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Abstract. Introduced by Micali, Rabin and Kilian (MRK), the basic primitive of zero-knowledge
sets (ZKS) allows a prover to commit to a secret set S so as to be able to prove statements such as
x ∈ S or x 6∈ S. Chase et al. showed that ZKS protocols are underlain by a cryptographic primitive
termed mercurial commitment. A (trapdoor) mercurial commitment has two commitment procedures.
At committing time, the committer can choose not to commit to a specific message and rather generate
a dummy value which it will be able to softly open to any message without being able to completely open
it. Hard commitments, on the other hand, can be hardly or softly opened to only one specific message.
At Eurocrypt 2008, Catalano, Fiore and Messina (CFM) introduced an extension called trapdoor q-
mercurial commitment (qTMC), which allows committing to a vector of q messages. These qTMC
schemes are interesting since their openings w.r.t. specific vector positions can be short (ideally, the
opening length should not depend on q), which provides zero-knowledge sets with much shorter proofs
when such a commitment is combined with a Merkle tree of arity q. The CFM construction notably
features short proofs of non-membership as it makes use of a qTMC scheme with short soft openings. A
problem left open is that hard openings still have size O(q), which prevents proofs of membership from
being as compact as those of non-membership. In this paper, we solve this open problem and describe
a new qTMC scheme where hard and soft position-wise openings, both, have constant size. We then
show how our scheme is amenable to constructing independent zero-knowledge sets (i.e., ZKS schemes
that prevent adversaries from correlating their set to the sets of honest provers, as defined by Gennaro
and Micali). Our solution retains the short proof property for this important primitive as well.
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1 Introduction

Introduced by Micali, Rabin and Kilian [21], zero-knowledge sets (ZKS) are fundamental secure
data structures which allow a prover P to commit to a finite set S in such a way that, later on, he
will be able to efficiently (and non-interactively) prove statements of the form x ∈ S or x 6∈ S with-
out revealing anything else on S, not even its size. Of course, the prover should not be able to cheat
and prove different statements about an element x. The more general notion of zero-knowledge
elementary databases (ZK-EDB) generalizes zero-knowledge sets in that each element x has an
associated value D(x) in the committed database.

In [21], Micali et al. described a beautiful construction of ZK-EDB based on the discrete loga-
rithm assumption. The MRK scheme relies on the shared random string model (where a random
string chosen by some trusted entity is made available to all parties) and suitably uses an exten-
sion of Pedersen’s trapdoor commitment [23]. In 2005, Chase et al. [10] gave general constructions
of zero-knowledge databases and formalized a primitive named mercurial commitment which they
proved to give rise to ZK-EDB protocols. The MRK construction turned out to be a particular
instance of a general design combining mercurial commitments with a Merkle tree [20], where each
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internal node contains a mercurial commitment to its two children.
Informally speaking, mercurial commitments are commitments where the binding property is

slightly relaxed in that the committer is allowed to softly open a commitment and say “if the com-
mitment can be opened at all, then it opens to that message”. Upon committing, the sender has to
decide whether the commitment will be a hard commitment, that can be hard/soft-opened to only
one message, or a soft one that can be soft-opened to any arbitrary message without committing the
sender to a specific one. Unlike soft commitments that cannot be hard-opened, hard commitments
can be opened either in the soft or the hard manner but soft openings can never contradict hard
ones. In addition, hard and soft commitments should be computationally indistinguishable.

Related Work. Promptly after the work of Micali, Rabin and Kilian, Ostrovsky, Rackoff and
Smith [22] described protocols for generalized queries (beyond membership/non-membership) for
committed databases and also show how to add privacy to their schemes. Liskov [18] also extended
the construction of Chase et al. [10] to obtain updatable zero-knowledge databases in the random
oracle model. Subsequently, Catalano, Dodis and Visconti [8] gave simplified security definitions
for (trapdoor) mercurial commitments and notably showed how to construct them out of one-way
functions in the shared random string model.

In order to extend the properties of non-malleable commitments to zero-knowledge databases,
Gennaro and Micali [15] formalized the notion of independent ZK-EDBs. Informally, this notion pre-
vents adversaries from correlating their committed databases to those produced by honest provers.

More recently, Prabhakaran and Xue [24] defined the related notion of statistically hiding sets
that requires the hiding property of zero-knowledge sets to be preserved against unbounded verifiers.
At the same time, their notion of zero-knowledge was relaxed to permit unbounded simulators.

At Eurocrypt 2008, Catalano, Fiore and Messina [9] addressed the problem of compressing
proofs in ZK-EDB schemes and significantly improved upon earlier proposals.

Our Contribution. The original construction of zero-knowledge database [21, 10] considers a
binary Merkle tree of height O(λ), where λ is the security parameter (in such a way that the upper
bound on the database size is exponential in λ and leaks no information on its actual size). Each
internal node contains a mercurial commitment to (a hash value of) its two children whereas each
leaf node is a mercurial commitment to a database entry. The crucial idea is that internal child-
less nodes contain soft commitments, which keeps the commitment generation phase efficient (i.e.,
polynomial in λ). A proof of membership for the entry x consists of a sequence of hard openings for
commitments appearing in nodes on the path from leaf x to the root. Proofs of non-membership
proceed similarly but rather use soft openings along the path.

As noted in [9], the above approach often results in long proofs, which may be problematic in
applications, like mobile Internet connections, where users are charged depending on the number of
blocks that they send/receive. To address this issue, Catalano, Fiore and Messina (CFM) suggested
to increase the branching factor q of the tree and to use a primitive called trapdoor q-mercurial
commitment (qTMC). The latter is like an ordinary mercurial commitment with the difference
that it allows committing to a vector of q messages at once. With regular mercurial commitments,
increasing the arity of the tree is not appropriate as generating proofs entails to reveal q values
(instead of 2) at each level of the tree. However, it becomes interesting with qTMC schemes that
can be opened with respect to specific vector positions without having to disclose each one of the
q committed messages. The CFM construction makes use of an elegant qTMC scheme where soft
commitment openings consist of a single group element, which yields dramatically shorter proofs of
non-membership. On the other hand, hard openings unfortunately comprise O(q) elements in the
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qTMC scheme described in [9]. For this reason, proofs of membership remain significantly longer
than proofs of non-membership.

In this paper, we solve a problem left open in [9] and consider a primitive called concise mercu-
rial vector commitment, which is a qTMC scheme allowing to commit to a q-vector in such a way
that (1) hard and soft position-wise openings both have constant (i.e., independent of q) size; (2) the
committer can hard-open the commitment at position i ∈ {1, . . . , q} without revealing anything on
messages at other positions in the vector. We describe a simple and natural example of such scheme.
Like the CFM q-mercurial commitment, our realization relies on a specific number theoretic as-
sumption in bilinear groups. Implementing the CFM flat-tree system with our scheme immediately
yields very short proofs of membership and while retaining short proofs of non-membership. Assum-
ing that 2λ is a theoretical bound on the database size, we obtain proofs comprising O(λ/ log(q))
group elements for membership and non-membership. In the CFM system, proofs of membership
grow as O(λ · q/ log(q)), which prevents one from compressing proofs of non-membership without
incurring a blow-up in the length of proofs of membership. Using our commitment scheme, both
kinds of proof can be shortened by increasing q as long as the common reference string (which
has size O(q) as in [9]) is not too large. With q = 128 for instance, proofs do not exceed 2 kB in
instantiations using suitable parameters.

In addition, we also show that our qTMC scheme easily lends itself to the construction of in-
dependent zero-knowledge databases. To construct such protocols satisfying a strong definition of
independence, Gennaro and Micali [15] used multi-trapdoor mercurial commitments that can be
seen as families of mercurial commitments (in the same way as multi-trapdoor commitments [14]
are families of trapdoor commitments). Modulo appropriate slight modifications, our scheme can
be turned into a concise multi-trapdoor qTMC scheme. It thus gives rise to the first ZK-EDB re-
alization that simultaneously provides independence and short proofs.

Organization. Section 2 recalls the definitions of qTMC schemes and zero-knowledge databases.
We describe the new q-mercurial commitment scheme and discuss its efficiency impact in sections
3 and 4. Section 5 finally explains how the resulting ZK-EDB scheme can be made independent.

2 Background

2.1 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable map e : G×G→ GT such
that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and e(g, h) 6= 1GT

whenever g, h 6= 1G. In
this mathematical setting, we rely on a computational assumption previously used in [5, 6].

Definition 1 ([5]). Let G be a group of prime order p and g ∈ G. The q-Diffie-Hellman Ex-
ponent (q-DHE) problem is, given elements (g, g1, . . . , gq, gq+2, . . . , g2q) such that gi = g(αi), for

i = 1, . . . , q, q+ 2, . . . , 2q and where α R← Z
∗
p, to compute the missing group element gq+1 = g(αq+1).

