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Abstract. We consider preconditioned Krylov subspace methods for solving large sparse linear
systems under the assumption that the coefficient matrix is a (possibly singular) M -matrix. The
matrices are partitioned into 2×2 block form using graph partitioning. Approximations to the Schur
complement are used to produce various preconditioners of block triangular and block diagonal type.
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used to illustrate the performance of the various preconditioners on singular linear systems arising
from Markov modeling.
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1. Introduction. We consider the solution of (consistent) linear systems Ax =
b, where A ∈ R

N×N is a large, sparse M -matrix. Our main interest is in singular,
homogeneous (b = 0) systems arising from Markov chain modeling; our methods and
results, however, are also applicable in the nonsingular case. The aim of this paper
is to develop and investigate efficient preconditioners for Krylov subspace methods
like GMRES [37] or BiCGStab [42]. Our main focus is on block preconditioners that
are based on Schur complement approximations. Preconditioners of this type have
proven very successful in the context of (generalized) saddle point problems arising in
a variety of applications (see [5]); here we investigate such techniques for M -matrices
and, in particular, for Markov chain problems.

We assume that A is partitioned into 2 × 2 block structure

A =

[

A11 A12

A21 A22

]

,(1.1)

where A11 and A22 are square matrices of size, respectively, n × n and m × m with
N = n + m. Building on the given structure, we consider block upper triangular
preconditioners of the form

MBP =

[

M11 A12

O M22

]

,(1.2)

where M11 is equal to or an approximation of A11, and M22 is an approximation of
the Schur complement of A11 in A, i.e., M22 ≈ A22 − A21A

−1
11 A12. Obviously, block

lower triangular preconditioners of the same type can also be constructed, as well as
block diagonal ones. In any case, the main issue is the choice of the approximations
M11 ≈ A11 and M22 ≈ A22 − A21A

−1
11 A12.
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In the context of saddle-point problems, the 2×2 block structure is mandated by
the application, and the approximation of the Schur complement is usually defined
and interpreted in terms of the application. In contrast, the block preconditioners
investigated in this paper use well-known graph partitioning techniques to define the
block structure, and make use of M -matrix properties to define approximations of the
Schur complement.

For certain approximations of S = A22 − A21A
−1
11 A12, the block triangular pre-

conditioners proposed in this work are akin to the product splitting preconditioners
proposed in [10]. In fact, we experimentally show that in such cases these two types
of preconditioners perform almost the same in terms of convergence rates for a large
number of Markov chain problems from the MARCA collection [40]. However, the
block triangular ones are cheaper to construct and apply than the product splitting
ones.

The paper is organized as follows. We briefly review background material on M -
matrices, discrete Markov chains, graph partitioning, matrix splittings and product
splitting preconditioners in Section 2. We introduce the block triangular precondi-
tioners in Section 3. Section 4 contains materials on partitioning the matrices into
the 2 × 2 block structure (1.1) with an eye to future parallel implementations of the
proposed preconditioners. In Section 5 we investigate the effect of the block triangular
preconditioner under various partitionings, the properties of the 2× 2 block structure
imposed by the graph partitioning, and the performance of the proposed block trian-
gular preconditioners relative to that of some other well-known preconditioners. We
present our conclusions in Section 6.

2. Background. Here we borrow some material mainly from [9, 10, 11, 43]
to provide the reader with a short summary of the concepts and results that are
used in building the proposed preconditioners. We also give a brief description of
graph partitioning by vertex separator, which can be used to obtain the 2 × 2 block
structure (1.1).

2.1. Nonnegative matrices and M-matrices. A matrix AN×N is nonnega-
tive if all of its entries are nonnegative, i.e., A ≥ O if aij ≥ 0 for all 1 ≤ i, j ≤ N .

Any matrix A with nonnegative diagonal entries and nonpositive off-diagonal
entries can be written in the form

A = sI − B, s > 0, B ≥ O .(2.1)

A matrix A of the form (2.1) with s ≥ ρ(B) is called an M -matrix. Here, ρ(B) denotes
the spectral radius of B. If s = ρ(B) then A is singular, otherwise nonsingular. If A
is a nonsingular M -matrix, then A−1 ≥ O.

If A is a singular, irreducible M -matrix, then rank (A) = N − 1 and each k × k
principal square submatrix of A, where 1 ≤ k < N , is a nonsingular M -matrix. If,
furthermore, A is the generator of an ergodic Markov chain (see below), then the Schur
complement Sm×m = A22 − A21A

−1
11 A12 of A11 (cf. (1.1)) is a singular, irreducible

M -matrix with rank m − 1 [9, 29].

2.2. Stationary distribution of ergodic Markov chains. Discrete Markov
chains with large state spaces arise in many applications, including for instance relia-
bility modeling, queuing network analysis, web-based information retrieval, and com-
puter system performance evaluation [41]. As is well known, the long-run behavior
of an ergodic (irreducible) Markov chain is described by the stationary distribution
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vector of the corresponding matrix of transition probabilities. Recall that the sta-
tionary probability distribution vector of a finite, ergodic Markov chain with N × N
transition probability matrix P is the unique 1 × N vector π which satisfies

π = πP, πi > 0 for i = 1, . . . , N,

N
∑

i=1

πi = 1 .(2.2)

Here P is nonnegative (pij ≥ 0 for 1 ≤ i, j ≤ N), row-stochastic (
∑N

j=1
pij = 1 for 1 ≤

i ≤ N), and due to the ergodicity assumption it is irreducible.
The matrix A = I − PT , where I is the N × N identity matrix, is called the

generator of the Markov process. The matrix A is a singular, irreducible M -matrix of
rank N − 1. Letting x = πT and hence xT = xT P , the computation of the stationary
vector reduces to finding a nontrivial solution to the homogeneous linear system

Ax = 0 ,(2.3)

where x ∈ R
N , xi > 0 for i = 1, . . . , N , and

∑N
i=1

xi = 1. Perron–Frobenius the-
ory [11] implies that such a vector exists and is unique.

