
Group Encryption: Non-Interactive Realization in the Standard

Model

Julien Cathalo1 ⋆, Benôıt Libert1 ⋆⋆, and Moti Yung2

1 Université catholique de Louvain, Crypto Group (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. Group encryption (GE) schemes, introduced at Asiacrypt’07, are an encryption analogue of
group signatures with a number of interesting applications. They allow a sender to encrypt a message
(in the CCA2 security sense) for some member of a PKI group concealing that member’s identity (in
a CCA2 security sense, as well); the sender is able to convince a verifier that, among other things, the
ciphertext is valid and some anonymous certified group member will be able to decrypt the message.
As in group signatures, an opening authority has the power of pinning down the receiver’s identity. The
initial GE construction uses interactive proofs as part of the design (which can be made non-interactive
using the random oracle model) and the design of a fully non-interactive group encryption system is
still an open problem. In this paper, we give the first GE scheme, which is a pure encryption scheme
in the standard model, i.e., a scheme where the ciphertext is a single message and proofs are non-
interactive (and do not employ the random oracle heuristic). As a building block, we use a new public
key certification scheme which incurs the smallest amount of interaction, as well.

Keywords. Group encryption, anonymity, provable security.

1 Introduction

Group encryption (GE) schemes, introduced by Kiayias, Tsiounis and Yung [29], are the encryption
analogue of group signatures [16]. The latter primitives basically allow a group member to sign
messages in the name of a group without revealing his identity. In a similar spirit, GE systems aim
to hide the identity of a ciphertext’s recipient and still guarantee that he belongs to a population of
registered members in a group administered by a group manager (GM). A sender can generate an
anonymous encryption of some plaintext m intended for a receiver holding a public key that was
certified by the GM (message security and receiver anonymity being both in the CCA2 sense). The
ciphertext is prepared while leaving an opening authority (OA) the ability to “open” the ciphertext
(analogously to the opening operation in group signatures) and uncover the receiver’s name. At
the same time, the sender should be able to convince a verifier that (1) the ciphertext is a valid
encryption under the public key of some group member holding a valid certificate; (2) if necessary,
the opening authority will be able to find out who the receiver is; (3) (optionally) the plaintext is
a witness satisfying some public relation.

Motivations. The GE primitive was motivated by various privacy applications such as anonymous
trusted third parties or oblivious retriever storage. Many cryptographic protocols such as fair ex-
change, fair encryption or escrow encryption, involve trusted third parties that remain offline most
of the time and are only involved to resolve problems. Group encryption allows one to verifiably
encrypt some message to such a trusted third party while hiding his identity among a set of possible

⋆ This author’s research was supported by the Belgian Walloon Region project ALAWN (Programme Wist 2).
⋆⋆ This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-F.N.R.S.) for their financial

support.

trustees. For instance, a user can encrypt a key (e.g., in an “international key escrow system”) to
his own national trusted representative without letting the ciphertext reveal the latter’s identity,
which could leak information on the user’s citizenship. At the same time, everyone can be convinced
that the ciphertext is heading for an authorized trustee.

Group encryption also finds applications in ubiquitous computing, where anonymous credentials
must be transferred between peer devices belonging to the same group. Asynchronous transfers may
require to involve an untrusted storage server to temporarily store encrypted credentials. In such
a situation, GE schemes may be used to simultaneously guarantee that (1) the server retains prop-
erly encrypted valid credentials that it cannot read; (2) credentials have a legitimate anonymous
retriever; (3) if necessary, an authority will be able to determine who the retriever is.

By combining cascaded group encryptions using multiple trustees and according to a sequence
of identity discoveries and transfers, one can also implement group signatures where signers can
flexibly specify how a set of trustees should operate to open their signatures.

Prior Works. Kiayias, Tsiounis and Yung (KTY) [29] formalized the concept of group encryption
and provided a suitable security modeling. They presented a modular design of GE system and
proved that, beyond zero-knowledge proofs, anonymous public key encryption schemes with CCA2
security, digital signatures, and equivocal commitments are necessary to realize the primitive. They
also showed how to efficiently instantiate their general construction using Paillier’s cryptosystem
[35] (or, more precisely, a modification of the Camenisch-Shoup [13] variant of Paillier). While
efficient, their scheme is not a single message encryption, since it requires the sender to interact
with the verifier in a Σ-protocol to convince him that the aforementioned properties are satisfied.
Interaction can be removed using the Fiat-Shamir paradigm [20] (and thus the random oracle model
[4]), but only heuristic arguments [22] (see also [14]) are then possible in terms of security.

Independently, Qin et al. [36] considered a closely related primitive with non-interactive proofs
and short ciphertexts. However, they avoid interaction by explicitly employing a random oracle
and also rely on strong interactive assumptions. As we can see, none of these schemes is a truly
non-interactive encryption scheme without the random oracle idealization.

Our Contribution. As already noted in various contexts such as anonymous credentials [2],
rounds of interaction are expensive and even impossible at times as, in some applications, proofs
should be verifiable by third parties that are not present when provers are available. In the setting of
group encryption, this last concern is even more constraining as it requires the sender, who may be
required to repeat proofs with many verifiers, to maintain a state and remember the random coins
that he uses to encrypt every single ciphertext. In the frequent situation where many encryptions
have to be generated using independent random coins, this becomes a definite bottleneck.

This paper solves the above problems and describes the first realization of group encryption
which is a fully non-interactive encryption scheme with CCA2-security and anonymity in the stan-
dard model. In our scheme, senders do not need to maintain a state: thanks to the Groth-Sahai [27]
non-interactive proof systems, the proof of a ciphertext can be generated once-and-for-all at the
same time as the ciphertext itself. Furthermore, using suitable parameters and for a comparable
security level, we can also shorten ciphertexts by a factor of 2 in comparison with the KTY scheme.
As far as communication goes, the size of proofs allows decreasing by more than 75% the number
of transmitted bits between the sender and the verifier.

Since our goal is to avoid interaction, we also design a joining protocol (i.e., a protocol whereby
the user effectively becomes a group member and gets his public key certified by the GM) which
requires the smallest amount of interaction: as in the Kiayias-Yung group signature [30], only two

2

messages have to be exchanged between the GM and the user and the latter need not to prove
anything about his public key. In particular, rewinding is not necessary in security proofs and the
join protocol can be safely executed in a concurrent environment, when many users want to register
at the same time. The join protocol uses a non-interactive public key certification scheme where
discrete-logarithm-type public keys can be signed as if they were ordinary messages (and without
knowing the matching private key) while leaving the ability to efficiently prove knowledge of the
certificate/public key using the Groth-Sahai techniques. To certify users without having to rewind3

in security proofs, the KTY scheme uses groups of hidden order (and more precisely, Camenisch-
Lysyanskaya signatures [12]). In public order groups, to the best of our knowledge, our construction
is the first certification method that does not require any form of proof of knowledge of private
keys. We believe it to be of independent interest as it can be used to construct group signatures
(in the standard model) where the joining mechanism tolerates concurrency in the model of [30]
without demanding more than two moves of interaction.

Organization. In section 2, we describe the intractability assumptions that we need and recall
the KTY model of group encryption. Section 3 explains the building blocks of our construction and
notably describes our certification scheme. Our GE system is depicted in section 4.

2 Background

In the paper, when S is a set, x
$
← S denotes the action of choosing x at random in S. By

a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says that b is a negligible
function of λ. When a and b are two binary strings, a||b stands for their concatenation.

2.1 Complexity Assumptions

We use groups (G,GT) of prime order p with an efficiently computable map e : G×G→ GT such
that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and e(g, h) 6= 1GT

whenever g, h 6= 1G.
In this setting, we rely on an assumption introduced in [7] that allows constructing efficient

non-interactive proofs as pointed out in [27].

Definition 1. The Decision Linear Problem (DLIN) in G, is to distinguish the distribution

of linear tuples D1 = {(g, ga, gb, gac, gbd, gc+d)|a, b, c, d
$
← Z

∗
p} from the distribution of random

tuples D2 = {(g, ga, gb, gac, gbd, gz)|a, b, c, d, z
$
← Z

∗
p}. The Decision Linear Assumption is the

intractability of DLIN for any PPT algorithm D.

This problem amounts to deciding whether vectors ~g1 = (ga, 1, g), ~g2 = (1, gb, g) and ~g3 are linearly
dependent or not. We also consider a related computational problem which bears similarities with
simultaneous pairing problems [26, 25].

Definition 2. The Simultaneous Double Pairing problem (S2P) in G is, given a tuple of
elements (g1, g2, g1,c, g2,d) ∈ G4, to find a non-trivial triple (u, v,w) ∈ G3\{(1G, 1G, 1G)} such that
e(g1, u) = e(g1,c, w) and e(g2, v) = e(g2,d, w).

3 Although the simulator does not need to rewind proofs of knowledge in [29], users still have to interactively prove
the validity of their public key.

3

Like the simultaneous triple pairing assumption [25], the hardness of this problem is implied by the

DLIN assumption: given (g, g1, g2, g
c
1, g

d
2 , η

?
= gc+d) any algorithm that, on input of (g1, g2, g

c
1, g

d
2),

outputs a non-trivial (u, v,w) such that e(g1, u) = e(gc1, w), e(g2, v) = e(gd2 , w) allows telling whether
η = gc+d by testing if e(g, u · v) = e(η,w) (since u = wc and v = wd).

We also use the Hidden Strong Diffie-Hellman (HSDH) assumption introduced in [10] as a
strengthening of the Strong Diffie-Hellman assumption [6].