As noted in [6], this problem is not easier than the one used in [5], which is to compute e(g, h)(α
q+1)

on input of the same values and the additional element h ∈ G. The generic hardness of q-DHE is
thus implied by the generic security of the family of assumptions described in [4].

2.2 Trapdoor q-Mercurial Commitments

A trapdoor q-mercurial commitment (qTMC) consists of a set of efficient algorithms (qKeygen,
qHCom, qHOpen, qHVer, qSCom, qSOpen, qSVer, qFake, qHEquiv, qSEquiv) with the following speci-
fications.
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qKeygen(λ, q): takes as input a security parameter λ and the number q of messages that can be
committed to in a single commitment. The output is a pair of public/private keys (pk, tk).

qHCompk(m1, . . . ,mq): takes as input an ordered tuple of messages. It outputs a hard commitment
C to (m1, . . . ,mq) under the public key pk and some auxiliary state information aux.

qHOpenpk(m, i, aux): is a hard opening algorithm. Given a pair (C, aux) = qHCompk(m1, . . . ,mq),
it outputs a hard de-commitment π of C w.r.t. position i if m = mi. If m 6= mi, it returns ⊥.

qHVerpk(m, i,C, π): is the hard verification algorithm. It outputs 1 if π gives evidence that C is a
commitment to a sequence (m1, . . . ,mq) such that mi = m. Otherwise, it outputs 0.

qSCompk(): is a probabilistic algorithm that generates a soft commitment and some auxiliary
information aux. Such a commitment is not associated with a specific sequence of messages.

qSOpenpk(m, i, flag, aux): generates a soft de-commitment (a.k.a. “tease”) τ of C to the message m
at position i. The variable flag ∈ {H,S} indicates whether the state information aux corresponds
to a hard commitment (C, aux) = qHCompk(m1, . . . ,mq) or a soft one (C, aux) = qSCompk(). If
flag = H and m 6= mi, the algorithm returns the error message ⊥.

qSVerpk(m, i,C, τ): returns 1 if τ is a valid soft de-commitment of C to m at position i and 0
otherwise. If τ is valid and C is a hard commitment, its hard opening must be to m at index i.

qFakepk,tk(): is a randomized algorithm that takes as input the trapdoor tk and generates a q-fake
commitment C and some auxiliary information aux. The commitment C is not bound to any
sequence of messages. The q-fake commitment C is similar to a soft de-commitment with the
difference that it can be hard-opened using the trapdoor tk.

qHEquivpk,tk(m1, . . . ,mq, i, aux): is a non-adaptive hard equivocation algorithm. Namely, given

(C, aux) = qFakepk,tk(), it generates a hard de-commitment π for C at the ith position of the
sequence (m1, . . . ,mq). The algorithm is non-adaptive in that the sequence of messages has to
be determined once-and-for-all before the execution of qHEquiv.

qSEquivpk,tk(m, i, aux): is a soft equivocation algorithm. Given the auxiliary information aux re-
turned by (C, aux) = qFakepk,tk(), it creates a soft de-commitment τ to m at position i.

Standard trapdoor mercurial commitments are a special case of qTMC schemes where q = 1.

Correctness. The correctness requirements are similar to those of standard mercurial commit-
ments. For any sequence (m1, . . . ,mq), these statements must hold with overwhelming probability.

- Given a hard commitment (C, aux) = qHCompk(m1, . . . ,mq), for all i ∈ {1, . . . , q}, we must have
qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1 and qSVerpk(mi, i, C, qSOpenpk(mi, i,H, aux)) = 1.

- If (C, aux) = qSCompk(), then qSVerpk(mi, i, C, qSOpenpk(mi, i,S, aux)) = 1 for i = 1, . . . , q.

- Given (C, aux) = qFakepk,tk(), we must have qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1 and
qHVerpk(mi, i, C, qHEquivpk,tk(m1, . . . ,mq, i, aux)) = 1 for all indices i ∈ {1, . . . , q}.

Security. The security properties of a trapdoor q-mercurial commitment are stated as follows:

- q-Mercurial binding: given the public key pk, it should be computationally infeasible to
output a commitment C, an index i ∈ {1, . . . , q} and pairs (m,π), (m′, π′) that satisfy either of
these two conditions which are respectively termed “hard collision” and “soft collision”:

• qHVerpk(m, i,C, π) = 1, qHVerpk(m
′, i, C, π′) = 1 and m 6= m′.

• qHVerpk(m, i,C, π) = 1, qSVerpk(m
′, i, C, π′) = 1 and m 6= m′.
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- q-Mercurial hiding: on input of pk, no PPT adversary can find a tuple (m1, . . . ,mq) and
an index i ∈ {1, . . . , q} for which it is able to distinguish (C, qSOpenpk(mi, i,H, aux)) from
(C ′, qSOpenpk(mi, i,S, aux′)), where (C, aux) = qHCompk(m1, . . . ,mq), (C ′, aux′) = qSCompk().

- Equivocations: given the public key pk and the trapdoor tk, no PPT adversary A should be
able to win the following games with non-negligible probability. In these games, A aims to
distinguish the “real” world from the corresponding “ideal” one. The kind of world that A is
faced with depends on a random b R← {0, 1} flipped by the challenger. If b = 0, the challenger
plays the “real” game and provides A with a real commitment/de-commitment tuple. If b = 1,
the adversary A rather receives a fake commitment and equivocations. More precisely, A is
required to guess the bit b ∈ {0, 1} with no better advantage than 1/2 in the following games:

• q-HHEquivocation: when A chooses a message sequence (m1, . . . ,mq), the challenger
computes (C, aux) = qHCompk(m1, . . . ,mq) if b = 0 and (C, aux) = qFakepk,tk() if b = 1. In
either case, A receives C. When A chooses an index i ∈ {1, . . . , q}, the challenger returns
π = qHOpenpk(mi, i, aux) if b = 0 and π = qHEquivpk,tk(m1, . . . ,mq, i, aux) if b = 1.

• q-HSEquivocation: when A chooses a message sequence (m1, . . . ,mq), the challenger com-
putes (C, aux) = qHCompk(m1, . . . ,mq) if b = 0 and (C, aux) = qFakepk,tk() if b = 1. In either
case, C is given to A who then chooses i ∈ {1, . . . , q}. If b = 0, the challenger replies with
τ = qSOpenpk(mi, i,H, aux). If b = 1, A receives τ = qSEquivpk,tk(mi, i, aux).

• q-SSEquivocation: if b = 0, the challenger creates a soft commitment (C, aux) = qSCompk()
and hands C to A. If b = 1, A rather obtains a fake commitment C, which is obtained
as (C, aux) = qFakepk,tk(). Then, A chooses m ∈ M and i ∈ {1, . . . , q} and gets back
τ = qSOpenpk(m, i,S, aux) if b = 0 and τ = qSEquivpk,tk(m, i, aux) if b = 1.

As noted in [8], giving the trapdoor tk to the adversary at the beginning of each game simplifies the
definitions: security in the sense of the above atomic games then implies security in a more complex
game where the adversary is playing an arbitrary composition of HHE, HSE and SSE games.

As was also pointed out in [8] in the case of ordinary trapdoor mercurial commitments, any
qTMC scheme satisfying the q-HSEquivocation and q-SSEquivocation properties also satisfies the
q-mercurial hiding requirement.

In the following, we say that a qTMC scheme is a concise mercurial vector commitment if
the output sizes of qHOpen and qSOpen do not depend on q and if, when invoked on the index
i ∈ {1, . . . , q}, qHOpen does not reveal any information on messages mj with j 6= i.

2.3 Zero-Knowledge Sets and Databases

An elementary database D (EDB) is a set of pairs (x, y) ⊂ {0, 1}∗×{0, 1}∗, where x is called key and
y is termed value. The support [D] of D is the set of x ∈ {0, 1}∗ for which there exists y ∈ {0, 1}∗
such that (x, y) ∈ D. When x 6∈ [D], one usually writes D(x) = ⊥. When x ∈ [D], the associated
value y = D(x) must be unique: if (x, y) ∈ D and (x, y′) ∈ D, then y = y′. A zero-knowledge
EDB allows a prover to commit to such a database D while being able to non-interactively prove
statements of the form “x ∈ [D] and y = D(x) is the associated value” or “x 6∈ [D]” without
revealing any further information on D (not even the cardinality of [D]). Zero-knowledge sets are
specific ZK-EDBs where each key is assigned the value 1.

The prover and the verifier both take as input a string σ that can be a random string (in which
case, the protocol stands in the common random string model) or have a specific structure (in
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which case we are in the trusted parameters model). An EDB scheme is formally defined by a tuple
(CRS-Gen,P1,P2,V) such that:

- CRS-Gen generates a common reference string σ on input of a security parameter λ.

