Practical Time Capsule Signatures in the
Standard Model from Bilinear Maps

Benoit Libert* and Jean-Jacques Quisquater

UCL, Microelectronics Laboratory, Crypto Group
Place du Levant, 3, B-1348, Louvain-La-Neuve, Belgium.

{benoit.libert, jean-jacques.quisquater}@uclouvain.be

Abstract. At FC’05, Dodis and Yum introduced a new cryptographic
tool called time capsule signature (TCS) which allows signers to gen-
erate “future signatures” that only become valid from a specific future
time ¢ (chosen at signature generation) when a trusted entity (called
Time Server) discloses some trapdoor information for period ¢. In ad-
dition, time capsule signatures endow signers with the ability to make
their signatures valid before the pre-determined time ¢. Full signatures
that were completed by their original issuer should be indistinguishable
from those that automatically became valid after the release of the time-
specific trapdoor. Time capsule signatures were showed to be generically
constructible from another primitive called ¢dentity-based trapdoor hard-
to-invert relation (ID-THIR). The only known instantiations of the latter
either rely on the idealized random oracle model or are too inefficient
for real-world applications. In this paper, we devise the first efficient ID-
THIR (and thus TCS) construction which is secure in the standard model
(i.e. without the random oracle heuristic).

Keywords. time capsule signatures, standard model, bilinear maps.

1 Introduction

In 2005, Dodis and Yum introduced the concept of time capsule signatures [17].
Such a primitive allows signers to generate signatures that only become valid
from a future moment ¢ when a trusted party (called Time Server) discloses a
trapdoor information associated with period ¢t. This is accomplished in such a
way that:

— Anyone can directly ascertain that a “future signature” will indeed become
effective at time ¢.

— In a “pre-hatching operation”, the legal signer can decide to make her future
signature valid at any time before the pre-determined moment ¢.

— A signature that was not opened by the signer automatically becomes valid
(which is called “hatching” as opposed to “pre-hatching”) at time ¢ when
the Time Server publishes the relevant trapdoor information Z; allowing
signature holders to complete future signatures generated for that period.

* This author acknowledges the DGTRE’s First Europe Program of the Walloon
Region in Belgium for his financial support.

— The Time Server does not have to interact with any user at any time or
know anything about the PKI employed by signers.

Regardless of whether a signature was previously opened by the signer or if it
was automatically completed after the release of the trapdoor Z; at time ¢, no
one can tell how it became valid: “pre-hatched” signatures should be indistin-
guishable from “hatched” signatures.

Similarly to time release primitives described in [5,15,31], time capsule sig-
natures (TCS) follow the server-based approach which allows preparing messages
for a definite future and departs from “time-lock puzzle” methods addressing re-
lated problems [33,2,10,30,20,21]. They imply a minimal assumption on the
Time Server that only has to publish some piece of information at the beginning
of each time period and never has to contact users.

In [17], Dodis and Yum gave proper security definitions for TCS schemes and
showed how to generically construct them using newly defined primitives called
identity-based trapdoor hard-to-invert relations (ID-THIRs). They also described
a generic construction of ID-THIR which yields very efficient implementations in
the random oracle model [4] but is much less efficient in the standard model.
These results proved the existence of time capsule signatures in the random or-
acle model assuming the availability of one-way functions and their existence in
the standard model if trapdoor one-way permutations exist.

Our contribution. The generic construction of ID-THIR given in [17] relies on
non-interactive witness-indistinguishable [18] proofs of knowledge. Before the
recent advances of Groth, Ostrovsky and Sahai [26,27] in NIZK and witness in-
distinguishable proofs, the best known methods [34] for constructing such proofs
in the standard model were very inefficient. Those dramatic improvements were
adapted [28] so as to provide constant-size - though impractical - group signa-
tures in the standard model. They could be applied to the present context as
well, but resulting implementations would remain too inefficient for practical
use. To date, the only practical examples of TCS schemes resort to the random
oracle methodology [4] which is known [13] to only provide heuristic arguments.

The achievement of this paper is to describe a very simple and efficient
identity-based trapdoor hard-to-invert relation which is not generic but is se-
cure in the standard model. It utilizes the Waters signature [36] which is known
to be secure in the standard model assuming the hardness of the Diffie-Hellman
problem in groups equipped with bilinear maps. More precisely, our ID-THIR
turns out to be somehow related to identity-based [35] extensions [12,32] of
Waters signatures. This is not very surprising since the generic ID-THIR of [17]
was already making use of proofs of knowledge of signatures (which are nothing
but identity-based signatures). The technical difficulty was here to avoid witness
indistinguishable proofs. To do so, our implementation takes advantage of tricks
which date back to [7] and that were used to prove the security of the signature
in [36]. Thanks to the generic transformation of [17], our ID-THIR gives rise to
the first practical time capsule signature scheme which is secure in the standard

model (under a well-studied computational assumption).