Due to the very large number N of states typical of many real-world applications,
there has been increasing interest in recent years in developing parallel algorithms for
Markov chain computations; see [4, 6, 12, 24, 27, 30]. Most of the attention so far has
focused on (linear) stationary iterative methods, including block versions of Jacobi
and Gauss–Seidel [12, 27, 30], and on (nonlinear) iterative aggregation/disaggregation
schemes specifically tailored to stochastic matrices [12, 24]. In contrast, comparatively
little work has been done with parallel preconditioned Krylov subspace methods. The
suitability of preconditioned Krylov subspace methods for solving Markov models has
been demonstrated, e.g., in [32, 35], although no discussion of parallelization aspects
was given there. Parallel computing aspects can be found in [6], where a symmetriz-
able stationary iteration (Cimmino’s method) was accelerated using the Conjugate
Gradient method on a Cray T3D, and in [27], where an out-of-core, parallel imple-
mentation of Conjugate Gradient Squared (with no preconditioning) was used to solve
very large Markov models with up to 50 million states. In [9], parallel preconditioners
based on sparse approximate pseudoinverses were used to speed-up the convergence
of BiCGStab, and favorable parallelization results have been reported. In our recent
work [10], we proposed product splitting preconditioners and discussed parallelization
aspects of the proposed preconditioners.

2.3. Stationary iterations and matrix splittings. Consider again the solu-
tion of a linear system of the form Ax = b. The representation A = B −C is called a
splitting if B is nonsingular. A splitting gives rise to the stationary iterative method

xk+1 = Txk + c, k = 0, 1, . . . ,(2.4)

where T = B−1C is called the iteration matrix, c = B−1b, and x0 ∈ R
N is a given

initial vector. The splitting A = B−C is called (i) regular if B−1 ≥ O and C ≥ O [43],
(ii) weak regular if B−1 ≥ O and T ≥ O [11], (iii) an M -splitting if B is an M -matrix
and C ≥ O [38], and (iv) weak nonnegative of the second kind if B−1 ≥ O and
I − AB−1 ≥ O [44]. If A is a nonsingular M -matrix, any of the conditions (i)–(iv)
on the splitting A = B − C is sufficient to ensure the convergence of the stationary
iteration (2.4) to the unique solution of Ax = b, for any choice of the initial vector x0.
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A related approach is defined by the alternating iterations

{

xk+1/2 = M−1
1 N1x

k + M−1
1 b

xk+1 = M−1
2 N2x

k+1/2 + M−1
2 b, k = 0, 1, . . . ,

(2.5)

where A = M1 − N1 = M2 − N2 are splittings of A, and x0 is the initial vector.
The convergence of alternating iterations was analyzed by Benzi and Szyld [7] under
various assumptions on A, including the singular M -matrix case. They constructed a
(possibly non-unique) splitting A = B − C associated with the alternating iterations
(cf. (10) in [7]) with

B−1 = M−1
2 (M1 + M2 − A)M−1

1 .(2.6)

Clearly, the matrix M1 + M2 − A must be nonsingular for (2.6) to be well-defined.

2.4. Product splitting preconditioners. The product splitting precondition-
ers [10] are based on alternating iterations (2.5) defined by two simple preconditioners.
The first preconditioner can be taken to be the well-known block Jacobi precondi-
tioner, i.e.,

MBJ =

[

A11 O
O A22

]

.(2.7)

Note that A11 and A22 are nonsingular M -matrices, and A = MBJ − (MBJ −A) is a
regular splitting (in fact, an M -splitting).

The second preconditioner is given by

MSC =

[

D11 A12

A21 A22

]

,(2.8)

where, D11 6= A11 stands for an approximation of A11. In [10], we take D11 to be the
diagonal matrix formed with the diagonal entries of A11, e.g., D11 = diag(A11). More
generally, D11 is a matrix obtained from A11 by setting off-diagonal entries to zero.
Thus, D11 is a nonsingular M -matrix [43, Theorem 3.12]. The Schur complement
matrix A22 − A21D

−1
11 A12 is therefore well-defined. It is easy to see that if A is a

nonsingular M -matrix, so is A22 − A21D
−1
11 A12; see, e.g., [1]. When A is a singular

irreducible M -matrix, the Schur complement A22 − A21D
−1
11 A12 is a nonsingular M -

matrix under the (very mild) structural conditions given in [9, Theorem 3]. Therefore
MSC is a nonsingular M -matrix and A = MSC − (MSC −A) is an M -splitting (hence,
a regular splitting).

Since both MBJ and MSC define regular splittings, the product preconditioner
MPS given by

M−1
PS = M−1

SC(MBJ + MSC − A)M−1
BJ ,(2.9)

(see (2.6)), implicitly defines a weak regular splitting [7, Theorem 3.4]. Note that
since the matrix

MBJ + MSC − A =

[

D11 O
O A22

]

(2.10)

is invertible, M−1
PS is well-defined, and so is the corresponding splitting of A.
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2.5. Graph partitioning. Given an undirected graph G = (V, E), the problem
of K-way graph partitioning by vertex separator (GPVS) asks for a set of vertices VS of
minimum size whose removal decomposes the graph G into K disconnected subgraphs
with balanced sizes. The problem is NP-hard [13]. Formally, Π = {V1, . . . , VK ; VS}
is a K-way vertex partition by vertex separator VS if the following conditions hold:
Vk ⊂ V and Vk 6= ∅ for 1 ≤ k ≤ K; Vk ∩ Vℓ = ∅ for 1 ≤ k < ℓ ≤ K and Vk ∩ VS = ∅
for 1 ≤ k ≤ K;

⋃

k Vk ∪ VS = V ; there is no edge between vertices lying in two
different parts Vk and Vℓ for 1 ≤ k < ℓ ≤ K; Wmax/Wavg ≤ ǫ, where Wmax is
the maximum part size (defined as maxk |Vk|), Wavg is the average part size (defined
as (|V | − |VS |)/K), and ǫ is a given maximum allowable imbalance ratio. See the
works [2, 14, 20, 21, 25] for applications of the GPVS and heuristics for GPVS.

In the weighted GPVS problem, the vertices of the given undirected graph have
weights. The weight of the separator or a part is defined as the sum of the weights
of the vertices that they contain. The objective of the weighted GPVS problem is
to minimize the weight of the separator while maintaining a balance criterion on the
part weights.

3. Block triangular preconditioners. Let A ∈ R
N×N be an M -matrix, ini-

tially assumed to be nonsingular. Consider a 2 × 2 block structure as in (1.1).
Recall from Section 2 that A11, A22 and the Schur complement of A11 in A, i.e.,
S = A22 − A21A

−1
11 A12 are all M -matrices. Note that if A11 is irreducible, then A−1

11

is dense and so is S; if A11 is reducible (e.g., block diagonal), then S will still be fairly
dense unless the block sizes are very small.

