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Abstract—Requirements for efficient parallelization of many
complex and irregular applications can be cast as a hy-
pergraph partitioning problem. The current-state-of-the art
software libraries that provide tool support for the hypergraph
partitioning problem are designed and implemented before
the game-changing advancements in multi-core computing.
Hence, analyzing the structure of those tools for designing
multithreaded versions of the algorithms is a crucial tasks. The
most successful partitioning tools are based on the multi-level
approach. In this approach, a given hypergraph is coarsened to
a much smaller one, a partition is obtained on the the smallest
hypergraph, and that partition is projected to the original
hypergraph while refining it on the intermediate hypergraphs.
The coarsening operation corresponds to clustering the vertices
of a hypergraph and is the most time consuming task in a multi-
level partitioning tool. We present three efficient multithreaded
clustering algorithms which are very suited for multi-level
partitioners. We compare their performance with that of the
ones currently used in today’s hypergraph partitioners. We
show on a large number of real life hypergraphs that our
implementations, integrated into a commonly used partitioning
library PaToH, achieve good speedups without reducing the
clustering quality.

Keywords-Multi-level hypergraph partitioning; coarsening;
multithreaded clustering algorithms; multicore programming

I. INTRODUCTION

Hypergraph partitioning is an important problem widely
encountered in parallelization of complex and irregular ap-
plications from various domains including VLSI design [1],
parallel scientific computing [2], [3], sparse matrix reorder-
ing [4], static and dynamic load balancing [5], software
engineering [6], cryptosystem analysis [7], and database
design [8], [9], [10]. Being such an important problem, con-
siderable effort has been put in providing tool support, see
hMeTiS [11], MLpart [12], Mondriaan [13], Parkway [14],
PaToH [15], and Zoltan [16].

All the tools above follow the multi-level approach. This
approach consists of three phases: coarsening, initial par-
titioning, and uncoarsening. In the coarsening phase, the
original hypergraph is reduced to a much smaller hypergraph
after a series of coarsening levels. At each level, vertices that
are deemed to be similar are grouped to form vertex clusters,
and a new hypergraph is formed by unifying a cluster as a
single vertex. That is, the clusters become the vertices for
the next level. In the initial partitioning phase, the coarsest

hypergraph is partitioned. In the uncoarsening phase, the
partition found in the second phase is projected back to the
original hypergraph where the partition is locally refined on
the hypergraphs associated with each coarsening level.

The coarsening phase is the most important phase of the
multi-level approach. This is for the following three reasons.
First, the worst-case running time complexity of this phase
is higher than the other two phases (initial partitioning and
uncoarsening phases have, in most common implementa-
tions, linear worst-case running time complexity). Second,
as the uncoarsening level performs local improvements, the
quality of a partition is highly affected by the quality of
the coarsening phase. For example, given a hypergraph,
a coarsening algorithm, a conventional initial partitioning
algorithm and a refinement algorithm based on the most
common ones, very slight variations on vertex similarity
metrics can effect the performance quite significantly (see
for example the start of Section 5.1 of [17]). Third, it is
usually the case that the better the coarsening, the faster the
uncoarsening phase is. Therefore, the coarsening phase also
affects the running time of the other phases.

Our aim in this paper is to efficiently parallelize the
coarsening phase of PaToH, a well-known and commonly
used hypergraph partitioning tool. The algorithmic kernel
of this phase is a clustering algorithm that marks similar
vertices to be coalesced. There are two classes of clustering
algorithms in PaToH. The algorithms in the first class
allow at most two vertices in a cluster. These algorithms
are called matching-based or matching algorithms in short.
The algorithms in the second class, called agglomerative
algorithms, allow any number of vertices to become together
to form a cluster. The most effective clustering algorithms in
PaToH are agglomerative ones whereas the fastest ones are
matching based. We propose efficient parallelization of these
two classes of algorithms (Section III). We report practical
experiments with PaToH (and its coarsening phase alone) on
a recent multicore architecture (Section IV). Our techniques
are easily applicable to some other sequential hypergraph
partitioners, since they use the same multilevel approach and
have similar data structures.
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II. BACKGROUND, PROBLEM FORMULATION AND

RELATED WORK

A. Hypergraph Partitioning

A hypergraph ℋ=(𝒱,𝒩 ) is defined as a set of vertices
𝒱 and a set of nets (hyperedges) 𝒩 among those vertices. A
net 𝑛 ∈ 𝒩 is a subset of vertices, and the vertices in 𝑛 are
called its pins. The size of a net is the number of its pins,
and the degree of a vertex is equal to the number of nets that
contain it. Graph is a special instance of hypergraph such
that each net has size two. We use pins[𝑛] and nets[𝑣]
to represent the pins of a net 𝑛, and the set of nets that
contain vertex 𝑣, respectively. Vertices can be associated
with weights, denoted with w[⋅], and nets can be associated
with costs, denoted with c[⋅].

