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Abstract. In functional encryption (FE) schemes, ciphertexts and private keys are associated with
attributes and decryption is possible whenever key and ciphertext attributes are suitably related. It is
known that expressive realizations can be obtained from a simple functional encryption flavor called
inner product encryption (IPE), where decryption is allowed whenever ciphertext and key attributes
form orthogonal vectors. In this paper, we construct public-attribute inner product encryption (PAIPE)
systems, where ciphertext attributes are public (in contrast to attribute-hiding IPE systems). Our
PAIPE schemes feature constant-size ciphertexts for the zero and non-zero evaluations of inner products.
These schemes respectively imply an adaptively secure identity-based broadcast encryption scheme
and an identity-based revocation mechanism that both feature short ciphertexts and rely on simple
assumptions in prime order groups. We also introduce the notion of negated spatial encryption, which
subsumes non-zero-mode PAIPE and can be seen as the revocation analogue of the spatial encryption
primitive of Boneh and Hamburg.
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1 Introduction

Ordinary encryption schemes usually provide coarse-grained access control since, given a ciphertext,
only the holder of the private key can obtain the plaintext. In many applications such as distributed
file systems, the need for fine-grained and more complex access control policies frequently arises. To
address these concerns, several kinds of functional public key encryption schemes have been studied.

Functional encryption can be seen as a generalization of identity-based encryption (IBE) [27, 9].
In IBE schemes, the receiver’s ability to decrypt is merely contingent on his knowledge of a private
key associated with an identity that matches a string chosen by the sender. In contrast, functional
encryption (FE) systems make it possible to decrypt using a private key skx corresponding to a
set x of atomic elements, called attributes, that is suitably related – according to some well-defined
relation R – to another attribute set y specified by the sender.

The goal of this paper is to describe new (pairing-based) functional encryption constructions
providing short ciphertexts (ideally, their length should not depend on the size of attribute sets)
while providing security against adaptive adversaries or supporting negation (e.g. decryption should
be precisely disallowed to holders of private keys skx for which R(x,y) = 1).

1.1 Related Work

The first flavor of functional encryption traces back to the work of Sahai and Waters [25] that was
subsequently extended in [18, 24]. Their concept, called attribute-based encryption (ABE), allows
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a sender to encrypt data under a set of attributes ω while an authority generates private keys for
access control policies T . Decryption rights are granted to anyone holding a private key for a policy
T such that T (ω) = 1. Identity-based broadcast encryption (IBBE) [2, 26, 15, 11] and revocation
(IBR) [22] schemes can also be thought of as functional encryption systems where ciphertexts are
encrypted for a set of identities S = {ID1, . . . , IDn}: in IBBE (resp. IBR) systems, decryption re-
quires to hold a private key skID for which ID ∈ S (resp. ID 6∈ S).

The above kinds of functional encryption systems are only payload hiding in that they keep
encrypted messages back from unauthorized parties but ciphertexts do not hide their underlying
attribute set. Predicate encryption schemes [12, 20, 29, 28] additionally provide anonymity as ci-
phertexts also conceal the attribute set they are associated with, which is known to enable [8, 1]
efficient searches over encrypted data. In [20], Katz, Sahai and Waters devised a predicate encryp-
tion scheme for inner products: a ciphertext encrypted for the attribute vector ~Y can be opened by
any key sk ~X such that ~X · ~Y = 0. As shown in [20], inner product encryption (IPE) suffices to give
functional encryption for a number of relations corresponding to the evaluation of polynomials or
CNF/DNF formulae.

1.2 Our Contributions

While quite useful, the IPE scheme of [20] strives to anonymize ciphertexts, which makes it difficult
to break through the linear complexity barrier (in the vector length n) in terms of ciphertext size. It
indeed seems very hard to avoid such a dependency as long as anonymity is required: for instance,
anonymous FE constructions [12, 19] suffer from the same overhead. A similar problem appears in
the context of broadcast encryption, where the only known scheme [4] that conceals the receiver
set also has O(n)-size ciphertexts.

This paper focuses on applications of functional encryption schemes, such as identity-based
broadcast encryption and revocation systems, where the anonymity property is not fundamental.
Assuming public ciphertext attributes rather than anonymity may be useful in other contexts. For
instance, suppose that a number of ciphertexts are stored with varying attributes y on a server and
we want to decrypt only those for which R(x,y) = 1. Anonymous ciphertexts require to decrypt
all of them whereas public attributes y make it possible to test whether R(x,y) (which is usually
faster than decrypting) and only decrypt appropriate ones.

At the expense of sacrificing anonymity, we thus describe public-attribute inner product encryp-
tion (which we will call PAIPE to distinguish the primitive from IPE schemes with the attribute
hiding property) schemes where the ciphertext overhead reduces to O(1) as long as the description
of the ciphertext attribute vector is not considered as being part of the ciphertext, which is a
common assumption in the broadcast encryption/revocation applications (i.e., the list of receivers
is not seen as a ciphertext component). In addition, the number of pairing evaluations to decrypt
is also constant, which significantly improves upon O(n), since pairings calculations still remain
costly.

Our first PAIPE system achieves adaptive security, as opposed to the selective model, used in
[20], where the adversary has to choose the target ciphertext vector ~Y upfront. To acquire adaptive
security, we basically utilize the method used in the Waters’ fully secure IBE [31], albeit we also
have to introduce a new trick called “n-equation technique” so as to deal with the richer structure
of PAIPE. Our system directly yields the first adaptively secure identity-based broadcast encryp-
tion scheme with constant-size ciphertexts in the standard model. Previous IBBE with O(1)-size
ciphertexts were either only selective-ID secure [2, 15, 11, 26] or in the random oracle model [17].
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Among IBBE systems featuring compact ciphertexts (including selective-ID secure ones), ours is
also the first one relying on simple assumptions in prime order groups: it does not use any “q-type”
assumption, where the input includes a sequence of elements {g(ai)}qi=0.

It is worth mentioning that techniques developed by Lewko and Waters [23] can be applied to
the construction of Boneh and Hamburg [11] (as we show in appendix B) to give fully secure IBBE
with short ciphertexts in composite order groups. However, it was not previously known how to
obtain such a scheme in prime order groups (at least without relying on the absence of computable
isomorphism in asymmetric pairing configurations). Indeed, despite recent progress [16], there is
still no black-box way to translate pairing-based cryptosystems from composite to prime order
groups. In particular, Freeman’s framework [16] does not apply to [23].

Our second contribution is a PAIPE system for non-zero inner products: ciphertexts encrypted
for vector ~Y can only be decrypted using sk ~X if ~X · ~Y 6= 0, which – without retaining anonymity –
solves a question left open by Katz, Sahai and Waters [20][Section 5.4]. The scheme implies the first
identity-based revocation (IBR) mechanism [22] with O(1)-size ciphertexts. Like the two schemes of
Lewko, Sahai and Waters [22], its security is analyzed in a non-adaptive model where the adversary
has to choose which users to corrupt at the outset of the game3. In comparison with [22] where
ciphertexts grow linearly with the number of revoked users and public/private keys have constant
size, our basic IBR construction performs exactly in the dual way since key sizes depend on the
maximal number of revoked users. Depending on the application, one may prefer one scheme over
the other one. We actually show how to generalize both implementations and obtain a tradeoff
between ciphertext and key sizes (and without assuming a maximal number of revoked users): the
second scheme of [22] and ours can be seen as lying at opposite extremities of the spectrum. In
appendix E, we also describe a somewhat simpler variant of our non-zero PAIPE scheme in groups
of composite order.

On a theoretical side, our non-zero PAIPE realization turns out to be a particular case of a more
general primitive, that we call negated spatial encryption, which we define as a negated mode for
the spatial encryption primitive of Boneh and Hamburg [11]. Namely, keys correspond to subspaces
and can decrypt ciphertexts encrypted under points that lie outside the subspace. This generalized
primitive turns out to be non-trivial to implement and we had to use a fully generalized form
of our new “n-equation” technique. The proposed scheme is proven secure under a non-standard
assumption defined in [22].

1.3 Our Techniques

The core technique of our non-zero PAIPE scheme will be used throughout the paper, including
in our adaptively secure zero PAIPE scheme. This can be viewed analogously to fact that Waters’
fully secure IBE [31] uses the revocation technique of [22]. Our non-zero PAIPE also builds on [22].
However, the fact that non-zero PAIPE has much richer structure than revocation scheme and the
pursued goal of achieving constant ciphertext size together prevent us from using their techniques
directly. To describe the difficulties that arise, we first outline the Lewko-Sahai-Waters revocation
scheme in its simplified form where only one user is revoked.

Construction 1. (A simplified revocation scheme)

3 We actually work in a slightly stronger model, called co-selective-ID, where the adversary chooses which parties
to corrupt at the beginning – before seeing the public key – but is not required to announce the target revoked set
until the challenge phase.
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I Setup: chooses bilinear groups (G,GT ) of prime order p and picks g $← G as well as α, α1, α2
$←

Zp. The public key is
(
g, gα1 , gα2 , e(g, g)α

)
. The master key is gα.

I KeyGen: chooses t $← Zp at random and outputs a private key for an identity ID ∈ Zp as
(K0 = gt, K1 = gα+α1t, K2 = gt(α1ID+α2)).

I Encrypt: encrypts M and specifies a revoked identity ID′ by choosing s
$← Zp and computing

(E0 = M · e(g, g)αs, E1 = gs(α1ID′+α2), E2 = gs).

I Decrypt: decryption computes e(K2, E2)
1

ID−ID′ e(E1,K0)−
1

ID−ID′ = e(g, g)α1ts if ID 6= ID′. It then
computes e(g, g)αs as e(K1, E2)/e(g, g)α1ts = e(g, g)αs.

The scheme can be explained by viewing a key and a ciphertext as forming a linear system of
2 equations in the exponent of e(g, g) with variables α1ts, α2ts.

MID,ID′

(
α1ts
α2ts

)
:=
(

ID 1
ID′ 1

)(
α1ts
α2ts

)
=
(

log(e(K2, E2))
log(e(E1,K0))

)
.

Computing the blinding factor e(g, g)α1ts amounts to solve the system, which is possible when
det(MID,ID′) 6= 0 (and thus ID 6= ID′, as required). In particular, decryption computes a linear
combination (in the exponent) with coefficients from the first row of M−1

ID,ID′
which is ( 1

ID−ID′
, −1

ID−ID′
).

In [22], this is called “2-equation technique”. The scheme is extended to n-dimension, i.e., the
revocation of n users {ID′1, . . . , ID′n}, by utilizing n local independent systems of two equations

MID,ID′j

(
α1tsj , α2tsj

)>
=
(

log(e(K2, E2,j)), log(e(E1,j ,K0))
)>

for j ∈ [1, n],

that yield 2n ciphertext components (E1,j , E2,j), each one of which corresponds to a share sj of
s such that s =

∑n
1 sj . The decryption at j-th system returns e(g, g)α1tsi if ID 6= ID′j . Combining

these results finally gives e(g, g)α1ts.
We aim at constant-size ciphertexts for non-zero PAIPE schemes of dimension n. When trying

to use the 2-equation technique with n dimensions, the following difficulties arise. First, the “de-
cryptability” condition ~X ·~Y 6= 0 cannot be decomposed as simply as the condition of the revocation
scheme, which is decomposable as the conjunction of ID 6= ID′j for j ∈ [1, n]. Second, the ciphertext
size was O(n) and we want to decrease it to O(1).

Towards solving these problems, we introduce a technique called “n-equation technique”. First,
we utilize n secret exponents ~α = (α1, . . . , αn)> and let α1 function as the “master” exponent while
α2, . . . , αn serve as the “perturbed” factors. Intuitively, we will set up a system of n linear equations
of the form:

M ~X,~Y (α1ts, . . . , αnts)> =
(

log(e(Ki1 , Ej1)), . . . , log(e(Kin , Ejn))
)> (1)

where {Kik} and {Ejk} are elements of G defined for a key for ~X and a ciphertext for ~Y respectively.
At first, this generalized system seems to require linear-size ciphertexts (Ej1 , . . . , Ejn). A trick to
resolve this is to reuse ciphertext elements throughout the system: we let Ejk = E2 = gs for
k ∈ [1, n− 1]. This effectively yields a constraint M ~X,~Y =

(
Q>~X

R>
)>
, where Q ~X is a (n− 1)× n

matrix parameterized only by ~X and R is a 1×n matrix. The remaining problem is then to choose
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M ~X,~Y in such a way that the system has a solution if ~X · ~Y 6= 0 (the decryptability condition). To
this end, we define

M ~X,~Y :=


−x2
x1

1
−x3
x1

1
...