Consider the ideal preconditioner [22, 31]

P0 =

[

A11 A12

O S

]

.(3.1)

It follows from the block LU factorization

A =

[

I O
A21A

−1
11 I

] [

A11 A12

O S

]

= LP0

that AP−1
0 (and therefore P−1

0 A) has the eigenvalue λ = 1 of multiplicity N as
the only point in the spectrum. Also, (AP−1

0 − I)2 = (L − I)2 = O which shows
that the minimum polynomial of the preconditioned matrix has degree 2; hence, a
minimal residual method (like GMRES) is guaranteed to converge in at most two
steps. Unfortunately, preconditioning with P0 is impractical. Here, similar to the
situation for saddle point problems, we consider preconditioners obtained by different
approximations of A11 and of S.

We start with the case where A11 is solved “exactly”, while S is replaced by an
approximation Ŝ = A22 − A21M

−1
11 A21 where M−1

11 is an approximate inverse of A11.
If we impose the condition that

O ≤ M−1
11 ≤ A−1

11 (entrywise)(3.2)

then Ŝ is guaranteed to be an M -matrix and invertible if A is invertible; see [1, pp.
263–265]. The condition (3.2) is satisfied (for example) when A11 = M11−(M11−A11)
is an M -splitting. In particular, if M11 = diag(A11) (or any other approximation
obtained by setting any off-diagonal entries of A11 to zero), then the condition (3.2)
is satisfied.
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Assume that linear systems with Ŝ are solved exactly. Then, the preconditioner
is

P1 =

[

A11 A12

O Ŝ

]

.(3.3)

A simple calculation shows that

AP−1
1 =

[

I O

A21A
−1
11 SŜ−1

]

.

Hence, AP−1
1 (or P−1

1 A) has the eigenvalue λ = 1 of multiplicity at least n, while the

remaining m eigenvalues are those of SŜ−1. These m eigenvalues lie in the open disk
centered at (1, 0) of radius 1. To show this, consider the following matrix splitting

A = P1 − (P1 − A) =

[

A11 A12

O Ŝ

]

−

[

O O
−A21 −A21M

−1
11 A12

]

.

Note that this splitting is not a regular splitting, since −A21M
−1
11 A12 ≤ O. However,

we have the following result.
Theorem 3.1. The splitting A = P1 − (P1 − A) is a weak nonnegative splitting

of the second kind.

Proof. Due to the condition (3.2), P1 is an M -matrix, and hence P−1 ≥ O. We
only need to check the nonnegativity of

I − AP−1
1 =

[

O O

−A21A
−1
11 I − SŜ−1

]

.

Clearly −A21A
−1
11 ≥ O (since A21 ≤ O and A−1

11 ≥ O). We need to show I−SŜ−1 ≥ O.
We have

S = A22 − A21A
−1
11 A12

= A22 − A21(A
−1
11 − M−1

11 + M−1
11 )A12

= A22 − A21M
−1
11 A12 − A21(A

−1
11 − M−1

11 )A12

= Ŝ − R ,

where R = A21(A
−1
11 − M−1

11 )A12 is nonnegative, since A−1
11 ≥ M−1

11 (3.2). Recall that

Ŝ is an M -matrix, therefore I − SŜ−1 = (Ŝ − S)Ŝ−1 = RŜ−1 ≥ O.
Since A is an invertible M -matrix and A = P1 − (P1 − A) is a weak nonnegative

splitting of the second kind, it is a convergent splitting: ρ(I − AP−1
1 ) < 1; see [44].

In other words, all the eigenvalues of AP−1
1 or (P−1

1 A) satisfy |λ − 1| < 1. For the
special case M−1

11 = A−1
11 , we have P1 = P0 and σ(AP−1

1 ) = {1}.

In practice, exact solves with A11 or Ŝ may be impractical or not advisable on the
grounds of efficiency or numerical stability. This leads to the following three variants.
The first one is

P2 =

[

Â11 A12

O Ŝ

]

, Â11 ≈ A11 ,(3.4)

where we have inexact solves with A11 and exact solves with Ŝ. We can assume that
A11 = Â11−(Â11−A11) is a regular splitting, or even an M -splitting. Another variant
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is

P3 =

[

A11 A12

O S̃

]

, S̃ ≈ Ŝ ,(3.5)

where we have exact solves with A11 and inexact solves with Ŝ. Here we can assume
that Ŝ = S̃−(S̃− Ŝ) is a regular splitting. P3 can be analyzed exactly like P1. Finally
we consider

P4 =

[

Â11 A12

O S̃

]

, Â11 ≈ A11 , S̃ ≈ Ŝ ,(3.6)

where we can assume that both Â11 and S̃ induce regular splittings of A11 and Ŝ,
respectively. In practice, we use P4 with Â11 and S̃ coming from incomplete LU factor-
izations (ILU) of A11 and Ŝ. Note that unlike position-based ILU’s, threshold-based
ILU’s do not always lead to regular splittings (see Section 10.4.2 in [36]). In general,
however, threshold-based ILUs often perform better than position-based ones, and
the clustering of the eigenvalues of the preconditioned matrices around unity can be
easily controlled by the drop tolerance: the smaller the drop tolerance, the tighter
the cluster around (1,0) can be expected to be. We remark that although in the
nonnormal case the eigenvalue distribution may not govern the rate of convergence of
Krylov subspace methods, it is often the case in practice that a clustered spectrum
(away from zero) results in rapid convergence. More precisely, for residual minimizing
methods (like GMRES), a sufficient condition for fast convergence is that the precon-
ditioned matrix is diagonalizable with well-conditioned eigenvector matrix and with
all of its eigenvalues clustered away from zero; see, e.g., the recent survey [39]. Unfor-
tunately, it is generally very difficult to derive bounds on the condition number of the
eigenvector matrix. Another sufficient condition is that the minimum polynomial of
the preconditioned matrix be of low degree, since such degree is an upper bound on
the number of GMRES steps needed to reach the exact solution. If the preconditioner
is a good approximation of an “ideal” one that yields a preconditioned matrix with a
minimum polynomial of low degree, convergence may be quite fast.

When A is a singular, irreducible M -matrix, then the splittings A = Pi− (Pi−A)
satisfy ρ(I − AP−1

i ) = 1, and the spectrum of AP−1
i will also include the eigenvalue

λ = 0 (for i = 1, . . . , 4). We also note that λ = 0 is a simple eigenvalue, and the
splitting A = Pi − (Pi − A) is semiconvergent, if Ŝ − S contains no zero rows and Ŝ
is irreducible; see [11]. The zero eigenvalue, in any event, does not negatively affect
the convergence of Krylov methods like GMRES; in practice, the only effect is to
introduce a set of (Lebesgue) measure zero of “bad” initial vectors. More precisely,
it follows from the discussion in [17, 23] that the initial vector x0 must not lie in
the column space of the preconditioned matrix. This condition on x0 can be easily
fulfilled, for instance by using a random initial vector.

