
Traceable Group Encryption

Benôıt Libert1, Moti Yung2, Marc Joye1, and Thomas Peters3 ?

1 Technicolor (France)
2 Google Inc. and Columbia University (USA)

3 Université catholique de Louvain, Crypto Group (Belgium)

Abstract. Group encryption (GE) is the encryption analogue of group signatures. It allows a sender
to verifiably encrypt a message for some certified but anonymous member of a group. The sender is
further able to convince a verifier that the ciphertext is a well-formed encryption under some group
member’s public key. As in group signatures, an opening authority is empowered with the capability
of identifying the receiver if the need arises. One application of such a scheme is secure repository at
an unknown but authorized cloud server, where the archive is made accessible by a judge order in the
case of misbehavior, like a server hosting illegal transaction records (this is done in order to balance
individual rights and society’s safety). In this work we describe Traceable GE system, a group encryption
with refined tracing capabilities akin to those of the primitive of “traceable signatures” (thus, balancing
better privacy vs. safety). Our primitive enjoys the properties of group encryption, and, in addition,
it allows the opening authority to reveal a user-specific trapdoor which makes it possible to publicly
trace all the ciphertexts encrypted for that user without harming the anonymity of other ciphertexts.
In addition, group members are able to non-interactively prove that specific ciphertexts are intended
for them or not. This work provides rigorous definitions, concrete constructions in the standard model,
and security proofs.

Keywords. Group encryption, traceability, anonymity, provable security, standard model.

1 Introduction

Group signatures [16] are a fundamental privacy primitive allowing members of a group to sign
messages on behalf of the group while hiding their identity. To deter abuses, an authority is capable
of identifying the author of any valid signature using privileged information. Group encryption
(GE) is a primitive suggested by Kiayias, Tsiounis and Yung [30], which is the encryption analogue
of group signatures [16]. Namely, it allows the sender of a ciphertext to hide the identity of the
receiver within a population of certified users —under the control of a group manager (GM)— while
providing universally verifiable guarantees that this receiver belongs to the group. If necessary, an
opening authority (OA) is empowered with a key allowing it to “open” a ciphertext and pin down
the receiver’s identity in the same way as group signatures can be opened. Moreover, the system
should support a mechanism allowing the sender to convince any verifier that (1) the ciphertext
is well-formed and intended for some registered group member who will be able to decrypt; (2)
the opening authority can identify the receiver if the need arises; (3) the plaintext satisfies certain
properties such as being a witness for some public relation.

As a natural use case, group encryption allows a firewall to block all encrypted emails attempting
to enter a network unless they are generated for some certified organization member and they carry
a proof of malware-freeness. The GE primitive was also motivated by privacy applications such
as anonymous trusted third parties (TTP) or oblivious retriever storage. In optimistic protocols,
it allows verifiably encrypting messages to anonymous trusted third parties which remain offline
most of their lifetime and only wake up when there is a problem to sort out. Group encryption
provides a convenient way to hide the identity of users’ preferred trusted third party, which can be

? This author was supported by the CAMUS Walloon Region Project.

a privacy-sensitive piece information by itself as it can betray, e.g., the participant’s citizenship.
Group encryption also finds applications in cloud storage systems. When encrypting datasets

on a remote storage server, the sender can convince this server that the data is intended for some
legitimate certified user without disclosing the latter’s identity.

As exemplified in [30], group encryption also allows constructing hierarchical group signatures
[38], where signers can flexibly specify how a set of trustees should operate to open their signatures.

Here we suggest a primitive extending the group encryption primitive and describe a refined
traceabilty mechanism analogous to the way traceable signatures [29] extend group signatures.
Specifically, when a given group member is suspected of conducting illegal activities, the opening
authority is able to release a trapdoor allowing anyone to publicly trace ciphertexts encrypted for
this member without affecting the anonymity of other users. As in the case of traceable signatures,
the tracing trapdoor can be distributed to several tracing agents who can proceed in parallel when
it comes to search for a given group member’s ciphertexts. In contrast, in ordinary GE schemes,
this task requires the OA to sequentially operate on all ciphertexts.

Related work. Kiayias, Tsiounis and Yung (KTY) [30] formalized the concept of group encryp-
tion and provided a modular design using zero-knowledge proofs, digital signatures, anonymous
CCA-secure public-key encryption and commitment schemes. They also gave an efficient instantia-
tion using Paillier’s cryptosystem [36] and Camenisch-Lysyanskaya signatures [13]. While efficient,
their scheme uses interactive proof systems. It can be made non-interactive using the Fiat-Shamir
paradigm [20] at the expense of relying on the random oracle model [8], which is understood to
only provide heuristic arguments (see, e.g., [21,14]) in terms of security.

Qin et al. [37] considered a sort of group encryption mechanism with non-interactive proofs and
short ciphertexts. However, they appeal to random oracles and interactive assumptions in their
security analysis. A non-interactive realization in the standard model was put forth by Cathalo,
Libert and Yung [15]. More recently, El Aimani and Joye [18] considered more efficient interactive
and non-interactive constructions using various optimizations.

As a matter of fact, none of the above solutions makes it possible to trace specific users’ ci-
phertexts and only those ones. If messages encrypted for a specific misbehaving user have to be
identified within a collection of, say n = 100000 ciphertexts, the opening authority has to open
all of these in order to find those it is looking for. This is clearly harmful to the privacy of honest
users who lose their anonymity just because they belong to the same group as a rogue user. In [29],
Kiayias, Tsiounis and Yung suggested a technique to address this concern in the context of group
signatures. To our knowledge, no real encryption analogue of their primitive has been studied so far.

The closest work addressing the problem at hand is that of Izabachène, Pointcheval and Vergnaud
[26] who focus on eliminating subliminal channels by means of randomizable encryption. However,
their mediated traceable anonymous encryption primitive does not provide all the functionalities
we are aiming at. First, their scheme only provides message confidentiality and anonymity against
passive adversaries, who have no access to decryption oracles at any time. Second, while their
constructions enable individual user traceability, they do not provide a mechanism allowing the
authority to identify the receiver of a ciphertext in O(1) time. If their scheme is set up for groups
of up to n users, their opening algorithm requires O(n) operations in the worst case. Finally, the
schemes of [26] provide no method allowing users to claim or disclaim ciphertexts they are the
recipients of or not without disclosing their private keys.

Our contribution. This paper suggests a primitive called traceable group encryption (TGE) as
the direct encryption analogue of traceable signatures, as suggested by Kiayias, Tsiounis and Yung
[29]. Beyond the usual functionalities of group encryption, a TGE system allows the opening au-
thority to reveal trapdoors associated with specific group members. These trapdoors enable the

2

recognition of ciphertexts intended for these group members and leak no information about the
identity of other ciphertexts’ recipients. For example, when an employee leaves a company, the
firewall can use a tracing trapdoor to sieve out all incoming ciphertexts encrypted for that former
employee without learning anything else. As in the traceable signature scenario [29], this implicit
tracing process can be run in parallel by clerks equipped with a copy of the tracing trapdoor.

In addition, similarly to the claiming mechanism of traceable signatures [29], TGE schemes sup-
port a procedure whereby group members are able to claim and prove that they are the legitimate
receiver of some initially anonymous ciphertexts. Moreover, we further consider the dual problem
of allowing group members to disclaim ciphertexts that are not encrypted under their public keys
(this feature was not part of the original traceable signature model but it can be added on top of it
in a modular way). Of course, our security notions explicitly require that group members be unable
to falsely claim or disclaim ciphertexts.

The above claiming and disclaiming capabilities can serve in certain applications like cloud stor-
age. While storage servers may require anonymous data retrievers to hold a certificate from some
authority, the disclaiming procedure allows group members to convince investigators that they are
not the intended recipient of some suspicious ciphertext without revealing their private key.

The first contribution of this paper is to define the primitive and to further provide stringent
security definitions for traceable group encryption systems: like its group encryption counterpart
[30], our model considers powerful adversaries who have oracle access to the private key functional-
ities of all users and authorities. As a second contribution, we provide a concrete construction and
prove its security in the standard model under non-interactive assumptions. Our system is not just
a proof of concept. At the 128-bit security level, ciphertexts and proofs fit within 2.18 and 9.38 kB,
respectively. The efficiency is thus competitive with that of state-of-the-art group signatures [23]
or traceable signatures [33] relying on non-interactive assumptions in the standard model.

2 Background

In the paper, when S is a set, x
R← S denotes the action of choosing x at random in S. By a ∈ poly(λ),

we mean that a is a polynomial in λ while b ∈ negl(λ) says that b is a negligible function of λ. When
a and b are two binary strings, a‖b stands for their concatenation. For equal-dimension vectors ~A
and ~B containing group elements, ~A� ~B stands for their component-wise product.

2.1 Complexity Assumptions

We use groups (G,GT) of prime order p with an efficiently computable map e : G×G→ GT such
that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and e(g, h) 6= 1GT whenever g, h 6= 1G. In
this setting, we consider several problems.

Definition 1 ([11]). The Decision Linear Problem (DLIN) in G, is to distinguish the distribution

of linear tuples D1 = {(g, ga, gb, gac, gbd, gc+d) | a, b, c, d R← Zp} from the distribution of random

tuples D2 = {(g, ga, gb, gac, gbd, gz) | a, b, c, d, z R← Zp}.

We also rely on the q-SFP problem, the generic hardness of which was proved by Abe et al. [1].

Definition 2 ([1]). In a group G, the q-Simultaneous Flexible Pairing Problem (q-SFP) is, given(
gz, hz, gr, hr, a, ã, b, b̃

)
∈ G8 as well as q tuples (zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj) and e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj) , (1)

to find a new tuple (z?, r?, s?, t?, u?, v?, w?) ∈ G7 satisfying (1) and such that z? 6∈ {1G, z1, . . . , zq}.

3

Definition 3 ([12]). The Decision 3-party Diffie-Hellman Problem (D3DH) in G, is to distinguish

the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz), where a, b, c, z
R← Zp.

2.2 Groth-Sahai Proof Systems

In their instantiation based on the DLIN assumption in symmetric pairing configurations, the
Groth-Sahai (GS) proof systems [24] use a common reference string (CRS) consisting of three
vectors ~g1, ~g2, ~g3 ∈ G3, where ~g1 = (g1, 1, g), ~g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to a

group element X ∈ G, the prover computes ~C = (1, 1, X)� ~g1
r � ~g2

s � ~g3
t with r, s, t

R← Zp. When
the proof system is configured to provide perfectly sound proofs, ~g3 is set as ~g3 = ~g1

ξ1 � ~g2
ξ2 with

ξ1, ξ2
R← Zp. In this case, commitments ~C = (gr+ξ1t1 , gs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) can be interpreted as

Boneh-Boyen-Shacham (BBS) ciphertexts as X can be recovered by running the BBS decryption
algorithm using the private key (α1, α2) = (logg(g1), logg(g2)). When the CRS is set up to give
perfectly witness indistinguishable (WI) proofs, ~g1, ~g2 and ~g3 are linearly independent vectors, so
that ~C is a perfectly hiding commitment to X ∈ G: a typical choice is ~g3 = ~g1

ξ1 � ~g2
ξ2 � (1, 1, g)−1.

Under the DLIN assumption, the two distributions of CRS are computationally indistinguishable.

To commit to an exponent x ∈ Zp, the prover computes ~C = ~ϕx � ~g1
r � ~g2

s, with r, s
R← Zp,

using a CRS containing ~ϕ, ~g1, ~g2. In the perfect soundness setting ~ϕ, ~g1, ~g2 are linearly independent
(typically ~ϕ = ~g3 � (1, 1, g) where ~g3 = ~g1

ξ1 � ~g2
ξ2) whereas, in the perfect WI setting, choosing

~ϕ = ~g1
ξ1 � ~g2

ξ2 yields perfectly hiding commitments since ~C is statistically independent of x.
To prove that committed variables satisfy a set of relations, the GS techniques replace variables

by the corresponding commitments in each relation. The entire proof consists of one commitment
per variable and one proof element (made of a constant number of elements) per relation.

Such proofs are available for pairing-product relations, which are equations of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (2)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for i, j ∈ {1, . . . , n}.
Efficient proofs also exist for multi-exponentiation equations like

m∏
i=1

Ayii ·
n∏
j=1

X bjj ·
m∏
i=1

·
n∏
j=1

X yiγijj = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and
γij ∈ Zp, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations always admit non-interactive zero-knowledge (NIZK) proofs at
no additional cost. On a perfectly witness indistinguishable CRS, a trapdoor (like the hidden
exponents (ξ1, ξ2) ∈ Z2

p when ~g3 = ~g1
ξ1 � ~g2

ξ2 � (1, 1, g)−1) makes it possible to simulate proofs
without knowing witnesses and simulated proofs are perfectly indistinguishable from real proofs.
As for pairing-product equations, zero-knowledge proofs are often possible – this is usually the case
when the right-hand-side member tT of (2) is a product of pairings involving known group elements
– but the number of group elements per proof may not be constant anymore. Here, when using
such NIZK simulators, we just introduce a constant number of extra group elements in the proofs.

In both cases, proofs for quadratic equations cost 9 group elements. Linear pairing-product
equations (when aij = 0 for all i, j) take 3 group elements each. Linear multi-exponentiation

equations of the type
∏n
j=1X

bj
j = T (resp.

∏m
i=1A

yi
i = T) demand 3 (resp. 2) group elements.

4

2.3 Chameleon Hash Functions

A chameleon hash function [32] is a tuple of algorithms CMH = (CMKg,CMhash,CMswitch) which
contains an algorithm CMKg that, given a security parameter λ, outputs a key pair (hk, tk) ←
G(λ). The randomized hashing algorithm outputs y = CMhash(hk,m, r) given the public key hk, a
message m and random coins r ∈ Rhash. On input of messages m,m′, random coins r ∈ Rhash and
the trapdoor key tk, the switching algorithm r′ ← CMswitch(tk,m, r,m′) computes r′ ∈ Rhash such
that CMhash(hk,m, r) = CMhash(hk,m′, r′). The collision-resistance property mandates that it be
infeasible to come up with pairs (m′, r′) 6= (m, r) such that CMhash(hk,m, r) = CMhash(hk,m′, r′)
without knowing the trapdoor key tk. Uniformity guarantees that the distribution of hash values
is independent of the message m: in particular, for all hk, and all messages m,m′, the distributions
{r ← Rhash : CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)} are identical.

