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Abstract

We consider the problem of scheduling an application on a computing system consisting of heterogeneous processors and data repositories.
The application consists of a large number of file-sharing otherwise independent tasks. The files initially reside on the repositories. The
processors and the repositories are connected through a heterogeneous interconnection network. Our aim is to assign the tasks to the processors,
to schedule the file transfers from the repositories, and to schedule the executions of tasks on each processor in such a way that the turnaround
time is minimized. We propose a heuristic composed of three phases: initial task assignment, task assignment refinement, and execution
ordering. We experimentally compare the proposed heuristics with three well-known heuristics on a large number of problem instances. The
proposed heuristic runs considerably faster than the existing heuristics and obtains 10–14% better turnaround times than the best of the three
existing heuristics.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this work, we propose heuristic algorithms for schedul-
ing an application on a heterogeneous computing system. The
application is composed of a large number of independent but
file-sharing tasks. The computing system consists of heteroge-
neous processors and data repositories that store input files. The
repositories are decoupled from the processors. The processors
are connected to the repositories through a heterogeneous in-
terconnection network. Our aim is to schedule the task execu-
tions on processors and to schedule the input file transfers in
such a way that the turnaround time, i.e., the completion time
of the application is minimized. Recently, similar scheduling
frameworks have been studied [14,15,20–23,26,28] for the Grid
environments.
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By file sharing, we mean that an input file may be requested
by a number of tasks. Files are assumed to be stored in data
repositories without replication, e.g., each file is stored in a
particular repository. Once the tasks are assigned to the pro-
cessors, the files should be transfered from the repositories to
the processors. A task execution can start after its input files
are delivered to the respective processor. We assume that once
a file is transfered to a processor, it can be used by all tasks as-
signed to the same processor without any additional cost. The
network interconnecting the repositories and the processors is
heterogeneous, i.e., the costs of transferring a certain file be-
tween different source and destination pairs are not necessar-
ily equal. We work under the one-port communication model,
i.e., a data repository or a processor can, respectively, send or
receive at most one file at a given time. In order to minimize
the turnaround time, the scheduler must decide the task-to-
processor assignment, the order of file transfers, and the order
of task executions on each processor.

We review some recent works and state the contributions of
the current manuscript in Section 2. The application and com-
puting models which characterize the target scheduling problem
are discussed in Section 3. The proposed scheduling heuristic
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is presented in Section 4. Section 5 contains experimental as-
sessment of the proposed heuristics.

2. Related work and contributions

This work is based on the works of Casanova et al. [14,15],
Giersch et al. [20–23], Kaya and Aykanat [26], and Khanna
et al. [28]. Below, we review these works and highlight our
contributions.

2.1. Single repository: master–slave platforms

Casanova et al. [14,15] consider task scheduling for AppLeS
Parameter Sweep Template (APST) applications [10]. APST
applications have large number of tasks which share input data
files. The scheduling problem is to assign the tasks to hetero-
geneous processors, to schedule the file transfers from a sin-
gle master, and to schedule the executions of the tasks in each
processor to minimize the turnaround time. They propose three
well-known heuristics MinMin, MaxMin and Sufferage. These
three heuristics are extensions of the methods proposed in [32]
for scheduling independent tasks. For a given set of tasks to be
scheduled, these three heuristics compute the minimum com-
pletion time (MCT) of each task over the processors to find
the best processor for each task. Then, the execution of a task
on a processor—selected according to a task selection policy—
and the file transfers of the task to the respective processor
are scheduled. Upon scheduling a task and the associated file
transfers, these heuristics continue with the remaining tasks.
For the MinMin heuristic, the task selection policy is to choose
the task with the minimum MCT. For the MaxMin heuristic,
the policy is to choose the task with the maximum MCT. Task
selection operation for the Sufferage heuristic requires comput-
ing not only the MCT but also the second minimum completion
time (SMCT) for each task. The difference between the SMCT
and MCT values is defined as the sufferage value of the task
when it is not assigned to its best processor. For the Sufferage
heuristic, the task selection policy is to choose the task with
the maximum sufferage value.

Giersch et al. [20,23] propose another family of heuristics
for the same scheduling problem. These heuristics reduce the
time complexity of the aforementioned heuristics by an order
of magnitude without degrading the solution qualities. The pro-
posed heuristics create a list of tasks for each processor and
sort these lists according to an objective function. Giersch et al.
propose six objective functions which are formulated by differ-
ent combinations of the computation and communication costs.
The computation cost is defined as the time required for the ex-
ecution of a task on a processor, and the communication cost is
defined as the time required for transferring the files required
by a task to a processor. The communication and computation
objective functions are defined as the communication and com-
putation costs, respectively; the duration objective function is
defined as the sum of computation and communication costs;
the payoff objective function is defined as the ratio of the com-
putation cost to the communication cost; the advance objective
function is defined as the difference between the computation

and communication costs. For the communication, computa-
tion, and duration objective functions, the tasks are sorted in the
increasing order of their objective values. For the advance and
payoff objective functions, the tasks are sorted in the decreas-
ing order of their objective values. The sixth objective func-
tion applies Johnson’s algorithm (see [20]) in which the tasks
whose communication costs are smaller than their computation
costs are scheduled in the increasing order of communication
costs, and the other tasks are scheduled in the decreasing or-
der of computation costs. After creating and sorting a list of
tasks for each processor, the tasks are scheduled one by one.
The completion time of the first task in each processor’s list is
computed and a task–processor pair with the MCT is selected
as a part of the schedule. After marking the scheduled task,
the proposed heuristics commence on scheduling the remain-
ing tasks. Note that by computing only one completion time
value for each processor during selecting a task–processor pair,
these heuristics become an order of magnitude faster than the
ones given in [14,15].

All of the aforementioned heuristics are constructive and
are based on greedy choices that depend on momentary com-
pletion times of the tasks. Kaya and Aykanat [26] attack the
same scheduling problem using a different paradigm. In [26],
a hypergraph model is used to represent the tasks, files, and
their interactions, and a hypergraph-partitioning-like formula-
tion is devised for the problem. A three-phase approach which
involves initial task assignment, refinement, and execution or-
dering phases is proposed. In the task assignment phase, the
heuristics proposed in [20,23] are used to obtain an initial as-
signment of tasks to processors. Kaya and Aykanat observe
that the turnaround time cannot be determined from task-to-
processor assignments. However, by proposing lower and upper
bounds on the turnaround time, they relate the turnaround time
to the task-to-processor assignments. Iterative-improvement-
based heuristics are proposed for refining the task assignments
by improving the lower and upper bounds. In the execution or-
dering phase, the order of task executions and hence file trans-
fers are determined by preserving the refined task-to-processor
assignment.

