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1Université catholique de Louvain, ICTEAM Institute (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. Threshold cryptography aims at enhancing the availability and security of decryption and
signature schemes by splitting private keys into several (say n) shares (typically, each of size comparable
to the original secret key). In these schemes, a quorum of at least (t ≤ n) servers needs to act upon
a message to produce the result (decrypted value or signature), while corrupting less than t servers
maintains the scheme’s security. For about two decades, extensive study was dedicated to this subject,
which created a number of notable results. So far, most practical threshold signatures, where servers act
non-interactively, were analyzed in the limited static corruption model (where the adversary chooses
which servers will be corrupted at the system’s initialization stage). Existing threshold encryption
schemes that withstand the strongest combination of adaptive malicious corruptions (allowing the
adversary to corrupt servers at any time based on its complete view), and chosen-ciphertext attacks
(CCA) all require interaction (in the non-idealized model) and attempts to remedy this problem resulted
only in relaxed schemes. The same is true for threshold signatures secure under chosen-message attacks
(CMA).To date (for about 10 years), it has been open whether there are non-interactive threshold
schemes providing the highest security (namely, CCA-secure encryption and CMA-secure signature)
with scalable shares (i.e., as short as the original key) and adaptive security. This paper answers this
question affirmatively by presenting such efficient decryption and signature schemes within a unified
algebraic framework.

Keywords. Threshold cryptography, encryption schemes, digital signatures, adaptive corruptions, non-
interactivity.

1 Introduction

Threshold cryptography [21, 22, 11] avoids single points of failure by splitting cryptographic keys
into n > 1 shares which are stored by servers in distinct locations. Cryptographic schemes are then
designed in such a way that at least t out of n servers should contribute to private key operations in
order for these to succeed. In (t, n)-threshold cryptosystems (resp. signature schemes), an adversary
breaking into up to t−1 servers should be unable to decrypt ciphertexts (resp. generate signatures)
on its own.

Designing secure threshold public key schemes has proved to be a highly non-trivial task. For
example, the random oracle model [6] was needed to analyze the first chosen-ciphertext secure (or
CCA-secure for short) threshold encryption systems put forth by Shoup and Gennaro [40]. Canetti
and Goldwasser [15] gave a standard model implementation based on the Cramer-Shoup encryption
scheme [16]. Their scheme, however, eliminates random oracles at the expense of using interaction
between decryption servers to obtain robustness (i.e., ensure that no dishonest minority deviating
from the protocol can prevent uncorrupted servers from successfully decrypting) and to make sure
that invalid ciphertexts do not reveal useful information to the adversary1. Other chosen-ciphertext-
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secure threshold cryptosystems were suggested in [1, 36, 23, 8].

Non-Interactive Schemes. Using the innovative Canetti-Halevi-Katz (CHK) methodology [17],
Boneh, Boyen and Halevi [8] showed the first non-interactive robust CCA-secure threshold cryp-
tosystem with a security proof in the standard model (i.e., without the random oracle idealization):
in their scheme, decryption servers can compute their partial decryption result (termed “decryp-
tion share”) without having to talk to each other and, in groups with a bilinear map, decryption
shares contain built-in proofs of their validity, which guarantees robustness. These properties were
obtained by notably taking advantage of the fact that, using bilinear maps, valid ciphertexts are
publicly recognizable in the Boneh-Boyen identity-based encryption system [7]. Similar applications
of the CHK methodology were studied in [12, 32, 4].

In the context of digital signatures, Shoup [41] described non-interactive threshold signatures
based on RSA and providing robustness.

Adaptive Corruptions. Historically, threshold primitives (including [40, 15, 23, 27, 8]) have been
mostly studied in a static corruption model, where the adversary chooses which servers it wants to
corrupt before the scheme is set up. Unfortunately, adaptive adversaries – who can choose whom to
corrupt at any time and depending on the previously collected information – are known (see, e.g.,
[18]) to be strictly stronger and substantially harder to deal with. As discussed in [15], properly han-
dling them sometimes requires to sacrifice useful properties. For example, the Canetti-Goldwasser
system can be proved secure against adaptive corruptions when the threshold t is sufficiently small
(typically, when t = O(n1/2)) but this comes at the expense of a lower resilience and schemes
supporting a linear number of faulty servers seem preferable.

To address the above concerns, Canetti et al. [14] proposed a method to cope with adaptive
corruptions assuming reliable erasures (i.e., players must be able to safely erase their local data
when they no longer need them) and also achieve proactive security [37]. In the case of proactive
RSA signatures, this approach requires all servers to refresh their shares (by jointly computing a
sharing of zero) after each distributed private key operation (effectively making schemes n-out-of-n
rather than t-out-of-n for any t ≤ n). This limitation was removed in [29] and [3], where simpler
adaptively secure proactive RSA signatures are described. In 1999, Frankel, MacKenzie and Yung
[28, 29] showed different techniques to achieve adaptive security while still using erasures.

Later on, Jarecki and Lysyanskaya [31] eliminated the need for erasures and gave an adaptively
secure variant of the Canetti-Goldwasser CCA-secure threshold cryptosystem [15]. Unfortunately,
their scheme – which is also designed to remain secure in concurrent environments – requires a
lot of interaction between decryption servers. Abe and Fehr [2] showed how to extend Jarecki and
Lysyanskaya’s threshold version of Cramer-Shoup in the universal composability framework but
without completely eliminating interaction from the decryption algorithm.

Recently, Qin et al. [38] suggested a non-interactive threshold cryptosystem (more precisely, a
threshold broadcast encryption scheme whose syntax is similar to [19, 20]) with adaptive security.
Its downside is its lack of scalability since private key shares consist of O(n) elements, where n is the
number of servers (while, in prior schemes, the share size only depends on the security parameter).

Our contribution. We give the first robust threshold cryptosystem which is simultaneously
chosen-ciphertext secure under adaptive corruptions and non-interactive while being scalable (i.e.,
providing short private keys). Unlike [38], our scheme features constant-size private key shares
(where “constant” means independent of t and n) for public keys of comparable size. In addition, it
is conceptually simple and relies on assumptions of constant-size whereas [38] relies on a “q-type”
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assumption where the input is a sequence of the form (g, gα, . . . , g(αq)), for some secret α ∈ Zp.
Unlike [14], we do not have to perform proactive refreshes of private key shares after each decryption
operation.

Our starting point is the identity-based encryption (IBE) system [9, 39] proposed by Lewko
and Waters [34] and the elegant dual system approach introduced by Waters [43]. The latter has
proved useful to demonstrate full security in identity and attribute-based encryption [43, 33, 34]
but, to the best of our knowledge, it has not been applied to threshold cryptosystems so far. It is
worth noting that the security proof of our scheme is not simply a direct consequence of applying
the CHK paradigm to the Lewko-Waters results [34] as the treatment of adaptive corruptions does
not follow from [17, 34]. Like [34], our proof uses a sequence of games. While we also use so-called
semi-functional decryption shares and ciphertexts as in the IBE setting [34], we have to consider
two distinct kinds of semi-functional ciphertexts and an additional step (which aims at making all
private key shares semi-functional) is needed in the proof to end up in a game where proving the
security is made simple.

We also describe a non-interactive threshold signature that follows the same line of development
and which can be proven secure in the standard model under adaptive corruptions. This appears
to be the first security result under adaptive corruptions for non-interactive threshold signatures
in the standard model.

Technically speaking, the encryption scheme can be visualized as a variant of the Boneh-Boyen-
Halevi threshold system [8] in groups whose order is a product N = p1p2p3 of three primes, which
are chosen at key generation. Interestingly, if the factorization of N is somehow leaked, the proof
of security under static corruptions implied by [8] still applies and only the proof of adaptive
security ceases to go through. We also believe the semantically-secure variant of our scheme (which
is obtained by removing the appropriate “checksum values” allowing to hedge against chosen-
ciphertext attacks) to be of interest in its own right since it is multiplicatively homomorphic (like the
ElGamal encryption scheme [24]) and retains security under adaptive corruptions in the threshold
setting. It can thus find applications in important protocols such as e-voting for example.

Organization. Section 2 recalls the definitions of threshold cryptosystems. The scheme and its
CCA-security are analyzed in sections 3.1 and 3.2, respectively. A variant with shorter ciphertexts
is described in section 4. Our threshold signature is presented in appendix B.

2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption

Definition 1. A non-interactive (t, n)-threshold encryption scheme is a set of algorithms with the
following specifications.

Setup(λ, t, n): takes as input a security parameter λ and integers t, n ∈ poly(λ) (with 1 ≤ t ≤ n)
denoting the number of decryption servers n and the decryption threshold t. It outputs a triple
(PK,VK,SK), where PK is the public key, SK = (SK1, . . . , SKn) is a vector of n private-key
shares and VK = (V K1, . . . , V Kn) is the corresponding vector of verification keys. Decryption
server i is given the share (i, SKi) that allows deriving decryption shares for any ciphertext.
For each i ∈ {1, . . . , n}, the verification key V Ki will be used to check the validity of decryption
shares generated using SKi.