. . .
−xn
x1

1
y1 y2 y3 . . . yn

 , (2)

where it holds that det(M ~X,~Y ) = (−1)n+1 ~X · ~Y /x1. By translating this conceptual view back into
algorithms, we obtain a basic non-zero PAIPE scheme. From this, we propose two schemes for
non-zero PAIPE: the first one is a special case of negated spatial encryption in section 5.1, while
the second one is proven secure under simple assumptions and given in section 5.2.

1.4 Organization

In the forthcoming sections, the syntax and the applications of functional encryption are explained
in sections 2 and 3. We describe our zero mode PAIPE system in section 4. Our negated schemes
are detailed in section 5.

2 Definitions

2.1 Syntax and Security Definition for Functional Encryption

Let R : Σk × Σe → {0, 1} be a boolean function where Σk and Σe denote “key attribute” and
“ciphertext attribute” spaces. A functional encryption (FE) scheme for R consists of the following
algorithms.

◦ Setup(1λ, des)→ (pk,msk): takes as input a security parameter 1λ and a scheme description des
(which usually describes the dimension n), and outputs a master public key pk and a master
secret key msk.
◦ KeyGen(x,msk)→ skx: takes as input a key attribute x ∈ Σk and the master key msk. It outputs

a private decryption key skx.
◦ Encrypt(y,M, pk) → C: takes as input a ciphertext attribute y ∈ Σe, a message M ∈ M, and

public key pk. It outputs a ciphertext C.
◦ Decrypt(C,y, skx,x)→ M: given a ciphertext C with its attribute y and the decryption key skx

with its attribute x, it outputs a message M or ⊥.

We require the standard correctness of decryption. Namely, for all security parameters λ ∈ N,
all key pairs (pk,msk)← Setup(1λ), all x ∈ Σk, all skx ← KeyGen(x,msk), and all y ∈ Σe,

◦ If R(x,y) = 1, then Decrypt(Encrypt(y,M, pk), skx) = M.
◦ If R(x,y) = 0, Decrypt(Encrypt(y,M, pk), skx) = ⊥ with probability nearly 1.

Terminology and Variants. We refer to any encryption primitive A that can be casted as a
functional encryption by specifying its corresponding function RA : ΣA

k × ΣA
e → {0, 1}. For a FE

primitive A, we can define two variants:
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◦ Dual Variant, denoted by Dual(A), is defined by settingΣDual(A)
k := ΣA

e as well asΣDual(A)
e := ΣA

k

and RA(x,y) = RDual(A)(y,x). In a dual variant, the roles of key and ciphertext attributes are
swapped from those of its original primitive.
◦ Negated Variant, denoted by Neg(A), is defined by using the same domains as A and setting
RNeg(A)(x,y) = 1⇔ RA(x,y) = 0. The condition is thus the opposite of the original primitive.

Security Definition. A FE scheme for a function R : Σk × Σe → {0, 1} is fully secure if no
probabilistic polynomial time (PPT) adversary A has non-negligible advantage in the following
game.

Setup. The challenger runs Setup(n) and hands the public key pk to A.

Query Phase 1. The challenger answers all private key queries for x ∈ Σk by returning skx ←
KeyGen(x,msk).

Challenge. A submits equal-length messages M0,M1 and a target ciphertext attribute vector
y? ∈ Σe such that R(x,y?) = 0 for all key attributes x that have been queried so far. The challenger
then flips a bit β $← {0, 1} and computes the challenge ciphertext C? ← Encrypt(y,Mβ, pk) which
is given to A.

Query Phase 2. The adversary is allowed to make further private key queries x ∈ Σk under the
same restriction as above, i.e., R(x,y?) = 0.

Guess. The adversary A outputs a guess β′ ∈ {0, 1} and wins if β′ = β. In the game, A’s advantage
is typically defined as AdvA(λ) = |Pr[β = β′]− 1

2 |.

(Co-)Selective Security. We also consider the notion of selective security [13, 5], where A has to
choose the challenge attribute y? before the setup phase, but can adaptively choose the key queries
for x1, . . . ,xq. One can consider its “dual” notion where A must output the q key queries for
attribute vectors x1, . . . ,xq before the setup phase, but can adaptively choose the target challenge
attribute y?. We refer to this scenario as the co-selective security model, which is useful in some
applications such as revocation. By definition, both notions are incomparable in general and we do
not know about their relation yet.

We shall show how one FE primitive can be obtained from another. The following useful lemma
from [11] describes a sufficient criterion for implication.

Proposition 1 (Embedding Lemma [11]). Consider encryption primitives A,B that can be
casted as functional encryption for relations RA, RB, respectively. Suppose there exists efficient
injective mappings fk : ΣA

k → ΣB
k and fe : ΣA

e → ΣB
e such that

RB(fk(x), fe(y)) = 1⇔ RA(x,y) = 1.

Let ΠB be a construction for primitive B. We construct ΠA for primitive A from ΠB by applying
mappings fk, fe to all key attributes and ciphertext attributes, respectively. More precisely, we use the
same setup algorithm. As for the key generation and encryption procedures, they can be defined as
ΠA.KeyGen(x,msk) := ΠB.KeyGen(fk(x),msk) and ΠA.Encrypt(y,M, pk) := ΠB.Encrypt(fe(y),M, pk),
respectively. Then, if ΠB is secure, so is ΠA. This holds for adaptive, selective, co-selective security
models. We denote this primitive implication by B

fk,fe−→ A.

We immediately obtain the next corollary stating that the implication applies to the negated
(resp. dual) variant with the same (resp. swapped) mappings.
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Corollary 1. B
fk,fe−→ A implies Dual(B)

fe,fk−→ Dual(A) and Neg(B)
fk,fe−→ Neg(A).

2.2 Complexity Assumptions in Bilinear Groups

We consider groups (G,GT ) of prime order p with an efficiently computable map e : G×G→ GT

such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z and e(g, h) 6= 1GT whenever
g, h 6= 1G. In these groups, we assume the hardness of the (now classical) Decision Bilinear Diffie-
Hellman and Decision Linear [6] problems.

Definition 1. The Decision Bilinear Diffie-Hellman Problem (DBDH) in bilinear groups
(G,GT ) is, given elements (g, gθ1 , gθ2 , gθ3 , η) ∈ G4 × GT with θ1, θ2, θ3

$← Zp, to decide whether
η = e(g, g)θ1θ2θ3 or η ∈R GT .

Definition 2. The Decision Linear Problem (DLIN) in G consists in, given a tuple of elements
(g, f, ν, gθ1 , fθ2 , η) ∈ G6 with θ1, θ2

$← Zp and f, g, ν $← G, deciding whether η = νθ1+θ2 or ν ∈R G.

2.3 Some Notations

Throughout the paper, we will treat a vector as a column vector, unless specified otherwise. We
use the same notations as in [11]. More precisely, for any vector of scalars ~α = (α1, . . . , αn)> ∈ Znp ,
the notation g~α stands for the vector of group elements (gα1 , . . . , gαn)> ∈ Gn. For ~a, ~z ∈ Znp , we
denote their inner product as 〈~a, ~z〉 = ~a>~z = a1z1 + · · · + anzn. Given ~A = g~a and ~z, one can
easily compute ~A~z = (g~a)~z := g〈~a,~z〉, without knowing ~a. We also denote the element-vise product
as ~a~z = (a1z1, . . . , anzn). We denote by In the identity matrix of size n.

3 Functional Encryption Instances and Their Implications

3.1 Public-Attribute Inner Product Encryption and Its Consequences

We underline the power of PAIPE by showing its implications in this section. Each primitive is
defined by describing the corresponding boolean function R. We then show how to construct one
primitive from another by explicitly describing attribute mappings. In this way, correctness and
security are consequences of the embedding lemma. Basically, the approach follows exactly the
same way as [20]. A new contribution is that we also consider the negated variant of primitives,
which will be useful for non-zero polynomial evaluation and revocation schemes. The implication
for negated variants follows from Corollary 1.

Inner Product. A public-attribute inner product encryption (PAIPE) scheme over Znp , for some
prime p, is defined as follows. Attribute domains are defined as ΣPAIPEn

k = ΣPAIPEn
e = Znp . We con-

sider two distinct PAIPE modes here. The first one is the zero-mode PAIPE where RZIPEn( ~X, ~Y ) = 1
iff ~X · ~Y = 0. The other one is its negated analogue, which we call the non-zero-mode PAIPE, where
the relation RNIPEn is defined in such a way that RNIPEn( ~X, ~Y ) = 1 iff ~X · ~Y 6= 0.

Polynomial Evaluation. Functional encryption for the zero evaluation of polynomials of degree
≤ n is defined as follows. The ciphertext and key attribute domains are defined asΣ

ZPoly≤n
e = Zp and

Σ
ZPoly≤n
k = {P ∈ Zp[x] | deg(P ) ≤ n}, respectively. The relation is defined by RZPoly≤n(P, x) = 1

iff P (x) = 0. The non-zero evaluation mode can be defined as its negated primitive Neg(ZPoly≤n).

7



Given a PAIPE scheme over Zn+1
p , one obtain a functional encryption system for polynomial

evaluation via the following embedding. For the key attribute, we simply map the polynomial
P [X] = ρ0 + ρ1X + · · · + ρnX

n to the vector ~Xp = (ρ0, . . . , ρn). Regarding ciphertext attributes,
each element w ∈ Zp is then mapped onto a vector ~Yw = (1, w, w2, . . . , wn). Correctness and security
hold since P (w) = 0 whenever ~Xp · ~Yw = 0. The non-zero evaluation case can be analogously derived
from the non-zero-mode PAIPE using the same mappings, due to Corollary 1.

We can also consider other variants such as a scheme that supports multivariate polynomials
and a dual variant, where the key attribute corresponds to a fixed point and the ciphertext attribute
corresponds to a polynomial, as in [20].

OR, AND, DNF, CNF Formulae. We now consider a FE scheme for some boolean formulae that
evaluate disjunctions, conjunctions, and their extensions to disjunctive or conjunctive normal forms.
As an example, a functional encryption scheme for boolean formula ROR≤n : Z≤nN × ZN → {0, 1}
can be defined by ROR≤n((I1, . . . , Ik), z) 7→ 1 (for k ≤ n) iff (z = I1) or · · · or (z = Ik). This can be
obtained from a functional encryption for the zero evaluation of a univariate polynomial of degree
smaller than n by generating a private key for fOR,I1,...,Ik(z) = (z − I1) · · · (z − Ik), and letting
senders encrypting to z.

Other fundamental cases can be considered similarly as in [20] and are shown below. In [20] only
non-negated policies (the first three cases below and their extensions) were considered. Schemes
supporting negated policies (the latter three cases below and their extensions) are introduced in this
paper. The negated case can be implemented by PAIPE for non-zero evaluation. One can combine
these cases to obtain DNF, CNF formulae. Below, r $← Zp is chosen by KeyGen.4

Policy Implementation
(z = I1) or (z = I2) fOR,I1,I2(z) = (z − I1)(z − I2) = 0

(z1 = I1) or (z2 = I2) fOR,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) = 0

(z1 = I1) and (z2 = I2) fAND,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) = 0
(z1 6= I1) or (z2 6= I2) fNOR,I1,I2(z1, z2) = (z1 − I1)r + (z2 − I2) 6= 0
(z 6= I1) and (z 6= I2) fNAND,I1,I2(z) = (z − I1)(z − I2) 6= 0

(z1 6= I1) and (z2 6= I2) fNAND,I1,I2
(z1, z2) = (z1 − I1)(z2 − I2) 6= 0

ID-based Broadcast Encryption and Revocation. Let I be an identity space. An ID-based
broadcast encryption scheme (IBBE) for maximum n receivers per ciphertext is a functional en-
cryption for RIBBE≤n : I × 2I → {0, 1} defined by RIBBE≤n : (ID, S) 7→ 1 iff ID ∈ S. An IBBE
system can be constructed by a functional encryption for RDual(OR≤n). To encrypt a message for
the receiver set S = {ID1, . . . , IDk}, one encrypts using the policy (z = ID1) or · · · or (z = IDk).

Likewise, identity-based revocation (IBR) [22] for at most n revocations per ciphertext can be
casted as a negated IBBE, i.e., RIBR≤n : (ID, R) 7→ 1 iff ID 6∈ R.