2.2. Multiple repositories

Different from the above works, Giersch et al. [21,22] deal
with a more general scheduling problem. Instead of a master–
slave system, they assume a fully decentralized system com-
posed of servers linked through an interconnection network.
Each server acts both as a file repository and as a computing
node consisting of a cluster of heterogeneous processors. Files
are initially assumed to be stored at one or more repositories.
In addition to the objectives stated above for the master–slave
system, the scheduler has to decide how to route the files from
repositories to other servers. The paper [21] establishes NP-
completeness results for this instance of the scheduling prob-
lem and proposes several practical heuristics. The proposed
heuristics include extensions of the MinMin heuristic, Sufferage
heuristic, and the heuristics presented in the previous works of
the authors [20,23].



K. Kaya et al. / J. Parallel Distrib. Comput. 67 (2007) 271–285 273

Khanna et al. [28] deal with a scheduling problem for a
slightly different computing system. They assume a decoupled
system consisting of processors and storage nodes (reposito-
ries) connected in a local area network. As in the works dis-
cussed above, the application consists of file-sharing otherwise
independent tasks. They assume that the computation time of a
task is a linear function of the total size of the requested files,
and hence the expected execution time of a task can be calcu-
lated as a constant multiple of the total size of the requested
files. This execution time model incorporates the local disk ac-
cess costs in addition to the file transfer and processing costs.
Under these assumptions, the problem addressed in [28] can be
specified as scheduling file-sharing tasks on a set of homoge-
neous processors connected to a set of storage nodes through a
uniform (homogeneous) network. Khanna et al. also use a hy-
pergraph to model the application. They propose a two-stage
strategy for scheduling task executions and file transfers. In
the first stage, they partition the tasks into groups—one group
to be assigned to a processor—using a hypergraph partitioning
tool. In the second stage, they order the tasks in each group and
file transfers from the storage nodes. Due to the homogeneous
processors and network assumptions, hypergraph partitioning
objective and constraint correspond, respectively, to minimiz-
ing total volume of file transfers (excluding local access) and
maintaining a balance on the loads (including I/O) of the pro-
cessors. Khanna et al. report better performance than some ex-
isting heuristics, including MinMin, MaxMin, and Sufferage, on
two real world applications.

2.3. Contributions

In this work, we deal with a scheduling problem for a dis-
tributed system similar to that considered in [28]. We assume
a system consisting of decoupled heterogeneous processors
and repositories linked through a heterogeneous interconnec-
tion network. We extend the three-phase approach of Kaya and
Aykanat [26] to this more involved computing system. In the
initial task assignment phase, we use the heuristics proposed
by Giersch et al. [20,23] as is done in [26]. For the refinement
phase, we define a new lower bound to establish a relation be-
tween a task-to-processor assignment and the turnaround time.
Kaya and Aykanat propose to use a loose upper bound on the
turnaround time. In this work, we define a new objective func-
tion which is likely to induce an upper bound. We also present
appropriate gain functions for the proposed bounds. The ex-
istence of multiple repositories makes the execution ordering
phase more complicated. In a master–slave system, when a task
is determined to be scheduled, all of the necessary file transfers
associated with the task are also scheduled one after another.
That is, the master is never left idle. However, in the target
scheduling problem repositories or processors can be idle, be-
cause of the one-port communication model. Due to the exis-
tence of idle times, a file transfer for a task can be scheduled
between already scheduled transfers. This is an issue for the
extensions of MinMin, Sufferage, and for those presented in
[20,23]. The works [21,28] try to schedule the file transfers by

inserting them at the idle times. We also use this approach for
scheduling the file transfers.

The proposed scheduling heuristic is static in the sense that
the schedule is determined before the execution of the applica-
tion and is kept fixed throughout the execution. However, large
and non-dedicated computing systems may require adapting
the schedule to run-time changes such as processor or link fail-
ures, increases in the workload and network traffic. For these
issues, see [11,19,32]. See [33,34] for different perspectives on
the application of master–slave computing. For many facets of
scheduling for Grid environments, see [9,12,29].

3. Framework

3.1. Application model

The application is defined as a two tuple A = (T , F),
where T = {1, 2, . . . , T } denotes the set of T tasks, and F =
{1, 2, . . . , F } denotes the set of F input files. Each task t de-
pends on a subset of files denoted by files(t); these files should
be delivered to the processor that will execute the task t. We
extend the operator files(·) to a subset of tasks S ⊆ T such
that files(S) = ⋃

t∈S files(t) denotes the set of files that the set
S of tasks depend on. Apart from sharing the input files, there
are no dependencies and interactions among the tasks. The size
of a file f is denoted by w(f ). We extend the operator w(·) to
a subset E ⊆ F of files such that w(E) denotes the total size
of the files in E , i.e., w(E) = ∑

f ∈E w(f ). We use |A| to de-
note the total number of file requests in the application, i.e.,
|A| = ∑

t∈T |files(t)|.
As in [26], we use a hypergraph HA = (T , F) to model the

application A = (T , F). Recall that a hypergraph is defined as
a set of vertices and a set of hyperedges (nets) each of which
contains a subset of vertices [8]. We use T and F to denote,
respectively, the vertex and net sets of the hypergraph. In this
setting, the net corresponding to the file f contains the vertices
that correspond to the tasks depending on f. Fig. 1 contains an
example hypergraph model.

3.2. Computing model

The tasks are to be executed on a heterogeneous system con-
sisting of a set P = {1, 2, . . . , P } of P computing resources,
and a set R = {1, 2, . . . , R} of R repositories. Each comput-
ing resource can be any computing system ranging from a sin-
gle processor workstation to a parallel computer. Throughout
the paper we use processor to refer to any type of comput-
ing resource. The set of files stored on a repository r is de-
noted as F(r). We assume that the files are not duplicated, i.e.,
F(r) ∩ F(s) = ∅ for r �= s. We use store(f ) to denote the
repository which holds the file f.

We use � = {T1, T2, . . . , TP } to denote a partition on the
vertices of the hypergraph HA and hence an assignment of the
tasks to the processors. In other words, we denote the set of
tasks assigned to processor p as Tp. Given a task assignment,
we use �f to denote the set of processors to which the file f is to
be transfered, i.e., �f = {p | f ∈ files(Tp)}. The three dashed
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Fig. 1. Hypergraph model HA = (T , F) for an application with a set of eight
tasks T = {1, 2, . . . , 8} and a set of five files F = {1, 2, . . . , 5}. Vertices are
shown with empty circles and correspond to the tasks; hyperedges (nets) are
shown with filled circles and correspond to the files. File requests are shown
with lines connecting vertices and nets. For example, task t6 needs files f1
and f2 and hence vertex t6 is in the nets f1 and f2. A 3-way partition on
the vertices of the hypergraph is shown with dashed curves encompassing
the vertices.

curves encompassing the vertices in Fig. 1 show a partition on
the vertices of the hypergraph, and hence an assignment of tasks
to processors. For example, the tasks t1 and t2 are assigned to
the processor 1 since the vertices t1 and t2 are in T1.

