An overview of a problem —A tale of matrices and graphs

Bora Uçar

CNRS and LIP, ENS de Lyon, France

December 2022 @ Univ Heidelberg Visiting Algorithm Engineering Group (Prof. Christian Schulz)

Who am I?

Senior permanent researcher of CNRS, France since Jan'09; working at ENS de Lyon.

Background:

- BSc, MS, and PhD from Bilkent Univ, Ankara, Turkey (Sep'93 Sep'05)
- Post-doc at Emory Univ, Atlanta, USA (Oct'05 Dec'06)
- Post-doc at CERFACS, Toulouse, France (Jan'07 Dec'08); then the current position
- HDR from ENS de Lyon (Sep'19).

Mobility:

• Long visit GaTech, Atlanta, USA (Aug'17 - Jun'18)

What do I do as a researcher?

- Research
 - learn/develop new things, new problems
 - write papers, project proposals
 - write codes and experiments
 - yearly report of activities, research plans ~ every 4 years.
- Journal editor, referee
- Conference organization, refereeing papers
- Service in the lab, department, graduate school
- Teaching

Research

Combinatorial Scientific Computing

Development, application and analysis of combinatorial algorithms to enable scientific and engineering computations

- Parallel, high performance computing with matrices, graph algs.
- Matrices, sparse matrices, graphs...

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 & 0 \\ 0 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

Research

Combinatorial Scientific Computing

...and tensors, sparse tensors, hypergraphs

A sample problem: Birkhoff — von Neumann decomposition

A sample problem

Birkhoff—von Neumann decomposition

Definition:

An $n \times n$ matrix **A** is doubly stochastic $a_{ij} \geq 0$, row sums and column sums are 1.

Permutation matrix: An n × n matrix

with exactly one 1 in each

row and in each column

(other entries are 0)

For a doubly stochastic matrix A

there exist $\alpha_1, \alpha_2, \dots, \alpha_k \in (0, 1]$ with $\sum_{i=1}^k \alpha_i = 1$ and permutation matrices $\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_k$ such that:

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k.$$

BvN decomposition

Applications

- Switch design: connections are established and the traffic from inputs to output is routed (one permutation = one set of connections).
- Similar problem in data center networks.
- Classical applications in assignment problems and economics.
- A (mathematical) tool in linear algebra

Birkhoff—von Neumann decomposition

Proof that BvN exist:
$$\mathbf{A} = \sum \alpha_i \mathbf{P}_i$$

Permutation matrix: An $n \times n$ matrix with exactly one 1 in each row and in each column (other entries are 0)

Perfect matching in $(\mathcal{R} \cup \mathcal{C}, E)$ with $|\mathcal{R}| = |\mathcal{C}| = n$: a set of n edges no two share a common vertex.

Proof that BvN exists (Birkhoff'46)

Hall's mariage theorem (Hall'35):

In a finite bipartite graph G=(XUY, **E**), there is a matching covering all elements of X iff, for all subsets W of X it holds that

$$|W| \leq |Z|$$

with Z = neighbors(W).

...holds for doubly stochastic matrices:

There is always a perfect matching in the bipartite graph of a doubly stochastic matrix.

- $ightharpoonup \sum m_{ij} = |\mathbf{W}|$, as each column sum is 1.
- $ightharpoonup \sum m_{ij} + \sum n_{ij} = |\mathbf{Z}|$, as each row sum is 1.

If $|\mathbf{W}| > |\mathbf{Z}|$, then N must contain negative entries...a contradiction.

A sample problem (recall)

Birkhoff—von Neumann decomposition

Definition:

An $n \times n$ matrix **A** is doubly stochastic $a_{ij} \geq 0$, row sums and column sums are 1.

Permutation matrix: An n × n matrix
with exactly one 1 in each
row and in each column
(other entries are 0)

For a doubly stochastic matrix A

there exist $\alpha_1, \alpha_2, \dots, \alpha_k \in (0, 1]$ with $\sum_{i=1}^k \alpha_i = 1$ and permutation matrices $\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_k$ such that:

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k.$$

We can find perfect matchings in a bipartite graph in $\mathcal{O}(\sqrt{VE})$

Proof that BvN exists

We got one permutation from Hall's theorem; its coefficient? Then, others by induction

- 1: $\mathbf{A}^{(0)} = \mathbf{A}$
- 2: **for** j = 1, ...**do**
- 3: find a permutation matrix $\mathbf{P}_j \subseteq \mathbf{A}^{(j-1)}$
- 4: the minimum element of $\mathbf{A}^{(j-1)}$ at the nonzero positions of \mathbf{P}_j is α_j
- 5: $\mathbf{A}^{(j)} \leftarrow \mathbf{A}^{(j-1)} \alpha_j \mathbf{P}_j$

At step 5, we subtract the same value from each row and column sum, hence

$$\frac{1}{1-\alpha}\mathbf{A}^{(j)}$$

is doubly stochastic, and has at least one less nonzero. Continue until we have a single permutation matrix (*n* entries only).

