

)r2

which implies ê(P, (r2 − r1)
−1(S1 − S2)) = ê(Ppub, QIDS

) = ê(aP, bP ).

The simulator B finally extracts abP = (r2 − r1)
−1(S1 − S2) ∈ G1 as in

the security proofs of Heß’s signature [111, 81, 28]. �

When combined, lemmas 7.1 and 7.2 establish the following theo-

rem.

2Actually, F ′ might produce forgeries for distinct receivers’ identities but the de-

terministic behaviour of F before her crucial H3-query (ensured by identical answers

to previous H3-queries and the identical random tape in the replay phase) implies

that, in the replay phase, the crucial H3-query is made for the same c (and thus the

same IDR) as in the original run. Both forgeries will be related to the same IDR with

identical probabilities to those provided by the probabilistic analysis of the forking

lemma.
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Theorem 7.2 Let us assume that there is an adaptively chosen message

and identity attacker F that makes qhi queries to random oracles Hi

(i = 1, 2, 3) and qse queries to the signature/encryption oracle and qdv

calls to the decryption/verification oracle. Assume that, within a time

t, F produces a forgery with probability ǫ ≥ 10(qse + 1)(qse + qh2)/2
k.

Then, there exists an algorithm B that is able to solve the CDHP in G1

within an expected time

t′ ≤ 120686qh1qh3(t+O((qse + qdv)τp))/
(

ǫ(1−
1

2k
)
)

where τp stands for the cost of a pairing evaluation.

4.4. Limitations of the scheme

We showed how to overcome the security problems encountered in

Malone-Lee’s scheme and our scheme turned out to be the first identity-

based signcryption scheme ensuring chosen-ciphertext security in the

sense of definition 7.2 with the restriction that it only withstands out-

sider attacks (that is, the adversary is not allowed to expose the sender’s

private key under which the challenge ciphertext is created). This is the

first limitation of our scheme. The second and main one is the prob-

lematic non-repudiation procedure for a receiver wishing to prove to

a third party that the sender is the author of a given plaintext. The

problem is that nothing prevents a malicious receiver to forward the

ciphertext (c, r, S) together with a random symmetric key k′2 in an at-

tempt to convince a third party that the sender created the message

m′ = Dk′2
(c). It might be harmless for the sender as m′ is very likely to

be a meaningless message. In order to instantiate the system with a sim-

ple symmetric scheme such as a one-time pad (i.e. a symmetric scheme

Ek2(m) = m⊕k2), special precautions are needed. In this case the sym-

metric key should be obtained as k2 = H2(H2(ê(Ppub, QIDR
))) and the

receiver has to transmit k′2 = H2(τ) to a third party which then checks

that m = DH2(k′2)(c) in the non-repudiation procedure. This modifi-

cation prevents a cheating receiver to convince a judge of the sender’s

authorship for an arbitrarily chosen message she did not send. Indeed,

framing the sender for a chosen message would lead the dishonest re-

ceiver to invert H2.

Another shortcoming is that it does not provide anonymous cipher-

texts in the sense of definition 7.7 as their origin is publicly verifiable.
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The latter feature might be a desirable property in some situations where

firewalls are required to ascertain that encrypted data emanate from

an authorized sender without learning anything about their content as

exemplified in [95]. However, this property complicates the task of a

receiver wishing to convince a third party of the sender’s authorship of

the plaintext. The inherent nature of the scheme therefore leads us to

consider the non-repudiation property for entire ciphertexts instead of

just the plaintext they contain. As a result, senders do not enjoy the

ability to deny being the author of issued ciphertexts as they are in the

scheme of [45].

Actually, the construction proposed by Boyen [45] overcomes all of

the aforementioned limitations present in our scheme. Those improve-

ments are obtained without noticeable additional computational costs

w.r.t. to our scheme. In order to allow the reader to concretely figure

out the relative efficiencies of both schemes, the next subsection provides

a formal description of Boyen’s IBSC.

5. Boyen’s scheme and the Chen-Malone-Lee variant

The formal description given here is the one provided by Boyen in

his Crypto’03 paper and it does not perfectly comply with the syntax

that we set out in definition 7.1. Indeed, the scheme was presented in

[45] as a two-layer design of probabilistic signature generation followed

by a deterministic and randomness re-using encryption algorithm. Such

a description has the advantage of clearly showing how the scheme was

constructed from the Cha-Cheon IBS [51] through a secure randomness

re-use in encryption purposes. Nevertheless, in security proofs of all

IBSC schemes (including Boyen’s one), an attacker can never observe

data transiting from the signature layer to its encryption successor in

the middle of a signature/encryption process: she always queries the

Sign/Encrypt and Decrypt/Verify oracles as monolithic oracles and never

issues inquiries to a signature or a decryption oracle individually. That is

why we prefer using our single-layer formalism captured by definition 7.1

in the forthcoming sections although the present paragraph reproduces

Boyen’s original presentation. After all, the protocol can be described

using our syntax as well (with the difference that the Decrypt/Verify

algorithm would only take as inputs the receiver’s private key and the

ciphertext since the sender’s identity is retrieved along the course of the
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Setup: is the same as in Boneh and Franklin’s IBE except that five hash

functions are needed: H0 : {0, 1}∗ → G1, H1 : {0, 1}n0×G1 → Z
∗
q ,

H2 : G2 → {0, 1}
ℓ, H3 : G2 → Z

∗
q and H4 : G1 → {0, 1}

n0+n1

where ℓ is the size of the representation of G1’s elements, n0 is the

size of plaintexts and n1 the maximum length of identifiers.

Keygen: given ID ∈ {0, 1}n1 and s ∈ Z
∗
q , return dID = sH0(ID) ∈ G1.

Sign: given a message M and the sender’s private key dIDS
,

(1) Pick r R← Z
∗
q , compute U = rQIDS

= rH0(IDS),

h = H1(M,U) ∈ Z
∗
q and V = (r + h)dIDS

∈ G1.

(2) Return 〈M, r, U, V, IDS , dIDS
〉 to algorithm Encrypt.

Encrypt: given 〈M, r, U, V, IDS , dIDS
〉 and the recipient’s identity

QIDR
= H0(IDR) ∈ G1,

(1) Compute ω = ê(dIDS
, QIDR

) and λ = H3(ω) ∈ Z
∗
q .

(2) Set X = λU ∈ G1 and Y = V ⊕H2(ω
λr) ∈ {0, 1}ℓ.

(3) Compute Z = (M ||IDS)⊕H4(V ) ∈ {0, 1}n0+n1 .

(4) Return the final ciphertext 〈X,Y,Z〉.

Decrypt: given 〈X,Y,Z〉 a private key dIDR

(1) Compute V = Y ⊕H2(ê(X, dIDR
)) and then

(M ||IDS) = Z ⊕H4(V ).

(2) Compute QIDS
= H0(IDS) ∈ G1, ω = ê(QIDS

, dIDR
) and then

λ = H3(ω) ∈ Z
∗
q .

(3) Compute U = λ−1X ∈ G1 and return 〈M, IDS , U, V 〉 to the

Verify algorithm.

Verify: given 〈M, IDS , U, V 〉,

(1) Compute QIDS
= H0(IDS) ∈ G1.

(2) Return 1 if ê(P, V ) = ê(Ppub, U + hQIDS
) and 0 otherwise.

Figure 7.5. The Boyen IBSC scheme

decrypt/verify operation). Finally, similarly to other schemes studied

further in this chapter, the monolithic description still enables a stan-

dard IBS on the plaintext to be detached from the ciphertext so that

non-repudiation issues for extracted plaintexts can always be easily set-

tled by third parties.

We observe that the scheme has about the same efficiency as ours:

a single pairing must be computed by the Sign/Encrypt algorithm while

four pairing calculations are needed upon decryption/verification.
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Unlike our scheme, the present one offers message confidentiality

even against insider attacks (that is, security in the strongest sense of

definition 7.2): an attacker exposing a sender’s private key is provably

unable to gain any information about messages that were previously

signed and encrypted by that sender.

Contrary to our scheme, the non-repudiation property is only re-

quired for plaintexts embedded in ciphertexts in accordance with def-

inition 7.4. Although the receiver is convinced that the message was

signed and encrypted by the same person throughout a single signa-

ture/encryption operation (and was not subject to a kind of man-in-the-

middle attack), he/she is unable to convince any third party of this fact:

in accordance with definition 7.5, the sender can always deny having

produced the ciphertext as the receiver might have encrypted a message-

signature pair to himself using his private key.

At PKC’05, Chen and Malone-Lee [58] published a simplification of

Boyen’s construction. Their simplification resides in the Encrypt and De-

crypt algorithms. The former produces ciphertexts of the form 〈U,W,Z〉,

where U = rQIDA
, W = V ⊕H2(ω

r) and Z = (M ||IDS) ⊕H4(V ). The

latter avoids a pairing calculation at step (2) and a scalar multiplication

at step (3). In other words, they removed a layer in the encryption op-

eration and leave ciphertexts and embedded signatures share a common

component U .

A consequence of their modification is that the ciphertext unlinka-

bility property is achieved in a weaker sense than in [45]: an external

observer is able to decide with a better probability than 1/2 whether

or not a given ciphertext encrypts a given message-signature pair since

the ciphertext and the extracted signature share a common component.

Nevertheless, the scheme still satisfies the criterion of definition 7.5 and

the sender can still deny being the author of a specific ciphertext.

6. A fast identity-based signcryption scheme

This section presents the scheme that we discovered with Paulo

Barreto and Noel McCullagh [21] and which we name FastIBSC. It is

obtained by suitably combining the DHI-IBS signature scheme that we

studied in chapter 5 with a simplified version of the Sakai-Kasahara IBE

[189]. We are able to jointly sign and encrypt a plaintext without com-

puting any pairing whereas the decryption/verification algorithm only
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entails two pairing calculations.

Our scheme thus outperforms all previously known IBSC construc-

tions: the signature/encryption algorithm performs more than twice as

fast as in the Chen-Malone-Lee scheme whereas the Decrypt/Verify al-

gorithm gains about 33% of efficiency if both schemes are implemented

using similar parameters and algorithms (see section 6.3 for details). Be-

sides, unlike previous IBSC systems, ours does not require to hash onto

cyclic elliptic curve subgroups. As argued in section 6.3, it thus avoids

problems that might prevent other IBSC schemes to benefit from the

most optimized pairing calculation algorithms for ordinary curves when

they are implemented using asymmetric pairings (unless one accepts to

leave their security proofs rely on somewhat unnatural assumptions).

We actually propose two variants of FastIBSC. The first one works

with named ciphertexts, meaning that encrypted message-signature pairs

have to be accompanied with their sender’s identity. It thus fail to sat-

isfy the property of ciphertext anonymity formalized in definition 7.7.

For applications that would require the latter property, we show a vari-

ant of FastIBSC that enjoys the same efficiency and supports anony-

mous ciphertexts in which the sender’s identity is masked together with

the signed plaintext. The disadvantage of the anonymous variant of

FastIBSC is that its security reductions are significantly more expensive

than those of the original FastIBSC.

To be fair, we mention that FastISBC does not feature all of the prop-

erties of Boyen or Chen-Malone-Lee’s systems. For example, it does not

have the ciphertext unlinkability property (see definition 7.5): given a

correct message-signature pair, it seems infeasible for anyone to use his

private key to embed it into a proper ciphertext addressed to himself.

Nevertheless, we believe that FastIBSC does satisfy the main require-

ments that are desired in real-life applications. Its great efficiency thus

renders it more than interesting for identity-based cryptography.

6.1. The scheme

Our construction consists in using a hash value of the commitment

part of DHI-IBS to hide the plaintext in such a way that a single addi-

tional scalar multi-exponentiation is needed to ensure the confidentiality

of the message in accordance with the model of definition 7.3.

If required, the anonymity property is obtained by scrambling the



6. A FAST IDENTITY-BASED SIGNCRYPTION SCHEME 175

Setup: given k, the PKG chooses asymmetric bilinear map groups

(G1,G2,GT ) of prime order q > 2k and generators Q ∈ G2,

P = ψ(Q) ∈ G1, g = e(P,Q) ∈ GT . It then chooses a mas-

ter key s R← Z
∗
q , a system-wide public key Qpub = sQ ∈ G2 and

hash functions H1 : {0, 1}∗ → Z
∗
q , H2 : {0, 1}∗ × GT → Z

∗
q and

H3 : GT → {0, 1}
n. The public parameters are

params := {q,G1,G2,GT , P,Q, g,Qpub, e, ψ,H1,H2,H3}

Keygen: for an identity ID, the private key is dID = 1
H1(ID)+s

Q ∈ G2.

Sign/Encrypt: given a message M ∈ {0, 1}∗, a receiver’s identity IDR and

a sender’s private key dIDS
,

(1) Pick x R← Z
∗
q , compute r = gx and c = M ⊕H3(r) ∈ {0, 1}

n.

(2) Set h = H2(M, r) ∈ Z
∗
q .

(3) Compute S = (x+ h)ψ(dIDS
).

(4) Compute T = x(H1(IDR)P + ψ(Qpub)).

The ciphertext is σ = 〈c, S, T 〉 ∈ {0, 1}n ×G1 ×G1.

Decrypt/Verify: given σ = 〈c, S, T 〉, and some sender’s identity IDS ,

(1) Compute r = e(T, dIDR
), M = c⊕H3(r), and h = H2(M, r).

(2) Accept the message if r = e(S,H1(IDS)Q + Qpub)g
−h. If

this condition holds, return the message M together with

the signature (h, S) ∈ Z
∗
q ×G1.

Figure 7.6. The FastIBSC scheme

sender’s identity IDS together with the message at step 1 of Sign/Encrypt

in such a way that the recipient retrieves it at the first step of the re-

verse operation. This change does not imply any computational penalty

in practice but induces more expensive security reductions. In order for

the proof to hold, IDS must be appended to the inputs of H2.

6.2. Security results

The signature unforgeability property is proved under the p-Diffie-

Hellman Inversion assumption introduced in chapter 6. The message

confidentiality provably relies on the intractability of the p-Bilinear Diffie-

Hellman Inversion problem introduced in chapter 4. In asymmetric bi-

linear map groups, the latter problem is defined as follows.
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Definition 7.8 ([37, 35]) Let us consider asymmetric bilinear map groups

(G1,G2,GT ) and generators P ∈ G1 and Q ∈ G2. The p-Bilinear

Diffie-Hellman Inversion problem (p-BDHIP) in (G1,G2,GT ) con-

sists in, given 〈P,Q, αQ,α2Q, . . . , αpQ〉, computing e(P,Q)1/α ∈ GT .

The following theorems show the security of the scheme in the ran-

dom oracle model under the same irreflexivity assumption as Boyen’s

scheme [45]: the signature/encryption algorithm is assumed to always

take distinct identities as inputs (in other words, a principal never en-

crypts a message bearing his signature using his own identity).

Theorem 7.3 Assume that an IND-IBSC-CCA adversary A has an ad-

vantage ǫ over our scheme when running in time τ , asking qhi queries to

random oracles Hi (i = 1, 2, 3), qse signature/encryption queries and qdv

queries to the decryption/verification oracle. Then there is an algorithm

B to solve the p-BDHIP for p = qh1 with probability

ǫ′ >
ǫ

qh1(2qh2 + qh3)

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

within a time τ ′ < τ + O(qse + qdv)τp + O(q2h1
)τmult + O(qdvqh2)τexp

where τexp and τmult are respectively the costs of an exponentiation in

GT and a multiplication in G2 whereas τp is the complexity of a pairing

calculation.

Proof. Algorithm B takes as input 〈P,Q, αQ,α2Q, . . . , αpQ〉 and at-

tempts to extract e(P,Q)1/α from its interaction with A.

In a preparation phase, B selects ℓ R← {1, . . . , qh1}, elements Iℓ
R← Z

∗
q

and w1, . . . , wℓ−1, wℓ+1 . . . , wqh1

R← Z
∗
q . For i = 1, . . . , ℓ−1, ℓ+1, . . . , qh1 ,

it computes Ii = Iℓ−wi. As in the technique of [37] and in lemma 5.2, it

sets up generators G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another G2 element

U = αG2 such that it knows qh1 − 1 pairs (wi, Hi = (1/(wi +α))G2) for

i ∈ {1, . . . , qh1}\{ℓ}. The system-wide public key Qpub is chosen as

Qpub = −U − IℓG2 = (−α− Iℓ)G2

so that its (unknown) private key is implicitly set to x = −α− Iℓ ∈ Z
∗
q .

For all i ∈ {1, . . . , qh1}\{ℓ}, we have (Ii,−Hi) = (Ii, (1/(Ii + x))G2).

B then initializes a counter ν to 1 and starts the adversaryA on input

of (G1, G2, Qpub). Throughout the game, we assume that H1-queries are

distinct, that the target identity ID∗
R is submitted to H1 at some point
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and that any query involving an identity comes after a H1-query on that

identity:

- H1-queries (let us call IDν the input of the νth one of such

queries): B answers Iν and increments ν.