We assume the one-port model for the file transfers from
the repositories to the processors. In this model, a processor
can receive at most one file, and a repository can send at most
one file at a given time. This model is deemed to be realistic
[5,7,35] and it is prevalent in the scheduling for Grid comput-
ing literature, however, alternatives exist (see [4,13]). Task ex-
ecutions and file transfers can overlap at a processor. That is,
a processor can execute a task while it is downloading a file
for another task. The file transfer operations take place only
between a repository and a processor. We disregard the con-
gestion in the communication network during the file transfers.
In other words, each processor is assumed to be connected to
all repositories through direct communication links. Note that
the resulting topology is a complete bipartite graph (KP×R).
Computing platforms of this topology are called heterogeneous
fork-graphs [20,23] when R = 1. Such complete graph models
are used to abstract wide-area networking infrastructures [13].
The network heterogeneity is modelled by assigning different
bandwidth values to the links between the repositories and the
processors. We use brp to represent the bandwidth from the
repository r to the processor p. We use the linear cost model
[6,13] for file transfers, i.e., transferring the file f from the repos-
itory r to the processor p takes w(f )

brp
time units. Fig. 2 displays

the essential properties of the computing system.
The task and processor heterogeneity are modelled by in-

corporating different execution costs for each task on different
processors. The execution-time values of the tasks are stored in
a T × P expected time to compute (ETC) matrix. We use xtp

to denote the execution time of the task t on the processor p.
The ETC matrices are classified into two categories [1]. In the
consistent ETC matrices, there is a special structure which im-
plies that if a machine has a lower execution time than another

Fig. 2. Computing system.

machine for some task, then the same is true for other tasks.
The inconsistent ETC matrices have no such special structure.
In this work, we adopt inconsistent ETC matrices as they can
model a variety of computing systems and applications that
arise in Grid environments.

3.3. Objective function

The cost of a schedule is the turnaround time, i.e., the length
of the time interval whose start and end points are defined by
the start of the first file transfer operation and the completion
of the last task execution, respectively. Therefore, the objec-
tive of the scheduling problem is to assign the tasks to proces-
sors, to determine the order in which the files are transfered
from the repositories to the processors, and to determine the
task execution order on each processor in order to minimize
the turnaround time. Given that scheduling file-sharing tasks
on heterogeneous master–slave systems is NP complete [20],
the NP completeness of the target scheduling problem follows
easily.

4. Proposed scheduling heuristic

We propose a heuristic consisting of three phases. In the first
phase, we find five initial task-to-processor assignments us-
ing the objective functions proposed in [20,23]. In the second
phase, we refine these five assignments independently. These
first two phases determine five task-to-processor assignments.
In the third phase, the order of task executions and file trans-
fers are determined for each of the five task-to-processor as-
signments found in the second phase and the best schedule is
returned as the solution.

The reason behind constructing and refining task-to-
processor assignments rather than complete schedules is given
by Kaya and Aykanat [26] as follows. A refinement method
which uses task reassignments to improve the turnaround time
would have a global perturbation on the given schedule. This
is because removing a task from a processor and scheduling
it among the previously scheduled tasks of other processors
affects the initialization and completion times of executions
of all waiting tasks [26]. Such a global effect leads to a huge
neighborhood definition. Exploring the search space under a
huge neighborhood definition is time consuming. More im-
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portantly, an iterative-improvement method will most likely
stuck to a part of the search space and will hardly find paths to
improve the turnaround time. Therefore, a task reassignment-
based refinement method focusing on the turnaround time of
a schedule does not seem effective (see [2, Section 3]). With
this reasoning, Kaya and Aykanat propose the refinement of
task-to-processor assignments to pave the way for efficient
schedules. We follow the same approach here.

4.1. Phase 1: initial task assignment

In this phase, we use the previously proposed constructive
heuristics [20,23] to find an initial task-to-processor assign-
ment. These heuristics were originally developed for creating a
schedule for a set of file-sharing tasks on heterogeneous master–
slave systems. We have modified these heuristics to handle mul-
tiple data repositories and implemented them in such a way
that their outputs are task-to-processor assignments rather than
complete schedules.

Recall from Section 2.1 that the heuristics proposed by Gier-
sch et al. [20,23] create a list of tasks for each processor sorted
with respect to one of the five (except Johnson’s algorithm)
objective functions. Then, a task–processor pair with the MCT
is selected among the first tasks in the processors’ lists. Upon
selecting the task–processor pair, the execution of the task on
the selected processor and the transfer of the files needed by
the task are scheduled. These steps are repeated on the reduced
lists of the processors until all of the tasks are scheduled.

Determining the MCT of a task on a processor requires
scheduling the associated file transfers. This scheduling prob-
lem is known as the communication scheduling with respect
to a history problem, and it is NP-complete [21]. The intricacy
of the problem stems from the fact that both the repositories
and the processors may have idle times in their time lines, be-
cause of the one-port communication model. A solution method
should schedule the remaining file transfers wisely to fill or
reduce these idle times.

Since scheduling the file transfer operations is NP-complete,
we resort to the heuristics similar to the insertion scheduling
methods used in [21]. We maintain a list of free time intervals
for each repository and processor. The last interval starts from
the end of the last file transfer operation and extends to infinity.
When the transfer of a file f is to be scheduled from a repository
r to a processor p, we intersect the free-time intervals of r and
p and find an interval [is , if ] that can accommodate w(f )/brp

time units, and mark the interval [is , is + w(f )/brp] in both
lists as used. We follow the first fit approach, i.e., allocate the
earliest time interval in which f can be transfered from r to p.

Time complexity: Selecting a task–processor pair requires P
completion time calculations. For each f ∈ files(t), we inter-
sect the interval lists of the processor p and the repository that
stores f. Each intersection takes at most FP

R
+ F time, since a

repository’s interval list can contain at most FP
R

intervals, and
a processor’s interval list can contain at most F intervals. Since
the intervals are in sorted order, the intersection can be com-
puted in time linearly proportional to the cardinalities of the
interval lists. Therefore, completion time calculation for a task

t and a processor p requires
∑

f ∈files(t) O(FP
R

) time. Hence, the
time complexity of initial task assignment phase is

T∑
t=1

P∑
p=1

∑
f ∈files(t)

O

(
FP

R

)
=

T∑
t=1

∑
f ∈files(t)

O

(
P

FP

R

)

= O

(
P 2 F

R
|A|
)

.