Definition 3. The ℓ-Hidden Strong Diffie-Hellman problem (ℓ-HSDH) in G consists in,

given (g,Ω = gω, u)
$
← G

3 and triples (g1/(ω+si), gci , uci) with c1, . . . , cℓ
$
← Z

∗
p, finding another

triple (g1/(ω+c), gc, uc) such that c 6= ci for i = 1, . . . , ℓ.

We finally need the following variant of the Diffie-Hellman assumption.

Definition 4. The Flexible Diffie-Hellman problem (FlexDH) is, given (g, ga, gb) ∈ G
3, where

a, b
$
← Z

∗
p, to find a triple (C,Ca, Cab) such that C 6= 1G.

A potentially easier problem considered in [33] only requires to output (C,Cab) on input of the
same values. The latter problem was proved generically hard in prime order groups [33]. In bilinear
groups, any algorithm solving either of these two problems would make it easy to recognize gabc on
input of (g, ga, gb, gc), which is a problem suggested for the first time in [8, Section 8].

2.2 Model and Security Notions

Group encryption schemes involve a sender, a verifier, a group manager (GM) that manages the
group of receivers and an opening authority (OA) that is able to uncover the identity of ciphertext
receivers. A group encryption system is formally specified by the description of a relation R as
well as a collection GE =

(

SETUP, JOIN, 〈Gr,R, sampleR〉,ENC,DEC,OPEN, 〈P,V〉
)

of algorithms
or protocols. Among these, SETUP is a set of initialization procedures that all take (explicitly or
implicitly) a security parameter λ as input. They can be split into one that generates a set of
public parameters param (a common reference string), one for the GM and another one for the OA.
We call them SETUPinit(λ), SETUPGM(param) and SETUPOA(param), respectively. The latter two
procedures are used to produce key pairs (pkGM, skGM), (pkOA, skOA) for the GM and the OA. In
the following, param is incorporated in the inputs of all algorithms although we sometimes omit to
explicitly write it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the prospective user. As in
[30], we will restrict this protocol to have minimal interaction and consist of only two messages:
the first one is the user’s public key pk sent by Juser to JGM and the latter’s response is a certificate
certpk for pk that makes the user’s group membership effective. We do not require the user to prove
knowledge of his private key sk or anything else about it. In our construction, valid keys will be
publicly recognizable and users do not need to prove their validity. After the execution of JOIN,
the GM stores the public key pk and its certificate certpk in a public directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (made of a public value x and a witness
w) using keys (pkR, skR) produced by Gr. Depending on the relation, skR may be the empty
string (as will be the case in our scheme). The testing procedure R(x,w) returns 1 whenever
(x,w) ∈ R. To encrypt a witness w such that (x,w) ∈ R for some public x, the sender fetches
the pair (pk, certpk) from database and runs the randomized encryption algorithm. The latter takes
as input w, a label L, the receiver’s pair (pk, certpk) as well as public keys pkGM and pkOA. Its
output is a ciphertext ψ ← ENC(pkGM, pkOA, pk, certpk, w, L). On input of the same elements, the

4

certificate certpk, the ciphertext ψ and the random coins coinsψ that were used to produce it, the
non-interactive algorithm P generates a proof πψ that there exists a certified receiver whose public
key was registered in database and that is able to decrypt ψ and obtain a witness w such that
(x,w) ∈ R. The verification algorithm V takes as input ψ, pkGM, pkOA, πψ and the description
of R and outputs 0 or 1. Given ψ, L and the receiver’s private key sk, the output of DEC is
either a witness w such that (x,w) ∈ R or a rejection symbol ⊥. Finally, OPEN takes as input a
ciphertext/label pair (ψ,L) and the OA’s secret key skOA and returns a receiver’s public key pk.

The security model considers four properties termed correctness, message security, anonymity
and soundness. In the definitions hereafter, we sometimes use the notation 〈outputA|outputB〉 ←
〈A(inputA), B(inputB)〉(common-input) to denote the execution of a protocol between A and B
obtaining their own outputs from their respective inputs.

Correctness. The correctness property requires that the following experiment returns 1 with
overwhelming probability.

Experiment Exptcorrectness(λ)
param← SETUPinit(λ); (pkR, skR)← Gr(λ); (x,w)← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pk, sk, certpk|pk, certpk〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pk, certpk, w, L);
πψ ← P(pkGM, pkOA, pk, cert, w, L, ψ, coinsψ);
If

(

(w 6= DEC(sk, ψ, L)) ∨ (pk 6= OPEN(skOA, ψ, L))
∨(V(ψ,L, πψ , pkGM, pkOA) = 0)

)

return 0 else return 1;

Message Security. The message secrecy property is defined by an experiment where the adver-
sary has access to oracles that may be stateful (and maintain a state across queries) or stateless:

- DEC(sk): is a stateless oracle for the user decryption function DEC. When this oracle is restricted
not to decrypt a ciphertext-label pair (ψ,L), we denote it by DEC¬〈ψ,L〉.

- CHbror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried once. It returns
(ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L) if b = 1 whereas, if b = 0, ψ ←
ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a random plaintext uniformly chosen in the space of
plaintexts of length O(λ). In either case, coinsψ are the random coins used to generate ψ.

- PROVEbP,P ′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ,L, coinsψ): is a stateful oracle that the adversary
can query on multiple occasions. If b = 1, it runs the real prover P on the inputs to produce an
actual proof πψ. If b = 0, the oracle runs a simulator P ′ that uses the same inputs as P except
witness w, coinsψ and generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM, the OA and all
members but the honest receiver. The adversary A is the dishonest GM that certifies the honest
receiver in an execution of JOIN. She has oracle access to the decryption function DEC of that
receiver. At the challenge phase, she probes the challenge oracle for a label and a pair (x,w) ∈ R of
her choice. After the challenge phase, she can also invoke the PROVE oracle on multiple occasions
and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [29], designing an efficient simulator P ′ (for executing PROVEbP,P ′(.) when
b = 0) is part of the security proof and might require a simulated common reference string.

Definition 5. A GE scheme satisfies message security if, for any PPT adversary A, the experiment
below returns 1 with probability at most 1/2 + negl(λ).

5

Experiment Exptsec
A (λ)

param← SETUPinit(λ); (aux, pkGM, pkOA)← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);

(aux, x, w,L, pkR)← ADEC(sk,.)(aux); If (x,w) 6∈ R return 0;

b
$
← {0, 1}; (ψ, coinsψ)← CHbror(λ, pk, w, L);

b′ ← A
PROVEb

P,P′ (pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.)
(aux, ψ);

If b = b′ return 1 else return 0;

Anonymity. In anonymity attacks, the adversary controls the whole system but the opening
authority and performs a kind of chosen-ciphertext attack on the encryption scheme of the OA.
She registers two keys pk0, pk1 in database and, for a pair (x,w) ∈ R of her choosing, obtains an
encryption of w under pkb for some b ∈ {0, 1} chosen by the challenger. She is granted access to
decryption oracles w.r.t. both keys pk0, pk1. In addition, she may invoke the following oracles:

- CHbanon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that is only queried once by the adver-
sary. It returns a pair (ψ, coinsψ) consisting of a ciphertext ψ ← ENC(pkGM, pkOA, pkb, certpkb

, w, L)
and the coin tosses coinsψ that were used to generate ψ.

- USER(pkGM): is a stateful oracle simulating two executions of Juser to introduce two honest users
in the group. It uses a string keys where the outputs of the two executions are written.

- OPEN(skOA, .): is a stateless oracle that simulates the opening algorithm on behalf of the OA
and, on input of a GE ciphertext, returns the receiver’s public key.

Definition 6. A GE scheme satisfies anonymity if, for any PPT adversary A, the experiment below
returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment Exptanon
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);

(aux, pkGM)← A(param, pkOA); aux← AUSER(pkGM),OPEN(skOA,.)(aux);
If keys 6= (pk0, sk0, certpk0

, pk1, sk1, certpk1
)(aux) return 0;

(aux, x, w,L, pkR)← AOPEN(skOA,.),DEC(sk0,.),DEC(sk1,.)(aux);
If (x,w) 6∈ R return 0;

b
$
← {0, 1}; (ψ, coinsψ)← CHbanon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AP(pkGM,pkOA,pkb,certpkb
,x,w,ψ,L,coinsψ,

OPEN¬〈ψ,L〉(skOA,.),DEC¬〈ψ,L〉(sk0,.),DEC¬〈ψ,L〉(sk1,.))(aux, ψ);
If b = b′ return 1 else return 0;

As shown in [29], GE schemes satisfying the above notion necessarily subsume a key-private (a.k.a.
receiver anonymous) [3, 28] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers by interacting
with the honest GM. Her goal is to produce a ciphertext ψ and a convincing proof that ψ is valid
w.r.t. a relation R of her choice but either (1) the opening reveals a receiver’s public key pk that
does not belong to any group member; (2) the output pk of OPEN is not a valid public key (i.e.,
pk 6∈ PK, where PK is the space of valid public keys); (3) the ciphertext C is not in the space
Cx,L,pkR,pkGM,pkOA,pk of valid ciphertexts. This notion is formalized by a game where the adversary
is given access to a user registration oracle REG(skGM, .) that simulates JGM. This oracle maintains
a repository database where registered public keys and their certificates are stored.

6

Definition 7. A GE scheme is sound if, for any PPT adversary A, the experiment below returns
1 with negligible probability.