- H2-queries on input (M, r): B returns the defined value if it

exists and a random h2
R← Z

∗
q otherwise. To anticipate possible

subsequent Decrypt/Verify requests, B additionally simulates

random oracle H3 on its own to obtain h3 = H3(r) ∈ {0, 1}
n

and stores in list L2 the information

(M, r, h2, c = M ⊕ h3, γ = r · e(G1, G2)
h2).

- H3-queries for an input r ∈ GT : B returns the previously as-

signed value if it exists and a random h3
R← {0, 1}n otherwise.

In the latter case, the input r and the response h3 are stored

in a list L3.

- Keygen queries on an input IDν : if ν = ℓ, then the simula-

tor fails. Otherwise, it knows that H1(IDν) = Iν and returns

−Hν = (1/(Iν + x))G2 ∈ G2.

- Sign/Encrypt queries for a plaintextM and identities (IDS , IDR) =

(IDµ, IDν) for µ, ν ∈ {1, . . . , qh1}: we observe that, if µ 6= ℓ, B

knows the sender’s private key dIDµ = −Hµ and can answer

the query by following the specification of Sign/Encrypt. We

thus assume µ = ℓ and hence ν 6= ℓ by the irreflexivity as-

sumption. Observe that B knows the receiver’s private key

dIDν = −Hν by construction. The difficulty is to find a random

triple (S, T, h) ∈ G1 ×G1 × Z
∗
q for which

(3) e(T, dIDν ) = e(S,QIDℓ
)e(G1, G2)

−h

where QIDℓ
= IℓG2 + Qpub. To do so, B randomly chooses

elements t, h R← Z
∗
q and computes S = tψ(dIDν ) = −tψ(Hν),

T = tψ(QIDℓ
) − hψ(QIDν ) where QIDν = IνG2 + Qpub in order

to obtain the desired equality

r = e(T, dIDν ) = e(S,QIDℓ
)e(G1, G2)

−h

= e(ψ(dIDν ), QIDℓ
)te(G1, G2)

−h



178 7. JOINT SIGNATURE AND ENCRYPTION IN ID-PKC

before patching the hash value H2(M, r) to h (B fails if H2

is already defined but this happens with a probability smaller

than (qse + qh2)/2
k). The ciphertext σ = 〈M ⊕H3(r), S, T 〉 is

returned.

- Decrypt/Verify queries on a ciphertext σ = 〈c, S, T 〉 for iden-

tities (IDS , IDR) = (IDµ, IDν): we assume that ν = ℓ (and

hence µ 6= ℓ by the irreflexivity assumption), because other-

wise B knows the receiver’s private key dIDν = −Hν and can

normally run the Decrypt/Verify algorithm. Since µ 6= ℓ, B has

the sender’s private key dIDµ and also knows that, for all valid

ciphertexts, logdIDµ
(ψ−1(S) − hdIDµ) = logψ(QIDν )(T ), where

h = H2(M, r) is the hash value obtained in the Sign/Encrypt

algorithm and QIDν = IνG2+Qpub. Hence, we have the relation

(4) e(T, dIDµ) = e(ψ(QIDν ), ψ−1(S)− hdIDµ)

which yields e(T, dIDµ) = e(ψ(QIDν ), ψ−1(S))e(ψ(QIDν ), dIDµ)−h.

We observe that the latter equality can be tested without in-

verting ψ as e(ψ(QIDν ), ψ−1(S)) = e(S,QIDν ). The query is

thus handled by computing γ = e(S,QIDµ), where QIDµ =

IµG2 + Qpub, and searching through list L2 for records of the

form (Mi, ri, h2,i, c, γ) indexed by i ∈ {1, . . . , qh2}. If none is

found, σ is rejected. Otherwise, each one of them is further

examined: for the corresponding indexes, B checks if

(5) e(T, dIDµ)/e(S,QIDν ) = e(ψ(QIDν ), dIDµ)−h2,i

(the pairings are computed only once and at most qh2 expo-

nentiations are needed), meaning that (4) is satisfied. If the

unique i ∈ {1, . . . , qh2} satisfying (5) is detected, the matching

pair (Mi, 〈h2,i, S〉) is returned. Otherwise, σ is rejected. Over-

all, an inappropriate rejection occurs with probability smaller

than qdv/2
k across the whole game.

At the challenge phase, A outputs messages (M0,M1) and identities

(IDS , IDR) for which she never obtained IDR’s private key. If IDR 6= IDℓ,

B aborts. Otherwise, it picks ξ R← Z
∗
q , c

R← {0, 1}n and S R← G1 to return

the challenge σ∗ = 〈c, S, T 〉 where T = −ξG1 ∈ G1. If we define ρ = ξ/α

and since x = −α− Iℓ, we can check that

T = −ξG1 = −αρG1 = (Iℓ + x)ρG1 = ρIℓG1 + ρψ(Qpub).
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A cannot recognize that σ∗ is not a proper ciphertext unless she queries

H2 or H3 on e(G1, G2)
ρ. Along the guess stage, her view is simulated

as before and her eventual output is ignored. Standard arguments can

show that a successful A is very likely to query H2 or H3 on the input

e(G1, G2)
ρ if the simulation is indistinguishable from a real attack envi-

ronment.

To produce a result, B fetches a random record (M, r, h2, c, γ) or

(r, .) from the lists L2 or L3. With probability 1/(2qh2 + qh3) (as L3

contains no more than qh2 + qh3 records by construction), the chosen

record will contain the right element r = e(G1, G2)
ρ = e(P,Q)f(α)2ξ/α,

where f(z) =
∑p−1

i=0 ciz
i is the polynomial for which G2 = f(α)Q. The

p-BDHIP solution can be extracted by noting that, if γ∗ = e(P,Q)1/α,

then

e(G1, G2)
1/α = γ∗(c20)e

(

p−2
∑

i=0

ci+1(α
iP ), c0Q

)

e
(

G1,

p−2
∑

j=0

cj+1(α
j)Q
)

.

In an analysis of B’s advantage, we note that it only fails in providing

a consistent simulation because one of the following independent events:

E1: A does not choose to be challenged on IDℓ.

E2: a key extraction query is made on IDℓ.

E3: B aborts in a Sign/Encrypt query because of a collision on H2.

E4: B rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = 1/qh1 and we know that ¬E1 implies ¬E2.

We also already observed that Pr[E3] ≤ qse(qse + qh2)/2
k and Pr[E4] ≤

qdv/2
k. We thus find that

Pr[¬E1 ∧ ¬E3 ∧ ¬E4] ≥
1

qh1

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

.

We obtain the announced bound by noting that B selects the correct ele-

ment from L2 or L3 with probability 1/(2qh2 +qh3). Its workload is dom-

inated by O(q2h1
) multiplications in the preparation phase, O(qse + qdv)

pairing calculations and O(qdvqh2) exponentiations in GT in its emula-

tion of the Sign/Encrypt and Decrypt/Verify oracles. �

Theorem 7.4 Assume there exists an ESUF-IBSC-CMA attacker A

that makes qhi queries to random oracles Hi (i = 1, 2, 3), qse signature/

encryption queries and qdv queries to the decryption/verification oracle.

Assume also that, within a time τ , A produces a forgery with probability
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ǫ ≥ 10(qse + 1)(qse + qh2)/2
k. Then, there is an algorithm B that is able

to solve the p-DHIP for p = qh1 in expected time

τ ′ ≤ 120686qh1qh2

τ +O((qse + qdv)τp) + qdvqh2τexp
ǫ(1− 1/2k)(1− q/2k)

+O(q2τmult)

where τmult, τexp and τp denote the same quantities as in theorem 7.3.

Proof. The proof is almost the same as that of theorem 5.1. Namely,

it shows that a forger in the ESUF-IBSC-CMA game implies a forger in

a chosen-message and given identity attack. Using the forking lemma

[182, 183], the latter is in turn shown to imply an algorithm to solve

the p-Diffie-Hellman Inversion problem. More precisely, queries to the

Sign/Encrypt and Decrypt/Verify oracles are answered as in the proof of

theorem 7.3 and, at the outset of the game, the simulator chooses public

parameters in such a way that it can extract private keys associated to

any identity but the one which is given as a challenge to the adversary.

By doing so, thanks to the irreflexivity assumption, it is able to extract

clear message-signature pairs from ciphertexts produced by the forger

(as it knows the private key of the receiving identity ID∗
R).

�

We now restate theorem 7.3 for the variant of our scheme with anony-

mous ciphertexts. The simulator’s worst-case running time is affected by

the fact that, when handling Decrypt/Verify requests, senders’ identities

are not known in advance. The reduction involves a number of pairing

calculations which is quadratic in the number of adversarial queries.

Theorem 7.5 Assume that an IND-IBSC-CCA adversary A has an ad-

vantage ǫ over our scheme with anonymous ciphertexts when running in

time τ , asking qhi queries to random oracles Hi (i = 1, 2, 3), qse sig-

nature/encryption queries and qdv queries to the decryption/verification

oracle. Then there is an algorithm B to solve the p-BDHIP for p = qh1

with probability

ǫ′ >
ǫ

qh1(2qh2 + qh3)

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

within a time τ ′ < τ + O(qse + qdvqh2)τp + O(q2h1
)τmult + O(qdvqh2)τexp

where τexp, τmult and τp denote the same quantities as in theorem 7.3.
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Proof. The simulator is the same as in theorem 7.3 with the following

differences (recall that senders’ identities are provided as inputs to H2).

- H2-queries on input (IDS ,M, r): B returns the previously de-

fined value if it exists and a random h2
R← Z

∗
q otherwise. To an-

ticipate subsequent Decrypt/Verify requests, B simulates oracle

H3 to obtain h3 = H3(r) ∈ {0, 1}
n+n0 (where n0 is the max-

imum length of identity strings) and stores (IDS ,M, r, h2, c =

(M‖IDS)⊕ h3, γ = r · e(G1, G2)
h2) in list L2.

- Decrypt/Verify queries: given a ciphertext σ = 〈c, S, T 〉 and

a receiver’s identity IDR = IDν , we assume that ν = ℓ be-

cause otherwise B knows the receiver’s private key. The sim-

ulator B does not know the sender’s identity IDS but knows

that IDS 6= IDν . It also knows that, for the private key dIDS
,

logdIDS
(ψ−1(S)− hdIDS

) = logψ(QIDν )(T ), and hence

(6) e(T, dIDS
) = e(ψ(QIDν ), ψ−1(S)− hdIDS

),

where h = H2(IDS ,M, r) is the hash value obtained in the

Sign/ Encrypt algorithm and QIDν = IνG2 + Qpub. The query

is handled by searching through list L2 for records of the form

(IDS,i,Mi, ri, h2,i, c, γi) indexed by i ∈ {1, . . . , qh2}. If none is

found, the ciphertext is rejected. Otherwise, each one of these

tuples for which IDS,i 6= IDν is further examined by checking

whether γi = e(S,H1(IDS,i)Q+Qpub) and

e(T, dIDS,i
)/e(S,QIDν ) = e(ψ(QIDν ), dIDS,i

)−h2,i(7)

(at most 3qh2 + 1 pairings and qh2 exponentiations must be

computed), meaning that equation (6) is satisfied and that the

ciphertext contains a valid message signature pair if both re-

lations hold. If B detects an index i ∈ {1, . . . , qh2} satisfying

them, the matching triple (Mi, 〈h2,i, S〉, IDS,i) is returned. Oth-

erwise, σ is rejected and such a wrong rejection again occurs

with an overall probability smaller than qdv/2
k.

�

Theorem 7.4 can be similarly restated as its reduction cost is affected in

the same way.
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The ciphertext anonymity property of the anonymized version of

FastIBSC remains to be formally established by the following theorem.

Theorem 7.6 Assume that an ANON-IBSC-CCA adversary A has an

advantage ǫ over the anonymous variant of our scheme when running

in time τ , asking qhi queries to random oracles Hi (i = 1, 2, 3), qse sig-

nature/encryption queries and qdv queries to the decryption/verification

oracle. Then there is an algorithm B to solve the p-BDHIP for p = qh1

with probability

ǫ′ >
4ǫ

3qh1(2qh2 + qh3)

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

within a time τ ′ < τ + O(qse + qdvqh2)τp + O(q2h1
)τmult + O(qdvqh2)τexp

where τexp, τmult and τp denote the same quantities as in theorems 7.5.

Proof. Algorithm B takes as input 〈P,Q, αQ,α2Q, . . . , αpQ〉 and at-

tempts to find e(P,Q)1/α using A.

In a preparation phase, B selects ℓ R← {1, . . . , qh1}, elements Iℓ
R← Z

∗
q

and w1, . . . , wℓ−1, wℓ+1 . . . , wqh1

R← Z
∗
q . For i = 1, . . . , ℓ−1, ℓ+1, . . . , qh1 ,

it computes Ii = Iℓ−wi. As in the proof of theorem 7.3, it chooses gen-

erators G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another G2 element U = αG2

such that it knows qh1 − 1 pairs (wi, Hi = (1/(wi + α))G2) for i ∈

{1, . . . , qh1}\{ℓ}. The public key Qpub is chosen as

Qpub = −U − IℓG2 = (−α− Iℓ)G2

so that its private key is implicitly set to x = −α− Iℓ ∈ Z
∗
q .

B initializes a counter ν to 1 and starts A on input of (G1, G2, Qpub).

We again assume that H1-queries are distinct, that the target identities

ID∗
R,0, ID

∗
R,1 are submitted to H1 at some point and that any query in-

volving an identity comes after a H1-query on it. All oracles are simu-

lated as in the proof of theorem 7.5.

At the challenge phase, A outputs two pairs of identities (ID∗
S,0, ID

∗
S,1)

and (ID∗
R,0, ID

∗
R,1) among which ID∗

R,0 and ID∗
R,1 were never submitted to

the key extraction oracle. If ID∗
R,0, ID

∗
R,1 6= IDℓ, B aborts. Otherwise, we

may assume w.l.o.g. that ID∗
R,0 = IDℓ (the case ID∗

R,1 = Wℓ is treated in

the same way). It picks ξ R← Z
∗
q , S

R← G1 and c R← {0, 1}n to return the

challenge σ∗ = 〈c, S, T 〉 where T = −ξG1 ∈ G1. If we define ρ = ξ/α

and since x = −α− Iℓ, we can check that

T = −ξG1 = −αρG1 = (Iℓ + x)ρG1 = ρIℓG1 + ρψ(Qpub).
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A cannot recognize that σ∗ is not a proper ciphertext unless she queries

H2 on either

r∗0 = e
(

T,
1

x+H1(ID
∗
R,0)

G2

)

= e(G1, G2)
ρ

or r∗1 = e
(

T,
1

x+H1(ID
∗
R,1)

G2

)

.

Along the second stage, her view is simulated as before and her eventual

output is ignored. Standard arguments can show that a successful A is

very likely to query H2 on either r∗0 or r∗1 if the simulation is indistin-

guishable from a real attack environment. Let AskH2 denote this event.

In a real attack, we have

Pr[A wins] ≤ Pr[A wins|¬AskH2]Pr[¬AskH2] + Pr[AskH2].

Clearly, Pr[A wins|¬AskH2] = 1/4 and Pr[A wins] ≤ 1/4+(3/4)Pr[AskH2].

On the other hand, we have Pr[A wins] = ǫ + 1/4. It comes that

Pr[AskH2] ≥ 4ǫ/3. Hence, provided the simulation is consistent, A

issues a H2-query on either r∗0 or r∗1 at some point of the game with

probability at least 4ǫ/3. With probability 2ǫ/3, a H2-query involving

r∗0 = e(G1, G2)
ρ will thus be issued.

To produce a result, B picks a random record from L2 or L3. With

probability 1/qh2 , the chosen record contains the right element r∗0 =

e(G1, G2)
ρ = e(P,Q)f(α)2ξ/α, where f(z) =

∑p−1
i=0 ciz

i is the polynomial

for which G2 = f(α)Q. The p-BDHIP solution can be extracted by

noting that, if γ∗ = e(P,Q)1/α, then

e(G1, G2)
1/α = γ∗(c20)e

(

p−2
∑

i=0

ci+1(α
iP ), c0Q

)

e
(

G1,

p−2
∑

j=0

cj+1(α
j)Q
)

.

In an analysis of B’s advantage, we note that it only fails in providing

a consistent simulation because one of the following independent events:

E1: ID∗
R,0, ID

∗
R,1 6= IDℓ.

E2: a key extraction query is made on IDℓ.

E3: B aborts in a Sign/Encrypt query because of a collision on H2.

E4: B rejects a valid ciphertext at some point of the game.

We clearly have Pr[¬E1] = (qh1 − 1)/
(qh1

2

)

= 2/qh1 and we know that

¬E1 implies ¬E2. As in the proof of theorem 7.3, we have Pr[E3] ≤

qse(qse + qh2)/2
k and Pr[E4] ≤ qdv/2

k. We thus find that
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Pr[¬E1 ∧ ¬E3 ∧ ¬E4] ≥
2

qh1

(

1− qse
qse + qh2

2k

)

(

1−
qdv
2k

)

.