4.2. Phase 2: refining task assignments

In this phase, we refine the task-to-processor assignments ob-
tained in the first phase by using the approach proposed by Kaya
and Aykanat [26]. Their approach is to define a lower bound
and an upper bound on the turnaround time under a given task-
to-processor assignment, and then to try to close the gap be-
tween these bounds. A crucial point in this approach is that the
perturbations in the solutions (task-to-processor assignments)
are local under the task reassignment operation and therefore
the objective functions (e.g., the lower and upper bounds) are
smooth over the search space.

4.2.1. Bounds on the turnaround time
Given a task-to-processor assignment �, we identify

three different cost components that are associated with the
turnaround time. These are

• CompTime(�): Parallel task execution time. In particular,
this is the maximum task execution time spent by a single
processor.

• UploadTime(�): File transfer cost from the repositories’per-
spective. In particular, this is the maximum file transfer time
spent by a single repository.

• DownloadTime(�): File transfer cost from the processors’
perspective. In particular, this is the maximum file download
time spent by a single processor.

Since the assignment � is clear from the context, we drop � in
the following text. We now formulate these cost components.
Recall that Tp and xtp denote the set of tasks assigned to the
processor p and the execution cost of task t on processor p. The
total execution time of the processor p is

Xp =
∑
t∈Tp

xtp.

Hence, the parallel execution time is

CompTime = max
p

{
Xp

}
. (1)

Suppose that the file f is stored in the repository r, i.e.,
store(f ) = r . Recall that �f denotes the set of processors to
which file f is to be uploaded. The time spent by the repository
r on transferring the file f is

Upload(f ) = w(f )
∑

p∈�f

1

brp

.
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For each repository r, we define the total upload time Ur as the
summation of Upload(f ) costs over all files stored in r, i.e.,

Ur =
∑

f ∈F(r)

Upload(f ).

Since the files can be transfered in parallel, with an optimistic
view, the maximum upload time spent by a single repository is

UploadTime = max
r

{Ur} . (2)

The time spent by the processor p on downloading the file f is

Download(f, p) = w(f )

bstore(f ),p

.

Recall that files(Tp) = ⋃
t∈Tp

files(t) is the set of files to be
transfered to processor p. For each processor p, we define the
total download time Dp as the summation of Download(f, p)

costs over all files that are needed by the tasks assigned to the
processor p, i.e.,

Dp =
∑

f ∈files(Tp)

Download(f, p).

Since the files can be downloaded in parallel, with an optimistic
view, the maximum download time spent by a single processor
is

DownloadTime = max
p

{
Dp

}
. (3)

Although the three cost components given in Eqs. (1)–(3)
do not represent the turnaround time, they are closely related
to it. By using these components, we can define lower and
upper bounds on the turnaround time. First, observe that the
turnaround time cannot be less than any of these components.
Therefore, a lower bound on the turnaround time is

LBTime = max {CompTime, UploadTime, DownloadTime} .

(4)

Furthermore, these components can be used to define an
upper bound. A trivial upper bound is

UBTime =
∑
f ∈F

Upload(f ) + CompTime.

This bound is too pessimistic to be useful; it states that task
executions start after all files have been transfered to the pro-
cessors, where there are no concurrent file transfers. We think
that it is hard to define a tighter upper bound that is smooth
over the search space generated by task reassignments. There-
fore, we define an objective function which is estimated to be
an upper bound. By assuming concurrent transfers, we obtain

EstUBTime = max{UploadTime, DownloadTime}
+ CompTime, (5)

which is likely to be an upper bound on the turnaround time.
Note that this is an estimation, since it is not guaranteed to be
an upper bound. This objective function is a combination of
the aforementioned optimistic and pessimistic views. It expects

full parallelism among the file transfers and no overlap among
the task executions and file transfers.

4.2.2. Improving the bounds
We propose an iterative-improvement heuristic to im-

prove the LBTime and EstUBTime objective functions. The
heuristic is based on Fidducia–Mattheyses (FM) [18] refine-
ment heuristic used for graph and hypergraph partitioning
[3,16,24,25,27,30,37]. The FM algorithm, starting from an
initial partition, performs a number of passes until it finds a
locally optimal partition, where each pass contains a sequence
of vertex moves. The fundamental idea is the notion of gain,
which is the decrease in the cost of a partition achieved by
moving a vertex to another part. The FM algorithm was ini-
tially proposed for refining 2-way graph/hypergraph partitions
[18] and then extended for refining multiway graph/hypergraph
partitions [36].

In general, vertex movements are performed starting from
the one with the maximum gain. Meanwhile, moves with neg-
ative gain values are performed tentatively to enable limited
hill climbing. However, maintaining the necessary data struc-
tures for the multiway refinement is a time consuming opera-
tion [36,37]. Therefore, the FM passes for the multiway refine-
ment are usually performed as follows. The vertices are visited
according to a random order, and the best moves of the vertices
with positive gain are performed [25]. Here, the best move of
a vertex is defined as the one with the maximum gain.

Recall that we have two different objective functions,
LBTime and EstUBTime. As in our previous work [26], our
aim is to close the gap between these two bounds while mini-
mizing both of them. For this purpose, we use an alternating
refinement scheme in which first LBTime and then EstUBTime
are improved repeatedly until there exists no improvement in
these two bounds.

Since we have two bounds to improve, a task reassignment
which improves one of these functions may worsen the other
one. To solve this problem, we use the two-level gain approach
proposed in [26] which modifies the gain concept as follows.
The two-level gain scheme determines the best reassignment
associated with a task by considering one of the bounds as
the primary objective while considering the other bound as
the secondary one. For each task, among the reassignments
with positive gains in the primary objective, we choose the
one with the maximum gain in the secondary objective. We
adopt this modification in improving the LBTime as the primary
objective. Since EstUBTime is only an estimation, we refine it
without the two-level gain approach. This latter scheme gives
more freedom in EstUBTime refinement and provides the future
LBTime refinements with a larger search space to explore.

The objective functions LBTime and EstUBTime depend
highly on the communication cost incurred by the file trans-
fers. If a file f is required to be transfered to a processor p for
only one task, reassigning that task from p to another proces-
sor will save the cost of transfering f to p. We call such files as
critical to the processor p and maintain a list of such critical
file and processor pairs. The critical file concept corresponds
to the critical net concept in hypergraph partitioning.
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Fig. 3. Algorithm for improving LBTime objective.

