
REVISITING HYPERGRAPH MODELS FOR SPARSE MATRIX

PARTITIONING∗

BORA UÇAR† AND CEVDET AYKANAT‡

Abstract. We provide an exposition of hypergraph models for parallelizing sparse matrix-vector
multiplies. Our aim is to emphasize the expressive power of hypergraph models. First, we set forth
an elementary hypergraph model for parallel matrix-vector multiply based on one-dimensional (1D)
matrix partitioning. In the elementary model, the vertices represent the data of a matrix-vector
multiply, and the nets encode dependencies among the data. We then apply a recently proposed hy-
pergraph transformation operation to devise models for 1D sparse matrix partitioning. The resulting
1D partitioning models are equivalent to the previously proposed computational hypergraph models
and are not meant to be replacements for them. Nevertheless, the new models give us insights into
the previous ones and help us explain a subtle requirement, known as the consistency condition, of
the hypergraph partitioning models. Later, we demonstrate the flexibility of the elementary model
on a few 1D partitioning problems that are hard to solve using the previously proposed models. We
also discuss extensions of the proposed elementary model to two-dimensional matrix partitioning.

Key words. parallel computing, sparse matrix-vector multiply, hypergraph models

AMS subject classifications. 05C50, 05C65, 65F10, 65F50, 65Y05

1. Introduction. Hypergraph-partitioning-based models for parallel sparse ma-
trix-vector multiply operation [3, 4, 9] have gained widespread acceptance. These
models can address partitionings of rectangular, unsymmetric square, and symmetric
square matrices. However, the expressive power of these models has only been ac-
knowledged long after their introduction [1, 7, 11]. This may have three main reasons.
First, the works [3, 9] had limited distribution, and therefore, the models seem to be
introduced in [4]. Second, rectangular matrices are not discussed explicitly in [4].
Third, perhaps the most probable one, is that the paper [4] focuses on obtaining
the same partitions on the input and output vectors of the multiply operation. This
partitioning scheme evokes square matrices, as the lengths of the input and output
vectors have to be the same.

In order to parallelize the matrix-vector multiply y ← Ax, we have to partition
the vectors x and y along with the matrix A among the processors of a parallel
computer. There are two alternatives in partitioning the vectors x and y. The first
one, symmetric partitioning, is to have the same partition on x and y. The second
one, unsymmetric partitioning, is to have different partitions on x and y. Usually,
if the matrix is partitioned rowwise, the partition on y conforms to the partition on
the rows of A. Similarly, if the matrix is partitioned columnwise, the partition on x

conforms to the partition on the columns of A.

In §3, we present an elementary hypergraph model for parallel matrix-vector mul-
tiply based on one-dimensional (1D) matrix partitioning. The model represents all

∗This work was partially supported by The Scientific and Technological Research Council of
Turkey (TÜBİTAK) under grant 106E069.

†Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322,
USA (ubora@mathcs.emory.edu). The work of this author is partially supported by The Scientific
and Technological Research Council of Turkey (TÜBİTAK) under the program 2219 and by the
University Research Committee of Emory University.

‡Bilkent University Computer Engineering Department, Ankara, 06800, Turkey
(aykanat@cs.bilkent.edu.tr).

1

2 BORA UÇAR AND CEVDET AYKANAT

the operands of the matrix-vector multiply y ← Ax with vertices. Therefore, par-
titioning the proposed hypergraph model amounts to partitioning the input vector
x, the output vector y, and the matrix A simultaneously. We show that the pro-
posed elementary model can be transformed into hypergraph models for obtaining
unsymmetric and symmetric partitionings. The resulting models are equivalent to
the previously proposed computational hypergraphs in modeling the total volume of
communication correctly. If symmetric partitioning is sought, the resulting model
becomes structurally equivalent to the previously proposed models [4].