4. Building the block triangular preconditioner.

4.1. Defining the blocks. The first requirement to be met in permuting the
matrix A into 2×2 block structure (1.1) is that the permutation should be symmetric.
If A is nonsingular or obtained from the transition probability matrix of an irreducible
Markov chain, then a symmetric permutation on the rows and columns of A guarantees
that A11 and A22 are invertible M -matrices.

The second requirement, as already discussed in Section 3, is to keep the order n
of A11 as large as possible to maximize the number of (near) unit eigenvalues of the
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preconditioned matrix (AP−1
i for i = 1, 2, 3, and 4). The requirement is important in

order to have fast convergence of the Krylov subspace method, since m, the size of
A22, is an upper bound on the number of non-unit eigenvalues. Strictly speaking, this
is true only if we assume exact solves in the application of the preconditioner, e.g., for
AP−1

1 . In practice we will use inexact solves, and rather than having n eigenvalues
(or more) exactly equal to 1, there will be a cluster of at least n eigenvalues near the
point (1, 0). Still, we want this cluster to contain as many eigenvalues as possible.

The second requirement is also desirable from the point of view of parallel imple-
mentation. A possible parallelization approach would be constructing and solving the
linear systems with approximate Schur complements on a single processor, and then
solving the linear systems with A11 in parallel. This approach has been taken previ-
ously in parallelizing applications of approximate inverse preconditioners in Markov
chain analysis [9]. Another possible approach would be parallelizing the solution of
the approximate Schur complement systems either by allowing redundancies in the
computations (each processor can form the whole system or a part of it) or by running
a parallel solver on those systems. In both cases, the solution with the approximate
Schur complement system constitutes a serial bottleneck and requires additional stor-
age space.

The third requirement, not necessary for the convergence analysis but crucial for
an efficient implementation, is that A11 should be block diagonal with subblocks of
approximately equal size and density. Given K subblocks in the (1,1) block A11,
the K linear systems stemming from A11 can be solved independently. Meeting this
requirement for a serial implementation will enable solution of very large systems,
since the subblocks can be handled one at a time. In any admissible parallelization,
each of these subblocks would more likely be assigned to a single processor. Therefore,
maintaining balance on the sizes and the densities of the subblocks will relate to
maintaining balance on computational loads of the processors. Furthermore, it is
desirable that the sizes of these subblocks be larger than the order m of A22, if
possible, for the reasons given for the second requirement.

Meeting all of the above three requirements is a very challenging task. Therefore,
as a pragmatic approach we apply well established heuristics for addressing the re-
maining three requirements. As it is common, we adopt the standard undirected graph
model to represent a square matrix AN×N . The vertices of the graph G(A) = (V, E)
correspond to the rows and columns of A and the edges correspond to the nonzeros
of A. The vertex vi ∈ V represents the ith row and the ith column of A, and there
exists an edge (vi, vj) ∈ E if aij and aji are nonzero.

Consider a partitioning Π = {V1, . . . , VK ; VS} of G(A) with vertex separator VS .
The matrix A can be permuted into the 2× 2 block structure (1.1) by permuting the
rows and columns associated with the vertices in

⋃

k Vk before the rows and columns
associated with the vertices in VS . That is, VS defines the rows and columns of the
(2,2) block A22. Notice that the resulting permutation is symmetric, and hence the
first requirement is met. Furthermore, since GPVS tries to minimize the size of the
separator set VS , it tries to minimize the order of the block A22. Therefore, the
permutation induced by Π meets the second requirement as well.

Consider the A11 block defined by the vertices in
⋃

k Vk. The rows and columns
that are associated with the vertices in Vk can be permuted before the rows and
columns associated with the vertices in Vℓ for 1 ≤ k < ℓ ≤ K. Such a permutation
of A11 gives rise to diagonal subblocks. Since we have already constructed A22 using
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VS , we end up with the following structure:

A =















A1 B1

A2 B2

. . .
...

AK BK

C1 C2 · · · CK AS















.

The diagonal blocks A1, . . . , AK correspond to the vertex parts V1, . . . , VK , and there-
fore have approximately the same order. The off-diagonal blocks Bi, Ci represent the
connections between the subgraphs, and the diagonal block AS represents the connec-
tions between nodes in the separator set. Note that if A is nonsingular or obtained
from the transition probability matrix of an irreducible Markov chain, then each
block Ai is a nonsingular M -matrix. Thus, graph partitioning induces a reordering
and block partitioning of the matrix A in the form (1.1) where

A11 = diag(A1, A2, . . . , AK), A22 = AS

and

A12 = [BT
1 BT

2 · · · BT
K ]T , A21 = [C1 C2 · · · CK ] .

Therefore, the permutation induced by the GPVS partially addresses the third re-
quirement. Note that the GPVS formulation ignores the requirement of balancing
the densities of the diagonal subblocks of A11. In fact, obtaining balance on the den-
sities of the diagonal blocks is a complex partitioning requirement that cannot be met
before a partitioning takes place (see [33] for a possible solution) even with a weighted
GPVS formulation.

If the matrix is structurally nonsymmetric, which is common for matrices arising
from Markov chains, then A cannot be modeled with undirected graphs. In this case,
a 2 × 2 block structure can be obtained by partitioning the graph of A + AT .

4.2. Approximating the Schur complement. Recall from Section 3 that
we are interested in approximations of the Schur complement of the form Ŝ = A22 −
A21M

−1
11 A21 where M−1

11 is an approximate inverse of A11 satisfying (3.2). The approx-

imate Schur complement Ŝ is required to be nonsingular. As mentioned in Section 2.4,
this requirement is satisfied under the structural conditions given in [9, Theorem 3].
We found the rather crude approximation M11 = diag(A11) to be quite satisfying. It
is easy to invert and apply, and also it maintains a great deal of sparsity in Ŝ. Apart
from this approximation, we also tried M11 = Â11 with Â11 = L̄11Ū11 (an incomplete
factorization of A11), the same approximation used in the (1,1) blocks of P2 and P4.
This works well in terms of reducing the number of iterations and in all experiments
it delivered the smallest number of iterations; however, this good rate of convergence
came at the price of a prohibitive preconditioner construction overhead, and in a few
cases it failed due to lack of space for Ŝ. In actual computation with both choices of
M11, the Schur complement matrix Ŝ was always observed to be nonsingular.