LBTime-refinement: Fig. 3 displays the LBTime-refinement
heuristic. The heuristic first finds the values of the variables
C1, C2, and C3 that are used to refer to the three cost compo-
nents. The variable C1 refers to the maximum of UploadTime,
DownloadTime, and CompTime, i.e., LBTime = C1. The vari-
able C2 refers to the cost component which in conjunction with
C1 defines EstUBTime = C1 + C2, e.g., if C1 is CompTime,
C2 will be the maximum of UploadTime and DownloadTime,
otherwise it will be CompTime (see Eq. (5)). Effectively, C1
becomes the primary objective, and C1 + C2 becomes the sec-
ondary one. The heuristics run until the cost component that
defines LBTime changes. If the largest cost component C1 is
the UploadTime, then a randomly permuted list of tasks that
request files from the bottleneck repository is constructed. Oth-
erwise, a randomly permuted list of tasks that are assigned to
the bottleneck processor is constructed. For the sake of run
time efficiency, the visit orders are constructed using only the
tasks that are associated with the bottleneck repositories and
processors.

The procedure LB−ComputeGain(t, C1, C2) computes the
reassignment gains associated with task t and returns the re-
assignment with positive gain in the primary objective C1 and
the maximum gain in the secondary objective C1 +C2. If such
a reassignment is found, the task is reassigned from its current
owner p = Assign(t) to a new processor q.

The gain computations for the cost components are per-
formed as follows. Let X(2) denote the execution time of the
processor with the second maximum task execution time. Then,
the gain of reassigning the task t from a bottleneck processor
p to processor q is

gcomp(t, p, q) = min

⎧⎨
⎩

xtp

Xp − X(2)

Xp − (Xq + xtq)

⎫⎬
⎭ , (6)

according to the objective CompTime. The first argument out
of the three, xtp, corresponds to the case in which the proces-
sor p remains to be the bottleneck processor after the reassign-
ment. The second argument Xp −X(2) corresponds to the case
in which Xq < X(2) and the second bottleneck processor be-
fore the reassignment becomes the bottleneck processor after-
wards. The third argument Xp − (Xq + xtq) handles the cases

in which processor q becomes the bottleneck processor after
the reassignment.

Let D(2) denote the download cost on the processor with
the second maximum file download time. Then, the gain of
reassigning task t from a bottleneck processor p to processor q
is

gdownload(t, p, q)

= min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
f ∈critical(files(t),p)

w(f )
bstore(f ),p

Dp − D(2)

Dp −
(

Dq + ∑
f ∈notNeeded(files(t),q)

w(f )
bstore(f ),q

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(7)

according to the objective DownloadTime. The first argument
corresponds to the case in which the processor p remains to
be the bottleneck processor after the reassignment. In this ar-
gument, the set critical(files(t), p) contains the files that are
needed by task t and are critical to the processor p before the re-
assignment. The second argument Dp−D(2) corresponds to the
case in which Dq < D(2) and the second bottleneck processor
before the reassignment becomes the bottleneck processor af-
terwards. The third argument handles the cases in which proces-
sor q becomes the bottleneck processor after the reassignment.
In this argument, the set notNeeded(files(t), q) contains those
files of task t that are not needed by any task in Tq before the
reassignment. Note that the set of files notNeeded(files(t), q)

become critical to processor q after the reassignment.
Let U(1) denote the upload cost of the repository with the

maximum file upload time. Then, the gain of reassigning task
t from the processor p to processor q is

gupload(t, p, q)

= U(1) − max
r

⎧⎪⎨
⎪⎩

Ur − ∑
f ∈critical(files(t)∩F(r),p)

w(f )
brp

+ ∑
f ∈notNeeded(files(t)∩F(r),q)

w(f )
brq

⎫⎪⎬
⎪⎭ ,

(8)

according to the objective UploadTime. Here, U(1) gives the
bottleneck value before the reassignment. The maxr{·} corre-
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Fig. 4. Algorithm for improving EstUBTime objective.

sponds to the bottleneck value upon realizing the reassignment.
The set files(t) ∩ F(r) contains those files that are needed by
task t and are stored in repository r. Reassigning task t changes
the upload times of the repositories in which files(t) are stored.
The first summation corresponds to the decrease in the upload
time of the repository r due to relieving r of transferring the
critical files of t to processor p. The second summation corre-
sponds to the increase in the upload time of the repository r
due to the files in the set notNeeded(files(t), q).

The procedure UpdateGlobalData(t, q) computes the new
loads of the repositories and the processors, and it keeps track
of the changes in the cost components that define LBTime and
EstUBTime. It also maintains the identities of the repositories
and the processors that attain the maximum and the second
maximum load in terms of the three cost components.

EstUBTime-refinement: The EstUBTime-refinement heuris-
tic (see Fig. 4) is similar to the LBTime-refinement heuristic
with a few differences. This procedure visits all tasks in a ran-
dom order and computes the reassignment gains of the tasks
as the total gain obtained for the cost components that define
EstUBTime. For example, gcomp(t, p, q)+gdownload(t, p, q) is
computed as the gain of reassigning the task t from processor
p to processor q, if EstUBTime is defined by CompTime and
DownloadTime. Here, gcomp(t, p, q) and gdownload(t, p, q) are
computed according to Eqs. (6) and (7), respectively. The best
reassignment of a task is realized if the total gain is nonnegative.
The procedure adapts itself to the cost components that define
the EstUBTime and discards the tasks that are not associated
with the bottleneck cost components. Observe that the Comp-
Time is always one of the bottleneck cost components and the
other may change because of the tasks reassignments through-
out the execution of the EstUBTime-Refinement procedure.

Time complexity: A refinement pass consists of an LBTime-
refinement and an EstUBTime-refinement. We apply three
refinement passes. We run the LBTime-refinement and
EstUBTime-refinement heuristics with at most five iterations of
the while loops (see line 2 of Figs. 3 and 4). Therefore, the time
complexity of the refinement pass is linearly proportional to
the time complexities of LBTime-refinement and EstUBTime-
refinement (although with a relatively high constant). Both
in LBTime-refinement and EstUBTime-refinement, comput-

ing the best gain for a task t takes O(P |files(t)|) time, and
updating global data takes O(|files(t)| + P + R) time. There-
fore, the overall time complexity of an LBTime-refinement or
EstUBTime-refinement pass is∑

t∈T
O(P |files(t)| + |files(t)| + P + R)

= O(P |A| + T (P + R)).

4.3. Phase 3: determining task execution orderings

In this phase, we generate a complete solution for the
scheduling problem. All of the five task-to-processor assign-
ments obtained in the second phase are kept intact while
determining the schedules of the file transfers and the order
of task executions on each processor. Note that CompTime,
UploadTime, and DownloadTime and hence the values of the
LBTime and EstUBTime computed in the second phase remain
as is (for each task-to-processor assignment).