Experiment Exptsoundness
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(pkGM, skGM)← SETUPGM(param);

(pkR, x, ψ, πψ , L, aux)← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ , pkGM, pkOA) = 0 return 0;
pk← OPEN(skOA, ψ, L);
If

(

(pk 6∈ database) ∨ (pk 6∈ PK) ∨ (ψ 6∈ Cx,L,pkR,pkGM,pkOA,pk)
)

then return 1 else return 0;

2.3 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors ~A and ~B containing group elements, ~A⊙ ~B
stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems [27] use a common
reference string comprising vectors ~g1, ~g2, ~g3 ∈ G

3, where ~g1 = (g1, 1, g), ~g2 = (1, g2, g) for some

g1, g2 ∈ G. To commit to X ∈ G, one sets ~C = (1, 1,X)⊙ ~g1
r⊙ ~g2

s⊙ ~g3
t with r, s, t

$
← Z

∗
p. When the

proof system is prepared to give perfectly sound proofs, ~g3 is set as ~g3 = ~g1
ξ1⊙ ~g2

ξ2 with ξ1, ξ2
$
← Z

∗
p.

Commitments ~C = (gr+ξ1t1 , gs+ξ2t2 ,X · gr+s+t(ξ1+ξ2)) are then Boneh-Boyen-Shacham (BBS) cipher-
texts that can be decrypted using α1 = logg(g1), α2 = logg(g2). In the witness indistinguishability

(WI) setting, vectors ~g1, ~g2, ~g3 are linearly independent and ~C is a perfectly hiding commitment.
Under the DLIN assumption, the two kinds of CRS are indistinguishable.

To commit to an exponent x ∈ Zp, one computes ~C = ~ϕx ⊙ ~g1
r ⊙ ~g2

s, with r, s
$
← Z

∗
p, us-

ing a CRS comprising vectors ~ϕ, ~g1, ~g2. In the soundness setting ~ϕ, ~g1, ~g2 are linearly independent
vectors (typically ~ϕ = ~g3 ⊙ (1, 1, g) where ~ϕ = ~g1

ξ1 ⊙ ~g2
ξ2) whereas, in the WI setting, choosing

~ϕ = ~g1
ξ1 ⊙ ~g2

ξ2 gives a perfectly hiding commitment since ~C is always a BBS encryption of 1G.
To prove that committed variables satisfy a set of relations, the GS techniques replace variables

by the corresponding commitments in each relation. The whole proof consists of one commitment
per variable and one proof element (made of a constant number of group elements) per relation.

Such proofs are available for pairing-product relations, which are of the type

n
∏

i=1

e(Ai,Xi) ·

n
∏

i=1

·

n
∏

j=1

e(Xi,Xj)
aij = tT ,

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G, for i, j ∈ {1, . . . , n}.
Efficient proofs also exist for multi-exponentiation equations

m
∏

i=1

Ayii ·
n

∏

j=1

X
bj
j ·

m
∏

i=1

·
n

∏

j=1

X
yiγij
j = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and
γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional cost. On a simu-
lated CRS (prepared for the WI setting), a trapdoor makes it is possible to simulate proofs without

7

knowing witnesses and simulated proofs are perfectly indistinguishable from real proofs. As for
pairing-product equations, zero-knowledge proofs are often possible but usually come at some ex-
pense. In the paper, we only resort to such NIZK simulators in one occasion.

In both cases, proofs for quadratic equations cost 9 group elements. Linear pairing-product equa-
tions (when aij = 0 for all i, j) take 3 group elements each. Linear multi-exponentiation equations

of the type
∏n
j=1X

bj
j = T (resp.

∏m
i=1A

yi
i = T) demand 3 (resp. 2) group elements.

3 Building Blocks

Our certification scheme uses a trapdoor commitment to group elements as an important ingredient
to dispense with proofs of knowledge of users’ private keys.

3.1 A Trapdoor Commitment to Group Elements

We need a trapdoor commitment scheme that allows committing to elements of a group G where
bilinear map arguments are taken. Commitments will have to be themselves elements of G, which
prevents us from using Groth’s scheme [25] where commitments lie in the range GT of the pairing.

Such commitments can be obtained using the perfectly hiding Groth-Sahai commitment based
on the linear assumption recalled in section 2.3. This commitment uses a common reference string
describing a prime order group G and a generator f ∈ G. The commitment key consists of vectors

(~f1, ~f2, ~f3) chosen as ~f1 = (f1, 1, f), ~f2 = (1, f2, f) and ~f3 = ~f1
ξ1
⊙ ~f2

ξ2
⊙(1, 1, f)ξ3 , with f1, f2

$
← G,

ξ1, ξ2, ξ3
$
← Z

∗
p. To commit to a group element X ∈ G, the sender picks φ1, φ2, φ3

$
← Z

∗
p and sets

~CX = (1, 1,X) ⊙ ~f1
φ1

⊙ ~f2
φ2

⊙ ~f3
φ3

, which, if ~f3 is parsed as (f3,1, f3,2, f3,3), can be written
~CX = (fφ1

1 ·f
φ3

3,1, f
φ2

2 ·f
φ3

3,2,X ·f
φ1+φ2 ·fφ3

3,3). Due to the use of GS proofs, commitment openings need

to only consist of group elements (and no scalar). To open ~CX = (C1, C2, C3), the sender reveals
(D1,D2,D3) = (fφ1, fφ2, fφ3) and X. The receiver is convinced that the committed value was X
by checking that







e(C1, f) = e(f1,D1) · e(f3,1,D3)
e(C2, f) = e(f2,D2) · e(f3,2,D3)
e(C3, f) = e(X ·D1 ·D2, f) · e(f3,3,D3).

If a cheating sender can come up with distinct openings of ~CX , we can easily solve a S2P instance
(g1, g2, g1,c, g2,d). Namely, the commitment key is set as (f1, f2, f3,1, f3,2) = (g1, g2, g1,c, g2,d) and
f, f3,3 are chosen at random. When the adversary outputs (X, (D1,D2,D3)) and (X ′, (D′

1,D
′
2,D

′
3)),

we must simultaneously have e(f1,D1/D
′
1) = e(f3,1,D

′
3/D3), e(f2,D2/D

′
2) = e(f3,2,D

′
3/D3) and

e((XD1D2)/(X
′D′

1D
′
2), f) = e(f3,3,D

′
3/D3). Hence, a solution to the S2P instance is obtained by

setting (u, v,w) = (D1/D
′
1,D2/D

′
2,D

′
3/D3), which is a non-trivial triple as long as X ′ 6= X.

We also observe that, using the trapdoor (ξ1, ξ2, ξ3), the receiver can equivocate commitments.
Given a commitment ~CX and its opening (X, (D1,D2,D3)), one can trapdoor open ~CX to any other
X ′ ∈ G (and without knowing logg(X

′)) by computing

D′
1 = D1 · (X

′/X)ξ1/ξ3 , D′
2 = D2 · (X

′/X)ξ2/ξ3 , D′
3 = (X/X ′)1/ξ3 ·D3.

8

3.2 A Public Key Certification Scheme

We use a primitive that we call non-interactive certification scheme, which can be viewed as a
signature scheme that only allows signing public keys from a specific public key space PK. These
keys should be signed while retaining algebraic properties that make it possible to prove knowledge
of a public key and its corresponding certificate in an efficient way. In particular, signing hashed
public keys is proscribed. In the interactive setting, several papers (e.g., [5, 24]) describe efficient
interactive protocols where a public key is jointly generated by a user and a certification authority
in such a way that the user eventually obtains a certified public key and no one else learns the
underlying private key. In this paper, we aim at minimizing the amount of interaction and let users
generate their public key entirely on their own before requesting their certification. Ideally, we
would like to be able to sign public keys without even requiring users to prove knowledge of their
private key and, in particular, without having to first rewind a proof of knowledge so as to extract
the user’s private key in the security proof.

A certification scheme consists of algorithms (Setup,Certify,CertVerify). The first one is run
by a certification authority (CA) that, on input of global parameters cp, generates a key pair
(SK,PK)← Setup(cp). On input of cp, SK and a user’s public key pk, Certify generates a certificate
certpk. The procedure Verify takes as input cp, PK, pk and certpk and outputs either 0 or 1.

Correctness mandates that CertVerify(cp, PK, pk, certpk) = 1 when certpk ← Certify(cp, SK, pk).
The (strong) unforgeability [1] requirement is the same as in signature schemes. The adversary is
supplied with a CA’s public key PK and access to a certification oracle Certify(SK, .) that can be
queried for arbitrary public keys pk ∈ PK. Her goal is to produce a new pair (pk∗, cert∗pk∗) (i.e., if
pk∗ was queried to Certify(SK, .), the output must have been different from cert∗pk∗).

In the description, we assume common public parameters cp consisting of of bilinear groups
(G,GT) of prime order p > 2λ, for a security parameter λ, and a generator g

$
← G. We also assume

that certified public keys always consist of a fixed number n of group elements (i.e., PK = G
n).