Although the elementary model contributes only little in the standard 1D matrix
partitioning, it is useful in general. In §4, we show how to transform the elementary
model to address a few partitioning problems that are hard to tackle using the previous
models. In most of the paper, we confine the discussion to the rowwise partitioning
models, because the columnwise partitioning models can be addressed similarly.

2. Background. A hypergraph H = (V ,N) is defined as a set of vertices V and
a set of nets N . Every net is a subset of vertices. The size of a net ni is equal to the
number of its vertices, i.e., |ni|. The set of nets that contain vertex vj is denoted by
Nets(vj). Weights can be associated with vertices. We use w(j) to denote the weight
of the vertex vj .

Π = {V1, . . . ,VK} is a K-way vertex partition of H = (V ,N) if each part is
nonempty, parts are pairwise disjoint, and the union of parts gives V . In Π, a net is
said to connect a part if it has at least one vertex in that part. The connectivity set

Λ(i) of a net ni is the set of parts connected by ni. The connectivity λ(i)= |Λ(i)| of a
net ni is the number of parts connected by ni. In Π, the weight of a part is the sum
of the weights of vertices in that part.

In the hypergraph partitioning problem, the objective is to minimize

cutsize(Π) =
∑

ni∈N

(λ(i)− 1) .(2.1)

This objective function is widely used in the VLSI community [8] and in the scientific
computing community [1, 4, 11], and it is referred to as the connectivity−1 cutsize
metric. The partitioning constraint is to satisfy a balancing constraint on part weights:

Wmax −Wavg

Wavg

≤ ǫ .(2.2)

Here Wmax is the largest part weight, Wavg is the average part weight, and ǫ is a
predetermined imbalance ratio. This problem is NP-hard [8].

In the previously proposed hypergraph-partitioning-based methods (e.g., [4, 6,
13]), vertices of a hypergraph are used to represent the matrix data (e.g., rows,
columns, or nonzeros). Therefore, partitioning the vertices of a hypergraph into K

parts amounts to partitioning a matrix among K processors. Usually, the processor
Pk is set to be the owner of the data corresponding to the vertices in Vk.

Since the aforementioned approaches do not represent the vector entries with the
vertices, they leave the vector partitioning unsolved. Vector partitioning is either
done implicitly using the partitions on the matrix for symmetric partitioning [4, 6],
or it is done in an additional stage after partitioning the matrix, for unsymmet-
ric [2, 10, 11, 13] and symmetric [10, 13] partitionings. In these models, there is a
condition, known as the consistency condition [4], on the exact correspondence be-
tween the total communication volume and the hypergraph partitioning objective.

REVISITING HYPERGRAPH MODELS 3

The consistency condition necessitates the assignment of a vector entry to a processor
that has at least one nonzero in the corresponding row or column of the matrix. In
other words, since the vector entries are associated with the nets [4, 6], the consistency
condition necessitates the assignment of the vector entry associated with a net ni to a
processor corresponding to a part in Λ(i). In the unsymmetric partitioning case, the
consistency condition is easily satisfied since the input and output vectors are parti-
tioned independently. In the symmetric partitioning case, the consistency condition
is usually satisfied by modifying the sparsity pattern of the matrix to have a zero-free
diagonal [4, 6, 13] and then applying hypergraph partitioning to the modified matrix.
Designating the owner of a diagonal nonzero as the owner of the corresponding en-
tries in the input and output vectors satisfies the consistency condition in the implicit
vector partitioning techniques [4, 6]. This scheme also forms a possible solution in
the explicit vector partitioning techniques [2, 13].

We make use of the recently proposed vertex amalgamation operation [12]. This
operation combines two vertices into a single composite vertex. The net set of the
resulting composite vertex is set to the union of the nets of the constituent vertices,
i.e., amalgamating vertices vi and vj removes these two vertices from the hypergraph,
adds a new vertex 〈vi, vj〉, and sets Nets(〈vi, vj〉) = Nets(vi) ∪Nets(vj).

