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Abstract. We consider a certain class of parallel program segments in
which the order of messages sent affects the completion time. We give
characterization of these parallel program segments and propose a solu-
tion to minimize the completion time. With a sample parallel program,
we experimentally evaluate the effect of the solution on a PC cluster.

1 Introduction

We consider a certain class of parallel program segments with the following char-
acteristics. First, there is a small-to-medium grain computation between two
communication phases which are referred to as pre- and post-communication
phases. Second, local computations cannot start before the pre-communication
phase ends, and the post-communication phase cannot start before the compu-
tation ends. Third, the communication in both phases is irregular and sparse.
That is, the communications are performed using point-to-point send and re-
ceive operations, where the sparsity refers to small number of messages having
small sizes. These traits appear, for example, in the sparse-matrix vector multi-
ply y = Ax, where matrix A is partitioned on the nonzero basis and also in the
sparse matrix-chain-vector multiply y = ABx, where matrix A is partitioned
along columns and matrix B is partitioned conformably along rows. In both ex-
amples, the x-vector entries are communicated just before the computation and
the y-vector entries are communicated just after the computation.

There has been a vast amount of research in partitioning sparse matrices
to effectively parallelize computations by achieving computational load balance
and by minimizing the communication overhead [2–4, 7, 8]. As noted in [7], most
of the existing methods consider minimization of the total message volume. De-
pending on the machine architecture and problem characteristics, communica-
tion overhead due to message latency may be a bottleneck as well [5]. Further-
more, the maximum message volume and latency handled by a single processor
may also have crucial impact on the parallel performance [10, 11]. However, op-
timizing these metrics is not sufficient to minimize the total completion time
of the subject class of parallel programs. Since the phases do not overlap, the
receiving time of a processor, and hence the issuing time of the corresponding
send operation play an important role in the total completion time.
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There may be different solutions to the above problem. One may consider
balancing the number of messages per processor both in terms of sends and
receives. This strategy would then has to partition the computations with the
objectives of achieving computational load balance, minimizing total volume of
messages, minimizing total number of messages, and also balancing the number
of messages sent/received on the per processor basis. However, combining these
objectives into a single function to be minimized would challenge the current
state of the art. For this reason, we take these problems apart from each other
and decompose the overall problem into stages, each of which involving a certain
objective. We first use standard models to minimize the total volume of messages
and maintain the computational load balance among processors using effective
methods, such as graph and hypergraph partitioning. Then, we minimize the
total number of messages and maintain a loose balance on the communication
volume loads of processors, and in the meantime we address the minimization of
the maximum number of messages sent by a single processor. After this stage,
the communication pattern is determined. In this paper, we suggest to append
one more stage in which the send operations of processors are ordered to address
the minimization of the total completion time.

2 Message Ordering Problem and a Solution

We make the following assumptions. The computational load imbalance is neg-
ligible. All processors begin the pre-communication phase at the same time be-
cause of the possible global synchronization points and balanced computations
that exist in the other parts of the parallel program. The parallel system has
a high latency overhead so that the message transfer time is dominated by the
start-up cost due to small message volumes. By the same reasoning, the receive
operation is assumed to incur negligible cost to the receiving processor. For the
sake of simplicity, the send operations are assumed to take unit time. Under these
assumptions, once a send is initiated by a processor at time ti, the sending pro-
cessor can continue with some other operation at time ti+1, and the receiving
processor receives the message at time ti+1. This assumption extends to con-
current messages destined for the same processor. The rationale behind these
assumptions is that, the start-up costs for all messages destined for a certain
processor truly overlap with each other.

Let send-lists S1(p) and S2(p) denote the set of messages, distinguished by
the ranks of the receiving processors, to be sent by processor Pp in pre- and post-
communication phases, respectively. For example, � ∈ S1(p) denotes the fact that
processor P� will receive a message from Pp in the pre-communication phase. For
� ∈ S1(p), we use s1(p, �) to denote the completion time of the message from Pp

to P�, i.e., Pp issued the send at time s1(p, �)−1, and P� received the message at
time s1(p, �). We use s2(p, �) for the same purpose for the post-communication
phase. Let W be the amount of computation performed by each processor. Let

r1(p) = max
j:p∈S1(j)