- P1 is the commitment algorithm that takes as input the database D and σ. It outputs commit-
ment and de-commitment strings (Com,Dec).

- P2 is the proving algorithm that, given σ, the commitment/de-commitment pair (Com,Dec)
and a key x ∈ {0, 1}∗, outputs a proof πx.

- V is the verification algorithm that, on input of σ, Com, x and πx, outputs either y (which must
be ⊥ if x 6∈ [D]) if it is convinced that D(x) = y or bad if it believes that the prover is cheating.

The security requirements are formally defined in appendix A. In a nutshell, they are as follows.
Correctness mandates that honestly generated proofs always satisfy the verification test. Soundness
requires that provers be unable to come up with a key x and convincing proofs πx, π

′
x such that

y = V(σ,Com, x, πx) 6= V(σ,Com, x, πx) = y′. Finally, zero-knowledge means that each proof πx

only reveals the value D(x) and nothing else: for any computable database D, there must exist
a simulator that outputs a simulated reference string σ′ and a simulated commitment Com′ that
does not depend on D. For any key x ∈ {0, 1}∗ and with oracle access to D, the simulator should
be able to simulate proofs πx that are indistinguishable from real proofs.

3 A Construction of Concise qTMC Scheme

Our idea is to build on the accumulator of Camenisch, Kohlweiss and Soriente [6], which is itself
inspired by the Boneh-Gentry-Waters broadcast encryption system [5]. In the former, the public key
comprises a sequence of group elements (g, g1, . . . , gq, gq+2, . . . , g2q), where q is the maximal number

of accumulated values and gi = g(αi) for each i. Elements of V ⊆ {1, . . . , q} are accumulated by
computing V =

∏

j∈V gq+1−j and the witness for the accumulation of i ∈ V consists of the group
element Wi =

∏

j∈V\{i} gq+1−j+i, which always satisfies e(gi, V ) = e(g,Wi) · e(g1, gq).
To obtain a commitment scheme, we modify this construction in order to accumulate messages

mi ∈ Z
∗
p in a position-sensitive manner and we also add some randomness γ ∈ Zp to have a hiding

commitment. More precisely, we commit to (m1, . . . ,mq) by computing V = gγ ·
∏q

j=1 g
mj

q+1−j and
obtain a kind of generalized Pedersen commitment [23]. Thanks to the specific choice of base
elements however, Wi = gγ

i ·
∏q

j=1,j 6=i g
mj

q+1−j+i can serve as evidence that mi was the ith committed
message as it satisfies the relation e(gi, V ) = e(g,Wi) · e(g1, gq)

mi . Moreover, the opening Wi at
position i does not reveal anything about other components of the committed vector, which is a
property that can be useful in other applications.

This commitment can be proved binding under the q-DHE assumption, which would be broken
if the adversary was able to produce two distinct openings of V at position i. It is also a trapdoor
commitment since anyone holding gq+1 = g(αq+1) can trapdoor open a commitment as he likes.

The scheme can further be made mercurial by observing that its binding property disappears if
the verification equation is changed into e(gi, V ) = e(g1,Wi) ·e(g1, gq)

mi . The key idea is then to use
commitments of the form (C, V ) where C = gθ, for some θ ∈ Zp, in hard commitments and C = gθ

1

in soft commitments. The verification equation thus becomes e(gi, V ) = e(C,Wi) · e(g1, gq)
mi .

Description. We assume that committed messages are elements of Z
∗
p. In practice, arbitrary

messages can be committed to by first applying a collision-resistant hash function with range Z
∗
p.
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qKeygen(λ, q): chooses bilinear groups (G,GT ) of prime order p > 2λ and g R← G. It picks α R← Z
∗
p

and computes g1, . . . , gq, gq+2, . . . , g2q, where gi = g(αi) for i = 1, . . . , q, q+2, . . . , 2q. The public

key is defined to be pk = {g, g1, . . . , gq, gq+2, . . . , g2q} and the trapdoor is tk = gq+1 = g(αq+1).

qHCompk(m1, . . . ,mq): to hard-commit to a sequence (m1, . . . ,mq) ∈ (Z∗
p)

q, this algorithm chooses

γ, θ R← Zp and computes the commitment as the pair

C = gθ V = gγ ·
q

∏

j=1

g
mj

q+1−j = gγ · gm1
q · · · g

mq

1 .

The output is (C, V ) and the auxiliary information is aux = (m1, . . . ,mq, γ, θ).

qHOpenpk(mi, i, aux): parses aux as (m1, . . . ,mq, γ, θ) and calculates

Wi =
(

gγ
i ·

q
∏

j=1,j 6=i

g
mj

q+1−j+i

)1/θ
. (1)

The hard opening of (C, V ) consists of π = (θ,Wi) ∈ Zp ×G.

qHVerpk(mi, i, (C, V ), π): parses π as (θ,Wi) ∈ Zp×G and returns 1 if C, V ∈ G and it holds that

e(gi, V ) = e(C,Wi) · e(g1, gq)
mi and C = gθ. (2)

Otherwise, it returns 0.

qSCompk(): chooses θ, γ R← Zp and computes C = gθ
1, V = gγ

1 . The output is (C, V ) and the
auxiliary information is aux = (θ, γ).

qSOpenpk(m, i, flag, aux): if flag = H, aux is parsed as (m1, . . . ,mq, γ, θ). The algorithm returns

⊥ if m 6= mi. Otherwise, it computes the soft opening as Wi =
(

gγ
i ·

∏q
j=1,j 6=i g

mj

q+1−j+i

)1/θ
. If

flag = S, the algorithm parses aux as (θ, γ) and soft-de-commits to m using Wi =
(

gγ
i · g−m

q

)1/θ
.

In either case, the algorithm returns τ = Wi ∈ G.

qSVerpk(m, i, (C, V ), τ): parses τ as Wi ∈ G and returns 1 if and only if it holds that C, V ∈ G

and the first verification equation of (2) is satisfied.

qFakepk,tk(): the fake commitment algorithm chooses θ, γ R← Zp and returns (C, V ) = (gθ, gγ). The
auxiliary information is aux = (θ, γ).

qHEquivpk,tk(m1, . . . ,mq, i, aux): parses aux as (θ, γ) ∈ (Zp)
2. Using the trapdoor tk = gq+1 ∈ G,

it computes Wi =
(

gγ
i · g

−mi

q+1

)1/θ
. The de-commitment consists of π = (θ,Wi).

qSEquivpk,tk(m, i, aux): parse aux as (θ, γ) and returns Wi =
(

gγ
i · g−m

q+1

)1/θ
.

Correctness. In hard commitments, we can check that properly generated hard de-commitments
always satisfy the verification test (2) since

e(gi, V )

e(C,Wi)
= e

(

g(αi), gγ+
∑q

j=1 mj(αq+1−j))/e
(

gθ, g(γ(αi)+
∑q

j=1,j 6=i
mj(α

q+1−j+i))/θ)

= e(g, gγ(αi)+
∑q

j=1 mj(αq+1−j+i))/e(g, gγ(αi )+
∑q

j=1,j 6=i
mj(αq+1−j+i))

= e(g, g)mi(αq+1) = e(g1, gq)
mi .
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As for soft commitments, soft de-commitments always satisfy the first relation of (2) since

e(C,Wi) · e(g1, gq)
mi = e

(

gθ
1, (g

γ
i · g−mi

q )1/θ
)

· e(g1, gq)
mi

= e
(

g1, g
γ
i · g−mi

q

)

· e(g1, gq)
mi = e(gγ

1 , gi) = e(gi, V ).

We finally observe that, in any fake commitment (C, V ) = (gθ, gγ), the hard de-commitment (θ,Wi)
successfully passes the verification test as

e(C,Wi) · e(g1, gq)
mi = e

(

gθ, (gγ
i · g

−mi

q+1 )1/θ
)

· e(g1, gq)
mi

= e
(

g, gγ
i · g

−mi

q+1

)

· e(g1, gq)
mi = e(gi, g

γ) = e(gi, V ).

Security. To prove the security of the scheme, we first notice that it is a “proper” qTMC [8] since,
in hard commitments, the soft de-commitment is a proper subset of the hard de-commitment.

Theorem 1. The above scheme is a secure concise qTMC if the q-DHE assumption holds in G.