A K-way partition of a hypergraph ℋ is denoted as Π=
{𝒱1,𝒱2, . . . ,𝒱𝐾} where

∙ parts are pairwise disjoint, i.e., 𝒱𝑘 ∩ 𝒱ℓ = ∅ for all
1 ≤ 𝑘 < ℓ ≤ 𝐾,

∙ each part 𝒱𝑘 is a nonempty subset of 𝒱 , i.e., 𝒱𝑘 ⊆ 𝒱
and 𝒱𝑘 ∕= ∅ for 1 ≤ 𝑘 ≤ 𝐾,

∙ union of 𝐾 parts is equal to 𝒱 , i.e.,
∪𝐾

𝑘=1 𝒱𝑘=𝒱 .
In a partition Π, a net that has at least one pin (vertex)

in a part is said to connect that part. The number of parts
connected by a net 𝑛, i.e., connectivity, is denoted as 𝜆𝑛.
A net 𝑛 is said to be uncut (internal) if it connects exactly
one part (i.e., 𝜆𝑛 = 1), and cut (external), otherwise (i.e.,
𝜆𝑛 > 1).

Let 𝑊𝑘 denote the total vertex weight in 𝒱𝑘 (i.e., 𝑊𝑘 =∑
𝑣∈𝒱𝑘

w[𝑣]) and 𝑊𝑎𝑣𝑔 denote the weight of each part when
the total vertex weight is equally distributed (i.e., 𝑊𝑎𝑣𝑔 =
(
∑

𝑣∈𝒱 w[𝑣])/𝐾). If each part 𝒱𝑘 ∈ Π satisfies the balance
criterion

𝑊𝑘 ≤𝑊𝑎𝑣𝑔(1 + 𝜀), for 𝑘 = 1, 2, . . . ,𝐾 (1)

we say that Π is balanced where 𝜀 represents the maximum
allowed imbalance ratio.

The set of external nets of a partition Π is denoted as
𝒩𝐸 . Let 𝜒(Π) denote the cost, i.e., cutsize, of a partition Π.
There are various cutsize definitions [1] such as:

𝜒(Π) =
∑

𝑛∈𝒩𝐸

c[𝑛] (2)

𝜒(Π) =
∑

𝑛∈𝒩
c[𝑛](𝜆𝑛 − 1) . (3)

In (2) and (3), each cut net 𝑛 contributes c[𝑛] and
c[𝑛](𝜆𝑛 − 1) to the cutsize, respectively. The cutsize metric
given in (2) will be referred to here as cut-net metric and the
one in (3) will be referred as connectivity metric. Given 𝜀
and an integer 𝐾 > 1, the hypergraph partitioning problem
can be defined as the task of finding a balanced partition Π
with 𝐾 parts such that 𝜒(Π) is minimized. The hypergraph
partitioning problem is NP-hard [1].

B. Clustering algorithms for hypergraph partitioning

As said before, there are two classes of clustering algo-
rithms: matching-based ones and agglomerative ones. The
matching-based ones put at most two similar vertices in a
cluster whereas the agglomerative ones allow any number
of similar vertices. There are various similarity metrics—see
for example [2], [18], [19]. All these metrics are defined on
two adjacent vertices (one of them can be a vertex cluster).
Two vertices are adjacent if they share a net, i.e., the vertices
𝑢 and 𝑣 are matchable if 𝒩𝑢𝑣 = nets[𝑢] ∩ nets[𝑣] ∕= ∅.
In order to find a given vertex 𝑢’s adjacent vertices, one
needs to visit each net 𝑛 ∈ nets[𝑢] and then visit each
vertex 𝑣 ∈ pins[𝑛]. Therefore, the computational complexity
of the clustering algorithms is at least in the order of∑

𝑛∈𝒩 ∣pins[𝑛]∣2. As mentioned in the introduction, the
other two phases of the multi-level approach have a linear
time worst case time complexity. As

∑
𝑛∈𝒩 ∣pins[𝑛]∣2 is

most likely to be the bottleneck, an effective clustering
algorithm’s worst case running time should not pass this
limit for the algorithm to be efficient as well.

