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t. At FC'05, Dodis and Yum introdu
ed a new 
ryptographi
tool 
alled time 
apsule signature (TCS) whi
h allows signers to gen-erate �future signatures� that only be
ome valid from a spe
i�
 futuretime t (
hosen at signature generation) when a trusted entity (
alledTime Server) dis
loses some trapdoor information for period t. In ad-dition, time 
apsule signatures endow signers with the ability to maketheir signatures valid before the pre-determined time t. Full signaturesthat were 
ompleted by their original issuer should be indistinguishablefrom those that automati
ally be
ame valid after the release of the time-spe
i�
 trapdoor. Time 
apsule signatures were showed to be generi
ally
onstru
tible from another primitive 
alled identity-based trapdoor hard-to-invert relation (ID-THIR). The only known instantiations of the lattereither rely on the idealized random ora
le model or are too ine�
ientfor real-world appli
ations. In this paper, we devise the �rst e�
ient ID-THIR (and thus TCS) 
onstru
tion whi
h is se
ure in the standard model(i.e. without the random ora
le heuristi
).Keywords. time 
apsule signatures, standard model, bilinear maps.1 Introdu
tionIn 2005, Dodis and Yum introdu
ed the 
on
ept of time 
apsule signatures [17℄.Su
h a primitive allows signers to generate signatures that only be
ome validfrom a future moment t when a trusted party (
alled Time Server) dis
loses atrapdoor information asso
iated with period t. This is a

omplished in su
h away that:� Anyone 
an dire
tly as
ertain that a �future signature� will indeed be
omee�e
tive at time t.� In a �pre-hat
hing operation�, the legal signer 
an de
ide to make her futuresignature valid at any time before the pre-determined moment t.� A signature that was not opened by the signer automati
ally be
omes valid(whi
h is 
alled �hat
hing� as opposed to �pre-hat
hing�) at time t whenthe Time Server publishes the relevant trapdoor information Zt allowingsignature holders to 
omplete future signatures generated for that period.
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� The Time Server does not have to intera
t with any user at any time orknow anything about the PKI employed by signers.Regardless of whether a signature was previously opened by the signer or if itwas automati
ally 
ompleted after the release of the trapdoor Zt at time t, noone 
an tell how it be
ame valid: �pre-hat
hed� signatures should be indistin-guishable from �hat
hed� signatures.Similarly to time release primitives des
ribed in [5, 15, 31℄, time 
apsule sig-natures (TCS) follow the server-based approa
h whi
h allows preparing messagesfor a de�nite future and departs from �time-lo
k puzzle� methods addressing re-lated problems [33, 2, 10, 30, 20, 21℄. They imply a minimal assumption on theTime Server that only has to publish some pie
e of information at the beginningof ea
h time period and never has to 
onta
t users.In [17℄, Dodis and Yum gave proper se
urity de�nitions for TCS s
hemes andshowed how to generi
ally 
onstru
t them using newly de�ned primitives 
alledidentity-based trapdoor hard-to-invert relations (ID-THIRs). They also des
ribeda generi
 
onstru
tion of ID-THIR whi
h yields very e�
ient implementations inthe random ora
le model [4℄ but is mu
h less e�
ient in the standard model.These results proved the existen
e of time 
apsule signatures in the random or-a
le model assuming the availability of one-way fun
tions and their existen
e inthe standard model if trapdoor one-way permutations exist.Our 
ontribution. The generi
 
onstru
tion of ID-THIR given in [17℄ relies onnon-intera
tive witness-indistinguishable [18℄ proofs of knowledge. Before there
ent advan
es of Groth, Ostrovsky and Sahai [26, 27℄ in NIZK and witness in-distinguishable proofs, the best known methods [34℄ for 
onstru
ting su
h proofsin the standard model were very ine�
ient. Those dramati
 improvements wereadapted [28℄ so as to provide 
onstant-size - though impra
ti
al - group signa-tures in the standard model. They 
ould be applied to the present 
ontext aswell, but resulting implementations would remain too ine�
ient for pra
ti
aluse. To date, the only pra
ti
al examples of TCS s
hemes resort to the randomora
le methodology [4℄ whi
h is known [13℄ to only provide heuristi
 arguments.The a
hievement of this paper is to des
ribe a very simple and e�
ientidentity-based trapdoor hard-to-invert relation whi
h is not generi
 but is se-
ure in the standard model. It utilizes the Waters signature [36℄ whi
h is knownto be se
ure in the standard model assuming the hardness of the Di�e-Hellmanproblem in groups equipped with bilinear maps. More pre
isely, our ID-THIRturns out to be somehow related to identity-based [35℄ extensions [12, 32℄ ofWaters signatures. This is not very surprising sin
e the generi
 ID-THIR of [17℄was already making use of proofs of knowledge of signatures (whi
h are nothingbut identity-based signatures). The te
hni
al di�
ulty was here to avoid witnessindistinguishable proofs. To do so, our implementation takes advantage of tri
kswhi
h date ba
k to [7℄ and that were used to prove the se
urity of the signaturein [36℄. Thanks to the generi
 transformation of [17℄, our ID-THIR gives rise tothe �rst pra
ti
al time 
apsule signature s
heme whi
h is se
ure in the standard