3 Traceable Group Encryption

3.1 Syntax

Traceable group encryption (TGE) schemes involve a sender, a verifier, a group manager (GM) that
manages the group of receivers and an opening authority (OA) that is able to uncover the identity
of ciphertext receivers. A group encryption system is formally specified by the description of a
relation R as well as a collection TGE =

(
SETUP, JOIN, 〈Gr,R, sampleR〉,ENC,DEC, 〈P,V〉,OPEN,

REVEAL,TRACE,CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-VERIFY
)

of algorithms or proto-
cols. Among these, SETUP is a set of initialization procedures that all take (explicitly or implicitly)
a security parameter λ as input. They can be split into one that generates a set of public parameters
param (a common reference string), one for the GM and another one for the OA. We call them
SETUPinit(λ), SETUPGM(param) and SETUPOA(param), respectively. The latter two procedures are
used to produce key pairs (pkGM, skGM), (pkOA, skOA) for the GM and the OA. In the following,
param is incorporated in the inputs of all algorithms although we sometimes omit it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the prospective user. As
in [15], we aim for two-message protocols: the first message is the user’s public key pk sent by
Juser to JGM and the latter’s response is a certificate certpk for pk vouching for the user’s group
membership. The user is not required to prove knowledge of his private key sk. Valid public keys are
assumed to be publicly recognizable, so that proofs of validity are not needed. After the execution
of JOIN, the GM stores the public key pk and its certificate certpk in a public directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (comprised of a public value x and a wit-
ness w) using keys (pkR, skR) produced by Gr. Depending on the relation, skR may be the empty
string (as in the scheme we describe). The testing procedure R(x,w) returns 1 iff (x,w) ∈ R.
To encrypt a witness w such that (x,w) ∈ R for some public x, the sender picks the pair
(pk, certpk) from database and runs the encryption algorithm. The latter takes as input w, a label
L, the receiver’s pair (pk, certpk) as well as public keys pkGM and pkOA. Its output is a ciphertext
ψ ← ENC(pkGM, pkOA, pk, certpk, w, L). On input of the same elements, the certificate certpk, the
ciphertext ψ and the random coins coinsψ that were used to produce it, the non-interactive algo-
rithm P generates a proof πψ that there exists a certified receiver whose public key was registered
in database and that is able to decrypt ψ and obtain a witness w such that (x,w) ∈ R. The veri-
fication algorithm V takes as input ψ, pkGM, pkOA, πψ and the description of R and outputs 0 or
1. Given ψ, L and the receiver’s private key sk, the output of DEC is either a witness w such that
(x,w) ∈ R or a rejection symbol ⊥.

The next three algorithms provide explicit and implicit tracing capabilities. First, OPEN takes
as input a ciphertext/label pair (ψ,L) and the OA’s secret key skOA and returns a receiver’s

5

identity i. Algorithm REVEAL takes as input the joining transcript transcripti of user i and allows
the OA to extract a tracing trapdoor tracei using its private key skOA. This tracing trapdoor can
be subsequently used to determine whether or not a given ciphertext-label pair (ψ,L) is a valid
encryption under the public key pki of user i: namely, algorithm TRACE takes in public keys pkGM
and pkOA as well as a pair (ψ,L) and the tracing trapdoor tracei associated with user i. It returns
1 if and only if (ψ,L) is believed to be a valid encryption intended for user i.

Finally, the last three algorithms (CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-VERIFY) im-
plement a functionality that allows user to convincingly claim or disclaim being the legitimate
recipient of a given anonymous ciphertext. Concretely, CLAIM/DISCLAIM takes as input all pub-
lic keys (pkGM, pkOA, pk), a ciphertext-label pair (ψ,L) and a private key sk. It reveals a publicly
verifiable piece of evidence τ that (ψ,L) is or is not a valid encryption under the public key pk. Al-
gorithms CLAIM-VERIFY and DISCLAIM-VERIFY are then used to verify the assertion established
by τ . They take as input all public keys, a pair (ψ,L) and a claim/disclaimer τ and output 1 or 0.

3.2 Security Definitions

Beyond the standard correctness requirement, our security model involves four properties called
message privacy, anonymity, soundness and claiming soundness. In the definitions hereunder, we use
the notation 〈outputA|outputB〉 ← 〈A(inputA), B(inputB)〉(common-input) to denote the execution
of a protocol between A and B obtaining their own outputs from their respective inputs.

Correctness. This property requires the following experiment to return 1 w.h.p.

Experiment Exptcorrectness(λ)
param← SETUPinit(λ); (pkR, skR)← Gr(λ); (x,w)← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pki, ski, certpki |pki, certpki〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pki, certpki , w, L);
πψ ← P(pkGM, pkOA, pki, certpki , x, w, L, ψ, coinsψ);
If
(
(w 6= DEC(ski, ψ, L)) ∨ (i 6= OPEN(skOA, ψ, L))
∨(V(ψ,L, πψ, pkGM, pkOA) = 0)

)
return 0 else return 1.

Message privacy. The message privacy property is defined by an experiment where the adversary
has access to oracles that may be stateful (and maintain a state across queries) or stateless:

– DEC(sk): is a stateless oracle for the user decryption function DEC. When this oracle is restricted
not to decrypt a ciphertext-label pair (ψ,L), we denote it by DEC¬〈ψ,L〉.

– CHbror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried once. It returns
(ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L) if b = 1 whereas, if b = 0, ψ ←
ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a random plaintext uniformly chosen in the space of
plaintexts of length O(λ). In either case, coinsψ are the random coins used to generate ψ.

– PROVEbP,P ′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ, L, coinsψ): is a stateful oracle that the adversary
can query on multiple occasions. If b = 1, it runs the real prover P on the inputs to produce an
actual proof πψ. If b = 0, the oracle runs a simulator P ′ that uses the same inputs as P except
witness w, coinsψ and generates a simulated proof.

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk): is a stateful oracle that allows the adversary to obtain
either claims or disclaimer proofs for arbitrary ciphertexts. Specifically, the oracle first uses the
private key sk to determine whether (ψ,L) is a valid ciphertext-label pair w.r.t. the public key
pk. If so, the oracle uses sk to compute and return a non-interactive claim τ for ψ. Otherwise,
the oracle generate a disclaimer proof τ showing that (ψ,L) is not a valid encryption under pk.
In either case, (ψ,L) is stored in a list claims, which is initially empty.

6

These oracles are used in an experiment where the adversary controls the GM, the OA and all
members but the honest receiver. The adversary A is the dishonest GM that certifies the honest
receiver in an execution of JOIN. It has oracle access to the decryption function DEC of that receiver.
At the challenge phase, it probes the challenge oracle for a label and a pair (x,w) ∈ R of her choice.
After the challenge phase, A can also invoke the PROVE oracle on multiple occasions and eventually
aims to guess the bit b chosen by the challenger.

As pointed out in [30], designing an efficient simulator P ′ (for executing PROVEbP,P ′(.) when
b = 0) is part of the security proof and might require a simulated common reference string.

Definition 4. A TGE scheme satisfies message security if, for any PPT adversary A, the experi-
ment below returns 1 with probability at most 1/2 + negl(λ).

Experiment ExptsecA (λ)
param← SETUPinit(λ); (aux, pkGM, pkOA)← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);

(aux, x, w, L, pkR)← ADEC(sk,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux); If (x,w) 6∈ R return 0;

b
R← {0, 1}; (ψ, coinsψ)← CHbror(λ, pk, w, L);

b′ ← APROVEbP,P′ (pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.),CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux, ψ);
If b = b′ return 1 else return 0.

Anonymity. In anonymity attacks, the adversary controls the entire system except the opening
authority. One way to jeopardize the anonymity property is to mount a chosen-ciphertext attack on
the encryption scheme used by the OA. A difference with the usual group encryption scenario is that
we must pay attention to the information revealed by the traceability components of ciphertexts.
Throughout the game, the adversary can act as a dishonest group manager and register honest
users in the system. In the challenge phase, the adversary A will choose a pair (x,w) ∈ R as well as
the public keys pk0, pk1 of two honest users. In return, it will receive an encryption of w under the
public key pkb for some b ∈ {0, 1} chosen by the challenger. It has access to the following oracles:

– USER(pkGM): is a stateful oracle simulating executions of Juser on behalf of honest users who are
requested to join the group. It uses an initially empty list keys. At its i-th invocation, the output
(i, pki, ski, certpki) of Juser is stored in keys if the JGM-executing A provides a valid certificate
certpki . If the JOIN protocol does not successfully terminate, the oracle stores (i,⊥) in keys.

– CORR(.): is a stateful oracle that allows the adversary to corrupt honest group members. When
invoked on input of an index i, the oracle first checks if the list keys contains an entry of the
form (i, pki, ski, certpki). If so, it returns ski and adds i to the set Corr, which is initially empty.

– DEC(., .): is a stateless decryption oracle that extends the one of the message security property
in that it provides a decryption capability for each secret key. It takes as input an index i
and a ciphertext-label pair (ψ,L). It first checks if the list keys contains an entry of the form
(i, pki, ski, certpki). If no such entry exists, it returns ⊥. Otherwise, it uses ski to run DEC on the
input (ψ,L) and returns the result. When this oracle is restricted not to decrypt a ciphertext-
label pair (ψ,L) for some user index i ∈ {i0, i1}, we denote it by DEC¬{i0,i1}×〈ψ,L〉.

– OPEN(skOA, .): is a stateless oracle that simulates the opening algorithm on behalf of the OA
and, on input of a TGE ciphertext, returns the receiver’s identity i.

– REVEAL(skOA, .): is an oracle that takes as input a user index i and simulates the REVEAL
algorithm on behalf of the OA. If no user was assigned the index i in keys, it returns ⊥.
Otherwise, it recovers the transcript transcripti of user i in database and uses skOA to extract
and return the i-th group member’s tracing trapdoor tracei. It also adds i to the set Revs.

7

– CHbanon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that can only be queried once. It returns
a pair (ψ, coinsψ) consisting of a ciphertext ψ ← ENC(pkGM, pkOA, pkb, certpkb , w, L) and the coin
tosses coinsψ that were used to generate ψ.

– P(pkGM, pkOA, pkb, certpkb , pkR, x, w, ψ, L, coinsψ): is a stateful oracle which the adversary can
query several times after the challenge phase. It runs the real prover P on the inputs to produce
an actual proof πψ using the random coins coinsψ involved in the generation of the challenge
ciphertext. It returns the resulting proof πψ.

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i): is a stateful oracle that extends the one in the game
modeling the message security property. It takes as input an index i and a ciphertext/label pair.
It first checks whether keys contains a tuple transcripti = (i, pki, ski, certpki). If not, it returns
⊥. Otherwise, it uses the private key ski to determine whether (ψ,L) is a valid ciphertext-label
pair w.r.t. the public key pki. If yes, the oracle uses ski to generate a non-interactive claim τ
for (ψ,L). Otherwise, the oracle generates a disclaimer τ guaranteeing that (ψ,L) is not a valid
encryption under pki. In either case, (i, ψ, L) is stored in a list claims, which is initially empty.

Definition 5. A TGE scheme satisfies anonymity if, for any PPT adversary A, the experiment
below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment ExptanonA (λ)
param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(aux, pkGM)← A(param, pkOA);
(i0, i1, aux, x, w, L, pkR)

← AUSER(pkGM), OPEN(skOA,.), REVEAL(skOA,.), DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.), CORR(.)(aux);
If (i0, pk0, sk0, certpk0) 6∈ keys ∨ (i1, pk1, sk1, certpk1) 6∈ keys return 0;
If (x,w) 6∈ R return 0;

b
R← {0, 1}; (ψ, coinsψ)← CHbanon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AUSER(pkGM), P(pkGM,pkOA,pkb,certpkb ,x,w,ψ,L,coinsψ), OPEN¬〈ψ,L〉(skOA,.),

REVEAL¬{i0,i1}(skOA,.), DEC¬{i0,i1}×〈ψ,L〉(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.), CORR(.)(aux, ψ);
If
(
(i0, ψ, L) ∈ claims

)
∨
(
(i1, ψ, L) ∈ claims

)
return 0;

If (i0 ∈ Revs ∪ Corr) ∨ (i1 ∈ Revs ∪ Corr) return 0;
If b = b′ return 1 else return 0.

As shown in [30], TGE schemes satisfying the above notion necessarily subsume a key-private (a.k.a.
receiver anonymous) [6,25] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers by interacting with
the honest GM. Its goal is to create a ciphertext ψ and a convincing proof that ψ is valid w.r.t. a
relation R of its choice but either (1) the opening fails to identify a certified group member as the
legitimate recipient of ψ; (2) the implicit tracing mechanism TRACE does not point to the group
member pinned down by OPEN; (3) the ciphertext C is not in the language

Lx,L,pkR,pkGM,pkOA,pki = {ENC(pkGM, pkOA, pki, certpki , w, L) | (x,w) ∈ R; (pki, certpki) ∈ valid},

where valid is the set of properly certified keys and i is the user identified by the opening algorithm.
This notion is formalized by a game where the adversary is given access to a user registration oracle
REG(skGM, .) that emulates JGM. This oracle maintains a repository database where registered public
keys and their certificates are stored.

Definition 6. A TGE scheme is sound if, for any PPT adversary A, the experiment below returns
1 with negligible probability.

8

Experiment ExptsoundnessA (λ)
param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(pkGM, skGM)← SETUPGM(param);

(pkR, x, ψ, πψ, L, aux)← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ, pkGM, pkOA) = 0 return 0;
i← OPEN(skOA, ψ, L);
If
(
(i =⊥) ∨ (ψ 6∈ Lx,L,pkR,pkGM,pkOA,pki)

)
then return 1;

tracei ← REVEAL(transcripti, skOA);
If
(
i 6= TRACE(pkGM, pkOA, ψ, tracei)

)
then return 1;

Return 0.