Encrypt(PK,M): is a randomized algorithm that, given a public key PK and a plaintext M ,
outputs a ciphertext C.
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Ciphertext-Verify(PK,C): takes as input a public key PK and a ciphertext C. It outputs 1 if
C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK, i, SKi, C): on input of a public key PK, a ciphertext C and a private-
key share (i, SKi), this (possibly randomized) algorithm outputs a special symbol (i,⊥) if
Ciphertext-Verify(PK,C) = 0. Otherwise, it outputs a decryption share µi = (i, µ̂i).

Share-Verify(PK, V Ki, C, µi): takes as input PK, the verification key V Ki, a ciphertext C and
a purported decryption share µi = (i, µ̂i). It outputs either 1 or 0. In the former case, µi is said
to be a valid decryption share. We adopt the convention that (i,⊥) is an invalid decryption
share.

Combine(PK,VK, C, {µi}i∈S): given PK, VK, C and a subset S ⊂ {1, . . . , n} of size t = |S|
with decryption shares {µi}i∈S , this algorithm outputs either a plaintext M or ⊥ if the set
contains invalid decryption shares.

Chosen-ciphertext security. We use a definition of chosen-ciphertext security which is identical
to the one of [40, 8] with the difference that the adversary can adaptively choose which parties it
wants to corrupt.

Definition 2. A non-interactive (t, n)-Threshold Public Key Encryption scheme is secure against
chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive corruptions if no PPT adversary
has non-negligible advantage in this game:

1. The challenger runs Setup(λ, t, n) to obtain a public key PK, a vector of private key shares
SK = (SK1, . . . , SKn) and verification keys VK = (V K1, . . . , V Kn). It gives PK and VK to
the adversary A and keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:

- Corruption query: A chooses i ∈ {1, . . . , n} and obtains SKi. No more than t − 1 private
key shares can be obtained by A in the whole game.

- Decryption query: A chooses an index i ∈ {1, . . . , n} and a ciphertext C. The challenger
replies with µi = Share-Decrypt(PK, i, SKi, C).

3. A chooses two equal-length messages M0,M1. The challenger flips a fair coin β R← {0, 1} and
computes C? = Encrypt(PK,Mβ).

4. A makes further queries as in step 2 but it is not allowed to make decryption queries on the
challenge ciphertext C?.

5. A outputs a bit β′ and is deemed successful if β′ = β. As usual, A’s advantage is measured as
the distance Adv(A) = |Pr[β′ = β]− 1

2 |.

Consistency. A (t, n)-Threshold Encryption scheme provides decryption consistency if no PPT
adversary has non-negligible advantage in a three-stage game where stages 1 and 2 are identical to
those of definition 2 with the difference that the adversary A is allowed to obtain all private key
shares. In stage 3, A outputs a ciphertext C and two t-sets of decryption shares Φ = {µ1, . . . , µt}
and Φ′ = {µ′1, . . . , µ′t}. The adversary A is declared successful if

1. Ciphertext-Verify(PK,C) = 1.
2. Φ and Φ′ only consist of valid decryption shares.
3. Combine(PK,VK, C, Φ) 6= Combine(PK,VK, C, Φ′).

4



We note that condition 1 aims at preventing an adversary from trivially winning by outputting an
invalid ciphertext, for which distinct sets of key shares may give different results. This definition
of consistency is identical to the one of [40, 8] with the difference that A can adaptively corrupt
decryption servers.

2.2 Hardness Assumptions in Bilinear Groups of Composite Order

We shall use groups (G,GT ) of composite order N = p1p2p3 endowed with an efficiently computable
map (a.k.a. pairing) e : G×G→ GT such that: (1) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and
a, b ∈ Z; (2) if e(g, h) = 1GT

for each h ∈ G, then g = 1G. An important property of composite
order groups is that pairing two elements of order pi and pj , with i 6= j, always gives the identity
element 1GT

.
In the following, for each i ∈ {1, 2, 3}, we denote by Gpi the subgroup of order pi. For all distinct

i, j ∈ {1, 2, 3}, we call Gpipj the subgroup of order pipj . In this setting, we rely on the following
assumptions introduced in [34].

Assumption 1 Given a description of (G,GT ) as well as g R← Gp1 , X3
R← Gp3 and T ∈ G, it is

infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .
Assumption 2 Let g,X1

R← Gp1 , X2, Y2
R← Gp2 , Y3, Z3

R← Gp3 . Given a description of (G,GT ), a
set of group elements (g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R Gp1p3 or T ∈R G.

Assumption 3 Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and α, s R← ZN . Given a description of
(G,GT ), group elements (g, gαX2, X3, g

sY2, Z2) and T , it is infeasible to decide if T = e(g, g)αs

or T ∈R GT .

These assumptions are non-interactive and, in all of them, the number of input elements is constant
(i.e., independent of the number of adversarial queries).

3 A Robust Non-Interactive CCA2-Secure Threshold Cryptosystem with
Adaptive Corruptions

Our starting point is applying the Canetti-Halevi-Katz [17] transform to a (conceptually equiva-
lent) variant of the Lewko-Waters IBE [34] in the same way as [8] derives a CCA2-secure threshold
cryptosystem from the Boneh-Boyen IBE [7]. We show that composite order groups and the tech-
niques of [34] make it possible to handle adaptive corruptions in a relatively simple way and without
having to refresh private key shares after each private key operation.

To this end, we apply a modification to the IBE scheme [34][Section 3]. The latter encrypts
M under the identity ID ∈ ZN as (M · e(g, g)α·s, gs, (uID · v)s) for a random exponent s ∈ ZN and
where the public key is

(
g, u, v, e(g, g)α

)
, with g, u, v ∈ Gp1 . We implicitly use an IBE scheme where

messages are encrypted as (M · e(g, h)α·s, gs, (uID · v)s), where h 6= g and e(g, h)α is part of the
public key.

Another difference is that, in order to ensure the consistency of these scheme (as defined in sec-
tion 2.1), the ciphertext validation algorithm has to reject all ciphertexts containing components
in the subgroup Gp3 .

3.1 Description

In the description hereafter, the verification key of the one-time signature is interpreted as an
element of ZN . In practice, longer keys can be hashed into ZN using a collision-resistant hash
function.
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Setup(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈ poly(λ) (with 1 ≤ t ≤ n), the
algorithm does the following.

1. Choose bilinear groups (G,GT ) of order N = p1p2p3, with p1, p2, p3 > 2λ.
2. Choose α R← ZN , g, h, u, v R← Gp1 , Xp3

R← Gp3 and compute e(g, h)α.
3. Choose a strongly unforgeable one-time signature Σ = (G,S,V).
4. Choose a polynomial P [X] = α + α1X + · · · + αt−1X

t−1 ∈ ZN [X], for random coefficients
α1, . . . , αt−1

R← ZN . Define the public key to be

PK =
(

(G,GT ), N, g, e(g, h)α, u, v, Xp3 , Σ
)

and set private key shares SK = (SK1, . . . , SKn) as SKi = hP (i) · Z3,i, for i = 1 to n,
with Z3,1, . . . , Z3,n

R← Gp3 . Verification keys are then set as VK = (V K1, . . . , V Kn) with
V Ki = e(g, h)P (i) for i = 1 to n.

The public key PK and the verification key VK are made publicly available while, for each
i ∈ {1, . . . , n}, SKi is given to decryption server i.

Encrypt(PK,m): to encrypt m ∈ GT , generate a one-time signature key pair (SSK, SVK)← G(λ).
Choose s R← ZN and compute

C =
(
SVK, C0, C1, C2, σ

)
=
(
SVK, m · e(g, h)α·s, gs, (uSVK · v)s, σ

)
,

where σ = S(SSK, (C0, C1, C2)).
Ciphertext-Verify

(
PK,C

)
: parse the ciphertext C as (SVK, C0, C1, C2, σ). Return 1 if it holds

that V(SVK, (C0, C1, C2), σ) = 1, e(Cj , Xp3) = 1GT
for j ∈ {1, 2} and e(g, C2) = e(C1, u

SVK · v).
Otherwise, return 0.

Share-Decrypt(i, SKi, C): Parse C as
(
SVK, C0, C1, C2, σ

)
and SKi as an element of G. Return

(i,⊥) if Ciphertext-Verify
(
PK,C

)
= 0. Otherwise, choose r R← ZN , W3,W

′
3

R← Gp3 , compute
and return µi = (i, µ̂i), where

µ̂i = (Di,1, Di,2) =
(
SKi · (uSVK · v)r ·W3, g

r ·W ′3
)
. (1)

Share-Verify
(
PK,C, (i, µ̂i)

)
: parse C as (SVK, C0, C1, C2, σ). If µ̂i = ⊥ or µ̂i 6∈ G2, return 0.