In an attempt to find a midway, we tried to construct a block diagonal (up to a
symmetric permutation) M11 with 1× 1 and 2× 2 blocks. We create a list of all pairs
〈i, j〉 with i < j and either aij or aji or both are nonzero. Each of these pairs is a

candidate for a 2 × 2 block of the form

[

aii aij

aji ajj

]

. Then we visit the candidates

9



Table 5.1
Properties of the generator matrices.

Matrix number of number of nonzeros
rows/cols total average row col

N row/col min max min max
mutex09 65535 1114079 17.0 16 17 16 17
mutex12 263950 4031310 15.3 9 21 9 21
ncd07 62196 420036 6.8 2 7 2 7
ncd10 176851 1207051 6.8 2 7 2 7
qnatm06 79220 533120 6.7 3 9 4 7
qnatm07 130068 875896 6.7 3 9 4 7
tcomm16 13671 67381 4.9 2 5 2 5
tcomm20 17081 84211 4.9 2 5 2 5
twod08 66177 263425 4.0 2 4 2 4
twod10 263169 1050625 4.0 2 4 2 4

in the descending order of the determinants of the corresponding 2× 2 blocks, where
the determinant of the pair 〈i, j〉 is computed using aiiajj − aijaji. At candidate
〈i, j〉, if both i and j are not included in any 2 × 2 block, we form the corresponding
2 × 2 block. Otherwise, we proceed to the next candidate. Any row i (and hence
column) that is not included in a 2 × 2 block defines a 1 × 1 block aii in M11. Note
that this greedy algorithm tries to maximize the minimum of the determinants of the
2 × 2 blocks in M11 and hence tries to yield a well-conditioned matrix M11 without
any attempt to maximize the number of those blocks. Similar algorithms were used
in [18, 19] in preconditioning indefinite systems and were found to be useful. In our
case, however, this choice of M11 did not improve upon the simple diagonal one.

5. Numerical experiments. In this section, we report on experimental results
obtained with a Matlab 7.1.0 implementation on a 2.2 GHz dual core AMD Opteron
Processor 875 with 4GB main memory. The main goal was to test the proposed
block preconditioners and to compare them with a few other techniques, including
the product splitting preconditioner [10]. The Krylov method used was GMRES [37].
For completeness we performed experiments with the stationary iterations correspond-
ing to the various splittings (without GMRES acceleration), but they were found to
converge too slowly to be competitive with preconditioned GMRES. Therefore, we do
not show these results.

The various methods were tested on the generator matrices of some Markov chain
models provided in the MARCA (MARkov Chain Analyzer) collection [40]. The
models are discussed in [16, 32, 34] and have been used to compare different solution
methods in [9, 10, 15] and elsewhere. These matrices are infinitesimal generators
of time-continuous Markov chains, but can be easily converted (as we did) to the
form A = I − PT , with P row-stochastic, so that A corresponds to a discrete-time
Markov chain, known as the embedded Markov chain; see [41, Chapter 1.4.3]. The
preconditioning techniques described in this paper can be applied to either form of
the generator matrix.

We performed a large number of tests on numerous matrices; here we present a
selection of results for a few test matrices, chosen to be representative of our overall
findings. Table 5.1 displays the properties of the chosen test matrices. Each matrix
is named by its family followed by its index in the family. For example, mutex09
refers to the 9th matrix in the mutex family. The matrices from the mutex and ncd

families are structurally symmetric, the matrices from the qnatm and twod families
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are structurally nonsymmetric, and the matrices from the tcomm family are very close
to being structurally symmetric—the nonzero patterns of tcomm20 and tcomm16 differ
from the nonzero patterns of their transposes in only 60 locations.

We compared the block preconditioner (BT) with the block Jacobi (BJ), block
Gauss-Seidel (BGS), block successive overrelaxation (BSOR), and product splitting
(PS) preconditioners. The block Gauss-Seidel (BGS) and the block successive over-
relaxation (BSOR) preconditioners are given, respectively, by

MBGS =

[

A11 A12

O A22

]

or MBGS =

[

A11 O
A21 A22

]

,

MBSOR =

[

1

ω A11 A12

O 1

ωA22

]

or MBSOR =

[

1

ω A11 O
A21

1

ω A22

]

.

In agreement with previously reported results [15] on the MARCA collection, we
observed that ω = 1.0 (which reduces the BSOR to BGS) or very close to 1.0 is nearly
always the best choice of the relaxation parameter for BSOR. We also observed that
for most MARCA problems, the block lower triangular versions of the BGS and BSOR
preconditioners are indistinguishable from the block upper triangular versions under
either the storage or performance criteria. Therefore, we report only the experiments
with the upper triangular BGS preconditioner.

As discussed for instance in [22, 31], the ideal block triangular preconditioner P0

has a natural block diagonal (BD) counterpart, namely

MBD =

[

A11 O
O S

]

.

As in P0, exact solutions with MBD is not feasible. Therefore, we replace A11 and
the Schur complement S with approximations, as in P4, and compare the BT precon-
ditioners with the corresponding inexact BD as well.

5.1. Observations on the block preconditioners. We partitioned the matrix
into the 2×2 block structure (1.1) using Metis [26] library. We recursively applied the
Metis function MlevelNodeBisectionMultiple using the default options prescribed
for METIS NodeND [26]. In all cases, the partitioning time is negligible compared to the
solve time. For the structurally symmetric mutex and ncd matrices, we used the graph
of A, and for the other matrices we used the graph of A+AT as mentioned in Section 4.
As discussed in Section 4, we maintain balance on the size, rather than the densities,
of the subblocks of A11. We have conducted experiments with K = 2, 4, 8, 16, and 32
subblocks in the (1,1) block. For each K value, K-way partitioning of a test matrix
constitutes a partitioning instance. Since Metis incorporates randomized algorithms,
it was run 10 times starting from different random seeds for each partitioning instance
with a maximum allowable imbalance ratio of 25%. In all partitioning instances
except the mutex matrices, the imbalance ratios among the parts were within the
specified limit. The following tables give the average of these 10 different runs for
each partitioning instance.