Organization. In the forthcoming sections, we first recall functional definitions
and security models for identity-based trapdoor hard-to-invert relations and time
capsule signatures. Section 3 then describes our practical construction of ID-
THIR. Its possible optimizations are discussed in section 4 and the resulting
concrete TCS scheme is analyzed in section 5.

2 Preliminaries

2.1 Identity-Based Trapdoor Hard-to-Invert Relations

A binary relation R is a subset of {0,1}* x {0,1}* and the language Lp is the
set of elements « for which there exist § such that (o, 8) € R. The relation R
must be completely specified by a short description Dg. Besides, for all pairs
(o, B) € R, the length |3] of 8 has to be bounded by a polynomial in |«|. Lastly,
it should be easy to decide whether a given « lies in Lg.

Definition 1. An identity-based trapdoor hard-to-invert relation (ID-THIR) is
a family of binary relations R = {Riq4|id € Ir}, where Ix is a finite set of
indices, that are all trapdoor hard-to-invert relations. Namely, for each id € I,
sampling a lock/proof pair (¢,d) € Riq is easy but finding a proof for a given
lock is hard without knowing the specific trapdoor td;q. A master trapdoor mtdg
allows extracting a trapdoor td;q for each relation R;q € R. An ID-THIR is
entirely specified by a 5-uple of algorithms (Gen,Sample, Check, Extract, Invert)
such that:

Gen: given a security parameter k, this algorithm generates R = {R;qlid € I}
and returns its description D and its master trapdoor mtdyg.

Sample: takes as input (Dg,id) and returns a randomly sampled lock/proof pair
(C, d) € Riq-

Check: verifies the validity of a lock/proof pair (c,d). It returns 1 (accept) if
(¢,d) € Rig and 0 (reject) otherwise.

Extract: is used to extract the trapdoor of each relation. Given id € Ir and the
master trapdoor mtdg, it returns the trapdoor td;q for the relation R;q.

Invert: allows finding a proof d for a given lock ¢ € Lg,, using the trapdoor td;q.
If c € Lg,,, Inverty,,(c) outputs a proof d such that (c,d) € Riq.

Let (c,d) < Samplep, , (id) and d — Invertey,(c). The correctness property im-

poses that Checkp, ia(c,d) = Checkpy, sa(c,d) = 1. The ambiguity is the com-
putational indistinguishability of (c,d) and (c,d) even knowing mtdg. Besides,
an ID-THIR is said one-way if the following probability is negligible for any PPT

algorithm A = (Aq, Az):

Pr[Checkp, .. (c,d) =1 A id* & Query(A, Oaract) | (Dr, mtdg) < Gen(k);
(id*, st) — A== (Dg); (c,d) — Samplep, (id*); d — A9="*(Dg,c, st)]

where Opyiract 15 an oracle simulating the trapdoor extraction algorithm Extract,
Query(A, Oxtract) 1s the set of queries made by A to the latter oracle and st
stands for the state information passed by Ay to As. The soundness property
states that the following property is negligible for any algorithm B:

Pr[CheCkDR,id* (C, d) =0 A Rg«- € R N c€ ACRM* | (DR, mth) — Gen(k);
(c,id*) « B(DR); tdig < ExtraCtmedy, (id*); d « Inverty_, (c)]

An ID-THIR is said secure if it meets the above four requirements.

Intuitively, the one-wayness property captures that it should be computation-
ally infeasible to open a given lock without the trapdoor of the corresponding
relation even after having seen trapdoors for polynomially-many other relations.
The soundness is the impossibility of coming up with a lock (for some relation)
that cannot be opened into a valid lock/proof pair using the relevant trapdoor.

Dodis and Yum showed in [17] that an ID-THIR exists in the random oracle
model if a one-way function exists. Their construction relies on the Fiat-Shamir
heuristic [19] and non-interactive witness indistinguishable [18] proofs of knowl-
edge. Instead of a Fiat-Shamir like proof, their method can be implemented with
non-interactive witness indistinguishable proofs of knowledge (with a common
reference string) that do not involve random oracles. However, the best known
technique [34] for constructing such proofs uses trapdoor one-way permutations
and is very inefficient. Therefore the existence of identity-based trapdoor hard-to-
invert relations in the standard model, which requires the existence of trapdoor
one-way permutations [17], is currently mainly of theoretical interest.

2.2 Time Capsule Signatures

Definition 2. A time capsule signature (TCS) consists of a 8-uple of PPT al-
gorithms (Setup'>, SetupY*®", TSig, TVer, TRelease, Hatch, PreHatch, Ver).

SetupTS 1 is an algorithm run by the Time Server. Given a security parameter
k, it returns a public/private key pair (TPK, TSK).

Setupuse': is Tun by each signer. Given a security parameter k, it returns a
public/private key pair for the signer (PK, SK).

TSig: is the time capsule signature generation algorithm. It takes as input
(m,SK, TPK,t), where t is the time from which the signature becomes valid.
It produces a future signature oy.

TVer: is the time capsule signature verification algorithm. It takes as input a
5-uple (m, o;, PK, TPK,t) and returns either 1 (accept) or O (reject).