3. Revisiting hypergraph models for 1D partitioning. Consider the com-
putations of the form y ← Ax under rowwise partitioning of the m×n matrix A. Since
we partition the rows of A and the entries of the input and output vectors x and y,
there should be three types of vertices in a hypergraph: row-vertices, x-vertices, and
y-vertices. The nets of the hypergraph should be defined to represent the dependen-
cies of the y-vertices on the row-vertices, and the dependencies of the row-vertices on
the x-vertices. We define the elementary hypergraph H = (V ,N) with |V| = 2m + n

vertices and |N | = m + n nets. The vertex set V = X ∪ Y ∪R contains the vertices
X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and R = {r1, . . . , rm}. Here xj corresponds to
the jth entry in the input vector, yi corresponds to the ith entry in the output vector,
and ri corresponds to the ith row of A. The net set N = Nx ∪ Ny contains the nets
Nx = {nx(j) : j = 1, . . . , n} where nx(j) = {ri : i = 1, . . . , m and aij 6= 0} ∪ {xj}
and the nets Ny = {ny(i) : i = 1, . . . , m} where ny(i) = {yi, ri}. Each row-vertex ri

is associated with a weight to represent the computational load associated with the
ith row, e.g., wr(i) = |Nets(ri)| − 1. Note that the weight wr(i) corresponds to the
number of nonzeros in the ith row of A as in [4]. Weights can be associated with the
x- and y-vertices. For example, a unit weight may be assigned to these vertices in
order to maintain balance in linear vector operations.

Observe that in the above construction, each net contains a unique vertex that
corresponds to either an input vector entry or an output vector entry, i.e., xi or
yi. This construction abides by the guidelines given in [4] and outlined in [7]. The
elementary hypergraph model is the most general model for 1D rowwise partitioning,
because by partitioning the vertices of this hypergraph we can obtain partitions on
all operands of a matrix-vector multiply operation.

Figure 3.1(a) and (b) show the data associated with a sample matrix-vector mul-
tiply operation and the corresponding elementary hypergraph. In the figure, row 5
has two nonzeros: one in column 4 and another in column 6. Hence, the row vertex
r5 is connected to the nets ny(5), nx(4), and nx(6).

We show how to modify the elementary hypergraph by applying the vertex amal-
gamation operation to devise 1D unsymmetric and symmetric partitioning models.
First, we can apply the owner-computes rule, i.e., yi should be computed by the

4 BORA UÇAR AND CEVDET AYKANAT

4

1

2

3

5

6

41 2 3 5 6

Ay

x

r1

r2

r3

r4

r5

r6

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

x5

x6
(ny)6

(n)5y

(ny)4

(ny)3

(ny)2

(ny)1

(nx)4

(nx)3

(nx)2

(nx)1

(n)5x

(nx)6

(a) (b)

(ny)

y
r

(nx)
x

(nx)
x

(nx)
x

5
5

4

5

6

5

5

4

6

5

r
xy

r
xy5 5

(nx)

(nx)

(nx)

4 4
4

r
xy6

5

4

6
6

6

(c) (d)

Fig. 3.1. (a) The operands of a matrix-vector multiply operation with a 6 × 6 matrix A and
6 × 1 vectors x and y. (b) The elementary hypergraph model for 1D partitioning—all operands of
the matrix-vector multiply operation are represented by vertices. (c) A portion of the 1D unsym-
metric partitioning model—obtained by applying the vertex amalgamation operation to y5 and r5 to
enforce the owner-computes rule. (d) A portion of the 1D symmetric partitioning model—obtained
by applying the vertex amalgamation operation to the composite vertex 〈y5, r5〉 and the vertex x5.

processor that owns ri. This requires amalgamating the vertices yi and ri for all i.
Figure 3.1(c) shows the amalgamation operation applied to the vertices y5 and r5 of
the elementary hypergraph given in Fig 3.1(b). Note that after this amalgamation,
the size of the net ny(i), for all i, becomes one. Since the nets of size one do not
contribute to the cutsize, we can delete the nets ny(i) for all i from the model. Par-
titioning the resulting hypergraph will produce unsymmetric partitions, as the vector
entries xi and yi might be assigned to different processors.