{s1(j, p)} (1)
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denote the point in time at which processor Pp receives its latest message in the
pre-communication phase. Then, Pp will enter the computation phase at time

c1(p) = max{|S1(p)|, r1(p)}, (2)

i.e, after sending all of its messages and receiving all messages destined for it in
the pre-communication phase. Let

r2(p) = max
j:p∈S2(j)

{s2(j, p)} (3)

denote the point in time at which processor Pp receives its latest message in the
post-communication phase. Then, processor Pp will reach completion at time

cp = max{c1(p) + W + |S2(p)|, r2(p)}, (4)

i.e., after completing its computational task as well as all send operations in the
post-communication phase and after receiving all post-communication messages
destined for it. Using the above notation, our objective is

minimize{max
p

{cp}}, (5)

i.e, to minimize the maximum completion time. The maximum completion time
induced by a message order is called the bottleneck value, and the processor that
defines it is called the bottleneck processor. Note that the objective function
depends on the time points at which the messages are delivered.

In order to clarify the notations and assumptions, consider a six-processor
system as shown in Fig. 1(a). In the figure, the processors are synchronized
at time t0. The computational load of each processor is of length five-units
and shown as a gray rectangle. The send operation from processor Pk to P�

is labeled with sk� on the right-hand side of the time-line for processor Pk.
The corresponding receive operation is shown on the left-hand side of the time-
line for processor P�. For example, processor P1 issues a send to P3 at time t0
and completes the send at time t1 which also denotes the delivery time to P3.
Also note that P3 receives a message from P5 at the same time. In the figure,
r1(1) = c1(1) = t5, r2(1) = t10 and c1 = t15. The bottleneck processor is P1 with
the bottleneck value tb = t15.

Reconsider the same system where the messages are sent according to the
order as shown in Fig. 1(b). In this setting, P1 is also a bottleneck processor
with value tb = t11.

Note that if a processor Pp never stays idle then it will reach completion at
time |S1(p)| + W + |S2(p)|. The optimum bottleneck value cannot be less than
the maximum of these values. Therefore, the order given in Fig. 1(b) is the best
possible. Let Pq and Pr be the maximally loaded processors in the pre- and post-
communication phases respectively, i.e., |S1(q)| ≥ |S1(p)| and |S2(r)| ≥ |S2(p)|
for all p. Then, the bottleneck value cannot be larger than |S1(q)|+W + |S2(r)|.
The setting in Fig. 1(a) attains this worst possible bottleneck value.
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(a) A sample message order which produces worst completion time
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(b) A sample message order which produces best completion time

Fig. 1. Worst and best order of the messages.

Observe that in a given message order, the bottleneck occurs at a processor
with an outgoing message. Meaning that, for any bottleneck processor that re-
ceives a message at time tb, there is a processor which finishes a send operation
at time tb. Therefore, for a processor Pp to be a bottleneck processor we require

c′p = c1(p) + W + |S2(p)| (6)

as a bottleneck value. Hence, our objective reduces to

minimize{max
p

{c′p}}. (7)

Also observe that the bottleneck processor and value remains as is, for any
order of the post-communication messages. Therefore, our problem reduces to
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ordering the messages in the pre-communication phase. From these observations
we reach the intuitive idea of assigning the maximally loaded processor in the
post-communication phase to the first position in each pre-communication send-
list. This will make the processor with maximum |S2(·)| enter the computation
phase as soon as possible. Extending this to the remaining processors we de-
velop the following algorithm. First, each processor Pp determines its key-value
key(p) = |S2(p)|. Second, each processor obtains the key-values of all other
processors with an all-to-all communication on the key-values. Third, each pro-
cessor Pp sorts its send-list S1(p) in descending order of the key-values of the
receiving processors. These sorted send-lists determine the message order in the
pre-communication phase, where the order in the post-communication phase is
arbitrary.

Theorem 1. The above algorithm obtains the optimal solution that minimizes
the maximum completion time.

Proof. We take an optimal solution and then modify it to have each send-list
sorted in descending order of key-values.

Consider an optimal solution. Let processor Pb be the bottleneck processor
finishing its sends at time tb. For each send-list in the pre-communication phase,
we perform the following operations.