3.2 Spatial Encryption

We now recall the concept of spatial encryption [11]. For a n×d matrix M of which elements are in
Zp and a vector ~c ∈ Znp , we define its corresponding affine space as Aff(M,~c) = {M ~w+~c | ~w ∈ Zdp}.
Let Vn ⊆ 2(Znp ) be the collection of all affine spaces inside Znp . That is, Vn is defined as

Vn = {Aff(M,~c) | M ∈Mn×d, c ∈ Znp , d ≤ n},
4 As noted in [20], the AND (and NOR) case will not work in the adaptive security model since the information on

r leaks.
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where Mn×d is the set of all n× d matrices in Zp.
A spatial encryption system in Znp is a functional encryption scheme for a relation RSpatial :

Vn × Znp → {0, 1} defined by RSpatial : (V, ~y) 7→ 1 iff ~y ∈ V .
The notion of spatial encryption was motivated by Boneh and Hamburg [11]. It has many

applications as it notably implies broadcast HIBE and multi-authority schemes. Nevertheless, its
connection to inner-product encryption has not been investigated so far. In section 4.1, we prove
that spatial encryption implies inner product encryption by providing a simple attribute mapping.

As a result of independent interest, we also consider the negated spatial encryption primitive
(namely, FE that is defined by RNeg(Spatial) : (V, ~y) 7→ 1 iff ~y 6∈ V ) and provide a construction in
section 5.1. From this scheme and Corollary 1 together with our implication result of zero-mode
PAIPE from spatial encryption, we then obtain a non-zero-mode PAIPE construction.

4 Functional Encryption for Zero-Mode PAIPE

4.1 Warm-up: Selectively Secure Zero-Mode PAIPE from Spatial Encryption

We first observe that spatial encryption implies zero-mode public-attribute inner product encryp-
tion. Indeed, for the key attribute, we map a vector ~X = (x1, . . . , xn)> ∈ Znp onto a (n−1)-dimension

affine space V ~X = Aff(M ~X ,
~0n) = {M ~X ~w +~0n | ~w ∈ Zn−1

p } with the matrix M ~X ∈ Zn×(n−1)
p

M ~X =
(
−x2
x1
,−x3

x1
, · · · ,−xn

x1

In−1

)
. (3)

For any vector ~Y = (y1, . . . , yn)> ∈ Znp , we then have ~X · ~Y = 0 ⇔ ~Y ∈ V ~X since ~X · ~Y = 0 ⇔
y1 = y2 · (−x2

x1
) + · · · + yn · (−xn

x1
) ⇔ ~Y = M ~X · (y2, . . . , yn)> ⇔ ~Y ∈ V ~X . By the embedding

lemma, we can therefore conclude its implication.
In [11], Boneh and Hamburg described a selectively secure construction of spatial encryption

that achieves constant-size ciphertexts (by generalizing the Boneh-Boyen-Goh HIBE [7]). From
their scheme, we thus immediately obtain a selectively secure zero PAIPE scheme with constant-
size ciphertext as shown below.

We first give some notations here. For a vector ~a = (a1, . . . , an)> ∈ Znp , we write g~a to denote
(ga1 , . . . , gan)>. Given g~a, ~z, one can easily compute (g~a)~z := g〈~a,~z〉, where 〈~a, ~z〉 denotes the inner
product ~a · ~z = ~a>~z.

Construction 2. (Selectively secure zero-mode PAIPE)

I Setup(1λ, n): chooses bilinear groups (G,GT ) of prime order p > 2λ with a generator g $← G. It
chooses α, α0, . . . , αn

$← Zp at random and defines ~α = (α1, . . . , αn). The public key is defined to
be pk =

(
g, gα0 , ~H = g~α, Z = e(g, g)α

)
and the master secret key is msk = gα.

I KeyGen( ~X,msk, pk) : chooses t $← Zp and parses ~X as (x1, . . . , xn) and returns ⊥ if x1 = 0. It
outputs the private key as sk ~X = (D0, D1,K2, . . . ,Kn) where

D0 = gt, D1 = gα+α0t, {Ki = (g−α1
xi
x1 gαi)t}i=2,...,n.

I Encrypt(~Y , pk): the encryption algorithm first picks s $← Zp. It parses ~Y as (y1, . . . , yn) and
computes the ciphertext as

E0 = M · e(g, g)αs, E1 = (gα0g〈~α,
~Y 〉)s, E2 = gs.
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I Decrypt(C, ~Y , sk ~X ,
~X, pk) : to decrypt, the algorithm computes the blinding factor e(g, g)α·s as

e(D1K
y2
2 ···K

yn
n ,E2)

e(E1,D0) = e(g, g)α·s.

The selective security of this scheme is a consequence of a result given in [11].

Theorem 1. Construction 2 is selectively secure under the n-Decisional Bilinear Diffie-Hellman
Exponent assumption (see [10, 11] for a description of the latter).

4.2 Adaptively Secure Zero-Mode PAIPE under Simple Assumptions

We extend the above selectively secure zero-mode PAIPE to acquire adaptive security by applying
the Waters’ dual system method [31]. However, we have to use our “n-equation technique” as
opposed to 2-equation technique used for IBE in [31]. The reason is that we have to deal with the
difficulties arising from the richer structure of PAIPE and the aggregation of ciphertexts into a
constant number of elements, analogously to what we described in section 1.

The scheme basically goes as follows. A ciphertext contains a random tag tagc in the element
E1 while each private key contains n− 1 tags (tagki for each Ki element) that are aggregated into
tagk =

∑n
i=2 tagkiyi upon decryption of a ciphertext intended for ~Y . The receiver is able to decrypt

whenever tagk 6= tagc (and ~X · ~Y = 0), which occurs with overwhelming probability.

Construction 3. (Adaptively secure zero-mode PAIPE)

I Setup(1λ, n): chooses bilinear groups (G,GT ) of prime order p > 2λ. It then picks gener-
ators g, v, v1, v2

$← G and chooses α, α0, α1, . . . , αn, a1, a2, b
$← Zp. Let ~α = (α1, . . . , αn) and

~H = (h1, . . . , hn) = g~α. The public key consists of

pk =

(
g, w = gα0 , Z = e(g, g)α·a1·b, ~H = g~α, A1 = ga1 , A2 = ga2 , B = gb,

B1 = gb·a1 , B2 = gb·a2 , τ1 = v · va1
1 , τ2 = v · va2

2 , T1 = τ b1 , T2 = τ b2

)

The master key is defined to be msk = (gα, gαa1 , v, v1, v2).

I Keygen( ~X,msk, pk): parses ~X as (x1, . . . , xn) and returns ⊥ if x1 = 0. Otherwise, it randomly
picks r1, r2

$← Zp, z1, z2
$← Zp, tagk2, . . . , tagkn

$← Zp, sets r = r1 + r2 and generates the private
key sk ~X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) by computing

skcore =
{
Ki =

(
g
−α1

xi
x1 · gαi · gα0·tagki

)r1}
i=2,...,n

,

skadapt =

(
D1 = gαa1 · vr, D2 = g−α · vr1 · gz1 , D3 = B−z1 , D4 = vr2 · gz2 ,
D5 = B−z2 , D6 = Br2 , D7 = gr1

)
.

I Encrypt(~Y ,M, pk): to encrypt M ∈ GT under ~Y = (y1, . . . , yn) ∈ (Zp)n, pick s1, s2, t, tagc
$← Zp

and compute C = (C1, . . . , C7, E0, E1, E2, tagc) where

Ccore =
(
E0 = M · Zs2 , E1 = (gα0·tagc · g〈~α,~Y 〉)t, E2 = gt

)
,

Cadapt =

(
C1 = Bs1+s2 , C2 = Bs1

1 , C3 = As11 , C4 = Bs2
2 ,

C5 = As22 , C6 = τ s11 · τ
s2
2 , C7 = T s11 · T

s2
2 · w

−t

)
.
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I Decrypt(C, ~Y , sk ~X ,
~X, pk): computes tagk = tagk2y2 + · · ·+ tagknyn and then

W1 =
5∏
j=1

e(Cj , Dj) · (
7∏
j=6

e(Cj , Dj))−1 = e(g, g)α·a1·b·s2 · e(g, w)r1t,

as well as W2 =
(
e(K

y2
2 ···K

yn
n ,E2)

e(E1,D7)

) 1
tagk−tagc

= e(g, w)r1t. It finally recovers the plaintext as

M = E0/Z
s2 = E0/e(g, g)α·a1·b·s2 ← E0 ·W2 ·W−1

1 .

The correctness of W2 at decryption is shown in appendix A.1, while the rest follows from [31].
As we can see, ciphertexts have the same size as in the IBE scheme of [31], no matter how large the
vector ~Y is. Also, decryption entails a constant number of pairing evaluations (whereas ciphertexts
cost O(n) pairings to decrypt in [20]).

Theorem 2. Construction 3 is adaptively secure under the DLIN and DBDH assumptions.

Proof. The proof uses the dual system methodology similar to [31], which involves ciphertexts and
private keys that can be normal or semi-functional.
◦ Semi-functional ciphertexts are generated as in [31] by first computing a normal ciphertext

(C ′1, . . . , C
′
7, E

′
0, E

′
1, E

′
7, tagc′) and then choosing χ

$← Zp before replacing (C ′4, C
′
5, C

′
6, C

′
7), re-

spectively, by

C4 = C ′4 · gba2χ, C5 = C ′5 · ga2χ, C6 = C ′6 · v
a2χ
2 , C7 = C ′7 · v

a2bχ
2 . (4)

◦ From a normal key (D′1, . . . , D
′
7,K

′
2, . . . ,K

′
n, tagk′2, . . . , tagk′n), semi-functional keys are obtained

by choosing γ $← Zp and replacing (D′1, D
′
2, D

′
4) by

D1 = D′1 · g−a1a2γ , D2 = D′2 · ga2γ , D4 = D′4 · ga1γ . (5)

The proof proceeds with a game sequence starting from GameReal, which is the actual attack game.
The following games are defined below.
Game0 is the real attack game but the challenge ciphertext is semi-functional.
Gamek (for 1 ≤ k ≤ q) is identical to Game0 except that the first i private key generation queries

are answered by returning a semi-functional key.
Gameq+1 is as Game q but the challenge ciphertext is a semi-functional encryption of a random

element of GT instead of the actual plaintext.
We prove the indistinguishability between two consecutive games under some assumptions. The
sequence ends in Gameq+1, where the challenge ciphertext is independent of the challenger’s bit β,
hence any adversary has no advantage.

The indistinguishability of GameReal and Game0 as well as that of Gameq and Gameq+1 can be
proved exactly in the same way as in [31] and the details are given in appendix C for completeness.

Lemma 1. If DLIN is hard, Game0 is indistinguishable from GameReal.

Lemma 2. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from Gamek−1, we can
build a distinguisher for the DLIN problem.
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This lemma is the most non-trivial part in the theorem. The main issue is that, in order to enable
adaptive security, the reduction must be done in such a way that the simulator B can create semi-
functional keys for any vector ~X, including those for which ~X · ~Y ? = 0. However, the crucial point
is that we must prevent B from directly deciding whether the kth queried private key is normal or
semi-functional by generating a semi-functional ciphertext for itself. Indeed, if this were possible,
the reduction from A would not be established.

To resolve this, we use a secret exponent vector ~ζ ∈ Znp and embed the DLIN instance in
such a way that B can only answer the kth private key query for ~X using a vector of tags
(tagk2, . . . , tagkn) and the challenge ciphertext for ~Y ? using a tag tagc? that satisfy the relation
(tagk2, . . . , tagkn, tagc?)> = −M ~X,~Y ?

~ζ, where M ~X,~Y is the n × n matrix defined in Eq.(2). We
thereby conceptually use the n-equation technique here. A particular consequence is that, if we
have ~X · ~Y ? = 0, then it holds that

tagk =
n∑
i=2

tagkiy
?
i = ζ1

n∑
i=2

xi
x1
y?i −

n∑
i=2

ζiy
?
i = ζ1 · (−y?1)−

n∑
i=2

ζiy
?
i = tagc?,

which is the exact condition under which decryption is hampered. In this situation, B cannot
distinguish the kth private key by itself, as desired. We are now ready to describe the proof of
Lemma 2.

Proof. The distinguisher B receives (g, f, ν, gθ1 , fθ2 , η) and decides if η = νθ1+θ2 .