�

6.3. Efficiency discussions and comparisons

In [203], Smart and Vercauteren pointed out problems that arise

when several pairing-based protocols are implemented with asymmet-

ric pairings. They showed the difficulty of finding groups G2 allowing

the use of the most efficient pairing calculation techniques for ordinary

curves [22] if arbitrary strings should be efficiently hashed onto them

and an efficient isomorphism ψ : G2 → G1 must be available at the same

time. As a consequence, several protocols have to be implemented with

groups for which no efficient isomorphism ψ : G2 → G1 is computable

and their security eventually has to rely on somewhat unnatural assump-

tions involving an oracle that computes groups isomorphisms between

G2 and G1.

Except [189] that has no security proof (and actually has several

known security problems [144]), all known identity-based signcryption

schemes would require to hash onto G2 if they were instantiated with

asymmetric pairings. Our scheme avoids this problem since it does not

require to hash onto a cyclic group. It thus more easily benefits from

optimized pairing calculation algorithms. For example, section 4 of [203]

yields an example of group G2 for which techniques of [22] can be used

and where efficient isomorphisms are available.

We now assess the comparative efficiency of several identity-based

signcryption schemes, implemented in accordance with their original de-

scriptions. Table 5.1 summarises the number of relevant basic operations

underlying several identity-based signcryption and signature schemes,

namely, GT exponentiations, scalar point multiplications, and pairing

evaluations, and compares the processing times (in milliseconds) ob-

served by Paulo Barreto for a supersingular curve of embedding degree

k = 6 over F397 , using implementations written in C++ and run on an

Athlon XP 2 GHz. Subtleties in the algorithms determine somewhat

different running times even when the operation counts for those algo-

rithms are equal. We see from these results that our scheme even beats

the fastest other ones. The Sign/Encrypt algorithm is more than twice

as fast as in the Chen-Malone-Lee scheme.
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Sign/Encrypt Decrypt/Verify

IBSC schemes exp mul pairings time (ms) exp mul pairings time (ms)

Boyen [45] 1 3 1† 11.09 2 4† 18.44

Chow et al.¶ [64] 2 2⋆ 10.24 1 4⋆ 17.65

NewIBSC¶♠ [131] 2 2⋆ 10.24 1 4⋆ 17.65

Nalla-Reddy♦⊲⊳ [161] 1 2 1† 10.06 1 3† 13.44

Malone-Lee♣ [139] 3 1‡ 7.03 1 3 13.44

Chen-Malone-Lee [58] 3 1‡ 7.03 1 3 13.44

Sakai-Kasahara♣ [189] 2 1+1§ 6.56 1 2 12.35

FastIBSC 1 2 2.65 1 2 9.06

(†) One pairing is precomputable, incurring for each user a storage cost of one GT element
for each other user in the system.
(‡) One pairing is precomputable, incurring for each user a storage cost of one GT element
for each other user in the system, plus one GT exponentiation.
(⋆) Two pairings are precomputable, incurring for each user a storage cost of one GT
element for each user in the system, plus two GT exponentiations.
(§) One of the scalar multiplications is done in 〈Q〉 rather than 〈P 〉.
(¶) Universally verifiable scheme (i.e. supports public ciphertext validation).
(♣) These schemes suffer from security problems as mentioned in [144] and in this chapter.
(♠) This scheme does not provide insider-security for the message-confidentiality criterion.
(♦) This scheme has no security proof.
(⊲⊳) This construction can only authenticate messages from the receiver’s point of view.

Table 7.1. Efficiency comparisons

7. Conclusions

This chapter analyzed several identity-based protocols jointly per-

forming signature and encryption. We pinpointed a flaw in the original

scheme proposed by Malone-Lee and we showed a (not entirely satisfy-

ing) method to repair it.

We also proposed a new scheme that employs the key generation

technique of Sakai and Kasahara [189] and which is constructed on our

new efficient identity-based signature described in chapter 5. The new

scheme is showed to outperform all previously known systems providing

combined encryption and authentication in identity-based cryptography.
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CHAPTER 8

Joint Signature and Encryption with

Traditional Public Keys

Abstract. We propose here three new constructions of authenti-

cated public key encryption schemes based on discrete logarithm

related assumptions. Each of those constructions has its own

advantages and disadvantages. Two of them are extensions of

pairing-based digital signature schemes. The third one can be im-

plemented with general groups and is constructed on the Schnorr

signature. We consider for them stringent security models and

give security proofs in the random oracle model under plausible

(although sometimes very recently suggested) computational as-

sumptions.

1. Combined public key encryption and authentication

As discussed in the previous chapter, many cryptographic applica-

tions, such as secure e-mail or secure channel establishment protocols,

need the requirements of confidentiality and authentication to be simul-

taneously fulfilled. To achieve them in the asymmetric setting, the con-

cept of public key authenticated encryption, or ’signcryption’, was intro-

duced by Zheng in 1997 [228]. This kind of primitive aims at efficiently

performing encryption and signature in a single logical step in order

to obtain confidentiality, integrity, authentication and non-repudiation.

We recall that the basic encrypt-then-sign composition is generally in-

secure (except for some particular constructions such as [8] or [117] or if

special precautions are taken as in [9]) against chosen-ciphertext attacks

as well as the encrypt-and-sign approach. The drawback of most of the

latter compositions is to expand the final ciphertext’s size and increase

the sender and receiver’s computing time.

Five years after Zheng’s introducing paper, his original discrete log-

arithm related signcryption proposal [228] was proved secure [15] by

189
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Baek et al. who described a formal security model in a multi-user set-

ting. In [204], Steinfeld and Zheng proposed another scheme for which

the unforgeability of ciphertexts relies on the intractability of the inte-

ger factoring problem but they provided no proof of chosen-ciphertext

security.

The previously cited schemes have the shortcoming not to offer easy

non-repudiation of ciphertexts: a recipient cannot convince a third party

that a plaintext actually emanates from its sender. A method was pro-

posed in [18] to overcome this limitation but it was shown [196] to leak

information on the plaintext as another scheme described in [221]. This

weakness can easily be fixed by slightly modifying the schemes as sug-

gested by Malone-Lee in [138]. Unfortunately, even such a modification

is not sufficient to render the schemes robust against insider attacks dis-

cussed by An, Dodis and Rabin [9] for the confidentiality criterion: a

chosen-ciphertext attacker can learn some user’s private key and break

the confidentiality of messages previously signcrypted by that user.

Actually, formal security notions against outside attackers were first

considered by An in [8] where general composition methods for asym-

metric encryption and digital signatures are analyzed. The first secu-

rity models capturing the scenario of a network of multiple users where

attackers may be members of the network were introduced in [9] where

the security of generic compositions of signature and encryption schemes

was analyzed. In the same paper, they addressed the approach consist-

ing in performing signature and encryption in parallel: a plaintext is

first transformed into a commitment/de-commitment pair (c, d) in such

a way that c reveals no information about m while the pair (c, d) allows

recovering m. The signer can then jointly sign c and encrypt d in par-

allel using appropriate encryption and signature schemes. The reverse

operation is also achieved by the recipient in a parallel fashion: the sig-

nature on c is verified while the decryption reveals d and the pair (c, d)

is finally used to recover the plaintext.

After the work of An et al. [9], several researchers attempted to

devise schemes providing a better efficiency than sequential composi-

tions. A first secure discrete logarithm related signcryption scheme in

an appropriate model of chosen-ciphertext security was described in [196]

but no proof of unforgeability was given for it. An RSA-based scheme

was described by Malone-Lee and Mao [140] who provided proofs for
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unforgeability under chosen-message attacks and chosen-ciphertext se-

curity but they only considered the security in a two-user setting rather

than the more realistic multi-user setting. Furthermore, the security of

that scheme is only loosely related to the RSA assumption. However,

none of the aforementioned schemes is provably secure against insider

attacks: in some of them, an attacker learning some user’s private key

can even recover all the messages previously sent by that user.

The parallel signcryption approach of An et al. [9] was further in-

vestigated by Pieprzyk and Pointcheval [179] who proposed to use a

commitment scheme based on a (2, 2)-Shamir secret sharing of an ap-

propriately salted plaintext: the first resulting share s1, which does not

individually reveal any information onm, is used as a commitment and is

signed while the second share s2 is encrypted as a de-commitment. That

method also provides a construction allowing to integrate any one-way

encryption system (such as the basic RSA) with a weakly secure sig-

nature (a non-universally forgeable signature) into a CCA2-secure and

existentially unforgeable scheme.

Dodis et al. [79] recently proposed other possibly parallel signcryp-

tion techniques, one of which which can be viewed as a generalization of

existing probabilistic paddings such as OAEP, OAEP+ or PSS-R. They

showed that their constructions allow optimal exact security as well as

compatibility with PKCS standards and have other interesting proper-

ties. In fact, the latter schemes are probably the most practical ones

among all solutions based on trapdoor functions.

This chapter summarizes three constructions that we proposed and

for which we gave security proofs under discrete logarithm related as-

sumptions. Two of these constructions are built on pairing-based sig-

nature schemes and can be instantiated with either symmetric or asym-

metric pairings. The first one, published at PKC’04 [132], enjoys tight

security reductions from a fairly standard variant of the Diffie-Hellman

problem in groups equipped with bilinear mappings. It is proved to sat-

isfy strong security notions (namely, notions of chosen-ciphertext secu-

rity and ‘ciphertext strong unforgeability’ even against insider attacks)

and provide anonymous ciphertexts (i.e. a ciphertext contains no infor-

mation identifying its originator nor its recipient). Unfortunately, this

Diffie-Hellman based scheme, that is obtained from Boneh et al.’s short

signature [43] in a randomized version, offers very few computational
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savings w.r.t. sequential compositions: it only spares one elliptic curve

scalar multiplication on the receiver’s side as well as a 160-bit bandwidth

overhead in the ciphertext size when compared to a sequential composi-

tion of the BLS signature with an ElGamal encryption scheme padded

with either of the Fujisaki-Okamoto [89, 88] conversions.

We thus subsequently proposed [135] a more efficient Diffie-Hellman

based signcryption solution that satisfies the same strong security re-

quirements: this second scheme has essentially the same cost as a mere

ElGamal encryption on the sender’s side while only one pairing evalu-

ation and three exponentiations are required for the simultaneous de-

cryption/verification tasks. This improves the efficiency of the signa-

ture/encryption operation of our first scheme by about 33% while the de-

cryption/verification algorithm is almost twice as fast. The price to pay

for such improvements is a security that relies on stronger assumptions

than our original Diffie-Hellman based scheme: the chosen-ciphertext se-

curity is proved under the p-Diffie-Hellman Inversion assumption already

considered in [37], [35] and [227] while the unforgeability property relies

on the p-Strong Diffie-Hellman assumption introduced by Boneh and

Boyen [37]. This second construction additionally features ciphertexts

from which short signatures can be extracted if the system is instanti-

ated using suitable ordinary curves.

We finally describe a third construction which is not based on pair-

ings but rather on the Schnorr signature [191]. Its advantage is to be

compatible with much more general groups than those equipped with

pairings. It is also much more efficient for receivers who can extract stan-

dard Schnorr signatures from ciphertexts. The disadvantage of the latter

construction is an inefficient reduction under a rather non-standard as-

sumption in the proof of unforgeability.

Before describing our schemes, this chapter will first explain the mo-

tivations for the design of signcryption schemes and the study of sign-

cryption as a cryptographic primitive. It will then explain the formal

syntax of our schemes and the security models that will be used to ana-

lyze their security. The description of our schemes will follow in sections

4, 5 and 6 where security proofs in the random oracle model will also be

given.
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2. Motivations for the design of signcryption schemes

The main motivation of Zheng to study signcryption as a separate

primitive was a gain in efficiency. It was indeed observed in [228] that

confidentiality and authentication might be achieved significantly more

cheaply than by combining encryption and signature tools. But effi-

ciency improvements are far from being the only reason to study this

kind of public key primitive. Several recent papers such as [9] or [196]

showed that, even given digital signatures and public key encryption

schemes that are each secure in their model, it was not trivial to com-

bine them into a secure cryptographic scheme providing both authenti-

cation and privacy. Indeed, the trivial solution of appending a signature

on the plaintext to a ciphertext (which was sometimes called “encrypt-

and-sign” in the literature) is insecure in an indistinguishability scenario:

given a challenge ciphertext

C = 〈SigskS
(m),EncpkR

(m)〉

where skS and pkR respectively denote the sender’s private key and the

receiver’s public key and Sigsk(.) and Encpk(.) are respectively signature

and encryption algorithms, an adversary can easily decide whether C is

a signature/encryption of two messages m0 or m1 by simply verifying

the signature on both m0 or m1.

Another approach is called “encrypt-then-sign” and consists of ap-

pending a signature on the ciphertext so that messages sequentially en-

crypted and signed have the form

C = 〈SigskS
(EncpkR

(m)),EncpkR
(m), IDS , IDR〉

where IDS and IDR are identities of the sender and receiver. The latter

approach suffers from a kind of “identity fraud attack” which prevents it

from being secure in a chosen-ciphertext scenario in the multi-user set-

ting unless special precautions are taken (such as encrypting the sender’s

identity along with the plaintext and signing the receiver’s identity to-

gether with the second part of the ciphertext) as explained in [9]. In-

deed, anyone intercepting the ciphertext can simply replace the signature

SigskS
(EncpkR

(m)) with his own signature Sigsk′S
(EncpkR

(m)) and obtain

another signcryption

C = 〈Sigsk′S
(EncpkR

(m)),EncpkR
(m), ID′

S , IDR〉
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of the same message and thus break the non-malleability of the scheme

in some sense. It is unclear whether the latter form of malleability is

actually damaging in practice, but this composition suffers from an ad-

ditional disadvantage: it might complicate the task of a receiver wishing

to convince a third party that a ciphertext actually emanates from the

receiver.

The reversed-order sequential composition called “Sign-then-encrypt”

does not suffer from the latter non-repudiation issue. It ends up with

signed and encrypted messages of the form

C = 〈EncpkR
(m,SigskS

(m, IDR), IDS), IDS , IDR〉.

It was shown in [9] how to ensure privacy and authentication against

insider-attacks (that is adversaries have access to the receiver’s pri-

vate key in the game modelling the unforgeability property and to the

sender’s private key in the game modelling privacy) in a suitable model.

Including both parties’ identities at crucial points of the process is im-

portant to prevent identity fraud attacks as discussed by An, Dodis and

Rabin [9].

The same authors also introduced a third approach named “Commit-

then-encrypt-and-sign” which is to first split a message into a commit-

ment and a matching de-commitment in such a way that the former can

be signed while the latter is encrypted in parallel. Ciphertexts have the

shape

C = 〈SigskS
(c, IDR),EncpkR

(d, IDS), IDS , IDR〉

where c is a commitment to the plaintext and d is the corresponding

de-commitment enabling m to be retrieved from the pair (c, d). This

method was shown to satisfy the security model of [9] provided the em-

ployed commitment scheme satisfies some reasonable security require-

ment. The “Commit-then-encrypt-and-sign” approach has the advan-

tage to be compatible with a parallel implementation of the signature

and encryption operations. The length of the whole signcryption op-

eration may thus be reduced to the maximal time-complexity of the

encryption and signature subroutines. Following [9], the idea of ’parallel

signcryption’ was further investigated by Pierpzyk and Pointcheval [179]

and more recently by Dodis et al. [79] who devised efficient paddings

for joint signature and encryption using trapdoor permutations and a

special kind of commitment schemes.
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The paper by An, Dodis and Rabin [9] was actually the first one

to address the security of modular approaches to construct signcryption

protocols from secure underlying encryption and signature schemes. In-

dependently of [15], they were the first ones to consider formal security

models for signcryption schemes in the multi-user setting. In the present

chapter, we slightly depart from those security models because we also

focus on ensuring the anonymity of ciphertexts: as mentioned in the in-

troduction of this chapter, we want to avoid transmitting the identities

of corresponding parties. We shall thus employ a security model that is

tailored to an anonymous setting.

3. Our model of signcryption schemes

The present section first explains the interface of the various algo-

rithms upon which our signcryption schemes are made. It then considers

formal models of security which are slightly different from other ones

given in [15], [9] or [138].

3.1. Formal components

Definition 8.1 A signcryption scheme is made of four algorithms which

are the following.

Common-Keygen: is a probabilistic algorithm that takes as input

a security parameter to output public information I that will

be used by all users of the scheme. Such a public information

may include the description of plaintext and ciphertext spaces,

public and private key spaces, a set of hash functions employed

in the scheme, etc. This algorithm may be run either by an

authority or by a designated user.

Keygen: is a probabilistic key generation algorithm independently

run by each user on input of the common public information I

to produce a key pair (sk, pk).

Sign/Encrypt: is a probabilistic algorithm that takes as input the

common public key I, a plaintext M , the recipient’s public key

pkR, and the sender’s private key skS, and outputs a ciphertext

σ = Sign/Encrypt(M, skS , pkR).

Decrypt/Verify: is a deterministic algorithm that takes as input

a ciphertext σ, public information I and the receiver’s private
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key sk to return a plaintext M together with a sender’s public

key pkS and auxiliary non-repudiation information (allowing

to convince a third party of the origin of the message) or a

distinguished symbol ⊥ if σ does not properly decrypt into a

message accompanied by suitable authenticating information for

the sender.

