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Reminder : Laplacians matrices

De�nition

A laplacian matrix L of an undirected graph can be written
L = D − A where D is the degree matrix of the graph and A the
adjacency matrix.

Proposition

Let B be the incidence matrix (of dimension |E | × |V |) of any
orientation of an undirected graph, it's laplacian matrix L is equal
to B>B .
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Electrical circuits

De�nition

To each graph connected G , we associate the vectors :

the current in each edge i ∈ Rm

the voltage in each vertex v ∈ Rn (up to a constant)

the external current in each vertex cext ∈ Rn

They verify the followings relations :

Kircho�'s law : B>i = cext.

Ohm's law : Bv = i

Steady state 〈cext, 1〉 = 0

Proposition

We have B>Bv = Lv = cext
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Electrical circuits

De�nition

Let G be a graph, L its laplacian, and g = (i , j) be an edge, the
e�ective resistance Re�(e) is de�ned by
Re�(g) = (ei − ej)

>L+(ei − ej) = b>g L
+bg .

De�nition

We de�ne Π(f , g) = b>f L
+bg , such that Π = BL+B>
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Properties of Π

Proposition

Π is symmetric and is a projection matrix, i.e. Π2 = Π.

Proposition

The eigenvalues of Π are all 0 or 1.

8 / 33



Electrical circuits
Applications

De�nitions
Computations

Properties of Π

Proposition

Π is symmetric and is a projection matrix, i.e. Π2 = Π.

Proposition

The eigenvalues of Π are all 0 or 1.

9 / 33



Electrical circuits
Applications

De�nitions
Computations

Energy of an electrical �ow

We assume that we input one unit of current at s and output one
at t, then the �ow is de�ned by f ∗ = BL+(es − et).

De�nition

The energy of a �ow is de�ned to be the sum of the squares of the
�ow on each edge.

Proposition

We have E (f ∗) = (es − et)
>L+(es − et).

Proposition

We have that f ∗ is the s,t-�ow that minimize the energy
consumption.
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Reminder

There is a Õ(m) algorithm LSolve, wich given L, b, ε returns x
satisfying ||x − L+b||L ≤ ε||L+b||L.

Theorem

There is a Õ(m log(1ε )) algorithm which for a graph G , an epsilon
ε > 0, and vertices s, t �nds ṽ ∈ RV and f̃ ∈ RE such that :

||ṽ − v ||∞ ≤ ε
||f̃ − f ||∞ ≤ ε
|
∑
e

f 2e − f̃ 2e | ≤ ε
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Computing e�ective resistance

De�nition

We denote by wi the vector BL+ei , in such a way that
Re = ||BL+(ei − ej)||2 = ||wi − wj ||2.

Theorem

There exist a constant C such that, when k ≥ C log(n)
ε2

, and A is a
matrix of dimension k ×m with coe�cients choosen randomly
among {−1√

k
, 1√

k
}, that with probability 1− 1

n , forall 1 ≤ i , j ≤ n we

have (1− ε)||wi − wj ||2 ≤ ||Awi − A− wj ||2 ≤ (1 + ε)||wi − wj ||2.

13 / 33



Electrical circuits
Applications

De�nitions
Computations

Computing e�ective resistance

Algorithm

(1) Let A be a k × n matrix with random coe�cients ± 1√
k

and k = O( log(n)
ε2

).

(2) Compute Y = AB . This takes
2m × O( log(n)

ε2
) + m = Õ( m

ε2
) times since B has 2m entries.

(3) Let y>i , for 1 ≤ i ≤ k be the rows of Y , and compute
z̃i = LSOLVE (L, yi , δ).

Theorem

There is an Õ( m
ε2

) time algorithm wich computes an O( log(n)
ε2

)× n

matrix Z̃ such that with probability at least 1− 1

n :
∀i , j ∈ V , (1− ε)Ri ,j ≤ ||Z̃ (ei − ej)||2 ≤ (1 + ε)Ri ,j
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Goal of the subsection

Solve max-�ow and min cut to electrical analogue.

Find an 1− ε approximation of max �ow in Õ(m
3
2 poly(1ε ))

time.
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Reminder : combinatorial �ows

De�nition of combinatorial �ow

For an undirected graph G = (V ,E ), a source s ∈ V and a sink
t ∈ V , with edge capacity ce ≥ 0 for each edge, f = (fe)E is a
�ow :

∀e ∈ E , |fe | ≤ ce

∀v ∈ V − {s, t}, f TBev = 0

f TBes + f TBet = 0

where B is the incidence matrix of G where all edges are oriented
arbitrarily.

Max-�ow problem

Find f that maximizes |f TBes |.
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Combinatorial versus Electrical Flows

We have de�ned the electrical �ow from s to t with current F as :

f = R−1BL+F (es − et)

This can be computed in time Õ(m log 1

ε ) time for precision ε.

Energy of �ows

Let f ∗ = R−1BL+(es − et). For any combinatorial �ow g from s
to t such that ∀e, |ge | ≤ 1,

Er (f ∗) =
∑
e∈E

re(f ∗e )2 ≤
∑
e∈E

reg
2
e ≤

∑
e∈E

re
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Algorithm ELECFLOW
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Analysis of ELECFLOW

Let F ∗ be the maximal s-t-�ow value for a graph G .
We need to guarantee :

When algorithm fails, F > F ∗.