Only the mutex matrices have a large number of rows in the second row block, i.e.,
a large separator among all partitioning instances. For these matrices, the average
part size is larger than the size of the separator set only in K = 2-way partitioning.
For the other matrices, the average part size is larger than the size of the separator in
all partitioning instances with K = 2, 4, 8, and 16 except in K = 16-way partitioning
of ncd07, ncd10, and qnatm06, giving the average figures in Table 5.2.
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Table 5.2
Properties of the partitions and the induced block structures averaged over all matrices excluding

mutex matrices. The column “sep” refers to the number of rows in the 2nd row block of A normalized
by the number of rows in A, i.e., m/N ; the column “part” refers to the average part size normalized
by the number of rows in A, i.e., (n/K)/N ; the columns Aij for i, j = 1, 2 refer to the number of
nonzeros in the (i, j) block normalized by the number of nonzeros in A, i.e., nnz(Aij)/nnz(A).

K Partition Blocks
sep part A11 A12 A21 A22

2 0.008 0.496 0.986 0.006 0.006 0.002
4 0.016 0.246 0.971 0.012 0.012 0.004
8 0.028 0.121 0.951 0.021 0.021 0.007
16 0.045 0.060 0.921 0.034 0.034 0.012
32 0.068 0.029 0.881 0.051 0.051 0.017

We have conducted experiments with block triangular preconditioners P1 through
P4. A somewhat surprising find is that those variants requiring exact solves with
A11, e.g., P1 and P3, besides being rather expensive (as expected), are prone to
numerical instabilities. By this we mean that at least one block Ak in A11 was found
to have an upper triangular factor U with a huge condition number, causing the
convergence of GMRES to deteriorate. (The unit lower triangular factor is always
well-conditioned for the problems considered here.) We encountered this difficulty
with all test matrices and for all values of K, except for the qnatm matrices. This
phenomenon can be explained by noting that the diagonal blocks Ak, while guaranteed
to be nonsingular, are often close to singular, in particular when A is nearly reducible;
see [29]. Hence, the corresponding upper triangular factor must have an exceedingly
small pivot, and consequently its inverse must have a huge norm. This problem
disappears when the complete factorizations of the diagonal blocks Ak are replaced
by incomplete ones. This is not surprising: it has been shown in [28] that in an
incomplete factorization of an M -matrix, the pivots (i.e., the diagonal entries of the
upper triangular factor) cannot become smaller, and in practice they always increase.
As a result, the condition number of the incomplete upper triangular factor is several
orders of magnitude smaller than that of the complete factor, and no instabilities
arise. Therefore, we have the somewhat unexpected conclusion that in practice inexact
solvers result in greater robustness and faster convergence than exact ones.

For these reasons we do not present results with P1 and P3. In addition, P2 has
a large construction overhead due to exact factorization of Ŝ and did not perform
better than P4 in reducing the number of iterations. Therefore, in the following
we present results only with P4. We tried all three approximations of the Schur
complement discussed in Section 4.2 with the block triangular preconditioner P4.
The one with block diagonal M11 with 1 × 1 and 2 × 2 blocks did not improve upon
the simple diagonal one. Therefore, we omit the results with this choice of M11. The
one with M11 = Â11 has very large memory requirements; for example, it was not
possible to run it with the mutex matrices. Therefore, it is not recommended as a
general purpose solution. However, it merits presenting because it gives the smallest
number of iterations and has fairly robust behavior with respect to increasing K
(see Table 5.3). In the following discussion, BT thus refers to the block triangular
preconditioner P4:

P4 =

[

Â11 A12

O S̃

]

, Â11 ≈ A11 , S̃ ≈ Ŝ = A22 − A21M
−1
11 A12 ,

where M11 = diag(A11).
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Table 5.3
Data pertaining to the P4 preconditioner with S̃ ≈ Ŝ = A22 −A21(L̄11Ū11)−1A12. The column

“its” refers to the average number of iterations, “dens” refers to the total number of nonzeros in
the matrices appearing in preconditioner solve phase of P4 divided by the number of nonzeros in the
generator matrices, “prec” refers to the time spent in constructing the preconditioners, and “solve”
refers to the time spent during GMRES iterations.

Matrix K its dens Total time
prec solve

ncd07 2 11 1.11 29.19 1.11
4 12 1.23 14.86 1.16
8 12 1.20 16.87 1.25
16 13 1.18 20.26 1.35
32 13 1.18 20.50 1.46

ncd10 2 11 1.10 187.40 3.68
4 11 1.13 120.63 4.29
8 12 1.12 99.12 4.14
16 13 1.14 81.39 4.31
32 13 1.12 95.72 4.51

qnatm06 2 35 2.97 45.86 6.07
4 35 2.65 43.09 6.21
8 37 2.61 37.19 6.57
16 38 2.49 31.51 6.85
32 40 2.48 31.73 7.66

qnatm07 2 39 2.99 86.45 11.66
4 40 2.58 96.43 12.50
8 42 2.59 84.09 12.88
16 42 2.52 69.27 13.05
32 45 2.49 73.82 14.32

tcomm16 2 14 3.03 0.38 0.24
4 16 2.47 0.60 0.24
8 19 2.13 0.84 0.29
16 26 2.01 1.27 0.40
32 25 1.93 1.64 0.40

tcomm20 2 16 2.93 0.48 0.34
4 19 2.24 0.73 0.35
8 22 2.17 1.02 0.42
16 30 2.09 1.51 0.61
32 28 1.99 2.23 0.59

twod08 2 10 2.24 7.20 0.91
4 12 2.30 12.18 1.03
8 17 3.05 17.17 1.56
16 18 2.77 18.68 1.63
32 18 2.87 26.38 1.68

twod10 2 17 4.64 156.29 8.71
4 18 4.63 163.76 8.60
8 20 5.11 190.06 9.51
16 21 5.01 199.50 10.30
32 23 4.37 229.49 10.50

Each subblock Ak, for k = 1, . . . , K, of A11 and the (2,2) block A22 in the BJ and
BGS preconditioners were ordered using symmetric reverse Cuthill-McKee (for better
numerical properties; see [8]) and factored using the incomplete LU factorization
(ILUTH) with threshold parameter τ = 0.01 for the qnatm matrices and τ = 0.001 for
the other matrices. The threshold of 0.001 was too small for the qnatm matrices: the
resulting preconditioners had 8 times more nonzeros than the generator matrices. We
observed that reordering the approximate Schur complement matrix causes ILUTH
to take too much time (presumably due to the need for pivoting), but reduces the
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Table 5.4
The densities of the preconditioners, i.e., the total number of nonzeros in the matrices appearing

in the preconditioner solve phase divided by the number of nonzeros in the corresponding generator
matrices.