The above security properties are broadly similar to that for group encryption. We need to introduce
the new notion of claiming soundness that formalizes the soundness of the claiming process.

Claiming soundness. The last security notion considers an adversary attacking the soundness of
the claiming algorithm by either claiming other users’ ciphertexts as its own or disclaiming cipher-
texts that are actually encrypted under its public key. Moreover, the verifier of a claim/disclaimer
should be convinced of the group member’s intentionality to claim or repudiate ciphertexts. We
require that only users be able to claim/disclaim ciphertexts encrypted under their key or not: even
the sender (who knows the encryption coins) should be unable to do this.

In the attack model, the adversary controls both the GM and the OA. It is given access to oracles
USER(pkGM), CORR(.), DEC(., .) and CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i), which are identical to
those of the anonymity property. The adversary’s goal is to create a public repository database satis-
fying the integrity check, a ciphertext ψ and a statement statement consisting of a claim/disclaimer
τ and a public key pk but either: (1) the implicit tracing mechanism TRACE does not point to the
group member i pinned down by OPEN; (2) statement = (τ, pk) is a valid claim although pk 6= pki,
where pki is associated with user i in database; (3) statement = (τ, pk) is a valid disclaimer whereas
pk = pki coincides with the public key associated with user i in database; (4) statement = (τ, pkj)
is a valid claim/disclaimer for the public key pkj of some uncorrupted user j ∈ database\Corr in
the database and the pair (τ, pkj) was not produced by the CLAIM/DISCLAIM oracle.

Definition 7. A TGE scheme provides claiming-soundness if, for any PPT adversary A, the ex-
periment below returns 1 with negligible probability.

Experiment Exptclaiming-soundness
A (λ)

param← SETUPinit(λ); (pkGM, aux0)← A(param); (pkOA, skOA)← SETUPOA(param);
(pk?R, x

?, ψ?, L?, π?ψ, statement?, database?, aux)

← AUSER(pkGM), CORR(.), DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.)(param, pkOA, skOA, aux0);
If DATABASE-CHECK(param, database) = 0 return 0;
If V(ψ?, L?, π?ψ, pkGM, pkOA) = 0 return 0;

i← OPEN(skOA, ψ
?, L?); If i =⊥ return 0; tracei ← REVEAL(transcripti, skOA);

If
(
i 6= TRACE(pkGM, pkOA, ψ

?, tracei)
)

then return 1;
If
(
statement? = (τ?, pk?) s.t. CLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pk?, τ?
)

= 1
∧ (pk? 6= pki)

)
then return 1;

If
(
statement? = (τ?, pk?) s.t. DISCLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pk?, τ?
)

= 1
∧ (pk? = pki)

)
then return 1;

If
(
statement? = (τ?, pkj) s.t. (j, pkj , certj , .) ∈ database ∧ (j 6∈ Corr) ∧ (ψ?, L?, pkj) 6∈ Qc
∧
(
CLAIM-VERIFY(pkGM, pkOA, ψ

?, L?, pkj , τ
?
)

= 1

∨ DISCLAIM-VERIFY(pkGM, pkOA, ψ
?, L?, pkj , τ

?
)

= 1
))

then return 1;

Return 0.

9

In the above notations, Qc denotes the set of queries to the CLAIM/DISCLAIM oracle made by A.
We note that there is no need to provide the adversary with a REVEAL oracle in the definition.

Indeed, since it knows skOA, it can obtain tracing trapdoors by itself, by decrypting the verifiable
encryptions sent by honest users when the USER oracle is invoked.

4 A Non-Interactive Traceable Group Encryption Scheme

4.1 Intuition

We use the Libert-Yung (LY) scheme [34], a publicly verifiable variant of Cramer-Shoup recalled
in Appendix A.2. We take advantage of the observation that, if certain public key components
are shared by all users as common public parameters, the scheme can simultaneously provide
receiver anonymity and publicly verifiable ciphertexts. In other words, anyone can publicly verify
that a ciphertext is valid without knowing who the receiver is. When proofs are generated for the
ciphertext, this saves the prover from having to provide evidence that the ciphertext is valid and
thus yields shorter proofs.

The message is encrypted under the receiver’s public key using the LY scheme. At the same time,
the two last components of the receiver’s public key is encrypted under the public key of the opening
authority using Kiltz’s encryption scheme [31] (see Appendix A.2). We use this scheme because it
is the most efficient DLIN-based CCA2-secure cryptosytem where the validity of ciphertexts is
publicly verifiable and we do not need it to hide the public key under which it is generated. We
note that slightly shorter ciphertexts can be obtained using more efficient publicly verifiable variants
of the Cramer-Shoup cryptosystem. For example, the techniques of [19,27,28] can be used for this
purpose. We used the scheme of [34] to keep the description as simple as possible.

When new users join the group, the GM provides them with a membership certificate consisting
of a structure-preserving signature on their public key which comprises group elements (X1, X2). We
chose to work with the scheme of Abe, Haralambiev and Ohkubo (AHO) [1] (see Appendix A.1)
because it allows working exclusively with linear pairing-product equations (and thus obtain a
better efficiency) when non-interactive proofs are generated.

The implicit tracing mechanism must allow the OA to disclose user-specific tracing trapdoors.
To this end, we include in each membership certificate a pair (Γ1, Γ2) = (gγ1 , gγ2) ∈ G2, where
(γ1, γ2) ∈ Z2

p are part of the user’s private key. When users join the group, they are thus requested
to produce a pair (Γ1, Γ2) = (gγ1 , gγ2) for which gγ1γ2 will serve as a tracing trapdoor for them. Since
gγ1γ2 cannot be publicly revealed, we appeal to a verifiable encryption mechanism as was suggested
in [9] in a related context: namely, the prospective user provides the GM with an encryption Φvenc
of gγ1γ2 under the OA’s public key and generates a non-interactive proof that the encrypted value
is indeed an element gγ1γ2 such that (g, gγ1 , gγ2 , gγ1γ2) is a Diffie-Hellman tuple. The REVEAL
algorithm thus uses the OA’s private key to decrypt Φvenc so as to expose gγ1γ2 . Armed with the
information tracei = gγ1γ2 , a tracing agent can test whether a ciphertext ψ is prepared for user i as

follows. We require each ciphertext ψ to contain elements of the form (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2),

where δ, % ∈R Zp are chosen by the sender. Since (Γ1, Γ2) = (gγ1 , gγ2), the TRACE algorithm
concludes that user i is indeed the receiver if e(T1, g

γ1γ2) = e(T2, T3). At the same time, we can
show that recognizing ciphertexts encrypted for user i without tracei is as hard as solving the D3DH
problem.

For technical reasons, we need to introduce an extra traceability component T4 = (ΛVK
0 · Λ1)

δ,
where Λ0, Λ1 ∈ G are part of common public parameters and VK is the verification key of a one-time
signature. The reason is that, in order to prove anonymity in our model, we need to bind (T1, T2, T3)
to the one-time verification key VK in a non-malleable way. Otherwise, an anonymity adversary
would be able to break the anonymity of the scheme by having access to a CLAIM/DISCLAIM oracle.

10

To prove or disprove that he is the intended recipient of a given ciphertext-label pair (ψ,L),

a user i can use the traceability components (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2) of ψ and his private key

γ1 = logg(Γ1) to compute Γ δ1 = T γ11 (although he does not know δ), which allows anyone to realize

that (g, T1, Γ1, Γ
δ
1) forms a Diffie-Hellman tuple and that e(Γ δ1 , Γ2) = e(T2, T3). This is sufficient

for proving that (ψ,L) was created for the public key pk = (X1, X2, Γ1, Γ2). In order to make sure
that only the user will be able to compute non-interactive claims, we also require him to provide
a non-interactive proof of knowledge of Γ−1 = g1/γ1 satisfying e(Γ δ1 , Γ−1) = e(T1, g). Moreover, the
claim is non-malleably bound to (ψ,L, pk) – where pk is the claimer’s public key —by generating
the non-interactive Groth-Sahai proof for a CRS (~g1, ~g2,~hv) that depends on the ciphertext which is
being claimed and the receiver’s public key (the idea of data-dependent CRS is borrowed from [35]):
this prevents malicious users from convincingly claiming other users’ ciphertexts by intercepting
honestly generated claims and presenting them as claims of their own. To eliminate an annoying
case in the proof of anonymity, we chose to derive the vector ~hv from a bit string obtained by
applying a chameleon hash function [32] (rather than a an ordinary hash function) to (ψ,L, pk).

4.2 Description

We build a non-interactive group encryption scheme for the Diffie-Hellman relationR = {(X,Y),W}
where e(g,W) = e(X,Y), for which the keys are pkR = {G,GT , g} and skR = ε.

SETUPinit(λ) : Let ` ∈ poly(λ) be a polynomial, where λ ∈ N is the security parameter. Generate
public parameters according to the following steps.

1. Choose bilinear groups (G,GT) of prime order p > 2λ with g, g1, g2
R← G. Define vectors

~g1 = (g1, 1, g), ~g2 = (1, g2, g) and ~g3 = ~g1
ξ1 � ~g2

ξ2 with ξ1, ξ2
R← Zp, which form a perfectly

sound Groth-Sahai common reference string g = (~g1, ~g2, ~g3).

2. For i = 0 to ` choose ζi,1, ζi,2
R← Zp and set ~hi = ~g1

ζi,1� ~g2ζi,2 so as to obtain vectors {~hi}`i=0.

3. Choose η1, η2
R← Zp and compute ~f = ~g1

η1 � ~g2η2 = (f3,1, f3,2, f3,3) so as to form yet another

CRS f = (~g1, ~g2, ~f), which will be used to prove statements about the ciphertexts.

4. Choose Λ0, Λ1
R← G at random.

5. Select a strongly unforgeable one time signature scheme Σ = (G,S,V) and a chameleon
hash function CMH = (CMKg,CMhash,CMswitch) with a key pair (hk, tk)← G(λ).

Public parameters consists of param = {λ,G,GT , g, ~g1, ~g2, ~g3, ~f , {~hi}`i=0, Λ0, Λ1, Σ, CMH , hk}.

SETUPGM(param) : runs the setup algorithm of the structure-preserving signature of Abe et al.
with n = 4. The private key is skGM =

(
αa, αb, γz, δz, {γi, δi}4i=1

)
while the public key consists

of

pkGM =
(
Gr, Hu, Gz, Hz, {Gi, Hi}4i=1, Ωa, Ωb

)
∈ G8 ×G2

T .

SETUPOA(param) : generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2 , gy3 , gy4), as a public key for Kiltz’s
encryption scheme [31], and the corresponding private key as skOA = (y1, y2, y3, y4).

JOIN : The prospective user Ui and the GM run the following protocol.

1. Ui chooses x1, x2, z, γ1, γ2
R← Zp and computes a public key pk = (X1, X2, Γ1, Γ2) ∈ G4 where

X1 = gx11 · g
z , X2 = gx22 · g

z , Γ1 = gγ1 , Γ2 = gγ2 .

The private key is defined to be sk = (x1, x2, z, γ1, γ2). Here, (X1, X2) form a public key
for the LY encryption scheme recalled in Appendix A.2 whereas (Γ1, Γ2) will provide user
traceability.

11

2. Ui defines Γ0 = gγ1γ2 and generates a verifiable encryption of Γ0 under pkOA. To this end, he

chooses w1, w2
R← Zp and computes Φvenc = (Φ0, Φ1, Φ2) =

(
Γ0·gw1+w2 , Y w1

1 , Y w2
2

)
. Then, Ui

generates a NIZK proof πvenc that Φvenc encrypts Γ0 such that e(Γ0, g) = e(Γ1, Γ2). Namely,
Ui uses the CRS f = (~g1, ~g2, ~f) to generate GS commitments ~CW1 ,

~CW2 to the group elements
W1 = gw1 and W2 = gw2 , respectively, and non-interactively prove that

e(Φ0, g) = e(Γ1, Γ2) · e(g,W1) · e(g,W2) (3)

e(Φ1, g) = e(Y1,W1) (4)

e(Φ2, g) = e(Y2,W2) (5)

Equations (3)–(5) are linear pairing product equations. However, since their proofs must
be NIZK proofs, they cost 21 group elements to prove altogether4. We denote by πvenc the
resulting NIZK proof. The prospective user Ui then sends the certification request consisting
of
(
pk = (X1, X2, Γ1, Γ2), Φvenc, ~CW1 ,

~CW2 , πvenc
)

to the GM.
3. If database already contains a record transcriptj for which the certified public key pkj =

(Xj,1, Xj,2, Γj,1, Γj,2) is such that (X1, X2) = (Xj,1, Xj,2) or e(Γj,1, Γj,2) = e(Γ1, Γ2), the GM
returns ⊥. Otherwise, the GM generates a certificate certpk = (Z,R, S, T, U, V,W) ∈ G7 for
pk, which consists of an AHO signature on the tuple (X1, X2, Γ1, Γ2). Then, it stores the
entire interaction transcript

transcripti =
(
pk = (X1, X2, Γ1, Γ2), (Φvenc, ~CW1 ,

~CW2 , πvenc), certpk

)
in database. We also define the DATABASE-CHECK algorithm in such a way that it re-
turns 0 (meaning that database is not well-formed) if database contains two distinct records
transcripti and transcriptj for which the corresponding public keys pki = (Xi,1, Xi,2, Γi,1, Γi,2)
and pkj = (Xj,1, Xj,2, Γj,1, Γj,2) are such that (Xi,1, Xi,2) = (Xj,1, Xj,2) or e(Γi,1, Γi,2) =
e(Γj,1, Γj,2). Otherwise, it returns 1.

ENC(pkGM, pkOA, pk, certpk,M,L) : To encrypt a witness M ∈ G such that ((A,B),M) ∈ Rdh (for
public A,B ∈ G), parse pkGM, pkOA and pk as (X1, X2, Γ1, Γ2) ∈ G4. Then, do the following.