TRelease: is the time release algorithm run by the Time Server. At the beginning
of period t, it uses TSK to compute and publish Z, = TRelease(t, TSK). Note
that the Time Server never interacts with any user at any time.

Hatch: is run by any party to open a valid time capsule signature that became
mature. Given (m, o;, PK, TPK,t) and the time-specific trapdoor Z; as inputs,
it returns a hatched signature oy.

PreHatch: is run by the signer to open a valid time capsule signature which is
not mature yet. It takes as input (m, o, PK, TPK,t) and the signer’s private
key SK as inputs and outputs a pre-hatched signature oy.

Ver: is used to verify hatched or pre-hatched signatures. Given (m, oy, PK, TPK| t),
it returns 1 (accept) or 0 (reject).

The correctness imposes that TVer(m, TSig(m,SK, TPK,t),PK, TPKt) = 1 and

Ver(m, oy, PK, TPK,t) = 1 if oy = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Z;)

or o = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK). Ambiguity requires the dis-

tribution of “hatched signatures” o = Hatch(m, TSig(m, SK, TPK,t), PK, TPK, Z;)
to be computationally indistinguishable from that of “pre-hatched signatures”
ot = PreHatch(m, TSig(m, SK, TPK, t),SK, TPK) even knowing TSK.

As explained in [17], the security of time capsule signatures is defined in three
aspects: security against the signer, the verifier and the Time Server. In the fol-
lowing notation Ors;jg is an oracle simulating the time capsule signature genera-
tion algorithm TSig, Otr denotes an oracle simulating the time release algorithm
TRelease and Opyey stands for the pre-hatching oracle emulating PreHatch. Given
(m,t) as input, Otsig returns a time capsule signature o; generated on behalf
of the signer. Oracle Open takes (m,t, o) as input and outputs the signer’s
pre-hatched signature o;.

Security against the signer. This definition means that the signer should be
unable to produce a time capsule signature which looks good to the verifier but
cannot be hatched into a full signature by the Time Server. More formally, any
PPT adversary A should have negligible advantage in this experiment.

Setup"> (k) — (TPK, TSK)
(m, t, 0}, PK) «— A9®(TPK)
Z; «— TRelease(t, TSK)
ot < Hatch(m, o7, PK, TPK, Z;)
Adv(A) = Pr[TVer(m, o, PK,TPK,t) =1 A Ver(m,o:, PK, TPK,t) = 0]

Security against the verifier. Informally, the verifier must be unable to open a
future signature without the help of the signer or the Time Server. We require
any PPT adversary B to have negligible advantage in the next experiment.

Setup" (k) — (TPK, TSK)
Setup”**' (k) — (PK, SK)
(m, t,01) « BOTROTse:Orreti (TPK | PK)
Adv(.A) Pr[Ver(m, o, PK, TPK,t) =1 A t & Query(B,OtRr)
A (myt,.) & Query(B, Opren)]
where Query(B,Otr) is the set of queries made to the time release oracle

O1r and Query(B, Opren) denotes the set of valid queries to Opren (i.€. queries
(m,t,o}) for which TVer(m, o}, PK, TPK,t) = 1).

Security against the Time Server. Obviously, the Time Server should not be able
to produce a valid hatched or pre-hatched signature full signature on a message
m without obtaining a time capsule signature on m from the signer. Any PPT
adversary C must have negligible advantage in the following experiment.

Setup'® (k) — (TPK, TSK*)
Setup”**" (k) — (PK, SK)
(m,t,0,) « COmsiwOrer (PK, TPK, TPK*)
Adv(C) = Pr[Ver(m,o:,PK,TPK,t) =1 A (m,.) & Query(C, Otsig)]

where SetupTS* denotes a run of SetupTS by a dishonest Time Server, TSK* is
C’s state after this malicious key generation and Query(C, Otsjg) stands for the
set of queries to the time capsule signature oracle OTsjg.

2.3 Bilinear Maps

Groups (G,Gr) of prime order p are called bilinear map groups if there is a
mapping e : G x G — G with the following properties:

1. bilinearity: e(g®, h®) = e(g, h)® for any (g,h) € G x G and a,b € Z;

2. efficient, computability for any input pair;

3. non-degeneracy: e(g, h) # lg, whenever g, h # 1g.

The protocol that we have in mind relies on the intractability of the following
well-studied problem in bilinear map groups.

Definition 3. The Computational Diffie-Hellman Problem (CDH) in a
group G = (g) is to compute g*° given (g%, g°). An algorithm (7,e)-breaks the
CDH assumption if it solves a CDH instance with probability € in time 7.

2.4 The Waters Signature

We recall the description of the signature scheme of [36] which is existentially
unforgeable in the standard model under the CDH assumption in bilinear map
groups. In the description hereafter, messages are assumed to be encoded as
bitstrings of length n. In practice however, a collision-resistant hash function
H :{0,1}* — {0,1}" can be applied to sign longer messages.

