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Reminder : Laplacians matrices

Definition

A laplacian matrix L of an undirected graph can be written

L = D — A where D is the degree matrix of the graph and A the
adjacency matrix.

Proposition

Let B be the incidence matrix (of dimension |E| x |V|) of any
orientation of an undirected graph, it's laplacian matrix L is equal
to B'B.
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Electrical circuits

To each graph connected G, we associate the vectors :
@ the current in each edge i € R™
@ the voltage in each vertex v € R" (up to a constant)
o the external current in each vertex ceyy € R”
They verify the followings relations :
o Kirchoff's law : BTi = coy.
@ Ohm's law : Bv =i
@ Steady state (Cext,1) =0
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Electrical circuits

To each graph connected G, we associate the vectors :
@ the current in each edge i € R™
@ the voltage in each vertex v € R" (up to a constant)
o the external current in each vertex ceyy € R”
They verify the followings relations :
o Kirchoff's law : BTi = coy.
@ Ohm's law : Bv =i
@ Steady state (Cext,1) =0

Proposition

We have BTBv = Lv = Cext
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Electrical circuits

Definition

Let G be a graph, L its laplacian, and g = (/,/) be an edge, the
effective resistance Reff(e) is defined by

Reir(g) = (& — &) LT (e — ) = bg LT bg.
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Electrical circuits

Definition

Let G be a graph, L its laplacian, and g = (/,/) be an edge, the
effective resistance Reff(e) is defined by

Reir(g) = (& — &) LT (e — ) = bg LT bg.

Definition

We define II(f,g) = b{ L*bg, such that IT = BLTBT

| A

N
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Properties of I

Proposition

IT is symmetric and is a projection matrix, i.e. IT> = II.
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Properties of I

Proposition

IT is symmetric and is a projection matrix, i.e. IT> = II.

Proposition

The eigenvalues of IT are all 0 or 1.
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Energy of an electrical flow

We assume that we input one unit of current at s and output one
at t, then the flow is defined by f* = BL"(es — &;).

Definition

The energy of a flow is defined to be the sum of the squares of the
flow on each edge.

Proposition
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Energy of an electrical flow

We assume that we input one unit of current at s and output one
at t, then the flow is defined by f* = BL"(es — &;).

Definition

The energy of a flow is defined to be the sum of the squares of the
flow on each edge.

Proposition

Proposition

We have that f* is the s,t-flow that minimize the energy
consumption.
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There is a O(m) algorithm LSolve, wich given L, b, € returns x
satisfying ||x — LT b||, < ¢e||LTb]],.

Theorem

| A\

There is a O(mlog(%)) algorithm which for a graph G, an epsilon
€ > 0, and vertices s, t finds ¥ € R and f € RE such that :

0 ||V —v|w<e
o ||[f —flloo < ¢

C ‘ng_ﬁ:?‘gg
e
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Computing effective resistance

We denote by w; the vector BL™¢;, in such a way that
Re = ||BL* (& — &)I* = [|wi — wj|*.

Theorem

| A

There exist a constant C such that, when k > CI(Z%("), and A is a
matrix of dimension k x m with coefficients choosen randomly
among {\7/—%, ﬁ} that with probability 1 — % forall 1 < /,j < nwe
have (1 — e)l|w; — wj|[? < [|Aw; — A — wjl|* < (1 + €)lJwi — .
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Computing effective resistance

Algorithm

@ (1) Let A be a k x n matrix with random coefficients iﬁ
and k = O('&{n).

£2

@ (2) Compute Y = AB. This takes

2m x 0('°§£")) + m = O() times since B has 2m entries.

o (3) Let y;", for 1 < i < k be the rows of Y, and compute
2,‘ = LSOLVE(L,}/,',(S).

Theorem

There is an O(Eﬂz) time algorithm wich computes an O('°§§”)) X n
matrix Z such that with probability at least 1 — % :
Vi,j € V,(1—e)Rij<||Z(ei— &)l < (L+&)R;;
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© Applications
@ Cuts and Flows
@ The Matrix Exponential and Random Walks
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Goal of the subsection

@ Solve max-flow and min cut to electrical analogue.

e Find an 1 — € approximation of max flow in é(m%poly(%))
time.
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Reminder : combinatorial flows

Definition of combinatorial flow

For an undirected graph G = (V, E), a source s € V and a sink
t € V, with edge capacity c. > 0 for each edge, f = (f)g is a
flow :

o Vee E |f| < ce

oVvecV—{st}f Be =0

o fTBes+ f Be; =0
where B is the incidence matrix of G where all edges are oriented
arbitrarily.

Max-flow problem

Find f that maximizes |f Be|.
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Combinatorial versus Electrical Flows

We have defined the electrical flow from s to t with current F as :
f=R 'BL"F(e; — e;)

This can be computed in time O(mlog%) time for precision e.