The sequential implementations of the clustering algo-
rithms in PaToH proceed in the following way to have a
running time proportional to

∑
𝑛∈𝒩 ∣pins[𝑛]∣2. The vertices

are visited in a given (possibly random) order and each
vertex 𝑢, if not clustered yet, is tried to be clustered with the
most similar vertex or cluster. In the matching-based ones,
the current vertex 𝑢 if not matched yet, chooses one of its
unmatched adjacent vertices according to a criterion. If such
a vertex 𝑣 exists, the matched pair 𝑢 and 𝑣 are marked as a
cluster of size two. If there is no unmatched adjacent vertex
of 𝑢, then vertex 𝑢 remains as a singleton cluster. In the
agglomerative ones, the current vertex 𝑢, if not marked to
be in a cluster yet, can choose a cluster to join (thus forming
a cluster of size at least three), or can create another cluster
with one of its unmatched adjacent vertices (thus forming
a cluster of size two). Hence in agglomerative clustering,
vertex 𝑢 never remains as a singleton, as long as it is not
isolated (i.e., not connected to any net).

For the clustering algorithms in this paper, there exists a
representative vertex for each cluster. When a vertex 𝑢 ∈ 𝒱
is put into a cluster, we set rep[𝑢] to the representative of
this group. When a singleton vertex 𝑢 chooses another one
𝑣, we choose one as the representative and set rep[𝑢] and
rep[𝑣] accordingly. For all the algorithms, we assume that
rep[𝑢] is initially null for all 𝑢 ∈ 𝒱 . This will also be true
if 𝑢 remains singleton at the end of the algorithm.

Algorithm 1 presents one of the matching-based clustering
algorithms that are available in PaToH. In this algorithm,
the vertex 𝑢 (if not matched yet) is matched with currently
unmatched neighbor 𝑣 with the maximum connectivity,
where the connectivity refers to the sum of the costs of the
common nets. This matching algorithm is called as Heavy
Connectivity Matching (HCM) in PaToH [2], and Inner

849849



Algorithm 1: Sequential greedy matching (HCM)
Data: ℋ = (𝒱,𝒩 ), rep

1 for each vertex 𝑢 ∈ 𝒱 in a given order do
if rep[𝑢] = null then

2 adj𝑢 ← {}
for each net 𝑛 ∈ nets[𝑢] do

for each vertex 𝑣 ∈ pins[𝑛] do
if rep[𝑣] ∕= null then

3 pins[𝑛] ← pins[𝑛] ∖{𝑣}
else

4 if 𝑣 /∈ adj𝑢 then
5 adj𝑢 ← adj𝑢 ∪ {𝑣}
6 conn[𝑣] ← conn[𝑣] + c[𝑛]

𝑣∗ ← 𝑢
𝑐𝑜𝑛𝑛∗ ← 0
for each vertex 𝑣 ∈ adj𝑢 do

if conn[𝑣] > 𝑐𝑜𝑛𝑛∗ and 𝑣 ∕= 𝑢 then
𝑐𝑜𝑛𝑛∗ ← conn[𝑣]
𝑣∗ ← 𝑣

conn[𝑣] ← 0

if 𝑢 ∕= 𝑣∗ then
rep[𝑣∗ ]← 𝑢
rep[𝑢]← 𝑢

Product Matching (IPM) in Zoltan [20] and Mondriaan [13].
One can have different variations of this algorithm by
changing the vertex visit order (line 1) and/or using different
scaling schemes while computing the contribution of each
net to its pins (line 6). The array conn[⋅] of size ∣𝒱∣ is
necessary to compute the connectivity of the vertex 𝑢 and
all its adjacent vertices in time linearly proportional to the
number of adjacent vertices. The operation at line 3 is again
for efficiency. It removes the matched vertices from pins[𝑛],
hence the next searches on pins[𝑛] will take less time.

Algorithm 2 presents one of the agglomerative clustering
algorithms that are available in PaToH. Similar to the
sequential HCM algorithm, vertices are again visited in a
given order. If a vertex 𝑢 has already been clustered, it is
skipped. However, an unclustered vertex 𝑢 can choose to join
an existing cluster, can start a new cluster with a vertex,
or stay as a singleton cluster. Therefore, compared to the
previous algorithm, all adjacent vertices of the current vertex
𝑢 are considered for selection. In order to avoid building an
extremely large cluster (which would cause load balance
problem in initial partitioning and refinement phases), we
also enforce that weight of a cluster must be smaller than
a given value 𝑚𝑎𝑥𝑊 . Our experience shows that such
restriction is not needed in matching based clustering, since
at each level only at most two vertices can be clustered
together.