Keygen(k,n): choose bilinear map groups (G, Gr) of order p > 2¥. Randomly
pick a <~ Z%, as well as g, go <~ G and a vector T = (v, u1, ..., u,) € G"!
of random group elements. The public key is PK = (n, G, Gr, g, g1, g2, @, W)
with g1 = ¢® and W = e(g1, ¢2). The private key is SK = a.

Sign(m,): parse m as my...m, with m; € {0,1} for all ¢ € {1,...,n}. A
signature of m is produced by picking r & Z,, and setting o = (01,02) with
o1 =99 (' -T],u™)" and oo = g¢".

Verify(m, o, PK): a purported signature ¢ = (01,02) on m = my...m, is ac-
cepted if

n

e(o1,9) =W -e(u - Hu;’”,ag).

=1

3 An Efficient ID-THIR in the Standard Model

In this section, we present an identity-based trapdoor hard-to-invert relation
based on the Waters signature. More precisely, it uses a 2-level hierarchical
extension [22,29] of the latter independently described in [12,32] and which
is intentionally made existentially (but not universally) forgeable here.

In a nutshell, sampling a random lock/proof pair for some relation R;q is
done by generating a signature (dq, dz, d3) on some artificial random “message” ¢
in the name of the identity id. The sampling algorithm uses the technique of the
simulator in the security proof of [36] to handle signing queries without knowing
the private key. Generating a proof for any given lock c is easily achieved using
the private key for the identity id.

Gen(k,n): this algorithm chooses bilinear map groups (G, Gr) of order p > 2*
and a generator g € G. It computes g; = g for a random « < Zy,. Next,

it chooses g2 <~ G, computes W = e(g1, g2) and picks a random vector 7 =
(W u1, ... up) <= G which allows defining a function F : {0,1}" — G as

F(id) = - Hu;]
j=1

where id = i1 ...1, and i; € {0, 1} for all j. For an identity id € Ir = {0,1}",
the relation R;q4 is defined as the set of pairs (c, (dq,d2, d3)) € G x G3 such
that

e(di,g) =W -e(F(id),ds) - e(c,d3) (1)

The master trapdoor is mtdg = g5 and the family of relations R is entirely
described by
Dz = {nv Gv GT) 9,91, 92,4, Wa 7?fid; IR}

Sample(Dx,id): to generate a random lock/proof pair (c, (d1,da, dg)) € GxG3,
this algorithm conducts the following steps.
1. Choose ji, jo <= Z% and compute ¢ = g5 g7
2. Pick r, s <~ Z% and compute dy = c* - g;h/jl - F(id)".
3. Set do = ¢" and ds = gs-gfl/h.
If we define § = s — %, we observe that

dy =95 -F@Ed)"-¢*, da=g", ds=g°. (2)
Checkpy, id(c, d): parse d as (di,ds, ds). Return 1 if
e(di,g) =W - e(F(id), d2) - e(c, d3)

and 0 otherwise.

Extractmtdy (id): given mdtg = g%, a trapdoor for id € {0,1}" is extracted by
randomly choosing r <~ Z3 and returning td;q = (t1,t2) = (95 - F(id)", g").

Inverty,, (c): parse td;q as (t1,t2). Choose random 1/, s <~ Z, and return

(d17 d27 d3) = (ﬁl : F(zd)T, : Csu to - gr’,gs) = (gg : F(id)r” : Csugr”ags)'
with v’/ =r + 7.
We now analyze the four security properties of the above scheme.

Correctness. It is clear that lock/proof pairs (¢, d) where d = Inverty, , (c) satisfy
equation (1) since e(t1,g) = W - e(F(id), t2) for all trapdoors td;q = (¢1,t2) pro-
duced by Extract. From (2), it follows that equation (1) is also satisfied by all pairs
(¢, d) produced by Sample(Dg,id). Now, we check that elements (c, (d1, da, dg))
generated by Sample are actually distributed according to (2). Indeed, since
c = g3'g’2, we have

dy =c .g;j2/j1 - F(id)" = et (gglgjz)a/jl 'g;j2/j1 - F(id)" = g% - . F(id)"

s -1/ s

ds=g 9. = 4"
The sampling algorithm uses the strategy (borrowed from the Boneh-Boyen
framework [7]) of the simulator answering signing queries in the proof of the
Waters scheme [36].

Ambiguity. Sampled pairs (c, (dq,da, d3)) clearly have exactly the same distri-
bution as pairs (c, (d1,dz,d3)) when (di,ds,ds) = Inverty,, (c).

Soundness. It directly derives from the fact that any given ¢ € G can be “signed”
using the trapdoor for the relation R;q (which is a private key for the identity
id in [12, 32]).

One-wayness. The next theorem shows that our ID-THIR is one-way if Waters
signatures are existentially unforgeable under chosen-message attacks [24].

Theorem 1. An attacker breaking the one-wayness property of our ID-THIR
in the sense of definition 1 implies a chosen-message attacker with the same
advantage and running in comparable time for Waters signatures.