For consistency, we require that if σ = Sign/Encrypt(m, skS , pkR), then

the output of the Decrypt/Verify(.) for the pair (σ, skR) contains a plain-

text m, the public key pkS and additional information allowing the re-

ceiver to convince a third party that the plaintext actually emanates from

the sender.

Our model considers schemes having the same interface as a sequen-

tial composition in the “sign-then-encrypt” order where the sender’s

public key is encrypted together with the plaintext. The receiver is not

assumed to know in advance who the sender is. The latter’s identity

is retrieved in the decryption/verification process. This difference with

models of [9], [15], [79] or [138] is motivated by the compatibility with

anonymous ciphertexts. We stress here that we do not claim the above

model to be more relevant than those of [9, 15, 138, 79]. We just say

that it might be more appropriate for specific applications where it is of

interest to have anonymous ciphertexts.

We have to mention that Boyen’s work [45] was the first one to

extend the notion of key privacy [25] to the signcryption setting. Some-

what surprisingly, it was only considered in the identity based setting.

A similar notion was never formalized for traditional public keys. The

models described in the next section thus aim at filling this gap.

3.2. Security notions

We recall the two usual security notions: the security against cho-

sen ciphertext attacks and the unforgeability against chosen-message at-

tacks. In the former, we consider a multi-user security model as already

done in [9, 15, 79, 179] and [45] to let the adversary obtain ciphertexts

created with the attacked private key under arbitrary public keys. We

also consider “inside attackers” that are allowed to choose the private key

under which the challenge is signcrypted: for confidentiality purposes,
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we require the owner of a private key to be unable to find any infor-

mation on a ciphertext created with that key without knowing which

random coins were used to produce that ciphertext. This further allows

us to show that an attacker stealing a private key does not threaten the

confidentiality of messages previously signed and encrypted using that

private key.

Definition 8.2 We say that a signcryption scheme ensures message

privacy against chosen-ciphertext attacks (we call this security

notion IND-SC-CCA) if no PPT adversary has a non-negligible advan-

tage in the following game:

1. The challenger CH generates a private/public key pair (skU , pkU ).

skU is kept secret while pkU is given to the adversary A.

2. A performs a first series of queries of the following kinds:

- Signature/encryption queries: A produces a message m ∈

M and an arbitrary public key pkR (which may differ from

pkU ) and requires the result Sign/Encrypt(m, skU , pkR) of

the signature/encryption oracle.

- Decryption/verification queries: A produces a ciphertext σ

and requires the result of Decryt/Verify(σ, skU ) which con-

sists of a signed plaintext together with a sender’s public

key if the obtained signed plaintext is valid for the recovered

sender’s public key and the ⊥ symbol otherwise (indicating

that the ciphertext was not properly formed).

These queries can be asked adaptively: each query may depend

on the answers to previous ones. After a number of queries, A

produces two plaintexts m0, m1 ∈ M and an arbitrary private

key skS. CH flips a coin b R← {0, 1} to compute an authen-

ticated encryption σ = Sign/Encrypt(mb, skS , pkU ) of mb with

the sender’s private key skS under the attacked public key pkU .

The ciphertext σ is sent to A as a challenge.

3. A performs new queries as in step 2 but she may not ask the

decryption/verification of the challenge σ. At the end of the

game, she outputs a bit b′ and wins if b′ = b.

A’s advantage is defined to be Advind-cca(A) := 2× Pr[b′ = b]− 1.
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Similarly to several other works [9, 117, 79, 140], our PKC’04 pa-

per considered the non-repudiation property with respect to the entire

ciphertext as formalized by the following definition.

Definition 8.3 We say that a signcryption scheme is strongly ex-

istentially ciphertext-unforgeable against chosen-message attacks

(SC-SUF-CMA) if no PPT adversary has a non-negligible advantage

in the following game:

1. The challenger generates a key pair (skU , pkU ) and pkU is given

to the forger F .

2. The forger F performs queries to oracles Sign/Encrypt(., skU , .)

and Decrypt/Verify(., skU ) exactly as in the previous definition.

Again, these queries can also be produced adaptively.

3. Eventually, F produces a ciphertext σ and a key pair (skR, pkR)

and wins the game if the result Decrypt/Verify(σ, skR) is a tu-

ple (m, s, pkU ) such that (m, s) is a valid signature for the

public key pkU such that σ was not the output of a signa-

ture/encryption query Sign/Encrypt(m, skU , pkR) made during

the game.

As in [9, 117, 79] and many other works, the forger is allowed to have

obtained the forged ciphertext as the result of a signature/encryption

query for a different receiver’s public key than the one corresponding

to the claimed forgery. The only constraint is that, for the message m

obtained by decryption/verification of the alleged forgery with the cho-

sen private key skR, the produced ciphertext σ was not obtained as the

result of a Sign/Encrypt(m, skU , pkR) query.

In [45], Boyen proposed additional security notions for signcryption

schemes. One of the most important ones was the notion of cipher-

text anonymity that can be viewed as an extension to authenticated

encryption schemes of the notion of key privacy already considered by

Bellare et al in [25]. Intuitively, in the context of public key encryption,

a scheme is said to have the key privacy property if ciphertexts convey

no information about the public key that was used to create them. In

the signcryption setting, we say that the ciphertext anonymity (or key

privacy) property is satisfied if ciphertexts contain no information about

who created them nor about whom they are intended to. This notion is

a transposition into the non-identity based setting of the one presented
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by Boyen in [45].

Definition 8.4 We say that a signcryption scheme satisfies the cipher-

text anonymity property (also called key privacy or key indistin-

guishability: we call this notion SC-INDK-CCA for short) if no PPT

distinguisher has a non-negligible advantage in the following game:

1. The challenger generates two distinct key pairs (skR,0, pkR,0)

and (skR,1, pkR,1). The distinguisher D is provided with pkR,0

and pkR,1.

2. D adaptively performs queries Sign/Encrypt(m, skR,c, pkR), for

arbitrary receivers’ public keys pkR, and Decrypt/Verify(σ, skR,c)

for c = 0 or c = 1. Once stage 2 is over, D outputs two private

keys skS,0 and skS,1 and a plaintext m ∈ M. The challenger

then flips two coins b, b′ ←R {0, 1} and computes a challenge

ciphertext σ = Sign/Encrypt(m, skS,b, pkR,b′) for D.

3. D adaptively performs new queries as in stage 2 with the re-

striction that, this time, she is disallowed to ask for the de-

cryption/verification of the challenge σ for the private keys

skR,0 or skR,1. At the end of the game, D outputs bits d, d′

and wins if (d, d′) = (b, b′). Her advantage is defined to be

Advindk-cca(D) := Pr[(d, d′) = (b, b′)]− 1
4 .

Again, this notion captures the security against insider attacks. In-

deed, the distinguisher is allowed to choose the pair of private keys

among which the one used to create the challenge ciphertext is picked by

the challenger. The above definition can be viewed as a transposition to

the non-identity based setting of the definition of ciphertext anonymity

proposed by Boyen [45] as well as an extension of the definition of key

privacy [25] to the authenticated encryption context.

4. A scheme based on the co-Diffie-Hellman problem

This section presents a signcryption scheme whose security is tightly

related to the hardness of the co-Diffie-Hellman problem introduced in

[43] and recalled in chapter 1.

Our solution relies on the digital signature algorithm of Boneh, Lynn

and Shacham [43], recalled in chapter 2, where signatures have the form
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σ = xH(m) ∈ G1 (where the hash function H maps arbitrary messages

onto the cyclic group G1) for public keys Y = xP2 ∈ G2 and can be

verified by checking that e(σ, P2) = e(H(m), Y ). In order to enhance

the concrete security of the reduction in the proof of ciphertext unforge-

ability, a random quantity U that is used for encryption purposes also

acts as a random salt to provide a tighter security reduction to the co-

Diffie-Hellman problem in (G1,G2).

The scheme may be viewed as a composition of a digital signature

scheme which is existentially unforgeable against chosen-message attacks

(EUF-CMA) [105] with a public key encryption scheme that is only

secure against chosen-plaintext attacks. In [9], An, Dodis and Rabin

showed that, in a multi-user setting, a composition (in any order) of an

EUF-CMA signature with an IND-CCA public key encryption scheme

yields a signcryption scheme that is secure in a generalized model of se-

curity against chosen-ciphertext attacks provided some precautions are

taken (as a mere encrypt-then-sign composition is insecure in the multi-

user setting). This section gives an example of secure composition of an

EUF-CMA signature with an IND-CPA encryption scheme that yields

a CCA-secure signcryption system in the sense of definition 8.2 instead

of a relaxed model of CCA-security. Such a composition is not always

secure in general but our example shows that it can be in some particu-

lar settings. As we will see, our scheme is secure because redundancies

needed to achieve the CCA-security are embedded in the signature.

The version of the scheme that is presented here is not the original

one depicted in our PKC’04 paper. The latter version of the scheme was

showed to suffer from a slight security flaw that prevents it from being

CCA-secure against insider attacks as pointed out in [218]. However,

repairing the original scheme was quite straightforward. The version of

the system that we describe here is slightly different from the one of

[218]: it uses fewer random oracles and makes use of a symmetric en-

cryption scheme. It is also described in terms of asymmetric pairings

and may thus be implemented with ordinary curves.

4.1. The scheme

The consistency of the scheme is easy to verify. We note that, in

the signature/encryption algorithm, the recipient’s public key must be

hashed together with the pair (m,U) in order to achieve the provable
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Common-Keygen: given a security parameter k, this algorithm outputs

a k-bit prime q, asymmetric bilinear map groups (G1,G2,GT )

of order q such that the lengths ℓ1 and ℓ2 of elements from G1

and G2 are polynomial in k, an efficiently computable (but non-

necessarily invertible) isomorphism ψ : G2 → G1, generators

P2 ∈ G2, P1 = ψ(P2) and hash functions H1 : {0, 1}∗ → G1,

H2 : {0, 1}∗ → {0, 1}ℓ1 and H3 : {0, 1}∗ → {0, 1}λ where n denotes

the size of plaintexts (i.e. the message space is M = {0, 1}n). A

symmetric encryption scheme (E,D) of keylength λ is also chosen.

The common key is then

I = {q,G1,G2,GT , P1, P2, e,H1,H2, E,D, n, ℓ1, ℓ2}.

Keygen: user u picks a random xu
R← Z

∗
q and sets his public key to Yu =

xuP2 ∈ G2. His private key is xu. We will denote the sender and

the receiver respectively by u = S and u = R and their key pair

by (xS , YS) and (xR, YR).

Sign/Encrypt: given a plaintext m ∈ {0, 1}n intended to R, the sender S

uses the following procedure

(1) Pick a random r R← Z
∗
q and compute U = rP1 ∈ G1.

(2) Compute V = xSH1(m||U ||YR) ∈ G1 and scramble it into

W = V ⊕H2(U ||rψ(YR)).

(3) Compute κ = H3(U ||V ||rψ(YR)) ∈ {0, 1}λ and then Z =

Eκ(m||YS) ∈ {0, 1}n+ℓ1+ℓ2 .

The ciphertext is given by σ = 〈U,W,Z〉 ∈ G1 × {0, 1}
n+ℓ1+ℓ2 .

Decrypt/Verify: when receiving a ciphertext σ = 〈U,W,Z〉, the receiver R

has to perform the steps below:

(1) Compute V = W ⊕H2(U ||xRU) and return ⊥ if V 6∈ G1.

(2) Compute κ = H3(U ||V ||xRU) ∈ {0, 1}λ.

(3) Compute (m||YS) = Dκ(Z) ∈ {0, 1}n+ℓ1+ℓ2 .

(4) Compute H = H1(m||U ||YR) ∈ G1 and then check if

e(H,YS) = e(V, P2). If this condition does not hold, reject

the ciphertext.

Figure 8.1. The co-DH-signcryption scheme

strong unforgeability (as shown in the proof of theorem 8.2).

When the recipient wishes to convince a third party that a ciphertext

actually emanates from the sender, he has to forwardm, U , the detached

signature V and his public key YR to that third party. As public keys
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lie in group G2 whose elements have a large representation, it might be

more convenient to implement the scheme with symmetric pairings (and

thus supersingular cuves) to reduce the communication cost of the non-

repudiation procedure in environments where bandwidth is a primary

concern.

From an efficiency point of view, only three scalar multiplications in

G1 are required for the signature-encryption operation while 1 multipli-

cation and 2 pairings must be performed in the decryption/verification

process. We can verify that the scheme is at least as efficient and more

compact than any sequential composition of the BLS signature [43] with

any one of the CCA-secure Diffie-Hellman based encryption schemes pro-

posed in [12, 16, 71, 89, 88, 180, 200]. For example, a sequential combi-

nation of the BLS signature with the encryption scheme proposed in [12]

would involve an additional multiplication at decryption because of the

re-encryption phase entailed by the validity checking of the decryption

algorithm. If we take ℓ1 ≈ k ≥ 160 and ℓ2 = 1024 (by working with

an ordinary curve), we see that ciphertexts are about 1344 bits longer

than plaintexts. A composition of the BLS signature with the so-called

’length-saving ElGamal encryption scheme’ proposed in [12] (which is

nothing but the result of applying the Fujisaki-Okamoto transformation

of [88] to a variant of ElGamal) would result in ciphertexts that would

be at least 1504 bits longer than plaintexts.

We observe that the scheme looks like a sequential composition of

the BLS signature with the Hybrid ElGamal encryption scheme proven

secure by Cramer and Shoup [74] and recalled in chapter 3. Actually,

the scheme is more than just a sequential composition. Indeed, the

Hybrid ElGamal scheme must be implemented with an IND-CCA sym-

metric encryption (and is trivially CCA-insecure if instantiated with

an IND-CPA symmetric scheme). In contrast, our co-DH signcryption

system only needs a symmetric scheme that satisfies the very weak re-

quirement to be semantically secure against passive attacks (that is an

attack where the adversary has no encryption or decryption oracle in

an indistinguishability scenario such as the one of definition 3.3). For

example, the symmetric encryption could simply be a “one-time pad”

with a hash value of the triple (U, YR, rψ(YR)). The scheme may actu-

ally be regarded as a sequential composition of an existentially unforge-

able signature with a public key encryption scheme that is only secure
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against chosen-plaintext attacks. All the redundancies needed to ensure

the security in the sense of definition 8.2 are contained in the signa-

ture embedded in the ciphertext. In [9], it was already observed that

a sequential composition in the “sign-then-encrypt” order can amplify

rather than simply preserve the security properties of the underlying

signature and encryption building blocks. Our co-Diffie-Hellman based

construction gives another example of this fact.

4.2. Security

The original version [132] of this system (where κ was obtained by

hashing v alone) was found [206, 218] not to meet its intended security

properties. Although a chosen-ciphertext attack was also given [207]

against the modification suggested in [218], its present variant is im-

mune to attacks reported in [218, 206, 207] (and countermeasures do

not incur any significant additional cost).

In the random oracle model, the scheme is secure under tight reduc-

tions assuming the hardness of a natural variant of the Diffie-Hellman

problem.

Theorem 8.1 Assume that an adversary A has non-negligible advan-

tage ǫ over the IND-SC-CCA security of the above scheme when running

in time t and performing qse signature/encryption queries, qdv decryp-

tion/verification queries and qHi queries to oracles Hi (for i = 1, 2).

Then, for any 0 ≤ ν ≤ ǫ, there either exists

- an algorithm B that can solve the co-CDH problem in groups

(G1,G2) with probability ǫ′ ≥ ǫ− ν − qdv/2
k within time

t′ < t+O(qdv + qH2 + qH3)tp

where tp denotes the time required for a pairing evaluation.

- a passive adversary breaking the semantic security of the sym-

metric scheme (E,D) with advantage ν within time t′.

Proof. We show how to build an algorithm B that runs the attacker A

as a subroutine to solve the co-Diffie-Hellman problem in a polynomial

time. Let (aP1, bP2) ∈ G1 × G2 be a random instance of the co-CDH

problem. Algorithm B starts A with Yu = bP2 ∈ G2 as a challenge

public key. A then adaptively performs queries that are handled using

lists L1, L2 and L′
2 to keep track of the answers given to random oracle



204 8. JOINT SIGNATURE AND ENCRYPTION

queries on H1 and H2.

- H1-queries: when a hash query H1(m||U ||YR) is made, B first

looks if the value of H1 was previously defined for the input

m||U ||YR. If it was, the previously defined value is returned.

Otherwise, B picks a random t R← Z
∗
q , returns tP1 ∈ G1 as an

answer and inserts the tuple (m,U, YR, t) into L1.

- H2-queries on inputs Ui||Ri ∈ G
2
1: B checks if (P2, Ui, Yu, Ri)

is a valid co-Diffie-Hellman quadruple (in our notation, we

write Ri = co-DHP2(Ui, Yu)) by checking whether e(Ri, P2) =

e(Ui, Yu). If it is then

• if U = aP1, B halts and outputs Ri = abP1 ∈ G1 which is

the solution that it was looking for.

• B checks if L′
2 contains an entry of the shape (Ui, ., h2,i)

for some h2,i ∈ {0, 1}
ℓ1 . In this case, h2,i is returned and a

record (Ui, Ri, h2,i, 1) is stored in L2. If no entry (Ui, ., h2,i)

exists in L′
2, B returns a random string h2,i

R← {0, 1}ℓ1 and

inserts (Ui, Ri, h2,i, 1) in L2.