When it outputs f , the �ow value from s to t is at least
(1− O(ε))F .

Capacity constraints are respected.

The �rst two points are easy to prove.
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Analysis of ELECFLOW

Proof of the third point :

Lemma

If E
r
t (f t) ≤ (1 + ε

3
)
∑

e r
t
e then

maxe |f te | ≤ 2
√

m
ε∑

w t
e |f te | ≤ (1 + ε)

∑
w t
e

Lemma ∑
e

w t
e ≤ m exp

(
ε(1− ε)T

ρ

)
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Analysis of ELECFLOW

Lemma

For T ≥ ρ log m
ε , the capacity constraint is respected.

Theorem

If F ∗ is the maximal �ow value of graph G , ELECFLOW outputs a
�ow of value at least (1− ε)F ∗ in time Õ(m

3
2 poly(1ε ))
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Generalization of ELECFLOW

For a general capacity vector c , the algorithm can be adapted by :

Replace r te update rule by r te = 1

c2e
(w t

e + ε
3m

∑
e w

t
e )

Replace all mention of |f te | by
|f te |
c2e

We can also adapt ELECFLOW to obtain an approximation min-cut
algorithm.
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Goal of the subsection

For L the Laplacian of graph and a vector v , compute
exp(−tL)v .

There is an approximation algorithm with ε error running in
O(m log t log 1

ε ) time.

Application to continuous random walks
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Reminder : the Matrix Exponential

De�nition

Let A be a symetric n × n matrix. The matrix exponential of A is
de�ned as :

exp(A) =
∞∑
i=0

Ai

i !

Remark : If A =
∑
λiuiu

T
i spectral decomposition, then

exp(A) =
n∑

i=0

exp(λi )uiu
T
i
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First approximation : truncate the exponential

We can use u =
∑T

i=0

(−1)iLi

i! v as an approximation for exp(−L)v .
We can compute u in O(mT ) time.

Theorem (admitted)

For T ∼ ||L||+ log 1

ε , we have ||u − exp(−L)v || ≤ ε||v ||

Problem : dependency in ||L||.
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Rational approximations to the exponential

Bound over the real exponential

There exists constants c ≥ 1 and k0 such that, for any integer
k ≥ k0, there exists a polynomial Pk(x) of degree k such that

sup
x∈[0,∞)

∣∣∣∣exp(−x)− Pk

(
1

1 + x/k

)∣∣∣∣ ≤ ck × 2−k

Corollary

There exists constants c ≥ 1 and k0 such that, for any integer
k ≥ k0, there exists a polynomial Pk(x) of degree k such that for
any graph Laplacian L and vector v ,∣∣∣∣exp(−L)v − Pk((I + L/k)+)v

∣∣∣∣ ≤ O(k2−k)||v ||
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Solver for SDD matrices

De�nition : Symmetric Diagonally Dominant matrix

A matrix A is SDD i� it is symmetric and for all i , Aii ≥
∑

j ,j 6=i |Aij |

Laplacian solver LSOLVE can be adapted to SDD matrices.

Theorem (admitted)

Given an n × n SDD matrix A with m nonzero entries, a vector b,
and an error parameter ε > 0, we can obtain a vector u such
that||u − A+b||A ≤ ε||A+b||A.
Time required : O(m log n log(1/(ε||A+||)))
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Main result

Theorem

There is an algorithm that, given the graph Laplacian L of a
weighted graph with n vertices and m edges, a vector v , and a
parameter 0 < δ ≤ 1, outputs a vector u such that

|| exp(−L)v − u|| ≤ δ||v ||

in time O((m + n) log(1 + ||L||)polylog1

δ ).
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Application to continuous random walks

Discrete random walk process : At each step, we transition to a
neighbor of the current vertex.
If we are on vertex v of degree ∆(v) then we transition to each
neighbor with probability 1

∆(v) .

Transition matrix

If initial distribution is v , at next step the distribution will be W v

with W = AD−1.
Iterating, from step 0 to step t, the transition matrix is W t .
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Application to continuous random walks

Continuous time random walk

At time t, from initial distribution v , we reach distribution W̃ (t)v ,
with

W̃ (t) = exp(−t(I −W ))

Remark : W̃ (t) = exp(−t)
∑∞

i=0

t i

i!W
i

Equivalent to a discrete time random walk where the number of
steps follow a Poisson law.
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Application to continuous random walks

W as normalized laplacian

W = D
1
2 (I − L)D−

1
2 with L the normalized laplacian of G .

Thus, W̃ (t) = D
1
2 exp(−tL)D−

1
2 .

Consequence :
We can use laplacian exponentiation to compute an approximation
of W̃ (t)v in time O(m log(1 + t)polylog(1δ )).
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Application to continuous random walks

Theorem : Approximation bound

There is an algorithm that, given an undirected graph G with m
edges, a vector v ,a time t ≥ 0,and a δ > 0,outputs a vector u such
that

||W̃ (t)v − u|| ≤ δ

√
dmax

dmin
||v ||

. Time taken : O(m log(1 + t)polylog(1δ )). Here, dmaxis the largest
degree of G and dmin the smallest.
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