Non-Interactive CCA-Secure Threshold Cryptosystems with
Adaptive Security:
New Framework and Constructions

Benoit Libert! * and Moti Yung?

'Université catholique de Louvain, ICTEAM Institute (Belgium)
2 Google Inc. and Columbia University (USA)

Abstract. In threshold cryptography, private keys are divided into m shares, each one of which is
given to a different server in order to avoid single points of failure. In the case of threshold public-key
encryption, at least ¢ < n servers need to contribute to the decryption process. A threshold primitive is
said robust if no coalition of ¢ malicious servers can prevent remaining honest servers from successfully
completing private key operations. So far, most practical non-interactive threshold cryptosystems, where
no interactive conversation is required among decryption servers, were only proved secure against static
corruptions. In the adaptive corruption scenario (where the adversary can corrupt servers at any time,
based on its complete view), all existing robust threshold encryption schemes that also resist chosen-
ciphertext attacks (CCA) till recently require interaction in the decryption phase. A specific method
(in composite order groups) for getting rid of interaction was recently suggested, leaving the question of
more generic frameworks and constructions with better security and better flexibility (i.e., compatibility
with distributed key generation).

This paper describes a general construction of adaptively secure robust non-interactive threshold cryp-
tosystems with chosen-ciphertext security. We define the notion of all-but-one perfectly sound thresh-
old hash proof systems that can be seen as (threshold) hash proof systems with publicly verifiable
and simulation-sound proofs. We show that this notion generically implies threshold cryptosystems
combining the aforementioned properties. Then, we provide efficient instantiations under well-studied
assumptions in bilinear groups (e.g., in such groups of prime order). These instantiations have a tighter
security proof and are indeed compatible with distributed key generation protocols.

Keywords. Threshold cryptography, adaptive corruptions, public-key encryption, chosen-ciphertext
security, non-interactivity, robustness.

1 Introduction

Threshold cryptography [22, 23, 12] avoids single points of failure by splitting keys into n > 1 shares
which are held by servers in such a way that at least ¢ out of n servers should contribute to private
key operations. In (t,n)-threshold cryptosystems, an adversary breaking into up to ¢ — 1 servers
should not jeopardize the security of the system.

Chosen-ciphertext security [45] (or IND-CCA for short) is widely recognized as the standard
security notion for public-key encryption. Securely distributing the decryption procedure of CCA-
secure public key schemes has proved to be a challenging task. As discussed in, e.g., [49,25], the
difficulty is that decryption servers should return their partial decryption results, called “decryption
shares”, before knowing whether the incoming ciphertext is valid or not and partial decryptions of
ill-formed ciphertexts may leak useful information to the adversary.

The first solution to this problem was put forth by Shoup and Gennaro [49] and it requires the

* This author acknowledges the Belgian Fund for Scientific Research (F.R.S.-F.N.R..S.) for his “Charé de recherches”
fellowship and the BCRYPT Interuniversity Attraction Pole.

random oracle model [5], notably to render valid ciphertexts publicly recognizable. In the standard
model, Canetti and Goldwasser [15] gave a threshold variant of the Cramer-Shoup encryption
scheme [16]. Unfortunately, their scheme requires interaction among decryption servers to obtain
robustness (i.e., ensure that no coalition of ¢ — 1 malicious servers can prevent uncorrupted servers
from successfully decrypting) as well as to render invalid ciphertexts harmless. The approach of
[15] consists in randomizing the decryption process in such a way that partial decryptions of invalid
ciphertexts are uniformly random and thus meaningless to the adversary. To avoid the need to
jointly generate randomizers at each decryption, shareholders can alternatively store a large number
(i.e., proportional to the expected number of decryptions) of pre-shared secrets, which does not
scale well. Cramer, Damgard and Ishai suggested [20] a method to generate randomizers without
interaction but it is only efficient for a small number of servers.

Other threshold variants of Cramer-Shoup were suggested [1,40] and Abe notably showed [1]
how to achieve optimal resilience (namely, guarantee robustness as long as the adversary corrupts
a minority of ¢ < n/2 servers) in the Canetti-Goldwasser system [15]. In the last decade, generic
constructions of CCA-secure threshold cryptosystems with static security were put forth [24, 52].

NON-INTERACTIVE SCHEMES. As an application of the Canetti-Halevi-Katz (CHK) paradigm [18],
Boneh, Boyen and Halevi [8] came up with the first fully non-interactive robust CCA-secure thresh-
old cryptosystem with a security proof in the standard model: in their scheme, decryption servers
can generate their decryption shares without any communication with other servers. Their scheme
takes advantage of bilinear maps to publicly check the validity of ciphertexts, which considerably
simplifies the task of proving security in the threshold setting. In addition, the validity of decryption
shares can be verified in the same way, which provides robustness. Similar applications of the CHK
methodology to threshold cryptography were studied in [13, 36].

Recently, Wee [52] defined a framework allowing to construct non-interactive threshold signa-
tures and (chosen-ciphertext secure) threshold cryptosystems in a static corruption model. He left
as an open problem the extension of his framework in the scenario of adaptive corruptions.

ADAPTIVE CORRUPTIONS. Most threshold systems (including [49, 15, 24, 25, 8]) have been analyzed
in a static corruption model, where the adversary chooses which servers it wants to corrupt before
the scheme is set up. Unfortunately, adaptive adversaries — who can choose whom to corrupt at any
time, as a function of their entire view of the protocol execution — are known (see, e.g., [19]) to be
strictly stronger. As discussed in [15], properly dealing with adaptive corruptions often comes at
some substantial expense like a lower resilience. For example, the Canetti-Goldwasser system can
be proved robust and adaptively secure when the threshold ¢ is sufficiently small (typically, when
t= O(nl/ 2)) but supporting an optimal number of faulty servers is clearly preferable.

Assuming reliable erasures, Canetti et al. [14] devised adaptively secure protocols for the dis-
tributed generation of discrete-logarithm-based keys and DSA signatures. Their techniques were
re-used later on [3] in proactive [44] RSA signatures. In 1999, Frankel, MacKenzie and Yung [26, 27]
independently showed different methods to achieve adaptive security in the erasure-enabled setting.

Subsequently, Jarecki and Lysyanskaya [34] eliminated the need for erasures and gave an adap-
tively secure variant of the Canetti-Goldwasser threshold cryptosystem [15] which appeals to in-
teractive zero-knowledge proofs but is designed to remain secure in concurrent environments. Un-
fortunately, their scheme requires a fair amount of interaction among decryption servers. Abe and
Fehr [2] showed how to dispense with zero-knowledge proofs in the Jarecki-Lysyanskaya construc-
tion so as to prove it secure in (a variant of) the universal composability framework but without
completely eliminating interaction from the decryption procedure. As in most threshold variants of

Cramer-Shoup, hedging against invalid decryption queries requires an interactive (though off-line)
randomness generation phase for each ciphertext, unless many pre-shared secrets are stored.
Recently, the authors of this paper showed [39] an adaptively secure variant of the Boneh-
Boyen-Halevi construction [8] using groups of composite order and the dual system encryption
approach [50, 38] that was initially applied to identity-based encryption [48, 10]. The scheme of [39]
is based on a very specific use of the Lewko-Waters techniques [38], which limits its applicability to
composite order groups and makes it hard to combine with existing adaptively secure distributed
key generation techniques. Also, the concrete security of this initial scheme is not optimal as its
security reduction is related to the number of decryption queries made by the adversary. To solve
these problems, we need a new approach and different methods to analyze the security of schemes.

OUR CONTRIBUTION. Motivated by an open question raised by Wee [52] and the limitations of [39],
we define a general framework for constructing robust, adaptively secure and fully non-interactive
threshold cryptosystems with chosen-ciphertext security. Our goal is to have simple and practical
client/server protocols, as advocated in [49][Section 2.5], and even avoid the off-line interactive
randomness generation stage which is usually needed in threshold versions of Cramer-Shoup.

To this end, we also appeal to hash proof systems (HPS) [17] and take advantage of the prop-
erty that, in security reductions using the techniques of [16,17], the simulator knows the private
keys, which is convenient to answer adaptive corruption queries. Indeed, when the reduction has
to reveal the internal state of dynamically-corrupted servers, it is not bound to a particular set of
available shares since it knows them all. At the same time, we depart from [15] in that the validity
of ciphertexts is made publicly verifiable — which eliminates the need to randomize the decryption
operation — using non-interactive proofs satisfying some form of simulation-soundness [46]: in the
security reduction, the simulator should be able to generate a proof for a possibly false statement
but the adversary should be unable to do it on its own, even after having seen a fake proof.

To this end, we define the notion of all-but-one perfectly sound threshold hash proof systems
that can be seen as (threshold) hash proof systems [17] with publicly verifiable proofs (as opposed
to designed-verifier proofs used in traditional HPS [17]). More precisely, each proof is associated
with a tag, in the same way as ciphertexts are associated with tags in [41, 36]. Real public param-
eters are indistinguishable from alternative parameters that are generated in an all-but-one mode,
which is only used in the security analysis. In the latter mode, non-interactive proofs are perfectly
sound on all tags, except for a single specific tag where some trapdoor makes it possible to simulate
proofs for false statements. While our primitive bears similarities with Wee’s extractable hash proof
systems [51,52] (where hash proof systems are also associated with tags), it is different in that no
extractability property is required and proofs are always used as proofs of membership.

Using all-but-one perfectly sound threshold hash proof systems, we generically construct adap-
tively secure robust non-interactive threshold cryptosystems with optimal resilience. An additional
benefit of this approach is to provide a better concrete security as the security proof requires a
constant number of game transitions whereas, in [39], the number of games is proportional to the
number of decryption queries.

Then, we show three concrete instantiations using number theoretic assumptions in bilinear
groups. The first one uses groups whose order is a product of two primes (whereas three primes are
needed in [39]). Our second and third schemes rely on the Groth-Sahai proof systems [31] in their
instantiations based on the Decision Linear [9] and symmetric eXternal Diffie-Hellman assumptions
[47]. The latter two constructions operate over bilinear groups of prime order, which allows for a
significantly better efficiency than composite order groups (as discussed in [28]) and makes them

much easier to combine with known adaptively secure discrete-log-based distributed key generation
protocols. For example, in the erasure-free setting, the protocols of [34,2] can be used so as to
eliminate the need for a trusted dealer at the same time as the reliance on reliable erasures.

2 Background and Definitions

2.1 Definitions for Threshold Public Key Encryption
A non-interactive (¢, n)-threshold encryption scheme is a set of algorithms with these specifications.

