Other applications of spectral methods

Hugues Déprés - Étienne Vareille

3 décembre 2019

Plan

- Electrical circuits
 - Definitions
 - Computations
- 2 Applications
 - Cuts and Flows
 - The Matrix Exponential and Random Walks

Reminder: Laplacians matrices

Definition

A laplacian matrix L of an undirected graph can be written L=D-A where D is the degree matrix of the graph and A the adjacency matrix.

Proposition

Let B be the incidence matrix (of dimension $|E| \times |V|$) of any orientation of an undirected graph, it's laplacian matrix L is equal to $B^{\top}B$.

Definition

To each graph connected G, we associate the vectors :

- the current in each edge $i \in \mathbb{R}^m$
- the voltage in each vertex $v \in \mathbb{R}^n$ (up to a constant)
- ullet the external current in each vertex $c_{\mathsf{ext}} \in \mathbb{R}^n$

They verify the followings relations:

- Kirchoff's law : $B^{\top}i = c_{\text{ext}}$.
- Ohm's law : Bv = i
- ullet Steady state $\langle c_{\mathsf{ext}}, 1 \rangle = 0$

Definition

To each graph connected G, we associate the vectors :

- ullet the current in each edge $i\in\mathbb{R}^m$
- the voltage in each vertex $v \in \mathbb{R}^n$ (up to a constant)
- ullet the external current in each vertex $c_{ ext{ext}} \in \mathbb{R}^n$

They verify the followings relations:

- Kirchoff's law : $B^{\top}i = c_{\text{ext}}$.
- Ohm's law : Bv = i
- Steady state $\langle c_{\rm ext}, 1 \rangle = 0$

Proposition

We have $B^{\top}Bv = Lv = c_{\mathsf{ext}}$

Definition

Let G be a graph, L its laplacian, and g=(i,j) be an edge, the effective resistance $R_{\rm eff}(e)$ is defined by $R_{\rm eff}(g)=(e_i-e_j)^{\top}L^+(e_i-e_j)=b_g^{\top}L^+b_g$.

Definition

Let G be a graph, L its laplacian, and g=(i,j) be an edge, the effective resistance $R_{\rm eff}(e)$ is defined by $R_{\rm eff}(g)=(e_i-e_i)^{\top}L^+(e_i-e_i)=b_{\sigma}^{\top}L^+b_{g}$.

Definition

We define $\Pi(f,g) = b_f^{\top} L^+ b_g$, such that $\Pi = B L^+ B^{\top}$

Properties of Π

Proposition

 Π is symmetric and is a projection matrix, i.e. $\Pi^2 = \Pi$.

Properties of Π

Proposition

 Π is symmetric and is a projection matrix, i.e. $\Pi^2 = \Pi$.

Proposition

The eigenvalues of Π are all 0 or 1.

Energy of an electrical flow

We assume that we input one unit of current at s and output one at t, then the flow is defined by $f^* = BL^+(e_s - e_t)$.

Definition

The energy of a flow is defined to be the sum of the squares of the flow on each edge.

Proposition

We have $E(f^*) = (e_s - e_t)^{\top} L^+(e_s - e_t)$.

Energy of an electrical flow

We assume that we input one unit of current at s and output one at t, then the flow is defined by $f^* = BL^+(e_s - e_t)$.

Definition,

The energy of a flow is defined to be the sum of the squares of the flow on each edge.

Proposition

We have $E(f^*) = (e_s - e_t)^{\top} L^+ (e_s - e_t)$.

Proposition

We have that f^* is the s,t-flow that minimize the energy consumption.

Reminder

There is a $\tilde{O}(m)$ algorithm LSolve, wich given L, b, ϵ returns x satisfying $||x - L^+ b||_L \le \varepsilon ||L^+ b||_L$.

Theorem

There is a $\tilde{O}(m\log(\frac{1}{\varepsilon}))$ algorithm which for a graph G, an epsilon $\epsilon > 0$, and vertices s,t finds $\tilde{v} \in \mathbb{R}^V$ and $\tilde{f} \in \mathbb{R}^E$ such that :

- $||\tilde{\mathbf{v}} \mathbf{v}||_{\infty} \leq \varepsilon$
- $||\tilde{f} f||_{\infty} \le \varepsilon$
- $\bullet \ |\sum_e f_e^2 \tilde{f}_e^2| \le \varepsilon$

Computing effective resistance

Definition

We denote by w_i the vector BL^+e_i , in such a way that $R_e = ||BL^+(e_i - e_i)||^2 = ||w_i - w_i||^2$.