BvN is not unique

$$=\frac{1}{6}\begin{bmatrix}0&0&0&1\\0&0&1&0\\0&1&0&0\end{bmatrix}+\frac{1}{6}\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}+\frac{2}{6}\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\end{bmatrix}+\frac{2}{6}\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\end{bmatrix}$$

$$=\frac{1}{6}\begin{bmatrix}0&0&0&1\\1&0&0&0\\0&1&0&0\\0&0&1&0\end{bmatrix}+\frac{1}{6}\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\end{bmatrix}+\frac{1}{6}\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}+\frac{1}{6}\begin{bmatrix}0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}+\frac{1}{6}\begin{bmatrix}0&1&0&0\\0&0&1&0\\1&0&0&0\end{bmatrix}$$

BvN decomposition with min. terms

Input: A doubly stochastic matrix A.

Output: A Birkhoff-von Neumann decomposition of A as

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k.$$

MEASURE: The number k of permutation matrices in the decomposition.

- This problem is NP-hard; not fixed parameter tractable (in k).
- Design and analyze heuristics.

Known results

An upper bound on minimum k

Marcus-Ree Theorem ('59): for a dense matrix there are decompositions where $k \le n^2 - 2n + 2$

• can be seen using Carathéodory's theorem (1911): if a point \mathbf{x} of \mathbb{R}^d lies in the convex hull of a set P, then \mathbf{x} can be written as the convex combination of at most d+1 points in P.

For sparse matrices:

$$k \le \text{nnz} - 2n + 2$$

Known results

A lower bound on minimum k

A set U of positions of the nonzeros of \mathbf{A} is called strongly stable [Brualdi,'79]: if for each permutation matrix $\mathbf{P} \subseteq \mathbf{A}$, $p_{kl} = 1$ for at most one pair $(k, l) \in U$.

Lemma 1. Let \mathbf{A} be a doubly stochastic matrix. Then, in a BvN decomposition of \mathbf{A} , there are at least $\gamma(\mathbf{A})$ permutation matrices, where $\gamma(\mathbf{A})$ is the maximum cardinality of a strongly stable set of positions of \mathbf{A} .

For example: $\gamma(\mathbf{A}) \ge$ the maximum number of nonzeros in a row or a column of \mathbf{A}

Known results

A lower bound on minimum k

 $\gamma(\mathbf{A}) \ge$ the maximum number of nonzeros in a row or a column of \mathbf{A}

[Brualdi,'82] shows that for any integer t with $1 \le t \le \lceil n/2 \rceil \lceil (n+1)/2 \rceil$, there exists an $n \times n$ doubly stochastic matrix \mathbf{A} such that $\gamma(\mathbf{A}) = t$.

Heuristics

Heuristics: Generalized Birkhoff heuristic

Finding $\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \cdots + \alpha_k \mathbf{P}_k$.

- 1: $\mathbf{A}^{(0)} = \mathbf{A}$
- 2: **for** j = 1, ...**do**
- 3: find a permutation matrix $\mathbf{P}_i \subseteq \mathbf{A}^{(j-1)}$
- 4: the minimum element of $\mathbf{A}^{(j-1)}$ at the nonzero positions of \mathbf{P}_j is α_j
- 5: $\mathbf{A}^{(j)} \leftarrow \mathbf{A}^{(j-1)} \alpha_j \mathbf{P}_j$

Birkhoff's heuristic: Remove the smallest element

- Let μ be the smallest nonzero of $\mathbf{A}^{(j-1)}$.
- ▶ A step 3, find a perfect matching in the graph of $A^{(j-1)}$ containing μ .

Heuristics: Greedy

```
1: \mathbf{A}^{(0)} = \mathbf{A}

2: \mathbf{for} \ j = 1, \dots \mathbf{do}

3: find a permutation matrix \mathbf{P}_j \subseteq \mathbf{A}^{(j-1)}

4: the minimum element of \mathbf{A}^{(j-1)} at the nonzero positions of \mathbf{P}_j is \alpha_j

5: \mathbf{A}^{(j)} \leftarrow \mathbf{A}^{(j-1)} - \alpha_j \mathbf{P}_j
```

Greedy heuristic: Get the maximum α_i at every step

▶ At step 3, among all perfect matchings in $\mathbf{A}^{(j-1)}$ find one whose minimum element is the maximum.

Bottleneck perfect matching: efficient implementations exist [Duff & Koster,'01].

Some experiments (Comparing Birkhoff vs Greedy)

 τ : the number of nonzeros in a matrix. d_{max} : the maximum number of nonzeros in a row or a column.