Proof. We first show the q-mercurial binding property. Let us assume that, given the public key,
an adversary A is able to generate soft collisions (since the scheme is “proper”, the case of hard
collisions immediately follows). That is, A comes up with a commitment (C, V ) ∈ G

2, an index
i ∈ {1, . . . , q}, a valid hard de-commitment π = (θ,Wi) ∈ Zp × G to mi at position i and a valid
soft de-commitment τ = W ′

i ∈ G to m′
i such that mi 6= m′

i. We must have

e(gi, V ) = e(gθ,Wi) · e(g1, gq)
mi e(gi, V ) = e(gθ ,W ′

i ) · e(g1, gq)
m′

i ,

so that e
(

gθ,Wi/W
′
i

)

= e(g1, qq)
m′

i−mi and e
(

g, (Wi/W
′
i )

θ/(m′
i−mi)

)

= e(g1, gq). Since mi 6= m′
i,

the latter relation implies that gq+1 = (Wi/W
′
i )

θ/(m′
i−mi) is revealed by the soft collision, which

contradicts the q-DHE assumption.
We now turn to the q-HHE, q-HSE and q-SSE equivocation properties (which imply q-mercurial

hiding). A fake commitment has the form (C, V ) = (gθ, gγ) and its hard equivocation to (mi, i) is
the pair

(

θ,Wi = (gγ
i · g

−mi

q+1 )1/θ
)

. For any sequence of messages (m1, . . . ,mq) ∈ (Z∗
p)

q, there always
exists γ′ ∈ Zp such that

V = gγ′ ·
q

∏

j=1

g
mj

q+1−j . (3)

Then, the corresponding hard opening of (C, V ) w.r.t. mi at position i should be obtained as

W ′
i = (gγ′

i ·
∏q

j=1,j 6=i g
mj

q+1−j+i)
1/θ. Since V also equals gγ , if we raise both members of (3) to the

power αi, we find that

gγ
i = gγ′

i ·
q

∏

j=1

g
mj

q+1−j+i.

Therefore, the element Wi = (gγ
i ·g−mi

q+1 )1/θ returned by the hard equivocation algorithm can also be

written Wi = (gγ′

i ·
∏q

j=1,j 6=i g
mj

q+1−j+i)
1/θ. It comes that fake commitments and hard equivocations

have exactly the same distribution as hard commitments and their hard openings.
The q-HSEquivocation property follows from the above arguments (since the scheme is “proper”).

To prove the indistinguishability in the q-SSEquivocation game, we note that fake commitments
(C, V ) = (gθ, gγ) have the same distribution as soft ones as they can be written (C, V ) = (gθ̃

1 , g
γ̃
1 )

where θ̃ = θ/α and γ̃ = γ/α. Their soft equivocation Wi = (gγ
i · g−mi

q+1 )1/θ can be written

(gαγ̃
i · g

−mi

q+1 )1/(αθ̃) = (gγ̃
i · g−mi

q )1/θ̃ and has the distribution of a soft opening. ⊓⊔
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Instantiation with Asymmetric Pairings. It is simple3 to describe the construction in terms
of asymmetric pairings e : G× Ĝ→ GT , where G 6= Ĝ and an isomorphism ψ : Ĝ→ G is efficiently
computable. The public key comprises generators ĝ ∈ Ĝ and ĝi for i = 1, . . . , q, q+ 2, . . . , 2q. Then,
hard (resp. soft) commitments (C, V ) ∈ Ĝ × G are pairs of group elements obtained as C = ĝθ

and V = ψ(ĝ)γ ·
∏q

j=1 ψ(ĝq+1−j)
mj (resp. C = ĝθ

1 and V = ψ(ĝ1)
γ). Hard openings are pairs

(θ,Wi) ∈ Z
∗
p×G, where Wi = ψ(ĝi)

γ/θ ·∏q
j=1,j 6=i ψ(ĝq+1−j+i)

mj/θ and they are verified by checking

that C = ĝθ and e(V, ĝi) = e(Wi, C) · e(ψ(ĝ1), ĝq)
mi . Using the trapdoor ĝq+1, fake commitments

(C, V ) = (ĝθ, ψ(ĝ)γ) can be equivocated by outputting θ and Wi = ψ(ĝi)
γ/θ · ψ(ĝq+1)

−mi/θ.

4 Implications on the Efficiency of ZK-EDBs

The construction [9] of ZK-EDB from qTMC schemes is detailed in appendix B and goes as follows.
Each key x is assigned to a leaf of a q-ary tree of height h (and can be seen as the label of the leaf,
expressed in q-ary encoding), so that qh is the theoretical bound on the size of the EDB.

The committing phase is made efficient by pruning subtrees where all leaves correspond to keys
that are not in the database. Only the roots (called “frontier nodes” and at least one sibling of
which is an ancestor of a leaf in the EDB) of these subtrees are kept in the tree and contain soft
q-commitments. For each key x such that D(x) 6= ⊥, the corresponding leaf contains a standard
hard mercurial commitment to a hash value of D(x). As for remaining nodes, each internal one
contains a hard q-commitment to messages obtained by hashing its children. The q-commitment at
the root then serves as a commitment to the entire EDB.

To convince a verifier that D(x) = v 6= ⊥ for some key x, the prover generates a proof of
membership consisting of hard openings for commitments in nodes on the path connecting leaf x
to the root. At each level of the tree, the q-commitment is hard-opened with respect to the position
determined by the q-ary encoding of x at that level.

To provide evidence that some key x does not belong to the database (i.e., D(x) = ⊥), the
prover first generates the missing portion of the subtree where x lies. Then, it reveals soft openings
for all (hard or soft) commitments contained in nodes appearing in the path from x to the root.

As in the original zero-knowledge EDB construction [21], only storing commitments in subtrees
containing leaves x for which D(x) 6= ⊥ (and soft commitments at nodes that have no descendants)
is what allows committing with complexity O(h · |D|) instead of O(qh).

The advantage of using qTMC schemes and q-ary (with q > 2) trees lies in that proofs can
be made much shorter if, at each level, commitments can be opened w.r.t. the required position
i ∈ {1, . . . , q} without having to reveal q values. The qTMC scheme of [9] features soft openings
consisting of a single group element and, for an appropriate branching factor q, allows reducing
proofs of non-membership by 73% in comparison with [21]. On the other hand, hard openings still
have length O(q) and proofs of membership thus remain significantly longer than proofs of non-
membership. If h denotes the height of the tree, the former consist of h(q+4)+5 elements of G (in
an implementation with asymmetric pairings) while the latter only demand 4h+ 4 such elements.

If we plug our qTMC scheme into the above construction, proofs of membership become essen-
tially as short as proofs of non-membership. At each internal node, each hard opening only requires
to reveal (C, V ) ∈ Ĝ×G and (θ,Wi) ∈ Zp×G. At the same time, proofs of non-membership remain
as short as in [9] since, at each internal node, the prover only discloses (C, V ) and Wi.

3 The security then relies on the hardness of computing ψ(ĝ)(α
q+1) on input of (ĝ, ĝ1, . . . , ĝq, ĝq+2, . . . , ĝ2q) ∈ Ĝ

2q ,

where ĝi = ĝ(αi) for each i.
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To concretely assess proof sizes, we assume (as in [9]) that elements of Ĝ count as two elements

q h Membership Non-Membership Membership in [9]

8 43 220 176 521
16 32 165 132 643
32 26 135 108 941
64 22 115 92 1501
128 19 100 80 2513
256 16 85 68 4165

Fig. 1. Required number of group elements per proof

of G (since their representation is usually twice as large using suitable parameters and optimiza-
tions such as those of [2]), each one of which costs |p| bits to represent. Then, we find that proofs
of membership and non-membership eventually amount to 5h + 5 and 4h + 4 elements of G, re-
spectively. These short hard openings allow us to increase the branching factor of the tree as long
as the length of the common reference string is deemed acceptable.

The table of figure 1 summarizes the proof lengths (expressed in numbers of G elements and
in comparison with [9]) for various branching factors and assuming that qh ≈ 2128 theoretically
bounds the EDB’s size. In the MRK construction, membership (resp. non-membership) can be
proved using 773 (resp. 644) group elements. The best tradeoff achieved in [9] was for q = 8, where
proofs of non-membership could be reduced to 176 elements but proofs of membership still took
521 elements. With q = 8, we have equally short proofs of non-membership and only need 220
elements to prove membership, which improves CFM [9] by about 57% and MRK [21] by 71%.

Moreover, we can shorten both kinds of proof by increasing q: with q = 128 for instance, no
more than 100 group elements (or 13% of the original length achieved in [21]) are needed to prove
membership whereas 2513 elements are necessary in [9]. Instantiating our scheme with Barreto-
Naehrig curves [2] yields proofs of less than 2 kB when q = 128. For such relatively small values of
q, Cheon’s attack [12] does not require to increase the security parameter λ and it is reasonable to
use groups (G, Ĝ) where elements of G have a 161-bit representation.

5 Achieving Strong Independence

In [15], Gennaro and Micali formalized the notion of independent zero-knowledge EDBs which
requires that adversaries be unable to correlate their database to those created by honest provers.