Setup. Algorithm B picks α, a1, a2, δv1 , δv2
$← Zp and sets g = g, Z = e(f, g)αa1 ,

A1 = ga1 , A2 = ga2 , B = gb = f, v1 = νa2 · gδv1

B1 = gba1 = fa1 , B2 = gba2 = fa2 , v = ν−a1a2 , v2 = νa1 · gδv2 ,
τ1 = vva1

1 = gδv1a1 , τ2 = vva2
2 = gδv2a2 , τ b1 = f δv1a1 , τ b2 = f δv2a2 .

Next, algorithm B chooses δw
$← Zp, ~ζ = (ζ1, . . . , ζn) $← Znp , ~δ = (δ1, . . . , δn) $← Znp , then defines

w = gα0 = f · gδw , and hi = gαi = f ζi · gδi for i = 1, . . . , n. Note that, as in the proof of lemma 2
in [31] , B knows msk = (gα, gαa1 , v, v1, v2).

Key Queries. When A makes the jth private key query, B does as follows.
[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key, which it can do using ga1a2 .
[Case j = k] It defines tagk2, . . . , tagkn as tagki = ζ1 · xix1

− ζi for i = 2, . . . , n, which implies that

(h−xi/x1

1 ·hi ·wtagki) = g−δ1(xi/x1)+δi+δwtagki , for i = 2, . . . , n. Using these tags, it generates a normal
private key (D′1, . . . , D

′
7,K

′
2, . . . ,K

′
n) using random exponents r′1, r

′
2, z
′
1, z
′
2

$← Zp. Then, it sets

D1 = D′1 · η−a1a2 , D2 = D′2 · ηa2 · (gθ1)δv1 , D3 = D′3 · (fθ2)δv1 ,

D4 = D′4 · ηa1 · (gθ1)δv2 , D5 = D′5 · (fθ2)δv2 , D6 = D′6 · fθ2 ,

as well as D7 = D′7 · (gθ1) and Ki = K ′i · (gθ1)−δ1(xi/x1)+δi+δwtagki for i = 2, . . . , n.

If η = νθ1+θ2 , sk ~X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) is easily seen to form a normal
key where r1 = r′1 + θ1, r2 = r′2 + θ2, z1 = z′1 − δv1θ2, z2 = z′2 − δv2θ2 are the underlying random
exponents. If η ∈R G, it can be written η = νθ1+θ2 · gγ for some γ ∈R Zp, so that sk ~X is distributed
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as a semi-functional key. We note that tagk2, . . . , tagkn are independent and uniformly distributed
since ζ1, . . . , ζn (which are the solutions of a system of n − 1 equations with n unknowns) are
uniformly random and perfectly hidden from A’s view.

Challenge. Once the first phase is over, A outputs M0,M1 ∈ GT along with a target vector
~Y ? = (y?1, . . . , y

?
n). Then, B flips a coin β $← {0, 1} and computes the tag tagc? = −〈~Y ?, ~ζ〉 for which

B will be able to prepare the semi-functional ciphertext. To this end, B first computes a normal
encryption (C ′1, . . . , C

′
7, E

′
0, E

′
1, E

′
2, tagc?) of Mβ using exponents s′1, s

′
2, t
′. It then chooses χ $← Zp

and computes

C4 = C ′4 · fa2·χ, C5 = C ′5 · ga2·χ, C7 = C ′7 · ν−δw·a1·a2·χ · f δv2 ·a2·χ,

C6 = C ′6 · v
a2·χ
2 , E2 = E′2 · νa1·a2·χ, E1 = E′1 · (νδw·tagc?+〈~Y ?,~δ〉)a1·a2·χ.

We claim that (C ′1, C
′
2, C

′
3, C4, C5, C6, C7, E0, E1, E2, tagc?) is a semi-functional ciphertext with un-

derlying exponents χ, s1 = s′1, s2 = s′2 and t = t′ + logg(ν)a1a2χ. To prove this, we observe that

C7 = T s11 · T
s2
2 · w

−t · va2bχ
2 = T s11 · T

s2
2 · w

−t′−logg(ν)a1a2χ · (νa1 · gδv2 )a2bχ

= T s11 · T
s2
2 · w

−t′ · (f · gδw)− logg(ν)a1a2χ · (νa1 · gδv2 )a2bχ

= C ′7 · ν−δwa1a2χ · f δv2a2χ,

where the unknown term in va2bχ
2 is canceled out by w−t. Also,

E1 = E′1 ·
(
h
y?1
1 · · ·h

y?n
n · wtagc?

)logg(ν)a1a2χ

= E′1 ·
(
(f ζ1gδ1)y

?
1 · · · (f ζngδn)y

?
n · (fgδw)−〈~Y

?,~ζ〉)logg(ν)a1a2χ

= E′1 · (ν〈
~Y ?,~δ〉+δw·tagc?)a1a2χ,

where the unknown f logg(ν) vanishes due to our definition of tagc?. It then remains to show that
tagc?, tagk2, . . . , tagkn are still n-wise independent. But this holds since their relations form a system

M · ~ζ :=


−x2
x1

1
−x3
x1

1
...

. . .
−xn
x1

1
y?1 y?2 y

?
3 . . . y

?
n




ζ1

ζ2
...

ζn

 = −


tagk2

tagk3
...

tagkn
tagc?

 ,

which has a solution in ~ζ whenever det(M) = (−1)n+1 ~X · ~Y ?/x1 6= 0.
Eventually, A outputs a bit β′ and B outputs 0 if β = β′. As in [31], we see that A is playing

Gamek−1 if η = νθ1+θ2 and Gamek otherwise.

Lemma 3. If DBDH is hard, Gameq and Gameq+1 are indistinguishable.

4.3 Comparisons

In this section, we give a detailed comparison among the various IPE and PAIPE that can be found
in the literature. This is shown in Table 1. Their efficiency is measured in terms of ciphertext and
key sizes as well as the number of exponentiations and pairing evaluations to decrypt.
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Table 1. Performances of IPE and PAIPE Schemes

IPE/PAIPE Ciphertext Private key Decryption Attribute Security
schemes overhead size cost hiding?

KSW [20], TO [30] O(n)× |G| O(n)× |G| O(n) p. Yes Selective
LOSTW [21] O(n)× |G| O(n)× |G| O(n) p. Yes Adaptive

This work O(1)× |G| O(n)× |G| O(1) p. + O(n) exp. No Adaptive
n:dimension, p.:pairing applications, exp.:group exponential applications

Table 2 also summarizes the features of all identity-based broadcast encryption schemes that
have been described in prime order groups. Comparisons are given in terms of performances and
security guarantees. As for the latter criterion, three dimensions are considered depending on the
strength of underlying assumptions (i.e., simple assumptions vs q-type assumptions), on whether
security holds in the standard model or the random oracle model, as well as in the adaptive or
selective sense.

Table 2. Performances of IBBE systems

IBBE Ciphertext Private key Decryption Security RO? Assumptions
schemes overhead size cost
AKN [2] O(1)× |G| O(n2)× |G| O(1) p. + O(n) exp. Selective No q-type
Del. [15] O(1)× |G| O(1)× |G| O(1) p. + O(n) exp. Selective No q-type
BH [11] O(1)× |G| O(n)× |G| O(1) p. + O(n) exp. Selective No q-type
GW [17] O(1)× |G| O(1)× |G| O(1) p. + O(n) exp. Adaptive Yes q-type

+ O(1)× |GT | + O(1)× |Zp|
This work O(1)× |G| O(n)× |G| O(1) p. + O(n) exp. Adaptive No Simple

n:the number of users, p.:pairing applications, exp.:group exponential applications

Our system is asymptotically on par with the Boneh-Hamburg realization [11] in all efficiency
metrics, with the advantage of providing full security under simple assumptions (which appears to
be a unique property in existing IBBE schemes).

In appendix B, we describe a less efficient but conceptually simpler (notably in its similarity
with construction 2) variant of our PAIPE scheme in groups of composite order. It is derived from
an adaptively secure spatial encryption system obtained by applying the Lewko-Waters techniques
[23] to the construction of Boneh and Hamburg.

5 Functional Encryption for Non-Zero-Mode PAIPE

5.1 Negated Spatial Encryption

We begin this section by providing a co-selectively-secure construction of negated spatial encryption,
which is motivated by its implication of non-zero-mode PAIPE. At a high-level, our scheme can be
viewed as a “negative” analogue of the Boneh-Hamburg spatial encryption [11], in very much the
same way as the Lewko-Sahai-Waters revocation scheme [22] is a negative analogue of the Boneh-
Boyen IBE [5]. The intuition follows exactly from section 1, where we have to use “n-equation
technique”. In spatial encryption, we have to deal with, in general, how we can set up a system of
n equations similarly to Eq.(1). To this end, we confine the vector subspaces that we can use as
follows. Our construction is a functional encryption for the relation RNeg(Spatial) :Wn×Znp → {0, 1},
for a collection Wn ⊆ Vn of vector subspaces in Znp defined as

Wn = {Aff(M,~0) ∈ Vn | rank(M(−1)) = n− 1},
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where we denote M(−1) as the matrix obtained by deleting the first row M1 ∈ Z1×d
p of M .

Construction 4. (Co-selectively secure negated spatial encryption)

I Setup(1λ, n): chooses a bilinear group G of prime order p > 2λ with a random generator
g

$← G. It randomly chooses α, α1, . . . , αn
$← Zp. Let ~α = (α1, . . . , αn). The public key consists of

pk =
(
g, g~α, gα1~α, e(g, g)α

)
. The corresponding master secret key is msk = (α, ~α).

I KeyGen(V,msk, pk): suppose that V = Aff(M,~0), from a matrix M ∈ (Zp)n×d. The algorithm
picks t $← Zp and outputs skV = (D0, D1, ~K) ∈ Gd+2 where

D0 = gt, D1 = gα+tα2
1 , ~K = gtM

>~α.

I Encrypt(~y,M, pk): picks s $← Zp and computes (C0, C1, C2, C3) as

C0 = M · e(g, g)αs, C1 = gsα1〈~y,~α〉, C2 = gs, C3 = gα1s.

I Decrypt(C, ~y, skV , V, pk): the algorithm first obtains M from V . We also recall the notation of
M1, which is the vector of the first row of M . It first solves the system of equations in ~w from
M(−1) ~w = (y2, . . . , yn)>, which it can do since V ∈ Wn. It computes the message blinding factor as

e(g, g)αs = e(D1, C2) ·

(
e(C1, D0)

e( ~K ~w, C3)

) 1
M1 ~w−y1

= e(gα+tα2
1 , gs) ·

(
e(gsα1〈~y,~α〉, gt)
gt ~w>M>~α, gα1s)

) 1
M1 ~w−y1

.

Computability. We claim that the decryption can be computed if y 6∈ V . Indeed, we prove that
if y 6∈ V then M1 ~w − y1 6= 0 (and the above equation is well-defined). To prove the contrapositive,
suppose that M1 ~w − y1 = 0. Then, we must have ~y ∈ V since M ~w =

[
M1

M(−1)

]
~w =

[
M1 ~w

M(−1) ~w

]
= ~y.

Correctness. We verify that decryption is correct as follows. First, we note that due to our
definition of ~w, we have 〈M ~w − ~y, ~α〉 = (M1 ~w − y1)α1. Therefore, the correctness follows from the
fact that (

e(gsα1〈~y,~α〉, gt)
e(gt ~w>M>~α, gα1s)

) 1
M1 ~w−y1

=
(

1
e(g, g)tsα1〈M ~w−~y,~α〉

) 1
M1 ~w−y1

= e(g, g)−stα
2
1 .

Security. The co-selective security of the scheme relies on a q-type assumption defined in [22].

Definition 3 ([22]). The q-Decision Multi-Exponent Bilinear Diffie-Hellman Problem
(or q-MEBDH) in (G,GT ) is, given Z ∈ GT and a set of elements

P =


g, gs, e(g, g)α

∀1≤i,j≤q gai , gais, gaiaj , gα/a
2
i

∀1≤i,j,k≤q,i6=j g
aiajs, gαaj/a

2
i , gαaiaj/a

2
k , gαa

2
i /a

2
j

 ,

where g $← G, s, α, a1, . . . , aq
$← Zp, to decide whether Z = e(g, g)αs or Z ∈R GT .

Theorem 3. Construction 4 is co-selectively secure under the q-Decisional Multi-Exponent Bi-
linear Diffie-Hellman assumption, where q is the number of key queries. (The proof is given in
appendix D).