				Birkhoff		Greedy	
matrix	n	au	$d_{ m max}$	$\sum_{i=1}^{k} \alpha_i$	k	$\sum_{i=1}^{k} \alpha_i$	k
aft01	8205	125567	21	0.16	2000	1.00	120
bcspwr10	5300	21842	14	0.38	2000	1.00	63
EX6	6545	295680	48	0.03	2000	1.00	226
flowmeter0	9669	67391	11	0.51	2000	1.00	58
$fxm3_6$	5026	94026	129	0.13	2000	1.00	383
g3rmt3m3	5357	207695	48	0.05	2000	1.00	223
mplate	5962	142190	36	0.03	2000	1.00	153
n3c6-b7	6435	51480	8	1.00	8	1.00	8
olm5000	5000	19996	6	0.75	283	1.00	14
s2rmq4m1	5489	263351	54	0.00	2000	1.00	208

The heuristics are run to obtain at most 2000 permutation matrices, or until they accumulated a sum of at least 0.9999 with the coefficients.

Some explanation

Birkhoff's performance

Lemma

The Birkhoff heuristic can obtain decompositions in which the number of permutation matrices is very large.

 $n \ge 3$, Birkhoff obtains n, but optimal is 3.

$$\mathbf{A}^{(0)} = \begin{pmatrix} \mathbf{1} & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \\ 1 & 0 & 0 & 0 & 1 & 4 \\ 4 & \mathbf{1} & 0 & 0 & 0 & 1 \\ 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 0 & 0 & 0 & 1 & 2 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{(4)} = \begin{pmatrix} 0 & \mathbf{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \mathbf{1} \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{(1)} = egin{pmatrix} 0 & 4 & \mathbf{1} & 0 & 0 & 0 \ 0 & \mathbf{1} & 3 & 1 & 0 & 0 \ 0 & 0 & 1 & \mathbf{3} & 1 & 0 \ 0 & 0 & 0 & 1 & \mathbf{3} & 1 \ 1 & 0 & 0 & 0 & 1 & \mathbf{3} \ 4 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 $\mathbf{A}^{(3)} = egin{pmatrix} 0 & \mathbf{3} & 0 & 0 & 0 & 0 \ 0 & \mathbf{3} & 0 & 0 & 0 & 0 \ 0 & 0 & \mathbf{3} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & \mathbf{1} & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 1 \ 2 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$
 $\mathbf{A}^{(5)} = egin{pmatrix} 0 & \mathbf{1} & 0 & 0 & 0 & 0 \ 0 & 0 & \mathbf{1} & 0 & 0 & 0 \ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \ 0 & 0 & 0 & 0 & \mathbf{1} & 0 \ 1 & 0 & 0 & 0 & 0 & \mathbf{1} \ 0 & 0 & 0 & 0 & 0 & \mathbf{1} \end{pmatrix}$

Closing

1. Polytope of solutions

$$\mathbf{A} = \sum \alpha_i \mathbf{P}_i \qquad \mathbf{A} = \sum \beta_i \mathbf{Q}_i$$

Then

$$\mathbf{A} = c \cdot \sum \alpha_i \mathbf{P}_i + (1 - c) \cdot \sum \beta_i \mathbf{Q}_i$$

for $0 \le c \le 1$ and the decompositions form a polytope.

1. Polytope of solutions

Let A be $n \times n$ doubly stochastic, and S(A) be the polytope of all BvN decompositions of A.

The extreme points of S(A) are the ones that cannot be represented as a convex combination of the other decompositions.

[Brualdi,'81]

A heuristic of the generalized Birkhoff family finds an extreme point of the convex polytope S(A).

Brualdi asks if there are other extreme points of S(A).

We show that there are.

1. Polytope of solutions

Consider the following matrix whose row sums and column sums are 1023

$$A = \begin{pmatrix} a+b & d+i & c+h & e+j & f+g \\ e+g & a+c & b+i & d+f & h+j \\ f+j & e+h & d+g & b+c & a+i \\ d+h & b+f & a+j & g+i & c+e \\ c+i & g+j & e+f & a+h & b+d \end{pmatrix}.$$

Generalize with
$$B = \begin{pmatrix} 1023 \cdot I & O \\ O & A \end{pmatrix}$$
.

1. Polytope of solutions

$$A = \begin{pmatrix} a+b & d+i & c+h & e+j & f+g \\ e+g & a+c & b+i & d+f & h+j \\ f+j & e+h & d+g & b+c & a+i \\ d+h & b+f & a+j & g+i & c+e \\ c+i & g+j & e+f & a+h & b+d \end{pmatrix}.$$

Have a decomposition with a, b, \ldots, j . No matter in which order, at the first step we do not annihilate an entry. Not Birkhoff.

1. Polytope of solutions

• Our proof was computational: With (exponential time) integer linear program solvers, we have shown that there is no other solution with <=10 permutation matrices. The solution is thus extreme & optimal.

Looking for a more analytical/constructive proof than we did.

2. Better heuristics

Better heuristics with/without approximation guarantees.

Thank you

http://perso.ens-lyon.fr/bora.ucar/

- R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices, Canadian Mathematical Bulletin 25 (2) (1982) 191–199.
- F. Dufossé and B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications, vol. 497 (2016), 108–115.
- F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar, Further notes on Birkhoff--von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications, 554 (2018), pp. 68–78.