The strongest flavor of independence considers two-stage adversaries A = (A1,A2). First, A1

observes ℓ honest provers’ commitments (Com1, . . . , Comℓ) and queries proofs for keys of her choice
in underlying databases D1, . . . ,Dℓ before outputting her own commitment Com. Then, two copies
of A2 are executed: in the first one, A2 is given oracle access to provers that “open” Comi w.r.t Di

whereas, in the second run, A2 has access to provers for different4 databases D′
i that agree with Di

for the set Qi of queries made by A1. Eventually, both executions of A2 end with A2 outputting a
key x, which is identical in both runs, and a proof πx. The resulting database value D(x) is required
to be the same in the two copies, meaning that it was fixed at the end of the committing stage.

4 For this reason, commitments (Com1, . . . , Comℓ) are produced using the ZK-EDB simulator, whose definition is
recalled in appendix A, as the two executions of A2 proceed as if underlying databases were different.
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In the strongest definition of [15], A1 is allowed to copy one of the honest provers’ commitment
(say Comi) as long as the key x returned by A2 is never queried to Sim2(Sti, Comi) by A1 or A2:
in other words, A2’s answer must be fixed on all values x that were not queried to the ith prover.

Definition 2. [15] A ZK-EDB protocol is strongly independent if, for any polynomial ℓ, any PPT
adversary A = (A1,A2) and any databases D1, . . . ,Dℓ, D

′
1, . . . ,D

′
ℓ, the following probability is

negligible.

Pr
[

(σ, St0)← Sim0(λ); (Comi, Sti)← Sim1(St0) ∀i = 1, . . . , ℓ;

(Com,ω)← ASim
Di(·)
2 (Sti,Comi)

1 (σ,Com1, . . . , Comℓ);

(x, πx)← ASim
Di(·)
2 (Sti,Comi)

2 (σ, ω); (x, π′x)← ASim
D′

i⊣Qi
Di(·)

2 (Sti,Comi)
2 (σ, ω);

(

bad 6= V(σ,Com, x, πx) 6= V(σ,Com, x, π′x) 6= bad
)

∧
(

(∀i : Com 6= Comi)

∨
(

∃i : (Com = Comi) ∧ (x 6∈ Qi ∪Q′
i)

)

)]

,

where Qi (resp. Q′
i) stands for the list of queries made by A1 (resp. A2) to Sim

Di(·)
2 (Sti, Comi)

(resp. Sim
Di(·)
2 (Sti, Comi) and Sim

D′
i⊣Qi

Di(·)

2 (Sti, Comi)) and D′
i ⊣Qi

Di denotes a database that
agrees with D′

i on all keys but those in Qi where it agrees with Di.

An efficient construction of independent ZK-EDB was proved in [15] to satisfy the above definition
under the strong RSA assumption. It was obtained by extending Gennaro’s multi-trapdoor com-
mitment scheme [14] and making it mercurial.

We show how to turn our qTMC scheme into a multi-trapdoor q-mercurial commitment scheme
that yields strongly independent EDBs with short proofs.

Multi-Trapdoor q-Mercurial Commitments. A multi-trapdoor qTMC can be seen as extend-
ing qTMC schemes in the same way as multi-trapdoor commitments generalize ordinary trapdoor
commitments. It can be defined as a family of trapdoor q-mercurial commitments, each member of
which is identified by a string tag and has its own trapdoor tktag. The latter is generated from tag
using a master trapdoor TK that matches the master public key PK.

qKeygen(λ, q): has the same specification as in section 2.2 but, in addition to the master key pair
(PK,TK), it outputs the description of a tag space T .

qHComPK(m1, . . . ,mq, tag): given an ordered tuple (m1, . . . ,mq) and tag ∈ T , this algorithm
outputs a hard commitment C under (PK, tag) and some auxiliary state information aux.

qHOpenPK(m, i, tag, aux): given a pair (C, aux) = qHComPK(m1, . . . ,mq, tag), this algorithm out-
puts a hard de-commitment π of C w.r.t. position i if m = mi. If m 6= mi, it returns ⊥.

qHVerPK(m, i,C, tag, π): outputs 1 if and only if π gives evidence that, under the tag tag, C is
bound to a sequence (m1, . . . ,mq) such that mi = m.

qSComPK(): generates a soft commitment and some auxiliary information aux. Such a commitment
is not associated with any specific messages or tag.

qSOpenPK(m, i, flag, tag, aux): generates a soft de-commitment τ of C to m at position i and
w.r.t. tag. The variable flag ∈ {H,S} indicates whether τ pertains to a hard commitment
(C, aux) = qHComPK(m1, . . . ,mq, tag) or a soft commitment (C, aux) = qSComPK(). If flag = H

and m 6= mi, the algorithm returns ⊥.
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qSVerPK(m, i,C, τ, tag) returns 1 if, under tag ∈ T , τ is deemed as a valid soft de-commitment of
C to m at position i and 0 otherwise.

qTrapGenPK,TK(tag): given a string tag ∈ T , this algorithm generates a tag-specific trapdoor tktag

using the master trapdoor TK.

qFakePK,tktag
(): outputs a q-fake commitment C and some auxiliary state information aux.

qHEquivPK,tktag
(m1, . . . ,mq, i, tag, aux): given (C, aux) = qFakePK,tktag

(), this algorithm generates

a hard de-commitment π for C and tag ∈ T at the ith position of the sequence (m1, . . . ,mq).
The sequence of messages has to be determined once-and-for-all before the execution of qHEquiv.

qSEquivPK,tktag
(m, i, tag, aux): using the trapdoor tktag and the state information aux returned by

(C, aux) = qFakePK,tktag
(), this algorithm creates a soft de-commitment τ to m at position i

and w.r.t. tag ∈ T .

Again, we call such a scheme concise if it satisfies the same conditions as those mentioned at the
end of section 2.2.

The security properties are expressed by naturally requiring the q-mercurial hiding and equivo-
cation properties to hold for each tag ∈ T . In equivocation games, the adversary should be unable
to distinguish the two games even knowing the master trapdoor TK. As for the q-mercurial binding
property, it states that no PPT adversary A should have non-negligible advantage in this game:

q-Mercurial binding game: A chooses strings tag1, . . . , tagℓ ∈ T . Then, the challenger generates
a master key pair (TK,PK)← qKeygen(λ, q) and gives PK to A who starts invoking a trapdoor
oracle T G: the latter receives tag ∈ {tag1, . . . , tagℓ} and returns tktag ← qTrapGenPK,TK(tag).
Eventually, A chooses a family tag⋆ ∈ T \{tag1, . . . , tagℓ} for which she aims to generate a
collision: she wins if she outputs C, an index i ∈ {1, . . . , q} and pairs (m,π), (m′, π′) (resp.
(m,π) and (m′, τ)) such that qHVerPK(m, i,C, tag⋆, π) = 1 and qHVerPK(m′, i, C, tag⋆, π′) = 1
(resp. qHVerPK(m, i,C, tag⋆, π) = 1 and qSVerPK(m′, i, C, tag⋆, τ) = 1) but m 6= m′.

As in [14], the latter definition captures security in a non-adaptive sense in that the adversary
chooses tag1, . . . , tagℓ before seeing the public key PK. As noted in [13, 19] in the case of ordinary
multi-trapdoor commitments, some applications might require to consider a notion of adaptive
security where, much in the fashion of identity-based trapdoor commitments [1, 7], the adversary
can query T G in an adaptive fashion. In the present context, non-adaptive security suffices.