Suppose we are seeking symmetric partitions; the processor which owns yi and ri

should own xi. This time, we have to amalgamate the vertices 〈yi, ri〉 and xi for all
i. Figure 3.1(d) shows the amalgamation operation applied to vertices 〈y5, r5〉 and x5

of the model given in Fig 3.1(c). Partitioning the resulting hypergraph will produce
symmetric partitions. Note that the hypergraph obtained after these amalgamation
operations is structurally equivalent to the column-net hypergraph model proposed
in [4] under the zero-free diagonal assumption. However, there is a difference in the
semantics. The x-vector entries are represented by the vertices in this work, whereas

REVISITING HYPERGRAPH MODELS 5

they are represented by the nets in [4]. Note that this association guarantees vi ∈ ni

for all i independent of the sparsity pattern of the matrix. This justifies enforcing
zero-free diagonals in the symmetric partitioning models proposed in [4].

Assume we have partitioned the data of y ← Ax among K processors by par-
titioning the unsymmetric or symmetric partitioning models into K parts. In both
cases, if the vertex associated with xj is in Vk, e.g., xj ∈ Vk or 〈xj , yj, rj〉 ∈ Vk,
then the processor Pk will send xj to the processors corresponding to the parts in
the connectivity set Λx(j) of nx(j). In other words, the cutsize accurately represents
the total communication volume without any condition. This is true even if the pro-
cessor that holds xj has no nonzeros in column j of the matrix. Consider a 6-way
partitioning of the hypergraph model for unsymmetric partitioning of the data given
in Fig. 3.1(a) in which processor Pi, for i = 1, . . . , 6, gets the composite vertex 〈yi, ri〉
and the x-vertex xi. Now, observe that P5 has no nonzeros in column 5 and the
communication volume regarding x5 is λx(5)− 1 = 3− 1 = 2.

4. Examples. We cast three partitioning problems which are hard to solve us-
ing the previous models. Each problem asks for a distinct hypergraph model whose
cutsize under a partition corresponds to the total volume of communication in par-
allel computations with a proper algorithm. As usual, we assume that there are K

processors, and the data associated with each part of the K-way vertex partition are
assigned to a distinct processor.

Problem 1. Describe a hypergraph model which can be used to partition the ma-

trix A rowwise for the y ← Ax computations under given, possibly different, partitions

on the input and output vectors x and y.
A parallel algorithm that carries out the y ← Ax computations under given

partitions of x and y should have a communication phase on x, a computation phase,
and a communication phase on y. We take the elementary hypergraph model given
in §3 and then designate each xj and yi as fixed to a part according to the given
partitions on the vectors x and y. Invoking a hypergraph partitioning tool which
can handle the fixed vertices (e.g., PaToH [5]) will solve the partitioning problem
stated above. For each nx(j), the connectivity−1 value, i.e., λx(j) − 1, corresponds
to the total volume of communication regarding xj . Similarly, for each ny(i), λy(i)−1
corresponds to the volume of communication regarding yi; note that λy(i)−1 is either
0 (ri is assigned to the part to which yi is fixed) or 1 (otherwise).

Problem 2. Describe a hypergraph model to obtain the same partition on the

input and output vectors x and y which is different than the partition on the rows of

A for the y ← Ax computations.

The y ← Ax computations should be carried out by the parallel algorithm given
for Problem 1. We take the elementary hypergraph model given in §3 (see Fig 4.1(a))
and then amalgamate the vertices xi and yi into a single vertex. A portion of the
resulting hypergraph is shown in Fig. 4.1(b). Here, the connectivity−1 values of the
nets again correspond to the volume of communication regarding the associated x-
and y-vector entries. The communications on xi are still represented by the net nx(i),
and the communications on yi are still represented by the net ny(i). Observe that a
composite vertex 〈xi, yi〉 can be in the same part with ri in which case there is no
communication on yi and λy(i)− 1 = 0.