Matrix K Preconditioners
BJ BD BGS PS BT

mutex09 2 1.30 1.52 1.48 2.00 1.70
4 0.78 1.24 1.06 1.99 1.52
8 0.51 1.18 0.86 2.07 1.52
16 0.36 1.14 0.73 2.11 1.51
32 0.30 1.16 0.69 2.17 1.55

mutex12 2 1.87 2.06 2.06 2.53 2.25
4 0.83 1.21 1.14 1.92 1.51
8 0.45 0.96 0.82 1.82 1.33
16 0.29 0.90 0.70 1.83 1.31
32 0.23 0.89 0.66 1.85 1.32

ncd07 2 1.09 1.10 1.11 1.28 1.11
4 1.18 1.19 1.21 1.40 1.21
8 1.11 1.13 1.16 1.38 1.17
16 1.05 1.07 1.11 1.37 1.13
32 0.99 1.03 1.08 1.38 1.12

ncd10 2 1.08 1.08 1.09 1.26 1.09
4 1.09 1.10 1.11 1.30 1.12
8 1.05 1.06 1.09 1.29 1.10
16 1.04 1.06 1.09 1.33 1.11
32 0.99 1.01 1.06 1.32 1.08

qnatm06 2 2.94 2.95 2.95 3.13 2.96
4 2.58 2.61 2.60 2.81 2.63
8 2.46 2.52 2.50 2.76 2.55
16 2.25 2.33 2.30 2.63 2.39
32 2.10 2.23 2.18 2.59 2.31

qnatm07 2 2.97 2.98 2.98 3.15 2.98
4 2.52 2.54 2.53 2.73 2.56
8 2.48 2.52 2.51 2.75 2.55
16 2.34 2.40 2.38 2.67 2.44
32 2.20 2.30 2.27 2.62 2.36

tcomm16 2 3.03 3.03 3.03 3.24 3.03
4 2.45 2.45 2.46 2.67 2.46
8 2.09 2.09 2.10 2.33 2.10
16 1.91 1.93 1.94 2.20 1.95
32 1.76 1.78 1.80 2.10 1.82

tcomm20 2 2.93 2.93 2.93 3.14 2.93
4 2.22 2.23 2.23 2.44 2.23
8 2.13 2.14 2.14 2.37 2.15
16 2.01 2.02 2.03 2.28 2.04
32 1.83 1.84 1.86 2.16 1.88

twod08 2 2.24 2.24 2.24 2.49 2.24
4 2.26 2.26 2.27 2.53 2.27
8 2.98 2.98 2.99 3.26 2.99
16 2.65 2.66 2.66 2.95 2.67
32 2.70 2.71 2.72 3.03 2.73

twod10 2 4.64 4.64 4.64 4.89 4.64
4 4.60 4.60 4.61 4.86 4.61
8 5.06 5.06 5.06 5.33 5.07
16 4.92 4.92 4.92 5.20 4.93
32 4.24 4.25 4.25 4.53 4.26

number of nonzeros in the factors only by a small amount. Therefore, the approximate
Schur complement matrices were factored using ILUTH without any prior ordering.

The densities of the preconditioners, i.e., the number of nonzeros in the matri-
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ces appearing in the preconditioner solve phase divided by the number of nonzeros
in the corresponding generator matrices, are given in Table 5.4. As seen from the
table, memory requirements of the BT preconditioners are less than those of the PS
preconditioners and comparable to those of the three, relatively simple, “classical”
preconditioners.

5.2. Performance comparisons. The underlying Krylov subspace method was
GMRES, restarted every 50 iterations (if needed). Right preconditioning was used in
all the tests. The stopping criterion was set as

‖rk‖2/‖r0‖2 < 10−10 ,

where rk is the residual at the kth iteration and r0 is the initial residual. In all
cases, the initial solution is set to the one-vector normalized to have an ℓ1-norm of
1.0. We allowed at most 250 iterations, i.e., 5 restarts, for the GMRES iteration.
Therefore, the number 250 in the following tables marks the cases in which GMRES
failed to deliver solutions with the prescribed accuracy within 250 iterations. Iteration
counts for GMRES(50) on the various test matrices with no permutation or precon-
ditioning (GMRES) and averages of the iteration counts with the preconditioners BJ,
BD, BGS, PS and BT are given in Table 5.5. Note that without preconditioning,
GMRES(50) converges only for the mutex matrices. In all instances, preconditioned
GMRES(50) with the PS and the proposed BT preconditioners converged under the
stopping criterion given above. Preconditioned GMRES(50) with BJ, BD, and BGS
did not converge in, respectively, 103, 141, and 8 of the 500 instances. The largest
of the ℓ1-norms of the residuals corresponding to the approximate solutions returned
by the preconditioned GMRES(50) were less than 1.1e-11 for the converged instances
with the BGS, PS, and BT preconditioners. With the BJ and BD preconditioners, the
largest of the ℓ1-norms of the residuals corresponding to the approximate solutions
returned by the preconditioned GMRES(50) was 4.6e-10.

As seen from Table 5.5, the PS and BT preconditioners perform consistently
better than the BJ, BD, and BGS preconditioners. The proposed BT preconditioner
performs almost as well as the PS preconditioner, and it outperforms the BGS one
by a factor of two, on the average, in terms of iteration counts, at the expense of a
slight increase in memory requirements (see Table 5.4).

We close this section by discussing running times for GMRES. The running times
are measured using Matlab’s cputime command, and these measurements are given
in Tables 5.6 and 5.7 in units of seconds. In Table 5.6, the total time for GMRES
without preconditioning is the total time spent in performing the GMRES iterations.
In both of the tables, the total time for the preconditioned GMRES is dissected into
the preconditioner construction and the solve phases. We first discuss the case of
mutex matrices, since all the preconditioners lead to convergence for these matrices.
In all partitioning instances of the mutex matrices, the solve phase time with the
proposed BT preconditioner is less than those with the other preconditioners. On
the other hand, the total running time of BGS preconditioner is always the minimum
except in K = 32-way partitioning of these two mutex matrices, in which case BJ gives
the minimum total running time. We observe that the mutex matrices are the worst
case for the construction of the BD, PS, and BT preconditioners, since the size of the
separator set is very large already for K = 2, thus forming the Schur complement is
very time-consuming. Note that PS and BT also suffer from the cost of copying the
large A12 blocks (and A21 in PS).
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Table 5.5
Average number of iterations to reduce the ℓ2-norm of the initial residual by ten orders of

magnitude using GMRES(50) with at most 5 restarts. The number 250 means that the method did
not converge in 250 iterations.