Setup(\,t,n): given a security parameter A and integers ¢, n € poly(A) (with 1 < ¢ < n) denoting
the number of decryption servers n and the decryption threshold ¢, this algorithm outputs
(PK,VK,SK), where PK is the public key, SK = (SKj,...,SK,) is a vector of private-key
shares and VK = (VKj,...,VK,) is a vector of verification keys. Decryption server i is given
the private key share (i, SK;). For each i € {1,...,n}, the verification key V K; will be used to
check the validity of decryption shares generated using SK;.

Encrypt(PK, M): is a randomized algorithm that, given a public key PK and a plaintext M,
outputs a ciphertext C.

Ciphertext-Verify(PK, C): takes as input a public key PK and a ciphertext C. It outputs 1 if
C is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK,i,SK;,C): on input of a public key PK, a ciphertext C' and a private-
key share (i, SK;), this (possibly randomized) algorithm outputs a special symbol (i, L) if
Ciphertext-Verify (PK,C) = 0. Otherwise, it outputs a decryption share u; = (i, fi;).

Share-Verify(PK,VK;,C, u;): takes in PK, the verification key V Kj, a ciphertext C' and a pur-
ported decryption share u; = (4, f1;). It outputs either 1 or 0. In the former case, u; is said to
be a wvalid decryption share. We adopt the convention that (7, L) is an invalid decryption share.

Combine(PK, VK, C, {i;}ics): given PK, VK, C and a subset S C {1,...,n} of size t = ||
with decryption shares {u;}icg, this algorithm outputs either a plaintext M or L if the set
contains invalid decryption shares.

CHOSEN-CIPHERTEXT SECURITY. We use a game-based definition of chosen-ciphertext security

which is akin to the one of [49,8] with the difference that the adversary can adaptively decide

which parties it wants to corrupt.

Definition 1. A non-interactive (t,n)-Threshold Public Key Encryption scheme is secure against
chosen-ciphertext attacks (or IND-CCA2 secure) and adaptive corruptions if no PPT adversary
has non-negligible advantage in this game:

1. The challenger runs Setup(A,t,n) to obtain a public key PK, a vector of private key shares
SK = (SKy,...,SK,) and verification keys VK = (VKq,...,VK,). It gives PK and VK to
the adversary A and keeps SK to itself.

2 The adversary A adaptively makes the following kinds of queries:
- Corruption query: A chooses i € {1,...,n} and obtains SK;. No more than t — 1 private
key shares can be obtained by A in the whole game.

- Decryption query: A chooses an index i € {1,...,n} and a ciphertext C. The challenger
replies with u; = Share-Decrypt(PK,i, SK;,C).

3. The adversary A chooses two equal-length messages Mo, My and obtains C* = Encrypt(PK, Mg)
for some random bit 8 < {0,1}.

4. A makes further queries as in step 2 but is not allowed to make decryption queries on C*.

5. A outputs a bit 8/ and is deemed successful if B’ = 3. As usual, A’s advantage is measured as
the distance Adv(A) = |Pr[p’ =] — 1|.

CONSISTENCY. A (t,n)-Threshold Encryption scheme provides decryption consistency if no PPT
adversary has non-negligible advantage in a three-stage game where stages 1 and 2 are identical
to those of Definition 1 with the difference that the adversary A is allowed to obtain all private
key shares (alternatively, A can directly obtain SK at the beginning of the game). In stage 3, A
outputs a ciphertext C' and two t-sets of decryption shares I' = {p1,..., e} and IV = {uf, ..., pi}.
The adversary A is declared successful if

1. Ciphertext-Verify(PK,C) = 1.
2. I' and I" only consist of valid decryption shares.
3. Combine(PK,VK,C,I") # Combine(PK, VK, C,I").

We note that condition 1 prevents an adversary from trivially winning by outputting an invalid
ciphertext, for which distinct sets of key shares may give different results. This definition of con-
sistency is identical to the one of [49, 8] with the difference that A can adaptively corrupt servers.

2.2 Hardness Assumptions in Composite Order Groups

In one occasion, we appeal to groups (G, Gr) of order N = pyps, where p; and py are primes, with
a bilinear map e : G x G — Gr (i.e., for which e(g?, h®) = e(g, h)® for any g,h € G and a,b € Zy).
In the notations hereafter, for each i € {1,2}, G, stands for the subgroup of order p; in G.

Definition 2 ([11]). In a group G of composite order N, the Subgroup Decision (SD) problem
is given (g € Gp,, h € G) and n, to decide whether n € Gy, orn €gr G. The Subgroup Decision
assumption states that, for any PPT distinguisher D, the SD problem is infeasible.

2.3 Assumptions in Prime Order Groups

We also use bilinear maps e : G x G — Gy over groups of prime order p. We will work in symmetric
pairing configurations, where G = G, and sometimes in asymmetric configurations, where G # G.
In the symmetric setting (G, Gr), we rely on the following assumption.

Definition 3 ([9]). In a group G of prime order p, the Decision Linear Problem (DLIN) is to
distinguish the distributions (g, g%, %, %, g*%, g°*%) and (g, g%, ¢°, 9°¢, g*%, ¢°), with a, b, c,d, z & Z,.
The Decision Linear Assumption is the intractability of DLIN for any PPT distinguisher D.

The problem amounts to deciding if vectors gi = (g% 1,9), 2 = (1,4 g) and g3 = (g%, g*¢, ¢%)
are linearly dependent (i.e., if § = ¢+ d) or not.

In asymmetric bilinear groups (G, G, Gr), we assume the hardness of the Decision Diffie-Hellman
(DDH) problem in G and G. This implies the unavailability of efficiently computable isomorphisms
between G and G. This assumption is called Symmetric eXternal Diffie-Hellman (SXDH)
assumption. Given vectors @, = (g,h), da = (g% h¢) in G? or G2, the SXDH assumption asserts
the infeasibility of deciding whether @; and @y are linearly dependent (i.e., whether a = ¢ mod p).

3 All-But-One Perfectly Sound Threshold Hash Proof Systems

Let C, K and K’ be sets and let V C C be a subset. Let also R be a space where random coins can
be chosen. We mandate that V, K, K’ and R be of exponential size in A\, where A € N is a security
parameter. In addition, C, V and C\V should be efficiently samplable and we also require the set
to form a group for some binary operation, which is denoted by ® hereafter.

An all-but-one perfectly sound threshold hash proof system for the sets (C,V,K,K',R) is a tu-
ple (SetupSound, SetupABO, Sample, Prove, SimProve, Verify, PubEval, SharePrivEval, ShareEvalVerify,
Combine) of efficient algorithms with the following specifications.

SetupSound(\,¢,n): given a security parameter A € N and integers ¢,n € poly()), this algorithm
outputs a public key pk, n private key shares (ski,...,sk,) and verification keys (vki, ..., vky,).

SetupABO(\, ¢, n,tag*): takes as input a security parameter A € N, integers t,n € poly(\) and
a tag tag*. It outputs a public key pk, n private key shares (ski,...,sky,), the corresponding
verification keys (vki,...,vk,) as well as a simulation trapdoor 7. It is important that 7 be
independent of {sk;}? ;.

Sample(pk): is a probabilistic algorithm that takes as input a public key pk. It draws random coins
r & R and outputs an element & € V along with the random coins r that will serve as a witness
explaining @ as an element of V.

Prove(pk, tag, 7, ®): takes in a public key pk, a tag tag, an element ¢ € V and the random coins
r € R that were used to sample @. It generates a non-interactive proof my that ® € V.

SimProve(pk, 7, tag, #): takes as input a public key pk and a simulation trapdoor 7 produced by
SetupABO(), t,n,tag*), a tag tag and an element @ € C. If tag # tag*, the algorithm outputs
L. If tag = tag*, the algorithm produces a simulated NIZK proof 7y that & € V.

Verify(pk, tag, @, my): takes as input a public key pk, a tag tag, an element @ € C and a purported
proof my. It outputs 1 if and only if 7y is deemed as a valid proof that & € V C C.

PubEval(pk,r,@): takes as input a public key pk, an element ¢ € V and the random coins r €g R
such that (r, @) < Sample(pk). It outputs a value K € I, which is called public evaluation of ®.

SharePrivEval(pk, sk;, ?): is a deterministic algorithm that takes in a public key pk, a private key
share sk; and an element @ € C. It outputs a value K; € K', called private evaluation share and
a proof g, that K; was evaluated correctly.

ShareEvalVerify(pk, vk;, @, K;, mk,): given a public key pk, a verification key vk;, an element ¢ € C,
a private evaluation share K; € K and its proof 7, this algorithm outputs 1 if 7, is considered
as a valid proof of the correct evaluation of K;. Otherwise, it outputs 0.

Combine(pk, @, {(K;, 7k;) }ies): takes as input a public key pk, an element ¢ € C and a set of ¢
pairs {(Kj, 7k;) bies, where S C {1,...,n}, each one of which consists of a private evaluation
share K; € K' and its proof mg,. If ShareEvalVerify(pk,vk;, @, K;, mx,) = 0 for some i € S, it
outputs L. Otherwise, it outputs a value K € K.

We also define this algorithm which is implied by the above ones but will be convenient to use.

PrivEval(pk, {sk;}ics,®): given a public key pk, a set of private key shares {sk;};cs where S is an
arbitrary t-subset of {1,...,n}, and an element @ € C, this algorithm outputs the result of
Combine(pk, @, {(K;, 7k,) }ics) where (K;, mk,) < SharePrivEval(pk, sk;,) for each i € S.

The following properties are required from these algorithms and the sets (C,V,K,K', R).

(SETUP INDISTINGUISHABILITY): For any integers (A, ¢,n) such that 1 < ¢ < n and any tag tag*, the
output of SetupSound(A,¢,n) and the outputs (pk, {sk;}?_;, {vki}I" ;) of SetupABO(A,t,n,tag*)
are computationally indistinguishable.

(CORRECTNESS AND PUBLIC EVALUABILITY ON V): For any (pk, {sk;}!"_;, {vk;}!" ;) returned by
SetupSound or SetupABO, if (r,#) £ Sample(pk) (and thus @ € V), it holds that:

1. For any ¢ € {1,...,n}, if (K;, 7k,) < SharePrivEval(pk, sk;, ?), then the private evaluation
share K; € K' is uniquely determined by (pk,vk;) and @. Moreover, the proof 7, satisfies
the verification test: ShareEvalVerify(pk, vk;, @, K;, 7k,) = 1.

2. For any t-subset S C {1,...,n}, combining the corresponding private evaluation shares
allows recomputing the public evaluation:

PubEval(pk, r, @) = PrivEval(pk, {sk; }ics, @).