model (under a well-studied 
omputational assumption).Organization. In the forth
oming se
tions, we �rst re
all fun
tional de�nitionsand se
urity models for identity-based trapdoor hard-to-invert relations and time
apsule signatures. Se
tion 3 then des
ribes our pra
ti
al 
onstru
tion of ID-THIR. Its possible optimizations are dis
ussed in se
tion 4 and the resulting
on
rete TCS s
heme is analyzed in se
tion 5.2 Preliminaries2.1 Identity-Based Trapdoor Hard-to-Invert RelationsA binary relation R is a subset of {0, 1}∗ × {0, 1}∗ and the language LR is theset of elements α for whi
h there exist β su
h that (α, β) ∈ R. The relation Rmust be 
ompletely spe
i�ed by a short des
ription DR. Besides, for all pairs
(α, β) ∈ R, the length |β| of β has to be bounded by a polynomial in |α|. Lastly,it should be easy to de
ide whether a given α lies in LR.De�nition 1. An identity-based trapdoor hard-to-invert relation (ID-THIR) isa family of binary relations R = {Rid|id ∈ IR}, where IR is a �nite set ofindi
es, that are all trapdoor hard-to-invert relations. Namely, for ea
h id ∈ IR,sampling a lo
k/proof pair (c, d) ∈ Rid is easy but �nding a proof for a givenlo
k is hard without knowing the spe
i�
 trapdoor tdid. A master trapdoor mtdRallows extra
ting a trapdoor tdid for ea
h relation Rid ∈ R. An ID-THIR isentirely spe
i�ed by a 5-uple of algorithms (Gen, Sample, Check, Extract, Invert)su
h that:
Gen: given a se
urity parameter k, this algorithm generates R = {Rid|id ∈ IR}and returns its des
ription DR and its master trapdoor mtdR.
Sample: takes as input (DR, id) and returns a randomly sampled lo
k/proof pair

(c, d) ∈ Rid.
Check: veri�es the validity of a lo
k/proof pair (c, d). It returns 1 (a

ept) if

(c, d) ∈ Rid and 0 (reje
t) otherwise.
Extract: is used to extra
t the trapdoor of ea
h relation. Given id ∈ IR and themaster trapdoor mtdR, it returns the trapdoor tdid for the relation Rid.
Invert: allows �nding a proof d for a given lo
k c ∈ LRid

using the trapdoor tdid.If c ∈ LRid
, Inverttdid

(c) outputs a proof d su
h that (c, d) ∈ Rid.Let (c, d) ← SampleDR
(id) and d̃ ← Inverttdid

(c). The 
orre
tness property im-poses that CheckDR,id(c, d) = CheckDR,id(c, d̃) = 1. The ambiguity is the 
om-putational indistinguishability of (c, d) and (c, d̃) even knowing mtdR. Besides,an ID-THIR is said one-way if the following probability is negligible for any PPTalgorithm A = (A1,A2):
Pr[CheckDR,id⋆ (c, d̂) = 1 ∧ id⋆ 6∈ Query(A, OExtract) | (DR, mtdR)← Gen(k);

(id⋆, st)← AOExtract

1 (DR); (c, d)← SampleDR
(id⋆); d̂← AOExtract

2 (DR, c, st)]



where OExtract is an ora
le simulating the trapdoor extra
tion algorithm Extract,
Query(A, OExtract) is the set of queries made by A to the latter ora
le and ststands for the state information passed by A1 to A2. The soundness propertystates that the following property is negligible for any algorithm B:

Pr[CheckDR,id⋆ (c, d̃) = 0 ∧ Rid⋆ ∈ R ∧ c ∈ LRid⋆ | (DR, mtdR)← Gen(k);

(c, id⋆)← B(DR); tdid⋆ ← ExtractmtdR
(id⋆); d̃← Inverttdid⋆ (c)]An ID-THIR is said se
ure if it meets the above four requirements.Intuitively, the one-wayness property 
aptures that it should be 
omputation-ally infeasible to open a given lo
k without the trapdoor of the 
orrespondingrelation even after having seen trapdoors for polynomially-many other relations.The soundness is the impossibility of 
oming up with a lo
k (for some relation)that 
annot be opened into a valid lo
k/proof pair using the relevant trapdoor.Dodis and Yum showed in [17℄ that an ID-THIR exists in the random ora
lemodel if a one-way fun
tion exists. Their 
onstru
tion relies on the Fiat-Shamirheuristi
 [19℄ and non-intera
tive witness indistinguishable [18℄ proofs of knowl-edge. Instead of a Fiat-Shamir like proof, their method 
an be implemented withnon-intera
tive witness indistinguishable proofs of knowledge (with a 
ommonreferen
e string) that do not involve random ora
les. However, the best knownte
hnique [34℄ for 
onstru
ting su
h proofs uses trapdoor one-way permutationsand is very ine�
ient. Therefore the existen
e of identity-based trapdoor hard-to-invert relations in the standard model, whi
h requires the existen
e of trapdoorone-way permutations [17℄, is 
urrently mainly of theoreti
al interest.2.2 Time Capsule SignaturesDe�nition 2. A time 
apsule signature (TCS) 
onsists of a 8-uple of PPT al-gorithms (SetupTS, SetupUser, TSig, TVer, TRelease, Hatch, PreHatch, Ver).