Otherwise, parse µ̂i as a pair (Di,1, Di,2) ∈ G2 and return 1 if e(Di,1, g) = V Ki ·e(uSVK ·v,Di,2).
In any other situation, return 0.

Combine(PK,C, {(i, µ̂i)}i∈S): for each i ∈ S, parse the share µ̂i as (Di,1, Di,2) and return ⊥ if
Share-Verify

(
PK,C, (i, µ̂i)

)
= 0. Otherwise, compute

(D1, D2) =
(∏
i∈S

D
∆i,S(0)
i,1 ,

∏
i∈S

D
∆i,S(0)
i,2

)
=
(
hα · (uSVK · v)r̃ · W̃3, g

r̃ · W̃ ′3
)
,

for some W̃3, W̃
′
3 ∈ Gp3 and r̃ ∈ Zp1 . Using the pair (D1, D2), compute and output the plaintext

m = C0 · e(C1, D1)−1 · e(C2, D2).

As far as efficiency goes, the ciphertext-validity check can be optimized by choosing ω1, ω2
R← ZN

and checking that e(g ·Xω1
p3 , C2) = e(C1, (uSVK · v) ·Xω2

p3 ), which rejects ill-formed ciphertexts with
overwhelming probability and saves two pairing evaluations. Similar batch verification techniques
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apply to simultaneously test t or more decryption shares using only two pairing evaluations2.
We note that, following Boyen, Mei and Waters [12], it is possible to shorten ciphertexts by

eliminating SVK and σ. In this case, C2 is calculated using a hash value of (C0, C1) in place of SVK.
Given that C2 is no longer authenticated by a one-time signature, the security proof then requires
an additional step to make sure that adversaries cannot modify the Gp2 component of C2 in the
challenge ciphertext. The details are of this optimized variant are provided in section 4.

We also observe that, as in [8], decryption shares can be seen as signature shares (for a message
consisting of the verification key SVK) calculated by decryption servers. In appendix B, we show
that the underlying threshold signature is secure against chosen-message attacks in the adaptive
corruption scenario.

3.2 Security

The security proof departs from approaches that were previously used in threshold cryptography
in that we do not construct an adversary against the centralized version of the scheme out of a
CCA2 adversary against its threshold implementation. Instead, we directly prove the security of
the latter using the dual encryption paradigm [43, 34].

Our proof proceeds with a sequence of games and uses semi-functional ciphertexts as in [34], and
decryption shares. Still, there are two differences. First, two kinds of semi-functional ciphertexts
(that differ in the presence of a component of order p2 in the target group GT ) have to be involved.
The second difference is that we need to introduce semi-functional private key shares at some
step of the proof and argue that they cannot be distinguished from real key shares. The proof
takes advantage of the fact that, at each step of the sequence, the simulator knows either the Gp1

components of private key shares {hP (i)}ni=1 or a “blinded” version {hP (i) ·Z2,i}ni=1 of those shares,
for some Z2,i ∈R Gp2 , which suffices to consistently answer adaptive corruption queries.

Theorem 1. The scheme is IND-CCA2 against adaptive corruptions assuming that Assumption 1,
Assumption 2 and Assumption 3 all hold and that Σ is a strongly unforgeable3 one-time signature.

Proof. The proof proceeds using a sequence of games including steps similar to [34] and additional
steps. As in [43, 34], the proof makes use of semi-functional ciphertexts and decryption shares (which
are actually private keys in [34]). In addition, we also have to consider semi-functional private key
shares. Another difference is that we need two kinds of semi-functional ciphertexts.

◦ Semi-functional ciphertexts of Type I are generated from a normal ciphertext (C ′0, C
′
1, C

′
2) and

some g2 ∈ Gp2 , by choosing random τ, zc
R← ZN and setting

C0 = C ′0, C1 = C ′1 · gτ2 , C2 = C ′2 · g
τzc
2 .

◦ Semi-functional ciphertexts of Type II are generated from a normal ciphertext (C ′0, C
′
1, C

′
2) by

choosing random τ, zc, θ
R← ZN and setting

C0 = C ′0 · e(g2, g2)θ, C1 = C ′1 · gτ2 , C2 = C ′2 · g
τzc
2 .

2 Namely, t shares {µi = (Di,1, Di,2)}ti=1 can be batch-verified by drawing ω1, . . . , ωt
R← ZN and testing if

e
(
g,
∏t

i=1D
ωi
i,1

)
=
∏t

i=1 V K
ωi
i · e

(
uSVK · v,

∏t
i=1D

ωi
i,2

)
.

3 Strong unforgeability refers to the infeasibility, after having obtained a message-signature pair (M,σ), of computing
a new pair (M?, σ?) 6= (M,σ).
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◦ Semi-functional decryption shares are obtained from a normal decryption share (D′i,1, D
′
i,2) by

picking γ, zk
R← ZN , W3,W

′
3

R← Gp3 and setting

Di,1 = D′i,1 · g
γzk
2 ·W3, Di,2 = D′i,2 · g

γ
2 ·W

′
3.

◦ Semi-functional private key shares {SKi}ni=1 are obtained from normal shares {SK ′i}ni=1 by
setting SKi = SK ′i · Z2,i, where Z2,i

R← Gp2 , for i = 1 to n.

The proof considers a sequence of q + 6 games. It starts with the real game Gamereal followed
by Gamerestricted, Game∗restricted Game0,Game1, . . . ,Gameq and finally Game∗q and Gamefinal.

Gamerestricted: is identical to Gamereal with the difference that the challenger B rejects all post-
challenge decryption queries (SVK, C0, C1, C2, σ) for which SVK = SVK?, where SVK? denotes
the one-time verification key included in the challenge ciphertext.

Game∗restricted: is identical to Gamerestricted with the difference that the adversary A is not allowed
to make decryption queries (SVK, C0, C1, C2, σ) for which SVK = SVK? mod p2.

Game0: is identical to Game∗restricted but the normal challenge ciphertext is replaced by a semi-
functional ciphertext of Type I.

Gamek (1 ≤ k ≤ q): in this game, the challenge ciphertext is a semi-functional ciphertext of Type
I and the challenger B answers the first k decryption queries by returning semi-functional
decryption shares. As for the last q − k decryption queries, they are answered using normal
decryption shares.

Game∗q: is identical to Gameq with the following two differences.

- All private key shares are made semi-functional and thus contain a random Gp2 component.
- The Type I semi-functional challenge ciphertext is traded for a semi-functional ciphertext

of Type II.
Gamefinal: is as Game∗q but the Type II semi-functional challenge ciphertext is replaced by a semi-

functional encryption of a random plaintext (instead of Mβ). In this game, A has no information
on the challenger’s bit β ∈ {0, 1} and cannot guess it with better probability than 1/2.

As in [34], when a semi-functional decryption share is used (in combination with t − 1 normal
decryption shares) to decrypt a semi-functional ciphertext, decryption only works when zk = zc,
in which case the decryption share is called nominally semi-functional. For each k ∈ {1, . . . , q},
the transitions between Gamek−1 and Gamek is done in such a way that the distinguisher cannot
directly decide (i.e., without interacting with A) whether the kth decryption share is normal or
semi-functional by generating this share for the challenge verification key SVK?. Indeed, in such an
attempt, the generated decryption share is necessarily either normal or nominally semi-functional,
so that decryption succeeds either way.

Moreover, during the transition between Gameq and Game∗q , we have to make sure that the
distinguisher cannot bypass its interaction with the adversary and try to distinguish the two games
by itself either. Should it attempt to decrypt the challenge ciphertext using the private key shares,
the transition is organized in such a way that decryption succeeds regardless of whether the private
key shares (resp. the challenge ciphertext) are normal or semi-functional (resp. semi-functional of
Type I or II).

The proof is completed by lemma 1 to 6, which show that all games are computationally
indistinguishable as long as the one-time signature is strongly unforgeable and Assumptions 1, 2,
3 hold. ut
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Lemma 1. If the one-time signature Σ is strongly unforgeable, Gamereal and Gamerestricted are
indistinguishable.

Proof. The proof uses the classical argument saying that the only way for the adversary to create
a legal decryption query (SVK?, C0, C1, C2, σ) after the challenge phase is to break the strong
unforgeability of Σ. Moreover, the challenge one-time verification key can be defined at the very
beginning of the game. Hence, computing a valid pre-challenge decryption query involving SVK?

would require the adversary to compute a valid signature without having seen a single signature
(or even the verification key) and a fortiori break the security of Σ. ut

Lemma 2. Provided Assumption 1 and Assumption 2 both hold, Gamerestricted and Game∗restricted
are indistinguishable.