Intuition. The scheme borrows from the Boyen-Waters group signature [10] in the use of the
Hidden Strong Diffie-Hellman assumption. A simplified version of this scheme involves a CA that
holds a public key PK = (Ω = gω, A = (g, g)α, u, u0, u1 = gβ1 , . . . , un = gβn), for private elements
SK = (ω,α, β1, . . . , βn), where n denotes the number of groups elements that certified public keys
consist of. To certify a public key pk = (X1 = gx1 , . . . ,Xn = gxn), the CA chooses an exponent

cID
$
← Z

∗
p and computes S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID , S4 = (u0 ·

∏n
i=1X

βi
i)cID and

S5 = (S5,1, . . . , S5,n) = (XcID
1 , . . . ,XcID

n). Verification then checks whether e(S1, Ω · S2) = A and
e(S2, u) = e(g, S3) as in [10]. It must also be checked that e(S4, g) = e(u0, S2) ·

∏n
i=1 e(ui, S5,i) and

e(S5,i, g) = e(Xi, S2) for i = 1, . . . , n.
The security of this simplified scheme can only be proven if, when answering certification queries,

the simulator can control the private keys (x1, . . . , xn) and force them to be random values of its
choice. To allow the simulator to sign arbitrary public keys without knowing the private keys,
we modify the scheme so that the CA rather signs commitments (calculated as in the trapdoor
commitment of section 3.1) to public key elements X1, . . . ,Xn. In the security proof, the simulator
first generates a signature on n fake commitments ~Ci = (Ci,1, Ci,2, Ci,3) that are all generated in
such a way that it knows logg(Ci,j) for i = 1, . . . , n and j = 1, 2, 3. Using the trapdoor of the

commitment scheme, it can then open ~Ci to any arbitrary Xi ∈ G without knowing logg(Xi).
This use of the trapdoor commitment is reminiscent of a technique (notably used in [18])

to construct signature schemes in the standard model using chameleon hash functions [32]: the

9

simulator first signs messages of its choice using a basic signature scheme and then “equivocates”
the chameleon hashes to make them correspond to adversarially-chosen messages.

Setup(cp): given common public parameters cp = {g,G,GT }, select u, u0
$
← G, α, ω

$
← Z

∗
p and set

A = e(g, g)α, Ω = gω. Pick βi,1, βi,2, βi,3
$
← Z

∗
p and set ui = (ui,1, ui,2, ui,3) = (gβi,1 , gβi,2 , gβi,3)

for i = 1, . . . , n. Choose f, f1, f2, f3,1, f3,2, f3,3
$
← G that define a commitment key consisting

of vectors ~f1 = (f1, 1, f), ~f2 = (1, f2, f) and ~f3 = (f3,1, f3,2, f3,3). Define the private key to be
SK =

(

α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,n

)

and the public key as

PK =
(

f = (~f1, ~f2, ~f3), A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,n

)

.

Certify(cp, SK, pk): parse SK as
(

α, ω, {βi}i=1,...,n

)

, pk as (X1, . . . ,Xn) and do the following.

1. For each i ∈ {1, . . . , n}, pick φi,1, φi,2, φi,3
$
← Z

∗
p and compute a commitment

Ci = (Ci,1, Ci,2, Ci,3) = (f
φi,1
1 · f

φi,3
3,1 , f

φi,2
2 · f

φi,3
3,2 , Xi · f

φi,1+φi,2 · f
φi,3
3,3)

and the matching de-commitment (Di,1,Di,2,Di,3) = (fφi,1, fφi,2 , fφi,3).

2. Choose cID
$
← Z

∗
p and compute S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID as well as

S4 =
(

u0 ·
n

∏

i=1

(C
βi,1
i,1 · C

βi,2
i,2 · C

βi,3
i,3)

)cID

S5 = {(S5,i,1, S5,i,2, S5,i,3)}i=1,...,n = {(CcIDi,1 , C
cID
i,2 , C

cID
i,3)}i=1,...,n

Return certpk =
(

{(Ci,1, Ci,2, Ci,3), (Di,1,Di,2,Di,3)}i=1,...,n, S1, S2, S3, S4, S5

)

.

CertVerify(cp, PK, pk, certpk): parse pk as (X1, . . . ,Xn) and certpk as above. Return 1 if, for indices
i = 1, . . . , n, it holds that Xi ∈ G and

e(Ci,1, f) = e(f1,Di,1) · e(f3,1,Di,3) (1)

e(Ci,2, f) = e(f2,Di,2) · e(f3,2,Di,3) (2)

e(Ci,3, f) = e(Xi ·Di,1 ·Di,2, f) · e(f3,3,Di,3), (3)

and if the following checks are also satisfied. Otherwise, return 0.

e(S1, Ω · S2) = A (4)

e(S2, u) = e(g, S3) (5)

e(S4, g) = e(u0, S2) ·

n
∏

i=1

(

e(ui,1, S5,i,1) · e(ui,2, S5,i,2) · e(ui,3, S5,i,3)
)

, (6)

e(S5,i,j , g) = e(Ci,j , S2) for i = 1, . . . , n, j = 1, 2, 3 (7)

A certificate comprises 9n+4 group elements. It would be interesting to avoid this linear dependency
on n without destroying the algebraic properties that render the scheme compatible with the Groth-
Sahai techniques.

Regarding the security of the scheme, the following theorem is proved in appendix A.

10

Theorem 1. The scheme is a secure non-interactive certification system if the HSDH, FlexDH
and S2P problems are all hard in G.

We believe that the above certification scheme is of interest in its own right. For instance, it
can be used to construct non-frameable group signatures that are secure in the concurrent join
model of [30] without resorting to random oracles. To the best of our knowledge, the Kiayias-
Yung construction [30] has remained the only scalable group signature where joining supports
concurrency at both ends while requiring the smallest amount of interaction. In the standard
model, our certification scheme thus appears to provide the first4 way to achieve the same result. In
this case, we have n = 1 (since prospective group members only need to certify one group element
if non-frameability is ensured by signing messages using Boneh-Boyen signatures [6] in the same
way as in Groth’s group signature [24]) so that membership certificates comprise 13 group elements
and their shape is fully compatible with GS proofs.

3.3 Public Key Encryption Schemes Based on the Linear Problem

We need cryptosystems based on the DLIN assumption. The first one is Shacham’s variant [37] of
Cramer-Shoup [17] and, since it is key-private [3], we use it to encrypt witnesses. We also use Kiltz’s
tag-based encryption (TBE) scheme [31], where the validity of ciphertexts is publicly verifiable, to
encrypt receivers’ public keys under the public key of the opening authority.

Shacham’s Linear Cramer-Shoup. If we assume public generators g1, g2, g that are parts of
public parameters, each receiver’s public key is made of n = 6 group elements

X1 = gx1

1 gx X3 = gx3

1 gy X5 = gx5

1 gz

X2 = gx2

2 gx X4 = gx4

2 gy X6 = gx6

2 gz.

To encrypt a plaintext m ∈ G under the label L, the sender picks r, s
$
← Z

∗
p and computes

ψCS =
(

U1, U2, U3, U4, U5

)

=
(

gr1, g
s
2, g

r+s, m ·Xr
5X

s
6 , (X1X

α
3)r · (X2X

α
4)s

)

,

where α = H(U1, U2, U3, U4, L) ∈ Z∗
p is a collision-resistant hash5. Given (ψCS, L), the receiver

computes α. He returns ⊥ if U5 6= Ux1+αx3

1 Ux2+αx4

2 Ux+αy3 and m = U4/(U
x5

1 Ux6

2 U z3) otherwise.

Kiltz’s Tag-Based Encryption Scheme. In [31], Kiltz described a TBE scheme based on the
same assumption. The public key is (Y1, Y2, Y3, Y4) = (gy1 , gy2 , gy3 , gy4) if g ∈ G is part of public

parameters. To encrypt m ∈ G under a tag t ∈ Z
∗
p, the sender picks w1, w2

$
← Z

∗
p and computes

ψK = (V1, V2, V3, V4, V5) =
(

Y w1

1 , Y w2

2 , (gtY3)
w1 , (gtY4)

w2, m · gw1+w2

)

4 Non-frameable group signatures described in [19, 9] achieve concurrent security by having the prospective user
generate an extractable commitment to some secret exponent (which the simulator can extract without rewinding
using the trapdoor of the commitment) and prove that the committed value is the discrete log. of a public value. In
the standard model, this technique requires interaction and the proof should be simulatable in zero-knowledge when
proving security against framing attacks. Another technique [21] requires users to prove knowledge of their secret
exponent using Groth-Sahai non-interactive proofs. It is nevertheless space-demanding as each bit of committed
exponent requires its own extractable GS commitment.

5 The proof of CCA2-security [17, 37] only requires a universal one-way hash function (UOWHF) [34] but collision-
resistance is required by the proof of key-privacy in [3].

11

To decrypt such a ciphertext ψK, the receiver checks that V3 = V
(t+y3)/y1
1 , V4 = V

(t+y4)/y2
2 . If so,

it outputs the plaintext m = V5/(V
1/y1
1 V

1/y2
2). Unlike ψCS in the linear Cramer-Shoup system,

the well-formedness of ψK is publicly verifiable in bilinear groups. The Canetti-Halevi-Katz [15]
paradigm turns this scheme into a full-fledged CCA2 scheme by deriving the tag t from the verifi-
cation key VK of a one-time signature, the private key SK of which is used to sign (V1, V2, V3, V4, V5).

4 A GE Scheme with Non-Interactive Proofs

We build a non-interactive group encryption scheme for the Diffie-Hellman relationR = {(X,Y),W}
where e(g,W) = e(X,Y), for which the keys are pkR = {G,GT , g} and skR = ε.

The construction slightly departs from the modular design of [29] in that commitments to the
receiver’s public key and certificate are part of the proof (instead of the ciphertext), which simplifies
the proof of message-security. The security of the scheme eventually relies on the HSDH, FlexDH
and DLIN assumptions. All security proofs are available in appendix B.