If (P2, Ui, Yu, Ri) is not a co-DH tuple, the simulator stores the

5-uple (Ui, Ri, h2,i, 0) in L2.

- H3-queries on triples Ui||Vi||Ri: B proceeds as for answering

H2-queries, using lists L3 and L′
3 to maintain the consistency

and checking if (P2, Ui, Yu, Ri) is a co-DH tuple. Again, the

simulator halts and outputs Ri if a co-DH tuple (aP1, Vi, Ri) is

queried.

- For a signature/encryption query on a plaintext m with a recip-

ient’s public key YR both chosen by A, B first picks a random

r R← Zq, computes U = rP1 ∈ G1 and checks if L1 contains

a tuple (m,U, YR, t) indicating that H1(m||U ||YR) was previ-

ously set to tP1. If no such tuple is found, B picks t R← Zq

and stores the entry (m,U, YR, t) in L1. It then computes

V = tψ(Yu) = t(bP1) ∈ G1. The rest follows as in the normal

process: B computes rψ(YR) (for the YR specified by the ad-

versary), simulates H2 and H3 to obtain h2 = H2(U ||rψ(YR)),
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κ = H3(U ||V ||rψ(YR)) and then computes W = V ⊕ h2 and

Z = Eκ(m||Yu). The ciphertext 〈U,W,Z〉 is then returned.

- Decryption/verification queries for a ciphertext C = 〈U,W,Z〉:

B checks if L2 contains the sole possible 5-uple (U, Yu, R, h2, 1)

for some elements R ∈ G1 and h2 ∈ {0, 1}
ℓ1 (meaning that R =

co-DHP2(U, Yu) and that H2(U ||R) was set to h2 ∈ {0, 1}
λ):

• if it does, B obtains V = Z ⊕ h2 and rejects C if V 6∈

G1. Otherwise, B obtains κ = H3(U ||V ||R) ∈ {0, 1}λ (by

simulating H3), sets (m||YS) = Dκ(Z) and rejects C if

YS 6∈ G2. Otherwise, it computes H = H1(m||U ||YR) ∈

G1 and checks whether e(V, P2) = e(H,YS). If yes, the

information (m,V, YS , YR) is returned. Otherwise, C is

declared invalid.

• if not, B draws h2
R← {0, 1}ℓ1 and stores a record (U, ., h2)

in L′
2 so as to answer h2 to a subsequent H2-query on the

input U ||co-DHP2(U, Yu). It sets V = W ⊕ h2 ∈ {0, 1}
ℓ1

(and rejects C if V 6∈ G1) and inserts a record (U, V, ., κ) in

L′
3 so that a future hash query H3(U ||V ||co-DHP2(U, Yu))

will get κ as an answer. Finally, Dκ(Z) is computed and

parsed into (m||YS) ∈ {0, 1}n+ℓ2 . The ciphertext C is

declared invalid if YS 6∈ G2 or e(V, P2) 6= e(H,YS) where

H = H1(m||U ||YR).

At the end of the first stage, A outputs plaintexts m0 and m1 together

with an arbitrary sender’s private key xS and requires a challenge cipher-

text built under the recipient’s public key Yu. B then picks a random

bit d R← {0, 1} and strings κ∗ R← {0, 1}λ, W R← {0, 1}ℓ1 . It obtains

H∗ = H1(md||aP1||Yu) ∈ G1 by simulating H1 to compute the challenge

ciphertext σ = 〈U,W,Z〉 = 〈aP1,W,Eκ∗(md||xSP2)〉 which is sent to A.

The latter then issues a second series of queries which are handled as in

the first stage. If the symmetric scheme (E,D) is semantically secure

against passive attacks, it is easy to show that A’s view is independent

from the hidden bit d ∈ {0, 1} unless she queries a tuple containing abP1

to random oracles H2 or H3. In either case, the solution of the co-Diffie-

Hellman problem is detected when answering H2 and H3-queries.

Now to assess B’s probability of success, let us denote by AskH the

event that A asks the hash value of abP1) during the simulation. As done



206 8. JOINT SIGNATURE AND ENCRYPTION

in several papers in the literature (see [200, 40, 45] for instance), as long

as the simulation of the attack’s environment is perfect, the probability

for AskH to happen is the same as in a real attack (i.e. an attack where

A interacts with real oracles). In a real attack we have

Pr[b = b′] ≤ Pr[b = b′|¬AskH]Pr[¬AskH] + Pr[AskH]

≤
ν + 1

2
(1− Pr[AskH]) + Pr[AskH]

≤
1− ν

2
Pr[AskH] +

ν + 1

2
≤

1

2
Pr[AskH] +

ν + 1

2

where ν denotes the maximal advantage of any passive adversary against

the semantic security of the symmetric scheme (E,D). Since by defini-

tion, ǫ = 2× Pr[b = b′]− 1, we may write Pr[AskH] ≥ ǫ− ν.

We note that the simulation only fails if the random challenge ci-

phertext was submitted to the Decrypt/Verify oracle before the challenge

phase. Such a very unlikely event happens with probability smaller than

qdv/2
k. The bound on B’s computation time derives from the fact that

decryption/verification queries and H2-queries each require 2 pairing

evaluations. �

We observe that the reduction is very tight in that, up to negligi-

ble terms, algorithm B has the same probability to solve the co-CDH

problem as the adversary’s advantage. Moreover, the cost of the re-

duction is bounded by an expression which is linear in the number of

adversarial queries. That is the reason why U is included among the

arguments of H2. The scheme remains secure is V is concealed by a

hash value of rψ(YR) alone but the reduction then entails a number of

pairing evaluation that is quadratic in the number of adversarial queries

(more precisely, up to 2qh2 pairings might have to be calculated for each

decryption/verification queries).

The reductions are also efficient in the proofs of ciphertext unforge-

ability and anonymity.

Theorem 8.2 Let an adversary F having non-negligible advantage ǫ

over the SC-SUF-CMA security of the scheme when running in time

t, making qse signature/encryption queries, qdv decryption/verification

queries and qHi queries on oracles Hi (for i = 1, 2). Then there is an

algorithm B solving the co-CDH problem in (G1,G2) with probability
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ǫ′ > ǫ− (qse(qH1 + qse) + 1)/2k in time t′ < t+O(qH2 + qH3 + qdv)tp, tp

being the time required for a pairing evaluation.

Proof. B receives a random instance (aP1, bP2) of the co-Diffie-Hellman

problem. It uses F as a subroutine to solve that instance and plays the

role of F ’s challenger. The forger F is initialized with Yu = bP2 as a

challenge public key. She then performs adaptive queries that are han-

dled as explained below (using lists L1, L2 and L′
2 as in the proof of

theorem 8.1):

- H2-queries: are dealt with as in the proof of theorem 8.1.

- H1-queries on a tuple m||U ||YR: if the latter was previously

queried, B returns the defined value. For a query on a new

tuple m||U ||YR, B picks t R← Z
∗
q and defines H1(m||U ||YR) =

t(aP1) ∈ G1. The list L1 is updated accordingly.

- Signature/encryption queries for a message m and a receiver’s

public key YR chosen by F : B picks r R← Z
∗
q , computes U =

rP1 ∈ G1. IfH1 is already defined onm||U ||YR, B outputs “fail-

ure” and halts. Otherwise, B picks t R← Z
∗
q , setsH1(m||U ||YR) =

tP1 ∈ G1 and updates L1 accordingly. It then computes V =

tψ(Yu) ∈ G1, h2 = H2(U ||rψ(YR)) ∈ {0, 1}λ, W = V ⊕ h2 ∈

{0, 1}ℓ1 , κ = H3(U ||V ||rψ(YR)) ∈ {0, 1}λ and Z = Eκ(m||Yu) ∈

{0, 1}n+ℓ2 . The ciphertext 〈U,W,Z〉 is then returned to F .

- Decryption/verfication queries: are handled exactly as in the

proof of theorem 8.1.

At the end of the game, F produces a ciphertext 〈U∗,W ⋆, Z∗〉 and a

recipient’s public/private key pair (x∗R, Y
∗
R). At that moment, B can

perform the decrytion/verification operation using x∗R and, if the ci-

phertext is a valid forged ciphertext for the sender’s public key Yu, B

can extract the message-key pair (m∗||Yu) and the signature V ∗. If the

hash value H1(m
∗||U∗||Y ∗

R) was not asked by F during the simulation, B

reports “failure” and stops. Otherwise, H1(m
∗||U∗||Y ∗

R) must have been

set to t∗(aP1), for some known t∗ ∈ Z
∗
q , and V ′ must be equal to t∗(abP1)

which yields the co-Diffie-Hellman solution t∗−1V ′. It is easy to see that

the probability for B to fail in answering a signature/encryption query

is not greater than qse(qh1 + qse)/2
k (since at each signature/encryption

query, there is at most qH1 +qse elements in L1). Besides, the probability
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that F succeeds in her attempt without asking the queryH1(m
∗, U∗, Y ∗

R)

is at most 1/2k.

�

Theorem 8.3 Assume there exists a PPT distinguisher D that has non-

negligible advantage over the SC-INDK-CCA security of the scheme

when running in time t, performing qse signature/encryption queries,

qdv decryption/verification queries and qHi queries to oracle Hi (for

i = 1, 2). Then, for any 0 ≤ ν ≤ ǫ, there either exists

- an algorithm B that solves the co-CDH problem with advantage

ǫ′ > ǫ− ν −
qdv
2k

when running in time t′ < t + O(qdv + qH2 + qH3)tp where tp

denotes the time required for a pairing calculation.

- a passive attacker breaking the semantic security of (E,D) with

advantage 2ν − 1
2 within time t′.

Proof. Let (aP1, bP2) be an instance of the co-CDH problem. B uses

A to solve that instance and plays the role of D’s challenger in the game

of definition 8.4. To do this, B picks random elements x, y ∈ Z
∗
q and

initializes D with pku,0 = Yu,0 = x(bP2) and pku,1 = Yu,1 = y(bP2). The

distinguisher D then issues queries as explained in definition 8.4. To deal

with these queries, B maintains lists L1, L2 and L′
2 as in previous theo-

rems. When oracle H2 is queried, B performs the same manipulations as

in previous proofs to maintain consistency with decryption/verification

queries. All queries are treated exactly in the same way as in the proof

of theorem 8.1 except that two distinct private keys Yu,0 and Yu,1 may

be involved in calls to oracles Sign/Encrypt and Decrypt/Verify. It can

be checked that it does not change anything to the strategy of the sim-

ulator that never fails.

Once the first stage is over, D outputs two private key skS,0 =

xS,0 ∈ Z
∗
q , skS,1 = xS,1 ∈ Z

∗
q and a plaintext m ∈ {0, 1}n. B then

chooses two independent bits (d, d′) ∈ {0, 1}×{0, 1} and random strings

κ R← {0, 1}λ, W R← {0, 1}ℓ1 , obtains H = H1(m||aP ||Yu,d′) ∈ G1 and

computes Z = Eκ(m||xS,dP2) ∈ {0, 1}
n+ℓ2 before sending the challenge

σ = 〈aP,W,Z〉 to D. Clearly, if (E,D) is a semantically secure symmet-

ric scheme, as long as no H2 or H3-query is made on a tuple containing
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x(abP1) or y(abP1), F ’s view is independent from the hidden bits (d, d′).

Moreover, such H2 or H3-queries would provide B with the co-CDH so-

lution abP1 that would be detected when handling hash queries.

D’s second series of queries is handled as in the first stage. Eventu-

ally, D outputs a guess (d, d′) which is ignored. We note that in a real

attack, we have

Pr[(d, d′) = (b, b′)] ≤ Pr[(d, d′) = (b, b′)|¬AskH]Pr[¬AskH] + Pr[AskH]

=
(

ν +
1

4

)

(1− Pr[AskH]) + Pr[AskH]

≤ ν +
1

4
+

3

4
Pr[AskH]

where ν is the maximal advantage of a passive adversary against the

symmetric scheme in distinguishing between the encryptions of four mes-

sages of her choosing (this advantage being defined as the probability

of a correct guess minus 1/4). Indeed, the second equality derives from

the fact that Pr[(d, d′) = (b, b′)|¬AskH] is nothing but the probability of

a passive adversary to distinguish between the encryption of four plain-

texts for an unknown random symmetric key. As Pr[(d, d′) = (b, b′)] =

ǫ + 1/4 by definition, we thus find Pr[AskH] ≥ 4
3(ǫ − ν) > (ǫ − ν). As

in theorem 8.1, one can show that, as long as the simulation is perfect,

the probability for AskH to happen is the same in the simulation as in a

real attack and as in theorem 8.1, the simulator only fails with negligible

probability. Its strategy to solve the co-CDH problem is to check two

candidates co-CDH tuples (aP1, x(bP2), .) or (aP1, y(bP2), .) for each H2

or H3-query involving aP1 and the bound on its running time follows.

The announced bound for the advantage in breaking the semantic se-

curity of the symmetric scheme in the event ¬AskH stems from the fact

that an attacker distinguishing between the encryption of 4 messages

with probability ν+1/4 implies a distinguisher winning a traditional in-

distinguishability game with the same probability and thus an advantage

2(ν + 1/4)− 1 = 2ν − 1/2. �

5. A scheme providing short detachable signatures

Despite its good concrete security, the scheme depicted in the pre-

vious section remains of moderate interest because it only offers very
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few computational or bandwidth savings over a sequential composition

of signature and encryption schemes. It indeed requires two pairing

calculations upon decryption/verification and three elliptic curve scalar

multiplications on the sender’s side whereas Zheng’s original scheme fea-

tures a signcryption operation that entails a single group exponentiation

(but it is far from having all of the useful properties of our scheme: it is

much less practical from a non-repudiation point of view for instance).

It is thus natural to wonder whether it is possible to devise a sys-

tem having the same properties as co-DH signcryption with an increased

efficiency. The present section proposes a more efficient Diffie-Hellman

based signcryption solution published at SCN’04 [135] that satisfies the

same strong security requirements: the new scheme has essentially the

same cost as a mere ElGamal encryption on the sender’s side while only

one pairing evaluation and three exponentiations are required for the

simultaneous decryption/verification tasks. This is a real efficiency im-

provement: the signature/encryption operation is roughly 33% faster

than in co-DH signcryption while the decryption/verification algorithm

is almost twice as efficient. In addition, the scheme does provide the

non-repudiation property in a very simple and natural way as it allows

receivers to extract ordinary signatures on the plaintext from received

ciphertexts.

The system is built on a digital signature scheme independently stud-

ied by Boneh-Boyen [37] and Zhang et al. [227]. The latter signature

scheme was also implicitly used in the private key extraction algorithm

of the Sakai-Kasahara IBE [189]. It provides signatures of the form

σ =
1

x+ h(m)
P1,

for public keys Y = xP2, that are verified via a single pairing calcula-

tion: the right hand side of the verification equation e(σ,H(m)P2+Y ) =

e(P1, P2) is included as a part of the signer’s public key.

As a result, our system features detachable signatures made of a

single group element. When implemented with ordinary curves such as

MNT curves [155], the protocol provides detachable signatures of only

171-bits. To the best of our knowledge, our proposal is the first prac-

tical signcryption protocol supporting short detachable signatures. The

price to pay for such improvements is that our scheme’s security relies



5. A SCHEME PROVIDING SHORT DETACHABLE SIGNATURES 211

on stronger assumption than the one depicted in section 4: the mes-

sage privacy is proved in the random oracle model under the p-Diffie-

Hellman Inversion assumption already considered in [37, 35, 227] and

also employed in chapter 5 while the scheme’s unforgeability relies on

the p-Strong Diffie-Hellman assumption introduced by Boneh and Boyen

[37]. Both assumptions are recalled in the following definition:

Definition 8.5 Let us consider bilinear map groups (G1,G2) of gener-

ators P and Q.

- The p-Diffie-Hellman Inversion problem (q-DHI) consists in, given

a tuple (P,Q, xQ, x2Q, . . . , xpQ) ∈ G1 ×G
p+1
2 , computing 1

xP1 ∈ G1.

- The p-Strong Diffie-Hellman problem (q-SDH) consists in, given

a tuple (P,Q, xQ, x2Q, . . . , xpQ) ∈ G1 × G
p+1
2 , coming up with a pair

(c, 1
x+cP ) ∈ Zq ×G1.

One of the steps towards the realization of our scheme was to change

our security model for the non-repudiation property. Similarly to what

Boyen [45] did in the identity based setting, we do no longer require the

unforgeability property against insider adversaries but rather consider

the non-repudiation for embedded plaintexts.

5.1. Considering non-repudiation for detached signatures only

Beside our co-Diffie-Hellman based scheme presented in section 4,

a lot of provably unforgeable signcryption schemes [9, 15, 79, 117, 179]

provide non-repudiation with respect to the whole ciphertext. As no-

ticed in [45], in many contexts, it is sufficient to only consider the non-

repudiation with respect to the signature embedded in the ciphertext.