We again utilize the structure of the heuristics proposed by
Giersch et al. [20,23]. We have modified those heuristics in or-
der to keep the task-to-processor assignments fixed while deter-
mining the order of the task executions and file transfers. Fig.
5 displays the execution ordering heuristic for a given task-to-
processor assignment �. The structure of the execution order-
ing heuristic is similar to the scheduling heuristics proposed in
[20,23,26].

For each processor, we build a list of tasks sorted according
to the objective values OBJECTIVE(t, p) computed using the
five functions proposed in [20,23] and discussed in Section
2.1. Then, we extract the first task in the list of the processor
which is determined according to the processor selection rule.
We then schedule the file transfers associated with the current
task using the heuristic discussed in Section 4.1 and determine
the task’s earliest start-up time. When the transfer of file f is
scheduled, the earliest start-up time of the tasks that need f are
updated. When all file transfers are scheduled and hence the
earliest start-up times of the tasks are determined, we schedule
the executions of the tasks according to the earliest start-up
times on each processor. Note that using five different objective
functions for each of the five task-to-processor assignments
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Fig. 5. Algorithm for scheduling file transfers and determining execution orders.

found in the second phase enables us to return the best out of
25 complete schedules as a solution.

We propose two rules for selecting a processor in line 6 of
Fig. 5 to schedule a file transfer. The first rule is to select the
processor which has the largest execution time defined in terms
of the tasks that have files to be scheduled. The second one is
to select the processor which requires the largest file download
time defined in terms of those yet to be scheduled. To maximize
the probability of overlap between file transfers and task exe-
cutions, it is better to produce a schedule with a small number
of idle processors throughout the execution of the application.
Therefore, applying the first rule is more promising, because
it tries to balance the remaining loads of the processors. The
second rule greedily delivers files to the processor which has
the largest file download time. To apply these selection rules,
we maintain two variables for each processor which initially
hold the total file download time and the total execution time
of the respective processor. For each scheduled file, we update
these two variables appropriately to apply the processor selec-
tion rule in line 6 of Fig. 5.

Time complexity: The first four initialization steps take
O(T + |A| + T log T ) time. The while loop runs for T
iterations. At each iteration, the files of a task are sched-
uled. As in Section 4.1, scheduling the files of a task t takes∑

f ∈files(t) O
(

FP
R

)
time. The for loop in line 10 of Fig. 5

appends an additive term which sums up to O(P |A|) in the
overall execution. Therefore, the complexity of the execution
ordering phase is

T∑
t=1

∑
f ∈files(t)

O

(
FP

R

)
= O

(
FP

R
|A|
)

.

5. Simulations

We generate synthetic applications and computing platforms
to create a large number of scheduling problems. We have been

careful in generating the instances to be representative of real
life applications and platforms. Below, we first describe how
we went about creating the instances. Then, we investigate the
performance of the proposed heuristics on these instances by
computing the turnaround time by means of simulations.

5.1. Generating application instances

We generated applications with T = 3000 tasks and F =
3000 files. The file sizes were random integers ranging from
50 Mbytes to 70 Gbytes. Following our previous work [26], we
generated the task execution times as follows. We randomly
chose mid-rank supercomputers from the Top500 list [17]. As
the Top500 list uses the LINPACK benchmark, we assume that the
individual tasks are instances of the same problem consuming
approximately (2/3)n3 floating point operations for an instance
of size n. The benchmark values Flopsmax, nmax and n1/2 of
the selected supercomputers were used to generate realistic task
execution times. Here, Flopsmax of a processor denotes the
maximum processor performance, in terms of FLOPS, that can
be achieved for a task of size greater than or equal to nmax,
and n1/2 represents the problem size for which half of the
Flopsmax is achieved. Therefore, the performance variation of
a processor p for a task of size n can be approximated with a
piecewise linear function Flopsp(n) as shown in Fig. 6. Thus,
the estimated execution time of a task t with instance size n on
a processor p can be computed as xtp = (2/3)n3/Flopsp(n).
For each task, the size n was randomly chosen from the range
[10 000–35 000].

We generated three groups of problem instances in which the
number of files requested by a task was in the range [1–5] or
[1–10] or [1–20]. We use f1–5, f1–10, and f1–20 to denote these
three choices. These choices enable us to generate problem
instances in which the levels of file sharing among the tasks are
low, medium, and high. Besides, large number of files requested
by a task increases the probability of a task requesting files
from a number of repositories. This in turn results in harder
problem instances. Initial distribution of files to repositories is
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n
n
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n
1/2

Fig. 6. The piecewise linear function to estimate task execution times on a
processor p [26].

built randomly; repositories store almost equal number of files
regardless of the stored files’ sizes.

Communication-to-computation ratio � of an application is
defined as the ratio of the average communication cost to the
average computation cost, i.e., � = cavg/xavg, where

cavg = (1/R)

T∑
t=1

R∑
r=1

(1/br)w (files(t) ∩ F(r)) ,

xavg = (1/P )

T∑
t=1

P∑
p=1

xtp.

Here, br represents the average bandwidth from the repository
r to the processors, i.e., br = 1

P

∑
p brp. We scaled file sizes

to obtain five different ratios � = 0.1, 0.2, 1.0, 5.0, and 10.0.
These choices characterize a range of applications starting from
computation intensive (� = 0.1) to communication intensive
(� = 10.0) ones.

5.2. Generating computing system

We used GridG network topology generator [31] for creating
a heterogeneous system with P = 32 processors and up to nine
data repositories. Although GridG generates large and realis-
tic network topologies that follow the power laws of Internet
topology, we used only a portion of the GridG’s output to de-
sign the computing systems. For a given number of repositories
R, we randomly chose R of the nine routers as the repositories.
Then, for each repository–processor pair, we assumed a direct
connection with a bandwidth equal to the lowest bandwidth of
the path whose slowest link has the highest bandwidth among
the alternatives. The bandwidths of the communication links
between repositories and processors were in between 10 Mbit/s
and 1 Gbit/s.

5.3. Results

Table 1 summarizes the results of the experiments conducted
to validate the relation between the objective functions pro-
posed for refining task assignments and the turnaround time.

The values in the table were derived by using the schedul-
ing heuristics individually in the initial task assignment phase
as follows: for each heuristic used, the amount of decrease
achieved in both LBTime and EstUBTime during the refine-
ment phase were normalized with respect to the amount of the
resulting decrease in the turnaround time. That is, these values
display the amount of improvements needed in LBTime and
EstUBTime to attain one unit of improvement in the turnaround
time. As seen in Table 1, close to one unit (between 0.97 and
1.29) of improvements are needed in LBTime, whereas the re-
quired improvement in EstUBTime is in between 1.28 and 4.42.
This shows that the EstUBTime is not a tight upper bound on
the turnaround time in the problem instances that we consider.
We think that it is hard to come up with a tighter upper bound
without considering the order of file transfers and task exe-
cutions. However, different and tighter estimations would in-
crease the efficiency of the proposed heuristic in terms of the
turnaround time.