(UNIVERSALITY): For any (pk, {sk;}_,{vk;}!" ;) produced by SetupSound or SetupABO and any
@ € C\V, for any subset S C {1,...,n} of size |S| =t — 1, the statistical distance

A [(pk7 {Vki}?zla {Ski}iega dja PriVEval(pk7 {Ski}gzlv 45))7 (pk, {Vki}?zlv {Ski}ieg’ ¢7 K)])
where K & K, should be negligible.

(ALL-BUT-ONE SOUNDNESS): For all integers (A, ¢,n) such that 1 <t < n, any tag tag* and any
outputs (pk, {sk;};,{vk;}_;,7) of SetupABO(A\, t,n,tag*), these conditions are satisfied.
1. For any tag # tag*, proofs are always perfectly sound. Namely, if a proof my, satisfies
Verify(pk, tag, @, m,) = 1 for some @ € C, then it necessarily holds that & € V.

2. For any @ € C, the trapdoor 7 allows simulating a proof m, < SimProve(pk, 7, tag*, @) such
that Verify(pk, tag*,®,my) = 1 (note that 7y is a proof for a false statement if & € C\V).
Moreover, if @ € V, the simulated proof 7y should be perfectly indistinguishable from a real
proof (i.e., that would be generated by Prove using a witness r € R of the fact that ® € V).

(SIMULATABILITY OF SHARE PROOFS): For all integers (A, ¢,n) such that 1 < ¢ < n, any tag tag*,
any outputs (pk, {sk;}™;,{vk;}}_;,7) of SetupABO(\, ¢, n,tag*) and any & € C, the proofs 7,
produced by (K;, 7g,;) < SharePrivEval(pk, sk;, @) should be simulatable using the trapdoor 7
instead of {sk;}" ;. Using 7 and public values (pk, {vk;}_,,®), an efficient algorithm S should
be able to produce simulated proofs 7k, that are perfectly indistinguishable from real proofs.

(CONSISTENCY): For all integers (A, ¢,n) such that 1 < ¢ < n, any output (pk, {(vk;,sk;)}" ;) of
SetupSound(A, t,n), given (pk, {(vk;,sk;)}), it should be computationally infeasible to come
up with a triple (tag, @, my) as well as two distinct t-sets I = {(Kil?ﬂ—Kil)y, (Kiy, Tk,)} and
I'= {(K}l,ﬂ'}(jl), cee (Kj’-t,Tr’K]_t)}, with ix, ji € {1,...,n} foreach k € {1,...,t}, such that: (i)
Verify(pk, tag, @, my) = 1; (ii) for each k € {1,...,t}, ShareEvalVerify(pk, vk;, , ®, Kik77TKik) =1
and ShareEvalVerify(pk, vk;, , 2, K]’-k,w’Kjk) = 1; (iii) Combine(pk, @, I") # Combine(pk,®,1").

(SUBSET MEMBERSHIP HARDNESS): membership in C should be easy to check but membership in
V should not. Moreover, this should hold even if 7 is given. Namely, for all integers (A, ¢, n) such
that 1 <t < n, any tag tag* and any outputs (pk, {sk;}I"_;, {vki}I" 1, 7) of SetupABO(], ¢, n, tag"),
for any PPT distinguisher D, it must hold that:

Adv™M(D) = |Pr[D(C,V, Cy, 1) = 1|Cy & C\V] — Pr[D(C, V, Cy, 7) = 1|Cy £ V]| € negl(N).

In the definition of the subset membership hardness property, the trapdoor 7 should not carry any
side information helping the distinguisher. For this reason, the latter receives 7 as part of its input.

4 Adaptively Secure Robust Non-Interactive CCA2-Secure Threshold
Cryptosystems from All-But-One Perfectly Sound Threshold Hash Proof
Systems

Let ITABO-THPS — (SetupSound, SetupABO, Sample, Prove, SimProve, Verify, PubEval, SharePrivEval,
ShareEvalVerify, Combine) be an all-but-one perfectly sound threshold hash proof system for sets
(C,V,K,K',R) that satisfy the conditions specified in Section 3. We assume that messages are in
KC. The generic construction of CCA2-secure threshold cryptosystem goes as follows.

Keygen(\,t,n): given integers A, t,n € N, choose a one-time signature scheme X' = (Gen, Sig, Ver),
generate (pk, {sk;}’,,{vk;}"_;) < SetupSound(A,t,n) and output (PK,SK, VK), where the
vectors of private key shares and verification keys are defined as SK = (sky,...,sk,) and
VK = (vki,...,vky,), respectively. The public key is PK = (pk, X).

Encrypt(M, PK): to encrypt a message M € K using PK = (pk, Y),

1. Generate a one-time signature key pair (SSK, SVK) « X.Gen(\).

2. Choose r & R, compute (r,®) < Sample(pk,) as well as Cy = M © PubEval(pk,r,).
3. Generate a proof my < Prove(pk, SVK, r, ®) that ¢ € V with respect to the tag SVK.
4. Output the ciphertext C' = (SVK, Cy, @, 1y, o), where o = X.Sig(SSK, (Co, @, y)).

Ciphertext—Verify(PK, C’): parse C as C' = (SVK, Cy, P, my,0) and PK as (pk,Y). Return 1 if
E.Ver(SVK, (Co, 2, TrV),U) = 1 and Verify(pk, SVK, @,) = 1. Otherwise, return 0.

Share-Decrypt(SK;,C): given the private key share SK; = sk; and C = (SVK, Cy, ®, 7y, 0),
return (4, L) if it turns out that Ciphertext-Verify (PK, C) = 0. Otherwise, compute a pair
(K, k,) < SharePrivEval(pk, sk;, #) and return p; = (4, f1;) where f1; = (K;, 7k;,).

Share-Verify (PK, VK;, C, (i, ,u“i)): parse the ciphertext C' as (SVK, Cy, @, my, o). If the decryption
share fi; is such that f; = L or if it cannot be properly parsed as a pair (Kj;, 7k,), return 0.
Otherwise, return 1 if ShareEvalVerify(pk, vk;, @, K;, 7x,) = 1. In any other situation, return 0.

Combine(PK, VK, C, {(i, fi;) }ics): parse C as (SVK, Cp, @, mp,0). Return L if there exists i € S
such that Share-Verify (PK, c, (i, ;ZZ)) = 0 or if Ciphertext-Verify (PK, C’) = 0. Otherwise,
compute K = Combine(pk, ®, {(K;, 7k,)}ics) € K, which unveils M = Cy ® K~ 1.

We observe that there is no need to bind the one-time verification key SVK to the ciphertext
components (Cy, P, my) in any other way than by using it as a tag to compute the non-interactive
proof my. Indeed, if the adversary attempts to re-use parts (C§,®*, m3;) of the challenge ciphertext
and simply replaces the one-time verification key SVK* by a verification key SVK of its own, it
will be forced to compute a proof my that correspond to the same &* as in the challenge phase
but under the new tag SVK. Our security proof shows that this is infeasible as long as ITABO-THPS
satisfies the properties of setup indistinguishability and all-but-one soundness.

The consistency property of the scheme is trivially implied by that of ITABO-THPS and we focus
on proving its IND-CCA security. In the threshold setting, adaptive security is achieved by taking
advantage of the fact that, in security reductions using hash proof systems, the simulator typically
knows the private key and can thus answer adaptive queries at will. At the same time, invalid
ciphertexts are harmless as they are made publicly recognizable due to the use of non-interactive
proofs of validity: as long as these proofs are perfectly sound in all decryption queries, the simulator
is guaranteed not to leak too much information about the particular private key it is using.

The main problem to solve is thus to make sure that only the simulator can simulate a fake
proof in the challenge phase and this is where the all-but-one soundness property is handy.

Theorem 1. The above threshold cryptosystem is IND-CCA secure against adaptive corruptions
assuming that: (i) IT"BO-THPS s an all-but-one perfectly sound hash proof system; (i) X is a
strongly unforgeable one-time signature.

Proof. The proof uses of a sequence of games starting with the real attack game and ending with
a game where the adversary A has no advantage. For each i, S; is the event that A wins in Game;.

Game;: is the real attack game. In details, the adversary is given the public key PK and the set of
verification keys VK = (vki,...,vk,) and starts making adaptive queries. At each corruption
query i € {1,...,n}, the challenger B reveals the queried private key share SK; = sk; and, at
each decryption query, B runs the real shared decryption algorithm. In the challenge phase, the
adversary A chooses messages Mo, M; € K and obtains C* = (SVK*, Cf, @*, 7}, 0*) which is
an encryption of Mg, for some random coin 3 ¢~ {0, 1} internally flipped by B. For simplicity,
we assume that the one-time signature key pair (SSK*, SVK*) is chosen by B at the outset of
the game. In the second phase, A makes more queries under the restriction of not asking for a
partial decryption of C* or for more than ¢t — 1 private key shares throughout the entire game.
Eventually, A halts and outputs 3. We denote by S; the event that 3 = /3.

Gamey: we change the distribution of the public key PK = (pk,Y). Namely, instead of generat-
ing (pk, {ski}"_q, {vki}l";) as per (pk, {ski}l,{vki}I~,) < SetupSound(),t,n), the challenger
B runs the all-but-one setup algorithm (pk, {sk;}?" ;,{vk;}}_;,7) <= SetupABO(A\,t,n, SVK*),
discards 7 and uses (pk, {sk;}!"_,{vki}? ;) as in Game;. We note that, after this change, the
one-time verification key SVK* may not be completely independent of A’s view before the
challenge phase. However, due to the setup indistinguishability property of ITABO-THPS = thig
modification cannot significantly affect A’s behavior. This implies |Pr[Sa] — Pr[S1]| € negl(A).

Games: we introduce a failure event F3 and let the challenger B halt and output a random bit
if this event occurs. We call F3 the event that A makes a decryption query involving a valid
ciphertext C' = (SVK, Cy, @, myp, o) such that SVK = SVK*. We note that Games and Game,
are identical until F3 occurs and argue that |Pr[S3] — Pr[Sa2]| < Pr[F3] € negl(\). Indeed, if Fj
occurs before the challenge phase, it means that 4 was able to forge a valid one-time signature
even before seeing a signature. If F3 comes about in a post-challenge query, A must have been
able to break the strong unforgeability of the one-time signature.

