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Who am |1?

Senior permanent researcher of CNRS, France since Jan’09; working at ENS de Lyon.

Background:

« BSc, MS, and PhD from Bilkent Univ, Ankara, Turkey (Sep’93 - Sep’05)
* Post-doc at Emory Univ, Atlanta, USA (Oct’05 - Dec’06)

* Post-doc at CERFACS, Toulouse, France (Jan’07 - Dec’08); then the current position
 HDR from ENS de Lyon (Sep’19).

Mobility:
* Long visit GaTech, Atlanta, USA (Aug’17 - Jun’18)



What do | do as a researcher?

 Research
> learn/develop new things, new problems
> write papers, project proposals
> write codes and experiments
> yearly report of activities, research plans ~ every 4 years.

e Journal editor, referee
 Conference organization, refereeing papers
e Service in the lab, department, graduate school

* Jeaching



Research

Combinatorial Scientific Computing

Development, application and analysis of combinatorial algorithms to enable

scientific and engineering computations
» Parallel, high performance computing with matrices, graph algs.

 Matrices, sparse matrices, graphs...
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Research

Combinatorial Scientific Computing

...and tensors, sparse tensors,
hypergraphs




A sample problem:
Birkhoff — von Neumann
decomposition



A sample problem

Birkhoff —von Neumann decomposition

e g
Definition: s Ai@“
. o o Yo )bt 0 C
An n x n matrix A is doubly stochastic o eym\m;;m e XO\’\\AY““
- >.S C
a;; > 0, row sums and column sums are 1. <™\ ea® "o
J YOW AL “CS 3;{6

For a doubly stochastic matrix A

there exist aq,as,...,a. € (0,1] with Zle a; = 1
and permutation matrices P1, Py, ..., P, such that:

A=oP1+aPo+---+a,.P.




BVvN decomposition
Applications

 Switch design: connections are established and the traffic from inputs to
output is routed (one permutation = one set of connections).

 Similar problem in data center networks.

» (Classical applications in assignment problems and economics.

* A (mathematical) tool in linear algebra



Birkhoff —von Neumann decomposition
Proof that BvN exist: A = ) «;P;

Permutation matrix: An n X n matrix
with exactly one 1 in each

row and in each column

(other entries are 0)

X @ Perfect matching in
@ (RUC, F) with |R| = |C| = n:
@ X a set of n edges no two

share a common vertex.



Proof that BvN eX|sts (Birkhoff’ 46)

HaII’s mariage theorem (HaII’35) W

g EIn a finite bipartite graph G=(XUY, 1 7
E) there is a matching covering aII

felements of X iff, for all subsets W ' '
fof X it holds that

oooooooooooooooooooooooooooooooooooooooooooooo

[W[<|Z]

fwith Z = neighbors(W).

G s e RO )N S — W], as each column sura is 1.
...holds for doubly stochastic matrices: > ) mij + ) nij = |Z|, as each row sum is 1.
There is always a perfect matching in the It ‘Wo‘ > ‘Z|>othen N must .COPtain

bipartite graph of a doubly stochastic negative entries...a contradiction.

matrix.
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A sample problem (recall)

Birkhoff—von Neumann decomposition e
. An
- ey aues
Definition: ation P et
: : : perth Aty ov oru
An n x n matrix A is doubly stochastic itk L each 8
a;; > 0, row sums and column sums are 1. xowh“fz opitries ar®
(0%
For a doubly stochastic matrix A
there exist a1, ag,...,a; € (0,1 with > ., a; =1 We can find perfect
and permutation matrices P, Po, ..., P such that: matchings in a

bipartite graph in
A = 041P1 OéQPQ OékPk. O(‘ /VE)
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Proof that BvN exists

We got one permutation from Hall’s theorem; its coefficient? Then, others by induction

1: A = A

2: fOI’jZl,...dO

3: find a permutation matrix P, C AG—1)

4:  the minimum element of AU~ at the nonzero positions of P;1s o
3

At step 5, we subtract the same value from each row and column sum,

hence
1

1l — «

A (7)

is doubly stochastic, and has at least one less nonzero. Continue
until we have a single permutation matrix (7 entries only).
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BVN is not unique
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BVN decomposition with min. terms

INPUT: A doubly stochastic matrix A.

OutpuT: A Birkhoff-von Neumann decomposition of A as
A = OélPl -+ OéQPQ i OékPk.

MEASURE: The number & of permutation matrices in the decomposition.

* This problem is NP-hard; not fixed parameter tractable (in k’).
* Design and analyze heuristics.
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Known results

An upper bound on minimum £

Marcus-Ree Theorem ('59): for a dense matrix there are
decompositions where E<n®—2n+2

* can be seen using Carathéeodory’s theorem (1911): if a point x of
lies In the convex hull of a set P, then x can be written as the
convex combination of at most d+1 points in P.