SetupTS: is an algorithm run by the Time Server. Given a se
urity parameter
k, it returns a publi
/private key pair (TPK, TSK).

SetupUser: is run by ea
h signer. Given a se
urity parameter k, it returns apubli
/private key pair for the signer (PK, SK).
TSig: is the time 
apsule signature generation algorithm. It takes as input

(m, SK, TPK, t), where t is the time from whi
h the signature be
omes valid.It produ
es a future signature σ′
t.

TVer: is the time 
apsule signature veri�
ation algorithm. It takes as input a
5-uple (m, σ′

t, PK, TPK, t) and returns either 1 (a

ept) or 0 (reje
t).
TRelease: is the time release algorithm run by the Time Server. At the beginningof period t, it uses TSK to 
ompute and publish Zt = TRelease(t, TSK). Notethat the Time Server never intera
ts with any user at any time.
Hatch: is run by any party to open a valid time 
apsule signature that be
amemature. Given (m, σ′

t, PK, TPK, t) and the time-spe
i�
 trapdoor Zt as inputs,it returns a hat
hed signature σt.



PreHatch: is run by the signer to open a valid time 
apsule signature whi
h isnot mature yet. It takes as input (m, σ′
t, PK, TPK, t) and the signer's privatekey SK as inputs and outputs a pre-hat
hed signature σt.

Ver: is used to verify hat
hed or pre-hat
hed signatures. Given (m, σt, PK, TPK, t),it returns 1 (a

ept) or 0 (reje
t).The 
orre
tness imposes that TVer(m, TSig(m, SK, TPK, t), PK, TPK, t) = 1 and
Ver(m, σt, PK, TPK, t) = 1 if σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)or σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK). Ambiguity requires the dis-tribution of �hat
hed signatures� σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)to be 
omputationally indistinguishable from that of �pre-hat
hed signatures�
σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK) even knowing TSK.As explained in [17℄, the se
urity of time 
apsule signatures is de�ned in threeaspe
ts: se
urity against the signer, the veri�er and the Time Server. In the fol-lowing notation OTSig is an ora
le simulating the time 
apsule signature genera-tion algorithm TSig, OTR denotes an ora
le simulating the time release algorithm
TRelease and OPreH stands for the pre-hat
hing ora
le emulating PreHatch. Given
(m, t) as input, OTSig returns a time 
apsule signature σ′

t generated on behalfof the signer. Ora
le OPreH takes (m, t, σ′
t) as input and outputs the signer'spre-hat
hed signature σt.Se
urity against the signer. This de�nition means that the signer should beunable to produ
e a time 
apsule signature whi
h looks good to the veri�er but
annot be hat
hed into a full signature by the Time Server. More formally, anyPPT adversary A should have negligible advantage in this experiment.

SetupTS(k)→ (TPK, TSK)

(m, t, σ′
t, PK)← AOTR(TPK)

Zt ← TRelease(t, TSK)

σt ← Hatch(m, σ′
t, PK, TPK, Zt)

Adv(A) = Pr[TVer(m, σ′
t, PK, TPK, t) = 1 ∧ Ver(m, σt, PK, TPK, t) = 0]Se
urity against the veri�er. Informally, the veri�er must be unable to open afuture signature without the help of the signer or the Time Server. We requireany PPT adversary B to have negligible advantage in the next experiment.

SetupTS(k)→ (TPK, TSK)

SetupUser(k)→ (PK, SK)

(m, t, σt)← B
OTR,OTSig,OPreH(TPK, PK)

Adv(A) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ t 6∈ Query(B, OTR)

∧ (m, t, .) 6∈ Query(B, OPreH)]where Query(B, OTR) is the set of queries made to the time release ora
le
OTR and Query(B, OPreH) denotes the set of valid queries to OPreH (i.e. queries
(m, t, σ′

t) for whi
h TVer(m, σ′
t, PK, TPK, t) = 1).



Se
urity against the Time Server. Obviously, the Time Server should not be ableto produ
e a valid hat
hed or pre-hat
hed signature full signature on a message
m without obtaining a time 
apsule signature on m from the signer. Any PPTadversary C must have negligible advantage in the following experiment.