Recall from Sections 4.1 and 4.3 that we use the five objec-
tive functions of Giersch et al. [20,23] in the initial task assign-
ment and execution phases. That is, we return the best out of
25 different schedules. We observed that the returned schedules
are mostly constructed by using the objective functions compu-
tation, duration, and communication in the initial assignment
phase. For � = 10.0, almost half of the returned solutions are
constructed by using duration, and for � = 0.1 almost one-
third of the returned solutions are constructed by using compu-
tation. Additionally, we found the payoff and communication
functions to be superior to the others in the execution ordering
phase. For � = 0.1, the number of solutions obtained by using
communication in the execution ordering phase is larger than
those obtained by using the other functions. For the other �
values, the number of solutions obtained by using payoff in the
execution ordering phase is larger than those obtained by us-
ing the other functions. In the light of above observations, we
recommend the use of duration objective function in the initial
assignment phase, and the use of payoff objective function in
the execution ordering phase when � is large. For small values
of �, we recommend the use of computation objective function
in the initial assignment phase, and the use of communication
objective function in the execution ordering phase.

Recall from Section 4.3 that we have two rules to select a
processor to schedule a file transfer in the execution ordering
phase of the proposed heuristic. The first rule—selecting the
processor which has the largest execution cost defined in terms
of the tasks that have file transfers to be scheduled—led to
better schedules than the second rule for all � values in almost
all instances.

5.3.1. Performance
We implemented extensions of the MinMin, MaxMin, and

Sufferage heuristics for the scheduling problem at hand. The
proposed iterative-improvement-based scheduling heuristic for
the distributed repositories is referred to here as MIIS. Tables
2–4 show the results of the experiments conducted to compare
the performance of MIIS with those of MinMin, MaxMin, and
Sufferage. For each scheduling instance consisting of a � and R
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Table 1
The amount of improvements in LBTime and EstUBTime objective values required to obtain one unit of improvement in the turnaround time, i.e.,
�(LBTime)/�(TurnaroundTime) and �(EstUBTime)/�(TurnaroundTime), respectively. Here, �(Obj) is the difference between Obj values after the first and
the third phases of the proposed heuristic

Heuristic used in Phase 1 LBTime EstUBTime

f1–5 f1–10 f1–20 f1–5 f1–10 f1–20

Duration 0.989 0.997 1.273 1.807 1.699 2.994
Payoff 1.031 1.059 1.160 1.949 2.061 3.443
Advance 1.036 1.162 1.287 1.951 2.238 4.423
Communication 1.004 1.018 1.191 2.014 1.880 3.151
Computation 0.992 0.973 1.051 1.673 1.275 2.097

Table 2
Averages of the relative performances of the heuristics normalized with respect to the best solutions for the scheduling instance with tasks requesting 1–5 files

� R MinMin MaxMin Sufferage MIIS

0.1 1 1.216 1.341 1.103 1.004
2 1.141 1.454 1.027 1.011
3 1.114 1.548 1.005 1.016
4 1.097 1.605 1.041 1.000
5 1.094 1.674 1.036 1.002
6 1.085 1.735 1.051 1.001
7 1.079 1.789 1.056 1.001
8 1.070 1.758 1.075 1.000

0.2 1 1.383 1.558 1.224 1.000
2 1.346 1.788 1.241 1.000
3 1.262 1.838 1.148 1.000
4 1.217 1.924 1.172 1.000
5 1.177 2.028 1.150 1.000
6 1.153 2.083 1.153 1.000
7 1.130 2.087 1.133 1.000
8 1.117 2.079 1.127 1.000

1.0 1 1.147 1.487 1.122 1.000
2 1.162 1.616 1.094 1.000
3 1.109 1.584 1.045 1.000
4 1.117 1.662 1.049 1.003
5 1.099 1.636 1.043 1.000
6 1.092 1.678 1.045 1.000
7 1.095 1.668 1.052 1.000
8 1.078 1.636 1.088 1.000

5.0 1 1.129 1.581 1.161 1.000
2 1.173 1.518 1.021 1.026
3 1.125 1.455 1.015 1.022
4 1.097 1.488 1.030 1.005
5 1.088 1.441 1.067 1.003
6 1.077 1.452 1.075 1.000
7 1.083 1.456 1.112 1.000
8 1.090 1.491 1.136 1.000

10.0 1 1.153 1.560 1.185 1.010
2 1.136 1.419 1.000 1.047
3 1.120 1.393 1.026 1.009
4 1.093 1.432 1.057 1.001
5 1.084 1.428 1.070 1.000
6 1.090 1.505 1.108 1.000
7 1.080 1.451 1.093 1.000
8 1.091 1.431 1.153 1.000
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Table 3
Averages of the relative performances of the heuristics normalized with respect to the best solutions for the scheduling instance with tasks requesting 1–10 files

� R MinMin MaxMin Sufferage MIIS

0.1 1 1.200 1.300 1.055 1.018
2 1.160 1.324 1.025 1.006
3 1.115 1.405 1.007 1.022
4 1.091 1.441 1.011 1.007
5 1.079 1.449 1.037 1.002
6 1.089 1.520 1.037 1.000
7 1.090 1.537 1.064 1.000
8 1.077 1.536 1.067 1.000

0.2 1 1.258 1.400 1.208 1.000
2 1.271 1.516 1.141 1.000
3 1.247 1.544 1.166 1.000
4 1.234 1.624 1.162 1.000
5 1.188 1.635 1.164 1.000
6 1.175 1.680 1.157 1.000
7 1.149 1.652 1.136 1.000
8 1.133 1.652 1.146 1.000

1.0 1 1.144 1.416 1.135 1.000
2 1.162 1.505 1.153 1.000
3 1.181 1.573 1.149 1.000
4 1.138 1.494 1.092 1.000
5 1.141 1.467 1.122 1.000
6 1.123 1.421 1.092 1.000
7 1.104 1.393 1.067 1.000
8 1.086 1.378 1.128 1.000

5.0 1 1.216 1.528 1.224 1.000
2 1.132 1.521 1.076 1.011
3 1.169 1.440 1.083 1.000
4 1.177 1.400 1.087 1.003
5 1.134 1.342 1.187 1.000
6 1.120 1.351 1.216 1.000
7 1.102 1.305 1.213 1.000
8 1.108 1.296 1.370 1.000

10.0 1 1.187 1.490 1.219 1.000
2 1.091 1.401 1.049 1.001
3 1.188 1.499 1.131 1.000
4 1.155 1.382 1.136 1.000
5 1.141 1.352 1.100 1.001
6 1.121 1.341 1.260 1.000
7 1.116 1.312 1.301 1.000
8 1.102 1.285 1.271 1.000

pair, we generated 10 different problems. We then computed the
relative scheduling performance of every heuristic by dividing
the obtained turnaround time by the best turnaround time found
for the same problem instance. The averages of these 10 relative
scheduling performances are given in Tables 2–4.