Gamey: we modify the generation of the challenge ciphertext C*. Namely, the challenger still picks
@* € V as per (r*,&*) < Sample(pk), using random coins r* & R, as in previous games.
However, C§ is now computed as C§ = Mg ® PrivEval(pk, {sk; };_,, ®*) (instead of C} = M3z ©®
PubEval(pk, %, #*)). As long as ITABO-THPS gatisfies the property of correctness and public
evaluability on V, A’s view does not change since Cj has the same distribution either way. We
thus have Pr[S4] = Pr[Ss].

Games: we modify again the generation of the challenge ciphertext C*. We observe that the proof
7}, must be generated w.r.t. the tag SVK* which, due to the modification introduced in Gamey,
is the tag for which B can generate simulated NIZK proofs using the trapdoor 7. To construct
the ciphertext C*, the challenger B chooses &* € V as in Game,4 and sets

Cy = Mg © PrivEval(pk, {sk; }i_y, ®*), my, = SimProve(pk, 7, SVK*,). (1)

Note that, with this modification, 73, is now independent of {sk;}?_; as these are independent
of 7. Since (Cf, @*,7};) have the same distribution as in Gamey, we have Pr[S5] = Pr[Sy].

Gameg: is as Games but we change the treatment of decryption queries C' = (SVK, Cy, @, 1y, 0).
More precisely, whenever B runs SharePrivEval(pk, sk;, @) in order to answer decryption queries,
to obtain a private evaluation share K; and a proof g, of its validity, the latter is generated
using the simulator S and the simulation trapdoor 7 instead of the private key share sk;. The
property that we called “simulatability of share proofs” guarantees the existence of such an
efficient simulator S and that simulated proofs 7x, will be distributed as real proofs. Hence, we
can write Pr[Sg] = Pr[S5].

Gamey: we bring one last change in the generation of the challenge ciphertext. Instead of computing
(C§,m) as per (1) using a random @* € V, the value ¢* is randomly chosen in C\V. Under
the subset membership hardness assumption in (C, V), this modification cannot be noticed by
A and we must have |Pr[S7] — Pr[Ss]| < Adv®™(A) € negl()\) for any PPT adversary A.

In Gamey, we have Pr[S7] ~ 1/2 so that A’s advantage is statistically negligible. To see this, we
observe that, for any valid decryption query C' = (SVK, Cy, @, myp, o) such that SVK # SVK*, the
proof 7y, is perfectly sound since it is generated for a tag SVK # SVK* and this guarantees that
¢ € V (as even an unbounded A would be unable to generate a convincing proof 7y otherwise).
Consequently, for each revealed decryption share /i; = (i, (K;, 7k;,)), it holds that: (1) K; does not
reveal any more information about sk; than (pk,vk;) since it is uniquely determined by (pk, vk;, ®);
(2) the distribution of 7k, does not depend on sk; thanks to the modification introduced in Gameg.

The universality property of ITABO-THPS tells us that, for any (t — 1)-subset S C {1,...,n},
the distribution (pk, {vk;}y, {ski}ic5, P*, PrivEval(pk, {ski}le,sﬁ*)) is statistically indistinguish-
able from the distribution (pk, {vki}iey, {ski}ies, P, K), where K ¢ K. In other words, C} statis-
tically hides Mz and Pr[S7] is negligibly far apart from 1/2, as claimed. O

5 Instantiations

5.1 Construction in Groups of Composite Order N = pip2

The construction relies on a hash proof system in a group G of composite order N = pipo and it
is conceptually close to the one in [33] (notably because it builds on a log pa-entropic hash proof
system, as defined in [37]). The public key includes group elements (g, X = ¢*) in the subgroup G,
of order p; and the sets C and V are defined to be G and Gy, , respectively. The sampling algorithm
returns ¢ = g" € G, for a randomly chosen exponent r & Zn, which allows publicly evaluating
H(X") = H(9%) using a pairwise independent hash function H : G — {0, 1}*. Since the public key
is independent of x mod po, for any @ € G that has a non-trivial component of order py, the “hash
value” &% has exactly log pa bits of min-entropy and the leftover hash lemma implies that H (&%)
is statistically close to the uniform distribution in {0, 1} when ¢ is sufficiently small.

In order to turn the scheme into an all-but-one perfectly sound threshold HPS, we need a
mechanism that proves membership in the subgroup G,, and guarantees the perfect soundness of
proofs of membership for all tags tag € Zy such that tag # tag*. To this end, we use additional
public parameters (u,v) € G? and a tag-dependent group element 1?8 - v will serve as a common
reference string to generate a non-interactive proof that @ € G,,. Membership in G,, can be non-
interactively proved using a technique that can be traced back to [30]. The proof consists of a group
element 7gp € G satisfying the equality e(®,u™8 - v) = e(g, msp), which ensures that ¢ € Gy, as

10

long as v - v has a G, component. In the public parameters produced by SetupABO, the value
48 . v thus has to be in G\G,, for any tag # tag* in such a way that generating fake proofs that
¢ € G, is impossible. At the same time, u'8” . v should be in Gp, so that fake proofs can be
generated for tag*.

SetupSound(\, ¢,n): choose a group G of composite order N = p;po for large primes p; > 2/ for
each i € {1,2} and for some polynomial [: N — N. Then, conduct the following steps

1. Pick g & Gp,, u,v E G,z & Zy and set X = g% € Gy, -

2. Choose a random polynomial P[Z] € Zy|[Z] of degree t — 1 such that P(0) = z. For each
i €{1,...,n}, compute Y; = g*® € G,,.

3. Select a pairwise independent hash function H : G — {0, 1}¢, where £ < I(\) — 2. Note that
the range K = {0,1}¢ of H forms a group for the bitwise exclusive OR operation ® = @.

4. Define private key shares (ski,...,sky) as sk; = P(i) € Zy for each ¢ = 1 to n. The vector

(vki,...,vky) is defined as vk; = Y; € G, for each i and the public key consists of pk =
((G,Gr),N, g, X,u,v,H). In addition, we have (C,V,K,K',R) = (G, G,,,{0,1}, G, Zy).

SetupABO(\, ¢, n,tag*): is identical to SetupSound with the difference that, instead of being chosen
uniformly in G, v is defined as v = u %8 . ¢ for some random a & Zy. The algorithm also
outputs the simulation trapdoor 7 = o € Zy.

Sample(pk): parse pk as ((G,GT),N,g,X, u,U,H). Choose © & Zy, compute @ = ¢g" € Gp, and
output the pair (r,®) € Zy x Gy, .

Prove(pk, tag,r,®): parse pk as ((G,GT),N,g,X, U,U,H) and return L if @ # ¢". Otherwise,
compute and return wsp = (u'€ - v)".

SimProve(pk, 7, tag, ®): return L if tag # tag* or if & ¢ G. Otherwise, use the simulation trapdoor
T =« € Zy to compute and output wgp = .

Verify(pk, tag, @, msp): return 1 if and only if (@, 7sp) € G? and e(®, ut8 - v) = e(g, msp)-

PubEval(pk,r,®): on input of pk = ((G,GT), N,g, X, u,v, H), return L if (r,®) ¢ Zn x G. Other-
wise, compute and return K = H(X") € {0,1}*.

SharePrivEval(pk, sk;, @): return L if & ¢ G. Otherwise, compute and return (Kj, 7g,), where
K; = ¢ = oP() and Tk, = € is simply the empty string.

ShareEvalVerify(pk, vk;, @, K;, 7k,): if K; € G, vk; € G or 7k, # ¢, return 0. Otherwise, return 1
if e(g, K;) = e(®,vk;). In any other situation, return 0 (the proof 7g, is completely ignored in
this instantiation since, given vk; = Y, the private evaluation share K is directly verifiable).

Combine(pk, &, {(K;, 7k;) }ies): return L if ShareEvalVerify(pk, vk;, @, K;, mx,) = 0 for some i € S.

Otherwise, compute K = H(]], KiAi,S(O)

) = H(®") € K by interpolation in the exponent.
Theorem 2. The above construction is an all-but-one perfectly sound threshold hash proof system
if the SD assumption holds in G. (The proof is given in appendix C.1).

When the above all-but-one perfectly sound threshold hash proof system is plugged into the
generic construction of Section 4, the resulting threshold cryptosystem bears resemblance with the
scheme in [39], which makes use of groups whose order is a product of three primes. However, it is
more efficient and its security proof is completely different as the dual system encryption approach
[50] is not used here.

11

5.2 Construction from the Decision Linear Assumption in Prime Order Groups

This section presents an all-but-one threshold hash proof system based on the DLIN assumption
in prime order bilinear groups. The public key comprises elements (g, g1, g2, X1, X2) € G°, where
X1 = ¢i' - 9%, X2 = g3% - g% and (z1,x2,2) are part of the private key. The sets C and V C C
consist of C = G® and V = {(Dy1, Py, P3) = (g7, 952, 9" %2) | 61,6, € Zp}, respectively. For any
& = (P1,P9,P3) € V, the public evaluation algorithm computes X f ! ~X292, which can be privately
evaluated as ¢7* - §52 - &3,

As in the previous instantiation, we append to elements @ € V a non-interactive proof of their
membership of V (i.e., a proof that (g, g1, 92, P1, P2, P3) is a linear tuple) and, in this case, the
proof is obtained using the Groth-Sahai techniques (which are recalled in appendix B). However,
we cannot simply combine them with a DLIN-based hash proof system in the obvious way. The
reason is that, using parameters produced by SetupABO and under the special tag tag*, SimProve
must be able to compute a fake non-interactive proof of the statement @ € V for an element @ ¢ V.
At the same time, we should make sure that, for any tag such that tag # tag*, it will be impossible
to simulate such proofs. To solve this problem, we need a form of one-time simulation soundness
[46] which can be possibly obtained from Groth’s simulation-sound non-interactive proofs [29] or a
more efficient variant suggested by Katz and Vaikuntanathan [35]. However, the specific language
that we consider allows for even more efficient constructions: it is actually possible to build on the
Groth-Sahai proofs essentially without any loss of efficiency.

The solution is as follows. After having sampled a linear tuple @ = (1, P2, P3) € V, the sampler
generates his proof using a Groth-Sahai CRS that depends on tag. Algorithm SetupABO produces
parameters in the fashion of the all-but-one technique [7]: the tag-based CRS is perfectly WI on the
special tag tag* (which allows generating NIZK proofs for this tag) and perfectly sound for any other
tag, which makes it impossible to convincingly prove false statements on tags tag # tag*. Malkin,
Teranishi, Vahlis and Yung [42] used a similar idea of message-dependent CRS in the context of
signatures. A difference with [42] is that we do not need to extract witnesses from adversarially-
generated proofs and only use them as proofs of membership.