SETUPinit(λ): choose bilinear groups (G,GT) of order p > 2λ, g
$
← G and g1 = gα1 , g2 = gα2 with

α1, α2
$
← Z

∗
p. Define ~g1 = (g1, 1, g), ~g2 = (1, g2, g) and ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2 with ξ1, ξ2

$
← Z

∗
p, which

form a CRS g = (~g1, ~g2, ~g3) for the perfect soundness setting. Select a strongly unforgeable (as
defined in [1]) one time signature scheme Σ = (G,S,V) and a random member H : {0, 1}∗ → Zp

of a collision-resistant hash family. Public parameters consists of param = {λ,G,GT , g,g, Σ,H}.

SETUPGM(param): runs the setup algorithm of the certification scheme described in section 3.2 with

n = 6. The obtained public key consists of pkGM =
(

f , A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,6

)

and the matching private key is skGM =
(

α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,6

)

.

SETUPOA(param): generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2 , gy3 , gy4), as a public key for Kiltz’s
tag-based encryption scheme [31], and the corresponding private key as skOA = (y1, y2, y3, y4).

JOIN: the user sends a linear Cramer-Shoup public key pk = (X1, . . . ,X6) ∈ G
6 to the GM and

obtains a certificate

certpk =
(

{(Ci,1, Ci,2, Ci,3), (Di,1,Di,2,Di,3)}i=1,...,6, S1, S2, S3, S4, S5

)

.

ENC(pkGM, pkOA, pk, certpk,W,L): to encrypt W ∈ G such that ((X,Y),W) ∈ R (for public ele-
ments X,Y ∈ G), parse pkGM, pkOA and pk as above and do the following.

1. Generate a one-time signature key pair (SK,VK)← G(λ).

2. Choose r, s
$
← Z

∗
p and compute a linear CS encryption of W , the result of which is denoted

by ψCS, under the label L1 = L||VK as per section 3.3 (and using the collision-resistant hash
function specified by param).

3. For i = 1, . . . , 6, choose wi,1, wi,2
$
← Z

∗
p and encrypt Xi under pkOA using Kiltz’s TBE with

the tag VK as described in section 3.3 . Let ψKi be the ciphertexts.
4. Set the GE ciphertext ψ as ψ = VK||ψCS||ψK1

|| · · · ||ψK6
||σ where σ is a one-time signature

obtained as σ = S(SK, (ψCS||ψK1
|| · · · ||ψK6

||L)).

Return (ψ,L) and coinsψ consist of {(wi,1, wi,2)}i=1,...,6, (r, s). If the one-time signature of [23]
is used, VK and σ take 3 and 2 group elements, respectively, so that ψ comprises 40 group
elements.

12

P(pkGM, pkOA, pk, certpk, (X,Y),W,ψ,L, coinsψ): parse pkGM, pkOA, pk and ψ as above. Conduct
the following steps.

1. Generate commitments (as explained in section 2.3) to the 9n+ 4 = 58 group elements that
certpk consists of. The resulting overall commitment comcertpk

contains 184 group elements.
2. Generate GS commitments to the public key elements pk = (X1, . . . ,X6) and obtain the set
compk = {comXi}i=1,...,6, which consists of 18 group elements.

3. Generate a proof πcertpk
that comcertpk

is a commitment to a valid certificate for the public
key contained in compk. For each i = 1, . . . , 6, relations (1)-(3) cost 9 elements to prove (and
thus 54 elements altogether). The quadratic equation (4) takes 9 elements and linear ones
(5)-(6) both require 3 elements. Finally, (7) is a set of 18 linear equations which demand 54
elements altogether. The whole proof πcertpk

thus takes 123 group elements.
4. For i = 1, . . . , 6, generate a NIZK proof πeq-key,i that comXi (which is part of compk) and
ψKi are encryptions of the same Xi. If ψKi comprises

(Vi,1, Vi,2, Vi,5) = (Y
wi,1
1 , Y

wi,2
2 ,Xi · g

wi,1+wi,2)

and comXi is parsed as (cXi1 , cXi2 , cXi3) = (gθi11 · gθi33,1 , g
θi2
2 · gθi33,2, Xi · g

θi1+θi2 · gθi33,3), where
wi,1, wi,2 ∈ coinsψ, θi1, θi2, θi3 ∈ Z

∗
p and ~g3 = (g3,1, g3,2, g3,3), this amounts to prove knowl-

edge of values wi,1, wi,2, θi1, θi2, θi3 ∈ Z
∗
p such that

(Vi,1
cXi1

,
Vi,2
cXi2

,
Vi,3
cXi3

)

=
(

Y
wi,1
1 · g−θi11 · g−θi33,1 , Y

wi,2
2 · g−θi22 · g−θi33,2 , gwi,1+wi,2−θi1−θi2 · g−θi33,3

)

.

Committing to exponents wi,1, wi,2, θi1, θi2, θi3 introduces 90 group elements whereas the
above relations only require two elements each. Overall, proof elements πeq-key,1, . . . , πeq-key,6
incur 126 elements.

5. Generate a NIZK proof πval-enc that ψCS = (U1, U2, U3, U4, U5) is a valid CS encryption.
This requires to commit to underlying encryption exponents r, s ∈ coinsψ and prove that
U1 = gr1, U2 = gs2, U3 = gr+s (which only takes 3 times 2 elements as base elements
are public) and U5 = (X1X

α
3)r · (X2X

α
4)s (which takes 9 elements since base elements are

themselves variables). Including commitments comr and coms to exponents r and s, πval-enc
demands 21 group elements overall.

6. Generate a NIZK proof πR that the ciphertext ψCS encrypts a group element W ∈ G such
that ((X,Y),W) ∈ R. To this end, generate a commitment

comW = (cW,1, cW,2, cW,3) = (gθ11 · g
θ3
3,1, g

θ2
2 · g

θ3
3,2, W · g

θ1+θ2 · gθ33,3)

and prove that the underlying W is the same as the one for which U4 = W ·Xr
5 ·X

s
6 in ψCS.

In other words, prove knowledge of exponents r, s, θ1, θ2, θ3 such that

(U1

cW,1
,
U2

cW,2
,
U4

cW,3

)

=
(

gr−θ11 · g−θ33,1 , g
s−θ2
2 · g−θ33,2 , g

−θ1−θ2 · g−θ33,3 ·X
r
5 ·X

s
6

)

. (8)

Commitments to r, s are already part of πval-enc. Committing to θ1, θ2, θ3 takes 9 elements.
Proving the first two relations of (8) requires 4 elements whereas the third one is quadratic
and its proof is 9 elements. Proving the linear pairing-product relation e(g,W) = e(X,Y)
in NIZK6 demands 9 elements. Since πR includes comW , it entails a total of 34 elements.

6 It requires to introduce an auxiliary variable X and prove that e(g,W) = e(X , Y) and X = X, for variables W,X
and constants g, X, Y . The two proofs take 3 elements each and 3 elements are needed to commit to X .

13

The entire proof πψ = comcertpk
||compk||πcertpk

||πeq-key,1|| · · · ||πeq-key,6||πval-enc||πR eventually
takes 516 elements.

V(param, ψ, L, πψ , pkGM, pkOA): parse pkGM, pkOA, pk, ψ and πψ as above. Return 1 if and only
if V(VK, σ, (ψCS||ψK1

|| · · · ||ψK6
||L)) = 1, all proofs verify and if ψK1

, . . . , ψK6
are all valid tag-

based encryptions w.r.t. the tag VK.

DEC(sk, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1
|| · · · ||ψK6

||σ. Return ⊥ in the event that
V(VK, σ, (ψCS||ψK1

|| · · · ||ψK6
||L)) = 0. Otherwise, use sk to decrypt (ψCS, L).

OPEN(skOA, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1
|| · · · ||ψK6

||σ. Return ⊥ if ψK1
, . . . , ψK6

are not all valid TBE ciphertexts w.r.t. the tag VK or if V(VK, σ, (ψCS||ψK1
|| · · · ||ψK6

||L)) = 0.
Otherwise, decrypt ψK1

, . . . , ψK6
using skOA and return the resulting pk = (X1, . . . ,X6).

From an efficiency standpoint, the length of ciphertexts is about 1.25 kB in an implementation
using symmetric pairings with a 256-bit group order, which is more compact than in the Paillier-
based scheme of [29] where ciphertexts take 2.5 kB using 1024-bit moduli. Moreover, our proofs
only require 16.125 kB, which is significantly cheaper than in the original GE scheme [29], where
interactive proofs reach a communication cost of 70 kB to achieve a 2−50 knowledge error.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Eurocrypt’02, LNCS
2332, pages 83–107, 2002.

2. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. P-signatures and noninteractive anonymous creden-
tials. In TCC’08, LNCS 4948, pages 356–374, 2008.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In Asiacrypt’01,
LNCS 2248, pages 566–582, 2001.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM

CCS’93, pages 62–73, 1993.
5. A. Boldyreva, M. Fischlin, A. Palacio, and B. Warinschi. A closer look at PKI: Security and efficiency. In PKC’07,

LNCS 4450, pages 458–475, 2007.
6. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt’04, LNCS 3027, pages 56–73,

2004.
7. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Crypto’04, LNCS 3152, pages 41–55, 2004.
8. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM J. of Computing, 32(3):586–

615, 2003. Extended abstract in Crypto’01, LNCS 2139, pages 213–229, 2001.
9. X. Boyen and C. Delerablée. Expressive subgroup signatures. In SCN’08, LNCS 5229, pages 185–200, 2008.

10. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. In PKC’07 , LNCS
4450, pages 1–15, 2007.

11. J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key dependent chosen
plaintext and adaptive chosen ciphertext attacks. In Eurocrypt 2009, LNCS 5479, pages 351–368, 2009.

12. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In SCN’02, LNCS 2576, pages
268–289, 2003.

13. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Crypto’03,
LNCS 2729, pages 126–144, 2003.

14. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Journal of the ACM,
51(4):557–594, 2004.

15. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In Eurocrypt’04,
LNCS 3027, pages 207–222, 2004.

16. D. Chaum and E. van Heyst. Group signatures. In Eurocrypt’91, LNCS 547, pages 257–265, 1991.
17. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext

attack. In Crypto’98, LNCS 1462, pages 13–25, 1998.

14

18. R. Cramer and V. Shoup. Signature schemes based on the strong rsa assumption. In ACM CCS’99, pages 46–51,
1999.

19. C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures. In Viecrypt 2006, LNCS
4341, pages 193–210, 2006.

20. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Crypto’86, LNCS 263, pages 186–194, 1986.

21. G. Fuchsbauer and D. Pointcheval. Encrypting Proofs on Pairings and Its Application to Anonymity for Signa-
tures. In Pairing’09, LNCS series, 2009.

22. S. Goldwasser and Y. Tauman-Kalai. On the (In)security of the Fiat-Shamir Paradigm In FOCS’03, pages
102–115, 2003.

23. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Asi-

acrypt’06, LNCS 4284, pages 444–459, 2006.
24. J. Groth. Fully anonymous group signatures without random oracles. In Asiacrypt’07, LNCS 4833, pages 164–180,

2007.
25. J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive: Report 2009/007,

2009.
26. J. Groth and S. Lu. A non-interactive shuffle with pairing based verifiability. In Asiacrypt’07, LNCS 4833, pages

51–67, 2007.
27. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Eurocrypt’08, LNCS 4965,

pages 415–432, 2008.
28. S. Halevi. A Sufficient Condition for Key-Privacy. Cryptology ePrint Archive: Report 2005/005, 2005.
29. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In Asiacrypt’07, LNCS 4833, pages 181–199, 2007.
30. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Eurocrypt’05, LNCS 3494, pages

198–214, 2005.
31. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06, LNCS 3876, pages 581–600, 2006.
32. H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS’00, 2000.
33. S. Kunz-Jacques and D. Pointcheval. About the security of MTI/C0 and MQV. In SCN’06, LNCS 4116, pages

156–172, 2006.
34. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In STOC’89,

pages 33–43, 1989.
35. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt’99, LNCS 1592,

pages 223–238, 1999.
36. B. Qin, Q. Wu, W. Susilo, Y. Mu, Y. Wang. Publicly Verifiable Privacy-Preserving Group Decryption. In

Inscrypt’08, LNCS 5487, pages 72–83, 2008.
37. H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker

linear variants. Cryptology ePrint Archive: Report 2007/074, 2007.
38. V. Shoup. A proposal for the ISO standard for public-key encryption (version 2.1). manuscript, 2001. http:

//shoup.net/.

A Proof of Theorem 1

The security proof of the certification scheme considers three kinds of forgeries in the attack game.

- Type I forgeries: are such that the fake certificate cert⋆pk⋆ contains a tuple of elements (S⋆1 , S
⋆
2 , S

⋆
3)

that never appeared in outputs of certification queries.
- Type II forgeries: are such that cert⋆pk⋆ contains a triple (S⋆1 , S

⋆
2 , S

⋆
3) that appeared in the output

of some query but cert⋆pk⋆ also contains commitments {(C⋆i,1, C
⋆
i,2, C

⋆
i,3)}i=1,...,n that do not match

those in the output of that query.
- Type III forgeries: are such that (S⋆1 , S

⋆
2 , S

⋆
3) and {(C⋆i,1, C

⋆
i,2, C

⋆
i,3)}i=1,...,n are all identical in

the fake certificate cert⋆
pk⋆

and in the output of some certification query. On the other hand, the
public key pk⋆ = (X⋆

1 , . . . ,X
⋆
n) is not the one that was certified in that query.

Type I forgeries are easily seen (see lemma 1) to break the HSDH assumption whereas lemma 2
and lemma 3 show that Type II and Type III forgeries give rise to algorithms solving the FlexDH
and S2P problems, respectively. ⊓⊔

15

Lemma 1. Any Type I forger has advantage at most AdvType-I(A) ≤ Advℓ-HSDH(B), where ℓ is
the number of certification queries.

Proof. The proof is based on ideas from [10]. We outline an algorithm B that, on input of Ω = gω,
u ∈ G and a set of ℓ triples (Ai = g1/(ω+ci), Bi = gci , Ci = uci) ∈ G

3 with c1, . . . , cℓ ∈R Z
∗
p, uses

a Type I forger to find a triple (g1/(ω+c), gc, uc) such that c 6= ci for i = 1, . . . , ℓ. To generate the

public key PK, B chooses β0
$
← Z

∗
p, α

$
← Z

∗
p and sets u0 = gβ0 , A = e(g, g)α . It also defines

{(ui,1 = gβi,1 , ui,2 = gβi,2 , ui,3 = gβi,2)}i=1,...,n using random triples (βi,1, βi,2, βi,3)
$
← (Z∗

p)
3 for

i = 1, . . . , n whereas ~f1, ~f2, ~f3 are defined by f = gθ0 , f1 = gθ1 , f2 = gθ2 , f3,1 = gθ1ξ1, f3,2 = gθ2ξ2

and f3,3 = gθ0(ξ1+ξ2+ξ3) for random chosen θ0, θ1, θ2, ξ1, ξ2, ξ3
$
← Z

∗
p.

To answer certification queries involving public keys pk = (X1, . . . ,Xn), B first computes n

commitments to 1G. For i = 1, . . . , n, it randomly picks φi,1, φi,2, φi,3
$
← Z

∗
p and computes a

commitment ~Ci = (f
φi,1
1 · f

φi,3
3,1 , f

φi,2
2 · f

φi,3
3,2 , f

φi,1+φi,2 · f
φi,3
3,3), which equals (gηi,1 , gηi,2 , gηi,3) where

ηi,1 = θ1(φi,1 + ξ1φi,3), ηi,2 = θ2(φi,2 + ξ2φi,3) and ηi,3 = θ0((φi,1 + φi,2) + (ξ1 + ξ2 + ξ3)φi,3)
are all known to B. Certificate parts (S1, S2, S3) are generated as (Aαk , Bk, Ck) using the next
available triple (Ak, Bk, Ck) (with k ∈ {1, . . . , ℓ}). Finally, as for remaining certificate elements

S4 = (u0 ·
∏n
i=1(C

βi,1
i,1 · C

βi,2
i,2 · C

βi,3
i,3))ck and S5 = {(Ccki,1, C

ck
i,2, C

ck
i,3)}i=1,...,n, they are calculated as

S4 = B
β0+

∑n
i=1

∑

3
j=1

βi,jηi,j
k and S5 = {(B

ηi,1
k , B

ηi,2
k , B

ηi,3
k }i=1,...,n, respectively. To complete the gen-

eration of certpk, B then trapdoor opens ~C1, . . . , ~Cn to (X1, . . . ,Xn) using the trapdoor (ξ1, ξ2, ξ3).
More precisely, for i = 1, . . . , n, it computes the de-commitments

(D′
i,1,D

′
i,2,D

′
i,3) =

(

fφi,1 · (Xi)
ξ1/ξ3 , fφi,2 · (Xi)

ξ2/ξ3 , fφi,3 · (1/Xi)
1/ξ3

)

.

The game ends with A outputting a pair (pk⋆, cert⋆
pk⋆

) such that (S⋆1 , S
⋆
2 , S

⋆
3) never appeared within

outputs of certification queries. Hence, (S⋆1
1/α, S⋆2 , S

⋆
3) must solve the HSDH problem. ⊓⊔

Lemma 2. Any Type II forger A making ℓ certification queries has no better advantage than
AdvType-II(A) ≤ ℓ · (1− 1

p) ·AdvFlexDH(B).

Proof. We show how a Type II forger implies an algorithm B that finds a non-trivial triple
(C,Ca, Cab) on input of (g, ga = ga, gb = gb). To generate PK, B chooses ω

$
← Z

∗
p, αa, αu

$
← Z

∗
p

and sets Ω = gω, A = e(g, (ga · g
ω)αa)) (so that α = loge(g,g)(A) is implicitly set as α = (a+ ω)αa)

and u = gαu . The commitment key (~f1, ~f2, ~f3) is obtained by choosing θ, θ1, θ2, ξ1, ξ2, ξ3
$
← Z

∗
p and

setting f = gθ, f1 = gθ1 , f2 = gθ2 , f3,1 = gθ1ξ1 , f3,2 = gθ2ξ2 and f3,3 = gθ(ξ1+ξ2+ξ3).