Implications. For a vector ~X ∈ Znp , the embedding V ~X = Aff(M ~X ,
~0n) defined in Eq.(3) is easily

seen to be in the limited domain Wn since (M ~X)(−1) is an identity matrix of size n− 1 and hence
rank((M ~X)(−1)) = n− 1. From Corollary 1, the above scheme thus implies non-zero-mode PAIPE.
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5.2 Non-Zero-Mode PAIPE under Simple Assumptions

We proved the co-selective security of our negated spatial encryption scheme under a non-standard
q-type assumption introduced in [22]. In this section, we show that the dual system technique [31]
makes it possible to rest on simple assumptions such as DBDH and DLIN.

The scheme is very similar to the zero PAIPE scheme of section 4.2 and we only state the
differences. Again, the intuition follows exactly from section 1 and the security proof uses similar
techniques as in [22]. In appendix E, we describe an intuitively simpler variant of the scheme in
composite order groups.

Construction 5. (Co-selectively secure non-zero-mode PAIPE)
I Setup(1λ, n): outputs pk exactly as in the construction 3 except that we define w = gα1(= h1)
in this scheme, instead of gα0 .
I Keygen( ~X,msk, pk): outputs sk ~X = (skadapt, skcore) where skadapt is the same as in the con-

struction 3 (with w = gα1) and skcore = {Ki =
(
g
−α1

xi
x1 · gαi

)r1}i=2,...,n.. Namely, it parses ~X as
(x1, . . . , xn) and returns ⊥ if x1 = 0. Otherwise, it chooses r1, r2, z1, z2

$← Zp. It sets r = r1 + r2

and outputs sk ~X = (D1, . . . , D7,K2, . . . ,Kn) where

D1 = gαa1 · vr, D2 = g−α · vr1 · gz1 , D3 = B−z1 , D4 = vr2 · gz2 ,
D5 = B−z2 , D6 = Br2 , D7 = gr1 , {Ki =

(
w−xi/x1 · hi

)r1}i=2,...,n

I Encrypt(~Y ,M, pk): outputs C = (Cadapt, Ccore) where Cadapt is as in the construction 3 (with
w = gα1) and Ccore =

(
E0 = M · Zs2 , E1 = (g〈~α,~Y 〉)t, E2 = gt

)
. In more details, to encrypt

M ∈ GT under the vector ~Y = (y1, . . . , yn) ∈ (Zp)n, pick s1, s2, t
$← Zp and compute the ciphertext

C = (C1, . . . , C7, E0, E1, E2) where

E0 = M · Zs2 , C1 = Bs1+s2 , C2 = Bs1
1 , C3 = As11 ,

C4 = Bs2
2 , C5 = As22 , C6 = τ s11 · τ

s2
2 , C7 = T s11 · T

s2
2 · w

−t.
(6)

E1 =
(
wy1 · hy22 · · ·h

yn
n

)t =
(
wy1 · gα2y2+···+αnyn)t, E2 = gt. (7)

I Decrypt(C, ~Y , sk ~X ,
~X, pk): computes W1 as in construction 3 and W2 as

W2 =
(
e(Ky2

2 · · ·K
yn
n , E2)

e(E1, D7)

)− x1
~X·~Y

= e(g, w)r1t.

The correctness of the scheme is showed in appendix A.2. Its security proof relies on the DLIN
and DBDH assumptions.

Theorem 4. Construction 5 is co-selectively secure under the DLIN and DBDH assumptions.

Proof. The proof uses exactly the same sequence of games as in Theorem 2. Semi-functional ci-
phertexts and keys are also defined identically to those of the previous scheme, i.e., as those stated
in Eq.(4,5), except that no tag components are used.

The proofs of indistinguishability between GameReal and Game0 as well as that of Gameq and
Gameq+1 proceed almost as those of Lemma 1 and 2.
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Lemma 4. Game0 is indistinguishable from GameReal under the DLIN assumption.

Proof. The proof is identical to the one of lemma 1 since the switch from normal to semi-functional
ciphertexts only affect elements (C4, C5, C6, C7) and, in their normal or semi-functional form, these
ciphertexts components are identical to those of the PAIPE scheme of section 4.

Lemma 5. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from Gamek−1, we can
build a distinguisher for the DLIN problem.

Proof. The distinguisher B takes as input a DLIN instance (g, f, ν, gθ1 , fθ2 , η) and has to decide
whether η = νθ1+θ2 or not.

Init. The adversary A first outputs the vectors to be queried ~X1, . . . , ~Xq. We parse the kth vector
~Xk as (x1, . . . , xn).

Setup. The algorithm B first randomly chooses α, a1, a2, δv1 , δv2
$← Zp and sets g = g,

A1 = ga1 , A2 = ga2 , B = gb = f, v1 = νa2 · gδv1

B1 = gba1 = fa1 , B2 = gba2 = fa2 , v = ν−a1a2 , v2 = νa1 · gδv2 ,

as well as e(g, g)αa1b = e(f, g)αa1 , which allows defining

τ1 = vva1
1 = gδv1a1 , τ2 = vva2

2 = gδv2a2 , τ b1 = f δv1a1 , τ b2 = f δv2a2 .

Next, B chooses δw, δ1, . . . , δn
$← Zp, and defines w = f · gδw ,

hi = wxi/x1 · gδi for i = 2, . . . , n.

As in the proof of lemma 2 and the one of lemma 2 in [31], the simulator B knows the master secret
key msk = (gα, gαa1 , v, v1, v2) of the system.

Key Queries. When A makes the jth private key query, B does as follows.

[Case j > k] It generates a normal key, using the master secret key msk.
[Case j < k] It creates a semi-functional key using ga1a2 .
[Case j = k] In this case, it generates a key by computing

D1 = D′1 · η−a1a2 , D2 = D′2 · ηa2 · (gθ1)δv1 , D3 = D′3 · (fθ2)δv1 ,

D4 = D′4 · ηa1 · (gθ1)δv2 , D5 = D′5 · (fθ2)δv2 , D6 = D′6 · fθ2 ,

and D7 = D′7 · (gθ1), as well as elements

Ki = K ′i · (gθ1)δi for i = 2, . . . , n,

which are all computable since we have wxi/x1 · hi = gδi and Ki = K ′i · (gθ1)δ1 = (wxi/x1hi)r
′
1+θ1 ,

with r′1 = logg(D′7). As in the proof of lemma 2, if η = νθ1+θ2 , sk ~X = (D1, . . . , D7,K2, . . . ,Kn)
forms a normal key where r1 = r′1 + θ1, r2 = r′2 + θ2, z1 = z′1 − δv1θ2, z2 = z′2 − δv2θ2 are the
implicitly defined underlying exponents. On the other hand, if ν is random, it can be expressed as
η = νθ1+θ2 · gγ for some γ ∈R Zp, so that sk ~X is distributed as a semi-functional key.
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Challenge. At the challenge phase, A outputs two messages M0,M1 ∈ GT along with a vector
~Y ? = (y?1, . . . , y

?
n) such that ~Xi · ~Y ? = 0 for each i ∈ {1, . . . , q}. At this stage, B flips a coin

β
$← {0, 1} and generates a normal encryption (C ′1, . . . , C

′
7, E

′
0, E

′
1, E

′
2) of Mβ. It then chooses

χ
$← Zp and computes a perturbed ciphertext as

C4 = C ′4 · fa2·χ, C5 = C ′5 · ga2·χ, C6 = C ′6 · v
a2·χ
2 ,

C7 = C ′7 · ν−δw·a1·a2·χ · f δv2 ·a2·χ = T
s′1
1 · T

s′2
2 · w

−t′ · ν−δw·a1·a2·χ · f δv2 ·a2·χ,

E1 = E′1 · (ν
∑n
i=2 y

?
i δi)a1·a2·χ, E2 = E′2 · νa1·a2·χ.

As in the proof of Lemma 2, the semi-functional component C7 is created by implicitly setting
t = logg(E2) as t = t′ + logg(ν)a1a2χ. The term E1 is computed as above since

E1 =
(
wy

?
1 · hy

?
2

2 · · ·h
y?n
n

)t =
(
wy

?
1 · (wx2/x1gδ2)y

?
2 · · · (wxn/x1gδn)y

?
n
)t

=
(
w
~X·~Y ?/x1 · (gδ2)y

?
2 · · · (gδn)y

?
n
)t =

(
g
∑n
j=2 δjy

?
j
)t = E′1 · (ν

∑n
i=2 y

?
i δi)a1·a2·χ,

where the unknown term wt disappears due to the requirement ~X · ~Y ? = 0 on the challenge vector
~Y ?. We then can conclude that (C ′1, C

′
2, C

′
3, C4, C5, C6, C7, E0, E1, E2) is properly distributed as a

semi-functional ciphertext.
Eventually, A outputs a bit β′ and B outputs 0 if β = β′. As in [31], we see that A is playing

Gamek−1 if η = νθ1+θ2 and Gamek otherwise.

Lemma 6. If the DBDH assumption holds, no PPT distinguisher can tell apart Gameq and Gameq+1.

Proof. Mutatis mutandis, the proof is identical to the one of lemma 3. As in the case of lemma 4,
variable assignments are unchanged since all values that are implicitly defined (i.e., not explicitly
known to the simulator) appear in key or ciphertext components that are identical to those of the
zero-mode PAIPE scheme. The only difference is that no tags are introduced in keys or ciphertexts.

5.3 A Generalization of the Scheme and Its Application

Extended Ciphertext Attribute Domain. The above scheme is a functional encryption for
the relation RNIPEn : Znp × Znp → {0, 1}. It can be extended so as to support relations of the form
RNIPE∗n : Znp × (Znp )d → {0, 1}, for some d ∈ poly(λ), and defined as RNIPE∗n( ~X, (~Y1, . . . , ~Yd)) = 1 if
and only if for all i = 1, . . . , d: ~X · ~Yi 6= 0.

We construct this extended system by setting up exactly the same public and private keys (for
~X) as in the original scheme. To encrypt to (~Y1, . . . , ~Yd), the scheme generates Cadapt and E0 as
usual with the underlying exponents s1, s2, t. Then, it chooses t1, . . . , td ∈ Zp so that t = t1 + · · ·+td
and for i = 1, . . . , d, parses ~Yi = (yi,1, . . . , yi,n) and computes E1,i = (g〈~α,~Yi〉)ti = (hyi,11 · · ·hyi,nn )ti
and E2,i = gti , in such a way that the ciphertext is (C1, . . . , C7, E0, {E1,i, E2,i}i=1,...,d). Decryption
requires to first compute

W2,i =
(
e(Kyi,2

2 · · ·Kyi,n
n , E2,i)

e(E1,i, D7)

)− x1
~X·~Yi

= e(g, w)r1ti ,

18



for i = 1, . . . , d, from which the receiver obtains5 W2 = W2,1 · · ·W2,d = e(g, w)r1t. The remaining
calculations are carried out as in the basic scheme and we now explain how the security proof must
be adapted.

The proof of co-selective security is almost identical to the proof of Lemma 5, except that
simulating the challenge ciphertext is instead done as follows. First, recall that the challenge vector
set (~Y1, . . . , ~Yd) is legal iff, for each private key query ~X` (` ∈ [1, q]), there exists j ∈ [1, d] such that
~X` · ~Yj = 0. Let us consider the kth query as in the proof of Lemma 5 and let j ∈ [1, d] be such that
~Xk · ~Yj = 0. For all i ∈ [1, d] such that i 6= j, the simulator B picks ti

$← Zp and computes E1,i, E2,i

as specified by the scheme. We let t′′ =
∑

i 6=j ti be the sum of these values. The simulator then
implicitly defines the exponent tj = t′ − t′′ + logg(ν)a1a2χ. Analogously to the proof of Lemma 5,
it can compute E1,j = E′1 · (g−t

′′ · νa1a2χ)
∑n
i=2 y

?
i δi and E2,j = E′2 · g−t

′′ · νa1a2χ (where E′1, E
′
2 are

part of a normal ciphertexts obtained as in the basic scheme) in such a way that the term wtj is
canceled out due to ~X · ~Yj = 0. The rest of the proof then follows similarly.

Applications. We can obtain an identity-based revocation scheme with parameter tradeoff from
the aforementioned extension. The instantiation of ID-based revocation scheme (IBR≤n) from our
non-zero inner-product system NIPEn+1 yields a construction with O(1)-size ciphertexts and O(n)-
size private keys, where n denotes the maximal number of revoked users.