SetupTS∗

(k)→ (TPK, TSK∗)

SetupUser(k)→ (PK, SK)

(m, t, σt)← C
OTSig,OPreH(PK, TPK, TPK∗)

Adv(C) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ (m, .) 6∈ Query(C, OTSig)]where SetupTS∗ denotes a run of SetupTS by a dishonest Time Server, TSK∗ is
C's state after this mali
ious key generation and Query(C, OTSig) stands for theset of queries to the time 
apsule signature ora
le OTSig.2.3 Bilinear MapsGroups (G, GT ) of prime order p are 
alled bilinear map groups if there is amapping e : G×G→ GT with the following properties:1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;2. e�
ient 
omputability for any input pair;3. non-degenera
y: e(g, h) 6= 1GT

whenever g, h 6= 1G.The proto
ol that we have in mind relies on the intra
tability of the followingwell-studied problem in bilinear map groups.De�nition 3. The Computational Di�e-Hellman Problem (CDH) in agroup G = 〈g〉 is to 
ompute gab given (ga, gb). An algorithm (τ, ε)-breaks theCDH assumption if it solves a CDH instan
e with probability ε in time τ .2.4 The Waters SignatureWe re
all the des
ription of the signature s
heme of [36℄ whi
h is existentiallyunforgeable in the standard model under the CDH assumption in bilinear mapgroups. In the des
ription hereafter, messages are assumed to be en
oded asbitstrings of length n. In pra
ti
e however, a 
ollision-resistant hash fun
tion
H : {0, 1}∗ → {0, 1}n 
an be applied to sign longer messages.
Keygen(k, n): 
hoose bilinear map groups (G, GT ) of order p > 2k. Randomlypi
k α R← Z∗

p, as well as g, g2
R← G and a ve
tor u = (u′, u1, . . . , un) ∈ Gn+1of random group elements. The publi
 key is PK = (n, G, GT , g, g1, g2, u, W )with g1 = gα and W = e(g1, g2). The private key is SK = α.

Sign(m, α): parse m as m1 . . .mn with mi ∈ {0, 1} for all i ∈ {1, . . . , n}. Asignature of m is produ
ed by pi
king r R← Z∗
p and setting σ = (σ1, σ2) with

σ1 = gα
2 · (u

′ ·
∏n

i=1 umi

i )r and σ2 = gr.
Verify(m, σ, PK): a purported signature σ = (σ1, σ2) on m = m1 . . . mn is a
-
epted if

e(σ1, g) = W · e
(

u′ ·

n
∏

i=1

umi

i , σ2

)

.



3 An E�
ient ID-THIR in the Standard ModelIn this se
tion, we present an identity-based trapdoor hard-to-invert relationbased on the Waters signature. More pre
isely, it uses a 2-level hierar
hi
alextension [22, 29℄ of the latter independently des
ribed in [12, 32℄ and whi
his intentionally made existentially (but not universally) forgeable here.In a nutshell, sampling a random lo
k/proof pair for some relation Rid isdone by generating a signature (d1, d2, d3) on some arti�
ial random �message� cin the name of the identity id. The sampling algorithm uses the te
hnique of thesimulator in the se
urity proof of [36℄ to handle signing queries without knowingthe private key. Generating a proof for any given lo
k c is easily a
hieved usingthe private key for the identity id.
Gen(k, n): this algorithm 
hooses bilinear map groups (G, GT ) of order p > 2kand a generator g ∈ G. It 
omputes g1 = gα for a random α R← Z∗

p. Next,it 
hooses g2
R← G, 
omputes W = e(g1, g2) and pi
ks a random ve
tor u =

(u′, u1, . . . , un) R← Gn+1 whi
h allows de�ning a fun
tion F : {0, 1}n → G as
F (id) = u′ ·

n
∏

j=1

u
ij

jwhere id = i1 . . . in and ij ∈ {0, 1} for all j. For an identity id ∈ IR = {0, 1}n,the relation Rid is de�ned as the set of pairs (

c, (d1, d2, d3)
)

∈ G× G3 su
hthat
e(d1, g) = W · e(F (id), d2) · e(c, d3) (1)The master trapdoor is mtdR = gα

2 and the family of relations R is entirelydes
ribed by
DR = {n, G, GT , g, g1, g2, u, W,Rid, IR}.

Sample(DR, id): to generate a random lo
k/proof pair (

c, (d1, d2, d3)
)

∈ G×G3,this algorithm 
ondu
ts the following steps.1. Choose j1, j2
R← Z∗

p and 
ompute c = gj1
2 gj2 .2. Pi
k r, s R← Z∗

p and 
ompute d1 = cs · g
−j2/j1
1 · F (id)r.3. Set d2 = gr and d3 = gs · g

−1/j1
1 .If we de�ne s̃ = s− α

j1
, we observe that

d1 = gα
2 · F (id)r · cs̃, d2 = gr, d3 = gs̃. (2)

CheckDR,id(c, d): parse d as (d1, d2, d3). Return 1 if
e(d1, g) = W · e(F (id), d2) · e(c, d3)and 0 otherwise.