Proof. Let A = (A1, A2) be an adversary with advantage ¢ against the one-
wayness property. We construct a forger F using A to forge a signature using a
challenger CH answering signing queries.

Algorithm F first obtains a public key PK = (n,G, Gr, g, 91, 92,4, W) from
its challenger CH and sends A an input Dg consisting of PK, Ir = {0,1}" and
a description of R;4 for id € Ig.

Whenever A; asks Ogytract for the trapdoor of a relation R;4 for some identity
id € Ir, F asks its challenger CH for a signature of the message id and relays the
answer to A;. After polynomially-many queries to Ogytract; A1 comes up with
an identity id* that was never queried to Ogxiract- At this stage, F generates
a uniformly distributed lock ¢ = ¢ for a random w & Zy,. In particular ¢

has the same distribution as locks generated by Sample. On input of ¢ and the
state information transmitted by Ay, As issues new queries to Ogytract Which all
trigger a signing query from F to CH. Eventually, As is expected to output a
proof (dy,ds,ds) such that

e(dlug) =W- G(F(ld*), d2) : e(gw’ d3)
which can be re-written as
e(dl ’ d;wag) =W- E(F(’Ld*), d2)

Hence, the pair (01 = di - d5“, 02 = d2) passes the verification test of Waters
signatures. It is thus a valid forgery since id* was not queried for signature by
F as it may not have been queried to Ogxtract by A1 or As at any time. O

Together with security results of [36], theorem 1 implies the following corollary.

Corollary 1. Assuming that an adversary A breaks the one-wayness of our

ID-THIR with advantage € when running in time 7 and making g trapdoor

queries, there is an algorithm B that (7/,&’)-breaks the CDH assumption where
, €

> — T <t + O(qdTesp),
= 4Qtd(n+1) = (qtd p)

Texp denoting the time complexity of an exponentiation in G.

4 Shorter Public Keys for Small Identity Spaces

The ID-THIR construction of section 3 assumes a space of identities Ix = {0,1}"
where n can be as large as 160. In some applications, this space is quite likely
to be much smaller. With time capsule signatures for instance, it is reasonable
to settle for initializing the scheme in expectation of 230 time periods.

In this case, the function F : {0,1}" — G can be replaced with Boneh
and Boyen’s selective-ID secure “hash” F(id) = gf(ld)h [7] where h €g G and
H :{0,1} — Z; is a collision-resistant hash function. This modification results
in much shorter public parameters as a single group element i € G supersedes
the vector w. The resulting ID-THIR remains one-way under the Diffie-Hellman
assumption but the proof of one-wayness requires the Diffie-Hellman solver to
guess which identity id* will be attacked by A beforehand.

Theorem 2. If an adversary A breaks the one-wayness of the modified ID-THIR
with probability € in time 7, the CDH problem can be (7', €')-solved where 7/ ~ T
and € = ¢/|IR|.

Proof. We outline an algorithm B solving a CDH instance (g, ¢®) using A as
a subroutine. To do so, B first picks p & Z,, and chooses id* & Ix as a guess
for the identity to be attacked by A. Public parameters are defined as g; = g%,
g2 = g% and h = gQ_I*gp, where I* = H(id*) € Zj, so that F(id) = gf(“i)_l*g”.

Trapdoor queries for identities id # id* € Iz can be answered by choosing
s <~ Z% and returning

(t17t2) - (F(Zd)s . gl_p/(l_l*)7gs . gl—l/(l—l*))
with [= H(id) € Z;. The pair (t1,t2) has the correct distribution since

(t1,t2) = (g5 - F(id)®, g°)

with §=s—a/(I — I*).

When A issues her challenge query, B fails if the target identity is not id*.
Otherwise, it picks a random w & Z,, and responds with the challenge ¢ = g*.
A successful attacker A is then expected to output a triple (d1, da, ds) satisfying

e(di,g) =W -e(g”,d2) - e(g”, d3)

which implies e(dy -dy” - d5“, g) = e(g1, g2) and yields the solution d; - d5” - d3*
that B was after. O

Since g;q < 230 is a reasonable upper bound frequently encountered in the
literature, the modified scheme should be preferred whenever |Iz| < 230,

5 Efficient TCS schemes in the Standard Model

The generic construction [17] of secure TCS from any ID-THIR is very simple and
does not involve random oracles. It requires an ordinary digital signature scheme
Y = (Keygen, Sign, Verify) and an ID-THIR (Gen, Sample, Check, Extract, Invert).
The signer generates a key pair (PK, SK) « X.Keygen(k) while the Time Server
runs Gen(k) to produce (Dgr,mtdg) and sets (TPK, TSK) = (Dg, mtdg).