For any P� with keyb ≤ key� where Pb and P� are in the same send-list
S1(p), if s1(p, �) ≤ s1(p, b), then we are done, if not swap s1(p, �) and s1(p, b).
Let ts = s1(p, �) before the swap operation. Then, we have ts + W + key� ≤ tb
before the swap. After the swap we will have ts + W + keyb and th + W + key�

for some th < ts, for processors Pb and P�. These two values are less than tb.
For any Pj with keyj ≤ keyb where Pj and Pb are in the same send-list

S1(q), if s1(q, b) ≤ s1(q, j), then we are done, if not swap s1(q, b) and s1(q, j).
Let ts = s1(q, b) before the swap operation. Then, we have ts + W + keyb ≤ tb.
After the swap operation we will have ts +W +keyj and th +W +keyb for some
th < ts for processors Pj and Pb, respectively. Clearly, these two values are less
than or equal to tb.

For any Pu and Pv that are different from Pb with keyu ≤ keyv in a send-list
S1(r), if s1(r, v) ≤ s1(r, u), then we are done, if not swap s1(r, u) and s1(r, v).
Let ts = s1(r, v) before the swap operation. Then, we have ts + W + keyv ≤ tb.
After the swap operation we will have ts +W +keyu and th +W +keyv for some
th < ts, for Pu and Pv respectively. These two values are less than or equal to
tb. Therefore, for each optimal solution we have an equivalent solution in which
all send-lists in the pre-communication phase are sorted in decreasing order of
the key values. Since the sorted order is unique with respect to the key values,
the above algorithm is correct.

3 Experiments

In order to see whether the findings in this work help in practice we have im-
plemented a simple parallel program which is shown in Fig 2. In this figure,
each processor first posts its non-blocking receives and then sends its messages
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MPI_Barrier(MPI_COMM_WORLD);

startTime = MPI_Wtime();

for(iter = 0; iter < MAXITER; iter++){

communication(preSendList, preSendCount, preRecvList, preRecvCount,

sendBuf, recvBuf, iter);

computation(sendBuf, recvBuf);

communication(postSendList, postSendCount,postRecvList,postRecvCount,

sendBuf, recvBuf, iter + 1);

MPI_Barrier(MPI_COMM_WORLD);

}

totTime = 1000.0*MPI_Wtime() - 1000.0*startTime;

(a) Parallel program segment

void computation(MSSGTYPE *sendBuf, MSSGTYPE *recvBuf){

int i;

for(i = 0; i < numProcs; i++){

int j, indi = mssgSizes * i;

for(j = 0; j < mssgSizes; j++)

sendBuf[indi+j]=(sendBuf[indi+j]+recvBuf[indi+j])/(MSSGTYPE)2;

}

}

(b) Local computation performed at each processor

void communication(int *sList, int sCnt, int *rList, int rCnt,

MSSGTYPE *sBuf, MSSGTYPE *rBuf, int tag){

int i;

MPI_Request reqs[rCnt]; MPI_Status stats[rCnt];

for(i = 0 ; i < rCnt; i++){

int p = rList[i], ind = p*mssgSizes;

MPI_Irecv(&rBuf[ind], mssgSizes, bMPITYPESTR, p,

tag, MPI_COMM_WORLD,&reqs[i]);

}

for(i = 0; i < sCnt; i++){

int p = sList[i], ind = myId * mssgSizes;

MPI_Send(&sBuf[ind], mssgSizes,bMPITYPESTR, p, tag,MPI_COMM_WORLD);

}

if(rCnt > 0) MPI_Waitall(rCnt, reqs, stats);

}

(c) Implementation of pre- and post-communication phases

Fig. 2. A simple parallel program.

in the order as they appear in the send-lists. In order to simplify the effects
of the message volume on the message transfer time, we set the same volume
for each message. We have used LAM [1] implementation of MPI and mpirun
command without -lamd option. The parallel program were run on a Beowulf
class [9] PC cluster with 24 nodes. Each node has a 400MHz Pentium-II proces-
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Table 1. Communication patterns and parallel running times on 24 processors.