ExtractmtdR
(id): given mdtR = gα

2 , a trapdoor for id ∈ {0, 1}n is extra
ted byrandomly 
hoosing r R← Z
∗
p and returning tdid = (t1, t2) = (gα

2 · F (id)r, gr).



Inverttdid
(c): parse tdid as (t1, t2). Choose random r′, s R← Z∗

p and return
(d1, d2, d3) = (t1 · F (id)r′

· cs, t2 · g
r′

, gs) = (gα
2 · F (id)r′′

· cs, gr′′

, gs).with r′′ = r + r′.We now analyze the four se
urity properties of the above s
heme.Corre
tness. It is 
lear that lo
k/proof pairs (c, d̃) where d̃ = Inverttdid
(c) satisfyequation (1) sin
e e(t1, g) = W · e(F (id), t2) for all trapdoors tdid = (t1, t2) pro-du
ed by Extract. From (2), it follows that equation (1) is also satis�ed by all pairs

(c, d) produ
ed by Sample(DR, id). Now, we 
he
k that elements (

c, (d1, d2, d3)
)generated by Sample are a
tually distributed a

ording to (2). Indeed, sin
e

c = gj1
2 gj2 , we have

d1 = cs · g
−j2/j1
1 · F (id)r = cs̃ ·

(

gj1
2 gj2

)α/j1
· g

−j2/j1
1 · F (id)r = gα

2 · c
s̃ · F (id)r

d3 = gs · g
−1/j1
1 = gs̃.The sampling algorithm uses the strategy (borrowed from the Boneh-Boyenframework [7℄) of the simulator answering signing queries in the proof of theWaters s
heme [36℄.Ambiguity. Sampled pairs (

c, (d1, d2, d3)
) 
learly have exa
tly the same distri-bution as pairs (

c, (d̃1, d̃2, d̃3)
) when (d̃1, d̃2, d̃3) = Inverttdid

(c).Soundness. It dire
tly derives from the fa
t that any given c ∈ G 
an be �signed�using the trapdoor for the relation Rid (whi
h is a private key for the identity
id in [12, 32℄).One-wayness. The next theorem shows that our ID-THIR is one-way if Waterssignatures are existentially unforgeable under 
hosen-message atta
ks [24℄.Theorem 1. An atta
ker breaking the one-wayness property of our ID-THIRin the sense of de�nition 1 implies a 
hosen-message atta
ker with the sameadvantage and running in 
omparable time for Waters signatures.Proof. Let A = (A1,A2) be an adversary with advantage ε against the one-wayness property. We 
onstru
t a forger F using A to forge a signature using a
hallenger CH answering signing queries.Algorithm F �rst obtains a publi
 key PK = (n, G, GT , g, g1, g2, u, W ) fromits 
hallenger CH and sends A an input DR 
onsisting of PK, IR = {0, 1}n anda des
ription of Rid for id ∈ IR.Whenever A1 asks OExtract for the trapdoor of a relation Rid for some identity
id ∈ IR, F asks its 
hallenger CH for a signature of the message id and relays theanswer to A1. After polynomially-many queries to OExtract, A1 
omes up withan identity id⋆ that was never queried to OExtract. At this stage, F generatesa uniformly distributed lo
k c = gω for a random ω R← Z∗

p. In parti
ular c



has the same distribution as lo
ks generated by Sample. On input of c and thestate information transmitted by A1, A2 issues new queries to OExtract whi
h alltrigger a signing query from F to CH. Eventually, A2 is expe
ted to output aproof (d1, d2, d3) su
h that
e(d1, g) = W · e(F (id⋆), d2) · e(g

ω, d3)whi
h 
an be re-written as
e(d1 · d

−ω
3 , g) = W · e(F (id⋆), d2).Hen
e, the pair (σ1 = d1 · d

−ω
3 , σ2 = d2) passes the veri�
ation test of Waterssignatures. It is thus a valid forgery sin
e id⋆ was not queried for signature by

F as it may not have been queried to OExtract by A1 or A2 at any time. ⊓⊔Together with se
urity results of [36℄, theorem 1 implies the following 
orollary.Corollary 1. Assuming that an adversary A breaks the one-wayness of our
ID-THIR with advantage ε when running in time τ and making qtd trapdoorqueries, there is an algorithm B that (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥
ε

4qtd(n + 1)
τ ′ ≤ t + O(qtdτexp),

τexp denoting the time 
omplexity of an exponentiation in G.4 Shorter Publi
 Keys for Small Identity Spa
esThe ID-THIR 
onstru
tion of se
tion 3 assumes a spa
e of identities IR = {0, 1}nwhere n 
an be as large as 160. In some appli
ations, this spa
e is quite likelyto be mu
h smaller. With time 
apsule signatures for instan
e, it is reasonableto settle for initializing the s
heme in expe
tation of 230 time periods.In this 
ase, the fun
tion F : {0, 1}n → G 
an be repla
ed with Bonehand Boyen's sele
tive-ID se
ure �hash� F (id) = g
H(id)
2 h [7℄ where h ∈R G and