Theorem

There exist a constant C such that, when $k \geq \frac{C \log(n)}{\epsilon^2}$, and A is a matrix of dimension $k \times m$ with coefficients choosen randomly among $\{\frac{-1}{\sqrt{k}}, \frac{1}{\sqrt{k}}\}$, that with probability $1 - \frac{1}{n}$, forall $1 \leq i, j \leq n$ we have $(1 - \epsilon)||w_i - w_j||^2 \leq ||Aw_i - A - w_j||^2 \leq (1 + \epsilon)||w_i - w_j||^2$.

Computing effective resistance

Algorithm

- (1) Let A be a $k \times n$ matrix with random coefficients $\pm \frac{1}{\sqrt{k}}$ and $k = O(\frac{\log(n)}{2})$.
- (2) Compute Y = AB. This takes $2m \times O(\frac{\log(n)}{\varepsilon^2}) + m = \tilde{O}(\frac{m}{\varepsilon^2})$ times since B has 2m entries.
- (3) Let y_i^{\top} , for $1 \le i \le k$ be the rows of Y, and compute $\tilde{z}_i = LSOLVE(L, y_i, \delta)$.

Theorem

There is an $\tilde{O}(\frac{m}{\varepsilon^2})$ time algorithm wich computes an $O(\frac{\log(n)}{\varepsilon^2}) \times n$ matrix \tilde{Z} such that with probability at least $1 - \frac{1}{n}$: $\forall i, j \in V, (1 - \varepsilon)R_{i,j} \leq ||\tilde{Z}(e_i - e_i)||^2 \leq (1 + \varepsilon)R_{i,j}$

Plan

- Electrical circuits
 - Definitions
 - Computations
- 2 Applications
 - Cuts and Flows
 - The Matrix Exponential and Random Walks

Goal of the subsection

- Solve max-flow and min cut to electrical analogue.
- Find an $1-\epsilon$ approximation of max flow in $\tilde{O}(m^{\frac{3}{2}}poly(\frac{1}{\epsilon}))$ time.

Reminder: combinatorial flows

Definition of combinatorial flow

For an undirected graph G=(V,E), a source $s\in V$ and a sink $t\in V$, with edge capacity $c_e\geq 0$ for each edge, $f=(f_e)_E$ is a flow :

- $\forall e \in E, |f_e| \leq c_e$
- $\forall v \in V \{s, t\}, \mathbf{f}^T B \mathbf{e}_v = 0$
- $\bullet \mathbf{f}^T B \mathbf{e}_s + \mathbf{f}^T B \mathbf{e}_t = 0$

where B is the incidence matrix of G where all edges are oriented arbitrarily.

Max-flow problem

Find \mathbf{f} that maximizes $|\mathbf{f}^T B \mathbf{e}_s|$.

Combinatorial versus Electrical Flows

We have defined the electrical flow from s to t with current F as :

$$\boldsymbol{f} = R^{-1}BL^{+}F(\boldsymbol{e}_{s} - \boldsymbol{e}_{t})$$

This can be computed in time $\tilde{O}(m\log\frac{1}{\epsilon})$ time for precision ϵ .

Energy of flows

Let $f^* = R^{-1}BL^+(e_s - e_t)$. For any combinatorial flow g from s to t such that $\forall e, |g_e| \leq 1$,

$$E_{\boldsymbol{r}}(\boldsymbol{f^*}) = \sum_{e \in E} r_e (f_e^*)^2 \le \sum_{e \in E} r_e g_e^2 \le \sum_{e \in E} r_e$$