1. Generate a one-time signature key pair (SK,VK)← G(λ).

2. Generate traceability components (T1, T2, T3, T4) ∈ G4 by choosing δ, %
R← Zp and computing

T1 = gδ , T2 = Γ
δ/%
1 , T3 = Γ %2 , T4 = (ΛVK

0 · Λ1)
δ . (6)

3. Compute a LY encryption of M under the label L. To this end, conduct the following steps.

(a) Choose θ1, θ2
R← Zp and compute

C0 = M ·Xθ1
1 ·X

θ2
2 , C1 = gθ11 , C2 = gθ22 , C3 = gθ1+θ2 .

(b) Construct a vector ~gVK = ~g3 ·(1, 1, g)VK and use gVK = (~g1, ~g2, ~gVK) as a Groth-Sahai CRS
to generate a NIZK proof that (g, g1, g2, C1, C2, C3) form a linear tuple. More precisely,
generate commitments ~Cθ1 , ~Cθ2 to θ1, θ2 ∈ Zp (namely, compute ~Cθi = ~g θi

VK · ~g1
ri · ~g2si

with ri, si
R← Zp for each i ∈ {1, 2}) and a proof πLIN that they satisfy

C1 = gθ11 , C2 = gθ22 , C3 = gθ1+θ2 . (7)

4 Namely, the prover actually generates proofs for the five relations e(Φ0,Xg) = e(XΓ1 , Γ2) · e(g,W1) · e(g,W2),
e(Φ1,Xg) = e(Y1,W1), e(Φ2,Xg) = e(Y2,W2) and Xg = g, XΓ1 = Γ1, by introducing auxiliary variables Xg,XΓ1 .
On a fake CRS, simulated proofs can be obtained using the assignment Xg = XΓ1 = W1 = W2 = 1G to prove the
first three relations. The trapdoor of the CRS then allows computing fake proofs that Xg = g, XΓ1 = Γ1.

12

The whole proof for (7) consists of ~Cθ1 , ~Cθ2 and πLIN is obtained as

πLIN = (π1, π2, π3, π4, π5, π6) =
(
gr11 , g

s1
1 , g

r2
2 , g

s2
2 , g

r1+r2 , gs1+s2
)
.

(c) Define the partial LY ciphertext ψLY = (C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN).

4. For i = 1, 2, choose zi,1, zi,2
R← Zp and encrypt Γi under pkOA using Kiltz’s cryptosystem

using the same one-time verification key VK as in step 1. Let {ψKi}i=1,2 be the ciphertexts.
5. Set the TGE ciphertext ψ as ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ where σ is a one-time

signature obtained as σ = S(SK, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)).
Return (ψ,L) and coinsψ consist of δ, %, {(zi,1, zi,2)}2i=1 and (θ1, θ2). If the one-time signature
of [22] is used, the pair (VK, σ) takes 5 group elements, so that ψ comprises 35 elements of G.

P(pkGM, pkOA, pk, certpk, (X,Y),M, ψ, L, coinsψ) : Parse pkGM, pkOA, pk and ψ as above. Using the

vectors f = (~g1, ~g2, ~f) as a Groth-Sahai CRS, generate a non-interactive proof for ψ as follows.

1. Parse the certificate certpk as (Z,R, S, T, U, V,W) ∈ G7 and re-randomize it (as explained
in Appendix A.1) to obtain (Z ′, R′, S′, T ′, U ′, V ′) ← ReRand(pkGM, (Z,R, S, T, U, V,W)).
Generate GS commitments ~CZ′ , ~CR′ , ~CU ′ to Z ′, R′ and U ′. The overall commitment to
certpk is comcertpk = (~CZ′ , ~CR′ , ~CU ′ , S

′, T ′, V ′,W ′) ∈ G13.
2. Generate GS commitments to the components of the public key pk = (X1, X2, Γ1, Γ2) and

obtain the set compk = {~CXi , ~CΓi}i=1,2, which consists of 12 group elements.
3. Generate a proof πcertpk that comcertpk is a commitment to a valid certificate for the public

key contained in compk. The proof πcertpk is a non-interactive proof that committed group
elements (Z ′, R′, U ′) satisfy the relations

Ωa · e(S′, T ′)−1 ·
2∏
i=1

e(Gi, Xi)
−1 ·

2∏
i=1

e(Gi+2, Γi)
−1 = e(Gz, Z

′) · e(Gr, R′) ,

Ωb · e(V ′,W ′)−1 ·
2∏
i=1

e(Hi, Xi)
−1 ·

2∏
i=1

e(Hi+2, Γi)
−1 = e(Hz, Z

′) · e(Hu, U
′) ,

which cost 3 elements each. The whole proof πcertpk thus takes 6 group elements.

4. Generate a NIZK proof πT that (T1, T2, T3) satisfies (T1, T2, T3) = (gδ, Γ
δ/%
1 , Γ %2) for some

δ, % ∈ Zp. To this end, generate a commitment ~CΥ to the group element Υ = gδ/% and
generate a NIZK proof that

e(Υ, T3) = e(T1, Γ2) , (8)

e(T2, g) = e(Γ1, Υ) . (9)

Since πT must include ~CΥ and must be a NIZK proof, it requires 33 group elements. Specif-
ically, Equation (8) requires to prove e(Υ, T3) = e(XT1 , Γ2) and e(XT1 , g) = e(T1, g) whereas
(9) requires to prove e(T2,Xg) = e(Γ1, Υ) and e(Xg, g) = e(g, g) using an auxiliary variables
Xg = g and XT1 = T1.

5. For i = 1, 2, generate NIZK proofs πeq-key,i that ~CΓi (which are part of compk) and ψKi are
encryptions of the same Γi. If ψKi = (Vi,0, Vi,1, Vi,2, Vi,3, Vi,4) comprises(

Vi,0, Vi,1, Vi,2) =
(
Γi · gzi,1+zi,2 , Y

zi,1
1 , Y

zi,2
2

)
and ~CΓi is parsed as (cΓi1 , cΓi2 , cΓi3) =

(
gρi11 · fρi33,1 , g

ρi2
2 · fρi33,2 , Γi · gρi1+ρi2 · f

ρi3
3,3

)
, where

zi,1, zi,2 ∈ coinsψ, ρi1, ρi2, ρi3 ∈ Zp and ~f = (f3,1, f3,2, f3,3), this amounts to prove knowledge

13

of values zi,1, zi,2, ρi1, ρi2, ρi3 ∈ Zp such that(Vi,1
cΓi1

,
Vi,2
cΓi2

,
Vi,0
cΓi3

)
=
(
Y
zi,1
1 · g−ρi11 · f−ρi33,1 , Y

zi,2
2 · g−ρi22 · f−ρi33,2 , gzi,1+zi,2−ρi1−ρi2 · f−ρi33,3

)
.

Committing to exponents zi,1, zi,2, ρi1, ρi2, ρi3 introduces 30 group elements whereas the
above relations only require two elements each. Together with their corresponding commit-
ments to {zi,1, zi,2, ρi1, ρi2, ρi3}i=1,2, the proof element πeq-key,i incurs 42 elements.

6. Generate a NIZK proof πR that the ciphertext ψLY encrypts a group element M ∈ G such
that ((A,B),M) ∈ R. To this end, generate a commitment

comM = (cM,1, cM,2, cM,3) =
(
gρ11 · f

ρ3
3,1, g

ρ2
2 · f

ρ3
3,2,M · g

ρ1+ρ2 · fρ33,3
)

and prove that the underlying M is the same as the one for which C0 = M · Xθ1
1 · X

θ2
2 in

ψLY. In other words, prove knowledge of exponents θ1, θ2, ρ1, ρ2, ρ3 such that

(
C1, C2,

C1

cM,1
,
C2

cM,2
,
C0

cM,3

)
=
(
gθ1, g

θ
2, g

θ1−ρ1
1 · f−ρ33,1 , gθ2−ρ22 · f−ρ33,2 , g−ρ1−ρ2 · f−ρ33,3 ·X

θ1
1 ·X

θ2
2

)
. (10)

Committing to θ1, θ2, ρ1, ρ2, ρ3 takes 15 elements. Proving the first four relations of (10)
requires 8 elements whereas the last one is quadratic and its proof is 9 elements. Proving
the linear pairing-product relation e(g,M) = e(A,B) in NIZK5 demands 9 elements. Since
πR includes comM , it entails a total of 44 elements.

The entire proof πψ = comcertpk‖compk‖πcertpk‖πT ‖πeq-key,1‖πeq-key,2‖πR takes 150 elements.

V(param, ψ, L, πψ, pkGM, pkOA) : Parse pkGM, pkOA, pk, ψ and πψ as above. Return 1 if and only if
the conditions below are all satisfied.

1. V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 1.

2. The equality e(T1, Λ
VK
0 · Λ1) = e(g, T4) is satisfied and ψLY is a valid LY ciphertext.

3. All proofs verify and if {ψKi}2i=1 are valid Kiltz encryptions w.r.t. VK.

DEC(sk, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. Return ⊥ in the event that either:
(i) V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 0; (ii) e(T1, Λ

VK
0 · Λ1) 6= e(g, T4) or ψLY and

{ψKi}i=1,2 are not all valid ciphertexts. Otherwise, use sk to decrypt (ψLY, L).

REVEAL(transcripti, skOA) : Parse transcripti as(
(Xi,1, Xi,2, Γi,1, Γi,2), (Φvenc,i, ~CWi,1 ,

~CWi,2 , πvenc,i), certpk,i
)
.

Parse Φvenc,i as a BBS ciphertext (Φi,0, Φi,1, Φi,2) ∈ G3 and verify that (~CWi,1 ,
~CWi,2 , πvenc,i) form

a valid proof for the statements (3)-(5). If not, return ⊥. Otherwise, use skOA = (y1, y2, y3, y4)

to compute Γi,0 = Φi,0 · Φ−1/y1i,1 · Φ−1/y2i,2 . Return the resulting plaintext tracei = Γi,0 ∈ G which

can serve as a tracing trapdoor for user i as it is necessarily of the form Γi,0 = Γ
logg(Γi,1)

i,2 .

TRACE(pkGM, pkOA, ψ, tracei) : Parse the ciphertext ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ and
the tracing trapdoor tracei as a group element Γi,0 ∈ G. If the equality e(T1, Γi,0) = e(T2, T3)
holds, it returns 1 (meaning that ψ is indeed intended for user i). Otherwise, it outputs 0.

5 It requires to introduce an auxiliary variable A and prove that e(g,M) = e(A, B) and A = A, for variables M,A
and constants g,A,B. The two proofs take 3 elements each and 3 elements are needed to commit to A.

14

OPEN(skOA, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. Return ⊥ if {ψKi}2i=1 are not
both valid ciphertexts w.r.t. VK or if V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 0. Other-
wise, decrypt {ψKi}i=1,2 to obtain group elements Γ1, Γ2 ∈ G and look up database to find a
record transcripti containing a key pki = (Xi,1, Xi,2, Γi,1, Γi,2) such that (Γi,1, Γi,2) = (Γ1, Γ2)
(note that, unless database is ill-formed, such a record is unique if it exists). If such a record is
found, output the matching i. Otherwise, output ⊥.

CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ and the
private key as sk = (x1, x2, z, γ1, γ2). To generate a claim/disclaimer τ for the ciphertext ψ, first
verify that e(T1, Λ

VK
0 ·Λ1) = e(g, T4) and that σ is a valid one-time signature. If these conditions,

do not hold, return ⊥. Otherwise, compute Tδ,1 = T γ11 = Γ δ1 , where δ = logg(T1). Then, compute

a collision-resistant hash v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`, where shash
R← Rhash.

Then, parse v as v[1] . . . v[`] ∈ {0, 1}` and assemble the vector ~hv = ~h0 �
⊙`

i=1
~h
v[i]
i . Using

(~g1, ~g2,~hv) as a Groth-Sahai CRS, generate a commitment ~CΓ−1 to Γ−1 = g1/γ1 and a NIZK

proof that Γ−1 satisfies e(Tδ,1, Γ−1) = e(T1, g). To this end, generate a commitment ~CXτ to the
auxiliary variable Xτ = g and non-interactive proofs πτ,1, πτ,2 for the equations

e(Tδ,1, Γ−1) = e(T1,Xτ) , e(g,Xτ) = e(g, g) . (11)

The claim/disclaimer τ consists of

τ =
(
Tδ,1, ~CΓ−1 ,

~CXτ , πτ,1, πτ,2, shash
)
∈ G14 . (12)

CLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ and the
public key pk as (X1, X2, Γ1, Γ2). Parse τ as per (12). Return 1 if and only if the relations

e(Tδ,1, Γ2) = e(T2, T3) , e(T1, Γ1) = e(g, Tδ,1) (13)

hold and πτ,1, πτ,2 are valid proofs for the relations (11) with respect to the CRS (~g1, ~g2,~hv),

where ~hv = ~h0 �
⊙`

i=1
~h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`.

DISCLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ and
the public key pk as (X1, X2, Γ1, Γ2). Parse τ as per (12). Return 1 if and only if it holds
that

e(Tδ,1, Γ2) 6= e(T2, T3) , e(T1, Γ1) = e(g, Tδ,1) (14)

and πτ,1, πτ,2 are valid proofs for the relations (11) and the Groth-Sahai CRS (~g1, ~g2,~hv), where
~hv = ~h0 �

⊙`
i=1

~h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}`.

4.3 Analysis

From an efficiency point of view, the length of ciphertexts is about 2.18 kB in an implementation
using symmetric pairings with a 512-bit representation for each group element (at the 128-bit
security level), which is more compact than in the Paillier-based system of Kiayias et al. [30]
where ciphertexts already take 2.5 kB using 1024-bit moduli (and thus at the 80-bit security level).
Moreover, our proofs only require 9.38 kB (against roughly 32 kB for the same security in [15]),
which is significantly cheaper than in the original group encryption scheme [30], where interactive
proofs reach a communication cost of 70 kB to achieve a 2−50 knowledge error.