Interestingly, the same technique can be applied to have a more efficient simulation-sound proof
of plaintext equality in the Naor-Yung-type [43] cryptosystem in [35][Section 3.2.2]: the proof can
be reduced from 60 to 22 group elements and the ciphertext size is decreased by more than 50%.

SetupSound(),t,n): Choose a group G of prime order p > 2* with generators g, g1, g2, f1, f2 & G.
1. Choose 1,79,z ¢ Z, and set X1 = ¢{'g*, Xo = g5%g°. Define the vectors 1 = (g1,1,9)
and o = (1, g2, g). Then, pick &, & ¢ Z, and define g3 = Gs gt
- - 2 2b 6
2. Choose g1, ¢ ¢ Z, and define fi = (fi,1,9), o= (1, fa,9) and fs=fi - f2 - (1,1.9).
3. Choose random polynomials P, [Z], P,[Z], P[Z] € Zy|Z] of degree t —1 such that P;(0) = z1,
P»(0) = 29 and P(0) = z. For each i = 1 to n, compute Y; 1 = gfl(l)gp(i), Yio = gQPQ(l)gP(i).
4. Define private key shares SK = (ski,...,sky,) as sk; = (P1(4), P2(4), P(i)) € (Z,)? for each
i € {1,...,n}. Verification keys VK = (vky,...,vky) are defined as vk; = (Vi 1,Y;i2) € G?
for each i € {1,...,n} and the public key is defined to be

pk = ((G,GT), 9, Gi, G2 93, f1, fa, f3, X, Xz)-

As for the sets (C,K,K',R), they are defined as C = G, K = K’ = G and R = (Z,)?,
respectively. The subset V C C consists of the language (&1, P2, ®3) € G> for which there

12

exists 01,02 € Z, such that ¢ = gfl, Py = ggz and @3 = g1 102,
SetupABO(\, ¢, n,tag*): is identical to SetupSound with the following differences.

1. In step 1, g3 is set as gz = g1 - %2 - (1,1,g) 8" instead of being chosen in span(gi, g5).

2. In step 2, the vectors (fi, fé, f:;) are chosen so as to have f; = fi¢1 . B¢2.

3. The algorithm additionally outputs the trapdoor 7 = (&1, {2, b1, ¢2) € (Zp)*.
Sample(pk): choose 01,02 < Z,, compute & = (P1, Py, P3) = (g1 ,92 2, ¢1192) and output ((91,92),@).

Prove(pk,tag, (01, 02),(15): parse pk as ((G, Gr), 9,491, 92, 93, fl, fg, f3,X1,X2) and @ as (P1, D, P3).
Construct! a vector Grag = g5 - (1,1,9)8 and use grag = (41,92, Grag) as a Groth-Sahai CRS
to generate a NIZK proof that (g, 91,92, P1, P2, P3) is a linear tuple. More precisely, generate
commitments Cgl, 092 to exponents 61,0y € Z,, (in other words, compute C@ = gtagg gt gy’

with 7;, 8; - Z, for each i € {1,2}) and a proof (9,,6,) that they satisfy
dil - 9?17 ¢2 = 9227 @3 = 991+92‘ (2)

The whole proof 7 n for (2) consists of 591, C_"92 and (g, g,) (see appendix E.1 for details about
the generation of this proof) and requires 12 elements of G.

SimProve(pk, 7, tag, ®): parses pk as above, 7 as (&1, &2, ¢1, (;52) (Z)4 and @ as (@1, o, P3) € G3.
If tag # tag*, return 1. Otherwise, the commitments 091,092 and the proof 7TL1N must be
generated for the CRS grag+ = (41, 93, Jrag*), Where Gragr = g3 - (1,1,)8 = = g% - %, which is
a Groth-Sahai CRS for the witness indistinguishability setting (as recalled in appendlx B).

1. Using the trapdoor (1, £2), simulate proofs for multi-exponentiation equations (see appendix
E.1 for details as to how such proofs can be simulated). That is, generate Cy,,Cp, as com-
mitments to 0 and compute (g, g,) as a simulated proof that relations (2) hold.

2. Output Ny = (691,692, T(9,,6,)) that consists of perfectly hiding commitments and simu-
lated NIZK proofs which, on the CRS (g1, g3, Grag*), are distributed as real proofs.

Verify(pk, tag, @, 7 v): parse pk and @ as above and 7N as (C_"gl,C_"gz, T(61,62)) € G!'2. Then, com-
pute Grag = g3 - (1,1, 9)™8 and use grag = (41, 92, Jrag) as a Groth-Sahai CRS to verify the proof
mLiN. If the latter is deemed as a valid proof for the relations (2), return 1. Otherwise, return 0.

PubEvaI(pk, (91,92),@): parse pk and @ as above. Return L if (&1, P9, P3) # (gfl,ggz,gé)”e?).
Otherwise, compute and return K = Xf1 . ng e kK.

SharePrivEval(pk, sk;, ®): parse sk; as (P (i), P2(i), P(i)) € (Z,)® and return L if & ¢ G3. Oth-
erwise, compute and return a pair (Kj;, 7g,), where K; = @fl(i) -@52@) -¢3P(i) € K’ and
TK, = (C_;pl,C_;PQ,C_:p,F}Q) € G' is a proof consisting of commitments épl,GPZ,ép to ex-
ponents P (i), Py(i), P(i) € Zp and a proof 7 that these satisfy the equations

K; = ¢f1(i) '¢2Pz(i) ‘égp(i), Yiq = gfl(i)gP(i)7 Yip = gP2(Z) P(i) (3)

The perfectly binding commitments épl,ép2, Cp and the proof 7r’KZ, are generated using the

vectors £ = (fi, fa, f3) as a Groth-Sahai CRS (in such a way that épl s A AT R
for some rp,, sp, ¢~ Z,, for example).

1 We assume that tags are non-zero. This can be enforced by having Prove and Verify output L when tag = 0.

13

ShareEvalVerify(pk, vk;, @, K;, 7k,): parse vk; as (Y;1,Y;2) € G? and return L if (K;, 7g,) cannot
be parsed as a tuple in G x G'°. Otherwise, parse 7x, as 7x, = (Cp,,Cp,, Cp,ﬂ'/Ki) € GY and
return 1 if 7T,Ki is a valid proof for equations (3). In any other situation, return 0.

Combine(pk, @, {(K;, 7k;) }ies): return L if ShareEvalVerify(pk, vk;, @, K;, mx,) = 0 for some i € S.
Otherwise, compute K = [[;cg KiAi‘S(O) =7t - P32 - PF e K.

Theorem 3. The above construction is an all-but-one perfectly sound threshold hash proof system

assuming that the DLIN assumption holds in G. (The proof is given in appendix C.2.)

The proof mpn takes 6 group elements whereas commitments C_"gl , 692 require 3 group elements
each. If the scheme is instantiated using Groth’s one-time signature [29] (which relies on the dis-
crete logarithm assumption), SVK and o demand 3 and 2 group elements, respectively. The whole
ciphertext C' thus consists of 21 group elements. Concretely, if each element has a representation
of 512 bits, at the 128-bit security level, the ciphertext overhead amounts to 10240 bits.

From a computational standpoint, assuming that a multi-exponentiation with two base ele-
ments has roughly the same cost as a single-base exponentiation, the sender has to compute 19
exponentiations in G (we include the cost of generating SVK which incurs three exponentiations in
Groth’s one-time signature [29]). As for the verifier’s workload, the validity of a ciphertext can be
checked by computing a product of 12 pairings (which is significantly more efficient than naively
evaluating 12 individual pairings) using probabilistic batch verification techniques as in [6].

In appendix D, we show an even more efficient instantiation based on the Symmetric eXternal
Diffie-Hellman assumption in prime order groups: only 6 pairing evaluations suffice to check my.

Acknowledgements

We thank the anonymous reviewers and Carla Rafols for useful comments.

References

1. M. Abe. Robust Distributed Multiplicaton with out Interaction. In Crypto’99, LNCS 1666, pp. 130-147, 1999.
. M. Abe, S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryp-
tography. In Crypto’04, LNCS 3152, pp. 317-334, 2004.
3. J. Almansa, I. Damgard, J.-B. Nielsen. Simplified Threshold RSA with Adaptive and Proactive Security. In
FEurocrypt’06, LNCS 4004, pp. 593-611, 2006.
4. P. Barreto, M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. In SAC’05, LNCS 3897, pp. 319-331,
2005.
5. M. Bellare, P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM
CCS, pp. 62-73, 1993.
6. O. Blazy, G. Fuchsbauer, M. Izabachéne, A. Jambert, H. Sibert, D. Vergnaud. Batch Groth-Sahai. In Applied
Cryptography and Network Security (ACNS’10), LNCS 6123, pp. 218-235, 2010.
7. D. Boneh, X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In
FEurocrypt’04, LNCS 3027, pp. 223-238, 2004.
8. D. Boneh, X. Boyen, S. Halevi. Chosen Ciphertext Secure Public Key Threshold Encryption Without Random
Oracles. In CT-RSA’06, LNCS 3860, pp. 226-243, 2006.
9. D. Boneh, X. Boyen, H. Shacham. Short group signatures. In Crypto’04, LNCS 3152, pp. 41-55, 2004.
10. D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. In STAM J. of Computing 32(3), pp.
586—615, 2003. Earlier version in Crypto’01.
11. D. Boneh, E.-J. Goh, K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In Theory of Cryptography Confer-
ence — TCC 2005, LNCS 3378, pp. 325—341. Springer, 2005.

[\

14

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

. C. Boyd. Digital Multisignatures. In Cryptography and Coding (H.J. Beker and F.C. Piper Eds.), Oxford
University Press, pp. 241-246, 1989.

X. Boyen, Q. Mei, B. Waters. Direct Chosen Ciphertext Security from Identity-Based Techniques. in ACM
CCS’05, pp. 320329, 2005.

R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin. Adaptive Security for Threshold Cryptosystems. In
Crypto’99, LNCS 1666, pp. 98-115, 1999.

R. Canetti, S. Goldwasser. An Efficient Threshold Public Key Cryptosystem Secure Against Adaptive Chosen
Ciphertext Attack. In Furocrypt’99, LNCS 1592, pp. 90-106, 1999.

R. Cramer, V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In Crypto’98, LNCS 1462, pp. 1325, 1998.

R. Cramer, V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. In Eurocrypt’02, LNCS 2332, pp. 4564, 2002.

R. Canetti, S. Halevi, J. Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In FEurocrypt’04,
LNCS 3027, pp. 207-222, 2004.