To produce a time capsule signature on a message m for time ¢, the signer
samples a random lock/proof pair (c,d) for the relation R; corresponding to
the “identity” ¢ € Ig. The future signature consists of ¢ and the output o of
X.Signgk (m|c||t) which can be verified by running X .Verifypy(m||c||t, o). The
signer also remembers d which is used for pre-hatching. The time release algo-
rithm simply uses the master trapdoor TSK = mtdg to generate a trapdoor
Zy = tdgr, = Extractmudy (t) for the “identity” ¢t. Given a future signature {(c, o),
the hatching algorithm uses Z; = tdg, to compute a proof d for the lock c. Upon
verification of a hatched or pre-hatched signature ((c, d), o), the verifier accepts
it X Verifypy (m||c||t, o) and Checkp,, +(c,d) both return 1 and rejects otherwise.

5.1 A Concrete Scheme

The scheme described below is an example of concrete TCS in the standard
model. It combines our ID-THIR scheme with Waters signatures. That is why all
parties use common public parameters including the description of bilinear map
groups (G,Gr) of order p > 2. In practice however, signers are free to choose
their own parameters independently of the Time Server: they can use any secure
digital signature in the standard model such as Cramer-Shoup [16].

Setup "> (k, n): the Time Server chooses a generator g € G. It computes g, = g*°
for a random «, - Z%. Next, it chooses g, <~ G, computes W, = ¢(gy, g,,)
and selects a random vector ¥ = (v/,v1,...,v,) <= G"*! defining a function

tv
Fy:{0,1}" = G :t — F,(t) = v"[[}_, v; wheret :atl ...tpandt; € {0,1}
! Gy

for all j. The Time Server’s private key is TSK = ¢/ and the public key is

TPK = {TL?G?GTvgvgvvg'iﬂav Wv}-

SetupY**"(k, n): the user picks oy, & 7, g, <= G and a random (n 4 1)-vector
u = (u,u1,...,u,) € G"! which defines the function F, : {0,1}" — G as
Fu(m) =o' - [[}_, u;-nj where m = my...m, and m; € {0,1} for all j. A
collision-resistant hash function H : {0,1}* — {0,1}™ is also chosen. The
private key is SK = ¢/,“*. The public key is PK = (n, 9, gu, 9., 0, W, H)
with g, = ¢** and W, = e(gu, g.,)-

TSig(m, t): the signer first generates a pair (c, (d1,da, dg)) € G x G? following
these steps.

1. Choose j1, jo <= Z% and compute ¢ = gii* g72.
2. Pick r,s - Z3 and compute d; = ¢* - gu 2 E ()
3. Set d2 = gr and d3 — gS . gv_l/]l-

Then, he computes m = H(ml||c||t) € {0,1}" and
0= (017 02) = (g;au ’ Fu(m)ru,gTu)
for a randomly chosen r, <~ Z. He outputs o; = ((01,02),c) and stores the
triple (d1, da,ds) for later use.
TVer(m, o}, PK, TPK, t): parse o} as ((01,02), ¢) and PK as (n, g, gu, g.,, @, W, H).
Check that ¢ € G and return 0 otherwise. Return 1 if
6(0179) =Wy e(Fu(m)u 02)

with m = H(ml||c||t) € {0,1}".
TRelease(t, TSK): given TSK = g/ “*, the Time Server picks r, <- Zy, and

v

returns Z; = (g, “" - F,(t)™, g™).

Hatch(o7, Z): parse of as ((01,02),c) and Zy as (21, 22) = (¢, - Fo ()™, g™).
Pick 77, s and compute

(Jla JQ? J3) = (Zl ’ F’U(t)T; ’ CS? 22" grgvgs) - (g;av ’ Fv(t)rg : Cs,grgvgs)
where 7!/ = r, + r,. The hatched signature is
01 = ((01,02), ¢, (d1, d2, d3))

PreHatch(o}, d): parse o} as ((01,02),¢) and d as (dy,ds, ds), return the opened
signature oy = {(01,02), ¢, (d1,da,d3)).

Ver(m, oy, PK, TPK, t): parse o as {(01,02),¢,(d1,da,ds)), the signer’s public
key PK as (n, g, gu, 9., u, Wy, H) and TPK as (n, g, gv, 9., 7, W,). Return 1 if
e(dlug) =W, - e(Fv(t)a d2) : e(ca d3) (3)
e(o1,9) = Wy - e(Fu(m), 02) (4)
where m = H(ml||c||t) € {0,1}".

We note that the latter verification algorithm can be optimized as follows. In-
stead of sequentially verifying relations (3) and (4), the verifier can randomly

choose 1, 32 & Z, and accept the signature if

1 e(g. dy" - 07”)

DLW e(Fy(t),d5) - el d]t) - e(Fu(m), 05?)

= 1g,.

Indeed, if we raise both members of (3) and (4) to the powers 1 and (35 re-
spectively, we observe that the above verification test fails with overwhelming
probability if either (3) or (4) does not hold. A product of four pairings (which is
much faster to compute than a sequence of 4 independent pairings as discussed
in [25]) suffices to check both conditions.

As explained in [17], the unconditional security against the signer follows
from the correctness and soundness properties of the ID-THIR scheme. Theorem
2 in [17] shows that a successful cheating verifier obtaining a full signature with-
out the help of the Time Server or the signer implies a successful inverter for the
underlying ID-THIR scheme. The proof of this fact entails a degradation factor
of grsig which is the number of queries to Osjg.