Proof. The proof is identical to the one of lemma 5 in [34]. Namely, the only situation where the
two games are distinguishable is when the adversary A manages to come up with a ciphertext
for which SVK? 6= SVK but SVK? = SVK mod p2. In this case, the challenger B can compute
gcd(SVK− SVK?, N), which is necessarily a non-trivial factor of N . Depending on which factor is
found, B can break either Assumption 1 or Assumption 2. ut

The proofs of lemma 3 and 4 proceed exactly as in [34] and we give them in appendix A for
completeness.

Lemma 3. Under Assumption 1, no PPT adversary can distinguish Game∗restricted and Game0.

Lemma 4. Under Assumption 2, no PPT adversary can distinguish Gamek from Gamek−1 for
1 ≤ k ≤ q.

In comparison with the security proof of [34], the novelty is the transition from Gameq to
Game∗q , which is addressed in lemma 5. This transition allows turning all private key shares into
semi-functional shares in one step.

Lemma 5. Under Assumption 2, Gameq and Game∗q are indistinguishable.

Proof. Towards a contradiction, we assume that a PPT adversary A can tell apart Gameq and
Game∗q . We construct an algorithm B that, given elements (g,X3, X1X2, Y2Y3, T ), decides if T ∈R
Gp1p3 or T ∈R G.

Algorithm B prepares PK by setting Xp3 = X3, u = ga and v = gb with a, b R← ZN . It also
picks α R← ZN and defines e(g, h)α = e(g, T )α. In addition, B chooses a random polynomial P [X] of
degree t − 1 such that P (0) = α. To prepare SK = (SK1, . . . , SKn) and VK = (V K1, . . . , V Kn),
B sets SKi = TP (i) · Z3,i, with Z3,i

R← Gp3 , and V Ki = e(g, SKi) for i = 1 to n.
In the challenge phase, A outputs M0,M1 and B flips a coin β R← {0, 1}. It generates a one-time

signature key pair (SSK?,SVK?)← G(λ) and computes

C?0 = Mβ · e(X1X2, T )α, C?1 = X1X2, C?2 = (X1X2)a·SVK?+b (2)

To generate a decryption share on behalf of decryption server i for a ciphertext (SVK, C0, C1, C2, σ),
B chooses r, w,w′ R← ZN and generates a semi-functional decryption share

(Di,1, Di,2) = (SKi · (uSVK · v)r · (Y2Y3)w, gr · (Y2Y3)w
′
). (3)
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Whenever A decides to corrupt decryption server i, B simply reveals SKi.
We note that, in the situation where T ∈ Gp1p3 , B is clearly playing Gameq. Now, let us consider

what happens when T ∈R G. In this case, T can be written as T = gγ1gγ22 g
γ3
3 for some random

γ1 ∈ Zp1 , γ2 ∈ Zp2 , γ3 ∈ Zp3 and h is implicitly set as h = gγ1 . From the simulator’s standpoint,
the Gp2 components of private key shares {SKi}ni=1 are not independent since a polynomial of
degree t − 1 goes through them in the exponent: for each index i ∈ {1, . . . , n}, we indeed have
SKi = gγ1·P (i) · gγ2·P (i)

2 · Z̃3,i, for some Z̃3,i ∈R Gp3 . In addition, if we write X1X2 = gs · gτ2 , for some
s ∈ Zp1 , τ ∈ Zp2 , the components

(C?0 , C
?
1 , C

?
2 ) =

(
Mβ · e(g, h)α·s · e(g2, g2)γ2·τ ·α, gs · gτ2 , (uSVK?

· v)s · gτzc
2

)
of the challenge ciphertext information-theoretically reveal e(g2, g2)γ2·τ ·P (0).

However, the public key does not reveal anything about α mod p2 and the distribution of VK
is uncorrelated to {P (i) mod p2}ni=1. Moreover, as decryption shares are generated as per (3), they
perfectly hide P (i) mod p2 in the first term SKi of the product Di,1. Hence, since the adversary
A cannot obtain more than t − 1 private key shares throughout the game, the correlation be-
tween the Gp2 components of {SKi}ni=1 is information-theoretically hidden to A. Indeed, given
that P [X] ∈ ZN [X] is chosen as a random polynomial of degree t− 1, its evaluations P (i) mod p2

are t-wise independent. In other words, for any (t − 1)-subset C ⊂ {1, . . . , n} chosen by A, the
values {gγ2·P (i)

2 }i∈C∪{0} are statistically indistinguishable from a set of t random elements of Gp2 .
This means that, from A’s view, (C?0 , C

?
1 , C

?
2 ) and {SKi}i∈C look like a Type II semi-functional

ciphertext and a set of t − 1 semi-functional private key shares, respectively. We conclude that, if
T ∈R G, the simulator B is actually playing Game∗q with A. ut

In the proof of lemma 5, we note that B cannot distinguish T ∈R Gp1p3 from T ∈R G by itself:
if B tries to decrypt the challenge ciphertext (given by (2)) using the decryption shares {SKi}ni=1,
decryption recovers Mβ in either case.

Lemma 6. Under Assumption 3, no PPT adversary can distinguish Game∗q from Gamefinal (the
proof is deferred to the appendix A.3).

Obviously, concealing the factorization of N = p1p2p3 is crucial for the proof of adaptive security.
Nevertheless, even if p1, p2 and p3 are somehow revealed, the scheme can still be proved secure
under static corruptions (using the same proof as [8]) under the Decision Bilinear Diffie-Hellman
assumption [7] in Gp1 .

Unlike [40, 8], where consistency holds statistically, we demonstrate consistency in the compu-
tational sense.

Theorem 2. The scheme provides consistency if Assumption 1 holds.

Proof. We describe an algorithm B breaking Assumption 1 using an adversary A against the con-
sistency of the scheme.

Algorithm B takes as input the description of (G,GT ) and elements (g,X3) with the task of
deciding if T ∈R Gp1 or T ∈R Gp1p2 . To this end, it begins by generating a public key exactly as in
the proof of lemma 3. This implies that B knows a, b ∈ ZN such that u = ga, v = gb as well as the
polynomial P [X] (and in particular α = P (0)), which allows answering all adversarial queries. At
the end of the game, the adversary A is assumed to output a ciphertext C = (SVK, C0, C1, C2, σ)
such that Ciphertext-Verify(PK,C) = 1 as well as two t-sets of valid decryption shares Φ, Φ′ for
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which Combine(PK,VK, C, Φ) and Combine(PK,VK, C, Φ′) result in different plaintexts.
We remark that the ciphertext sanity check always rejects ciphertexts containing Gp3 compo-

nents in C1 and C2. Hence, it is easy to see that the above situation can only occur if non-trivial
Gp2 components appear in C1 and/or C2 as well as in at least one of the shares of Φ and Φ′.
This means that η = C2/C

a·SVK+b
1 is in Gp2 with overwhelming probability. Indeed, since the pub-

lic key does not reveal anything about a mod p2 and b mod p2, we can only have C1 = gs · gτ2 ,
C2 = (uSVK ·v)s ·gτ(a·SVK+b)

2 with negligible chance. Using η ∈ Gp2 , B can break Assumption 1 since
e(T, η) 6= 1GT

if T ∈R Gp1p2 . ut

4 A Variant with Shorter Ciphertexts

It is tempting to use optimizations of the CHK paradigm to compress ciphertexts by eliminating
the one-time signature and its verification key. To this end, it is possible to adapt the non-generic
approach of Boyen, Mei and Waters [12].

The construction is similar to the one of [12][Section 3.1] in its thresholdized version. The
intuition of that scheme is to use a hash value of ciphertext components (C0, C1) = (M ·e(g, h)α·s, gs)
as an “identity” for the underlying IBE scheme during the computation of the third ciphertext
component. The main difference is that the use of composite order groups allows dispensing with
the long public key (inherited from Waters’ IBE scheme [42]) consisting of O(λ) group elements.

In the system hereafter, the ciphertext overhead reduces to two elements in the subgroup Gp1

of the composite order group. Ciphertexts have the form (C0, C1, C2) = (M ·e(g, h)α·s, gs, (uκ ·v)s),
where κ = H(C0, C1). However, we have to deal with an additional difficulty which is inherent to
the use of groups of composite order. Since the one-time signature was eliminated, there is no way
to “authenticate” C2 and prevent the adversary from re-randomizing the challenge ciphertext by
introducing a Gp2 component in C2 by itself. This can be solved by: (1) exploiting the ciphertext-
validity check that rejects all ciphertexts where (C1, C2) have a Gp3 component (in this case, this
check also comes into play in the proof of CCA2 security and not only in the proof of consistency);
(2) adding one step in the security proof and show that, in the challenge ciphertext, the adversary
cannot re-randomize the Gp2 part of C2 without breaking some intractability assumption.

Setup(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈ poly(λ) such that 1 ≤ t ≤ n,
do the following.