R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, T. Rabin. Efficient Multi-Party Computations Secure Against
an Adaptive Adversary. In Furocrypt’99, LNCS 1592, pp. 311-326, 1999.

R. Cramer, I. Damgard, Y. Ishai. Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure
Computation. In TCC’05, LNCS 3378, pp. 342-362, 2005.

I. Damgard. Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In Crypto’91,
LNCS 576, pp. 445-456 1991.

Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In Crypto’87, LNCS 293, pp. 120-127,
1987.

Y. Desmedt, Y. Frankel. Threshold Cryptosystems. In Crypto’89, LNCS 435, pp. 307-315, 1989.

Y. Dodis, J. Katz. Chosen-Ciphertext Security of Multiple Encryption. In T'CC’05, LNCS 3378, pp. 188-209,
2005.

P.-A. Fouque, D. Pointcheval. Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks. In Asi-
acrypt’01, LNCS 2248, pp. 351-368, 2001.

Y. Frankel, P. MacKenzie, M. Yung. Adaptively-Secure Distributed Public-Key Systems. In ESA’99, LNCS 1643,
pp. 4-27, 1999.

Y. Frankel, P. MacKenzie, M. Yung. Adaptively-Secure Optimal-Resilience Proactive RSA. In Asiacrypt’99,
LNCS 1716, pp. 180-194, 1999.

D. Freeman. Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups.
In Eurocrypt’10, LNCS 6110, pp. 44-61, 2010.

J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Asiacrypt
2006, LNCS 4284, pp. 444-459, 2006.

J. Groth, R. Ostrovsky, A. Sahai. Perfect non-interactive zero knowledge for NP. In Eurocrypt’06, volume 4004
of Lecture Notes in Computer Science, pages 339—-358. Springer, 2006.

J. Groth, A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Furocrypt’08, LNCS 4965, pp.
415-432, 2008.

J. Hastad, R. Impagliazzo, L. Levin, M. Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, vol. 28(4), pp. 1364-1396, 1999.

D. Hoftheinz, E. Kiltz. The Group of Signed Quadratic Residues and Applications. In Crypto’09, LNCS 5677,
pp. 637-653, 2009.

S. Jarecki, A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introducing Concurrency, Removing
Erasures. In Furocrypt’00, LNCS 1807, pp. 221242, 2000.

J. Katz, V. Vaikuntanathan. Round-Optimal Password-Based Authenticated Key Exchange. In TCC’11, LNCS
6597, pp. 293-310, 2011.

E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06, LNCS 3876, pp. 581-600, 2006.

E. Kiltz, K. Pietrzak, M. Stam, M. Yung. A New Randomness Extraction Paradigm for Hybrid Encryption. In
Eurocrypt’09, LNCS 5479, pp. 590-609, 2009.

A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully Secure HIBE with Short Cipher-
texts. In TCC 2010, LNCS 5978, pp. 455-479, 2010.

B. Libert, M. Yung. Adaptively Secure Non-Interactive Threshold Cryptosystems. In ICALP 2011, LNCS 6756,
pp. 588600, 2011.

P. MacKenzie. An Efficient Two-Party Public Key Cryptosystem Secure against Adaptive Chosen Ciphertext
Attack. In PKC’08, LNCS 2567, pp. 47-61, 2003.

15

41. P. MacKenzie, M. Reiter, K. Yang. Alternatives to non-malleability: Definitions, constructions, and applications.
In TCC"04, LNCS 2951, pp. 171-190. Springer, 2004.

42. T. Malkin, I. Teranishi, Y. Vahlis, M. Yung. Signatures resilient to continual leakage on memory and
computation. In TCC’11, LNCS 6597, pp. 89-106, 2011.

43. M. Naor, M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In STOC"90,
ACM Press, 1990.

44. R. Ostrovsky, M. Yung. How to Withstand Mobile Virus Attacks. In 10t* ACM Symp. on Principles of Distributed
Computing (PODC’91), 1991.

45. C. Rackoff, D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In
Crypto’91, LNCS 576, pp. 433-444, 1991.

46. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In FOCS’99,
pp. 543-553, 1999.

47. M. Scott. Authenticated ID-based Key Exchange and remote log-in with simple token and PIN number. Cryp-
tology ePrint Archive: Report 2002/164.

48. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Crypto’84, LNCS 196, pp. 47-53, 1984.

49. V. Shoup, R. Gennaro. Securing Threshold Cryptosystems against Chosen Ciphertext Attack. In J. of Cryptology,
15(2), pp. 75-96, 2002. Earlier version in Eurocrypt’98, LNCS 1403, pp. 1-16, 1998.

50. B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In
Crypto’09, LNCS 5677, pp. 619-636, 2009.

51. H. Wee. Efficient Chosen-Ciphertext Security via Extractable Hash Proofs. In Crypto’10, LNCS 6223, pp.
314-332, 2010.

52. H. Wee. Threshold and Revocation Cryptosystems via Extractable Hash Proofs. In Furocrypt’11, LNCS 6632,
pp- 589-609, 2011.

A One-time Signatures

A one-time signature scheme is a triple of algorithms X = (Gen, Sig, Ver) such that, on input of a
security parameter A, G generates a one-time key pair (SSK, SVK) < X.G(\) while, for any message
M, ¥ Ner(SVK, M, o) outputs 1 whenever o = X.Sig(SSK, M) and 0 otherwise.

As in [18,24], we need strongly unforgeable one-time signatures: no PPT adversary can be able
to create a new signature for a previously signed message.

Definition 4. X = (Gen, Sig, Ver) is a strongly unforgeable one-time signature if the probability

AdvOTs = Pr [(SSK,SVK) + G(\); (M, St) + F(SVK);
o« %.Sig(SSK, M); (M",¢") < F(M,0,SVK, St) :
Y. Ver(o!,SVK,M") =1 A (M',0") # (M,0) |,

where St denotes the state information maintained by F between stages, is negligible for any PPT
forger F.

B Groth-Sahai Proof Systems
In the following notations, for equal-dimension vectors A and B containing group elements, A-B
stands for their component-wise product.

In their instantiation based on the DLIN assumption in symmetric bilinear groups (G, Gr),
Groth-Sahai (GS) proofs [31] use a common reference string comprising vectors ¢i, g3, g3 € G,
where g1 = (91,1, 9), g2 = (1, g2,g) for some g1,g92 € G. A commitment to X € G is obtained as
C = (1,1,X) - gi" - g3° - g3 with r,s,t & Z,,. When proofs should be perfectly sound, g3 is set as

16

G = g% - 3%, with &, & & Z5, so that C = (g{+§1t,g§+£2t,X - grtst&+E)) is 4 Boneh-Boyen-
Shacham (BBS) encryption [9] that can be decrypted using aq = log,(g1), a2 = log,(ge). In the

witness indistinguishability (WI) setting, ¢i, g2, g3 are linearly independent and Cis a perfectly
hiding commitment. Under the DLIN assumption, the two settings are indistinguishable.

To commit to an exponent x € Z,, one computes C = G- gi" - ga®, with s & Z,,, using a
CRS comprising vectors &, g1, g2. In the soundness setting &, g1, g2 are linearly independent vectors
(typically, one chooses @ = g3 - (1,1, g) where g3 = ¢i*' - §3%?) whereas, in the WI setting, choosing
G = gi% - 3% gives a perfectly hiding commitment since C' is always a BBS encryption of 1g. On
a perfectly sound CRS (where g3 = ¢i%' - §5°2 and @ = ¢3 - (1,1, 9)), commitments to exponents are
not fully extractable since the trapdoor («i, ag) only allows recovering g* from C = G g ga°.

To prove that committed variables satisfy certain relations, the techniques of [31] require one
commitment per variable and one proof element per relation. Such efficient proofs notably exist for

multi-exponentiation equations which are equations of the form

m n m n
[T 112 -T1- T2 -
i=1 j=1

i=1 j=1

for variables X1, ..., X, € G, y1,...,Ym € Zp and constants T, Ay, ..., A, € G, by,...,b, € Z; and
vij € G, forie {l,...,m},j e {1l,...,n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional cost. On a simu-
lated CRS (prepared for the WI setting), the trapdoor (&1, &2) makes it possible to simulate proofs
without knowing witnesses, and simulated proofs are perfectly indistinguishable from real proofs.

For linear equations (i.e., when 7;; = 0 for all 4, j) depends on the form of the considered equa-
tion. Namely, linear multi-exponentiation equations of the type H}lzl X ;)j =T (vesp. [[L; AV =T)
demand 3 (resp. 2) group elements.

The Groth-Sahai techniques can also be instantiated in groups (G, G, Gr) with an asymmetric
bilinear map e : G x G- Gr, where G # G. In this case, they rely on the Symmetric eXternal
Diffie-Hellman assumption according to which the DDH problem is hard in both G and G. In this
setting, we only use them to prove multi-exponentiation equations of the form [[*, A" = T, for
constants A1, ..., Ay, T € G and variables y1, ..., yn € Z,. To this end, commitments to exponents
x € Zp have to be computed in G. The common reference string includes vector ,i; € G2 and
commitments are calculated as per C=a"- uf, with r & Zy. It is easy to see that the commitment
C is perfectly hiding if (t,u1) are linearly independent and perfectly hiding if @ € span(i;). The
corresponding proof for the equation [["; AY = T will be perfectly sound if @ ¢ span(d;) and
perfectly WI if @ € span(wy). In either case, the proof consists of a single element of G.

C Deferred Proofs

C.1 Proof of Theorem 2

The theorem is proved by demonstrating that, under the Subgroup Decision assumption, the scheme
provides all the properties required from an all-but-one perfectly sound HPS.

The subset membership hardness property is straightforward as it is exactly the Subgroup
Decision assumption in this instantiation. The simulatability of share proofs is also trivial to verify
since no non-interactive proof is needed to check the validity of private evaluation shares. We thus

17

focus on remaining properties.
To prove the universality property, we rely on the leftover hash lemma [32].

Lemma 1. Let X € X be a random variable such that Hoo(X) > k and let H be a family of
pairwise independent hash functions with domain X and range {0, 1}6. Then, if H & H, we have

A((H,H(X)), (H,Up)) < 1/2570/2,
where Uy denotes the uniform distribution over {0, 1}5.