H : {0, 1} → Z∗
p is a 
ollision-resistant hash fun
tion. This modi�
ation resultsin mu
h shorter publi
 parameters as a single group element h ∈ G supersedesthe ve
tor u. The resulting ID-THIR remains one-way under the Di�e-Hellmanassumption but the proof of one-wayness requires the Di�e-Hellman solver toguess whi
h identity id⋆ will be atta
ked by A beforehand.Theorem 2. If an adversary A breaks the one-wayness of the modi�ed ID-THIRwith probability ǫ in time τ , the CDH problem 
an be (τ ′, ǫ′)-solved where τ ′ ≈ τand ǫ′ = ǫ/|IR|.Proof. We outline an algorithm B solving a CDH instan
e (ga, gb) using A asa subroutine. To do so, B �rst pi
ks ρ R← Z∗

p and 
hooses id⋆ R← IR as a guessfor the identity to be atta
ked by A. Publi
 parameters are de�ned as g1 = ga,
g2 = gb and h = g−I⋆

2 gρ, where I⋆ = H(id⋆) ∈ Z∗
p, so that F (id) = g

H(id)−I⋆

2 gρ.



Trapdoor queries for identities id 6= id⋆ ∈ IR 
an be answered by 
hoosing
s R← Z∗

p and returning
(t1, t2) = (F (id)s · g

−ρ/(I−I⋆)
1 , gs · g

−1/(I−I⋆)
1 )with I = H(id) ∈ Z∗

p. The pair (t1, t2) has the 
orre
t distribution sin
e
(t1, t2) = (ga

2 · F (id)s̃, gs̃)with s̃ = s− a/(I − I⋆).When A issues her 
hallenge query, B fails if the target identity is not id⋆.Otherwise, it pi
ks a random ω R← Z
∗
p and responds with the 
hallenge c = gω.A su

essful atta
ker A is then expe
ted to output a triple (d1, d2, d3) satisfying

e(d1, g) = W · e(gρ, d2) · e(g
ω, d3)whi
h implies e(d1 ·d

−ρ
2 ·d

−ω
3 , g) = e(g1, g2) and yields the solution d1 ·d

−ρ
2 ·d

−ω
3that B was after. ⊓⊔Sin
e qtd < 230 is a reasonable upper bound frequently en
ountered in theliterature, the modi�ed s
heme should be preferred whenever |IR| < 230.5 E�
ient TCS s
hemes in the Standard ModelThe generi
 
onstru
tion [17℄ of se
ure TCS from any ID-THIR is very simple anddoes not involve random ora
les. It requires an ordinary digital signature s
heme

Σ = (Keygen, Sign, Verify) and an ID-THIR (Gen, Sample, Check, Extract, Invert).The signer generates a key pair (PK, SK)← Σ.Keygen(k) while the Time Serverruns Gen(k) to produ
e (DR, mtdR) and sets (TPK, TSK) = (DR, mtdR).To produ
e a time 
apsule signature on a message m for time t, the signersamples a random lo
k/proof pair (c, d) for the relation Rt 
orresponding tothe �identity� t ∈ IR. The future signature 
onsists of c and the output σ of
Σ.SignSK(m||c||t) whi
h 
an be veri�ed by running Σ.VerifyPK(m||c||t, σ). Thesigner also remembers d whi
h is used for pre-hat
hing. The time release algo-rithm simply uses the master trapdoor TSK = mtdR to generate a trapdoor
Zt = tdRt

= ExtractmtdR
(t) for the �identity� t. Given a future signature 〈c, σ〉,the hat
hing algorithm uses Zt = tdRt

to 
ompute a proof d̃ for the lo
k c. Uponveri�
ation of a hat
hed or pre-hat
hed signature 〈(c, d), σ〉, the veri�er a

eptsif Σ.VerifyPK(m||c||t, σ) and CheckDR,t(c, d) both return 1 and reje
ts otherwise.5.1 A Con
rete S
hemeThe s
heme des
ribed below is an example of 
on
rete TCS in the standardmodel. It 
ombines our ID-THIR s
heme with Waters signatures. That is why allparties use 
ommon publi
 parameters in
luding the des
ription of bilinear mapgroups (G, GT ) of order p > 2k. In pra
ti
e however, signers are free to 
hoosetheir own parameters independently of the Time Server: they 
an use any se
uredigital signature in the standard model su
h as Cramer-Shoup [16℄.



SetupTS(k, n): the Time Server 
hooses a generator g ∈ G. It 
omputes gv = gαvfor a random αv
R← Z∗

p. Next, it 
hooses g′v
R← G, 
omputes Wv = e(gv, g

′
v)and sele
ts a random ve
tor v = (v′, v1, . . . , vn) R← Gn+1 de�ning a fun
tion

Fv : {0, 1}n → G : t→ Fv(t) = v′·
∏n

j=1 v
tj

j where t = t1 . . . tn and tj ∈ {0, 1}for all j. The Time Server's private key is TSK = g′v
αv and the publi
 key is

TPK = {n, G, GT , g, gv, g
′
v, v, Wv}.