1. Choose bilinear groups (G,GT ) of composite order N = p1p2p3, where pi > 2λ for each
i ∈ {1, 2, 3}.

2. Pick α R← ZN , g, h, u, v R← Gp1 , Xp3
R← Gp1 and compute e(g, h)α.

3. Choose a collision-resistant hash function H : {0, 1}∗ → ZN .
4. Define a polynomial P [X] = α + α1X + · · · + αt−1X

t−1 ∈ ZN [X], for random coefficients
α1, . . . , αt−1

R← ZN . Set the public key as

PK =
(

(G,GT ), N, g, e(g, h)α, u, v, Xp3 , H
)

and set private key shares SK = (SK1, . . . , SKn) as SKi = hP (i) ·Z3,i, where Z3,i
R← Gp3 , for

i = 1 to n. Verification keys VK = (V K1, . . . , V Kn) are then defined as V Ki = e(g, h)P (i)

for i = 1 to n.
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The public key PK and the verification key VK are publicized. For each i ∈ {1, . . . , n}, the
share SKi is given to decryption server i.

Encrypt(PK,m): to encrypt m ∈ GT , choose s R← ZN and compute

C =
(
C0, C1, C2

)
=
(
m · e(g, h)α·s, gs, (uκ · v)s

)
,

where κ = H(C0, C1) ∈ ZN .
Ciphertext-Verify

(
PK,C

)
: parse C as (C0, C1, C2) and compute the hash value κ = H(C0, C1).

Return 1 if the equalities e(g, C2) = e(C1, u
κ · v) and e(Cj , Xp3) = 1GT

for j ∈ {1, 2} both hold.
Otherwise, return 0.

Share-Decrypt(i, SKi, C): Parse C as
(
C0, C1, C2

)
and SKi as an element of G. Return (i,⊥) if

Ciphertext-Verify
(
PK,C

)
= 0. Otherwise, choose r R← ZN , W3,W

′
3

R← Gp3 and compute the
decryption share

µ̂i = (Di,1, Di,2) =
(
SKi · (uκ · v)r ·W3, g

r ·W ′3
)
, (4)

where κ = H(C0, C1). Return µi = (i, µ̂i).
Share-Verify

(
PK,C, (i, µ̂i)

)
: parse C as (C0, C1, C2). If µ̂i = ⊥ or µ̂i 6∈ G2, return 0. Otherwise,

parse µ̂i as (Di,1, Di,2) ∈ G2. Compute κ = H(C0, C1) and return 1 if

e(Di,1, g) = V Ki · e(uκ · v,Di,2).

Otherwise, return 0.
Combine(PK,C, {(i, µ̂i)}i∈S): parse C as (C0, C1, C2). For each i ∈ S, parse µ̂i as (Di,1, Di,2) and

return ⊥ if Share-Verify
(
PK,C, (i, µ̂i)

)
= 0. Otherwise, compute

(D1, D2) =
(∏
i∈S

D
∆i,S(0)
i,1 ,

∏
i∈S

D
∆i,S(0)
i,2

)
and output the plaintext m = C0 · e(C1, D1)−1 · e(C2, D2).

The proof of the following theorem explains how the security proof of the scheme in section 3
can be modified to establish the security of the above system.

Theorem 3. The scheme is IND-CCA2 secure against adaptive corruptions assuming that As-
sumption 1, Assumption 2 and Assumption 3 all hold and that H is a collision-resistant hash
function.

Proof. The proof follows the one of theorem 1 and we only outline the changes. Semi-functional
ciphertexts, decryption shares and private key shares have exactly the same shape as in the scheme
of section 3.

The proof considers a sequence of q + 8 games. Throughout this sequence, C? = (C?0 , C
?
1 , C

?
2 )

will always denote the challenge ciphertext and κ? will stand for the corresponding hash value
κ? = H(C?0 , C

?
1 ).

Gamereal: proceeds like the real game. At the end of the game, the adversary A outputs a bit
β′ ∈ {0, 1} and challenger outputs 1 if and only if β′ = β.
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Gamerestricted: is as Gamereal with the difference that, in the challenge phase, the challenger halts
and outputs 1 in the event that the adversary A previously made a decryption query (C0, C1, C2)
for which C1 = C?1 .

Game∗restricted: is identical to Gamerestricted but the challenger B rejects all post-challenge decryption
queries (C0, C1, C2) for which (C0, C1) 6= (C?0 , C

?
1 ) and κ = H(C0, C1) = H(C?0 , C

?
1 ) = κ?.

Game∗∗restricted: is like Game∗restricted but the adversary A is now disallowed to make post-challenge
decryption queries (C0, C1, C2) for which κ = κ? mod p2 (although κ 6= κ), where κ = H(C0, C1)
and κ? = H(C?0 , C

?
1 ).

Game∗∗∗restricted: is as Game∗∗restricted with one difference. Namely, the challenger B halts and out-
puts 1 if the adversary A manages to make a decryption query C = (C0, C1, C2) such that
Ciphertext-Verify(PK,C) = 1 and for which (C0, C1) = (C?0 , C

?
1 ) and C2 6= C?2 .

Game0: is identical to Game∗∗∗restricted but the normal challenge ciphertext is turned into a semi-
functional ciphertext of Type I.

Gamek (1 ≤ k ≤ q): in this game, the challenge ciphertext is a Type I semi-functional ciphertext
and the challenger B answers the first k decryption queries by outputting semi-functional de-
cryption shares. The last q − k decryption queries are normal.

Game∗q: is like Gameq with two differences.

- All private key shares are made semi-functional and henceforth contain a random Gp2 com-
ponent.

- The challenge ciphertext becomes a Type II (instead of Type I) semi-functional ciphertext.
Gamefinal: is as Game∗q but the Type II semi-functional challenge ciphertext is now replaced by

a semi-functional encryption of a random plaintext (rather than Mβ). In this game, A the
challenger’s bit β ∈ {0, 1} is perfectly independent of A’s view and A can only guess it with
probability 1/2.

It is easy to see that Gamereal and Gamerestricted are negligibly far apart since, until the challenge
phase, C?1 = gs is independent of A’s view. In Gamerestricted, the probability that the challenger
halts in the challenge phase is at most q/p1, which is negligible.

In Game∗restricted, the challenger has negligible chance of rejecting a ciphertext that would not
have been rejected in Gamerestricted as long as H is collision-resistant. As for the transition be-
tween Game∗restricted and Game∗∗restricted, the indistinguishability of the two games is proved (under
Assumption 1 and Assumption 2) exactly in the same way as in the proof of lemma 2.

The main difference with the proof of theorem 1 is the additional step proving the indistinguisha-
bility Game∗∗restricted and Game∗∗∗restricted in lemma 7 and all subsequent transitions then proceed as
in the proof of theorem 1. ut

Lemma 7. As long as Assumption 1 holds, no PPT adversary can distinguish Game∗∗restricted from
Game∗∗∗restricted.

Proof. We show that, if the adversary has significantly different behaviors in Game∗∗restricted and
Game∗∗∗restricted, there exists a PPT distinguisher B that breaks Assumption 1. This algorithm B
takes as input (g,X3, T ) and decides if T ∈R Gp1 or T ∈R Gp1p2 using its interaction with the
adversary.

Algorithm B generates the public key PK by choosing h R← Gp1 and setting e(g, h)α, Xp3 = X3,
u = ga, v = gb. It randomly chooses a polynomial P [X] of degree t − 1 such that P (0) = α and
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defines SKi = hP (i) ·Z3,i, with Z3,i
R← Gp3 , for i = 1 to n. Decryption queries and private key share

queries are processed by following exactly the specification of the scheme.
When A enters the challenge phase, it outputs M0,M1 ∈ GT and B flips a coin β R← {0, 1}

before returning a normal encryption of Mβ. We denote by

C? = (C?0 , C
?
1 , C

?
2 ) = (M · e(g, h)α·s, gs, (uκ

? · v)s)

the resulting challenge ciphertext, where κ? = H(C?0 , C
?
1 ).

By hypothesis, A is able to notice the difference between the two games with non-negligible
probability. However, the only situation where Game∗∗∗restricted departs from Game∗∗restricted is when A
queries the decryption oracle with a valid ciphertext (C0, C1, C2) such that (C0, C1) = (C?0 , C

?
1 ) and

C2 6= C?2 . Since e(g, C2) equals e(C1, u
κ? · v) = e(C?1 , u

κ? · v) = e(g, C?2 ), this necessarily means that
C2 and C?2 have the same Gp1 component and only differ in that C2 has a non-trivial component
in Gp2 (recall that the ciphertext validation algorithm rules out the presence of a Gp3 component
in C2). Hence, our distinguisher B can compute η = C2/C

?
2 ∈ Gp2 , which allows deciding whether

T ∈ Gp1 or T ∈ Gp1p2 (since we only have e(T, η) 6= 1GT
in the latter case).