A Construction of Multi-Trapdoor qTMC. The construction combines the qTMC scheme
of section 3 with a programmable hash function HG : T → G and techniques that were introduced
in [3]. Programmable hash functions, as formalized by Hofheinz and Kiltz [17], are designed in
such a way that a trapdoor information makes it possible to relate the output HG(M), which lies
in a group G, to computable values aM , bM ∈ Zp satisfying HG(M) = gaM · hbM . Informally (see
appendix C for a formal definition), a (m,n)-programmable hash function is such that, for any
M1, . . . ,Mm, M ′

1, . . . ,M
′
n such that Mi 6= M ′

j, there is a non-negligible probability that bMi
= 0

and bM ′
j
6= 0 for i = 1, . . . ,m and j = 1, . . . , n. The number theoretic hash function used in [11, 25]

is an example of such a (1, ℓ)-programmable hash function, for some polynomial ℓ.

qKeygen(λ, q): is as in section 3 but the algorithm also chooses a tag space T = {0, 1}L and a
(1, ℓ)-programmable hash function HG : T → G for some polynomials ℓ, L. The public key is
PK = {T , g, g1, . . . , gq, gq+2, . . . , g2q,HG} and the master trapdoor is TK = gq+1 = g(αq+1).
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qHComPK(m1, . . . ,mq, tag): to hard-commit to a sequence (m1, . . . ,mq) ∈ (Z∗
p)

q, this algorithm

chooses γ, θ R← Zp and computes (C, V ) =
(

gθ, gγ ·∏q
j=1 g

mj

q+1−j

)

. The output is (C, V ) and the
auxiliary information is aux = (m1, . . . ,mq, γ, θ).

qHOpenPK(mi, i, tag, aux): parses aux as (m1, . . . ,mq, γ, θ), chooses r R← Z
∗
p and computes

(Wi, Zi) =
(

(

gγ
i ·

q
∏

j=1,j 6=i

g
mj

q+1−j+i ·HG(tag)r
)1/θ

, g−r
)

, (4)

The hard opening of (C, V ) with respect to tag ∈ T is the triple π = (θ,Wi, Zi) ∈ Zp ×G
2.

qHVerPK(mi, i, (C, V ), tag, π): parses π as (θ,Wi, Zi) ∈ Zp × G
2 and returns 1 if C, V ∈ G and

relations (5) are both satisfied. Otherwise, it returns 0.

e(gi, V ) = e(C,Wi) · e(g1, gq)
mi · e(HG(tag), Zi) C = gθ. (5)

qSComPK(): chooses θ, γ R← Zp and computes C = gθ
1, V = gγ

1 . The output is (C, V ) and the
auxiliary information is aux = (θ, γ).

qSOpenPK(m, i, flag, tag, aux): if flag = H, aux is parsed as (m1, . . . ,mq, γ, θ). The algorithm re-
turns ⊥ if m 6= mi. Otherwise, the soft opening τ = (Wi, Zi) is generated as per (4). If flag = S,
the algorithm parses aux as (θ, γ) and soft-decommits to m using

(Wi, Zi) =
(

(

gγ
i · g−m

q ·HG(tag)r
)1/θ

, g−r
1

)

, (6)

where r R← Z
∗
p. In either case, the algorithm returns τ = (Wi, Zi) ∈ G

2.
qSVerpk(m, i, (C, V ), τ, tag): parses τ as (Wi, Zi) ∈ G and returns 1 if and only if C, V ∈ G and

the first verification equation of (5) is satisfied.
qTrapGenPK,TK(tag): given the master trapdoor TK = gq+1, a trapdoor for tag ∈ T is computed

tktag = (ttag,1, ttag,2) = (gq+1 ·HG(tag)s, g−s) for a random s R← Z
∗
p.

qFakePK,tktag
(): outputs a pair (C, V ) = (gθ, gγ), where θ, γ R← Z

∗
p, and retains the state informa-

tion aux = (θ, γ).
qHEquivPK,tktag

(m1, . . . ,mq, i, tag, aux): parses aux as (θ, γ) ∈ (Z∗
p)

2 and the trapdoor tktag as

(ttag,1, ttag,2) ∈ G
2. It picks r R← Z

∗
p and computes

(Wi, Zi) =
(

(

gγ
i · t−mi

tag,1 ·HG(tag)r
)1/θ

, t−mi

tag,2 · g−r
)

.

The de-commitment is π = (θ,Wi, Zi) =
(

θ,
(

gγ
i ·g−mi

q+1 ·HG(tag)r
′)1/θ

, g−r′
)

, where r′ = −smi+r.

qSEquivPK,tktag
(m, i, tag, aux): parse aux as (θ, γ) and computes (Wi, Zi) as in qHEquivPK,tktag

.

Theorem 2. The scheme is a concise multi-trapdoor qTMC if the q-DHE assumption holds.

Proof. Given in appendix D. ⊓⊔

Strongly Independent ZK-EDBs from Multi-Trapdoor qTMC. Following [15], a multi-
trapdoor qTMC can be combined with a digital signature and a collision-resistant hash function
H : {0, 1}∗ → T to give a strongly independent ZK-EDB. To commit to a database D, the prover
first generates a key pair (SK,VK) for an existentially unforgeable (as defined in appendix C)
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signature scheme Σ = (G,S,V) [16]. The commitment string is (Com,VK), where all commitments
are produced using the qTMC family (with q = 1 at the leaves and q > 1 at internal nodes) indexed
by the tag H(VK). To generate a proof for some key x, the prover generates a proof πx (by opening
the appropriate commitments using Dec) and outputs πx and sigx = S(SK, (Com, x)). Verification
entails to check πx and that V(sigx,VK, (Com, x)) = 1. The security proof of this scheme (detailed
in appendix E) is similar to that of theorem 3 in [15].
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A Security Properties of Zero-Knowledge Databases

The completeness, soundness and zero-knowledge properties of ZK-EDBs are formally stated as
follows.

Completeness: For all databases D and for all keys x, it must hold that

Pr
[

σ ← CRS-Gen(λ); (Com,Dec)← P1(σ,D);

πx ← P2(σ,D,Com,Dec, x) : V(σ,Com, x, πx) = D(x)
]

= 1− ν.

for some negligible function ν.
Soundness: For all keys x and for any probabilistic poly-time algorithm P′, the following proba-

bility is negligible:

Pr
[

σ ← CRS-Gen(λ); (Com, x, πx, π
′
x)← P′(σ,D);

V(σ,Com, x, πx) = y 6= bad ∧ V(σ,Com, x, π′x) = y′ 6= bad ∧ (y 6= y′)
]

.

Zero-knowledge: for any PPT adversary A and any efficiently computable database D, there
must exist an efficient simulator (Sim0,Sim1,SimD

2 ) such that the outputs of the following ex-
periments are indistinguishable:

Real experiment:
1. Set σ ← CRS-Gen(λ), (Com,Dec)← P1(σ,D) and s0 = ε, π0 = ε.
2. For i = 1, . . . , n, A outputs (xi, si) ← A(σ,Com, π0, . . . , πi−1, si−1) and obtains a real

proof πi = P2(σ,D,Com,Dec, xi).

The output is (σ, x1, π1, . . . , xn, πn).

Ideal experiment:
1. Set (σ′, St0)← Sim0(λ), (Com′, St1)← Sim1(St0) as well as s0 = ε, π′0 = ε.
2. For i = 1, . . . , n,A outputs (xi, si)← A(σ′, Com′, π′0, . . . , π

′
i−1, si−1) and gets a simulated

proof π′i ← SimD
2 (σ′, St1, xi).

The output of the experiment is (σ′, x1, π
′
1, . . . , xn, π

′
n).

In the above, SimD
2 is an oracle that is permitted to invoke a database oracle D(.) and obtain

values D(x) for the keys x chosen by A.

B Zero-Knowledge Elementary Databases from qTMC Schemes

The common reference string σ = (pk, pkm,H) consists of the public key pk of a trapdoor q-
mercurial commitment scheme QTMC, the public key pkm of an ordinary trapdoor mercurial
commitment MC (which can be an instance of the qTMC with q = 1) and the description of a
collision-resistant hash function H, the domain of which does not include 0.

The notations of this section are close to the ones of [21, 9]: we denote by Th the complete
q-ary tree of height h and qh leaves. If Uh is a universe of size qh, its associated tree Th is obtained
by assigning each element x ∈ Uh to a leaf of Th and by labeling each node using the q-ary
encoding of x ∈ Uh. The label of the root is the empty string ǫ and, if v is a non-leaf node, its
children are labeled as v1, . . . , vq. For each node v, parent(v) denotes v’s father in the tree and,

15



when u = parent(v), indexu(v) is the index of v when numbering u’s children from 1 to q in a
left-to-right order. For each leaf node H(x), we also call PATH(H(x)) the set of nodes on the
path from H(x) to the root, not counting H(x) and ǫ themselves. For any S ⊆ Uh, TREE(S)
denotes the subtree of Th containing nodes on paths that connect elements of S to the root (in
other words, TREE(S) = S ∪ {PATH(v)|v ∈ S}). Also, FRONTIER(S) will be used to denote
the set {v : v 6∈ S ∧ parent(v) ∈ TREE(S)}.

In [9], Catalano et al. generalize the ZK-EDB construction of [10] as follows.

CRS-Gen(λ) : runs (pk, tk) ← qKeygen(λ, q), (pkm, tkm) ← qKeygen(λ, 1) and discards (tk, tkm).
It also chooses a collision-resistant hash function H and sets σ = (pk, pkm,H).

P1(σ,D) : the committer conducts the following steps.

1. Let S = {H(x) : x ∈ Uh s.t. D(x) 6= ⊥} and let T = TREE(S) ∪ FRONTIER(S).

2. For each leaf node H(x) of T , compute

nH(x) =

{

H(y) if D(x) = y
0 if D(x) = ⊥,

compute (CH(x), auxH(x)) = qHCompkm(nH(x)) and set mH(x) = H(CH(x)).
3. For each internal node u ∈ T such that u ∈ FRONTIER(S), set (Cu, auxu) = qSCompk().