Problem 3. Describe a hypergraph model to obtain different partitions on x and

on the rows of A, where y is partitioned conformably with the rows of A under the

owner-computes rule for computations of the form y ← Ax followed by x← x + y.

We start with the elementary hypergraph model for y ← Ax given in §3 (see

6 BORA UÇAR AND CEVDET AYKANAT

iy ir

xj

xi

xk

i(ny)

k(nx)

i(nx)

j(nx)

ir

xj

xk
k(nx)

j(nx)

iy
xi

i(ny)

i(nx)

(a) (b)

Fig. 4.1. (a) Portion of the elementary hypergraph model for y ← Ax with a hypothetical matrix
A. The ith row of A is assumed to have two nonzeros: one in column j and another in column k.
(b) Hypergraph model for the partitioning problem 2.

Fig. 4.2(a)). The xi + yi addition operations introduce new vertices for all i. The
vertex xi + yi depends on the vertices xi and yi. Therefore, it is connected to the
nets nx(i) and ny(i). Furthermore, since xi is dependent on the vertex xi + yi due
to the computation xi ← xi + yi, we create a new net nx+y(i) and connect xi to
nx+y(i). A portion of the hypergraph with the new vertices representing the xi ←
xi + yi computations and the new nets encoding the dependencies inherent in those
computations is shown in Fig. 4.2(b). First, we enforce the owner-computes rule for
the xi ← xi +yi computations. This can be achieved by amalgamating the vertices xi

and xi + yi. Since the size of the net nx+y(i) becomes one, it can be excluded safely.
The resulting model is shown in Fig. 4.2(c). Next, we enforce the owner-computes
rule for yi by amalgamating vertices yi and ri (Fig. 4.2(d)). In order to carry out the
xi ← xi + yi computations, the yi values should be communicated after computing
y ← Ax. Here, if the composite vertex 〈xi, xi + yi〉 and the composite vertex 〈yi, ri〉
reside in different processors, then we have to send yi. The communication volume of
this send operation is equal to λy(i)−1 = 1. Since the nets in Nx are kept intact, they
represent the communications on the x-vector entries for the y ← Ax computations
as before.

Consider a slightly different partitioning problem in which the owner-computes
rule for the y-vector entries is not a must. The hypergraph in Fig. 4.2(c) can be used
to address this partitioning problem. Here, if 〈xi, xi +yi〉, yi, and ri reside in different
processors, then we will have two units of communication: the result of the inner
product rT

i ·x will be sent to the processor that holds yi which will write yi and send
the value to the processor that holds xi. If, however, the composite vertex 〈xi, xi +yi〉
and ri reside in the same processor, we will have one unit of communication: the result
of rT

i · x will be sent to the processor that holds yi and the computation xi ← xi + yi

will be performed using the local data xi and yi = rT
i ·x. Similarly, if 〈xi, xi + yi〉

and yi reside in the same processor, we will have one unit of communication: the
result of rT

i ·x will be sent to that processor which in turn will update yi and perform
xi ← xi + yi.

5. Discussion. We provided an elementary hypergraph model to partition the
data of the y ← Ax computations. The model represents all operands of the matrix-
vector multiply operation as vertices. Therefore, partitioning the vertices of this
elementary model amounts to partitioning all operands of the multiply operation
simultaneously. We showed how to transform the elementary model into hypergraph

REVISITING HYPERGRAPH MODELS 7

iy ir

xj

xi

xk

i(ny)

k(nx)

i(nx)

j(nx)

iy ir

xj

xi

xk

i(ny)

j(nx)

i(nx)

k(nx)

xi iy
)(i

+
nx+y

(a) (b)

iy ir

xj

xk

i(ny)

j(nx)

i(nx)

k(nx)

xi

xi+ iy

xj

xk

iy
ir

i(ny) i(nx)

j(nx)

k(nx)

xi yi+
xi

(c) (d)