The correctness of the scheme stems from that of Groth-Sahai proofs. From a security point of
view, we prove the security properties under the q-SFP, D3DH and DLIN assumptions and also
require the one-time signatures to be strongly unforgeable [4]. All proofs are given in Appendix B.

15

References

1. M. Abe, K. Haralambiev, M. Ohkubo. Signing on Elements in Bilinear Groups for Modular Protocol Design.
Cryptology ePrint Archive: Report 2010/133, 2010.

2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo. Structure-Preserving Signatures and Commit-
ments to Group Elements. In Crypto’10, LNCS 6223, pp. 209–236, 2010.

3. M. Abe, J. Groth, K. Haralambiev, M. Ohkubo. Optimal Structure-Preserving Signatures in Asymmetric Bilinear
Groups. In Crypto’11, LNCS 6841, pp. 649–666, 2011.

4. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Eurocrypt’02, LNCS
2332, pages 83–107, 2002.

5. F. Bao, R. Deng, H. Zhu. Variations of Diffie-Hellman Problem. In ICICS’03, LNCS 2836, pp. 301–312, Springer,
2003.

6. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In Asiacrypt’01,
LNCS 2248, pages 566–582, 2001.

7. M. Bellare, T. Ristenpart. Simulation without the Artificial Abort: Simplified Proof and Improved Concrete
Security for Waters’ IBE Scheme. In Eurocrypt’09, LNCS 5479, pp. 407–424, 2009.

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM
CCS’93, pages 62–73, 1993.

9. V. Benjumea, S. G. Choi, J. Lopez, M. Yung. Fair traceable multi-group signatures. In Financial Cryptography
2008, volume 5143 of Lecture Notes in Computer Science, pages 231–246. Springer, 2008.

10. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt’04, LNCS 3027, pages 56–73,
2004.

11. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Crypto’04, LNCS 3152, pages 41–55, 2004.
12. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM J. of Computing, 32(3):586–

615, 2003. Extended abstract in Crypto’01, LNCS 2139, pages 213–229, 2001.
13. J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In SCN’02, LNCS 2576, pages

268–289, 2003.
14. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Journal of the ACM,

51(4):557–594, 2004.
15. J. Cathalo, B. Libert, M. Yung. Group Encryption: Non-Interactive Realization in the Standard Model. In

Asiacrypt’09, LNCS 5912, pp. 179–196, 2009.
16. D. Chaum and E. van Heyst. Group signatures. In Eurocrypt’91, LNCS 547, pages 257–265, 1991.
17. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext

attack. In Crypto’98, LNCS 1462, pages 13–25, 1998.
18. L. El Aimani, M. Joye. Toward Practical Group Encryption. In ACNS 2013, LNCS series, to appear, 2013.

Available as Cryptology ePrint Archive: Report 2012/155, 2012.
19. A. Escala, G. Herold, E. Kiltz, C. Ràfols, J. Villar. An Algebraic Framework for Diffie-Hellman Assumptions. In

Crypto 2013, LNCS 8043, pp. 129–147, 2013.
20. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In

Crypto’86, LNCS 263, pages 186–194, 1986.
21. S. Goldwasser and Y. Tauman-Kalai. On the (In)security of the Fiat-Shamir Paradigm In FOCS’03, pages

102–115, 2003.
22. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Asi-

acrypt’06, LNCS 4284, pages 444–459, 2006.
23. J. Groth. Fully anonymous group signatures without random oracles. In Asiacrypt’07, LNCS 4833, pages 164–180,

2007.
24. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Eurocrypt’08, LNCS 4965,

pages 415–432, 2008.
25. S. Halevi. A Sufficient Condition for Key-Privacy. Cryptology ePrint Archive: Report 2005/005, 2005.
26. M. Izabachène, D. Pointcheval, D. Vergnaud. Mediated Traceable Anonymous Encryption. In Latincrypt’08,

LNCS 6212, pages 40–60, 2010.
27. C. Jutla, A. Roy. Relatively-Sound NIZKs and Password-Based Key-Exchange. In PKC’12, LNCS series, pp.

485-503, 2012.
28. C. Jutla, A. Roy. Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces. In Asiacrypt’13, LNCS series,

2013. Cryptology ePrint Archive: Report 2013/109, 2013.
29. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Eurocrypt 2004, volume 3027 of Lecture Notes

in Computer Science, pages 571–589. Springer, 2004.
30. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In Asiacrypt’07, LNCS 4833, pages 181–199, 2007.
31. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC’06, LNCS 3876, pages 581–600, 2006.
32. H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS’00, 2000.

16

33. B. Libert and M. Yung. Efficient Traceable Signatures in the Standard Model. In Pairing-Based Cryptography
2009 (Pairing’09), volume 5671 of Lecture Notes in Computer Science, pages 187–205. Springer, 2009.

34. B. Libert, M. Yung. Non-Interactive CCA2-Secure Threshold Cryptosystems with Adaptive Security: New Frame-
work and Constructions. In TCC 2012, LNCS 7194, pp. 75–93, Springer, 2012.

35. T. Malkin, I. Teranishi, Y. Vahlis, M. Yung. Signatures resilient to continual leakage on memory and
computation. In TCC’11, LNCS 6597, pp. 89–106, 2011.

36. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt’99, LNCS 1592,
pages 223–238, 1999.

37. B. Qin, Q. Wu, W. Susilo, Y. Mu, Y. Wang. Publicly Verifiable Privacy-Preserving Group Decryption. In
Inscrypt’08, LNCS 5487, pages 72–83, 2008.

38. M. Trolin, D. Wiström. Hierarchical Group Signatures. In ICALP’05, LNCS 3580, pp. 446–458, 2005.
39. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In Eurocrypt’05, LNCS 3494, 2005.

A Building Blocks

A.1 Structure-Preserving Signatures

In cryptographic protocols involving Groth-Sahai proofs, it is often useful to sign elements of an
abelian group G over which a bilinear map e : G×G→ GT is efficiently computable. Importantly,
it should be possible to sign group elements without knowing their discrete logarithms and without
hashing them to the message space of an ordinary signature scheme: indeed, one should preserve
the feasibility of efficiently proving statements about a committed message-signature pair.

The first signature scheme with this property was suggested by Groth [22]. A much more efficient
solution was given by Abe, Haralambiev and Ohkubo [1,2] (AHO) who introduced the structure-
preserving terminology. The Abe et al. construction is recalled hereunder. The description assumes
public parameters pp =

(
(G,GT), g

)
consisting of bilinear groups (G,GT) of prime order p > 2λ,

where λ ∈ N and a generator g ∈ G.

Keygen(pp, n) : Given an upper bound n ∈ N on the number of group elements per signed message,

choose generators Gr, Hu
R← G. Pick γz, δz

R← Zp and γi, δi
R← Zp, for i = 1 to n. Then,

compute Gz = Gγzr , Hz = Hδz
u and Gi = Gγir , Hi = Hδi

u for each i ∈ {1, . . . , n}. Finally, choose

αa, αb
R← Zp and define Ωa = e(Gr, g

αa) and Ωb = e(Hu, g
αb). The public key is defined to be

pk =
(
Gr, Hu, Gz, Hz, {Gi, Hi}ni=1, Ωa, Ωb

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)) : To sign a vector (M1, . . . ,Mn) ∈ Gn using sk, choose ζ, ρa, ρb, ωa, ωb
R← Zp

and compute Z = gζ as well as

R = gρa−γzζ ·
n∏
i=1

M−γii , S = Gωar , T = g(αa−ρa)/ωa ,

U = gρb−δzζ ·
n∏
i=1

M−δii , V = Hωb
u , W = g(αb−ρb)/ωb .

The signature consists of σ = (Z,R, S, T, U, V,W) ∈ G7.
Verify(pk, σ, (M1, . . . ,Mn)) : Given σ = (Z,R, S, T, U, V,W), return 1 iff these equalities hold:

Ωa = e(Gz, Z) · e(Gr, R) · e(S, T) ·
n∏
i=1

e(Gi,Mi) ,

Ωb = e(Hz, Z) · e(Hu, U) · e(V,W) ·
n∏
i=1

e(Hi,Mi) .

17

The scheme was proved [1,2] existentially unforgeable under chosen-message attacks under the
q-SFP assumption, where q is the number of signing queries.

As proved by Abe et al. [1,2], signature components {θi}7i=2 can be publicly randomized to
obtain a different signature (Z ′, R′, S′, T ′, U ′, V ′,W ′) ← ReRand(pk, σ) on (M1, . . . ,Mn). After
randomization, we have Z ′ = Z while (R′, S′, T ′, U ′, V ′,W ′) are uniformly distributed among the
values such that e(Gr, R

′)·e(S′, T ′) = e(Gr, R)·e(S, T) and e(Hu, U
′)·e(V ′,W ′) = e(Hu, U)·e(V,W).

This re-randomization is performed by choosing %2, %5, µ, ν
R← Zp and computing

R′ = R · T %2 , S′ = (S ·G−%2r)1/µ , T ′ = Tµ ,

U ′ = U ·W %5 , V ′ = (V ·H−%5u)1/ν , W ′ = W ν .

As a result, the group elements (S, T, V,W) are statistically independent of the message (M1, . . . ,Mn)
and the rest of the signature. This implies that, in anonymity-related protocols, re-randomized group
elements (S′, T ′, V ′,W ′) can be safely given out as long as (M1, . . . ,Mn) and (Z ′, R′, U ′) are both
given in committed form.

A.2 Public-Key Encryption Schemes Based on the Linear Problem

We need cryptosystems based on the DLIN assumption. The first one is a variant of the Cramer-
Shoup cryptosystem [17] suggested in [34]. We also use Kiltz’s tag-based encryption (TBE) scheme [31]
since it is the most efficient DLIN-based system with ciphertexts of publicly verifiable validity.

A publicly verifiable variant of Cramer-Shoup. Libert and Yung [34] proposed a variant
of the Cramer-Shoup cryptosystem where ciphertexts contain a publicly verifiable proof of their
validity. We will use it because it can combine the properties of anonymity and public ciphertext
verifiability. Namely, the validity of ciphertexts is publicly verifiable and, at the same time, cipher-
texts do not betray the public key under which they were encrypted. Although these two properties
appear antagonistic, we show that they can co-exist here if certain public components are shared
by all users.

Keygen(λ) :

1. Choose a group G of prime order p > 2λ, g, g1, g2
R← G, x1, x2, z

R← Zp and sets X1 = gx11 g
z,

X2 = gx22 g
z. Define the vectors ~g1 = (g1, 1, g) and ~g2 = (1, g2, g).

2. Pick ξ1, ξ2
R← Zp and define ~g3 = ~g1

ξ1 · ~g2ξ2 .
3. Choose a strongly unforgeable one-time signature Σ = (G,S,V).
4. Define private key as sk = (x1, x2, z) ∈ Z3

p and the public key is pk = (~g1, ~g2, ~g3, X1, X2, Σ).

Encrypt(pk,M) : To encrypt M ∈ G, generate a one-time signature key pair (SK,VK)← G(λ) and
do the following.

1. Choose θ1, θ2
R← Zp and compute (C0, C1, C2, C3) = (M ·Xθ1

1 ·X
θ2
2 , g

θ1
1 , g

θ2
2 , g

θ1+θ2).
2. Construct a vector ~gVK = ~g3 · (1, 1, g)VK and use gVK = (~g1, ~g2, ~gVK) as a Groth-Sahai

CRS to generate a NIZK proof that (g, g1, g2, C1, C2, C3) form a linear tuple. More precisely,
generate commitments ~Cθ1 , ~Cθ2 to encryption exponents θ1, θ2 ∈ Zp (in other words, compute
~Cθi = ~g θi

VK · ~g1
ri · ~g2si with ri, si

R← Zp for each i ∈ {1, 2}) and a proof πLIN that they satisfy

C1 = gθ11 , C2 = gθ22 , C3 = gθ1+θ2 . (15)

The whole proof for (7) consists of ~Cθ1 , ~Cθ2 and πLIN is obtained as

πLIN = (π1, π2, π3, π4, π5, π6) = (gr11 , g
s1
1 , g

r2
2 , g

s2
2 , g

r1+r2 , gs1+s2) .

18

3. Output the ciphertext C = (VK, C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN, σ) where σ is computed as

σ = S(SK, (C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN)).

Decrypt(sk, C) : Parse C as (VK, C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN, σ). Return 0 if σ is an invalid one-

time signature on (C0, C1, C2, C3, ~Cθ1 ,
~Cθ2 , πLIN) w.r.t. VK or if πLIN is not a valid proof for

Eqs (15) and the CRS gVK = (~g1, ~g2, ~g3 · (1, 1, g)VK). This entails testing the equalities

E(g1, ~Cθ1) = E(C1, ~gVK) · E(π1, ~g1) · E(π2, ~g2) ,

E(g2, ~Cθ2) = E(C2, ~gVK) · E(π3, ~g1) · E(π4, ~g2) ,

E(g, ~Cθ1 · ~Cθ2) = E(C3, ~gVK) · E(π5, ~g1) · E(π6, ~g2) .

Otherwise, parse sk as (x1, x2, z) ∈ Z3
p. Compute and return M = C0 · C−x11 · C−x22 · C−z3 .

In our construction of traceable group encryption, we use the observation that the public key
components (~g1, ~g2, ~g3) can be shared by many users: each individual public key thus only consists
of (X1, X2). In this case, the scheme can combine the features of public verifiability and receiver
anonymity.

Kiltz’s tag-based encryption scheme. In [31], Kiltz described a CCA2-secure public-key
encryption scheme based on the DLIN assumption.

Keygen(λ) : Choose a group G of prime order p > 2λ with a generator g
R← G. Pick random

exponents x1, x2, x3, x4
R← Zp. The private key is sk = (y1, y2, y3, y4) ∈ Z4

p and the public key is
pk = (g, Y1, Y2, Y3, Y4) = (g, gy1 , gy2 , gy3 , gy4).