4. For each internal node u ∈ TREE(S) and in a bottom-up order, compute a hard q-
commitment (Cu, auxu) = qHCompk(mu1, . . . ,muq) and, if u 6= ǫ, set mu = H(Cu). For
each u ∈ TREE(S), retain the state information auxu.

5. Output the commitment string Com = Cǫ and Dec = {auxu|u ∈ T}.
P2(σ,Com,Dec, x) : to generate a proof for the key x ∈ Uh,

1. If D(x) 6= ⊥, the proof πx consists of commitments and their hard openings for all nodes on
the path from leaf H(x) to the root ǫ:

πx =
{

y,CH(x), qHOpenpkm(H(y), auxH(x)), {Cu, qHOpenpk(mv, i, auxu)}v∈PATH(H(x))

}

,

where u = parent(v) and i = indexu(v).

2. If D(x) = ⊥, the prover checks if H(x) is in the tree T constructed by P1. If not, let w ∈
FRONTIER(S) be the root of the missing subtree of Th containing H(x). Let the prover
construct the subtree rooted at w by executing steps 2 and 4 of P1 for that subtree (instead
of T ). Then, the proof of non-membership consists of commitments and soft-openings for
all nodes on the path from H(x) to the root ǫ:

πx =
{

CH(x), qSOpenpkm(0,H, auxH(x)), {Cu, qSOpenpk(mv, i,H/S, auxu)}v∈PATH(H(x))

}

,

where u = parent(v) and i = indexu(v).

V(σ,Com, x, πx) :

a. If D(x) 6= ⊥, parse πx as
{

y,CH(x),HOH(x), {Cu,HOv}v∈PATH(H(x)),u=parent(v)

}

.

1. Return bad if qHVerpkm(H(y), CH(x),HOH(x)) = 0.
2. Compute mH(x) = H(CH(x)).
3. Let v = parent(H(x)), i = indexv(H(x)). Return bad if qHVerpk(mH(x), i, Cv ,HOv) = 0.
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4. For each v ∈ PATH(H(x)), let u = parent(v) and i = indexu(v). Compute mv = H(Cv)
and return bad if qHVerpk(mv, i, Cu,HOv) = 0.

If none of the above checks failed, return y.

b. If D(x) = ⊥, parse πx as
{

CH(x), SOH(x), {Cu, SOv}v∈PATH(H(x)),u=parent(v)

}

.

1. Return bad if qSVerpkm(0, CH(x), SOH(x)) = 0.
2. Compute mH(x) = H(CH(x)).
3. Let v = parent(H(x)), i = indexv(H(x)). Return bad if qSVerpk(mH(x), i, Cv , SOv) = 0.
4. For each v ∈ PATH(H(x)), let u = parent(v), i = indexu(v) and mv = H(Cv). Return
bad if qSVerpk(mv, i, Cu, SOv) = 0.

If none of the above checks fails, return ⊥ (meaning that x 6∈ [D]).

C Digital Signatures and Programmable Hash Functions

Digital Signatures. A signature scheme consists of a triple of algorithms Σ = (G,S,V) such
that, on input of a security parameter λ, G generates a key pair (SK,VK) while, for any message
M , V(sig,VK,M) outputs 1 whenever sig = S(SK,M) and 0 otherwise.

As in [15], we need existentially unforgeable digital signatures. Namely, given VK and access to
a signing oracle, no PPT adversary must be able to create a signature for a previously unsigned
message (according to the security definition of [16]).

Definition 3. A signature scheme Σ = (G,S,V) is existentially unforgeable under chosen-message
attacks if, for any PPT adversary F , the probability

Pr
[

(SK,VK)← G(λ); (M⋆, sig⋆)← FOsig(.)(VK) : V(sig⋆,VK,M⋆) = 1 ∧M⋆ 6∈ Q
]

is negligible as a function of λ. In the above, Osig(.) is an oracle taking as input arbitrary messages
M and returns sig = S(SK,M) while Q denotes the list of messages that were queried to Osig(.).

Programmable Hash Functions. A group hash function H = (PHF.Gen,PHF.Eval) is a pair of
algorithms such that, for a security parameter λ ∈ N, a key κ ← PHF.Gen(λ) is generated by the
key generation algorithm. This key is used to evaluate the deterministic evaluation algorithm that,
on input of a string X ∈ {0, 1}L, computes Hκ,G(X) = PHF.Eval(κ,X) ∈ G.

Definition 4. [17] A group hash function HG : {0, 1}∗ → G is (m,n, γ, δ)-programmable if there
exists PPT algorithms (PHF.TrapGen,PHF.TrapEval) such that:

- For g, h ∈ G, the trapdoor key generation algorithm (κ′, tk) ← PHF.TrapGen(λ, g, h) generates
a key κ′ and a trapdoor tk such that, for any X ∈ {0, 1}L, (aX , bX) ← PHF.TrapEval(tk,X)
produces integers aX , bX such that Hκ′,G(X) = PHF.Eval(κ′,X) = gaXhbX .

- For all g, h ∈ G and for κ← PHF.Eval(λ), (κ′, tk)← PHF.TrapGen(λ, g, h), the distributions of
κ and κ′ are statistically γ-close to each other.

- For all generators g, h ∈ G and all κ′ produced by PHF.TrapGen, for all X1, . . . ,Xm ∈ {0, 1}L,
Z1, . . . , Zn ∈ {0, 1}L such that Xi 6= Zj , the corresponding (aXi

, bXi
) ← PHF.TrapEval(tk,Xi),

(aZi
, bZi

)← PHF.TrapEval(tk, Zi) are such that

Pr[bX1 = · · · = bXm = 0 ∧ bZ1, . . . , bZn 6= 0] ≥ δ,

where the probability is taken over the trapdoor tk produced along with κ′.
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The hash function of Chaum et al. [11], that hashes L-bit stings M = m1 · · ·mL ∈ {0, 1}L by
mapping them onto Hκ,G(M) = u0 ·

∏L
k=1 u

mk

k using public group elements (u0, . . . , uL), is known
[25] to provide such a (1, ℓ, 0, δ)-programmable hash function where δ = 1/(8ℓ(L + 1)), for some
polynomial ℓ. Using a different technique, Hofheinz and Kiltz [17] showed how to increase the
probability δ to O(1/(ℓ

√
L)).

D Proof of Theorem 2

We first show the correctness of the scheme. Hard commitments (C, V ) =
(

gθ, gγ ·∏q
j=1 g

mj

q+1−j

)

are hard-opened by revealing θ, Wi =
(

gγ
i ·

∏q
j=1,j 6=i g

mj

q+1−j+i · HG(tag)r
)1/θ

and Zi = g−r, for a

random r R← Z
∗
p, which satisfy the verification (5) since

e(C,Wi) · e(g1, gq)
mi · e

(

HG(tag), Zi

)

= e
(

g, gγ
i ·

q
∏

j=1,j 6=i

g
mj

q+1−j+i ·HG(tag)r
)

· e(g1, gq)
mi · e

(

HG(tag), g−r
)

= e
(

g, gγ
i ·

q
∏

j=1,j 6=i

g
mj

q+1−j+i

)

· e(g1, gq)
mi

= e
(

gi, g
γ ·

q
∏

j=1,j 6=i

g
mj

q+1−j

)

· e(gi, gq+1−i)
mi = e(gi, V ).

In soft commitments (C, V ) = (gθ
1 , g

γ
1 ), a soft de-commitment to message m consists of a pair

(Wi, Zi) =
(

(

gγ
i · g−m

q ·HG(tag)r
)1/θ

, g−r
1

)

, which is easily seen to pass the verification test as

e(C,Wi) · e(g1, gq)
m · e

(

HG(tag), Zi

)

= e
(

g1, g
γ
i · g−m

q ·HG(tag)r
)

· e(g1, gq)
m · e

(

HG(tag), g−r
1

)

= e(g1, g
γ
i ) = e(gi, V ).

Regarding fake commitments (C, V ) = (gθ, gγ), they are hard-equivocated by revealing a triple of

the form π = (θ,Wi, Zi) =
(

θ,
(

gγ
i · g

−mi

q+1 ·HG(tag)r
)1/θ

, g−r
)

, for some r ∈ Z
∗
p. We can check that

such a triple satisfies

e(C,Wi) · e(g1, gq)
m · e

(

HG(tag), Zi

)

= e
(

g, gγ
i · g−m

q+1 ·HG(tag)r
)

· e(g1, gq)
m · e

(

HG(tag), g−r
)

= e(g, gγ
i ) = e(gi, V ).