Fig. 4.2. (a) Portion of the elementary hypergraph model for y ← Ax with a hypothetical matrix
A. The ith row of A is assumed to have two nonzeros: one in column j and another in column k.
(b) Initial hypergraph model for the partitioning problem 3 obtained by incorporating new vertices
representing the xi ← xi + yi computations and new nets encoding the dependencies inherent in
those computations. (c) According to the owner-computes rule for the xi ← xi + yi computations,
the vertices xi and xi + yi are amalgamated. (d) According to the owner-computes rule for yi, the
vertices yi and ri are amalgamated.

models that can be used to address various 1D partitioning problems including the
symmetric and unsymmetric partitioning problems. Although the latter two problems
are well studied, the models discussed here shed light on the previous models.

We confined the discussion to rowwise partitioning problems for brevity. The
columnwise partitioning models can be constructed similarly. For example, the el-
ementary model for the y ← Ax computations under columnwise partitioning of A

is given by HC = (V ,N), where V = X ∪ Y ∪ C with X = {x1, . . . , xn} corre-
sponding to the input vector entries, Y = {y1, . . . , ym} corresponding to the output
vector entries, C = {c1, . . . , cn} corresponding to the columns of A; N = Nx ∪ Ny

with the nets Nx = {nx(j) : j = 1, . . . , n} where nx(j) = {xj , cj}, and the nets
Ny = {ny(i) : i = 1, . . . , m} where ny(i) = {cj : j = 1, . . . , n and aij 6= 0} ∪ {yi}.

The basic ideas can be carried over to the fine-grain partitioning model [6]—
two-dimensional, nonzero-based—as well. The elementary model for the y ← Ax

computations under fine-grain partitioning of A is given by H2D = (V ,N). The
vertex set V = X ∪ Y ∪ Z contains the vertices X = {x1, . . . , xn} corresponding to
the input vector entries, Y = {y1, . . . , ym} corresponding to the output vector entries,
and Z = {aij : 1 ≤ i ≤ m and 1 ≤ j ≤ n and aij 6= 0} corresponding to the nonzeros
of A. The net set N = Nx ∪ Ny contains the nets Nx = {nx(j) : j = 1, . . . , n} where
nx(j) = {aij : 1 ≤ i ≤ m and aij 6= 0} ∪ {xj}, and Ny = {ny(i) : i = 1, . . . , m} where

8 BORA UÇAR AND CEVDET AYKANAT

ny(i) = {aij : 1 ≤ j ≤ n and aij 6= 0} ∪ {yi}. Applying the vertex amalgamation
operation to the vertices xi and yi for 1 ≤ i ≤ n (if the matrix is n × n) yields a
model, whose partitioning results in symmetric partitioning.

Consider a partition of the model H2D for symmetric partitioning, e.g., after the
vertex amalgamation operations. The cutsize corresponds exactly to the total com-
munication volume, i.e., the model satisfies the consistency condition. The composite
vertex 〈xi, yi〉 is in the nets nx(i) and ny(i). Therefore, the connectivity−1 value of
the nets nx(i) and ny(i) again corresponds to the volume of communication regard-
ing xi and yi, respectively. That is, if the composite vertex 〈xi, yi〉 ∈ Vk, then the
processor Pk will send xi to the processors corresponding to the parts in Λx(i) and
will receive the contributions to yi from the processors corresponding to the parts
in Λy(i). Since the part Vk is also in both Λx(i) and Λy(i), the volume of commu-
nications regarding xi and yi are λx(i) − 1 and λy(i) − 1, respectively. This model
is slightly different than the original fine-grain model [6]. In order to guarantee the
consistency condition, Çatalyürek and Aykanat [6] add a dummy vertex dii for each
diagonal entry aii that is originally zero in A. After the vertex amalgamation opera-
tion, H2D contains n composite vertices of the form 〈xi, yi〉. If aii is zero in A, then
the vertex 〈xi, yi〉 can be said to be equivalent to the dummy vertex dii. If, however,
aii is nonzero in A, then the vertex 〈xi, yi〉 can be said to be a copy of the diagonal
vertex aii. Having observed this discrepancy between the models, we have done ex-
periments with a number of matrices. We did not observe any significant difference
between the performance of the models in terms of the cutsize (total communication
volume).