Even though we still doubt on whether non-repudiation with respect to

entire ciphertexts is a relevant or useful security notion, for applications

that would be requiring it, we will show how to turn our scheme into

a ciphertext-existentially unforgeable one at the cost of increasing the

size of the detachable signatures by a factor of more than 3 (but without

any other loss of efficiency). The notion of unforgeability w.r.t. embed-

ded signatures, that was introduced for the first time in [45], is recalled

below.
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Definition 8.6 A signcryption scheme is existentially signature-

unforgeable against chosen-message attacks (or has the ESUF-SC-CMA

security) if no PPT adversary has a non-negligible advantage against a

challenger CH in the following game:

1. CH generates a key pair (skU , pkU ) and pkU is given to the

forger F .

2. F adaptively performs queries to the same oracles as in defini-

tion 8.2.

3. F produces a ciphertext σ and a key pair (skR, pkR) and wins if

the result of Decrypt/Verify(σ, skR) is a triple (m, s, pkU ) such

that the pair (m, s) is valid for the public key pkU and no query

to the signature/encryption oracle involving the message m and

some receiver’s public key pk′R resulted in a ciphertext σ′ for

which the output of Decrypt/Verify(σ′, sk′R) is (m, s, pkU ).

As stressed by Boyen [45], considering non-repudiation only w.r.t.

signatures is useful for schemes providing detachable signatures that

should be unlinkable to the ciphertext they were conveyed in: anyone

seeing a valid message-signature pair can use his/her private key to

encrypt it into a valid signcryption under his/her public key.

A complementary notion to the latter was also introduced in [45]

in the identity based setting and recalled in chapter 7. It was called

ciphertext authentication and means that a receiver is always convinced

that a ciphertext was jointly signed and encrypted by the same person

and was not subject to a kind of man-in-the-middle attack.

Definition 8.7 We say that a signcryption scheme satisfies the cipher-

text authentication property (AUTH-SC-CMA) if no PPT adversary

has a non-negligible advantage in the following game:

1. The challenger generates two key pairs (skS , pkS), (skR, pkR)

and pkS and pkR are given to the forger.

2. The forger F performs queries to the oracles Sign/Encrypt(., skU , .)

and Decrypt/Verify(., skU ), for both U = S and U = R, exactly

as in the previous definition. Again, these queries can also be

produced adaptively.

3. At the end of the game, F produces a ciphertext σ and wins

the game if the result of the operation Decrypt/Verify(σ, skR) is
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a triple (m, s, pkS) such that (m, s) is a valid signature for the

public key pkS such that no query to the signature/encryption

oracle involving the message m and the receiver’s public key

pkR resulted in the ciphertext σ.

5.2. The scheme

Common-Keygen: given a security parameter k,this algorithm outputs a

k-bit prime number p and the description of bilinear map groups

(G1,G2,GT ) of order q. Let ℓ1 and ℓ2 be polynomials in k respec-

tively denoting the bitlength of elements from G1 and G2. The

algorithm also chooses generators P1 ∈ G1 and P2 ∈ G2 with P1 =

ψ(P2), hash functions h1 : {0, 1}∗ → Zq, h2 : G
3

1 → {0, 1}
k+1

and h3 : {0, 1}k → {0, 1}λ as well as a pseudo-random function

h′ : {0, 1}∗ → {0, 1}. The common public parameters are

param = {q,G1,G2, P1, P2, h1, h2, h3, h
′, n}

where n stands for the length of plaintexts.

Keygen: each user picks xu
R← Z

∗
q and computes Yu = xuP2 ∈ G2 obtains a

public/private key pair (pku, sku) = (Yu, xu).

Sign/Encrypt: given a message m ∈ {0, 1}n, the recipient’s public key YR

and her private key xS , the sender does the following:

(1) Pick γ R← Z
∗
q and compute r = γ

h1(bm||m||YS)+xS
mod q where

bm = h′(xS ,m) ∈ {0, 1}.

(2) Set C1 = rP1 ∈ G1, C2 = (γ||bm) ⊕ h2

(

C1||YR||rψ(YR)
)

∈

{0, 1}k+1 and then C3 = (m||YS)⊕ h3(γ) ∈ {0, 1}
n+ℓ2 .

The ciphertext is

〈C1, C2, C3〉 = 〈rP1, (γ||bm)⊕ h2

(

rP1||YR||rψ(YR)
)

, (m||YS)⊕ h3(γ)〉

Decrypt/Verify: given C = 〈C1, C2, C3〉,

(1) Compute (γ||bm) = C2 ⊕ h2(C1||YR||xRC1) ∈ {0, 1}
k.

Return ⊥ if γ 6∈ Z
∗
q .

(2) Compute (m||YS) = C3 ⊕ h3(γ) ∈ {0, 1}
n+ℓ2 .

(3) Compute σ = γ−1C1 ∈ G1 and accept the message if

(8) e
(

σ, YS + h1(bm||m||YS)P2

)

= e(P1, P2).

Figure 8.2. The q-DH-signcryption scheme
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The protocol relies on a signature scheme independently proposed

by Zhang et al. [227] and Boneh and Boyen [37]. In the latter papers,

this scheme was shown to efficiently produce 160-bit signatures without

requiring the use of a special hash function mapping messages to be

signed onto an elliptic curve subgroup (unlike the original BLS short

signature proposed in [43]). In [37], it was also showed that this scheme

has a more efficient security reduction in the random oracle model un-

der the p-strong Diffie-Hellman assumption than the reduction given by

Zhang et al. [227] under the p-Diffie-Hellman-Inversion assumption.

The protocol makes use of such a (masked) signature as an ElGamal

like ephemeral key as well as a checksum showing that a message was

properly encrypted in chosen-ciphertext security concerns: the sender

first computes a multiplier r = γ/(h1(bm||m||YS) + xS) ∈ Z
∗
q where γ is

randomly chosen from Z
∗
q , m ∈ {0, 1}

∗ is the message to sign and en-

crypt and bm is a message-dependent bit computed as a pseudo-random

function of m and the private key xS according to Katz and Wang’s

proof technique [121] (that aims at achieving tight security reductions

without random salts). This multiplier r is then used to compute an

ephemeral Diffie-Hellman key rP1 as in the ElGamal cryptosystem [96]

and to scramble the secret γ using a hash value of rψ(YR) ∈ G1 while a

digest of γ is used to conceal the message m together with the sender’s

public key.

The use of a masked signature as a “one-time” Diffie-Hellman key

allows sparing one exponentiation (actually an elliptic curve scalar mul-

tiplication) w.r.t. a sequential signature/encryption composition.

When computing the second component of the ciphertext, the re-

ceiver’s public key and the first component (which is an embedded sig-

nature as well as a Diffie-Hellman ephemeral key) are hashed together

with the “one-time” Diffie-Hellman key rψ(YR) in order to achieve a

more efficient reduction in the security proof.

In order to convince a third party that a recovered message m em-

anates from the sender S, the receiver reveals σ, the message m and the

associated bit bm to the third party who can run the regular signature

verification algorithm as done in step 3 of the decryption/verification

algorithm. The scheme thus provides detachable signatures that cannot

be linked to their original ciphertext: the signature is masked by a ran-

domly chosen factor γ and anyone observing a valid message-signature
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pair can use his/her private key to build a signcryption of that message-

signature pair under his/her public key. Hence, the scheme provides

ciphertext unlinkability in the sense of Boyen [45] in a very simple man-

ner.

As Boyen’s identity based scheme, the present one is obviously not

existentially ciphertext-unforgeable in the sense of [132] (because of its

inherent ciphertext unlinkability property). As already mentioned in

chapter 7, we believe that it is actually useless to consider ciphertext

non-repudiation (that appears as being antagonist to the useful notion

of ciphertext unlinkability and might even be undesirable) rather than

the mere signature non-repudiation: an adversary should not be re-

warded for achieving the trivial task of using a valid signature and a

randomly chosen x′R as a recipient’s private key to output a claimed

forged ciphertext under the public key Y ′
R = x′RP1.

5.3. Efficiency discussions.

As mentioned above, the scheme is efficient since, beside a modular

inversion, the sender only computes two scalar multiplications in G1.

The receiver’s workload is dominated by one pairing computation (as

e(P1, P2) can be computed once-and-for-all and cached in memory), two

scalar multiplications in G1 and one multiplication in G2. For both the

sender and the receiver, the protocol is much more efficient than the

scheme described in the previous section.

The scheme is described in terms of asymmetric pairings and requires

the existence of a publicly computable isomorphism ψ : G2 → G1. Sim-

ilarly to the fast identity based scheme described in chapter 7, it does

not require hashing arbitrary strings onto cyclic elliptic curve subgroups.

Hence, the kind of groups suggested in section 4 of [203] may be em-

ployed here and allows performing the last step of the Decrypt/Verify

algorithm at a reasonable speed by using specialized techiques for ordi-

nary curves due to Barreto, Lynn and Scott [43].

Interestingly, unlike what appears at first glance, the two exponen-

tiations that are the bulk of the sender’s workload can be computed

offline (i.e. before knowing the message to be sent). Indeed, in an of-

fline phase, the sender can already pick a random r R← Z
∗
q , compute

c1 = rP1 and ω = rψ(YR), store them in memory and then, once
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the message m is known, compute γ = r(h1(bm||m||YS) + xS) mod q,

C2 = (γ||bm) ⊕ h2(C1||YR||ω) ∈ {0, 1}k and C3 = (m||YS) ⊕ h3(γ). In

this case, care must be taken not to re-use the same r to sign and en-

crypt distinct messages because this would expose the private key. This

is not a problem since all signatures obtained through the Fiat-Shamir

heuristic [84] have this feature. In the absence of reliable pseudo-random

generators, the pre-computation phase may choose random powers r as

digests (computed using a collision-resistant hash function) of the mes-

sage and the signer’s public/private key pair according to a technique

suggested in [158].

Similarly to the Boneh-Boyen signature [37], our scheme can bene-

fit from a great on-the-fly efficiency although the signature scheme on

which it is constructed does not support the use of “coupons” which is

here allowed thanks to the presence of the blinding factor γ .

From a bandwidth point of view, we note that receivers’ public keys

that are scrambled along with plaintexts in the last part of ciphertexts

are G2 elements of rather long representation. Indeed, for recommended

parameters [43] their length is usually at least ℓ = 1024. However, as-

suming that the scheme is supported by a public key infrastructure, it

is fairly reasonable to encrypt a short (less than 128 ASCII characters)

sender-identifier IDS instead of a public key together with the plaintext

in the second step of the Sign/Encrypt algorithm. The receiver then has

to perform an online lookup in a public repository to enquire for the

associated public key.

Finally, the present version of the protocol is devised to sign and

encrypt messages of bounded size n. In applications that require to

handle messages of variable length, the message-public key pair may be

symmetrically encrypted using a hash value of γ as a secret key instead

of being concealed by a “one-time pad”. The employed symmetric en-

cryption scheme then only has to be semantically secure against passive

attacks (i.e. attacks must be unable to distinguish two encryptions of

plaintexts of their choosing without having access to decryption nor en-

cryption oracles) which is a very weak requirement. The security proof

of section 5.5 is easily adaptable to the latter hybrid setting.
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5.4. Short detachable signatures.

We have to mention that implementing the scheme with symmetric

pairings e : G × G → GT (and thus supersingular curves) might result

in a faster Decrypt/Verify algorithm in some cases. Indeed, the imple-

mentation suggested in section 5 entails a scalar multiplication in G2

in step 3 of Decrypt/Verify and arithmetic operations in G2 are known

to be more expensive than in G1 (recall that, if G1 is a subgroup of

a curve E(Fr) of embedding degree α, G2 is usually a cyclic subgroup

of E(Frα) or a subgroup of the twisted curve E(Frα/2)). For applica-

tions where speed is primary concern, using supersingular curves and

the group G1 = G2 = G (where the isomorphism ψ is the identity map)

or ordinary curves of low embedding degree (ideally α = 2) might be

preferable.

On the other hand, ordinary curves of larger embedding degree (say

α = 6 for instance) should be preferred for applications where band-

width considerations have priority. Indeed, because of the increased

efficiency of particular algorithms such as [67] for solving discrete log-

arithms in finite fields of small characteristic, supersingular curves in

characteristic 3 are known to offer fewer security than ordinary ones

for the same length of group elements. As explained in [43], they are

thus not recommended for applications requiring short signatures: ex-

amples given in [171] show that, for the security level of a 1024-bit RSA

modulus, supersingular curves disallow signatures shorter than 260 bits

whereas ordinary MNT curves [155] allow signatures of 171 bits with

the Boneh-Lynn-Shacham scheme [43]. For the security level of a 1842-

bit RSA modulus, supersingular curves require signatures of 560 bits

whereas 308 bits are sufficient with MNT curves.

Those reasons motivated us to describe the scheme in terms of asym-

metric pairings. In such an algebraic setting, receivers can extract sig-

natures of 171 bits from ciphertexts. Assuming the deployment of a

suitable PKI, ciphertexts may even avoid conveying sender’s encrypted

public keys: in step 2 of the signature/encryption algorithm, senders

may just append their short identifier IDS to the plaintext. In order to

prevent the threat of impersonators replacing IDS with their own identi-

fier in public repositories, senders may also append IDS to the plaintext
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when computing the multiplier r in such a way that C1 contains a sig-

nature on the extended message m||IDS .

From a computational point of view, all the sender’s arithmetic op-

erations take place in G1 while, besides a pairing evaluation, receivers

have to perform a single scalar multiplication in G2.

5.5. Security

The original version of the scheme [135] was shown in [208] to be vul-

nerable to a chosen-ciphertext attack taking advantage of a key substitu-

tion attack [205] on the underlying signature scheme [227, 37]. However,

protecting the scheme against the attack of [208] was rather straightfor-

ward using a standard countermeasure to immunize signature schemes

from key substitution attacks: hashing the signer’s public key along with

the message to be signed suffices.

The security properties called message confidentiality and existential

signature unforgeability respectively rely (in the random oracle model

[29]) on the intractability of the following problems introduced in [37, 35]

which extend ideas from [154, 189].

Theorem 8.4 Assume that an adversary A has non-negligible advantage

ǫ in breaking the IND-SC-CCA security of the scheme when running in

time τ , asking qhi queries to random oracles hi (for i = 1, 2, 3), qse sig-

nature/encryption queries and qdv decryption/verification queries. Then

there exists a PPT algorithm B to solve the p-Diffie-Hellman Inversion

problem for p = qh1 with advantage

ǫ′ > ǫ−
qdv
2k
−

qh3

2n+ℓ

when running in time τ ′ < τ+O(q2h1
τm)+2qh2τp where τm is the maximal

cost of a scalar multiplication in G1 and G2, τp being the time for a

bilinear map evaluation.

Proof. We actually show how B can use A as a subroutine to solve

a random instance (P,Q, xQ, x2Q, . . . , xpQ) of the (p + 1)-exponent

problem problem in (G1,G2) which is equivalent to the p-DHI problem

and consists in computing xp+1P ∈ G1. We can assume w.l.o.g. that

qse = qh1 − 1 since, otherwise, B can issue dummy signcryption queries

for itself. In a preparation phase, B uses its input to compute generators

H ∈ G2 and G = ψ(H) ∈ G1 together with a public key X = xH ∈ G2
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such that it knows qse = p − 1 pairs (wi,
1

wi+x
G) for wi

R← Z
∗
q as in the

proof technique of [37]. To do so, B picks w1, . . . , wp−1
R← Z

∗
q , expands

the polynomial f(z) =
∏p−1
i=0 (z + wi) =

∑p−1
i=0 ciz

i. A generator H ∈ G2

and the public key X are then obtained as

H =

p−1
∑

i=0

ci(x
iQ) = f(x)Q and X =

p
∑

i=1

ci−1(x
iQ) = xf(x)Q = xH

(as in the proof of lemma 1 in [37]). As in [37], pairs (wi,
1

wi+x
G) are

obtained by expanding fi(z) = f(z)/(z+wi) =
∑p−2

i=0 diz
i and computing

Gi =

p−2
∑

j=0

djψ(xjQ) = fi(x)P =
f(x)

z + wi
P =

1

z + wi
G

for i = 1, . . . , p− 1.

The adversary A is then initialized with the generators H ∈ G2 and

G = ψ(H) ∈ G1 and on the public key X ∈ G2. She starts probing

the oracles she is given access to. These oracles are simulated by B as

explained below. The queries to oracle h2 need to be simulated using

two lists L2, L
′
2 that are initially empty.

- h′-queries on an input (αi,mi) ∈ Z
∗
q × {0, 1}

∗: B first checks if

X = αiH. In this case, we are done and B can easily compute

xp+1P . Otherwise, it responds with a random bit bmi

R← {0, 1}.

- h1-queries: these queries are indexed by a counter t that is

initially set to 1. When a triple d||m||X ∈ {0, 1}×{0, 1}n×G2

is submitted in a h1-query for the first time, B checks whether

d equals the bit bm (which is set at the first time the message

m is submitted in a h1(.) query). If d = bm, B returns wt and

increments t (in such a way that B is able to create a valid

signature on m). Otherwise, B returns a random c R← Z
∗
q stores

(d,m,X, c) in L1.