SETUP INDISTINGUISHABILITY. The only difference between the outputs (pk, {sk;}7, {vk;}}_;) of
SetupSound(\, t,n) and SetupABO(\, ¢, n, tag*) is the distribution of v € G which is uniform in G in
the former case and equals v = ©~%8" . ¢® where o & Zy, when it is returned by SetupABO. In the
latter situation, v can be seen a Boneh-Goh-Nissim encryption [11] of —tag* whereas a uniformly
random v €r G can be interpreted as a BGN encryption of a random plaintext. Consequently,
the public outputs of SetupSound and SetupABO cannot be told apart if the Subgroup Decision
assumption (which is equivalent to the semantic security of the BGN cryptosystem) holds.
CORRECTNESS AND PUBLIC EVALUABILITY ON V. Since the public values pk = ¢* and vk; = g©'(?)
uniquely determine P[X] mod p; as well as sk; mod pq, for any @ € G,,, there is only one possible
value SharePrivEval(pk, sk;, @) = (K;,¢) = (7 &). The second condition is immediate to verify.

UNIVERSALITY. Let @ be a random element of order N in G . For any (¢t —1)-subset S C {1,...,n},
if we consider the min-entropy of &* given @, g%, {vk; = gp(i)}?:1 and {sk; = P(i)};c5, we have

Hoo (D71(9, D, g%, {vki}iy, {ski}ic5)) = Hoo (D" | (9,P, ")) = Hoo(z mod N | z mod p1)
= Hoo(x mod p2 | x mod p1) = Hoo(z mod py) = log po.

Lemma 1 tells us that the statistical distance
A [((gz’ {Vki}?zlﬂ {Ski}iegv ¢)7 H, H(@x))7 ((ng {Vki}?:h {Ski}iegﬂ (P)’ H, Uf)] ’

is smaller than 1/20°8P2=0/2 < 1 /2(N=0/2 " which is negligible as long as [(A) > 2\ + £.

ALL-BUT-ONE SOUNDNESS. Since SetupABO chooses u at random in G, u has a non-trivial G,,
component with overwhelming probability. We know that u'?8 - v = 4'287t8" . 4@ hag a non-trivial
Gp, component whenever tag # tag*. The equality e(®,u"® - v) = e(g, mgp) — more precisely, the
fact that its right-hand-side member has order p; — thus guarantees that ¢ € G,, as long as
tag # tag*. At the same time, u'&" .y = ¢ has order p;, and the trapdoor allows simulating proofs
that @ € Gp,,. When @ is really in the subgroup G,,, msp = ®* equals the proof that would be
produced using the real witness r = log, (®). When, & €r G, msp = P still satisfies the equality
e(®,ut*®" - v) = e(g, msp) and can thus serve as a simulated proof that ® € G, .

CONSISTENCY. Let us assume that a PPT adversary A can break the consistency property of the
all-but-one HPS with non-negligible probability. We show that A implies a distinguisher B for the
Subgroup Decision assumption. The distinguisher B receives (g € Gp,, h € G) and n € G with the
aim of deciding if n has a non-trivial G,, component. This is done by generating the public key pk
using g € G,, and h € G and by choosing {(sk;, vk;)}?" ; as in the specification of the scheme.

The only way for the adversary to break the consistency property is to output (tag,®,wsp)
(note that @’s membership in Gy, is guaranteed by the perfectly sound proof mgp) and two sets of

18

decryption shares where at least one share is of the form K; = &¥ (@) . Ry, for some Ry; € Gy, .
Since B knows sk; = P(i), it can compute Ry; = K; /&P ¢ Gp,, which allows deciding whether
n € Gp, by testing whether the equality e(n, R2;) = 1g, (which only holds if n € G,,) holds. O

C.2 Proof of Theorem 3

We show that, under the Decision Linear assumption, the scheme meets all the requirements of
all-but-one perfectly sound threshold HPS. The subset membership hardness property is trivially
implied by the DLIN assumption and we thus focus on remaining properties.

SETUP INDISTINGUISHABILITY. The difference between the public outputs of SetupSound(\,t,n)
and SetupABO(\, ¢, n,tag*) is in the distributions of vectors g3 and f;; since SetupSound chooses g3
in span(gi, g2) and fs o4 span(ﬁ, ﬁ) whereas SetupABO proceeds the other way around.

We first prove the indistinguishability of the two possible distributions for g3 (the case of
f;; can be handled in a completely analogous way). To this end, we define an intermediate setup
procedure Setuplnt which produces vectors of the form (g1, g2, g3) with ¢i = (91, 1,9), g2 = (1, g2, 9),
g3 = (931,932,933) where g1,92,931,932,933 & G. The result is obtained by combining the
following two claims, the proofs of which are straightforward but given for completeness.

Claim 1. If DLIN holds, no PPT adversary can distinguish the output of SetupSound from Setuplnt.

Proof. We show a distinguisher B that takes in (g, g1, go, gfl,g?, X), for some 4y, 6 & L, with the
purpose of deciding if x = ¢°'*%2 or y €r G. To this end, B defines ¢i = (g1,1,9), 43 = (1, 92, 9).
As for g3, B defines it as g3 = (gfl,ggQ,X). It is clear that, if x = ¢®1 1%, (4i, g3, g3) is distributed
as an output of SetupSound whereas, if x €g G, it is an output of Setuplnt. [|

Claim 2. If DLIN holds, no PPT adversary can distinguish the outputs of Setuplnt and SetupABO.

Proof. Consider a distinguisher B that takes as input (g, g1, g2, g‘fl, gSQ, x) and decides if y = g%+
or x €r G. To do so, B defines gi = (g1,1,9) and g3 = (1, g2, ¢g). As for the third vector g3, B and
computes g3 = (gfl,géb,x g t8"). If x €p G, the vector g3 has the same distribution no matter if
x is multiplied by ¢g~t&" or not and its distribution corresponds to that of an output of Setuplnt.
If x = ¢ 1%, g3 is distributed as in parameters produced by SetupABO. [|

CORRECTNESS AND PUBLIC EVALUABILITY ON V. This property is implied by the public evaluabil-
ity of the underlying standard hash proof system. Namely, for any element # € V, which is a triple
of the form (&1, @y, P3) = (gf1 , 9327991%2) and for each i, the value K; = @fl @ -@52 (@) 'Q5§(Z) equals

Ylel1 Yzej and is uniquely defined by pk and vk; = (Y;1,Y;2). It is also immediate that combining

any t values K; = @fl @ 455 2(0) . @g(i) allows recovering X19 ! X292.

UNIVERSALITY. Let & = (®1, o, $3) be a random triple in G3. With overwhelming probability, we
have @3 # ¢”17%2 where 6 = log,, (91) and 63 = log,, (P2). For any (t — 1)-subset S C {1,...,n},
given shares {sk; = (Pi(i), P>(i), P(i))},cg and public elements X; = ¢i' - ¢°, Xo = ¢5° - ¢°,
{vki = (Y;1,Yi2) = (gfl(l)gp(i),952(2)gp(i))}?:1, the value z = P(0) is completely undetermined.
Since @ can be written (@1, Py, P3) = (gf1,932,991+92+9)
evaluation can be expressed as

for some non-zero 0 €r Z,, its private

PrivEval(pk, {sk;}_,, &) = &1 - &22 . 5 = X0 . X2 . g0,

19

which is uniformly random since z is itself random and independent of publicly available elements.

ALL-BUT-ONE SOUNDNESS. Algorithm SetupABO chooses (g1, g2, g3) in such a way that, for any
tag # tag*, the vector Grag = G5 - (1,1,)8 = gi% - G52 - (1,1, g)18*€" is not in span(gi, g3) and
(91, 2, Grag) forms a Groth-Sahai CRS for the perfect soundness setting. Consequently, for any tag
tag # tag*, even an unbounded adversary would be unable to produce a convincing proof 7N for
an element @ ¢ V. At the same time, Giagr = it - ¢3% is such that (91, 92, Grag) is a Groth-Sahai
CRS for the perfect WI setting, and the trapdoor (£1,£2) makes it possible to generate simulated
proofs 71y for elements @ = (&1, P2, P3) € G3 that can be outside the language V of linear tuples.
Whenever (g, g1, g2, P1, P2, P3) is actually a linear tuple, simulated proofs (see appendix E.1 for
details on how to construct them) are distributed exactly as the proofs that would be produced
using real witnesses.

SIMULATABILITY OF SHARE PROOFS. In the public parameters produced by SetupABO, the vectors

f = (ﬁ,fé,fg) are chosen in such a way that f3 = fid)l . f;@. This means that (¢1,¢2) can be
used as a trapdoor to generate simulated NIZK proofs mx, = (Cp,, Cp,, CP,TF}Q) that committed

exponents (P (i), Py(i), P(i)) satisfy the multi-exponentiation equations
Vama O 0 YamgPOPO, ko000

Namely, C_"pl, épQ, Cp are generated as commitments to 0 and the proof for (4) is simulated using
(41, ¢2). The resulting proof 7r’Ki — which is a simulated proof for a true statement — has the same
distribution as a real proof.

CONSISTENCY. This property holds unconditionally. This is implied by the perfect soundness of
Groth-Sahai proofs. Namely, SetupSound produces common reference strings grag = (41,92, Grag)
and f = (fl, fé, fg;,) that are always perfectly sound. This guarantees the impossibility of producing
a convincing proof 7y for an element @ = (@1, P2, P3) such that (g, g1, g2, P1, P2, P3) is not a linear
tuple. Moreover, thanks to the perfect soundness of proofs mg, for the CRS f = (ﬁ, fé, f;,), invalid
private evaluation shares K; can never be accepted by the ShareEvalVerify algorithm. Consequently,
there is no way for two distinct sets of acceptable private evaluation shares to yield two distinct
private evaluations for a valid @ € V. O

D Instantiation from the SXDH Assumption in Prime Order Groups

The construction of Section 5.2 relies on a well-established assumption in prime order groups and it
is described in terms of symmetric pairings for simplicity. However, it readily extends to asymmetric
pairing configurations.

Further efficiency improvements can be obtained if we choose to rely on asymmetric pairings
e:GxG — Gy and the Symmetric eXternal Diffie-Hellman assumption (SXDH), which posits that
the DDH problem is hard in G and G when G #+ G and no isomorphism is efficiently computable
between G and G.

In this case, the public key comprises group elements (g1, g2, X) € G with X = g¢i"¢5? and
where (z1,22) ¢~ (Z,)? is part of the private key. The public key also includes vectors (i, i2),
where @ = (§,h) € G? and @y = @ = (g7, h**) € G, for some p, & Z,. Tt finally contains
vectors (7, 72), where ¥ = (v11,v12) € G? and 7, = 7" - (1,g), for some p, £ Zy. These
vectors (U7, U2) are the counterpart of (fi, fa, fg,) in Section 5.2 and they form the CRS that allows
generating proofs of well-formedness for private evaluation shares.