In the setup phase, B also computes a set of n commitments to 1G, say ~C†
i = (gη

†
i,1 , gη

†
i,2 , gη

†
i,3)

for i = 1, . . . , n, and obtains them by drawing random exponents φ†i,1, φ
†
i,2, φ

†
i,3

$
← Z

∗
p and computing

η†i,1 = θ1(φ
†
i,1+ξ1φ

†
i,3), η

†
i,2 = θ2(φ

†
i,2+ξ2φ

†
i,3) as well as η†i,3 = θ((φ†i,1+φ†i,2)+(ξ1+ξ2+ξ3)φ

†
i,3). It also

retains φ†i,1, φ
†
i,2, φ

†
i,3 for later use. Next, B picks ρ

$
← Z

∗
p and two sets of n triples (ρi,1, ρi,2, ρi,3)

$
←

(Z∗
p)

3, (γi,1, γi,2, γi,3)
$
← (Z∗

p)
3 and defines ui,1 = gρi,1 · g

γi,1
b , ui,2 = gρi,2 · g

γi,2
b , ui,3 = gρi,3 · g

γi,3
b , for

i = 1, . . . , n, and u0 = gρ · gγb with γ = −
∑n

i=1(γi,1η
†
i,1 + γi,2η

†
i,2 + γi,3η

†
i,3). This implicitly defines

private key elements to be βi,1 = ρi,1 + bγi,1, βi,2 = ρi,2 + bγi,2 and βi,3 = ρi,3 + bγi,3. At the outset

of the game, B also chooses ℓ⋆
$
← {1, . . . , ℓ}.

When the certification of a public key pk = (X1, . . . ,Xn) is queried, the query’s treatment
depends on the index k ∈ {1, . . . , ℓ} of the query.

16

- If k 6= ℓ⋆, B computes n commitments to 1G (say ~Ci = (gηi,1 , gηi,2 , gηi,3) for i = 1, . . . , n) as in
the proof of lemma 1. It generates certpk by setting S1 = (ga · g

ω)αa/(ω+ck), S2 = gck , S3 = uck

for a random ck
$
← Z

∗
p. Since it knows

∏n
i=1(C

βi,1
i,1 · C

βi,2
i,2 · C

βi,3
i,3) =

∏n
i=1(u

ηi,1
i,1 · u

ηi,2
i,2 · u

ηi,3
i,3)

(thanks to (ηi,1, ηi,2, ηi,3)), it can also compute S4 = (u0 ·
∏n
i=1(C

βi,1
i,1 · C

βi,2
i,2 · C

βi,3
i,3))ck . Finally,

S5 = {(Ccki,1, C
ck
i,2, C

ck
i,3)}i=1,...,n is also computable from ck and B uses ξ1, ξ2, ξ3 to trapdoor open

~Ci to Xi and obtain de-commitments (D′
i,1,D

′
i,2,D

′
i,3), for i = 1, . . . , n, as in lemma 1.

- If k = ℓ⋆, B implicitly defines cℓ⋆ = a and sets S1 = gαa , S2 = ga, S3 = gαua . Thanks to

~C†
i = (C†

i,1, C
†
i,2, C

†
i,3) = (gη

†
i,1 , gη

†
i,2 , gη

†
i,3) that were chosen in the setup phase, B can compute

S4 =
(

u0 ·

n
∏

i=1

(C†
i,1

βi,1
· C†

i,2

βi,2
· C†

i,3

βi,3
)
)a

= g
ρ+

∑n
i=1

(ρi,1η
†
i,1+ρi,2η

†
i,2+ρi,3η

†
i,3)

a .

Finally, B obtains S5 = {(C†
i,1

a
, C†

i,2

a
, C†

i,3

a
) = (g

η†i,1
a , g

η†i,2
a , g

η†i,3
a)}i=1,...,n. For i = 1, . . . , n, it trap-

door opens ~C†
i to public key elements Xi using the trapdoor (ξ1, ξ2, ξ3) and the de-commitment

(fφ
†
i,1 , fφ

†
i,2, fφ

†
i,3) that was associated with the commitment to 1G. The resulting de-commitment

(D′
i,1,D

′
i,2,D

′
i,3) and ~C†

i = (C†
i,1, C

†
i,2, C

†
i,3) are included in certpk.

Finally, A outputs a pair (pk⋆, cert⋆
pk⋆

) such that (S⋆1 , S
⋆
2 , S

⋆
3) appeared in the output of some

certification query but cert⋆
pk⋆

comprises commitments {(C⋆i,1, C
⋆
i,2, C

⋆
i,3)}i=1,...,n that do not match

those returned in that specific query. With probability 1/ℓ, this query happens to be the ℓ⋆th one
(and B fails if this is not the case), so that (S⋆1 , S

⋆
2 , S

⋆
3) = (gαa , ga, g

αu
a). Then, we must have

S⋆4 =
(

u0 ·

n
∏

i=1

(C⋆i,1
βi,1 · C⋆i,2

βi,1 · C⋆i,3
βi,3)

)a
, S⋆5 = {(C⋆i,1

a, C⋆i,2
a, C⋆i,3

a)}i=1,...,n,

where {(C⋆i,1, C
⋆
i,2, C

⋆
i,3)}i=1,...,n 6= {(C

†
i,1, C

†
i,2, C

†
i,3)}i=1,...,n, in such a way that dividing out the value

S4 = g
ρ+

∑n
i=1

(ρi,1η
†
i,1+ρi,2η

†
i,2+ρi,3η

†
i,3)

a from S⋆4 yields

T =
(

n
∏

i=1

(C⋆i,1/C
†
i,1)

ρi,1+bγi,1 · (C⋆i,2/C
†
i,2)

ρi,2+bγi,2 · (C⋆i,3/C
†
i,3)

ρi,3+bγi,3
)a

whereas the component-wise quotient of S5 = {(g
η†i,1
a , g

η†i,2
a , g

η†i,3
a)}i=1,...,n and S∗

5 reveals a triple

{(Zi,1, Zi,2, Zi,3) =
(

(C⋆i,1/C
†
i,1)

a, (C⋆i,2/C
†
i,2)

a, (C⋆i,3/C
†
i,3)

a
)

}i=1,...,n. Hence, B extracts

R3 =
(

n
∏

i=1

(C⋆i,1

C†
i,1

)γi,1 ·
(C⋆i,2

C†
i,2

)γi,2 ·
(C⋆i,3

C†
i,3

)γi,3
)ab

= T/
n

∏

i=1

Z
ρi,1
i,1 · Z

ρi,2
i,2 · Z

ρi,3
i,3 ,

R2 =
n

∏

i=1

Z
γi,1
i,1 · Z

γi,2
i,2 · Z

γi,3
i,3 =

(

n
∏

i=1

(C⋆i,1

C†
i,1

)γi,1 ·
(C⋆i,2

C†
i,2

)γi,2 ·
(C⋆i,3

C†
i,3

)γi,3
)a

R1 =

n
∏

i=1

(C⋆i,1

C†
i,1

)γi,1 ·
(C⋆i,2

C†
i,2

)γi,2 ·
(C⋆i,3

C†
i,3

)γi,3

which must form a non-trivial triple (R1, R
a
1 , R

ab
1) with overwhelming probability. Indeed, since

γi,1, γi,2, γi,3 are (information theoretically) independent of A’s view, we can only have R1 = 1G by
pure chance (with probability 1/p). ⊓⊔

17

Lemma 3. Any Type III forger has advantage at most AdvType-III(A) ≤ AdvS2P(B).

Proof. From a Type III adversary A, it is simple to break the binding property of the commitment
scheme in section 3.1. Consider an algorithm B which is given a commitment key (~f1, ~f2, ~f3) and
prepares the rest of the public key according to the specification of the scheme in such a way that
it can perfectly answer all certification queries.

At the end of the game, A outputs a pair pk⋆ and cert⋆pk⋆ such that certpk⋆ contains (S⋆1 , S
⋆
2 , S

⋆
2)

and commitments (C⋆i,1, C
⋆
i,2, C

⋆
i,3) that were both contained in the output of some certification

query. On the other hand, the public key pk∗ = (X⋆
1 , . . . ,X

⋆
n) must be different from the one

(X1, . . . ,Xn) that was certified at that query. This necessarily provides B with two distinct openings
(Xi, (D1,i,D2,i,D3,i)), (X⋆

i , (D
⋆
1,i,D

⋆
2,i,D

⋆
3,i)) (since Xi 6= X⋆

i for at least one index i ∈ {1, . . . , n})
of some commitment (C⋆i,1, C

⋆
i,2, C

⋆
i,3), which violates the S2P assumption. ⊓⊔

B Security Proofs for the Group Encryption Scheme

Correctness is straightforward and we focus on anonymity, message security and soundness.

Theorem 2. The GE scheme satisfies anonymity assuming that Σ is strongly unforgeable, that H
is collision-resistant and that the DLIN assumption holds in G.

Proof. We consider a sequence of games where the first game is the real experiment of definition 6
while the adversary A is essentially a key privacy attacker against the linear Cramer-Shoup system
in the last game. In Game i, we call Wi the event that A wins.

Game 1: the challenger B generates param that includes a reference string g containing ~g1, ~g2
and ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2 , with ξ1, ξ2

$
← Z

∗
p. The public key pkOA = (Y1, Y2, Y3, Y4) is given to A who

generates pkGM on her own. By invoking the USER oracle, she certifies two distinct receivers’ public
keys pk0 = (X0

1 , . . . ,X
0
6), pk1 = (X1

1 , . . . ,X
1
6) chosen by B and makes a number of opening queries

and decryption queries, which B handles using skOA and sk0, sk1, respectively. At some point,
she outputs ((X,Y),W,L, pkR) such that ((X,Y),W) ∈ R and obtains, as a challenge, a group
encryption ψ⋆ = VK⋆||ψ⋆CS||ψ

⋆
K1
|| · · · ||ψ⋆K6

||σ⋆ of W under pkb, for some bit b ∈ {0, 1} of B’s choice.
Then, she obtains proofs π⋆ψ⋆ for ψ⋆ and makes new opening and decryption queries under the
obvious restrictions. She finally outputs b′ and we call W1 the event that b′ = b.