- h2-queries on input Y1,i||Y2,i||Y3,i ∈ G1 ×G2 ×G1: B checks if

the 4-uple (H,Y1,i, Y2,i, Y3,i) is a valid co-Diffie-Hellman tuple

(in our notation, we shall write Y3,i = co-DHH(Y1,i, Y2,i)) by

verifying if

e(Y1,i, Y2,i) = e(Y3,i, H).
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If it is, B checks if L′
2 contains an entry of the form (Y1,i, Y2,i, ., τi)

for some τi ∈ {0, 1}
k+1. In this case, τi is returned and an en-

try (Y1,i, Y2,i, Y3,i, τi, 1) is added in L2. If no entry of the shape

(Y1,i, Y2,i, ., τi) is in L′
2, B returns a string τi

R← {0, 1}k+1 and

inserts (Y1,i, Y2,i, Y3,i, τi, 1) in L2. If (H,Y1,i, Y2,i, Y3,i) is not a

co-DH tuple, the entry (Y1,i, Y2,i, Y3,i, τi, 0) is added in L2. At

most 2qh2 pairings must be computed overall.

- h3-queries: are answered with random elements from {0, 1}n+ℓ2 .

- Signature/encryption queries on a plaintext m, for an arbitrary

receiver’s key Y : we assume that m was previously submitted

in a h1-query and that the message-dependent bit bm was pre-

viously defined. Since h1(bm||m||X) was (or will be) defined

to be wj for some j ∈ {1, . . . , t}, B knows that the previously

computed Gj = (1/(wj + x))G appears as a valid signature

on m from A’s view. So, it computes C1 = γGj ∈ G1 for

some γ R← Z
∗
q , obtains κ = h3(γ) ∈ {0, 1}

n+ℓ2 through h3-

simulation and computes C3 = (m||X) ⊕ κ ∈ {0, 1}n+ℓ2 . It

then checks if L2 contains an entry (C1, Y, Y3, τ, 1) (indicat-

ing that Y3 = co-DHH(C1, Y )). If this entry exists, B returns

C = 〈C1, C2, C3〉 with C2 = (γ||bm)⊕ τ ∈ {0, 1}k+1. Otherwise

it returns C = 〈C1, C2, C3〉 for a random C2
R← {0, 1}k+1 and

inserts
(

C1, Y, ., (γ||bm)⊕ C2

)

in the special list L′
2.

- Decryption/verification queries: when A submits a ciphertext

C = 〈C1, C2, C3〉, B checks whether L2 contains the unique

entry (C1, X, Y, τ, 1) for some Y ∈ G1 and τ ∈ {0, 1}k+1 (indi-

cating that Y = co-DHH(C1, X)):

• if it does, B obtains (γ||bm) = C2 ⊕ τ ∈ {0, 1}k+1, κ =

h3(γ) (via simulation of h3) and finally (m||XS) = C3⊕κ ∈

{0, 1}n+ℓ2 (C is also rejected if XS is not a G2 element).

Finally, B extracts σ = γ−1C1 and returns the plaintext

m ∈ {0, 1}n and the associated signature σ together with

the sender’s public keyXS ∈ G2 if the verification equation

(1) holds.

• if it does not, B picks a random τ R← {0, 1}k+1, inserts

(C1, X, ., τ) into the special list L′
2 (so that a subsequent
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h2-query on (C1, X, co-DHH(C1, X)) will receive τ as an

answer), before finishing the job with the randomly chosen

τ : it computes (γ||bm) = C2 ⊕ τ ∈ {0, 1}
k+1, κ = h3(γ),

and so on. The extracted signature σ = γ−1C1 is checked

as above.

After the find stage, A outputs messages m0,m1 and a sender’s pri-

vate key xS ∈ Z
∗
q . At this moment, B chooses a random a R← Z

∗
q and

computes C∗
1 = (x+ a)G ∈ G1 as C∗

1 = ψ(X) + aG. It also expands

the polynomial f ′(z) = f(z)(z + a) =
∑p

j=0 fjz
j ∈ Zq[z] and returns

the challenge C∗ = 〈C∗
1 , C

∗
2 , C

∗
3 〉, where b∗ R← {0, 1}, C∗

2
R← {0, 1}k+1

and C∗
3 = (md||xSH) ⊕ κ for a random bit d R← {0, 1} and a random

κ R← {0, 1}n+ℓ2 . In the extremely unlikely case (its probability is much

smaller than qdv/2
k) that C∗ was submitted in a Decrypt/Verify query

before the challenge phase, B aborts.

Clearly, if κ does not hit the output of an h3-query (the probability

for this to occur is at most qh3/2
n+ℓ2), the adversary’s view is indepen-

dent from the bit d unless the hash value h2

(

C∗
1 ||X||co-DHH(C∗

1 , X)
)

is asked during the simulation. Such an event, that we call AskH2, is

easily detected by the h2 simulator and is very likely to happen: as in

the proofs of theorems 3.1 and 3.2, one can easily show that in a real

attack, Pr[AskH2] is at least ǫ if A’s advantage in definition 8.2 is ǫ.

Furthermore, as long as A is provided with a consistent view, Pr[AskH2]

is the same in the simulation as in the real world.

Queries made by A in the second stage are handled as above and,

as already argued, the h2-simulator must detect the AskH2 event with

high probability. At this moment, B obtains Z = co-DHH(C∗
1 , X) =

x(x+ a)G = xf(x)(x+ a)P. Since we have f(z)(z + a)z = zf ′(z) =
∑p

j=0 fjz
j+1 and, since Z =

∑p
j=0 fjψ(xj+1Q), B can compute

(xp+1)P =
1

fp

[

Z −

p−1
∑

j=0

fjψ(xj+1Q)
]

∈ G1

which is the solution to the (p+1)-exponent problem. At that moment,

we are done since the latter is known to be equivalent to the p-Diffie-

Hellman Inversion problem (as explained in [154] and [35]).

From a computational point of view, B’s running time is dominated

by p+2 multi-exponentiations with q elements that reach an overall cost
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of O(p2) exponentiations. Computing f(z) also involves a cost in O(p2)

while computing each fi(z) also implies O(p) modular multiplications

just like the computation of the product f(z)(z+a). When handling h2

queries, B also has to compute 2qh2 pairings.

The bound on B’s advantage derives from the fact that it never pro-

vides A with an incoherent view. The simulation only fails at the chal-

lenge phase if the selected κ hits the output of a previous h3-query or if

the constructed challenge was previously submitted to the Decrypt/Verify

oracle. �

We observe that the reduction is tight in terms of probabilities in

that the probability of solving the computational problem is close to the

adversary’s advantage. Unfortunately, the reduction is not particularly

efficient as its cost is bounded by an expression containing a term which

is quadratic in the number of adversarial random oracle queries. With

the bound qh1 < 260 usually considered in the literature, our reduction

does not lead to a strong concrete security.

Nevertheless, we do not believe this lack of efficiency in the reduction

to be a serious problem. After all, a similar remark can be made on

the security reduction given by Boneh-Boyen [37] for the underlying

signature scheme in the random oracle model.

Theorem 8.5 If an ESUF-SC-CMA adversary F has a non-negligible

advantage ǫ in the game of definition 8.6 when running in time τ , making

qhi queries to oracles hi (i = 1, 2, 3), qdv Decrypt/Verify queries and qse

Sign/Encrypt queries, then there exists an algorithm B that solves the

p-strong Diffie-Hellman problem for p = qh1 with probability

ǫ′ >
ǫ

2
−

1

2k
−

1

2n+ℓ

within time τ ′ < τ + O(q2h1
τm) + 2qh2τp where τm is the maximal cost

of a scalar multiplication in G1 and G2, τp being the time for a bilinear

map evaluation.

Proof. We build a simulator B that behaves almost exactly as in the

previous proof. The generator G ∈ G1, that is given to the forger F as

a part of the output of the common key generation algorithm, is gener-

ated as in the proof of theorem 1 so that the simulator B knows p − 1

pairs (wi,
1

wi+x
G) (where x ∈ Z

∗
q is the unknown element that implicitly
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defines its input P,Q, xQ, x2Q, . . . , xpQ). By doing so, B is always able

to answer signature/encryption queries that are handled, as all other

oracle queries, exactly as in the proof of theorem 8.4.

Eventually, the forger F halts and outputs a forged signature em-

bedded into a ciphertext C∗ = 〈C∗
1 , C

∗
2 , C

∗
3 〉 and an arbitrary recipient’s

key pair (x∗R, Y
∗
R = x∗RH) that allows B recovering the fake message-

signature pair (m∗, σ∗ = 1
h1(b∗||m∗||X)+xG) embedded into C∗. With a

probability 1/2, b∗ differs from the message-dependent bit bm∗ (that

indicates how a message the message m∗ should be signed with the pri-

vate key corresponding to X in the underlying signature scheme and

that is independent from F ’s view) and B can extract a solution to the

p-Strong Diffie-Hellman problem as follows: if F is successful, B re-

covers a valid message-signature pair for the sender’s public key X by

computing (γ∗||b∗) = C2 ⊕ h2(C
∗
1 ||Y

∗
R||x

∗
RC

∗
1 ), (m∗||X) = C∗

3 ⊕ h3(γ
∗)

and σ∗ = γ∗−1C∗
1 . A p-Strong Diffie-Hellman pair 〈h∗1, G

∗〉 can then be

extracted by expanding f(z)/(z + h∗1) into

γ−1

z + h∗1
+

p−2
∑

i=0

γiz
i,

where h∗1 = h1(b
∗,m∗), and computing G∗ = 1

γ−1

[

σ∗ −
∑p−2

i=0 γiψ(xiQ)
]

.

A lower bound on the simulator’s probability to obtain it is thus one

half of the advantage of the simulator of the previous proof decreased by

the (negligible) probability for F to produce a valid encryption of the

fake signature without asking the appropriate h2 and h3 values during

the simulation (in the latter case, B is unable to extract a p-Strong

Diffie-Hellman pair). �

The next theorem demonstrates the ciphertext anonymity property

under the p-DHI assumption. Its proof is somewhat similar to the one

of theorem 8.4.

Theorem 8.6 Assume that an adversary A has non-negligible advantage

ǫ in breaking the SC-INDK-CCA security of the scheme when running in

time τ , asking qhi queries to random oracles hi (for i = 1, 2, 3), qse sig-

nature/encryption queries and qdv decryption/verification queries. Then

there exists a PPT algorithm B to solve the p-Diffie-Hellman Inversion
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problem for p = qh1 with advantage

ǫ′ >
ǫ

2
−
qdv
2k
−

qh3

2n+ℓ

when running in time τ ′ < τ +O(q2h1
τe)+2qh2τp where τe and τp denote

the same quantity as in theorem 8.4.

Proof. Algorithm B takes as input (P,Q, xQ, x2Q, . . . , xpQ) and at-

tempts to compute xp+1P ∈ G1. We assume w.l.o.g. that qse = qh1 − 1.

As in the proof of theorem 8.4, B prepares generators H = f(x)P ∈ G2

(for some polynomial f(z) =
∏p−1
i=1 (z+wi) ∈ Fq[z]) and G = ψ(H) ∈ G1

together with a public key X = xH ∈ G2 such that it knows qse = p− 1

pairs (wi, Gi = 1
wi+x

G) for wi
R← Z

∗
q . The simulator also chooses a ran-

dom private key y ∈ G2 and sets out a second public key Y = yH ∈ G2.

The distinguisher D is then initialized with generators H ∈ G2,

G = ψ(H) ∈ G1 and public keys X,Y ∈ G2. She starts issuing queries

in the scenario of definition 8.4. The Sign/Encrypt and Decrypt/Verify

oracles related to the public key X are simulated exactly as in the proof

of theorem 8.4 whereas queries pertaining to Y are tackled with in ac-

cordance with the specification of Sign/Encrypt and Decrypt/Verify using

the private key y ∈ Z
∗
q that is known to B.

At the challenge phase, A outputs a message m ∈ {0, 1}n and two

private keys xS,0, xS,1 ∈ Z
∗
q . At this point, B chooses a random a R← Z

∗
q

and computes C∗
1 = (x+ a)G = ψ(X)+aG. It also expands the polyno-

mial f ′(z) = f(z)(z + a) =
∑p

j=0 fjz
j ∈ Zq[z] and returns the challenge

C∗ = 〈C∗
1 , C

∗
2 , C

∗
3 〉, where C∗

2
R← {0, 1}k+1 and C∗

3 = (m||xS,dH) ⊕ κ

for a random bit d R← {0, 1} and a random κ R← {0, 1}n+ℓ2 . In the ex-

tremely unlikely case (its probability is much smaller than qdv/2
k) that

C∗ was submitted in a Decrypt/Verify query before the challenge phase,

B aborts.

Clearly, if κ does not hit the output of an h3-query (which occurs

with probability at most qh3/2
n+ℓ2), the ciphertext C∗ implicitly defines

(γ||b) = C∗
2⊕τ and κ = h3(γ) with either τ = h2(C

∗
1 ||X||co-DHH(C∗

1 , X))

or τ = h2(C
∗
1 ||Y ||co-DHH(C∗

1 , Y )). Let AskH2 denote the event that

an h2-query is made on one of the triples (C∗
1 , X, co-DHH(C∗

1 , X)) and

(C∗
1 , Y, co-DHH(C∗

1 , Y )). In a real attack, we have

ǫ+
1

4
= Pr[A wins] ≤ Pr[A wins|¬AskH2]Pr[¬AskH2] + Pr[AskH2].
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Clearly, Pr[A wins|¬AskH2] = 1/4 and it comes that Pr[AskH2] ≥ ǫ.

This shows that, provided the simulation is consistent, A issues an

h2-query on either C∗
1 ||X||co-DHH(C∗

1 , X) or C∗
1 ||Y ||co-DHH(C∗

1 , Y ) at

some point of the game with probability at least ǫ. With probability

ǫ/2, an h2-query involving co-DHH(C∗
1 , X) = x(x + a)G will be issued

and such an event can be detected by computing two pairings for each

h2-query.

When the relevant element

Z = co-DHH(C∗
1 , X) = x(x+ a)G = x(x+ a)f(x)P = xf ′(x)P

is obtained, B can compute

(xp+1)P =
1

fp

[

Z −

p−1
∑

j=0

fjψ(xj+1Q)
]

∈ G1

using the coefficients of the polynomial f ′(z) = (z+a)f(z) =
∑p

j=0 fjz
j .

The bound on B’s advantage derives from the fact that it never

provides A with an incoherent view. �

We were unfortunately unable to formally establish that the scheme

satisfies the ciphertext authentication property in the sense of definition

8.7. The reason is that, using the proof technique of theorems 8.4, 8.5

and 8.6, it is difficult to set out a generator and two distinct public keys

for which a series of signature/encryption queries must be simulated for

both public keys without knowing the matching private keys.

Nevertheless, the scheme does seem to meet that property. Given

a message-signature pair, it seems to be infeasible for anyone but the

signer to encrypt it into a ciphertext intended for a specific receiver

without knowing the latter’s private key.

5.6. What if the ciphertext unforgeability is required?

Adapting the scheme to applications that would require the cipher-

text unforgeability is straightforward: the first part of the ciphertext

must be C1 = (1/(h1(bm||m||γ||YS ||YR) + xS))P where γ ∈ Z
∗
q is en-

crypted in the component C2 and YR is the receiver’s public key.

As a consequence, γ and YR become part of the detached signature

and the sender of a message is not only committed to the plaintext’s
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content but he/she is also responsible for having sent it to the owner of

the key YR. Moreover, the ciphertext unlinkability property is also lost.

6. A scheme built on the Schnorr signature

It is very tempting to combine the Schnorr signature [191] with an

ElGamal-like encryption scheme [96] into a signcryption system as both

schemes use similar algebraic structures. Indeed, both cryptosystems

have public keys y = gx in cyclic groups of prime order q. Schnorr

signatures consist of pairs (e, r + ex mod q), where e = h(m, gr) for a

random r ∈R Z
∗
q , that satisfy e = h(m, gsy−e) ∈ Z

∗
q whereas ElGamal

ciphertexts are pairs (gr,m× yr) ∈ G×G.

A recent work [114] unsuccessfully attempted to achieve such a com-

bination and proposed a scheme that was broken in [214]. Another

construction described in [213] is not correct either as it suffers from

the same weakness as the scheme of Bao and Deng [18]. More recently,

Malone-Lee [138] gave a solution named SCNINR as a shorthand for

“signcryption with non interactive non-repudiation” and which only pro-

vides privacy against outsider attacks. Indeed, it can be verified that

anyone who happens to learn some user’s private key can recover any

message previously signed and encrypted by that user.

In this section, we show how to overcome this limitation and propose

a variant of Malone-Lee’s scheme which may be regarded as a secure op-

timized combination of Schnorr and ElGamal. The scheme, called SEG-

signcryption, is depicted on the next figure. It makes use of the method

suggested by Boyen [45] to first encrypt a part of the signature before

using a hash value of it to conceal the plaintext. Unlike Malone-Lee’s

proposal, SEG-signcryption provably ensures privacy against insider at-

tacks. Besides, it can be implemented with more general groups than

our previous schemes which need groups equipped with bilinear maps.