SetupUser(k, n): the user pi
ks αu
R← Z∗

p, g′u
R← G and a random (n + 1)-ve
tor

u = (u′, u1, . . . , un) ∈ Gn+1 whi
h de�nes the fun
tion Fu : {0, 1}n → G as
Fu(m) = u′ ·

∏n
j=1 u

mj

j where m = m1 . . . mn and mj ∈ {0, 1} for all j. A
ollision-resistant hash fun
tion H : {0, 1}∗ → {0, 1}n is also 
hosen. Theprivate key is SK = g′u
αu . The publi
 key is PK = (n, g, gu, g′u, u, Wu, H)with gu = gαu and Wu = e(gu, g′u).

TSig(m, t): the signer �rst generates a pair (

c, (d1, d2, d3)
)

∈ G × G3 followingthese steps.1. Choose j1, j2
R← Z∗

p and 
ompute c = g′j1v gj2 .2. Pi
k r, s R← Z∗
p and 
ompute d1 = cs · g

−j2/j1
v · Fv(t)r.3. Set d2 = gr and d3 = gs · g

−1/j1
v .Then, he 
omputes m = H(m||c||t) ∈ {0, 1}n and

σ = (σ1, σ2) =
(

g′αu
u · Fu(m)ru , gru

)for a randomly 
hosen ru
R← Z∗

p. He outputs σ′
t = 〈(σ1, σ2), c〉 and stores thetriple (d1, d2, d3) for later use.

TVer(m, σ′
t, PK, TPK, t): parse σ′

t as 〈(σ1, σ2), c〉 and PK as (n, g, gu, g′u, u, Wu, H).Che
k that c ∈ G and return 0 otherwise. Return 1 if
e(σ1, g) = Wu · e(Fu(m), σ2)with m = H(m||c||t) ∈ {0, 1}n.

TRelease(t, TSK): given TSK = g′v
αv , the Time Server pi
ks rv

R← Z∗
p andreturns Zt = (g′v

αv · Fv(t)rv , grv).
Hatch(σ′

t, Zt): parse σ′
t as 〈(σ1, σ2), c〉 and Zt as (z1, z2) = (g′v

αv · Fv(t)
rv , grv).Pi
k r′v, s and 
ompute

(d̃1, d̃2, d̃3) = (z1 · Fv(t)r′

v · cs, z2 · g
r′

v , gs) = (g′v
αv · Fv(t)r′′

v · cs, gr′′

v , gs)where r′′v = rv + r′v. The hat
hed signature is
σt = 〈(σ1, σ2), c, (d̃1, d̃2, d̃3)〉

PreHatch(σ′
t, d): parse σ′

t as 〈(σ1, σ2), c〉 and d as (d1, d2, d3), return the openedsignature σt = 〈(σ1, σ2), c, (d1, d2, d3)〉.



Ver(m, σt, PK, TPK, t): parse σt as 〈(σ1, σ2), c, (d1, d2, d3)〉, the signer's publi
key PK as (n, g, gu, g′u, u, Wu, H) and TPK as (n, g, gv, g
′
v, v, Wv). Return 1 if

e(d1, g) = Wv · e(Fv(t), d2) · e(c, d3) (3)
e(σ1, g) = Wu · e(Fu(m), σ2) (4)where m = H(m||c||t) ∈ {0, 1}n.We note that the latter veri�
ation algorithm 
an be optimized as follows. In-stead of sequentially verifying relations (3) and (4), the veri�er 
an randomly
hoose β1, β2

R← Z∗
p and a

ept the signature if

1

W β1
v ·W

β2
u

·
e(g, dβ1

1 · σ
β2

1 )

e(Fv(t), d
β1

2 ) · e(c, dβ1

3 ) · e(Fu(m), σβ2

2 )
= 1GT

.Indeed, if we raise both members of (3) and (4) to the powers β1 and β2 re-spe
tively, we observe that the above veri�
ation test fails with overwhelmingprobability if either (3) or (4) does not hold. A produ
t of four pairings (whi
h ismu
h faster to 
ompute than a sequen
e of 4 independent pairings as dis
ussedin [25℄) su�
es to 
he
k both 
onditions.As explained in [17℄, the un
onditional se
urity against the signer followsfrom the 
orre
tness and soundness properties of the ID-THIR s
heme. Theorem
2 in [17℄ shows that a su

essful 
heating veri�er obtaining a full signature with-out the help of the Time Server or the signer implies a su

essful inverter for theunderlying ID-THIR s
heme. The proof of this fa
t entails a degradation fa
torof qTSig whi
h is the number of queries to OTSig.Corollary 2. If a 
heating veri�er B has advantage ε within running time τwhen making qTR queries to OTR and qTSig queries to OTSig, there is an algorithmthat (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥
ε

4qTRqTSig(n + 1)
τ ′ ≤ t + O

(

(qTR + qTSig

)