For sparse matrices: L <nnz—2n+ 2
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Known results

A lower bound on minimum A

A set U of positions of the nonzeros of A is called strongly stable [Brualdi, 79|:
if for each permutation matrix P C A, py; = 1 for at most one pair (k,1) € U.

Lemma 1. Let A be a doubly stochastic matrixz. Then, in a BuN decomposition
of A, there are at least v(A) permutation matrices, where v(A) is the marimum
cardinality of a strongly stable set of positions of A.

For example: v(A) > the maximum number of nonzeros in a row or a column

of A
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Known results

A lower bound on minimum A

v(A) > the maximum number of nonze-

ros in a row or a column of A i i i i
X X X X

Brualdi,’82] shows that for any integer X X X X

t with 1 <t < [n/2|[(n+1)/2], there <

exists an n X n doubly stochastic matrix . i .

A such that y(A) = t.
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Heuristics



Heuristics: Generalized Birkhoff heuristic

Finding A = o1 P1 + a9Pos + -+ - + 1. Py..

1: AD = A

2: for 9 =1,...do

3:  find a permutation matrix P; C AG—D)

4:  the minimum element of AU~Y at the nonzero positions of P is
5

Birkhofl’s heuristic: Remove the smallest element
» Let 1 be the smallest nonzero of AU—1).
» A step 3, find a perfect matching in the graph of AU—Y containing u.
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Heuristics: Greedy

1: A = A

2: for y =1,... do

3: find a permutation matrix P, C AG—1)

4:  the minimum element of AU~1 at the nonzero positions of P ;18 «
3

Greedy heuristic: Get the maximum «; at every step
» At step 3, among all perfect matchings in AU~1 find one whose
minimum element is the maximum.

Bottleneck perfect matching: efficient implementations exist [Duff & Koster,’01].
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Some experiments (Comparing Birkhoff vs Greedy)

7: the number of nonzeros in a matrix. dy.«: the maximum number of
nonzeros In a row or a column.

Birkhotf Greedy
matrix n T dmax Zf:l Qj k Zf;l Qj k
aftO1 8205  125b67 21 0.16 2000 1.00 120
bcspwrl0 5300 21342 14 0.38 2000 1.00 63
EX6 6545 295680 48 0.03 2000 1.00 @ 226
flowmeter0 | 9669 67391 11 0.51 2000 1.00 58
fxm3_6 5026 94026 129 0.13 2000 1.00 @ 383
g3rmt3m3 | 5357 207695 48 0.05 2000 1.00 223
mplate 5062 142190 36 0.03 2000 1.00 @ 153
n3c6-b7 6435 51480 3 1.00 3 1.00 3
olm5000 5000 19996 6 0.75 283 1.00 14
s2rmqgd4ml | 5439 263351 54 0.00 2000 1.00 208

The heuristics are run to obtain at most 2000 permutation matrices, or
until they accumulated a sum of at least 0.9999 with the coefficients.
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Some explanation

Birkhoff’s performance

I 0 0 O
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Open questions

1. Polytope of solutions

A = Z%Pz‘ A = Zﬁz‘Qz’
A:c-zaiPi—F(l—C)'ZﬂiQi

for 0 < ¢ <1 and the decompositions form a polytope.

Then



Open questions

1. Polytope of solutions

Let A be n x n doubly stochastic, and S(A) be the polytope of all BvN
decompositions of A.

The extreme points of S(A) are the ones that cannot be represented as a
convex combination of the other decompositions.

[Brualdi,'81]}

A heuristic of the generalized Birkhoff family finds an extreme point of
the convex polytope S(A).

Brualdi asks if there are other extreme points of S(A).

We show that there are.
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Open questions

1. Polytope of solutions

al|lb|lc|d]| e f | g h / J
12 (4]8]|16| 32| 64| 128 | 256 | 512

Consider the following matrix whose row sums and column sums are 1023




Open questions

1. Polytope of solutions

a+b d+i1 c+h e+ f+g
e+g a+c b+i1 d+f h+y
A=|f+j e+h d+g b+c a—+i
d+h b+f a+) g+i1 c+e
c+1 g+, e+f a+h b+d

Have a decomposition with a, b, ..., /. No matter in which order, at the
first step we do not annihilate an entry. Not Birkhoftf.
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Open questions

1. Polytope of solutions

* Our proof was computational: With (exponential time) integer linear program
solvers, we have shown that there is no other solution with <=10 permutation
matrices. The solution is thus extreme & optimal.

 Looking for a more analytical/constructive proof than we did.
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Open questions

2. Better heuristics

 Better heuristics with/without approximation guarantees.
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Thank you

http://perso.ens-lyon.fr/bora.ucar/
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