At the end of the game, A outputs a bit β′ ∈ {0, 1} and B outputs 1 if β′ = β. Otherwise, it
outputs 0. ut
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A Proof of Lemmas 3, 4 and 6

A.1 Proof of Lemma 3

As in [34], we show that, if the adversary has non-negligible chance of distinguishing Game∗Restricted
and Game0, there is an algorithm B that, given (g,X3, T ), decides if T ∈R Gp1 or T ∈R Gp1p2 .

The distinguisher B generates the public key PK by choosing h R← Gp1 and setting e(g, h)α,
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Xp3 = X3, u = ga, v = gb. It also chooses a random polynomial P [X] of degree t − 1 such that
P (0) = α and sets SKi = hP (i) · Z3,i, where Z3,i

R← Gp3 , for i = 1 to n. It answers all decryption
queries and all private key share queries according to the specification of the scheme since it knows
all private key shares {SKi}ni=1.

At the challenge phase, A outputs messages M0,M1 ∈ GT . The distinguisher B then picks
β R← {0, 1} and computes

C?0 = Mβ · e(T, h)α, C?1 = T C?2 = T a·SVK?+b,

where (SSK?, SVK?) ← G(λ), and sets the challenge ciphertext as a tuple (SVK?, C?0 , C
?
1 , C

?
2 , σ),

with σ = S(SSK?, (C?0 , C
?
1 , C

?
2 )).

If T ∈R Gp1 , the ciphertext (SVK?, C?0 , C
?
1 , C

?
2 , σ) has the distribution of a normal ciphertext.

If T ∈R Gp1p2 , (C?0 , C
?
1 , C

?
2 ) has the distribution of a semi-functional ciphertext of Type I (i.e.,

where C?1 = gs · gτ2 and C?2 = (uSVK? · v)s · gτzc
2 , for some random s ∈ Zp1 , τ ∈ Z∗p2) for which

zc = a · SVK? + b mod p2 (note that this value looks random to A since A has no information on
a mod p2 and b mod p2 until the challenge phase). We conclude that B is playing Game∗Restricted in
the former case and Game0 in the latter case. ut

A.2 Proof of Lemma 4

Let A be a PPT adversary that is able to distinguish Gamek−1 and Gamek for some k ∈ {1 . . . , q}.
It implies an algorithm B which, given (g,X3, X1X2, Y2Y3, T ), decides if T ∈R Gp1p3 or T ∈R G.

The distinguisher B generates PK by choosing h R← Gp1 and setting e(g, h)α, Xp3 = X3, u = ga,
v = gb. It also picks a random polynomial P [X] of degree t − 1 such that P (0) = α and defines
SKi = hP (i) ·Z3,i, with Z3,i

R← Gp3 , for i = 1 to n. It answers all private key share queries according
to the specification of the scheme since it knows {SKi}ni=1.

In the challenge phase, A outputs a pair of messages M0,M1 ∈ GT . The distinguisher B then
flips a coin β R← {0, 1} and computes

C?0 = Mβ · e(X1X2, h)α, C?1 = X1X2 C?2 = (X1X2)a·SVK?+b,

where (SSK?, SVK?)← G(λ). The above forms a Type I semi-functional encryption of Mβ for which
zc = a · SVK? + b.

The way to answer decryption queries
(
i, (SVK(j), C

(j)
0 , C

(j)
1 , C

(j)
2 , σ(j))

)
depends on the index

j ∈ {1, . . . , q} of the query.

- If j < k, B chooses r, wj , w′j
R← ZN and generates a semi-functional decryption share

(Di,1, Di,2) = (hP (i) · (uSVK(j)

· v)r · (Y2Y3)wj , gr · (Y2Y3)w
′
j ).

- If j > k, B generates a normal decryption shares using the private key share SKi as specified
by the decryption algorithm.

- If j = k, B sets the decryption share as

(Di,1, Di,2) = (hP (i) · T a·SVK(k)+b, T ).
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If T ∈R Gp1p3 , the kth decryption share has the distribution of a normal decryption share. If T ∈R G,
it is distributed as a semi-functional decryption share (i.e., where Di,1 = hP (i) ·(uSVK(k) ·v)r ·gγ·zk

2 W3

and Di,2 = gr · gγ2 , for some random r ∈ Zp1 , γ ∈ Z∗p2) for which zk = a · SVK(k) + b mod p2. We
observe that, as long as we have SVK(k) 6= SVK? mod p2, the values zk = a · SVK(k) + b mod p2 and
zc = a · SVK? + b mod p2 look independent from A’s view. We conclude that B is playing Gamek−1

if T ∈R Gp1p3 and Gamek if T ∈R G. ut

A.3 Proof of Lemma 6

We show that, if the adversary A can distinguish the two games, there is a PPT distinguisher
B against Assumption 3. This distinguisher B takes as input (g, Z2, Z3, g

αX2, g
sY2, T ) and has to

decide if T = e(g, g)αs or T ∈R GT .
To generate PK, algorithm B sets h = gγ1 for a randomly chosen γ1

R← ZN . It then computes
e(g, h)α = e(gαX2, h) and also sets Xp3 = Z3, u = ga and v = gb with a, b R← ZN . It chooses a
random polynomial Q[X] ∈ ZN [X] of degree t − 1 such that Q(0) = 1 and prepares the shares
{SKi}ni=1 and the verification keys {V Ki}ni=1 as SKi = (gαX2)γ1Q(i) · Z2,i · Z3,i, with Z2,i

R← Gp2 ,
Z3,i

R← Gp3 , and V Ki = e(g, SKi) for each i ∈ {1, . . . , n}.
To generate a decryption share for a ciphertext C = (SVK, C0, C1, C2, σ), B picks r, w,w′ R← ZN

and computes
(Di,1, Di,2) =

(
SKi · (uSVK · v)r · (Z2Z3)w, gr · (Z2Z3)w

′)
,

which forms a valid semi-functional decryption share.
In the challenge phase,A comes up with messagesM0,M1 ∈ GT and B flips a coin β R← {0, 1}. To

generate the challenge ciphertext, B generates a one-time signature key pair (SSK?,SVK?)← G(λ),
picks θ R← ZN and computes

C?0 = Mβ · T γ1 · e(Z2, Z2)θ, C?1 = gsY2, C?2 = (gsY2)a·SVK?+b

before returning the ciphertext (SVK?, C?0 , C
?
1 , C

?
2 , σ). Whenever A decides to corrupt a decryption

server i ∈ {1, . . . , n}, B simply reveals SKi.
If T = e(g, g)αs, we observe that C = (SVK?, C?0 , C

?
1 , C

?
2 , σ) forms a semi-functional encryption

of Type II of Mβ. If T ∈R GT , C is distributed as a Type II semi-functional encryption of a random
plaintext. In this case, the challenge ciphertext carries no information on β ∈ {0, 1}, which cannot
be guessed by A with better probability than 1/2. ut

B Non-Interactive Threshold Signatures with Adaptive Corruptions

B.1 Definitions for Threshold Signatures

A threshold signature scheme is a tuple of algorithms Σ = (Setup,Share-Sign,Share-Verify,
Verify,Combine) such that:

Setup(λ, t,N): takes as input a security parameter λ ∈ N and a pair of integers t,N ∈ poly(λ)
such that 1 ≤ t ≤ N . It outputs a public key PK and vector of private key share SK =
(SK1, . . . , SKn) and a corresponding vectors of verification keys VK = (V K1, . . . , V Kn).

Share-Sign(SKi,M): is a possibly randomized algorithm that takes in a message M and a private
key share SKi. It outputs a signature share σi.
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Share-Verify(PK,VK, (i, σi),M): is a deterministic algorithm that takes as input a message M ,
the public key PK, the verification key VK and a pair (i, σ) consisting of an index i ∈ {1, . . . , n}
and signature share σi. It outputs 1 or 0 depending on whether σi is deemed as a valid signature
share or not.

Combine(PK,VK,M, {(i, σi)}i∈S): takes as input a public key PK, a message M and a subset
S ⊂ {1, . . . , n} of size t = |S| with pairs {(i, σi)}i∈S such that i ∈ {1, . . . , n} and σi is a
signature share. This algorithm outputs either a full signature σ or ⊥ if the set contains ill-
formed signature shares.

Verify(PK, σ,M): is a deterministic algorithm that takes as input a message M , the public key
PK and a signature σ. It outputs 1 or 0 depending on whether σ is deemed valid share or not.

In the adaptive corruption setting, the security of non-interactive threshold signatures can be
defined as follows, by extending the definition given by Goldwasser, Micali and Rivest [25].

Definition 3. A threshold signature scheme Σ is existentially unforgeable under chosen-message
attacks if no PPT adversary A has non-negligible advantage in the following game.