Energy of flows

Let f* = R~!BL*(es — e;). For any combinatorial flow g from s
to t such that Ve, [ge| <1,

E(F)=) rl(fS)> <) rgi<) r

ecE ecE ecE
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Algorithm ELECFLOW

Algorithm 12.1 ELecFLow
Input: G(V,FE), source s, sink t, a target flow value F and 0 < & < 1
Output: Either an s,t-flow f of value at least (1 — O(=))F or FAIL
indicating that F > F*

Lwls lforallec E

2 pe=2/2

3 T« Llogm

s fort=0—T —1do

5 VeeE vl —wl+ &3 uf

6 RBLIF(e, — er)

T if Epe(f') > (1+5)> 7 then
8: return FAIL

9:  else

o VecE uit  uf(l s %)
11:  end if

12: end for

def (1—¢ —]
13: return = (% : % : 3:01 ft
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Analysis of ELECFLOW

Let F* be the maximal s-t-flow value for a graph G.
We need to guarantee :

e When algorithm fails, F > F*.

@ When it outputs f, the flow value from s to t is at least
(1 - 0(e))F.

o Capacity constraints are respected.

The first two points are easy to prove.
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Analysis of ELECFLOW

Proof of the third point :
If Epe(F) < (1+5)> . ré then
o max.|ff| <2,/2
o Y welff| < (1+€) > we

< €(1 —e)T>
ZW < mexp

p

A\
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Analysis of ELECFLOW

For T > @' the capacity constraint is respected.

v
Theorem

If F* is the maximal flow value of graph G, ELECFLOW outputs a
flow of value at least (1 — €)F™* in time O(m%poly(%))
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Generalization of ELECFLOW

For a general capacity vector c, the algorithm can be adapted by :

o Replace r! update rule by rl = L(w! + 35 5. w))
. t
@ Replace all mention of |f}| by “Cr%‘

We can also adapt ELECFLOW to obtain an approximation min-cut
algorithm.
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Goal of the subsection

@ For L the Laplacian of graph and a vector v, compute
exp(—tL)v.

@ There is an approximation algorithm with € error running in
O(mlog tlog %) time.

@ Application to continuous random walks

24 /33



Cuts and Flows
Applications The Matrix Exponential and Random Walks

Reminder : the Matrix Exponential

Definition

Let A be a symetric n X n matrix. The matrix exponential of A is
defined as :

i=0

Remark : If A=Y \uu; spectral decomposition, then

exp(A) = Z exp(\j)uju;
i=0
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First approximation : truncate the exponential

We can use u = Z,T:O (f!ﬂl v as an approximation for exp(—L)v.

We can compute u in O(mT) time.

Theorem (admitted)

For T ~||L|| + Iog%, we have ||u — exp(—L)v|| < €||v]]|

Problem : dependency in ||L||.
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Rational approximations to the exponential

Bound over the real exponential

There exists constants ¢ > 1 and kg such that, for any integer
k > ko, there exists a polynomial Pk(x) of degree k such that

1
sup |exp(—x) — P <1+x/k>‘ < ck x 27K

x€[0,00)

Corollary

There exists constants ¢ > 1 and kg such that, for any integer
k > kg, there exists a polynomial Px(x) of degree k such that for
any graph Laplacian L and vector v,

Hexp(—L)v—Pk(( + L/k)T VH < O(k2™ )HVH
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Solver for SDD matrices

Definition : Symmetric Diagonally Dominant matrix
A matrix A is SDD iff it is symmetric and for all i, A; > > ., |Aj]

Laplacian solver LSOLVE can be adapted to SDD matrices.

Theorem (admitted)

Given an n x n SDD matrix A with m nonzero entries, a vector b,
and an error parameter ¢ > 0, we can obtain a vector u such
that||u — AT b||a < €||AT b||a.

Time required : O(mlog nlog(1/(¢||AT|])))
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Main result

Theorem

There is an algorithm that, given the graph Laplacian L of a
weighted graph with n vertices and m edges, a vector v, and a
parameter 0 < 0 < 1, outputs a vector u such that

[lexp(=L)v — uf| < df|v]|

in time O((m + n) log(1 + ||L||)polylog}).
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Application to continuous random walks

Discrete random walk process : At each step, we transition to a
neighbor of the current vertex.
If we are on vertex v of degree A(v) then we transition to each

neighbor with probability ﬁ.

Transition matrix

If initial distribution is v, at next step the distribution will be Wv
with W = AD1.
lterating, from step O to step t, the transition matrix is W?.
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Application to continuous random walks

Continuous time random walk

At time t, from initial distribution v, we reach distribution W(t)v,
with :
W(t) = exp(—t(/ — W))

Remark : W(t) = exp(—t) 3700 W/
Equivalent to a discrete time random walk where the number of
steps follow a Poisson law.
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Application to continuous random walks

W as normalized laplacian

W = D%(I — L)Df% with £ the normalized laplacian of G.
Thus, W(t) = D2 exp(—tL)D 2.

Consequence :
We can use laplacian exponentiation to compute an approximation
of W(t)v in time O(mlog(1 + t)polylog(%)).
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Application to continuous random walks

Theorem : Approximation bound
There is an algorithm that, given an undirected graph G with m
edges, a vector v,a time t > 0,and a § > 0,outputs a vector u such
that
W < 5 dmax
|W(t)v — ul| < vl
mln

. Time taken : O(mlog(1 + t)polylog($)). Here, dmaxis the largest
degree of G and dpni, the smallest.
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