We should mention that the owner-computes rule should be enforced for two
reasons, unless otherwise dictated by the problem. First, it reduces the number of
vertices and possibly the number of nets, leading to a reduction in the model size and
in the running time of the partitioning algorithm. Second, it avoids a communication
phase in the parallel algorithms.

The current approach in the parallelization of a wide range of iterative solvers
is to enforce the same partition on the vectors that participate in a linear vector
operation. This approach avoids a reordering operation—which is bound to be com-
munication intensive—on the vectors. The models provided in this paper can be used
to encapsulate the total volume of communication in the vector ordering operation.
Therefore, the models can be used to exploit the flexibility in partitioning disjoint
phases of computations.

Although the elementary model and subsequent models obtained from it help
partition all the operands of a matrix-vector multiply neatly, they conceal the freedom
in assigning vector entries to processors to optimize other cost metrics. For example,
the vertex x5 in Fig. 3.1(c) can be re-assigned to any processor in Λx(5) without
changing the computational loads of the processors to reduce communication cost
(see [2, 10, 11, 13]).

Acknowledgment. We thank Prof. R. Bisseling of Utrecht University for help-
ful suggestions on the paper and anonymous referees for their constructive suggestions
on the presentation.

REFERENCES

[1] C. Aykanat, A. Pınar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM Journal on Scientific Computing, 25 (2004), pp. 1860–1879.

REVISITING HYPERGRAPH MODELS 9

[2] R. H. Bisseling and W. Meesen, Communication balancing in parallel sparse matrix-vector
multiplication, Electronic Transactions on Numerical Analysis, 21 (2005), pp. 47–65.

[3] Ü. V. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, Lecture Notes in Computer Science, 1117 (1996), pp. 75–86.

[4] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication, IEEE Transactions Parallel and Distributed Systems,
10 (1999), pp. 673–693.

[5] Ü. V. Çatalyürek and C. Aykanat, PaToH: A multilevel hypergraph partitioning tool, version
3.0, Tech. Rep. BU-CE-9915, Computer Engineering Department, Bilkent University, 1999.

[6] Ü. V. Çatalyürek and C. Aykanat, A fine-grain hypergraph model for 2D decomposition of
sparse matrices, in Proceedings of 15th International Parallel and Distributed Processing
Symposium (IPDPS), San Francisco, CA, April 2001.

[7] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel
Computing, 26 (2000), pp. 1519–1534.

[8] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner, Chich-
ester, U.K., 1990.

[9] A. Pınar, Ü. V. Çatalyürek, C. Aykanat, and M. Pınar, Decomposing linear programs for
parallel solution, Lecture Notes in Computer Science, 1041 (1996), pp. 473–482.

[10] B. Uçar and C. Aykanat, Minimizing communication cost in fine-grain partitioning of sparse
matrices, Lecture Notes in Computer Science, 2869 (2003), pp. 926–933.

[11] B. Uçar and C. Aykanat, Encapsulating multiple communication-cost metrics in partition-
ing sparse rectangular matrices for parallel matrix-vector multiplies, SIAM Journal on
Scientific Computing, 25 (2004), pp. 1827–1859.

[12] B. Uçar and C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative
methods, SIAM Journal on Scientific Computing, (submitted) (2004).

[13] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