Algorithm ELECFLOW

Algorithm 12.1 ElecFlow

Input: G(V, E), source s, sink t, a target flow value F and $0 < \varepsilon < 1$ **Output:** Either an s, t-flow f of value at least $(1 - O(\varepsilon))F$ or FAIL

indicating that $F > F^*$

1:
$$w_e^0 \leftarrow 1$$
 for all $e \in E$

2:
$$\rho \leftarrow 2\sqrt{\frac{m}{\epsilon}}$$

3:
$$T \leftarrow \frac{\rho \log m}{2}$$

4: **for**
$$t = 0 \to T - 1$$
 do

5:
$$\forall e \in E, r_e^t \leftarrow w_e^t + \frac{\varepsilon}{3m} \sum_e w_e^t$$

6:
$$\mathbf{f}^t \stackrel{\text{def}}{=} R_t^{-1} B L_t^+ F(\mathbf{e}_s - \mathbf{e}_t)$$

7: if
$$E_{\mathbf{r}^t}(\mathbf{f}^t) > (1 + \frac{\varepsilon}{2}) \sum_{e} r_e^t$$
 then

10:
$$\forall e \in E, \ w_e^{t+1} \leftarrow w_e^t (1 + \frac{\varepsilon |f_e^t|}{e})$$

11: end if

12: end for

13: **return**
$$\mathbf{f} \stackrel{\text{def}}{=} \frac{(1-\varepsilon)}{(1+2\varepsilon)} \cdot \frac{1}{T} \cdot \sum_{t=0}^{T-1} \mathbf{f}^t$$

Analysis of ELECFLOW

Let F^* be the maximal s-t-flow value for a graph G.

We need to guarantee :

- When algorithm fails, $F > F^*$.
- When it outputs f, the flow value from s to t is at least $(1 O(\epsilon))F$.
- Capacity constraints are respected.

The first two points are easy to prove.

Analysis of ELECFLOW

Proof of the third point :

Lemma

If $E_{\boldsymbol{r}^t}(\boldsymbol{f}^t) \leq (1 + \frac{\epsilon}{3}) \sum_{e} r_e^t$ then

- $\max_e |f_e^t| \le 2\sqrt{\frac{m}{\epsilon}}$
- $\sum w_e^t |f_e^t| \leq (1+\epsilon) \sum w_e^t$

Lemma

$$\sum_{e} w_e^t \le m \exp\left(\frac{\epsilon(1-\epsilon)T}{\rho}\right)$$

Analysis of ELECFLOW

Lemma

For $T \geq \frac{\rho \log m}{\epsilon}$, the capacity constraint is respected.

Theorem

If F^* is the maximal flow value of graph G, ELECFLOW outputs a flow of value at least $(1-\epsilon)F^*$ in time $\tilde{O}(m^{\frac{3}{2}}\operatorname{poly}(\frac{1}{\epsilon}))$

Generalization of ELECFLOW

For a general capacity vector c, the algorithm can be adapted by :

- Replace r_e^t update rule by $r_e^t = \frac{1}{C_e^2} (w_e^t + \frac{\epsilon}{3m} \sum_e w_e^t)$
- Replace all mention of $|f_e^t|$ by $\frac{|f_e^t|}{c_e^2}$

We can also adapt ELECFLOW to obtain an approximation min-cut algorithm.

Goal of the subsection

- For L the Laplacian of graph and a vector \mathbf{v} , compute $\exp(-tL)\mathbf{v}$.
- There is an approximation algorithm with ϵ error running in $O(m \log t \log \frac{1}{\epsilon})$ time.
- Application to continuous random walks

Reminder: the Matrix Exponential

Definition

Let A be a symetric $n \times n$ matrix. The matrix exponential of A is defined as :

$$\exp(A) = \sum_{i=0}^{\infty} \frac{A^i}{i!}$$

Remark : If $A = \sum \lambda_i \mathbf{u}_i \mathbf{u}_i^T$ spectral decomposition, then

$$\exp(A) = \sum_{i=0}^{n} \exp(\lambda_i) \boldsymbol{u}_i \boldsymbol{u}_i^T$$

First approximation: truncate the exponential

We can use $\mathbf{u} = \sum_{i=0}^{T} \frac{(-1)^{i} L^{i}}{i!} \mathbf{v}$ as an approximation for $\exp(-L) \mathbf{v}$. We can compute \mathbf{u} in O(mT) time.