20

SetupSound(\, ,n): Choose a configuration of asymmetric bilinear groups (G,G,GT) of prime
order p > 2* with generators g1, g2 & G and g, h & G.

~ A~

1. Choose z1,z9 & Z, and set X = g{'g5?. Define vectors (i1, @2), where @ = (g,h) € G?
and Uy = 7" = (gp“ h"’“) e G2, for some p, & Lp.

2. Choose vy1,v12 & G and define the vectors (vl,vg), where U7 = (vi1,v12) € G? and
Uy = 0" - (1, 9), for some p, ¢ Zy.

3. Choose random polynomials P [Z] P Z] € Zp|Z] of degree t — 1 such that P;(0) = x; and
P5(0) = z9. For each i € {1,...,n}, compute ¥; = ¢} P) o 2(0)

4. Define private key shares SK = (ski,...,sky) as sk; (Pl(z'),Pg(i)) € (Z,)? for each
i€ {l,...,n}. Verification keys VK = (vkl, ...,vky,) are set as vk; = Y; € G for each ¢ and
the public key is defined as

pk = ((G,G,GT), g, i1, Uz, U1, U2, X)-

The sets (C,K,K',R), they are defined as C = G*, K = K' = G and R = Z,, respectively.
The subset V C C consists of the language (@1, ®P2) € G2 for which there exists 6 € Z, such
that &1 = ¢¢ and &y = ¢§.

SetupABO(\, ¢, n,tag*): is identical to SetupSound with the following differences.

1. In step 1, wp is set as @y = @}" - (1,§)"**" instead of being chosen in span(gi, g3).
2. In step 2, the vectors (v, v2) are chosen so as to have ¥y = 07".

3. The algorithm additionally outputs the trapdoor 7 = (py, p») € (Zp)*.
Sample(pk): choose 6 <~ Z,, and compute a pair & = (D1, Ps) = (99, 45). Then, output (9,@5).

Prove(pk,tag, (01, 02),(15): parse pk as ((G, G, Gr), g, 41, Ug,Ul,UQ,X) and @ as (1, P2) € G2 Con-
struct a vector diag = U - (1, §)™8 and use Ugag = (U1, Urag) as a Groth-Sahai CRS to generate
a NIZK proof that (g, g1, g2, P1,P2) is a Diffie-Hellman tuple More precisely, generate a com-
mitment Cy to 0 € Zy, (in other words, compute Cy = utag ;" with r & Z,, for each i € {1,2})
and a proof mpy that it satisfies

@y = gf, Py = gj. (5)

The entire proof mpy for (5) consists of Cy and 7y (see appendix E.2 for details about the
generation of this proof) and requires 2 elements of G and 2 elements of G.

SimProve(pk, 7, tag, @): parses pk as above, T as (pu,pv) € (Z,)? and @ as (P1,P2) € G If
tag # tag*, return 1. Otherwise, the commitment Cy and the proof mpy must be generated for
the CRS Utagr = (U1, Utagr), Where Uagr = Uz - (1, §)e = = /", which is a Groth-Sahai CRS for
the perfect WI setting. The algorithm thus proceeds as follows.

1. Using the trapdoor p,, simulate proofs for multi-exponentiation equations (see appendix
E.2 for details). That is, generate 69 as a commitment to 0 and compute my as a simulated
proof for relations (5).

2. Output mpyg = (59, mp) that consists of perfectly hiding commitments and simulated NIZK
proofs which, on the CRS ugag+ = (1, Utag+), have the same distribution as real proofs.

Verify(pk, tag, @, mpy): parse pk and ¢ as above and 7py as (ég,ﬂ'@) € G? x G2. Then, compute
the vector Uag = U2 - (1, §)™8 and use g = (U1, Urag) as a Groth-Sahai CRS to verify the proof
mpu. If the latter is deemed as a valid proof for relations (5), return 1. Otherwise, return 0.

21

PubEval(pk, (61,6,),®): parse pk and ® as above. Return L if ($1,P2) # (gf,99). Otherwise,
compute and return K = X? € K.

SharePrivEval(pk, sk;, ®): parse sk; as (Py(i), Py(i)) € (Z,)? and return L if @ ¢ G2. Otherwise,
return (K;, g,), where K; = @fl(i) -4552@ € K and 7, = (@p1,6p2,ﬂ}<i) e G* x G* is a proof
consisting of commitments Cp,, Cp, to exponents Py (i), Py(i) € Zp and a proof my that they
satisfy the equations

K=o a20 ;= gt g0, (6)

The perfectly binding commitments C_’}:1 , épQ and the proof 7T/Ki are generated using the vectors
v = (U, U2) as a Groth-Sahai CRS .

ShareEvalVerify(pk, vk;, @, K;, mk,): parse vk; as Y; € G and return L in the event that (K;, 7k,)
cannot be parsed as a sequence of elements in G x G* x G, Otherwise, parse the proof 7g, as
7%, = (Cp,,Ch,, T,) € G* x G* and return 1 if Tk, 18 a valid proof for equations (6). In any
other situation, return 0.

Combine(pk, &, {(K;, 7k;) }ies): return L if ShareEvalVerify(pk, vk;, @, K;, mx,) = 0 for some i € S.

Otherwise, compute K = [[,cq KiAi’S(O) =7t - P32 € K.

The proof of the following theorem is completely similar to the proof of theorem 3 and omitted.

Theorem 4. The above construction is an all-but-one perfectly sound hash proof system assuming
that the SXDH assumption holds in (G,G).

When the generic construction of Section 4 is instantiated with the above all-but-one hash proof
system, the resulting cryptosystem can be seen as a combination between Damgard’s ElGamal en-
cryption scheme [21] (as it is described in [37]) with a non-interactive one-time simulation-sound
proof of validity of the ciphertext. The latter makes it possible to publicly verify the validity of
ciphertexts so as to achieve security in the threshold setting.

As detailed in appendix E.2, the proof mpy consists of 2 elements of G and the commitment C_"g
requires 2 elements of G (each one of which has a representation as large as two elements of G with
the choice of parameters suggested in [4]). The ciphertext overhead now amounts to the length of
13 elements of G if the one-time signature X' is instantiated using [29]. On Barreto-Naehrig curves
[4], if each element of G has a 256-bit representation (as recommended at the 128-bit security level),
this overhead reduces to 3328 bits.

From a computational point of view, if we assume that a multi-exponentiation with two base
elements has roughly the same cost as a single exponentiation, the sender has to compute 8 expo-
nentiations in G and 2 exponentiations in G. The validity of a ciphertext can be verified using only
6 pairing evaluations in a batch-verification process.

E Construction of Non-Interactive Proofs for Schemes in Prime Order Groups

E.1 Construction of Proof Elements for the DLIN-based Instantiation

In the following notations, we define a coordinate-wise pairing F : G x G — GST such that, for any
element h € G and any vector § = (g1, g2, 93), we have E(h,ﬁ) = (e(h,gl), e(h,g2), e(h,gg)).
To construct the proof mpn that @ = (P1, Do, P3) = (gfl,gSQ,g(’lW?), for some (01,62) € (Zp)?,

22

the sender first computes commitments C_"oi = gtfé gt gt = (QtféJ 91 gtaeé,z 95 Qtfé,g '9”+Si)’
for each i € {1,2}, with ry,r9, 81,52 < Z, and where Grag = (Gtag 1, Gtag 2, Jrag.3) € G>. Then, he
generates the proof T(6,,0,) @S

— _ T1 S1 72 52 7141 s1+s
7T(91,92) — (71']_,71'27773,71'4,7'('5,7['6) — (gl y 9175 9275 927, gl 2’ g ! 2)

which satisfies the verification equations

E(917691) = E(¢17§tag) : E(Tfl,g_i) : E(ﬂ-Qvg_é)
E(g2,Cp,) = E(®2, Grag) - E(m3, 1) - E(74, 63) (7)

—

E(97 001 : C_:Gg) = E(¢37§tag) : E(7T5,g_i) : E(Tfﬁ,g_é).

When the above verifications are performed in the naive way, they require to evaluate 30 pairings
altogether. However, using randomized batch verification techniques (which, as illustrated in [6],
can provide substantial savings in the context of Groth-Sahai proofs), they can be more efficiently
processed by computing a product of 12 pairings at the expense of a tiny probability of accepting
an invalid ciphertext.

On a CRS (g1, 2, Jrag*) for the WI setting (i.e., where gragx = g‘iﬁl -g_é& for some &1,& €R
Zyp), the proof mpn can be simulated as follows. First, commitments 691,692 are computed as
commitments to 0 (say C_:gi = gi" - g% for each i € {1,2} with 71,72, 51,82 ¢ Zp). Then, proof
elements (g, 9,) = (71, T2, T3, T4, 75, W) satisfying (7) can be obtained as per

T = 91“1 . @1*51 T3 = 952 . @;51 T = gr1+r2 . @3*51

Ty = gil .@1*52 Ty = 952 . @;52 e = gsl+82 ,453*52‘

E.2 Construction of Proof Elements for the SXDH-based instantiation

Here, our notations use a coordinate-wise pairing F : G x G? - (G}QT such that, for any element
h € G and any vector § = (g1, 4g2) € G2, we have E(h,g) = (e(h,g]), e(h,g})).

To construct the non-interactive proof mpy that (&1,P2) = (g9,94), for some 6 € Z,, the
sender first computes a commitment Cp = ﬂ'tfg " = (ﬁtgg’l 3", ’&tggz . ET), using a randomly

drawn r & Zp and where Uag = (Utag,1, Utag,2) € G2. Then, he generates the proof my as
o = (m1,7m2) = (91, 93) € G
which satisfies the verification equations
E(g1,Cp) = E(®1, tirag) - E(m1,1)
E(g2, Cp) = B(Py, trag) - E(m2,11). (8)

Instead of naively verifying equations (8) separately, the verifier can choose w <& Z, and test
whether
E(g1-95,Cp) = E(®1 - 5, lirag) - E(m1 - 75, 101),

which fails with overwhelming probability when one of the two equations (8) is not satisfied. With
further optimizations (when coordinate-wise equalities are simultaneously batch-verified), the ver-
ifier only needs to compute a product of 6 pairings.

23

On a CRS (Utag, 41) for the perfect WI setting (i.e., where g =)" for some p, €r Zy), a
NIZK proof mpu can be simulated by computing Cy as a commitment to 0 (say Cy = @} for some
r & 7Z,) and the assignment

m =gy P ™y =gy - Py

is easily seen to satisfy the verification equations (8).

24