Encrypt(pk,M) : To encrypt M ∈ G, generate a one-time signature key pair (SK,VK)← G(λ), pick

z1, z2
R← Zp and compute

C = (VK, V0, V1, V2, V3, V4, σ) =
(
VK,M · gz1+z2 , Y z1

1 , Y z2
2 , (gVK · Y3)z1 , (gVK · Y4)z2 , σ

)
,

where σ is a signature of (V0, V1, V2, V3, V4).
Decrypt(sk, C) : The receiver first checks that σ is a valid one-time signature on (V0, V1, V2, V3, V4)

and returns ⊥ if it is not. Otherwise, it checks that V3 = V
(VK+y3)/y1
1 and V4 = V

(VK+y4)/y1
2 . If

so, it outputs the plaintext M = V0/(V
1/y1
1 V

1/y2
2).

B Proofs of Security

B.1 Message Privacy

Theorem 1. The scheme satisfies message security assuming that Σ is a strongly unforgeable one-
time signature and that the DLIN assumption holds in G.

Proof. We use a sequence of games. The first one mirrors the experiment of definition 4 where the
challenger’s bit b is 1 and the adversary obtains a encryption of the witness M? and real proofs
when invoking the PROVE(.) oracle. In the last game, the adversary A obtains an encryption of
a random plaintext and proofs are simulated using the trapdoor associated with the fake CRS. In
Gamei, Wi denotes the event that A outputs b′ = 1.
Game1: the challenger B provides A with common public parameters param that include a real CRS
g containing (~g1, ~g2, ~g3 = ~g1

ξ1 � ~g2
ξ2) and ~f = ~g1

η1 � ~g2
η2 , with ξ1, ξ2, η1, η2

R← Zp. The adversary
generates public keys pkOA and pkGM on its own. The challenger and A run an execution of JOIN
where A certifies the public key pk = (X1, X2, Γ1, Γ2) of a honest receiver chosen by B. Then, A

19

makes a number of decryption queries that B handles using the private key sk = (x1, x2, z, γ1, γ2)
associated with pk. At some point, A outputs ((A,B),M?, L, pkR) such that ((A,B),M?) ∈ R and
obtains in return a TGE encryption ψ? = VK?||(T ?1 , T ?2 , T ?3 , T ?4)||ψ?LY||ψ?K1

||ψ?K2
||σ? of M under the

public key pk for the label L. Then, A obtains polynomially many proofs π?ψ? for ψ? and makes new
decryption queries under the obvious restrictions. Finally, A outputs b′ and we call W1 the event
that b′ = 1. W.l.o.g. we assume that VK? and its corresponding SK? are chosen by the challenger
at the beginning of the game. In Game1 and subsequent games, we denote by θ?1 = logg1(C?1) and
θ?2 = logg2(C?2) the random encryption exponents used in the computation of ψ?LY.

Game2: we modify the generation of public parameters param and choose the vector ~g3 ∈ G3 as
~g3 = ~g1

ξ1 � ~g2
ξ2 � (1, 1, g)−VK

?
(instead of ~g3 = ~g1

ξ1 � ~g2
ξ2 as previously). In other words, ~g3

becomes a BBS encryption of g−VK
?

instead of an encryption of 1G. Consequently, VK? is no longer
independent of A’s view between the setup phase and the challenge phase. However, as far as the
DLIN assumption holds in G, this modification will have no noticeable impact on A’s behavior and
we have |Pr[W2]− Pr[W1]| ≤ AdvDLIN(λ).

Game3: we modify again the generation of param. This time, the vector ~f ∈ G3 is chosen as
~f = ~g1

η1 � ~g2
η2 � (1, 1, g)−1 (instead of ~f = ~g1

η1 � ~g2
η2). Under the DLIN assumption, this change

can be made without A noticing and we can write |Pr[W3]− Pr[W2]| ≤ AdvDLIN(λ).

Game4: we now modify the DEC(.) oracle. Namely, the challenger B rejects all ciphertexts of the
form ψ = VK||(T1, T2, T3, T4)||ψLY||ψK1 ||ψK2 ||σ such that VK = VK?. Let F4 be the event that this
modification leads B to reject a ciphertext that would not have been rejected in Game3. A standard
argument shows that |Pr[W4]− Pr[W3]| ≤ Pr[F3] ≤ Advsuf-ots(λ).

Game5: we change the generation of proofs π?ψ? and use the trapdoor (η1, η2) of the CRS (~g1, ~g2, ~f)
instead of witnesses M? and coinsψ? = {δ?, %?, {z?i,1, z?i,2}i=1,2, θ

?
1, θ

?
2}. More precisely, {π?eq-key,i}i=1,2

(which demonstrate that {comΓi}i=1,2 and {ψKi}i=1,2 hide the same elements {Γi}i=1,2), as well
as π?R (i.e., the proof that ψ?LY and comM conceal the same M?) are simulated without using
encryption exponents {z?i,1, z?i,2}i=1,2 and θ?1, θ

?
2 and commitments to the latter values are replaced

by commitments to 0. The same goes for the proof πT that (T1, T2, T3) are well-formed at step 4
of the proving algorithm6. Also, the part of π?R that proves relation e(g,M?) = e(A,B) (and thus
((A,B),M?) ∈ R) is simulated in NIZK7 by setting comM as a commitment to 1G. The trapdoor
η1, η2 allows generating simulated proofs that are perfectly indistinguishable from real proofs, so
that Pr[W5] = Pr[W4].

Game6: In the calculation of ψ?, we modify the generation of ψ?LY = (C?0 , C
?
1 , C

?
2 , C

?
3 ,
~C?θ1 ,

~C?θ2 , π
?
LIN).

This time, instead of generating π?LIN using the witnesses (θ?1, θ
?
2), we compute π?LIN as a simulated

NIZK proof that (g, g1, g2, C
?
1 , C

?
2 , C

?
3) is a linear tuple. Recall that π?LIN has to be generated for

the Groth-Sahai CRS (~g1, ~g2, ~gVK?), where ~gVK? = ~g1
ξ1 � ~g2

ξ2 . This means that (ξ1, ξ2) can serve
as a simulation trapdoor for multi-exponentiation equations in the same way as in [34]. Here, π?LIN
is a simulated proof for a true statement and simulated proofs have the same distribution as real
proofs. This implies Pr[W6] = Pr[W5].

Game7: We bring a new modification to the generation of ψ?LY = (C?0 , C
?
1 , C

?
2 , C

?
3 ,
~C?θ1 ,

~C?θ2 , π
?
LIN).

Namely, instead of computing C?0 using the encryption exponents (θ?1, θ
?
2) as in Game5, the challenger

6 Here, the proof πT is simulated by using the assignment XT1 = Xg = Υ = 1G to prove the equalities e(Υ, T3) =
e(XT1 , Γ2) and e(T2,Xg) = e(Γ1, Υ). The trapdoor (η1, η2) allows faking proofs that e(XT1 , g) = e(T1, g) and
e(Xg, g) = e(g, g).

7 In addition to the variable M?, the latter proof introduces an auxiliary variable A and provides evidence that
e(g,M?) = e(A, B) and A = A, for constants g,A,B. The NIZK simulator can use witnesses A = M? = 1G to
prove the relation e(g,M?) = e(A, B) and simulate a proof that e(g,A) = e(g,A) thanks to the trapdoor of the
fake CRS.

20

B computes C?0 = M? ·C?1x1 ·C?2x2 ·C?3 z. Note that this change is only conceptual since C?0 has the

same value as if it were computed as C?0 = M? ·Xθ?1
1 ·X

θ?2
2 . It comes that Pr[W7] = Pr[W6].

Game8: We bring yet another change in the computation of ψ?LY = (C?0 , C
?
1 , C

?
2 , C

?
3 ,
~C?θ1 ,

~C?θ2 , π
?
LIN).

Here, C?3 is replaced by a random group element instead of being computed as C?3 = gθ
?
1+θ

?
2 . Under

the DLIN assumption, this cannot be noticed by A and we have |Pr[W8]−Pr[W7]| ≤ AdvDLIN(λ).

Game9: We bring one more conceptual change to the generation of ψ?LY in the challenge ciphertext.

Namely, we now compute C?0 = Mrand ·C?1x1 ·C?2x2 ·C?3 z, where Mrand
R← G is chosen independently

of the actual plaintext M?. The same arguments as in [17,34] show that this change does not affect
A’s view whatsoever since the distribution of C?0 remains unchanged. We have Pr[W9] = Pr[W8].

Game10: We change again the calculation of ψ?LY and now restore (C?1 , C
?
2 , C

?
3) to its original form(

g
θ?1
1 , g

θ?2
2 , g

θ?1+θ
?
2
)

instead of choosing C?3 at random. The computation of C?0 = Mrand·C?1x1 ·C?2x2 ·C?3 z

remains the same as in Game9. We clearly have |Pr[W10]− Pr[W9]| ≤ AdvDLIN(λ).

Game11: Here, we bring one more conceptual change in the way to compute ψ?LY in the challenge

ciphertext. That is, we set C?0 = Mrand ·X
θ?1
1 ·X

θ?2
2 instead of computing C?0 using the private key

sk = (x1, x2, z, γ1, γ2). Since C?0 has the same distribution either way, we have Pr[W11] = Pr[W10].

Game12: As a final change in the generation of ψ?LY, we compute π?LIN as a real proof (using the
witnesses θ?1, θ

?
2) instead of a simulated proof. Since (g, g1, g2, C

?
1 , C

?
2 , C

?
3) is a linear tuple in both

games, the adversary’s view remains the same as in Game11, so that Pr[W12] = Pr[W11].

Game13: We finally restore the original distribution of the vector ~g3 and now generate public pa-
rameters param by setting ~g3 = ~g1

ξ1� ~g2ξ2 as in the real system. The usual argument allows writing
|Pr[W13]− Pr[W12]| ≤ AdvDLIN(λ).

Game14: we change again the DEC(.) oracle and do not apply the rejection rule of Game4 anymore.
If Σ is strongly unforgeable, we must have |Pr[W14]− Pr[W13]| ∈ Advsuf-ots(λ).

We see that, from Game5 onwards, the oracle PROVE(.) does not use the witnesses M?, coinsψ?

at any time. Game14 is thus the experiment of definition 4 where the challenger’s bit b is 0. When
combining the above, we obtain |Pr[W14]− Pr[W1]| ∈ negl(λ), which establishes the result. ut

Soundness directly follows from the security of the certification system. From a soundness
adversary, the simulator interacts with a challenger for the certification security game and generates
the CRS g for the perfect soundness setting (which precludes the generation of valid proofs for ill-
formed ciphertexts). Then, soundness can only be broken by attacking the certification scheme.

B.2 Anonymity

Theorem 2. The TGE scheme satisfies anonymity assuming that Σ is strongly unforgeable and
that the DLIN and D3DH assumptions both hold in G.

Proof. We consider a sequence of games where the first game is the actual anonymity experiment
of definition 5 while the final game is a game where even a computationally unbounded adversary
has absolutely no advantage. In Gamei, we call Wi the event that the challenger B returns 1.

Game1: the challenger B generates public parameters param which include common reference strings
g = (~g1, ~g2, ~g3) and f = (~g1, ~g2, ~f) where ~g3 = ~g1

ξ1� ~g2ξ2 and ~f = ~g1
η1� ~g2η2 , with ξ1, ξ2, η1, η2

R← Zp.
The public key pkOA = (Y1, Y2, Y3, Y4) and param are given to A who generates pkGM on its own.
By invoking the USER oracle, A is allowed to repeatedly introduce honest users in the system
and certify their public keys pki = (Xi,1, Xi,2, Γi,1, Γi,2). For each honest user i (for which an

21

entry of the form (i, pki, ski, certpki) exists in keys), A is granted access to a decryption oracle
DEC(i, .). The CORR(.) oracle also allows A to corrupt honest users and thereby obtain their
private ski. In addition, A is allowed to obtain claims/disclaimers on behalf of honest users using
the CLAIM/DISCLAIM oracle and expose their tracing trapdoor by invoking the REVEAL(skOA, .)
oracle. Finally, A makes a number of opening queries for ciphertexts of its choice, for which B
identifies the receivers of using skOA. At some point, A outputs a pair of distinct identifiers (i0, i1)
along with a tuple ((A,B),M∗, L, pkR) such that ((A,B),M∗) ∈ R and obtains, as a challenge,
a group encryption ψ? = VK?||(T ?1 , T ?2 , T ?3 , T ?4)||ψ?LY||ψ?K1

||ψ?K2
||σ? of M? under pkb, for some bit

b ∈ {0, 1} of B’s choice. We assume w.l.o.g. that the one-time signature key pair (SK?,VK?) is
generated at the very beginning of the game. After the challenge phase, A obtains proofs π?ψ?
for ψ? and makes new queries under the natural restrictions. It finally outputs b′ and we let the
challenger B output 1 in the event W1 that b′ = b.

Game2: is as Game1 but B aborts and outputs a random bit in the event F2 that A queries the
opening of a ciphertext ψ = VK||(T1, T2, T3, T4)||ψLY||ψK1 ||ψK2 ||σ such that VK = VK? and σ is valid
(we may assume that VK? is generated at the outset of the game). If F2 occurs, A is necessarily
able to break the strong security of Σ (even if the query occurs before the challenge phase, A has
forged a signature without seeing any signature) and |Pr[W2]− Pr[W1]| ≤ Pr[F2] ≤ Advsuf-ots(λ),
so that Game2 proceed identically to Game1 if Σ is strongly unforgeable.

Game3: is like Game2 with the following modification. At the beginning of the game, the challenger
B chooses two indexes i?0, i

?
1

R← {1, . . . , qu}, where qu denotes the maximal number of queries to the
USERS oracle, as a guess that B will choose to be challenged on a pair of users that corresponds to
those introduced at the i?0-th and i?1-th invocations of USERS. During the challenge phase, B halts
and outputs a random bit if its initial guess for (i?0, i

?
1) was incorrect (i.e., if (i?0, i

?
1) 6= (i0, i1)). Since

the choice of (i?0, i
?
1) is independent of A’s view, we have Pr[W3] = Pr[W2]/q

2
u.