Corollary 2. If a cheating verifier B has advantage € within running time T
when making gtr queries to OTr and gtsig queries to Otsig, there is an algorithm
that (7/,')-breaks the CDH assumption where

, €

€2 —F—— T/§t+0 qTR + qTSig) Texp),
4qTrqTsig(n + 1) (o) Terr)

where Tezp @5 the time complexity of an exponentiation in G.

It was also proved in [17] that a successful dishonest Time Server implies a
chosen-message attacker breaking the underlying signature scheme with the same
advantage. Together with results from [36], this yields the following corollary
which completes the proof that a secure and efficient time capsule signature
exists in the standard model under the Diffie-Hellman assumption.

Corollary 3. If a cheating Time Server C has advantage € within running time
T when making qrsig queries to OTsig, there is an algorithm that (7’,¢’)-breaks
the CDH assumption where

, €

g€ > —70 7 <t + O(qrsigTeap),

where ey, 45 the same quantity as in corollary 2.

5.2 Efficiency Improvements for Smaller Number of Periods

In section 5.1, the Time Server performs the setup for a large number of time pe-
riods. As discussed in section 4, N < 230 is a smaller but quite realistic! number
of time periods. In this case, the Server’s public key can be shortened by replacing
the Waters “hash” F,(t) = o' [[}_, v;j with F,(t) = g @h, for a random ele-
ment h € G and a collision-resistant hash function H : {0, 1} o2 N1 Zy. The
degradation factor of corollary 2 becomes O(N - ¢rsig) instead of O(gTr - grsig)-

We note that signers are free to implement the scheme with their favourite
signing algorithm and they may prefer using short public keys. In this case,
they can use the same common public parameters (G, Gr) with other pairing-
based signatures in the standard model. For instance, combining the selective-
message secure signature of [7] at the Time Server with Strong Diffie-Hellman-
based signatures [6, 23] at the signer provides an efficient TCS scheme under the
Strong Diffie-Hellman assumption. In this case, we have a tight reduction under
a stronger assumption in corollary 3.

5.3 Reducing the Public Storage for the Time Server

A shortcoming of time capsule signatures considered in sections 5.1 and 5.2 is
that Time Servers have to publish and store a number of group elements which
is linear in the number of past time periods at any time. After n periods have
passed, the server has to publish a bulletin board with O(n) trapdoors.

To overcome this limitation also present in some time release primitives [31,
5,15], Boneh et al. [8] proposed to use forward-secure primitives [1, 3, 14] back-
wards. Roughly said, forward-secure schemes protect the confidentiality or the
authenticity of past communications by preventing past (but obviously not fu-
ture) private keys to be computable from current ones. Hence, to encrypt a
message for period ¢ in the future, one can simply encipher it for period N — ¢
using a forward-secure public key encryption scheme [14, 8] prepared for N stages
using the tree-like structure of [14]. Thanks to the latter, a private key for period
N —t allows anyone to derive keys for stages N —t+1,..., N. In terms of time
release primitives, the current private key allows recovering keys for past periods
so that the public storage of the server never exceeds O(log2 N) group elements.

It is not hard to see that aforementioned tricks apply to our context for
a reasonably small number of time periods. At the server, we simply have to
replace the selective-message secure signature of Boneh-Boyen [7] by the hier-
archical selective-message secure signature suggested by the hierarchical IBE of
[8]. It amounts to use the keying technique of a recently proposed forward-secure
signature [11] in reverse. To generate a future signature for period ¢, the signer
actually prepares it for period N — t. At period ¢, the Time Server only stores
the trapdoor for period ¢ (which is the “forward-secure private key” of period
N —t) that allows deriving trapdoors for stages 1,...,¢t — 1.

! For instance, a scheme could be used over more than 2000 years with 23° periods of
one minute.

In this case, the security against cheating verifiers relies on a variant of the

Diffie-Hellman problem which is to compute gaHl given (g,9%, .. .,g“e) where
{=log, N.

6 Conclusion

In this paper, we put forth the first practical construction of time capsule signa-
ture that provably fits the security definitions of [17] without using the random
oracle heuristic. It stems from an efficient example of a recently introduced prim-
itive which is of independent interest and in turn builds on Waters signatures
and the Diffie-Hellman assumption.

We note that time capsule signatures with tight reductions remain elusive
(even in the random oracle model). Solving this problem would require a new ap-
proach for constructing them since the generic construction of ID-THIRs entails
a loss of O(TSig) in the security bound against verifiers.

References

1. R. Anderson. Two Remarks on Public Key Cryptology. Invited lecture, ACM
Conference on Computer and Communications Security, 1997.

2. M. Bellare, S. Goldwasser. Encapsulated key-escrow. In 4" ACM Conference on
Computer and Communications Security, ACM Press, pages 78 91, 1997.

3. M. Bellare, S. Miner. A Forward-Secure Digital Signature Scheme. In Crypto’99,
LNCS 1666, pp. 431-448. Springer, 1999.

4. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In I1st ACM Conference on Computer and Communications
Security, pages 62 73, ACM Press, 1993.

5. I. Blake, A.-C.-F. Chan, Scalable, Server-Passive, User-Anonymous Timed Re-
lease Public Key Encryption from Bilinear Pairing. In ICDCS’05, IEEE Computer
Society, pages 504 513, 2005.

6. D. Boneh, X. Boyen. Short signatures without random oracles. In FEurocrypt’0/,
LNCS 3027, pages 56 73. Springer, 2004.

7. D. Boneh, X. Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Furocrypt’04, LNCS 3027, pp. 223-238. Springer, 2004.

8. D. Boneh, X. Boyen, E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In Eurocrypt’05, LNCS 3494, pp. 440-456. Springer,
2005.

9. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. In
Crypto’01, LNCS 2139, pp. 213-229. Springer, 2001.

10. D. Boneh, M. Naor. Timed Commitments. Advances in Cryptology - Crypto’00,
LNCS 1880, pages 236—254, Springer, 2000.

11. X. Boyen, H. Shacham, E. Shen, B. Waters. Forward-Secure Signatures with Un-
trusted Update. In ACM CCS’06, ACM Press, 2006.

12. X. Boyen and B. Waters. Compact Group Signatures Without Random Oracles.
In Eurocrypt’06, LNCS 4004, pages 427 444, Springer, 2006.

13. R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited.
Journal of the ACM 51(4), pages 557 594, 2004.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

R. Canetti, S. Halevi, J. Katz. A forward secure public key encryption scheme. In
Eurocrypt’03, LNCS 2656, pages 254 271. Springer, 2003.

J. H. Cheon, N. Hopper, Y. Kim, I. Osipkov Timed-Release and Key-Insulated
Public Key Encryption. In Financial Cryptography 2006, to appear in LNCS Se-
ries. Available from http://eprint.iacr.org/2004/231.

R. Cramer and V. Shoup. Signature schemes based on the strong rsa assumption.
In 7" ACM Conference on Computer and Communications Security, pages 46-51.
ACM Press, 1999

Y. Dodis, D.-H. Yum. Time Capsule Signature. In Financial Crypto’05, LNCS
3570, pages 57 71, Springer 2005.

U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In STOC’90, pages 416-426, ACM Press, 1990.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto’86, LNCS 263, pages 186 194. Springer, 1986.
J. Garay, M. Jakobsson, Timed-Release of Standard Digital Signatures, In Financial
Crypto’02, LNCS 2357, pages 168-182, Springer, 2002.

J. Garay, C. Pomerance, Timed Fair Exchange of Standard Signatures, In Financial
Crypto’03, LNCS 2742, pages 190 207, Springer, 2003.

C. Geuntry, A. Silverberg. Hierarchical ID-based cryptography. In Asiacrypt’02,
LNCS 2501, pages 548-566. Springer, 2002.

C. Gentry. Practical Identity-Based Encryption Without Random Oracles. In
Eurocrypt’06, LNCS 4004, pages 445 464. Springer, 2006.

S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. STAM J. Comput. 17(2), pages 281-308, 1988.
R. Granger, N. P. Smart. On Computing Products of Pairings. Cryptology ePrint
Archive: Report 2006/172, 2006.

J. Groth, R. Ostrovsky, A. Sahai. Perfect Non-interactive Zero Knowledge for NP.
In Eurocrypt’06, LNCS 4004, pages 339-358, Springer, 2006.

J. Groth, R. Ostrovsky, A. Sahai. Non-interactive Zaps and New Techniques for
NIZK. Crypto’06, LNCS 4117, pages 97 111, 2006.

J. Groth. Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In Asiacrypt’06, LNCS 4284, pages 444-459, Springer,
2006.

E. Kiltz, A. Mityagin, S. Panjwani, B. Raghavan. Append-Only Signatures. In
ICALP’05, LNCS 3580, pages 434 445, Springer, 2005.

W. Mao. Timed-Release Cryptography. In Selected Areas in Cryptography’01,
LNCS 2259, pages 342-357, Springer, 2001.

M.C. Mont, K. Harrison. M. Sadler, The HP time vault service: Innovating the
way confidential information s disclosed at the right time, in HP Lab. Report
HPL-2002-243, 2002.

K. G. Paterson, J. C. N. Schuldt. Efficient Identity-based Signatures Secure in the
Standard Model. In ACISP’06, LNCS 4058, pages 207 222, Springer, 2006.

R. Rivest, A. Shamir, D.A. Wagner. Time-lock puzzles and timed-release crypto.
MIT LCS Tech. Report MIT/LCS/TR-684, 1996.

A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without inter-
action. In FOCS’92, pages 427-436, 1992.

A. Shamir. Identity based cryptosystems and signature schemes. In Crypto’8,
LNCS 196, pages 47 53. Springer, 1984.

B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt’05, LNCS 3494, pages 114-127. Springer 2005.