6.1. The SEG signcryption scheme

Similarly to the q-DH Signcryption scheme of section 5, the present

one has essentially the same complexity as an ElGamal encryption for

the sender. Its decryption/verification operation is much faster than in

q-DH Signcryption as it only performs simple arithmetic operations.

As mentioned above, the scheme consists in first computing a Schnorr
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Common-Keygen: given a security parameter k, this algorithm outputs a

k-bit prime q, a cyclic group G of order q, a generator g ∈ G and

hash functions H : {0, 1}n × G → Z
∗
q , H

′ : Z
∗
q → {0, 1}

n+ℓ and

G : G
3 → {0, 1}k where n is the length of plaintexts and ℓ is the

bitlength of elements from G. The common key is then

I = {q,G, g,H,H ′, G, n, ℓ}.

Keygen: each user picks xu
R← Z

∗
q and computes yu = gxu ∈ G obtains a

public/private key pair (pku, sku) = (yu, xu).

Sign/Encrypt: given a message m ∈ {0, 1}n, the recipient’s public key yR

and her private key xS , the sender does the following:

(1) Pick r R← Z
∗
q , compute u = gr ∈ G, e = H(m,u) ∈ Z

∗
q and

s = r + exS mod q.

(2) Compute v = s⊕G(u, yR, y
r
R) ∈ {0, 1}k and

w = (m||ys)⊕H
′(s) ∈ {0, 1}n+ℓ.

The ciphertext is C = 〈u, v, w〉 ∈ G× {0, 1}k+n+ℓ

Decrypt/Verify: given C = 〈u, v, w〉,

(1) Compute ω = uxR ∈ G and s = v ⊕ G(u, yR, ω) ∈ {0, 1}k.

Reject C if s 6∈ Z
∗
q .

(2) Compute (m||yS) = w ⊕H ′(s) ∈ {0, 1}n+ℓ.

(3) Compute e′ = H(m,u) ∈ Z
∗
q and accept the message if

u = gsy−e′

S .

If the above relation holds, return (m, (e′, s)).

Figure 8.3. The SEG-signcryption scheme

signature on the plaintext. The randomness of the signature is then re-

used to encrypt part of it in an ElGamal fashion and a digest of the

encrypted part of the signature is in turn employed to scramble the

plaintext along with the sender’s private key.

SEG-signcryption allows receivers to detach plaintexts and standard

Schnorr signatures from ciphertexts. It also satisfies the ciphertext un-

linkability property in a slightly weaker sense than the scheme of the

previous section: a sender can again deny having created a specific

ciphertext (as anyone can turn a valid plaintext-signature pair into a

ciphertext addressed to himself by using his private key) but external

observers can still establish a link between a ciphertext and a signature
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detached from it (since they share a common component u). Interest-

ingly, a similar construction can be applied to fix the security flaw of

the Bao-Deng scheme [18].

6.2. Security

The scheme enjoys a very tight reduction from the Gap Diffie-Hellman

assumption [168] for the proof of message privacy. We have to mention

that Malone-Lee ([138]) gave a proof of message privacy (against out-

sider attacks only) under the Computational Diffie-Hellman assumption

for his scheme but his proof only holds if the scheme is implemented

in symmetric bilinear map groups. Our scheme could be proved secure

against the CDH assumption as well if it was implemented in those

groups.

We nevertheless find it unnatural to use groups that might be in-

herently weaker whereas no bilinear map is needed by the protocol. We

thus prefer leaving the security of the scheme rely on the hardness of

the Gap Diffie-Hellman problem which is to compute gab given (g, ga, gb)

together with an oracle deciding whether given quadruples (g, gx, gy, gz)

satisfy z ≡ ab mod q.

Theorem 8.7 Assume that an adversary A has a non-negligible advan-

tage ǫ in breaking the IND-SC-CCA security of SEG-signcryption when

running in a time τ , asking respectively qH , qH′ and qG queries to ran-

dom oracles H, H ′ and G, qse signature/encryption queries and qdv

decryption/verification queries. Then there exists a PPT algorithm B to

solve the Gap Diffie-Hellman problem with an advantage

ǫ′ > ǫ−
qH′

2n+ℓ−1

when running in a time τ ′ < τ +O((qse+qdv)τexp) where τexp is the cost

of a group exponentiation.

Proof. Algorithm B takes as input (g, ga, gb,ODDH), where ODDH(.)

denotes an oracle distinguishing Diffie-Hellman tuples (g, ga, gb, gab) from

random tuples (g, ga, gb, gc) with probability 1, and attempts to find gab.

The adversary A is initialized with yu = ga ∈ G as a challenge public

key. She starts probing the oracles she is given access to and that are

simulated by B as explained below. The queries to the random oracle G

need to be simulated using two lists LG, L′
G that are initially empty.
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- H-queries and H ′-queries: are answered with random elements

respectively sampled from Z
∗
q and {0, 1}n+ℓ.

- G-queries on triples (y1,i, y2,i, y3,i) ∈ G
3: B checks if the 4-

uple (g, y1,i, y2,i, y3,i) is a valid Diffie-Hellman tuple (in our no-

tation, we write y3,i = DHg(y1,i, y2,i)) using its DDH oracle

ODDH(.). If it is, B checks if L′
G contains an entry of the form

(y1,i, y2,i, ., hi) for some hi ∈ {0, 1}
k. In this case, hi is returned

and a record (y1,i, y2,i, y3,i, hi, 1) is added in LG. If no entry of

the form (y1,i, y2,i, ., hi) is in L′
G, B returns a string hi

R← {0, 1}k

and inserts (y1,i, y2,i, y3,i, hi, 1) in LG. If (g, y1,i, y2,i, y3,i) is not

a Diffie-Hellman tuple, the record (y1,i, y2,i, y3,i, hi, 0) is added

in LG. At most qG calls to oracle ODDH(.) are needed overall.

- Signature/encryption queries on a message m, for a receiver’s

key y: B chooses e, s R← Z
∗
q , computes u = gsy−eu ∈ G and de-

fines H(m,u) to be e (it aborts if oracle H is already defined at

that point). It then checks if LG contains an entry (u, y, y′, h, 1)

(indicating that y′ = DHg(u, yu)). If this entry exists, B returns

C = 〈u, v, w〉 with v = s⊕h ∈ {0, 1}k and w = (m||yu)⊕H
′(s)

(where H ′(s) is obtained via simulation of H ′). Otherwise it

returns C = 〈u, v, w〉 for a random v R← {0, 1}k and inserts

(u, y, ., s⊕ v) in the special list L′
G.

- Decryption/verification queries: when A submits a ciphertext

C = 〈u, v, w〉, B checks whether LG contains the unique entry

(u, yu, y
′, h, 1) for some y′ ∈ G and h ∈ {0, 1}k (indicating that

y′ = DHg(u, yu)):

• if it does, B obtains s = v ⊕ h ∈ {0, 1}k, κ = H ′(s) (via

simulation of H ′) and finally (m||yS) = w ⊕ κ ∈ {0, 1}n+ℓ

(C is rejected if yS 6∈ G). Finally, B obtains e = H(m,u)

and returns the plaintext m ∈ {0, 1}n and the signature

(e, s) together with the sender’s public key yS ∈ G if u =

gsy−eS .

• if it does not, B picks a random h R← {0, 1}k, inserts

(u, yu, ., h) into the special list L′
G (so that a subsequent

G-query on (u, yu,DHg(u, yu)) will receive h as an answer),



230 8. JOINT SIGNATURE AND ENCRYPTION

before finishing the job as explained above with the ran-

domly chosen h.

Once A decides that the first stage is over, she outputs messages m0,m1

and a sender’s private key xS ∈ Z
∗
q . The simulator B then responds with

a challenge ciphertext 〈gb, v∗, w∗〉 for random strings v∗ R← {0, 1}k and

w∗ R← {0, 1}n+ℓ.

Clearly, if (m0||g
xS )⊕w∗ and (m1||g

xS )⊕w∗ do not hit the output of

an H ′-query (the probability for this to occur is at most 2qH′/2n+ℓ), the

adversary is very likely to ask for the hash value G(gb, ga, gab) during the

simulation. Such an event, that we call AskG, is easily detected when

answering G-queries. With standard arguments, one can show that in

a real attack, Pr[AskG] is at least ǫ if A’s advantage in definition 8.2 is

ǫ. Besides, as long as A is provided with a consistent view, Pr[AskG] is

the same in the simulation as in the real world.

Post-challenge adversarial queries are handled as above and, as al-

ready argued, the G-simulator must detect the AskG event with over-

whelming probability. At this moment, B obtains the group element gab

that it was looking for.

From a computational point of view, B’s running time is dominated

by qse + qdv multi-exponentiations with 2 elements.

The bound on B’s advantage derives from the fact that the simula-

tion only fails if the random string w∗ chosen in the challenge phase is

such that (mb||g
xS )⊕ w∗ collides with the output of a H ′-query. �

The proof of signature unforgeability can be obtained using the fork-

ing lemma [182, 183] in the same way as for the Schnorr signature. In-

deed, definition 8.6 assumes that the adversary’s outcome is a ciphertext

and a receiver’s private key that allows extracting a fake signature on

the plaintext. Replaying the adversary according to the forking tech-

nique thus enables us to obtain two suitably related forged signatures

and solve a discrete logarithm instance which automatically leads to

the solution of a Gap Diffie-Hellman problem. All oracles are simulated

exactly in the same way as in the proof of theorem 8.7. A decision Diffie-

Hellman oracle is necessary to maintain the consistency of the simulation

and that is why the signature unforgeability (loosely) relies on the Gap

Diffie-Hellman assumption instead of the discrete logarithm problem as

in the Schnorr signature.
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The ciphertext anonymity property can be proved in the same way

as the message confidentiality under the Gap Diffie-Hellman assumption.

Unlike what happens with the q-DH-signcryption scheme, it is very easy

to formally establish the ciphertext authentication property in the sense

of definition 8.7.

Theorem 8.8 Assume that an adversary A has a non-negligible ad-

vantage ǫ in breaking the AUTH-SC-CMA property of SEG-signcryption

when running in a time τ , asking respectively qH , qH′ and qG queries to

random oracles H, H ′ and G, qse signature/encryption queries and qdv

decryption/verification queries. Then there exists a PPT algorithm B to

solve the Gap Diffie-Hellman problem with an advantage

ǫ′ > ǫ−
1

2k

when running in a time τ ′ < τ +O((qse+qdv)τexp) where τexp is the cost

of a group exponentiation.

Proof. Let (g, ga, gb,ODDH) denote algorithm B’s input. The adver-

sary is initialized with the public keys yS = ga and yR = gb for which

the private keys are implicitly set to xS = a and xR = b. She at-

tempts to produce a non-trivially obtained ciphertext from the sender

of public key yS to the receiver of public key yR. Throughout the sim-

ulation, she is provided with an oracle access to the private key op-

erations (namely signature/encryption and decryption/verification ora-

cles) pertaining to both pkS and pkR. All random oracles as well as

oracles Sign/Encrypt(., xS , .), Decrypt/Verify(., xS) Sign/Encrypt(., xR, .)

and Decrypt/Verify(., xR) are simulated exactly as in the proof of theo-

rem 8.7. When handling queries to the Sign/Encrypt(., xS , .) oracle, the

simulator B additionally stores in a dedicated list Lsig the generated

triples (u, e, s) ∈ G×Z
∗
q ×Z

∗
q , where u = gs(yS)−e, which are simulated

Schnorr signatures properly encrypted in returned ciphertexts.

Eventually, A halts and outputs a ciphertext 〈u∗, v∗, w∗〉. Under the

(unknown) private key skR = b, the latter is assumed to decrypt into a

valid messsage-signature pair for the public key yS = ga.

Assuming that A is unable to non-trivially produce a ciphertext

containing a valid message-signature pair without knowing the private

key xS = a (the existential signature unforgeability property precludes
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this possibility), the ciphertext 〈u∗, v∗, w∗〉 necessarily results from a re-

encryption of a Schnorr signature that A extracted from a ciphertext

returned by the Sign/Encrypt(., xS , .) oracle. Hence, the special list Lsig

contains at least a triple (u∗, s, e) for which u∗ = gs(yS)−e. In other

words, the simulator B necessarily knows at least one of the q distinct

representations of u∗ in the base (g, yS).

Moreover, A has to know the hash value G(u∗, yR, u
∗xR) to produce a

proper encryption of the signature (u∗, s, e). With probability 1− 1/2k,

she thus queried the random oracle G(.) on the triple (u∗, gb, u∗b) at

some point of the simulation. For such a query, the simulator B that

must have stored in list LG (that contains information pertaining to

G-queries) an entry (u∗, gb, z∗, h∗, 1) indicating that G(u∗, gb, z∗) = h∗

and z∗ = u∗b = (gb)s(gab)−e. The searched element gab can finally be

extracted as ((gb)s/z∗)1/e.

�

7. Conclusion

This chapter described a security model for signcryption schemes

with ciphertext anonymity. We presented three constructions based on

discrete logarithm related assumptions, each with their own advantages

and disadvantages. Two of them are constructed on pairing-based signa-

ture schemes while the third one is obtained from a careful combination

of the Schnorr signature with an ElGamal like encryption scheme. The

first construction enjoys a near-optimal concrete security but does not

offer noticeable computational savings w.r.t. a sequential composition of

signature and encryption. The second one features less efficient security

reductions under stronger assumptions but it is much more efficient. It

additionally enables short signatures to be detached from ciphertexts,

which appears to be a unique particularity for a signcryption scheme.

The last one can be instantiated with more general groups and is based

on the Schnorr signature. It happens to be the most efficient of our

proposals upon decryption/verification and its property of ciphertext

authentication (which is not relevant for our first scheme) can be for-

mally established. It unfortunately suffers from the disadvantage of a

loose reduction under the non-standard Gap Diffie-Hellman assumption

in its proof of non-repudiation.
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Our three constructions have a great online efficiency for senders.

The last two ones ensure the non-repudiation property only for signa-

tures embedded in ciphertexts rather than for entire ciphertexts. We

indeed believe that the property of signature-unforgeability is sufficient

for all known practical applications. What is more, it is compatible with

the definition of ciphertext unlinkability and allows our second scheme

to provide short detachable signatures.





Conclusions and open problems

This thesis contributed to various uses of bilinear maps in cryptog-

raphy. A large part was dedicated to the area of identity based cryptog-

raphy and the related concept of certificateless cryptography.

The second part of the thesis suggested slight efficiency improve-

ments for the famous identity-based encryption scheme of Boneh and

Franklin. Chapter 4 also showed that it was not trivial to build a cer-

tificateless encryption scheme by combining an IBE system with a tra-

ditional public key encryption scheme. The same chapter described a

random oracle-using generic construction to achieve this goal and sug-

gested a new efficient scheme.

The third part describes a new identity based signature where the

verification algorithm happens to be the fastest one among all known

pairing-based IBS schemes. We showed in chapter 7 that our new IBS

construction can be very efficiently turned into a protocol ensuring both

privacy and authentication. The security of the new identity-based sign-

cryption scheme rests on stronger computational assumptions than pre-

vious ones. However, the new scheme significantly outperforms those

previous proposals. Chapter 6 gave an example of an identity-based un-

deniable signature scheme. This construction is not very efficient but,

as far as we know, it is the only known one to be supported by security

proofs.

The last part of the thesis showed several constructions of tradi-

tional (i.e. non-identity-based) cryptosystems providing both confiden-

tiality and authentication and with security proofs under Diffie-Hellman

related assumptions. Our first two constructions rely on bilinear maps.

The second one has the unique property that short signatures can be de-

tached from ciphertexts. Our last scheme is constructed on the Schnorr

signature and does not use bilinear maps. It can thus be instantiated

with more general groups where the discrete logarithm assumption holds.

235
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Although pairings have been used as building blocks in a tremendous

number of cryptographic protocols ([19]), we believe that the topic is far

from being exhausted. Within the area of identity-based cryptography,

several problems have not been really investigated.

One of these issues is the feasibility of a certificateless encryption

scheme admitting a security proof in the strongest model ([6]) without

random oracles. The strength of the certificateless security model ren-

ders really challenging the task of finding a secure CLE scheme without

random oracles.

Regarding certificateless cryptography, it is surprising to note that

essentially nothing has been carried out about certificateless signatures

(CLS). A scheme was suggested by Al-Riyami and Paterson ([6]) without

a security proof nor a formal security model. Yum and Lee ([223]) de-

scribed a generic construction composing identity-based signatures with

traditional digital signatures but they used a security model that we

deem seriously undermined w.r.t. what it should be. We thus plan to

consider a strong model inspired from its analogue ([6]) for the encryp-

tion case and we believe that a variant of the pairing-based CLS scheme

([6]) can be proved to fit our model. This would be an interesting theo-

retical result as the inherent key escrow property is precisely the reason

why people may be reluctant to use identity-based signatures.

Other open problems would be to find an IBE scheme in the standard

model with shorter public parameters than Waters’ proposal ([217]).

We also believe that the proof techniques of Waters can give rise to

an identity-based signature in the standard model. We finally mention

the problem of finding a hierarchical IBE system with security reduc-

tions that do not degrade themselves with the depth of the hierarchy.

Previous constructions ([99, 38]) indeed feature security reductions that

exponentially degrade with this parameter.
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