Game4: is identical to Game3 but we modify param by changing the distribution of f = (~g1, ~g2, ~f) and
that of the vectors {~hi}`i=0 and ~g3. Instead of choosing f as a perfectly binding CRS, we generate

it as a perfectly NIWI Groth-Sahai CRS, where ~f = ~g1
η1 � ~g2

η2 � (1, 1, g)−1 and η1, η2
R← Zp.

Moreover, instead of setting ~hi = ~g1
ζi,1 � ~g2

ζi,2 for each i ∈ {0, . . . , `}, we set each vector ~hi as
~hi = ~g1

ζi,1 � ~g2
ζi,2 � (1, 1, g)ζi,3 for randomly chosen ζi,1, ζi,2, ζi,3

R← Zp for i = 0 to `. Finally,

instead of setting ~g3 = ~g1
ξ1 � ~g2

ξ2 , with ξ1, ξ2
R← Zp, we define ~g3 = ~g1

ξ1 � ~g2
ξ2 � (1, 1, g)−VK

?

(said otherwise, ~g3 is now a BBS encryption of g−VK
?

instead of an encryption of 1G). Under the
DLIN assumption, these changes should remain unnoticed for any PPT adversary A and we have
|Pr[W4]− Pr[W3]| ≤ AdvDLIN(λ).

Game5: is as Game4 but we change the treatment of USER queries. Namely, instead of generating
πvenc using the witnesses at step 2 of the JOIN protocol, the challenger uses the trapdoor (η1, η2)
of the Groth-Sahai CRS f = (~g1, ~g2, ~f) to generate a simulated NIZK proof πvenc without using
the witnesses. Clearly, since simulated NIZK proofs have the same distribution as real proofs on a
simulated CRS f = (~g1, ~g2, ~f), A’s view remains the same as in Game4. We have Pr[W5] = Pr[W4].

Game6: we bring a new modification to the USER oracle at the i?0-th and i?1-th queries. Instead
of computing Φvenc by verifiably encrypting the actual witness Γ0 = gγ0γ1 , B generates Φvenc by
encrypting a random group element. The semantic security of the BBS cryptosystem guarantees that
A’s view will not be significantly affected by this change. We have |Pr[W6]−Pr[W5]| ≤ AdvDLIN(λ).

Game7: in this game, we modify the oracle P which generates proofs about the challenge ciphertext
ψ? after the challenge phase. Namely, instead of generating proofs πψ? using the real witnesses
coinsψ? = {δ?, %?, {(z?i,1, z?i,2)}i=1,2, (θ

?
1, θ

?
2)}, B simulates these proofs using the trapdoor (η1, η2) of

the CRS f = (~g1, ~g2, ~f) in the same way as the simulator of the proof of Theorem 1 (in Game5).

22

Since f is a perfectly hiding CRS in both games, this modification leaves the distribution of πψ?

unchanged. We have Pr[W7] = Pr[W6].

Game8: here, we modify the CLAIM/DISCLAIM oracle and simulate the non-interactive proofs
~πτ,1, ~πτ,2 without using the witness Γ−1 = g1/γ1 . To this end, the challenger B uses the trap-

door information {(ζi,1, ζi,2, ζi,3)}`i=0 associated with the vectors ~hi = ~g1
ζi,1 � ~g2

ζi,3 . It first chooses
a random `-bit string v = v[1] . . . v[`] ∈ {0, 1}` in the range of the chameleon hashing algorithm
CMhash subject to the condition J3(v) =

∑`
i=0 v[i]ζi,3 6= 0. If we similarly define

J1(v) =
∑̀
i=0

v[i]ζi,1 and J2(v) =
∑̀
i=0

v[i]ζi,2,

we know that ~hv = ~g1
J1(v)� ~g2J2(v)�(1, 1, g)J3(v) with J3(v) 6= 0, so that (~g1, ~g2, ~hv) forms a perfectly

hiding Groth-Sahai CRS. Consequently, the proofs ~πτ,1 and ~πτ,2 can be simulated as follows. In order

to satisfy the first relation of (11), B generates ~CΓ−1 = ~g1
r−1�~g2s−1�~ht−1

v and ~CX = ~g1
rX�~g2sX�~htXv

as commitments to Γ−1 = X = 1G, which immediately yields a valid assignment for the relation
e(Tδ,1, Γ−1) = e(T1,Xτ). As for the second relation of (11), B uses the trapdoor (J1(v), J2(v), J3(v))
to simulate a fake proof that e(g,Xτ) = e(g, g) by setting ~πτ,2 = (πτ,2,1, πτ,2,2, πτ,2,3) as

(πτ,2,1, πτ,2,2, πτ,2,3) =
(
grX · gJ1(v)/J3(v), gsX · gJ2(v)/J3(v), gtX · g−1/J3(v)

)
, (16)

which satisfies E(g, ~CX) = E(g, (1, 1, g)) � E(πτ,2,1, ~g1) · E(πτ,2,2, ~g2) · E(πτ,2,3,~hv) and thus forms
a valid proof for the second relation of (11). Finally, B uses the trapdoor8 tk of the chameleon
hash function to find random hashing coins shash ∈ Rhash that explain v as a a hash value v =
CMhash(hk, (ψ,L, pk), shash). This completes the description of the modified generation of claims
and disclaimers (12) in Game8. Clearly, since simulated NIZK proofs are perfectly indistinguishable
from actual proofs on a simulated CRS, A’s view is the same as previously and we have Pr[W8] =
Pr[W7].

Game9: we bring a first modification in the generation the challenge ciphertext ψ?. Instead of
generating the traceability components (T ?1 , T

?
2 , T

?
3 , T

?
4) as

(T ?1 , T
?
2 , T

?
3 , T

?
4) =

(
gδ
?
, Γ

δ?/%?

b,1 , Γ %
?

b,2, (Λ
VK?

0 · Λ1)
δ?
)

using pkb = (Xb,1, Xb,2, Γb,1, Γb,2), we set (T ?1 , T
?
2 , T

?
3 , T

?
4) =

(
gδ
?
, T ?2 , T

?
3 , (Λ

VK?
0 ·Λ1)

δ?
)

for randomly

chosen T ?2 , T
?
3

R← G. Lemma 1 shows that, if the D3DH assumption holds, this modification is not
noticeable to A, so that we have |Pr[W9] − Pr[W8]| ≤ AdvD3DH(λ). In Game9, we remark that
(T ?1 , T

?
2 , T

?
3 , T

?
4) are independent of the challenger’s bit b ∈R {0, 1}.

Game10: in this game, we modify the generation of the challenge ciphertext ψ? and compute
(ψ?K1

, ψ?K2
) as encryptions of random group elements instead of the actual components (Γb,1, Γb,2) of

the public key pkb = (Xb,1, Xb,2, Γb,1, Γb,2). Since the encryption exponents {z?i,1, z?i,2}i=1,...,6 are not
used anymore to generate the proof πψ? in Game9, we would be able to build a selective-tag weak
CCA2 attacker9 against Kiltz’s tag-based encryption system (recall that opening queries do not

8 Here, the reason to use a chameleon hash function becomes clear: if v were a uniquely determined by (ψ,L, pk),
we would be unable to rule out the possibility of A to invoke the CLAIM/DISCLAIM oracle on ciphertext label
pairs (ψ,L) such that J3(v) = 0, in which case the simulator would get stuck. Our solution to this problem is to
randomize the hashing algorithm so as to keep the adversary from being in full control of the hash value v ∈ {0, 1}`

which allows forming the Groth-Sahai CRS (~g1, ~g2,~hv).
9 Selective-tag weak CCA2 security is defined [31] via a game where the adversary A chooses a tag t? and then

obtains a public key and access to a decryption oracle which A can query for any ciphertext-tag pair (C, t) such
that t 6= t?. At the challenge phase, A chooses plaintexts m0,m1 and receives a ciphertext C? encrypting mb

(under the tag t?) for some bit b
R← {0, 1} that A eventually aims to guess after further decryption queries.

23

involve VK? unless the rejection rule of Game2 applies) if A’s view would be significantly affected
by this change. The result proved in [31] implies that we have |Pr[W10]− Pr[W9]| ≤ AdvDLIN(λ).

In Game10, we note that the only information about the challenger’s bit b ∈ {0, 1} carried by
the challenge ciphertext ψ? appears in the C?0 component of the π?LY ciphertext. We are thus left
with removing this information.

Game11: is like Game10 but we bring one final change in the challenge ciphertext ψ?. Specifically,
we modify π?LY = (C?0 , C

?
1 , C

?
2 , C

?
3 ,
~C?θ1 ,

~C?θ2 , π
?
LIN) and replace C?0 by a random group element. This

change can be justified as follows. Recall that, in the latter ciphertext, π?LIN has to be generated
for the CRS (~g1, ~g2, ~gVK?) which is a perfectly hiding Groth-Sahai CRS. Moreover, all proofs πψ?

involving the challenge ciphertexts are simulated and without using the encryption exponents. This
means that we can use a sub-sequence of games which is identical to the sub-sequence from Game6
to Game11 in the proof of Theorem 1. This sub-sequence thus ends up with a game where π?LY is
an encryption under the public key (Xb,1, Xb,2) of a random message Mrand which is completely
independent ofA’s view. Consequently, this amounts to replacing C?0 by a random element of G. The
same arguments as in the proof of Theorem 1 thus imply that |Pr[W11]−Pr[W10]| ≤ AdvDLIN(λ).

In Game11, we observe that the challenge ciphertext ψ? carries no information about b ∈ {0, 1}
whatsoever. ut

Lemma 1. If the D3DH holds in G, no PPT adversary A can distinguish Game9 from Game8.

Proof. Towards a contradiction, let us assume that A can tell apart Game8 and Game9 with notice-
able probability. We build a D3DH distinguisher BD3DH as follows.

Our algorithm BD3DH takes as input a D3DH instance (g, ga, gb, gc, ς) with the task of deciding
if ς = gabc or ς ∈R G. To this end, BD3DH generates the public parameters param by choosing
g1, g2

R← G and setting up vectors ~g1 = (g1, 1, g), ~g2 = (1, g2, g) and ~f = ~g1
η1 � ~g2

η2 � (1, 1, g)−1

with η1, η2
R← Zp. For i = 0 to `, it also defines ~hi = ~g1

ζi,1 � ~g2
ζi,2 � (1, 1, g)ζi,3 for randomly chosen

ζi,1, ζi,2, ζi,3
R← Zp. It also generates a one-time signature key pair (SK?,VK?) ← G(λ) and chooses

a key pair (hk, tk) ← G(λ) for the chameleon hash function CMH = (CMKg,CMhash,CMswitch).

As for the pair (Λ0, Λ1) ∈ G2, BD3DH sets Λ0 = ga and Λ1 = (ga)−VK
? · gω1 , with ω1

R← Zp. At

the outset of the game, BD3DH also picks two indexes i?0, i
?
1

R← {1, . . . , qu}, where qu denotes the
maximal number of queries to USERS, exactly as the actual challenger does from Game3 onwards.
During the game, BD3DH halts and outputs a random bit if A chooses to corrupt either user i?0 or
user i?1 since it means that BD3DH failed to correctly guess which users the adversary would choose
to be challenged upon. If A indeed chooses i?0, i

?
1 as its target indexes in the challenge phase, BD3DH

will always be able to reveal the correct private keys. The way to answer queries to the USERS
oracle depends on the index i of the query:

– If i 6∈ {i?0, i?1}, the reduction BD3DH generates pki = (Xi,1, Xi,2, Γi,1, Γi,2) faithfully and sets

(Γi,1, Γi,2) = (gγi,1 , gγi,2) for randomly chosen γi,1, γi,2
R← Zp. This implies that BD3DH knows

the tracing trapdoor Γi,0 = gγi,1γi,2 and can verifiably encrypt it at step 2 of the JOIN protocol.

– If i = i?0, algorithm BD3DH generates the i?0-th pubic key as pki?0 = (Xi?0,1
, Xi?0,2

, Γi?0,1, Γi?0,2) with

Γi?0,1 = (ga)ρ0,γ1 and Γi?0,2 = (gb)ρ0,γ2 , for randomly chosen ρ0,γ1 , ρ0,γ2
R← Zp. It also generates

Φvenc as a BBS encryption of a random group element according to the change introduced in
Game6.

– If i = i?1, the i?1-th pubic key is generated as pki?1 = (Xi?1,1
, Xi?1,2

, Γi?1,1, Γi?1,2) with Γi?1,1 = (ga)ρ1,γ1

and Γi?1,2 = (gb)ρ1,γ2 , for randomly drawn ρ1,γ1 , ρ1,γ2
R← Zp. As in the previous case, it computes

Φvenc as a BBS encryption of a random group element.

24

At any time, A is also allowed to query the REVEAL oracle and ask it for the tracing trapdoor
tracei of any honest user. When A queries the trapdoor of user i ∈ {1, . . . , qu}, BD3DH responds as
follows.

– If i 6∈ {i?0, i?1}, BD3DH knows tracei = Γi,0 = gγi,1γi,2 and simply returns it to A.
– If i ∈ {i?0, i?1}, algorithm BD3DH is unable to answer the query as it failed to correctly predict

the indexes i0, i1 of the two users involved in the challenge phase (recall the REVEAL queries are
disallowed for these users). It thus halts and outputs a random bit as the challenger B always
does in this case due to the modification introduced in Game3.

Queries to the CORR oracle are answered in the same way as REVEAL queries except that BD3DH

returns the queried private key ski instead of the tracing trapdoor.
At any time, A may also query the CLAIM/DISCLAIM oracle for triples (i, ψ, L) of its choice. To

answer the query, B parses ψ as ψ = VK||(T1, T2, T3, T4)||ψLY||ψK1 ||ψK2 ||σ and returns ⊥ if either:
(i) σ is not a valid one-time signature; (ii) e(g, T4) 6= e(T1, Λ

VK
0 ·Λ1). Otherwise, since we necessarily

have VK 6= VK? unless the failure event introduced in Game2 occurs. To answer the query, BD3DH

considers the following situations:

– If i 6∈ {i?0, i?0}, BD3DH is able to compute Tδ,1 = T
γi,1
1 = Γ δi,1 since it entirely knows the private

key ski = (xi,1, xi,2, γi,1, γi,2) of the i-th honest user.