From our extended scheme NIPE∗n+1, we can obtain an ID-based revocation scheme IBRpoly(λ),
without a fixed maximal number of revoked users. To revoke the set R where |R| = r, we divide it
into a disjointed union R = R1 ∪ · · · ∪Rr/n, where |Ri| = n for all i (we assume that n divides r).
We then simply construct the vector ~Yi from the revocation subset Ri for each i ∈ [1, r/n], in the
same way as we use NIPEn+1 to instantiate IBR≤n. We then finally encrypt using the set of vectors
(~Y1, . . . , ~Yr/n). The correctness and security properties are easily seen to hold since we have

RIBR≤n(ID, R) = 1 ⇔ ID 6∈ R ⇔ ∀i ∈ [1, r/n] : ID 6∈ Ri ⇔ RIBRpoly(λ)(ID, (R1, . . . , Rr/n)) = 1

As far as efficiency goes, the construction has O(r/n)-size ciphertexts and O(n)-size private keys.
Interestingly, we note that the second scheme described by Lewko, Sahai and Waters [22] (which
indeed inspires ours) can be viewed as a special case of our scheme where n = 1.

Comparison Between Revocation Schemes. Table 3 gives a comparative efficiency between
the two revocation schemes described by Lewko, Sahai and Waters [22] and our constructions.

From a security point of view, all schemes are proven secure in the standard model and in a
non-adaptive sense. Comparisons are thus given w.r.t. the same metrics as in section 4.3 as well as
according to whether the number of revocations must be fixed in advance or not.

6 Conclusion

This paper proposed new constructions of functional encryption with short ciphertexts in the public
attribute setting, where ciphertexts do not have to be anonymous. In prime order groups, these new
schemes gave rise to the first adaptively secure identity-based broadcast encryption scheme with
constant-size ciphertexts in the standard model. In their negated counterpart, they also imply the

5 If n < r1/2, the receiver can more efficiently compute W2 =
∏n

j=2 e
(
Kj ,

∏d
i=1 E

−yi,j ·x1/( ~X·~Yi)
2,i

)
e
(∏d

i=1 E
−x1/( ~X·~Yi)
1,i ,D7

) , so that only O(n)

pairing evaluations are required (instead of O(r/n)).
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Table 3. Performances of revocation systems

Revocation Ciphertext Private Decryption Assumption Bounded number
schemes overhead key size cost of revocations?

LSW1 [22] O(r)× |G| O(1)× |G| O(1) p. + O(r) exp. q-MEBDH No
LSW2 [22] O(r)× |G| O(1)× |G| O(1) p. + O(r) exp. DLIN + DBDH No

Basic scheme O(1)× |G| O(rmax)× |G| O(1) p. + O(r) exp. DLIN + DBDH Yes

Tradeoff scheme O
(
r
n

)
× |G| O(n)× |G| O

(
min( r

n
, n)
)

p. DLIN + DBDH No
+ O(r) exp.

n:any parameter, r:the number of revoked users, rmax: the maximum size of r (if required),

p.:pairing applications, exp.:group exponential applications

first (identity-based) revocation schemes featuring constant-size ciphertexts, no matter how many
users are revoked. We also introduced a revocation analogue of the spatial encryption primitive of
Boneh and Hamburg, which we showed to imply revocation.

In composite order groups, we also described conceptually simpler variants of the above construc-
tions using the Lewko-Waters techniques. Our fully secure zero-mode PAIPE scheme (construction
3) was notably generalized into an adaptively secure spatial encryption system, which provides a
simpler answer to a question left open by Boneh and Hamburg.

These results leave a few open problems. First, it would be nice to completely (namely, with
a proper delegation mechanism) implement fully secure spatial encryption in groups of prime or-
der with any (i.e., not only asymmetric) pairing configuration. This would require new ideas to
eliminate tags or get the delegation technique of [11] to suitably interact with them. Another open
problem is to move beyond the co-selective model when it comes to prove the security of our negated
schemes. In particular, it would be interesting to have adaptively secure negated spatial encryption
realizations (ideally, under simple assumptions).
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A Verifying Correctness in Decryption

A.1 For the Zero-Mode PAIPE Scheme of Section 4.2

W2 =
(
e(
∏n
i=2K

yi
i , E2)

e(E1, D7)

) 1
tagk−tagc

=

e
(∏n

i=2(g−α1
xi
x1 gαiwtagki)r1yi , gt

)
e
((
g〈~α,~Y 〉 · wtagc

)t
, gr1

)


1
tagk−tagc

=

e
(

(g−α1
x2y2+···+xnyn

x1 gα2y2+···+αnynwtagk2y2+···+tagknyn)r1 , gt
)

e
((
gα1y1+α2y2+···+αnyn · wtagc

)t
, gr1

)


1
tagk−tagc

= e
(
g
−α1(

x2y2+···xnyn
x1

+y1)
w(tagk−tagc), g

) r1t
tagk−tagc

= e
(
g
−α1

~X·~Y
x1 w(tagk−tagc), g

) r1t
tagk−tagc = e(g, w)r1t.

A.2 For the Non-Zero-Mode PAIPE Scheme of Section 5.2

W2 =
(
e(
∏n
i=2K

yi
i , E2)

e(E1, D7)

)− x1
~X·~Y

=

e
(∏n

i=2(g−α1
xi
x1 gαi)r1yi , gt

)
e
((
gα1y1+···+αnyn

)t
, gr1

)
−

x1
~X·~Y

=

e
(

(w−
x2y2+···+xnyn

x1 gα2y2+···+αnyn)r1 , gt
)

e
((
wy1 · gα2y2+···+αnyn

)t
, gr1

)

− x1
~X·~Y

= e
(
w

~X·~Y
x1 , g

)r1t· x1~X·~Y = e(g, w)r1t.

B Adaptively Secure Spatial Encryption in Composite Order Groups

The Lewko-Waters techniques [23] apply to provide a simpler realization (that avoids the use of
tags and achieves perfect correctness) of our PAIPE scheme in groups whose order is a product
N = p1p2p3 of three distinct primes.

However, as showed in Section 4.1, spatial encryption is a more general primitive than PAIPE
as it includes zero-mode PAIPE as a special case. For this reason, we only describe a fully secure
spatial encryption construction in composite order groups, a special case of which is a fully secure
zero-mode PAIPE with a similar efficiency and based on the same assumptions.

In a nutshell, the idea is to use groups of order N = p1p2p3 to turn the selectively secure scheme
of Boneh and Hamburg [11] into an adaptively secure scheme.
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B.1 Construction

We first briefly recall the concept of spatial encryption [11]. For a matrix M ∈ Zn×dN and a vector
~c ∈ ZnN , one considers the affine space Aff(M,~c) = {M ~w + ~c | ~w ∈ ZdN}. Let Vn ⊆ 2(Znp ) be the
collection of all affine spaces inside ZnN . That is, Vn is defined as

Vn = {Aff(M,~c) | M ∈Mn×d, c ∈ ZnN , d ≤ n},

where Mn×d is the set of all n× d matrices in ZN .
In a spatial encryption scheme, private keys correspond to affine subspaces and ciphertexts

are associated with a vector and can be decrypted by any private key associated with a subspace
containing that vector. In addition, a private key corresponding to an affine subspace V1 allows
deriving (using algorithm Delegate below) a private key for any subspace V2 such that V2 ⊂ V1.

In [11], Boneh and Hamburg gave a construction of spatial encryption with short ciphertexts.
It is inspired by the Boneh-Boyen-Goh hierarchical identity-based encryption scheme [7]. We show
that the Lewko-Waters techniques [23] indeed apply to tweak the Boneh-Hamburg construction
and render it adaptively secure.

The description hereafter thus uses groups (G,GT ) of order N = p1p2p3. In this kind of group,
for each i, j ∈ {1, 2, 3}, we denote by Gpi the subgroup of G of order pi while Gpipj stands for the
subgroup of order pipj .

Ciphertexts are generated exactly in the same way as in [11] but they live in the subgroup of
order p1. Private keys are also generated as in the underlying basic schemes and are then multiplied
by a random element of order p3. These randomizers of order p3 vanish upon decryption since pairing
two elements of order pi and pj , with i 6= j, always gives the identity element 1GT .

The security proof relies on the fact that, at the first transition in the sequence of games, normal
ciphertexts are indistinguishable from semi-functional ones, where ciphertexts components live in
the subgroup Gp1p2 according to a certain distribution. In addition, at some step of the sequence
of games, normal private keys are computatinally indistinguishable from semi-functional keys, the
elements of which have a non-trivial component of order p2.

Construction 6. (Fully Secure Spatial Encryption)

I Setup(n): chooses bilinear group (G,GT ) of order N = p1p2p3. It then picks a random generator
g

$← Gp1 and X3
$← Gp3 . It randomly chooses α, α0, . . . , αn

$← ZN . Let ~α = (α1, . . . , αn) ∈ ZnN . The
public key is pk =

(
g, g~α, e(g, g)α, X3

)
. The master secret key is msk = gα.

I KeyGen(V,msk, pk): suppose that V = Aff(M,~c), from a matrix M ∈ (Zp)n×d and a vector
~c ∈ ZnN . The algorithm chooses t $← ZN , R′0, R

′
1

$← Gp3 , and ~R′
$← Gd

p3 . It outputs the private key
as skV = (D0, D1, ~K) ∈ Gd+2

p1p3 where

D0 = gtR′0, D1 = gα+t(α0+〈~c,~α〉)R′1,
~K = gtM

>~α ~R′.

I Delegate(msk, pk, V1, DV1 , V2): takes as input two subspaces V1 = Aff(M1, ~c1), V2 = Aff(M2, ~c2)
for some matrices M1 ∈ Zn×d1N , M2 ∈ Zn×d2N . It outputs ⊥ if it turns out that V2 6⊂ V1. Otherwise,
we must have M2 = M1T and ~c2 = ~c1 + M1~x for some efficiently computable matrix T ∈ Zd1×d2N

and some vector ~x ∈ Zd1N . Given DV1 = (D0, D1, ~K) ∈ Gd1+2
p1p3 , these allow computing a delegated
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key DV2 = (D′0, D
′
1,
~K ′) ∈ Gd2+2

p1p3 as

DV2 =
(
D0 · gt1 ·R′′0 , D1 · ~Kx> · gα0t1 · gt1〈~c2,~α〉 ·R′′1 , ~KT> · gt1M>2 ~α · ~R′′

)
=
(
gt
′ ·R′′′0 , gα · gα0t′ · gt′〈~c2,~α〉 ·R′′′1 , gt

′M>2 ~α · ~R′′′
)
,

where t′ = t+ t1, for some randomly drawn t1
$← Zp, R′′0 , R′′1

$← Gp3 , ~R′′ $← Gd2
p3 .

I Encrypt(~Y ,M, pk): picks s $← ZN and computes the ciphertext as

C0 = M · e(g, g)αs, C1 = gs(α0+〈~Y ,~α〉), C2 = gs.

I Decrypt(C, ~Y , skV , V, pk): the decryption algorithm first obtain M ∈ Zn×dN ,~c ∈ ZnN from V .
Suppose that ~Y ∈ V (so that decryption is possible). Therefore, there must exist ~w ∈ ZdN such
that M ~w+~c = ~Y . It then solves this system of linear equations to obtain ~w. It then computes the
message blinding factor as

e(D1
~K ~w> , C2)

e(C1, D0)
= e(g, g)αs.

The correctness of the scheme can be verified by observing that

e(D1 · ~K ~w> , C2)
e(C1, D0)

=
e(gα+t(α0+〈~c,~α〉)gt ~w

>M>~α, gs)

e(gs(α0+〈~Y ,~α〉), gt)
=
e(gα+t(α0+〈~c+M ~w,~α〉), gs)

e(gs(α0+〈~Y ,~α〉), gt)
= e(g, g)αs.

B.2 Security Proof

The above spatial encryption is adaptively secure under Assumptions 1, 2 and 3 stated by Lewko
and Waters in [23], which are described as follows.

1. Given g
$← Gp1 , X3

$← Gp3 , and T ∈ G, decide if T ∈ Gp1 ×Gp2 or Gp1 .
2. Let g,X1

$← Gp1 , X2, Y2
$← Gp2 , X3, Y3

$← Gp3 . Given (g,X1X2, X3, Y2Y3), and T ∈ G, decide if
T ∈ Gp1 ×Gp2 ×Gp3 or Gp1 ×Gp3 .

3. Let g $← Gp1 , X2, Y2, Z2
$← Gp2 , X3, Z3

$← Gp3 and α, s
$← ZN . Given a tuple of elements

(g, gαX2, X3, g
sY2, Z2Z3) and T ∈ GT , decide if T = e(g, g)αs or not.