τexp),where τexp is the time 
omplexity of an exponentiation in G.It was also proved in [17℄ that a su

essful dishonest Time Server implies a
hosen-message atta
ker breaking the underlying signature s
heme with the sameadvantage. Together with results from [36℄, this yields the following 
orollarywhi
h 
ompletes the proof that a se
ure and e�
ient time 
apsule signatureexists in the standard model under the Di�e-Hellman assumption.Corollary 3. If a 
heating Time Server C has advantage ε within running time
τ when making qTSig queries to OTSig, there is an algorithm that (τ ′, ε′)-breaksthe CDH assumption where

ε′ ≥
ε

4qTSig(n + 1)
τ ′ ≤ t + O(qTSigτexp),where τexp is the same quantity as in 
orollary 2.



5.2 E�
ien
y Improvements for Smaller Number of PeriodsIn se
tion 5.1, the Time Server performs the setup for a large number of time pe-riods. As dis
ussed in se
tion 4, N < 230 is a smaller but quite realisti
1 numberof time periods. In this 
ase, the Server's publi
 key 
an be shortened by repla
ingthe Waters �hash� Fv(t) = v′
∏n

j=1 v
tj

j with Fv(t) = g
H(t)
2 h, for a random ele-ment h ∈R G and a 
ollision-resistant hash fun
tion H : {0, 1}⌈log2 N⌉ → Z∗

p. Thedegradation fa
tor of 
orollary 2 be
omes O(N · qTSig) instead of O(qTR · qTSig).We note that signers are free to implement the s
heme with their favouritesigning algorithm and they may prefer using short publi
 keys. In this 
ase,they 
an use the same 
ommon publi
 parameters (G, GT ) with other pairing-based signatures in the standard model. For instan
e, 
ombining the sele
tive-message se
ure signature of [7℄ at the Time Server with Strong Di�e-Hellman-based signatures [6, 23℄ at the signer provides an e�
ient TCS s
heme under theStrong Di�e-Hellman assumption. In this 
ase, we have a tight redu
tion undera stronger assumption in 
orollary 3.5.3 Redu
ing the Publi
 Storage for the Time ServerA short
oming of time 
apsule signatures 
onsidered in se
tions 5.1 and 5.2 isthat Time Servers have to publish and store a number of group elements whi
his linear in the number of past time periods at any time. After n periods havepassed, the server has to publish a bulletin board with O(n) trapdoors.To over
ome this limitation also present in some time release primitives [31,5, 15℄, Boneh et al. [8℄ proposed to use forward-se
ure primitives [1, 3, 14℄ ba
k-wards. Roughly said, forward-se
ure s
hemes prote
t the 
on�dentiality or theauthenti
ity of past 
ommuni
ations by preventing past (but obviously not fu-ture) private keys to be 
omputable from 
urrent ones. Hen
e, to en
rypt amessage for period t in the future, one 
an simply en
ipher it for period N − tusing a forward-se
ure publi
 key en
ryption s
heme [14, 8℄ prepared for N stagesusing the tree-like stru
ture of [14℄. Thanks to the latter, a private key for period
N − t allows anyone to derive keys for stages N − t + 1, . . . , N . In terms of timerelease primitives, the 
urrent private key allows re
overing keys for past periodsso that the publi
 storage of the server never ex
eeds O(log2 N) group elements.It is not hard to see that aforementioned tri
ks apply to our 
ontext fora reasonably small number of time periods. At the server, we simply have torepla
e the sele
tive-message se
ure signature of Boneh-Boyen [7℄ by the hier-ar
hi
al sele
tive-message se
ure signature suggested by the hierar
hi
al IBE of[8℄. It amounts to use the keying te
hnique of a re
ently proposed forward-se
uresignature [11℄ in reverse. To generate a future signature for period t, the signera
tually prepares it for period N − t. At period t, the Time Server only storesthe trapdoor for period t (whi
h is the �forward-se
ure private key� of period
N − t) that allows deriving trapdoors for stages 1, . . . , t− 1.1 For instan
e, a s
heme 
ould be used over more than 2000 years with 2

30 periods ofone minute.



In this 
ase, the se
urity against 
heating veri�ers relies on a variant of theDi�e-Hellman problem whi
h is to 
ompute gaℓ+1 given (g, ga, . . . , gaℓ

) where
ℓ = log2 N .6 Con
lusionIn this paper, we put forth the �rst pra
ti
al 
onstru
tion of time 
apsule signa-ture that provably �ts the se
urity de�nitions of [17℄ without using the randomora
le heuristi
. It stems from an e�
ient example of a re
ently introdu
ed prim-itive whi
h is of independent interest and in turn builds on Waters signaturesand the Di�e-Hellman assumption.We note that time 
apsule signatures with tight redu
tions remain elusive(even in the random ora
le model). Solving this problem would require a new ap-proa
h for 
onstru
ting them sin
e the generi
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tion of ID-THIRs entailsa loss of O(TSig) in the se
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