– if i = i?d for some d ∈ {0, 1}, we have T1 = gδ and T4 =
(
(ga)VK−VK

? · gω1
)δ

, so that BD3DH can
compute

Tδ,1 = Γ δi?d,1
= (T4/T

ω1
1)ρd,γ1/(VK−VK

?).

Having computed Tδ,1, BD3DH is able to compute a valid claim/disclaimer τ by simulating the
proofs ~πτ,1, ~πτ,2 in the same way as in Game8.

When it comes to build the challenge ciphertext ψ?, BD3DH uses its D3DH instance (g, ga, gb, gc, ς)

to construct the traceability components (T ?1 , T
?
2 , T

?
3 , T

?
4). Specifically, it chooses %

R← Zp, flips a

fair binary coin b
R← {0, 1} and computes

T ?1 = gc, T ?2 = ςρb,γ1/%, T ?3 = gρb,γ2 ·%, T ?4 = (gc)ω1 .

We observe that, if ς = gabc, (T ?1 , T
?
2 , T

?
3 , T

?
4) has the distribution of a well-formed tuple for the

encryption exponent δ? = c and %? = %/b. In this case, the challenge ciphertext is distributed as
in Game8. Now, if ς ∈R G, (T ?1 , T

?
2 , T

?
3 , T

?
4) has the distribution of a valid tuple where T ?2 and T ?3

have been tampered with and replaced by random group elements. In the latter case, A’s view is
the same as in Game9.

It follows that any PPT adversary A that causes the challenger to output 1 with noticeably
different probabilities in Game8 and Game9 translates into an equally efficient distinguisher BD3DH

for the D3DH assumption. ut

B.3 Soundness and Claiming-Soundness

The soundness property directly follows from the security of AHO signatures and the perfect sound-
ness of Groth-Sahai proofs. In particular, given that {ψKi}i=1,2 encrypt {Γi}i=1,2 which are also
used by the TRACE algorithm, the perfect soundness of πψ guarantees that TRACE and OPEN
cannot identify different users. The proof of the following property is straightforward and thus
omitted.

Theorem 3. The scheme provides soundness assuming that the q-SFP assumption holds, where q
is the number of queries to the user registration oracle REG(skGM, .).

25

As for the soundness of the claiming algorithm, it can be proved under the DLIN assumption.

Theorem 4. The scheme provides claiming soundness assuming that the DLIN assumption holds
and that the chameleon hash function is collision-resistant.

Proof. We first remark that, since non-interactive proofs πψ are generated for a perfectly sound

CRS (~g1, ~g2, ~f), even an unbounded adversary would be unable to get the experiment of Definition
7 to return 1 before reaching the last “If” instruction (i.e., by generating a non-trivial claim on
behalf of a user that is not under its control). In the latter case, we show that the adversary would
necessarily contradict the DLIN assumption.

The proof proceeds via a sequence of games. In each game, we denote by Si the event that the
adversary A wins because it manages to claim or disclaim a ciphertext-label pair on behalf of some
uncorrupted honest user. In the following, we denote by qu and qc the number of queries to the
USERS and CLAIM/DISCLAIM oracles, respectively.

Gamereal : This is the real game at the beginning of which the challenger B generates param and
gives them to the adversary A. The latter replies by choosing a group manager’s public key pkGM.
Then, it receives an honestly generated key pair (skOA, pkOA). The adversary A ends by outputting
a pair (pk?R, x

?), a ciphertext-label pair (ψ?, L?) – which presumably encrypts a witness w? such
that (x?, w?) ∈ R – along with a proof π?ψ? , a statement statement? and a database?. The adversary
is deemed successful if it fulfills the conditions specified by Definition 7, in which case the challenger
B outputs 1. We thus have Pr[Sreal] = Advclaiming-soundness(A).

Game0: is like Gamereal with one modification. At the outset of the game, the challenger B picks a
random index i?

R← {1, . . . , qu} – where qu is the maximal number of queries to the USERS oracle
– hoping that B will choose to output a statement (τ, pkj) on behalf of the user introduced at the
i?-th query to USERS (in other words, B guesses that j = i?). When A terminates, B halts and
outputs a random bit if its initial choice for i? turns out to be incorrect. Since the choice of i? is
independent of A’s view, we have Pr[S0] = Pr[Sreal]/qu.

Game1 : This game is the same as Game0 with the difference that we modify the public parame-
ters param by choosing the vectors {~hi}`i=0 as random vectors in G3 instead of sampling them in
span(~g1, ~g2). Under the DLIN assumption, this should have negligible effect on A’s behavior. We
thus have |Pr[S1]− Pr[S0]| ≤ AdvDLIN(B).

Game2 : This game is identical to Game1 but we modify again the generation of param. Namely, the
vectors (~g1, ~g2, {~hi}`i=0) are chosen by setting ~g1 = (g1, 1G, g) and ~g2 = (1G, g2, g), with g1, g2

R← G.

As for {~hi}`i=0, they are obtained as

~h0 = ~g1
ζ0,1 · ~g2ζ0,2 · (1, 1, g)ζ0,3 · (1, 1, g)µ·κ−ρ0 (17)

~hi = ~g1
ζi,1 · ~g2ζi,2 · (1, 1, g)ζi,3 · (1, 1, g)−ρi , i ∈ {1, . . . , `}

with µ
R← {0, . . . , `}, ζ0,1, ζ1,1, . . . , ζ`,1

R← Zp, ζ0,2, ζ1,2, . . . , ζ`,2
R← Zp, ζ0,3, ζ1,3, . . . , ζ`,3

R← Zp and

ρ0, ρ1, . . . , ρ`
R← {0, . . . , κ − 1}, with κ = 2q and where q is the number of distinct tags across all

signing queries. Note that this change is only conceptual since {~hi}`i=0 have the same distribution
as in Game1. We thus have Pr[S2] = Pr[S1].

Game3 : This game is like Game2 with the difference that the challenger halts and outputs a random
bit in the event that one of A’s queries to the CLAIM/DISCLAIM oracle results in a chameleon hash
value vi = CMhash(ψi, Li, pki) that collides with the one produced by A as part of its output
statement. If the chameleon hash function is collision-resistant, Game3 has negligible chance of
departing from Game2 and we have the inequality |Pr[S3]− Pr[S2]| ≤ AdvCM-hash(λ).

26

Game4 : In this game, we raise an event F4, which causes the challenger B to abort and output
a random bit if it does not occur. Let v1, . . . , vqc be the distinct outputs of CMhash successively
involved in A’s queries throughout the game and let v? be the chameleon hash value involved in
A’s fake claim/disclaimer τ , which is part of statement. We know that v? ∈ {v1, . . . , vqc} unless the
failure event introduced in Game3 occurs. For each string v = v[1] . . . v[`] ∈ {0, 1}`, we now define
the function J(v) = µκ− ρ0 −

∑`
i=1 ρiv[i] and consider the event F4 that

J(v?) = 0 ∧
∧

vj∈{v1,...,vqc}\{v?}

J(vj) 6= 0.

We observe that the exponents ρ0, ρ1, . . . , ρL are completely independent of the adversary’s view.
The analysis of [39,7] shows that

Pr[S4 ∧ F4] ≥ Pr[S3]
2/(27 · qc · (`+ 1)).

Hence, we a fortiori have Pr[S4] ≥ Pr[S3]2

27·qc·(`+1) .
This follows from the fact that, for any set of queries, a lower bound on the probability of event

F4 is 1/(2qc(`+ 1)).

Game5 : In this game, we bring one more modification to the distribution of param. Namely, the
challenger B picks ~g1 = (g1, 1, g) and ~g2 = (1, g2, g) as before but, instead of choosing the vectors
{~hi}`i=0 as previously, B sets them as

~h0 = ~g1
ζ0,1 · ~g2ζ0,2 · (1, 1, g)µ·κ−ρ0 (18)

~hi = ~g1
ζi,1 · ~g2ζi,2 · (1, 1, g)−ρi , i ∈ {1, . . . , `}

which amounts to setting ζ0,3 = ζ1,3 = . . . = ζ`,3 = 0. If the DLIN assumption holds, A’s should
not be able to tell the difference between Game5 and Game4. Otherwise, we would be able to build
an algorithm BDLIN such that |Pr[S5]− Pr[S4]| ≤ Adv(BDLIN).

In Game5, we show that a successful forger A implies an algorithm solving the inverse compu-
tational Diffie-Hellman problem and a fortiori contradicting the DLIN assumption. Specifically, we
build an algorithm Binv-CDH that takes as input group elements (g, ga) ∈ G2 and computes g1/a

with non-negligible probability, which is known to be as hard as solving the Diffie-Hellman problem.
We thus have10 Pr[S5] ≤ (AdvCDH(λ))2.

To describe Binv-CDH, we first recall that, when the adversary A terminates, it outputs a state-
ment (τ, pkj), where pkj is the public key of some user in database that did not fell under A’s control.
Moreover, (τ, pkj) is not a claim that A trivially obtained by probing the CLAIM/DISCLAIM oracle

on the input (ψ?, L?, pkj). To solve its problem instance, Binv-CDH prepares param by generating

(~g1, ~g2, {~hi}`i=0) as specified in Game5. In addition, Binv-CDH chooses ω0, ω1, ι0, ι1
R← Zp and sets

Λ0 = gι0 · (ga)ω0 and Λ1 = gι1 · (ga)ω1 . The vector ~f is chosen so as to have a perfectly sound
Groth-Sahai CRS f = (~g1, ~g2, ~f).

During the game, the way to simulate the USERS oracle depends on the index i ∈ {1, . . . , qu}
of the query.

– If i = i?, Binv-CDH defines pki? = (Xi?,1, Xi?,2, Γi?,1, Γi?,2) =
(
g
xi?,1
1 gzi? , g

xi?,2
2 gzi? , ga, gγi?,2

)
for

random xi?,1, xi?,2, zi? , γi?,2
R← Zp. In other words, Binv-CDH implicitly sets γi?,2 = a ∈ Zp. Note

that, although Binv-CDH does not know a = logg(Γi?,1), it can perfectly simulate the USERS
oracle as it can compute Γi?,0 = (ga)γi?,2 which has to be verifiably encrypted during the JOIN
protocol.

10 Recall that any algorithm solving the inverse CDH problem with probability ε implies an algorithm (see [5] for
details) solving the standard CDH problem with probability ε2.

27

– If i 6= i?, Binv-CDH defines pki = (Xi,1, Xi,2, Γi,1, Γi,2) =
(
g
xi,1
1 gzi , g

xi,2
2 gzi , gγi,1 , gγi,2

)
for randomly

chosen xi,1, xi,2, zi, γi,1, γi,2
R← Zp. In this case, Binv-CDH entirely knows ski = (xi,1, xi,2, zi, γi,1, γi,2).

When A invokes the user corruption oracle CORR for an index i ∈ {1, . . . , qu}, Binv-CDH halts and
outputs a random bit if i = i? as it must have failed to correctly guess the index of the target user.
If i 6= i?, Binv-CDH can consistently answer by returning ski which is at its disposal. We also note
that Binv-CDH can also perfectly answer A’s queries to the decryption oracle DEC(., .) as it always
knows the decryption components (xi,1, xi,2, zi) of honest users private keys ski.

When it comes to simulate the CLAIM/DISCLAIM oracle, Binv-CDH proceeds as follows. When
A submits a triple (ψ,L, i), Binv-CDH parses ψ as VK||(T1, T2, T3, T4)||ψLY||ψK1 ||ψK2 ||σ. With over-
whelming probability, it can compute Tδ,1 = (T4/T

ι0·VK+ι1
1)1/(ω0·VK+ω1): indeed, (ω0, ω1) are inde-

pendent of A’s view, so that we can only have ω0 ·VK+ω1 = 0 with negligible probability. In order
to simulate the rest of τ , Binv-CDH uses the observation that the CRS (~g1, ~g2,~hv) is such that

~hv = ~h0 �
∏̀
i=1

~h
v[i]
i = ~g1

J1(v) � ~g2
J2(v) � (1, 1, g)J(v), (19)

where J1(v) = ζ0,1 +
∑`

i=1 ζi,1v[i], J2(v) = ζ0,2 +
∑`

i=1 ζi,2v[i] and J(v) = µκ− ρ0−
∑`

i=1 ρiv[i]. We
know that, if the event F4 occurs, we have J(vi) 6= 0 for each vi ∈ {v1, . . . , vqc} where v1, . . . , vqc
are the chameleon hash values involved in CLAIM/DISCLAIM queries. This implies that, for each
i ∈ {1, . . . , qc}, the triple (J1(vi), J2(vi), J(vi)) can be used as a simulation trapdoor to simulate a
NIZK proof (~CΓ−1 ,

~CXτ , πτ,1, πτ,2) of knowledge of g1/γ1 .
When A outputs a claim/disclaimer τ? of its own, we know that the resulting chameleon hash

value v? will satisfy J(v?) = 0 if the event F4 occurs. From (19), we see that (~g1, ~g2,~hv) is an
extractable Groth-Sahai CRS. Since the corresponding proofs π?τ?,1, π

?
τ?,2 are perfectly binding,

Binv-CDH can thus use (logg(g1), logg(g2)) as an extraction trapdoor to extract g1/γ1 = g1/a from its

commitment ~CΓ−1 .

When counting probabilities throughout the sequence of games, we find

Advclaiming-soundness(A) ≤ qu ·
(
AdvDLIN(λ) + AdvCM-hash(λ)

+
(
27 · qc · (`+ 1) ·

(
AdvDLIN(λ) + (AdvCDH(λ))2

))1/2)
as an upper bound on the adversary’s advantage. Since the CDH assumption is implied by the
DLIN assumption, the announced result follows. ut

28

	Traceable Group Encryption