The proof follows exactly the same strategy as that of [23]. It uses the same sequence of games as
in Theorem 2, except only that we insert one more game namely GameRestricted between GameReal
and Game0. This game, GameRestricted, will be the same as GameReal, except that the adversary is
not allowed to ask for keys of ~X such that M ~w + ~c = ~Y ? mod p2 for some ~w ∈ Zdp2 . The semi-
functional ciphertexts and keys are defined as follows. Let g2 denote a generator of Gp2 .

◦ Semi-functional ciphertexts are generated from a normal ciphertext (C ′0, C
′
1, C

′
2) by choosing

random x, zc
$← ZN and setting

C0 = C ′0, C1 = C ′1 · g
xzc
2 , C2 = C ′2 · gx2

◦ Semi-functional keys are obtained from a normal key (D′0, D
′
1, D

′
2,
~K ′) by choosing random

γ, zk
$← ZN , ~z $← ZdN and setting

D0 = D′0 · g
γ
2 , D1 = D′1 · g

γzk
2 , ~K = ~K ′ · gγ~z2

24



We note that if one attempts to decrypt a semi-functional ciphertext with a semi-functional
key, the output from decryption will be the correct mask e(g, g)αs multiplied by the perturbation
factor e(g2, g2)xγ(zk+〈~z, ~w〉−zc).

The indistinguishability between games GameReal/GameRestricted, between GameRestricted/Game0

as well as Gameq/Gameq+1 can be proved almost exactly in the same way as in [23]. These proofs
rely on Assumption 1 and 2, Assumption 1, Assumption 3, respectively. We thus omit them here
and focus on the following lemma.

Lemma 7. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from Gamek−1, we can
build an algorithm B that breaks Assumption 2 given in [23].

Proof. The distinguisher B takes in a problem instance (g,X1X2, X3, Y2Y3, T ) for Assumption 2.
Its task is to decide whether T ∈ Gp1 ×Gp2 ×Gp3 or T ∈ Gp1 ×Gp3 .

Setup. Algorithm B first picks α, α0, . . . , αn
$← ZN and prepares pk =

(
g, g~α, e(g, g)α, X3

)
as usual.

It sends pk to A.

Key Queries. When A makes the jth private key query, B does as follows.

[Case j > k] B generates a normal key as in the construction. This can be done since it knows the
master key msk = gα.
[Case j < k] In this case, B creates a semi-functional key. To do so, it first computes a normal
private key (D′0, D

′
1,
~K ′). It then chooses γ̃, zk

$← ZN , ~z $← ZdN and sets

D0 = D′0 · (Y2Y3)γ̃ , D1 = D′1 · (Y2Y3)γ̃zk , ~K = ~K ′ · (Y2Y3)γ̃~z.

This is a properly distributed semi-functional key with gγ2 = Y γ̃
2 .

[Case j = k] The distinguisher B picks u
$← ZN , ~u $← ZdN and constructs the private key

(D0, D1, D2,K2, . . . ,Kn) as

D0 = T, D1 = gα · Tα0+〈~c,~α〉 ·Xu
3 ,

~K = TM
>~α ·X~u

3 .

If T ∈ Gp1 × Gp3 , then this is a normal key with gt being equal to the Gp1 component of T . If
T ∈ Gp1 ×Gp2 ×Gp3 , then this is a semi-functional key with gγ2 being equal to the Gp2 component
of T and zk = α0 + 〈~c, ~α〉 mod p2, ~z = M>~α mod p2. We note that ~α mod p1 is not correlated with
~α mod p2 and these values are properly distributed.

Challenge. In the challenge phase, A outputs messages M0,M1 ∈ GT along with her target ~Y ?.
Then, B flips a coin β

$← {0, 1} and forms the challenge ciphertext as

C0 = Mβ · e(X1X2, g)α, C1 = (X1X2)α0+〈~Y ?,~α〉, C2 = X1X2.

We claim that this is a properly distributed semi-functional ciphertext with gs = X1, gx2 = X2 and
zc = α0 + 〈~Y ?, ~α〉. To prove this, we must show that zk, ~z (from each queried private key) and zc
are all independently distributed from A’s view. Hence, it suffices to show that1 ~c>

~0 M>

1 (~Y ?)>

(α0

~α

)
=

zk~z
zc

 mod p2
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has always a solution in (α0, ~α) modulo p2. To this end, it suffices to show that, in the matrix of
the left-hand-side member, the last row (which relates to the information revealed by the challenge
ciphertext) is independent of all the other rows. This independence is guaranteed by the inequality
M ~w + ~c 6= ~Y ? mod p2 for any ~w ∈ Zdp2 , which is exactly our requirement in the game.

Eventually, the adversary A outputs a bit β′ and B outputs 0 if β = β′. As in [23], we see that A
is playing Gamek−1 in the event that T ∈ Gp1×Gp3 and Gamek otherwise (i.e., T ∈ Gp1×Gp2×Gp3).

B.3 Zero-Mode PAIPE in Composite Order Groups

As a special case of the fully secure spatial encryption system, we outline a simple construction of
PAIPE scheme which is very similar to the selectively-secure scheme of section 4.1.

Construction 7. (Simpler Fully Secure Zero-Mode PAIPE )

I Setup(n): proceeds almost as in appendix B.1. Namely, it chooses bilinear group (G,GT ) of
order N = p1p2p3 and picks random g

$← Gp1 and X3
$← Gp3 . It chooses α, α0, . . . , αn

$← ZN . Let
~α = (α0, . . . , αn). The public key is pk =

(
g, g~α, e(g, g)α, X3

)
. The master key consists of msk = gα.

I KeyGen( ~X,msk, pk): chooses t $← ZN and R′0, R
′
1, R2, . . . , Rn

$← Gp3 . The algorithm parses ~X
as a vector (x1, . . . , xn) ∈ (ZN )n. Then, it outputs the private key as sk ~X = (D0, D1,K2, . . . ,Kn)
where

D0 = gtR′0, D1 = gα+α0tR′1, {Ki = (g−α1
xi
x1 gαi)tRi}i=2,...,n.

I Encrypt(~Y ,M, pk): the encryption algorithm first picks s $← ZN at random and parses ~Y as
~Y = (y1, . . . , yn). It then computes the ciphertext as

C0 = M · e(g, g)αs, C1 = (gα0gα1y1gα2y2 · · · gαnyn)s, C2 = gs.

I Decrypt(C, ~Y , sk ~X ,
~X, pk): computes the message blinding factor as

e(D1K
y2
2 · · ·K

yn
n , C2)

e(C1, D0)
= e(g, g)αs.

If ~X ·~Y = 0, correctness can be verified almost identically to appendix A. Indeed, since C2, D0 ∈ Gp1 ,
we have that the elements in Gp3 from the keys will be canceled out when computing pairing, and
the computation is thus exactly the same as that of the selectively secure scheme.

C Proofs of Lemmas 1 and 3

C.1 Proof of Lemma 1

The proof proceeds identically to that of lemma 1 in [31]. The simulator B is given a DLIN instance
(g, f, ν, gθ1 , fθ2 , η ?= νθ1+θ2). It first sets g = g, A1 = ga1 = f , A2 = ga2 = ν and chooses random
exponents α, b, δv, δv1 , δv2

$← Zp to define

B = gb, B1 = gba1 = f b, B2 = gba2 = νb, v = gδv , v1 = gδv1 , v2 = gδv2 ,
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which allow calculating τ1, τ2, τ
b
1 , τ

b
2 and Z = e(g, g)α·a1·b = e(g, f)α·b. Finally, B picks random

group elements w, h1, . . . , hn
$← G, which completes the generation of mpk. Since B knows the

entire master secret key msk = (gα, gα·a1 , v, v1, v2), it is able to generate normal private keys for
any vector ~X throughout the game.

To generate the challenge ciphertext for the adversarially-chosen vector ~Y ?, B first computes a
normal ciphertext (C ′1, . . . , C

′
7, E

′
0, E

′
1, E

′
2, tagc) using random exponents s′1, s

′
2, t
′ $← Zp. The adver-

sary A is given
C = (C1, C2, C3, C4, C5, C6, C7, E0, E1, E2, tagc)

where

E0 = E′0 ·
(
e(gθ1 , f) · e(g, fθ2)

)b·α
, C1 = C ′1 · (gθ1)b, C2 = C ′2 · (fθ2)−b

C3 = C ′3 · (fθ2)−1, C4 = C ′4 · ηb, C5 = C ′5 · η,

C6 = C ′6 · (gθ1)δv · (fθ2)−δv1 · ηδv2 , C7 = C ′7 ·
(
(gθ1)δv · (fθ2)−δv1 · ηδv2

)b
and (E1, E2) = (E′1, E

′
2). As in [31][lemma 1], the challenge ciphertext C has the distribution of a

normal ciphertext (where s1 = −θ2 + s′1, s2 = s′2 + θ1 + θ2 and s = θ1 + s′1 + s′2 are the implicitly
defined encryption exponents) if η = νθ1+θ2 . On the other hand, if η ∈R G, C has the shape of a
semi-functional ciphertext. ut

C.2 Proof of Lemma 3

The simulator B takes in a Decision Bilinear Diffie-Hellman instance (g, gθ1 , gθ2 , gθ3 , η) and has to
decide whether η = e(g, g)θ1θ2θ3 .

To prepare the master public key mpk, B chooses a1, b, δv, δv1 , δv2 , δw
$← Zp. It sets g = g,

Z = e(g, g)α·a1·b = e(gθ1 , gθ2)a1·b, w = gδw and

B = gb, A1 = ga1 , A2 = (gθ2), B1 = gba1 = fa1 ,

B2 = (gθ2)b, v = gδv , v1 = gδv1 , v2 = gδv2 ,

which implicitly define α = θ1θ2, a2 = θ2, and chooses ~H = (h1, . . . , hn) ∈ Gn at random. In the
reduction, B does not entirely know the master secret key since parts gα = gθ1·θ2 and gα·a1 = gθ1·θ2·a1

are not available. Nevertheless, it will be able to compute semi-functional keys (recall that generated
ciphertexts and private keys are all semi-functional in Game q and Game q + 1).

To generate a private key for some vector ~X = (x1, . . . , xn), B randomly draws r1, r2, z1, z2
$← Zp,

tagk2, . . . , tagkn
$← Zp and γ′

$← Zp, sets r = r1 + r2 and calculates

D1 = (gθ2)−γ
′·a1 · vr, D2 = (gθ2)γ

′ · vr1 · gz1 , D3 = (gb)−z1

D4 = (gθ1)a1 · ga1·γ′ · vr2 · gz2 , D5 = (gb)−z2 , D6 = gr2·b, D7 = gr1 ,

K2 = (hx2/x1

1 · h2 · wtagk2)r1 , . . . , Kn = (hxn/x1

1 · hn · wtagkn)r1 .
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The above forms a valid key sk ~X = (D1, . . . , D7,K2, . . . ,Kn, tagk2, . . . , tagkn) where the variable
(which acts as a randomizer making the key semi-functional) is implicitly set to γ = θ1 + γ′.

At the challenge phase, A outputs a vector ~Y ? = (y?1, . . . , y
?
n) and a pair of messages M0,M1 ∈

GT . Then, B picks β
$← {0, 1} and sets E0 = Mβ · ηa1·b. Next, it chooses a tag tagc

$← Zp,
encryption exponents s1, t

$← Zp and another exponent χ′ $← Zp that will be used to implicitly
define χ = −θ3 + χ′. It computes

C1 = gs1·b · (gθ3)b, C2 = gb·a1·s1 , C3 = ga1·s1 , C4 = (gθ2)χ
′·b, C5 = (gθ2)χ

′
,

C6 = τ s11 · (g
θ3)δv · (gθ2)δv2 ·χ

′
, C7 = (τ b1)s1 · (gθ3)δv ·b · (gθ2)δv2 ·χ

′·b · w−t

E1 = (hy
?
1

1 · · ·h
y?n
n · wtagc)t, E2 = gt.

As in the proof of lemma 3 in [31], if η = e(g, g)θ1θ2θ3 , the game mirrors Game q where the encryption
exponent s2 is set to be θ3. In contrast, if η ∈R GT , the game corresponds to Game q + 1. ut

D Proof of Theorem 3

Proof. Towards a contradiction, we assume there is a co-selective adversary A with non-negligible
advantage and show that it implies an algorithm B that solves the Decision q-MEBDH problem in
G. Algorithm B is given a q-MEBDH challenge (Z,P ). Let ~a = (a1, . . . , aq)>. It proceeds as follows.

Init. The co-selective security game begins withA first choosing V1, . . . , Vq, where Vk = Aff(M (k),~0n)
is an affine subspace corresponds to the kth query.