Completion time
Communication Mssg unit milliseconds

Data pattern order Max Message length (bytes)
min max tot {c′p} 8 64 512 1024

1-PRE 5 21 290 best 38 4.3 4.4 5.5 7.2
1-POST 6 22 358 worst 42 4.8 5.0 6.2 7.8

2-PRE 3 23 313 best 39 4.9 5.0 6.0 7.3
2-POST 11 22 370 worst 45 5.3 5.4 6.7 7.8

3-PRE 10 23 490 best 45 6.3 6.4 7.8 9.7
3-POST 15 23 504 worst 46 6.6 6.6 8.2 10.1

4-PRE 6 22 312 best 41 4.5 4.6 5.9 7.3
4-POST 10 20 356 worst 42 5.3 5.6 6.8 8.2

5-PRE 5 23 228 best 36 4.0 4.1 4.9 5.9
5-POST 7 13 228 worst 36 4.4 4.6 5.6 6.6

6-PRE 1 23 212 best 35 4.1 4.1 5.1 6.0
6-POST 4 17 236 worst 40 4.5 4.6 5.8 6.7

7-PRE 3 20 226 best 29 3.7 3.7 4.5 5.3
7-POST 7 17 253 worst 37 3.9 3.9 5.0 5.9

8-PRE 2 23 267 best 43 4.7 4.7 6.1 7.6
8-POST 4 22 278 worst 45 5.7 5.9 7.0 8.1

9-PRE 3 16 167 best 35 3.7 4.0 4.8 5.6
9-POST 4 20 273 worst 36 4.3 4.3 5.3 6.0

10-PRE 2 23 300 best 46 4.7 4.7 6.3 8.0
10-POST 10 23 316 worst 46 5.6 5.7 7.1 8.3

W (Computation time): 0.00 0.01 0.06 0.11

sor and 128MB memory. The interconnection network is comprised of a 3COM
SuperStack II 3900 managed switch connected to Intel Ethernet Pro 100 Fast
Ethernet network interface cards at each node. The system runs Linux kernel
2.4.14 and Debian GNU/Linux 3.0 distribution.

We extracted the communication patterns of some row-column-parallel sparse
matrix-vector multiply operations on 24 processors. Table 1 lists minimum and
maximum number of send operations per processor under columns min and max.
Total number of messages is given under the column tot.

For each test case, we have run the parallel program of Fig. 2 with small
message lengths of 8, 64, 512, and 1024-bytes to justify the practicality of the as-
sumptions made in this work. We have experimented with the best and worst or-
ders. The best message orders are generated according to the algorithm proposed
in § 2. The worst message orders are obtained by sorting the pre-communication
send-lists in increasing order of the key-values of the receiving processors. In all
cases, we used the same message order in the post-communication phase. The
running are presented in milliseconds in Table 1. We give the best among 20 runs
(see [6] for choosing best in order to obtain reproducible results). In the table,
we also give maxp{c′p} for worst and best orders with W = 0. In all cases, the
best order always gives better completion time than the worst order. In theory,
however, we did not expect improvements for the 5th and 10th cases, in which
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the two orders give the same bottleneck value. This unexpected outcome may
be resulting from the internals of the process that handles the communication
requests. We are going to investigate this issue.

4 Conclusion

In this work, we addressed the problem of minimizing maximum completion
time of a certain class of parallel program segments in which there is a small-
to-medium grain computation between two communication phases. We showed
that the order in which the messages are sent affects the completion time and
showed how to order the messages optimally in theory. Experimental results on
a PC cluster verified the existence of the specified problem and the validity of
the proposed solution. As a future work, we are trying to set up experiments
to observe the findings of this work in parallel sparse matrix-vector multiplies.
A generalization of the given problem addresses parallel programs that have
multiple computation phases interleaved with communications. This problem is
in our research plans.
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4. Ü. V. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for coarse-
grain decomposition. In Proceedings of Scientific Computing 2001 (SC2001), pages
10–16, Denver, Colorado, November 2001.

5. J. J. Dongarra and T. H. Dunigan. Message-passing performance of various com-
puters. Concurrency—Practice and Experience, 9(10):915–926, 1997.

6. W. Gropp and E. Lusk. Reproducible measurements of mpi performance charac-
teristics. Tech. Rept. ANL/MCS-P755-0699, Argonne National Lab., June 1999.

7. B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
Parallel Computing, 26:1519–1534, 2000.

8. B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally unsym-
metric sparse matrices for parallel processing. SIAM J. Sci. Comput., 21(6):2048–
2072, 2000.

9. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranaweke, and C. V.
Packer. BEOWULF: A parallel workstation for scientific computation. In Proceed-
ings of the 24th International Conference on Parallel Processing, 1995.
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