We now turn to the binding property and prove that the scheme is actually an adaptive multi-
trapdoor q-mercurial commitment scheme (which is a stronger property than what we need) if the
hash function HG : T → G is (1, ℓ)-programmable, where ℓ denotes the number of tags (i.e., the
number of members in the family of multi-trapdoor commitments) that A queries the trapdoor of.

We construct an algorithm B that solves a q-DHE instance (g, g1, . . . , gq, gq+2, . . . , g2q) using
its interaction with an adversary A that breaks the adaptive q-mercurial binding property after
ℓ trapdoor queries. To this end, B includes in PK the description of a (1, ℓ, 0, δ)-programmable
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hash function HG : T → G such that, for any tag ∈ T , HG(tag) = gatag · gbtag

1 for integers
atag, btag that it can compute. Moreover, for any tag1, . . . , tagℓ and tag⋆ 6∈ {tag1, . . . , tagℓ}, it holds
with non-negligible probability δ that btagi

6= 0 for i = 1, . . . , ℓ whereas btag⋆ = 0. Therefore,
if tag1, . . . , tagℓ are the tags that A adaptively queries to the T G oracle, B is able to compute
tktagi

= (ttagi,1, ttagi,2) = (gq+1 · HG(tagi)
r̃, g−r̃) using the technique of [3]: it picks r R← Z

∗
p and

sets (ttagi,1, ttagi,2) =
(

HG(tagi)
r · g−atagi

/btagi
q , g−r · g1/btagi

q

)

, which is easily seen to have the correct
distribution if we set r̃ = r − αq

btagi
, where α = logg(g1).

In addition, the q-commitment family tag⋆ which is the target of the attack also satisfies
HG(tag⋆) = gatag⋆ , for some known atag⋆ ∈ Zp, with non-negligible probability. Let us assume that
the attack is a soft collision (mi, θ,Wi, Zi), (m′

i,W
′
i , Z

′
i), where mi 6= m′

i, for some q-commitment
(C, V ) at some position i ∈ {1, . . . , q}. We must have

e(gi, V ) = e(C,Wi) · e(g1, gq)
mi · e(HG(tag⋆), Zi)

= e(C,W ′
i ) · e(g1, gq)

m′
i · e(HG(tag⋆), Z ′

i).

which implies e
(

g, (Wi/W
′
i )

θ/(m′
i−mi) · (Zi/Z

′
i)

atag⋆/(m′
i−mi)

)

= e(g1, gq) since HG(tag⋆) = gatag⋆ and

C = gθ. Therefore, B is able to compute gq+1 = (Wi/W
′
i )

θ/(m′
i−mi) · (Zi/Z

′
i)

atag⋆/(m′
i−mi) and thus

breaks the q-DHE assumption with probability δ · ε if ε is A’s probability of success. ⊓⊔

E From Multi-Trapdoor qTMC to Strongly Independent ZK-EDB

Let us assume that an adversary A = (A1,A2) has non-negligible chance of breaking the strong
independence property of the ZK-EDB scheme outlined at the end of section 5. We show that it
implies a breach either in the q-mercurial binding property of the multi-trapdoor qTMC scheme,
the unforgeability of the signature scheme Σ or in the collision-resistance of the hash function.

Recall that A is such that, after having obtained ((Com1,VK1), . . . , (Comℓ,VKℓ)) and queried
some proofs for underlying databases D1, . . . ,Dℓ, A1 outputs a commitment of her own (Com,VK)
and some state information ω. Then, in two independent executions on the same input (σ, ω),

A2 is given access to oracles Sim
Di(.)
2 (Sti, Comi) and Sim

D′
i⊣Qi

Di

2 (Sti, Comi), respectively. These
executions are expected to yield convincing proofs πx, π

′
x for different statements about the same

key x. As in the proof of theorem 3 in [15], we distinguish the following cases:

- If VK = VKi⋆ for some i⋆ ∈ {1, . . . , ℓ}, it must hold that either Com 6= Comi⋆ or x was never

queried by A1 or A2 to oracles Sim
Di⋆(.)
2 or Sim

D′
i⋆
⊣Qi⋆

Di⋆ (.)

2 . Then, the security of the signature
scheme can be broken with probability 1/ℓ. When generating A1’s input, the forger B chooses
j R← {1, . . . , ℓ}. It sets VKj = VK⋆, where VK⋆ is a signature verification key supplied by a chal-
lenger, and generates VK1, . . . ,VKj−1,VKj+1, . . . ,VKℓ itself. To generate Com1, . . . , Comℓ, B
generates fake q-commitments and, using the master trapdoor TK = gq+1 (that it also chose it-

self), can equivocate them as needed to simulate Sim
Di(.)
2 (Sti, Comi) and Sim

D′
i⊣Qi

Di

2 (Sti, Comi)
in the two runs of A2. To simulate these two oracles, B also needs to query its own challenger
and obtain signatures w.r.t. the verification key VKj = VK⋆. With probability 1/ℓ, we have
i⋆ = j (since j is independent of A’s view) and A2 must have come up with a forgery since
either Com 6= Comi⋆ or the key x was not queried to the jth prover.
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- If VK 6= VKi, we can break the q-mercurial binding security of the multi-trapdoor qTMC
or find a collision on the hash function. Let B be an adversary taking as input the master
qTMC public key PK and the description of a hash function H. At the beginning of the
mercurial binding game, B generates ℓ digital signature key pairs (SKi,VKi), for i = 1, . . . , ℓ,
and hands tag1 = H(VK1), . . . , tagℓ = H(VKℓ) to its mercurial binding challenger. The latter
replies with a master public key PK and B is then allowed to query T G and obtain trapdoors
tktag1 ,. . . , tktagℓ

for commitment families indexed by tag1, . . . , tagℓ. Using these, it can feed
A1 with (Com1,VK1), . . . , (Comℓ,VK1) that are all generated using fake q-commitments in
the appropriate families. Thanks to tktag1 , . . . , tktagℓ

, it can equivocate such fake commitments

at will and, for each i ∈ {1, . . . , ℓ}, it can perfectly simulate oracles Sim
Di(.)
2 (Sti, Comi) and

Sim
D′

i⊣Qi
Di

2 (Sti, Comi) in the two executions of A2. For the commitment string (Com,VK)
produced by A1, the two runs of A2 must output (x, (πx, sigx)) and (x, (π′x, sig

′
x)) such that

πx 6= π′x (since they trick the verifier into accepting two distinct values D(x) for the key x).
Moreover, πx and π′x consist of two sequences of commitments and hard/soft openings that are
all valid w.r.t. the tag H(VK) and converge to the same commitment string Com at the root of
the tree. It comes that these sequences necessarily “fork” at some point on the path from the
root to x. Using the same arguments as those that establish the soundness property in the proof
of theorem 2 in [9], we end up with either a hard/soft collision for the qTMC family member
indexed by the tag H(VK) (which B never queried to its T G oracle) or a collision on H.

⊓⊔

In the construction of strongly independent ZK-EDB outlined at the end of section 5, two
distinct multi-trapdoor qTMC instances are needed: an instance with q > 1 must be used at each
internal node while another instance with q = 1 is needed at the leaves of the tree. Each one of
these instances makes use of its own programmable hash function and we call these two functions
Hq,G : T → G and H1,G : T → G, respectively.

In the case VK 6= VKi in the above proof, the adversary A breaks the binding property of
the second qTMC instance (with q = 1) if the “forking” occurs at a leaf. If the forking appears
at an internal node, A rather defeats the security of the first instance (where q > 1). To keep
the proof simple, we need to make sure that the adversary breaks one-out-of-two q-DHE problem
instances (where q > 1 or q = 1) regardless of whether the forking is located at a leaf or an internal
node. To this end, existing implementations [11, 25, 17] of programmable hash functions make it

possible to instantiate Hq,G : T → G and H1,G : T → G so as to have Hq,G(tag) = gatag · gbtag

1 and

H1,G(tag) = ga′
tag ·hbtag

1 for independent values atag, a
′
tag ∈R Zp and where g1, h1 are part of a q-DHE

instance (g, g1, . . . , gq, gq+2, . . . , g2q) and 1-DHE instance (i.e., a “squared Diffie-Hellman” instance

where one has to find g(α2) given (g, h1 = gα)), respectively. By doing so, even though outputs
of Hq,G(tag) and H1,G(tag) are independent for each tag ∈ T , it holds that Hq,G(tag) = gatag

whenever H1,G(tag) = ga′
tag and, whenever Hq,G(tag) = gatag · gbtag

1 for some btag 6= 0, we also have

H1,G(tag) = ga′
tag ·hbtag

1 . Then, the simulator B will be able to solve one of the two q-DHE instances
with a probability δ proportional to 1/ℓ (as explained at the end of appendix D), no matter where
the forking lies in the sequence of commitments/openings.
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