As seen in these tables, the proposed MIIS heuristic obtains
better results than the MinMin, MaxMin, and Sufferage heuris-
tics in almost all problem instances. On the average, MIIS
performs 10% better than Sufferage—the best of the existing
heuristics—in terms of turnaround time. We observed that the
MaxMin heuristic is consistently worse than the MinMin and
Sufferage heuristics. This is in concordance with the previously
reported results [20,26]. The relative performance of the Min-

Min heuristic improves by the increasing number of data repos-
itories. The relative performance of the Sufferage heuristic gets
better at the mid-range values of the number of data reposito-
ries. In particular, it achieves its best performance at R = 3
or 4. Our experiments show that when the tasks request 1–10
files, the MIIS heuristic performs much better than the others,
e.g., 14% better than the MinMin and Sufferage heuristics.

5.3.2. Running time
The proposed and existing heuristics were implemented in C.

Experiments were performed on a PC equipped with a 2.4 GHz
Intel Pentium-IV processor and 2 Gbytes RAM running Linux
kernel 2.4.20. The Sufferage heuristic runs for 77 min to find
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Table 4
Averages of the relative performances of the heuristics normalized with respect to the best solutions for the scheduling instance with tasks requesting 1–20 files

� R MinMin MaxMin Sufferage MIIS

0.1 1 1.167 1.279 1.067 1.024
2 1.117 1.258 1.011 1.017
3 1.104 1.280 1.013 1.010
4 1.083 1.285 1.010 1.004
5 1.073 1.296 1.015 1.004
6 1.078 1.322 1.044 1.000
7 1.077 1.333 1.042 1.000
8 1.070 1.312 1.054 1.000

0.2 1 1.191 1.241 1.122 1.000
2 1.170 1.280 1.074 1.000
3 1.167 1.297 1.067 1.000
4 1.170 1.359 1.105 1.000
5 1.186 1.391 1.125 1.000
6 1.204 1.458 1.192 1.000
7 1.202 1.450 1.191 1.000
8 1.181 1.402 1.166 1.000

1.0 1 1.100 1.292 1.172 1.000
2 1.144 1.353 1.175 1.000
3 1.198 1.425 1.145 1.000
4 1.176 1.412 1.135 1.000
5 1.141 1.349 1.118 1.000
6 1.074 1.261 1.042 1.012
7 1.063 1.245 1.051 1.001
8 1.051 1.224 1.059 1.001

5.0 1 1.151 1.400 1.219 1.000
2 1.089 1.448 1.061 1.028
3 1.093 1.348 1.044 1.037
4 1.105 1.277 1.045 1.063
5 1.097 1.251 1.052 1.006
6 1.085 1.209 1.064 1.009
7 1.080 1.185 1.133 1.000
8 1.084 1.199 1.162 1.000

10.0 1 1.155 1.420 1.182 1.000
2 1.051 1.398 1.054 1.010
3 1.098 1.312 1.018 1.027
4 1.104 1.218 1.009 1.082
5 1.106 1.220 1.045 1.007
6 1.085 1.196 1.107 1.000
7 1.090 1.181 1.261 1.000
8 1.092 1.193 1.263 1.000

a solution to the problem instance with T = 3000 tasks, F =
3000 files, f1–10, P = 32 processors, R = 4 repositories, and
� = 1.0.

Table 5 shows the running times of the MIIS heuristic for the
problem instances with 1, 4, and 8 repositories and 32 proces-
sors. As seen from the table, the running time of the proposed
MIIS heuristic is much less than that of the Sufferage heuris-
tic, e.g., almost 90 times faster than Sufferage for the problem
instance given above. The running time of MIIS is expected to
increase with the increasing number of repositories. This ex-
pectation, however, does not hold for some of the problem in-
stances. This may stem from the running time differences in the
refinement heuristics. The running time of the proposed MIIS

heuristic increases with the increasing number of files-per-task,
since the running time complexities of the heuristics proposed
for the three phases of MIIS contain the term |A|.

6. Conclusion

We have proposed a three phase heuristic for scheduling file-
sharing tasks on a computing system consisting of heteroge-
neous processors and data repositories connected through a het-
erogeneous interconnection network. The proposed heuristic is
built upon our previous work on scheduling file-sharing tasks
on heterogeneous master–slave systems [26]. We have clearly
stated the problems that arise because of the existence of dis-
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Table 5
The running times of MIIS (in s)

� Num. files per task Number of repositories

R = 1 R = 4 R = 8

0.1 f1–5 14.61 27.94 24.14
f1–10 19.75 56.41 52.15
f1–20 28.29 134.99 141.69

0.2 f1–5 14.32 25.34 23.35
f1–10 20.06 55.07 51.34
f1–20 28.34 135.91 130.27

1.0 f1–5 14.84 30.39 23.62
f1–10 16.75 52.06 50.35
f1–20 22.34 111.84 129.62

5.0 f1–5 11.96 28.07 23.23
f1–10 10.24 50.29 47.84
f1–20 14.36 99.81 128.56

10.0 f1–5 11.13 28.62 22.78
f1–10 10.55 50.23 48.38
f1–20 12.95 100.25 127.58

tributed repositories. We have also implemented the MinMin,
MaxMin, and Sufferage heuristics [14,15] in order to assess
the performance of the proposed scheduling heuristic. We have
found Sufferage to be the best among these three heuristics.
The proposed heuristic has been reported to be considerably
faster than the Sufferage heuristic while obtaining 10–14% im-
provements in the turnaround times.

In the target scheduling problem, inconsistent ETC matrices
were used to incorporate heterogeneity both in tasks and pro-
cessor capacities. However, there exist some problem variants
in which the linear cost model is used to incorporate hetero-
geneity only in processor capacities. In the linear cost model, a
computing resource p is associated with a weight sp which rep-
resents the number of time-steps required to process one unit
of computation. Additionally, the costs of the tasks are speci-
fied in units of computation. In other words, processing a task
of size L on the computing resource p requires L ·sp time units.
We believe that clustering methods and hence multilevel refine-
ment heuristics will be viable for both reducing the run-time
complexity and improving the solution quality under the linear
cost model for the computations.
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