1. The game begins with the challenger running Setup(λ, t,N) to obtain PK, SK = (SK1, . . . , SKn)
and VK = (V K1, . . . , V Kn). The public key PK is given to the adversary A.

2. A adaptively interleaves two kinds of queries.

- Corruption query: at any time, A can choose to corrupt a server. To this end, A chooses
i ∈ {1, . . . , n} and the challenge returns SKi.

- Signing query: A can also ask for a signature share on an arbitrary message M and the
challenger responds by computing σi ← Share-Sign(SKi,M) and returning σ to A.

3. A outputs a message M? and a signature σ?. It wins if: (i) M? was never submitted to the
signing oracle; (ii) A did not obtain more than t − 1 private key shares in the game; (iii)
Verify(PK,M?, σ?) = 1.

A’s advantage is defined as its success probability, taken over all coin tosses.

B.2 Construction

An adaptively secure threshold signature scheme in the standard model was notably described by
Lysyanskaya and Peikert [35]. Unfortunately, servers have to run an interactive protocol to sign
messages in their construction.

This section shows that, in its threshold version (and modulo a slight modification in the public
key), the signature scheme that underlies the Lewko-Waters IBE scheme [34] can be proved secure
under adaptive corruptions. The signing algorithm as basically identical to the algorithm that
produces decryption shares in the cryptosystem of section 3.

The description below assumes that messages are elements of ZN . In practice, longer messages
can be signed by applying a collision-resistant hash function.

Setup(λ, t, n): given a security parameter λ ∈ N and integers t, n ∈ poly(λ) with 1 ≤ t ≤ n,
conduct the following steps.

1. Choose bilinear groups (G,GT ) of order N = p1p2p3, with p1, p2, p3 > 2λ.
2. Choose α R← ZN , g, h, u, v R← Gp1 , Xp3

R← Gp1 and compute e(g, h)α.
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3. Define a polynomial P [X] = α + α1X + · · · + αt−1X
t−1 ∈ ZN [X], for random coefficients

α1, . . . , αt−1
R← ZN . Define the public key as

PK =
(

(G,GT ), N, g, e(g, h)α, u, v, Xp3

)
and the private key shares SK = (SK1, . . . , SKn) as SKi = hP (i) ·Z3,i, where Z3,i

R← Gp3 , for
i = 1 to n. Verification keys VK = (V K1, . . . , V Kn) are then defined as V Ki = e(g, h)P (i)

for i = 1 to n.

PK and VK are made publicly available. For each i ∈ {1, . . . , n}, the decryption server i is
supplied with the private key share SKi.

Share-Sign(i, SKi,M): to sign M ∈ ZN , using SKi = hP (i) · Z3,i, choose r R← ZN , R3, R
′
3

R← Gp3

and compute the signature share

σi =
(
σi,1, σi,2

)
=
(
SKi · (uM · v)r ·R3, g

r ·R′3
)
.

Share-Verify
(
PK,VK,M, (i, σi)

)
: parse σi as (σi,1, σi,2). If σi = ⊥ or σi 6∈ G2, return 0. Other-

wise, parse σi as (σi,1, σi,2) ∈ G2. Return 1 if the equality e(σi,1, g) = V Ki · e(uM · v, σi,2) holds.
Otherwise, return 0.

Combine(PK,M, {(i, σi)}i∈S): for each i ∈ S, parse the signature share σi as (σi,1, σi,2) and
return⊥ if Share-Verify

(
PK,VK,M, (i, σi)

)
= 0. Otherwise, compute the combined signature

(σ1, σ2) =
(∏

i∈S σ
∆i,S(0)
i,1 ,

∏
i∈S σ

∆i,S(0)
i,2

)
.

Verify
(
PK,VK,M, σ

)
: parse σ as (σ1, σ2) ∈ G2. Return 1 if and only if

e(σ1, g) = e(g, h)α · e(uM · v, σ2).

The security proof applies the dual system methodology in the context of signatures as was
suggested in [43][Section 6] in prime order groups. The proof of the following theorem applies the
same ideas in composite order groups and proceeds as in [5].

Theorem 4. Under Assumption 1, Assumption 2 and Assumption 3, the scheme is secure against
chosen-message attacks and adaptive corruptions.

Proof. The proof considers a sequence of q + 2 games starting with the real attack game Gamereal
and ending with Gameq where proving the security is much easier. In the following we will denote
by (i,Mj) the input of the jth signing query, where i ∈ {1, . . . , n}, j ∈ {1, . . . , q}.

The sequence of games involves the following types of signatures

Type A signatures: are normal signatures (σ1, σ2) = (hα · (uM · v)r ·R3, g
r ·R′3).

Type B-1 signatures: are signatures of the form

(σ1, σ2) =
(
hα · (uM · v)r · gτzs

2 ·R3, g
r · gτ2 ·R′3

)
,

where r ∈ Zp1 , τ, zc ∈ Zp2 .
Type B-2 signatures: have the form (σ1, σ2) =

(
hα · (uM · v)r · gzs

2 ·R3, g
r ·R′3

)
, where r ∈ Zp1 ,

τ, zc ∈ Zp2 .
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Gamerestricted: is identical to Gamereal with the difference that the adversary A cannot output a
forgery on a message M? such that M? = Mj mod p2 (although M? 6= Mj mod N), for some
j ∈ {1, . . . , q}.

Gamek (1 ≤ k ≤ q): is defined as a hybrid game where the challenger B answers the first k signing
queries by returning Type B signatures whereas the adversary obtains Type A signatures at its
last q − k signing queries.

The indistinguishability between Gamerestricted and Gamereal is proved using the usual argument
in lemma 8. Then, lemmas 9 and 10 show that A has negligible chance of outputting Type B-1
or Type B-2 signatures unless either Assumption 1 or Assumption 2 fails to hold. Next, lemma 11
shows that, under Assumption 2, giving out semi-functional private key shares (instead of normal
shares) does not increase A’s probability to produce a Type B-1 or Type B-2 forgery. Finally, it is
easy to prove that, when all signature shares and private key shares are semi-functional, any PPT
forger necessarily contradicts Assumption 3. ut

Lemma 8. Any PPT adversary distinguishing Gamereal from Gamerestricted contradicts either As-
sumption 1 or Assumption 2.

Proof. The proof is very similar to the one of lemma 1 (which is itself based on lemma 5 in [34]). ut

Lemma 9. In Gamerestricted, the adversary A has negligible chance of outputting a Type B-1 or a
Type B-2 signature if Assumption 1 holds.

Proof. We construct a distinguisher B that, on input of a tuple (g,X3, T ) decides if T ∈R Gp1 or
T ∈R Gp1p2 .

To this end, algorithm B interacts with the adversary A and generates the public key by drawing
a, b, α R← ZN and setting u = ga, v = gb, X3 = Xp3 before giving PK = (g, u, v, e(g, h)α, X3) to A.
In addition, B picks a random polynomial P [X] such that P (0) = α. Private key shares are then
defined as SKi = hP (i) · Z3,i, with Z3,i

R← Gp3 , for i = 1 to n. The corresponding {V Ki}ni=1 are set
as V Ki = e(g, SKi).

Since B knows all SKi, it can perfectly answer signing queries and server corruption queries.
By hypothesis, A eventually outputs a signature σ = (σ1, σ2), which is either of the Type B-1 form
(hα · (uM · v)r · gτzs

2 ·R3, g
r · gτ2 ·R′3) or the Type B-2 form (hα · (uM · v)r · gzs

2 ·R3, g
r ·R′3). Since B

knows a, b ∈ ZN , it can compute η = σ1/(hα · σa·M+b
2 ) which is an element of the subgroup Gp2p3 .

Unless σ is a Type B-1 signature for which zs = a ·M + b (which occurs with negligible probability
since a, b mod p2 are independent of A’s view), η has a non-trivial component of order p2. This
implies that B can break Assumption 1 since it knows that e(T, η) 6= 1GT

if T ∈R Gp1p2 . ut

Lemma 10. The adversary outputs a Type A forgery with negligibly different probabilities in Gamek
and Gamek+1 if Assumption 2 holds.

Proof. For the sake of contradiction, we assume that a forger A has significantly higher probability
of outputting a Type A signature in Gamek+1 than in Gamek. We outline a distinguisher B for
Assumption 2. Algorithm B takes as input (g,X1X2, Z3, Y2Y3, T ) and uses A to decide if T ∈ G or
T ∈ Gp1p3 . Recall that A must obtain Type B-1 signatures at its first k signing queries and Type
A signatures at the last q − k − 1 queries. The kth-query will be a Type A signature if T ∈ Gp1p3

and a Type B-1 signature if T ∈ G.
It comes that A will produce a Type A forgery with about the same probability in either case
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if Assumption 2 holds. We then show that the distinguisher B can indeed distinguish whether A’s
forgery will be of Type A or not with overwhelming probability.