Game 2: is as game 1 but B aborts in the event F2 that A queries the opening of a ciphertext
ψ = VK||ψCS||ψK1

|| · · · ||ψK6
||σ such that VK = VK⋆ and σ is valid (we may assume that VK⋆ is

generated at the outset of the game). If F2 occurs, A is necessarily able to break the strong security
of Σ (even if the query occurs before the challenge phase, A has forged a signature without seeing
any signature) and |Pr[W2]− Pr[W1]| ≤ Pr[F2] ∈ negl(λ) if Σ is strongly unforgeable.

Game 3: we modify the generation of the common reference string g = (~g1, ~g2, ~g3) in param and
choose the vector ~g3 as ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2 ⊙ (1, 1, g)−1 (instead of ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2). Under the DLIN

assumption, this change is not noticeable to A and |Pr[W3]− Pr[W2]| ∈ negl(λ).

Game 4: we change the generation of proofs π⋆ψ⋆ and use the trapdoor of the CRS (i.e., values ξ1

and ξ2 such that ~g3 = ~g1
ξ1 ⊙ ~g2

ξ2 ⊙ (1, 1, g)−1 and commitments to exponents are thus generated
using ~ϕ = ~g1

ξ1 ⊙ ~g2
ξ2) instead of some of the actual witnesses. Namely, π⋆eq-key,1,. . . ,π

⋆
eq-key,6 as

well as π⋆val-enc and π⋆R are simulated without using encryption exponents {w⋆i,1, w
⋆
i,2}i=1,...,6 (that

are used to encrypt ψ⋆Ki) and r⋆, s⋆ (that are used to compute ψ⋆CS). Commitments com⋆
pkb

and
com⋆

W are still generated using pkb and W but commitments to w⋆i,1, w
⋆
i,2 and r⋆, s⋆ are replaced by

18

commitments to 0. Yet, the trapdoor ξ1, ξ2 allows generating proofs that have the same distribution
as real proofs (e.g., [11, Section 4.4] shows how to simulate linear multi-exponentiation equations
whereas quadratic ones, such as the third relation of (8), are also simulatable without r⋆, s⋆) and
it comes that Pr[W4] = Pr[W3].

Game 5: we modify the generation of the challenge ciphertext ψ⋆ and let ψ⋆K1
, . . . , ψ⋆K6

be encryp-

tions of random group elements instead of Xb
1, . . . ,X

b
6. Since exponents {w⋆i,1, w

⋆
i,2}i=1,...,6 are no

longer used in Game 4, any significant change in the distribution of A’s output would give rise to
a selective-tag weak CCA2 attacker7 against the tag-based encryption (recall that opening queries
do not involve VK⋆ unless the rejection rule of Game 2 applies). According to theorem 5.1 in [31],
we have |Pr[W5]− Pr[W4]| ∈ negl(λ) if DLIN holds.

In Game 5, A is essentially playing a CCA2 anonymity attack against the linear Cramer-Shoup
encryption scheme. Indeed, elements ψ⋆Ki do not depend on b and, since proofs are given in the WI
setting, they reveal no information on underlying witnesses (in particular, com⋆

pkb
and com⋆

certpkb

are perfectly hiding commitments). As for the key privacy of the linear Cramer-Shoup encryption
scheme, re-proving theorem 6 in [3] using DLIN in place of DDH is just an exercise and we even-
tually obtain |Pr[W5]− 1/2| ∈ negl(λ) if DLIN holds and if H is collision-resistant. ⊓⊔

Theorem 3. The GE scheme satisfies message security assuming that Σ is strongly unforgeable,
that H is a UOWHF and that the DLIN assumption holds in G.

Proof. We use a sequence of games. The first one mirrors the experiment of definition 5 where the
challenger’s bit b is 1 and the adversary obtains a encryption of the witness W and real proofs when
invoking the PROVE(.) oracle. In the last game, the adversary A obtains an encryption of a random
plaintext and proofs are simulated using a fake CRS (constructing a simulator for PROVE(.) using
a simulated CRS is part of the security analysis as stressed in [29]). In Game i, Wi denotes the
event that A outputs b′ = 1.

Game 1: the challenger B provides A with common public parameters param that include a real
CRS g containing (~g1, ~g2, ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2), with ξ1, ξ2

$
← Z

∗
p. The adversary generates public keys

pkOA and pkGM on her own. The challenger and A run an execution of JOIN where A certifies
the public key pk = (X1, . . . ,X6) of a honest receiver chosen by B. Then, A makes a number of
decryption queries that B handles using the private key sk that matches pk. At some point, A
outputs ((X,Y),W,L, pkR) such that ((X,Y),W) ∈ R and obtains in return a group encryption
ψ⋆ = VK⋆||ψ⋆CS||ψ

⋆
K1
|| · · · ||ψ⋆K6

||σ⋆ of W under pk and L. Then, she obtains polynomially many
proofs π⋆ψ⋆ for ψ⋆ and makes new decryption queries under the obvious restrictions. She finally
outputs b′ and we call W1 the event that b′ = 1.

Game 2: we modify the generation of the common reference string g = (~g1, ~g2, ~g3) in param and
choose ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2 ⊙ (1, 1, g)−1 (instead of ~g3 = ~g1

ξ1 ⊙ ~g2
ξ2). Under the DLIN assumption, this

change is not noticeable to A and |Pr[W2]− Pr[W1]| ∈ negl(λ).

Game 3: we modify the DEC(.) oracle and let B reject any ciphertext of the form ψ = VK|| · · · ||σ
such that VK = VK⋆ (VK⋆ can be generated at the outset of the game). Let F3 be the event that
this rule causes B to reject a ciphertext that would not have been rejected in Game 2. As in the

7 Selective-tag weak CCA2 security is defined [31] via a game where the adversary A chooses a tag t⋆ and then
obtains a public key and access to a decryption oracle which she can query for any ciphertext-tag pair (C, t) such
that t 6= t⋆. At the challenge phase, she chooses plaintexts m0, m1 and receives a ciphertext C⋆ encrypting mb

(under the tag t⋆) for some bit b
$
← {0, 1} that A eventually aims to guess after further decryption queries.

19

proof of theorem 2, we have |Pr[W3]− Pr[W2]| ≤ Pr[F3] ∈ negl(λ) if Σ is strongly unforgeable.

Game 4: we change the generation of proofs π⋆ψ⋆ and use the trapdoor of the CRS instead of
witnesses W and coinsψ⋆ = {(r⋆, s⋆), {(w⋆i,1, w

⋆
i,2)}i=1,...,6}. More precisely, {π⋆eq-key,i}i=1,...,6 (which

prove that comXi and ψKi hide the same Xi), as well as π⋆val-enc and π⋆R (i.e., the proofs that
ψ⋆CS is a valid ciphertext and that ψ⋆CS and comW contain the same W) are simulated without
using encryption exponents {w⋆i,1, w

⋆
i,2}i=1,...,6 and r⋆, s⋆ and commitments to the latter values are

replaced by commitments to 0. Also, the part of π⋆R that proves relation e(g,W) = e(X,Y) (and
thus ((X,Y),W) ∈ R) is simulated in NIZK8 by setting comW as a commitment to 1G. As in
the proof of theorem 2, the trapdoor ξ1, ξ2 allows generating simulated proofs that are perfectly
indistinguishable from real proofs, so that Pr[W4] = Pr[W3].

Game 5: in the calculation of ψ⋆, we set ψ⋆CS as an encryption of a random group element. Since
r⋆, s⋆ are not used in Game 4, any significant change in A’s behavior would imply a CCA2 attacker
(in the modeling of CCA2-security for labeled cryptosystems [38]) against the linear Cramer-Shoup
scheme (recall that decryption queries do not involve VK⋆ unless the rejection rule of Game 3
applies, which prevents A from mauling ψ⋆Ki while keeping the same (ψ⋆CS,VK⋆, L)). The result of
[37] implies that |Pr[W5]− Pr[W4]| ∈ negl(λ) if DLIN holds and H is a UOWHF.

Game 6: we change again the DEC(.) oracle and do not apply the rejection rule of Game 3 anymore.
If Σ is strongly unforgeable, we must have |Pr[W6]− Pr[W5]| ∈ negl(λ).

We see that, from Game 4 onwards, the oracle PROVE(.) does not use witnesses W, coinsψ⋆ any
longer. Game 6 is thus the experiment of definition 5 where the challenger’s bit b is 0. Putting the
above altogether, we find |Pr[W6]− Pr[W1]| ∈ negl(λ), which establishes the result. ⊓⊔

Soundness directly follows from the security of the certification system. From a soundness
adversary, the simulator interacts with a challenger for the certification security game and generates
the CRS g for the perfect soundness setting (which precludes the generation of valid proofs for ill-
formed ciphertexts). Then, soundness can only be broken by attacking the certification scheme.

8 In addition to the variable W, the latter proof introduces an auxiliary variable X and provides evidence that
e(g,W) = e(X , Y) and X = X, for constants g,X, Y . The NIZK simulator can use witnesses X = W = 1G to
prove the relation e(g,W) = e(X , Y) and simulate a proof for the second relation thanks to the trapdoor of the
fake CRS.

20