Setup. First, for each k = 1, . . . , q, it solves a linear equation system with variables (b2,k, . . . , bn,k):

(M (k))>~bk := (M (k))>(1, b2,k, · · · , bn,k)> = ~0.

This can be done since rank(M (k)
(−1)) = n − 1. It defines a n × q matrix B = [~b1,~b2, . . . ,~bq], which

comprises ~bk as the kth column. It chooses ~δ = (δ1, . . . , δn)> $← Znp and implicitly defines the vector
~α = B~a + B~δ, where ~a = (a1, . . . , aq)> is the unknown vector of exponents from the problem
instance, by defining public key components as

gα1 = ga1+···+aq+δ1+···+δq , gα1~α = gα1B~agα1B~δ = gB(a1+···+aq+δ1+···+δq)~agα1B~δ,

which are computable from elements gai , gaiaj that are available from the problem instance, just
like e(g, g)α that completes the public key.

Key Queries. To compute a private key for kth query, B does as follows. It chooses t′k
$← Zp and

implicitly defines tk = t′k − α/a2
k by setting

D0 = gt
′
kg−α/a

2
k , D1 = gα+tkα

2
1 = gα+(t′k−α/a

2
k)α2

1 = (gα
2
1)t
′
k · gα(1−α2

1)/a2
k

as well as

~K = gtk(M(k))>~α = gtk(M(k))>(B~a+B~δ) = gt
′
k(M(k))>B~a · g

−α(M(k))>B~a
a2
k · gtk(M(k))>B~δ.

28



The term D1 can be computed from gα/a
2
k , gαa

2
j/a

2
k for 1 ≤ j, k ≤ n from the instance. We then claim

that the term ak does not appear in (M (k))>B~a. From this claim, one can see that the middle term
g−α(M(k))>B~a/a2

k (which is the only non-trivial one here) can be computed from the term gαaj/a
2
k for

j 6= k from the instance. Indeed, more importantly, the unknown term gα/ak is canceled out here.
The claim is justified by the fact that the coefficient column vector of ak is exactly the kth column
of (M (k))>B, which is indeed (M (k))>~bk = ~0.

Challenge. Eventually, A outputs M0,M1 ∈ GT along with a vector ~y?. Recall that A is required
to choose the latter in such a way that ~y? ∈ Vk for all k ∈ [1, q]. Hence, for all k ∈ [1, q], there
must exist ~wk ∈ Zn−1

p such that ~y? = M (k) ~wk. To construct the challenge ciphertext, B flips a coin
β

$← {0, 1} and chooses s′ $← Zp to compute

C0 = Mβ · Z · e(g, g)αs
′
, C1 = gsα1〈~y?,~α〉gs

′α1〈~y?,~α〉

= gsα1(~y?)>B~agsα1(~y?)>B~δgs
′α1〈~y?,~α〉,

C2 = gsgs
′
, C3 = gsa1 · · · gsaq · (gs)δ1+···+δq · (gα1)s

′
.

We claim that gsα1(~y?)>B~a (which is the only non-trivial term in C1 since elements of the form gsa
2
i

are not given) equals 1. The claim follows from the fact that, for each k ∈ [1, q], the coefficient of
ak in (~y?)>B~a is 0. Indeed, this coefficient of ak is exactly the kth element of the vector (~y?)>B,
which equals (~y?)>~bk. Since we have (~y?)>~bk = (M (k) ~wk)

>~bk = (~wk)>(M (k))>~bk = (~wk)>~0 = 0, by
our definition of ~bk, the claim is established.

Finally, A outputs β′ ∈ {0, 1}. If β = β′ then B outputs 1 (meaning Z = e(g, g)αs). Otherwise,
it outputs 0 (meaning Z is random in GT ).

We easily see that, if Z ∈R GT , then Pr[B(Z,P ) = 0] = 1
2 . In contrast, if we have Z = e(g, g)αs,

then |Pr[B(Z,P ) = 0] − 1
2 | ≥ ε. It follows that B has advantage at least ε in solving q-MEBDH

problem.

E Co-Selectively Secure Non-Zero PAIPE in Composite Order Groups

As in appendix B, we consider groups (G,GT ) of composite order N = p1p2p3. In this setting,
we rely on the following three assumptions. The first one and the last one were already used in
appendix B whereas the second one is analogous to the one use in [31][Appendix E].

Assumption 1: Given g
$← Gp1 , X3

$← Gp3 , and T ∈ G, decide if T ∈ Gp1 ×Gp2 or T ∈ Gp1 .
Assumption 2: Let g, w, gt, X1

$← Gp1 with t
$← ZN , X2, Y2, Z2

$← Gp2 , X3, Y3, Z3
$← Gp3 . Given

elements (g, w, gt, X1X2, X3, Y2Y3), and T ∈ G, decide if T = wtZ3 or T = wtZ2Z3.
Assumption 3: Let g $← Gp1 , X2, Y2, Z2

$← Gp2 , X3
$← Gp3 , α, s

$← ZN . Given

(g, gαX2, X3, g
sY2, Z2),

and T ∈ GT , decide if T = e(g, g)αs or not.

Using the above assumptions, a relatively simple non-zero PAIPE can then be obtained as
follows in the co-selective model.
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Construction 8. (Co-selectively secure Non-Zero PAIPE in Composite Order Groups)

I Setup(n): given a security parameter λ ∈ N and an integer n ∈ poly(λ), choose bilinear
groups (G,GT ) of order N = p1p2p3, where pi > 2λ for each i ∈ {1, 2, 3}. Choose α

$← ZN ,
g

$← Gp1 , Xp3
$← Gp3 , hi

$← Gp1 for i = 0, . . . , n. The master public key is defined to be
pk :=

(
g, e(g, g)α, {hi}i=0,...,n

)
while the master secret key consists of msk :=

(
gα, Xp3

)
.

I KeyGen( ~X,msk, pk): on input of a vector ~X = (x1, . . . , xn) ∈ ZnN and the master private key
msk =

(
gα, Xp3

)
, choose r $← ZN , R3, R

′
3

$← Gp3 and R3,i
$← Gp3 , for i = 1 to n, and compute

D1 = gα · hr0 ·R3, D2 = gr ·R′3, {Ki =
(
hxi0 · hi

)r ·R3,i}ni=1

before returning sk ~X =
(
D1, D2, {Ki}ni=1

)
.

I Encrypt(~Y ,M, pk): to encrypt M ∈ GT under ~Y = (y1, . . . , yn) ∈ (ZN )n, choose s $← ZN and
compute

C0 = M · e(g, g)α·s, C1 = gs, C2 =
(
hy11 · · ·h

yn
n

)s
.

The ciphertext is C =
(
C0, C1, C2

)
.

I Decrypt(C, ~Y , sk ~X ,
~X, pk): parse sk ~X as (D1, D2, D3), compute

K ′ =
n∏
i=1

Kyi
i =

(
h
~X·~Y
0 · hy11 · · ·h

yn
n

)r
,

and compute e(g, g)α·s = e(D1, C1) ·
(
e(K′,C1)
e(C2,D2)

)− 1
~X·~Y as well as M = C0/e(g, g)αs.

The correctness of the scheme is showed by observing that

e(K ′, C1) = e(g, h0)r·s· ~X·~Y · e(
n∏
i=1

hxii , g
rs) = e(g, h0)r·s· ~X·~Y · e(C2, D2)

and e(D1, C1) = e(g, g)α·s · e(g, h0)r·s.

Lemma 8. Any adversary distinguishing GameReal from Game0 with non-negligible advantage con-
tradicts Assumption 1.

Proof. Let B be an algorithm that receives (g,X3, T ) and aims at deciding whether T ∈R Gp1p2 or
T ∈R Gp1 .

To prepare the public key mpk, B chooses α $← ZN as well as ai
$← ZN for i = 0 to n.

Then, it computes e(g, g)α and sets Xp3 = X3 as well as hi = gai for i = 0 to n. Since B knows
msk =

(
gα, X3

)
, it is able to answer all key generation queries.

At the challenge step, A outputs a pair of equal-length messages M0,M1 ∈ G as well as a vector
~Y = (y1, . . . , yn) ∈ (ZN )n. To generate the challenge ciphertext, B flips a random coin β

$← {0, 1}
and computes C1 = T , C2 = T

∑n
i=1 aiyi and C0 = Mβ · e(T, g)α.

If T ∈R Gp1p2 , the challenge ciphertext has the same distribution as in Game0 whereas B is
playing GameReal if T ∈R Gp1 .
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Lemma 9. For each k ∈ {0, . . . , q}, any PPT distinguisher A between Gamek from Gamek+1 can
be used to break Assumption 2.

Proof. We show an algorithm B that takes as input
(
g, w, gt, X1X2, X3, Y2Y3, T

)
, and uses A to

decide whether T = wtZ2Z3 ∈R Gp1p2p3 or T = wtZ3 ∈R Gp1p3 .

Init. As in the proof of lemma 5, the co-selective security game begins with the adversary A
announcing the set of private key queries ~X1, . . . , ~Xq that she intends to make and we parse as
~Xk = (x1, . . . , xn) the kth of these private key queries.

Setup. To prepare the public key pk, B uses ~Xk = (x1, . . . , xn). It begins by choosing α $← ZN as
well as ai

$← ZN for i = 1 to n. It sets Xp3 = X3, h0 = w and hi = h−xi0 gai for i = 1 to n.

Challenge. At some point, A chooses messages M0,M1 and a vector ~y = (y1, . . . , yn). Then, B flips
a random coin β

$← {0, 1} and constructs the challenge ciphertext as

C0 = Mβ · e(X1X2, g)α, C1 = X1X2, C2 = (X1X2)
∑n
i=1 aiyi ,

which is easily seen to form a semi-functional ciphertext for which zc =
∑n

i=1 aiyi (note that this
value is taken modp2 and is thus uncorrelated to the values of ai mod p1) since we must have
~X · ~Y = 0 for each private key query ~X.

Key Queries. To respond private key queries for vectors ~X = (x1, . . . , xn), B considers three cases
depending on the index j of the query:

[Case i < k] B generates a semi-functional key by choosing r, z1
$← ZN as well as R3

$← Gp3 and
R3,i

$← Gp3 for i = 1 to n and computing

D1 = gαhr0 · (Y2Y3)z1 D2 = gr ·R3 {Ki = (hxi0 · hi)
r ·R3,i}ni=1.

[Case i > k] B computes a normal key using msk =
(
gα, X3

)
.

[Case i = k] if i = k, B uses the input element T . Namely, it chooses R3
$← Gp3 and R3,i

$← Gp3

for i = 1, . . . , n. Then, it computes

D1 = gα · T, D2 = gt ·R′3 {Ki = (gt)ai ·R3,i}ni=1.

We easily observe that the challenger is playing Gamek if T = wtZ3. If it turns out that
T = wtZ2Z3, B is rather playing Gamek+1 since T .

Lemma 10. Any PPT algorithm A distinguishing Gameq from Gameq+1 implies a distinguisher
B for Assumption 3.

Proof. We outline an algorithm B that takes as input
(
g, gαX2, X3, g

sY2, Z2, T
)

with the aim of
deciding whether T = e(g, g)αs or T ∈R GT using its interaction with A. To this end, B generates
the public key mpk =

(
g, e(g, g)α, {hi}i=0,...,n

)
by choosing a0, . . . , an

$← ZN and setting Xp3 = X3,
e(g, g)α = e(gαX2, g) as well as hi = gai for i = 0 to n.

When the adversary A makes a private key query ~X = (x1, . . . , xn), B chooses r, w $← ZN ,
R3, R

′
3

$← Gp3 , R3,i
$← Gp3 , for i = 1 to n, and computes

D1 = (gαX2) · hr0 ·R3, D2 = gr ·R′3 {Ki = (hxi0 · hi)
r ·R3,i}ni=1
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which has the distribution of a semi-functional key.
At the challenge phase,A outputs M0,M1 ∈ GT and ~Y = (y1, . . . , yn). To construct the challenge

ciphertext, B chooses β $← {0, 1} and computes

C0 = Mβ · T, C1 = gsY2, C2 = (gsY2)
∑n
i=1 aiyi .

Similarly to the proof of lemma 8 in [23], the game is easily seen to correspond to Gameq if
T = e(g, g)αs and to Gameq+1 if T ∈R GT .

In Gameq+1, the adversary’s advantage is easily seen to be zero since the challenge ciphertext
carries no information on β ∈ {0, 1}.
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