Matrix GMRES Preconditioned GMRES
K Preconditioners

BJ BD BGS PS BT
mutex09 97 2 24 24 13 9 9

4 27 27 14 9 9
8 28 28 14 8 9

16 29 30 15 9 9
32 29 30 15 9 9

mutex12 91 2 26 27 14 8 10
4 28 29 15 8 9
8 28 29 15 8 9

16 29 31 16 7 9
32 30 31 16 7 8

ncd07 250 2 40 68 23 12 12
4 212 250 87 13 13
8 222 250 101 15 15

16 243 250 129 16 16
32 250 250 192 18 18

ncd10 250 2 122 168 57 14 15
4 160 250 47 15 15
8 244 250 105 15 15

16 250 250 145 18 17
32 250 250 215 19 19

qnatm06 250 2 60 60 38 36 36
4 78 83 41 36 36
8 104 119 46 39 39

16 177 181 55 43 43
32 223 250 83 46 47

qnatm07 250 2 51 56 40 39 39
4 83 91 44 41 41
8 110 138 51 44 44

16 163 186 74 47 47
32 232 246 92 55 56

tcomm16 250 2 30 30 18 16 16
4 48 51 27 21 21
8 112 131 39 29 30

16 250 250 85 42 42
32 250 250 105 46 46

tcomm20 250 2 33 34 20 18 18
4 55 61 29 23 23
8 132 157 43 32 32

16 247 250 94 44 44
32 250 250 221 96 98

twod08 250 2 28 27 15 10 10
4 41 40 22 13 13
8 49 48 25 18 18

16 59 61 29 24 24
32 92 93 36 29 30

twod10 250 2 38 38 21 18 18
4 47 47 26 21 21
8 58 58 30 24 25

16 77 78 35 28 29
32 94 94 39 32 32

Table 5.7 contains the running times of the preconditioned GMRES with the BGS,
PS, and BT preconditioners for the larger matrices in each matrix family. As seen
from the table, for these matrices (whose partitions have small separators) the precon-

16



Table 5.6

Running times (in seconds) for GMRES(50) without preconditioning (GMRES column) and
with BJ, BD, BGS, PS, and BT preconditioning for the mutex matrices.

Matrix GMRES Preconditioned GMRES

Total K Total time

time Preconditioner const Solve

Solve BJ BD BGS PS BT BJ BD BGS PS BT

mutex09 7.0 2 3.55 4.28 3.60 4.53 4.30 3.55 3.94 1.82 1.96 1.42

4 1.39 2.84 1.52 3.33 2.95 3.45 4.23 1.82 2.37 1.51

8 0.78 2.92 1.04 3.67 3.16 3.19 4.45 1.99 2.86 1.72

16 0.51 3.15 1.06 4.44 3.62 3.22 4.80 2.60 3.94 2.07

32 0.48 3.28 1.45 5.47 4.16 2.95 4.83 3.63 5.54 2.82

mutex12 27.2 2 17.75 20.61 17.95 21.75 20.72 17.69 19.42 9.18 8.07 7.23

4 5.06 10.84 5.49 12.63 11.10 14.76 18.59 8.05 8.29 6.21

8 2.44 11.49 3.37 14.58 12.36 12.97 17.87 7.79 9.98 6.46

16 1.74 11.05 3.42 16.11 12.69 11.70 18.89 9.47 12.13 7.47

32 1.59 11.11 4.62 19.81 13.97 11.42 18.83 13.35 17.92 9.13

Table 5.7
Running times (in seconds) for GMRES(50) with BGS, PS, and BT preconditioners for the

larger matrices in each family.

Matrix K Total time
Precond const Solve

BGS PS BT BGS PS BT
ncd10 2 1.18 1.93 1.68 19.40 5.39 4.13

4 1.04 1.99 1.59 15.85 6.16 4.01
8 1.01 2.31 1.58 33.95 7.74 3.85

16 1.01 3.04 1.67 45.84 12.34 4.30
32 1.09 4.55 2.00 71.01 20.82 5.03

qnatm07 2 3.68 4.18 4.04 11.43 13.62 11.20
4 2.34 2.98 2.71 11.69 15.12 11.02
8 1.66 2.53 2.04 13.23 18.73 11.23

16 1.34 2.75 1.84 18.07 26.62 12.13
32 1.30 3.72 1.96 23.85 46.35 14.73

tcomm20 2 0.10 0.13 0.11 0.43 0.50 0.40
4 0.10 0.10 0.10 0.63 0.74 0.50
8 0.10 0.18 0.10 0.93 1.28 0.65

16 0.10 0.20 0.10 1.98 2.47 0.97
32 0.10 0.30 0.10 5.01 8.30 2.21

twod10 2 7.04 7.92 7.64 10.46 10.90 8.89
4 6.65 7.55 7.15 12.85 14.32 10.43
8 4.95 6.47 5.64 14.41 18.83 11.17

16 4.09 6.43 4.89 16.78 30.60 13.00
32 3.02 7.17 4.18 18.27 53.05 13.82

ditioner construction phase times are always smaller than the solve phase times with
all preconditioners. Although the construction phase times with the BGS precondi-
tioners are always smaller than those with the BT preconditioner, BT preconditioner
is faster than BGS in all instances. Note that the ith iteration of GMRES after a
restart requires i inner product computations with vectors of length N [3]. Therefore,
the performance gains in the solve phase with the BT preconditioners are not only
due to the savings in preconditioner solves and matrix-vector multiplies, but also due
to the savings in the inner product computations. Recall from Table 5.5 that the
number of iterations with the BT and and PS preconditioners are almost the same.
However, the BT preconditioner is always faster than the PS preconditioner.

6. Conclusions. We have investigated block triangular preconditioning strate-
gies for M -matrices, with an emphasis on the singular systems arising from Markov

17



chain modeling. These preconditioners require a 2× 2 block partitioning and suitable
Schur complement approximations. The resulting preconditioner can be applied ex-
actly or inexactly, leading to several possible variants, including block diagonal ones.

Numerical experiments with preconditioned GMRES using test matrices from
MARCA allowed us to identify the most efficient variant and to rule out some of the
others. Block triangular preconditioning with inexact solves obtained by means of
(local) ILUTH factorizations was found to be superior to several other approaches,
including block diagonal, block Gauss–Seidel, and product splitting preconditioning.
Furthermore, the numerical experiments indicate that, for most problems, the number
of iterations grows slowly with the number of parts (subdomains). This suggests that
the inexact block triangular preconditioner should perform very well in a parallel
implementation.
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