Theorem (admitted)

For
$$T \sim ||L|| + \log \frac{1}{\epsilon}$$
, we have $||\boldsymbol{u} - \exp(-L)\boldsymbol{v}|| \leq \epsilon ||\boldsymbol{v}||$

Problem : dependency in ||L||.

Rational approximations to the exponential

Bound over the real exponential

There exists constants $c \ge 1$ and k_0 such that, for any integer $k \ge k_0$, there exists a polynomial $P_k(x)$ of degree k such that

$$\sup_{x \in [0,\infty)} \left| \exp(-x) - P_k \left(\frac{1}{1 + x/k} \right) \right| \le ck \times 2^{-k}$$

Corollary

There exists constants $c \ge 1$ and k_0 such that, for any integer $k \ge k_0$, there exists a polynomial $P_k(x)$ of degree k such that for any graph Laplacian L and vector \mathbf{v} ,

$$||\exp(-L)\mathbf{v} - P_k((I + L/k)^+)\mathbf{v}|| \le O(k2^{-k})||\mathbf{v}||$$

Solver for SDD matrices

Definition: Symmetric Diagonally Dominant matrix

A matrix A is SDD iff it is symmetric and for all i, $A_{ii} \geq \sum_{i,i \neq i} |A_{ij}|$

Laplacian solver LSOLVE can be adapted to SDD matrices.

Theorem (admitted)

Given an $n \times n$ SDD matrix A with m nonzero entries, a vector \boldsymbol{b} , and an error parameter $\epsilon > 0$, we can obtain a vector \boldsymbol{u} such that $||\boldsymbol{u} - A^+ b||_A \le \epsilon ||A^+ b||_A$.

Time required : $O(m \log n \log(1/(\epsilon ||A^+||)))$

Main result

Theorem

There is an algorithm that, given the graph Laplacian L of a weighted graph with n vertices and m edges, a vector \mathbf{v} , and a parameter $0 < \delta \leq 1$, outputs a vector \mathbf{u} such that

$$||\exp(-L)\mathbf{v} - \mathbf{u}|| \leq \delta ||\mathbf{v}||$$

in time $O((m+n)\log(1+||L||)\operatorname{polylog}\frac{1}{\delta})$.

Discrete random walk process: At each step, we transition to a neighbor of the current vertex.

If we are on vertex v of degree $\Delta(v)$ then we transition to each neighbor with probability $\frac{1}{\Lambda(\nu)}$.

Transition matrix

If initial distribution is \mathbf{v} , at next step the distribution will be $W\mathbf{v}$ with $W = AD^{-1}$

Iterating, from step 0 to step t, the transition matrix is W^t .

Continuous time random walk

At time t, from initial distribution $oldsymbol{v}$, we reach distribution $ilde{W}(t)oldsymbol{v}$, with

$$\tilde{W}(t) = \exp(-t(I-W))$$

Remark : $\tilde{W}(t) = \exp(-t) \sum_{i=0}^{\infty} \frac{t^i}{i!} W^i$

Equivalent to a discrete time random walk where the number of steps follow a Poisson law.

W as normalized laplacian

 $W=D^{\frac{1}{2}}(I-\mathcal{L})D^{-\frac{1}{2}}$ with \mathcal{L} the normalized laplacian of G. Thus, $\tilde{W}(t)=D^{\frac{1}{2}}\exp(-t\mathcal{L})D^{-\frac{1}{2}}$.

Consequence:

We can use laplacian exponentiation to compute an approximation of $\tilde{W}(t)\mathbf{v}$ in time $O(m\log(1+t)\mathrm{polylog}(\frac{1}{\delta}))$.

Theorem: Approximation bound

There is an algorithm that, given an undirected graph G with m edges, a vector ${\bf v}$, a time $t\geq 0$, and a $\delta>0$, outputs a vector ${\bf u}$ such that

$$|| ilde{W}(t)oldsymbol{v}-oldsymbol{u}||\leq \delta\sqrt{rac{d_{\mathsf{max}}}{d_{\mathsf{min}}}}||oldsymbol{v}||$$

. Time taken : $O(m \log(1+t) \operatorname{polylog}(\frac{1}{\delta}))$. Here, d_{max} is the largest degree of G and d_{min} the smallest.