To this end, B prepares PK by choosing h R← Gp1 , α, a, b R← ZN and setting u = ga, v = gb.
The public key PK =

(
g, e(g, h)α, u, v, Z3

)
is given to A. Then, B can perfectly answer private

key share queries (since it knows {SKi}ni=1) and answers A’s signing queries (ij ,Mj) depending on
their index j ∈ {1, . . . , q}.

Case j < k: to generate a signature share on message Mj on behalf of server ij ∈ {1, . . . , n}, B
first chooses r R← ZN . It then chooses w1, w2

R← ZN , R3, R
′
3

R← Gp3 . It computes a Type B-1
signature share (σij ,1, σij ,2) as

σij ,1 = SKij · (uMj · v)r · (Y2Y3)w1 , σij ,2 = gr · (Y2Y3)w2 .

Case j > k: in this case, B simply computes a Type A signature using the private key share SKij

as specified by the signing algorithm.
Case j = k: to answer the kth signing query (ik,Mk), B first chooses w1, w2

R← ZN , R3, R
′
3

R← Gp3 .
It uses the challenge T ∈ G to compute

σik,1 = SKik · T
a·Mk+b ·R3, σik,2 = T ·R′3.

It is easy to see that, in the situation where T ∈R G, if we let gτ2 be the Gp2 component of T
for some τ ∈ Z∗p2 , we obtain a Type B-1 signature where zs = (a ·Mk + b) mod p2. In contrast,
if T ∈R Gp1p3 , the above forms a Type A signature.

At the end of the game, A outputs a message M? with a forgery σ? = (σ?1, σ
?
2) that satisfies the

verification equation. At this stage, B returns 0 (meaning that it believes that T ∈R Gp1p3) if σ? is
a Type A signature. If σ? is a Type B-1 or Type B-2 signature, B returns 1 and bets that T ∈R G.

To decide whether σ? is a Type A signature or not, B uses its input element X1X2 and defines
Θ = (X1X2)a·M

?+b. It interprets σ? as a Type A signature if

e(σ?1, X1X2)
e(σ?2, Θ)

= e(X1X2, h)α. (5)

It is easy to see that equation (5) can never be satisfied by a Type B-2 forgery and a Type B-1
forgery σ? = (hα · (uM ·v)r ·gτ ·zf

2 ·R3, g
r ·gτ2 ·R′3) can only verify it if zf = a ·M?+ b mod p2. Before

the forgery stage however, the only information that A can potentially infer about a, b mod p2 is
the value zs = a ·Mk + b mod p2 of the kth signing query. Since zs and zf are linearly independent
as long as M? 6= Mk mod p2, a Type B-1 signature can only satisfy the test with probability 1/p2

since a, b mod p2 are uniformly distributed in Zp2 . ut

Lemma 11. If the adversary can output a Type B-1 or Type B-2 forgery with substantially higher
probability in Game∗q than in Gameq, there is a distinguisher for Assumption 2.

Proof. We now assume that a forger A has higher chance of outputting a Type B-1 or Type B-2
forgery in Game∗q . We show that A implies a distinguisher B for Assumption 2. Algorithm B takes
as input (g,X1X2, Z3, Y2Y3, T ) and decides if T ∈ G or T ∈ Gp1p3 .

The distinguisher B generates PK by choosing α, a, b R← ZN and setting u = ga, v = gb.
It then sets e(g, h)α = e(g, T )α, which implicitly sets h as the Gp1 component of T . The public
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key PK =
(
g, e(g, T )α, u, v, Z3

)
is given to A. Also, B picks a random degree-t polynomial P [X]

such that P (0) = α. Private key shares are set as SKi = TP (i) · Z3,i, with Z3,i
R← Gp3 , and the

corresponding verification key VK is defined by V Ki = e(g, SKi) for i = 1 to n.
Then, B answers private key share queries by simply revealing the requested SKi to A. To

generate a signature share on message Mj on behalf of server ij ∈ {1, . . . , n}, B picks r R← ZN ,
w1, w2

R← ZN , R3, R
′
3

R← Gp3 and computes a Type B-1 signature share (σij ,1, σij ,2) as

σij ,1 = SKij · (uMj · v)r · (Y2Y3)w1 , σij ,2 = gr · (Y2Y3)w2 .

At the end of the game, A outputs a message M? with a forgery σ? = (σ?1, σ
?
2) that satisfies the

verification equation. It means that σ? is necessarily of the form (σ?1, σ
?
2) = (hα · (uM? · v)r · gτ12 ·

R3, g
r · gτ22 · R′3), for some r ∈ Zp1 , τ1, τ2 ∈ Zp2 and R3, R

′
3 ∈ Gp3 . At this stage B computes

η = σ?1/σ
?
2
a·M?+b which is of the form η = hα · gτ̃2 · R̃3 for some τ̃ ∈ Zp2 , R̃3 ∈ Gp3 and where h is

the Gp1 component of T . Then, B checks whether the relation

e(X1X2, η) = e(X1X2, T )α (6)

is satisfied. If yes, B outputs 0 (which indicates that T ∈R Gp1p3). If (6) is not satisfied, B outputs
1 (meaning that T ∈R G).

We argue that B has non-negligible advantage as a distinguisher. To see this, we first note that,
if T ∈R Gp1p3 , B is actually playing Gameq with A and relation (6) holds whenever τ̃ = 0. If T ∈R G
(say T = h · gγ22 · g

γ3
3 for some γ2 ∈ Zp2 and γ3 ∈ Zp3), it is rather playing Game∗q since A gathers

at most t − 1 private key shares SKi = hP (i) · gγ2·P (i)
2 · W3,i, with W3,i ∈R Gp3 , and their Gp2

components look independent from A’s view.
Then, we observe that, if σ? is a Type B-1 or Type B-2 signature, the expression of η is such

that τ̃ 6= 0 with all but negligible probability (since a, b mod p2 are completely independent of A’s
view). When τ̃ 6= 0, relation (6) can only be satisfied with negligible probability. Indeed, in the
situation T ∈R G, the right-hand-side member of (6) can be written

e(X1X2, T )α = e(X1, h)α · e(X2, g2)γ2·P (0)

and given that e(X1X2, η) = e(X1, h)α · e(X2, g2)τ̃ , we remark that the equality (6) can only hold if
τ̃ = γ2 · P (0) mod p2. This only occurs with negligible probability since A obtains no information
about α mod p2 = P (0) mod p2 during the game.

We note that, when τ̃ 6= 0, the test (6) also fails in the case T ∈R Gp1p3 , which causes the
distinguisher B to incorrectly answer. However, this is not a concern as lemmas 9 and 10 already
guarantee that A must break some assumption to produce a Type B-1 or Type B-2 signature when
T ∈R Gp1p3 (recall that B plays Gameq if T ∈R Gp1p2). Moreover, the hypothesis of the lemma
implies that σ? is more likely to give τ̃ 6= 0 if T ∈R G than if T ∈R Gp1p3 . By construction, the
probability that B outputs 1 is thus higher in the former case. ut

Lemma 12. As long as Assumption 3 holds, no PPT adversary can output a Type A forgery in
Game∗q.

Proof. We outline an algorithm B that takes as input
(
g, gαX2, X3, g

sY2, Z2

)
and uses a Type A

forger A to compute T = e(g, g)αs (and a fortiori break Assumption 3). To this end, B generates the
public key PK =

(
g, e(g, h)α, u, v,Xp3

)
by choosing a, b, γ1

R← ZN and setting h = gγ1 , Xp3 = X3,
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e(g, h)α = e(gαX2, h) as well as u = ga and v = gb. In addition, B picks a random (t − 1)-
degree polynomial Q[X] ∈ ZN [X] such that Q(0) = 1 and defines private key shares are defined as
SKi = (gα ·X2)Q(i) ·Z2,i ·Z3,i with Z2,i

R← Gp2 , Z3,i
R← Gp3 . The corresponding {V Ki}ni=1 is defined

as in previous lemmas.
Whenever the forger A decides to corrupt a server, B simply reveals the corresponding private

key share. When A makes a signing query (i,Mj), B chooses r R← ZN , w1, w2
R← ZN , R3, R

′
3

R← Gp3 .
It computes

σi = (σi,1, σi,2) =
(
SKi · (uMj · v)r · (Z2Z3)w1 , gr · (Z2Z3)w2

)
which has the distribution of a Type B-1 signature.

The game ends with the adversary A outputting a message M? as well as a Type-A signature
σ? = (σ?1, σ

?
2) = (hα · (uM? · v)r · R3, g

r · R′3). Since σ? is a Type A signature, σ?1, σ
?
2 have no Gp2

component and B can then compute

e(g, g)α·s =
( e(gsY2, σ

?
1)

e
(
(gsY2)a·M?+b, σ?2)

)1/γ1
.

It comes that A’s advantage is thus negligible if Assumption 3 holds. ut
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