In Algorithm 2, we use the total shared net cost (heavy
connectivity clustering) as the similarity metric. In practice

Algorithm 2: Sequential agglomer. clustering (HCC)
Data: ℋ = (𝒱,𝒩 ), 𝑚𝑎𝑥𝑊 , rep
for each vertex 𝑢 ∈ 𝒱 in a given order do

if rep[𝑢] = null then
adj𝑢 ← {}
for each net 𝑛 ∈ nets[𝑢] do

for each vertex 𝑣 ∈ pins[𝑛] do
if 𝑣 /∈ adj𝑢 then

adj𝑢 ← adj𝑢 ∪ {𝑣}
conn[𝑣] ← conn[𝑣] + c[𝑛]

𝑣∗ ← 𝑢
𝑐𝑜𝑛𝑛∗ ← 0
for each vertex 𝑣 ∈ adj𝑢 do

if 𝑢 = 𝑣 then
continue

𝑣𝑟 ←rep[𝑣]
if 𝑣𝑟 = null then

𝑣𝑟 ← 𝑣

if 𝑣𝑟 ∕= 𝑣 then
conn[𝑣𝑟] ← conn[𝑣𝑟] + conn[𝑣]
conn[𝑣] ← 0
adj𝑢 ← adj𝑢 ∪ {𝑣𝑟} ∖ {𝑣}

1 𝑡𝑜𝑡𝑊 ← w[𝑢] + w[𝑣𝑟]
if conn[𝑣𝑟] > 𝑐𝑜𝑛𝑛∗ then

if 𝑡𝑜𝑡𝑊 < 𝑚𝑎𝑥𝑊 then
𝑐𝑜𝑛𝑛∗ ← conn[𝑣𝑟]
𝑣∗ ← 𝑣𝑟

for each vertex 𝑣 ∈ adj𝑢 do
conn[𝑣] ← 0

if 𝑢 ∕= 𝑣∗ then
rep[𝑣∗ ] ← 𝑣∗

rep[𝑢]← 𝑣∗

w[𝑣∗ ] ← w[𝑣∗ ] + w[𝑢]

(and in our experiments), we use the absorption clustering
metric (implemented in PaToH) which divides the contribu-
tion of each net to the number of its pins. That is, a net
𝑛 contributes c[𝑛]/∣pins[𝑛]∣ to the similarity value instead
of c[𝑛]. This metric favors clustering vertices connected
via nets of small sizes. The sequential code in PaToH also
divides the overall similarity score between two vertices by
the weight of the cluster which will contain 𝑢 (the value
𝑡𝑜𝑡𝑊 at line 1). Hence, to compare the performance of
our multithreaded clustering algorithms with PaToH, we also
use this modified similarity metric in our implementations.
However, for simplicity, we will continue to use the heavy
connectivity clustering metric in the paper.

C. Metrics

We define the metrics of cardinality and quality to com-
pare different clustering methods. The cardinality is defined
as the number of clustering decisions taken by an algorithm,
i.e.,
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cardinality =
∑

𝑢∈𝒱,rep[𝑢] ∕=null

(∣{𝑣 ∈ 𝒱 : rep[𝑣] = 𝑢}∣ − 1) .

In the multi-level framework, this represents the reduction on
the number of vertices between two consecutive coarsening
levels. The quality of a clustering is defined as the sum of
the similarities between each vertex pair which resides in
the same cluster, i.e.,

quality =
∑

𝑢∈𝒱

∑

𝑣∈𝒞𝑢

∑

𝑛∈𝒩𝑢𝑣

c[𝑛]
2

,

where 𝒞𝑢 = {𝑣 ∈ 𝒱 ∖ {𝑢} : rep[𝑣] = rep[𝑢] and rep[𝑣] ∕=
null} is the set of vertices which are in the same cluster
with 𝑢, and 𝒩𝑢𝑣 is the set of nets shared by 𝑢 and 𝑣.

Although the definitions are generic to be used for both
matching-based and agglomerative clustering, we do not
use these criteria to compare a matching-based clustering
heuristic with an agglomerative one, since the latter has an
obvious advantage.

D. Related work

For a given hypergraph ℋ=(𝒱,𝒩 ), let 𝐴 be the vertex-
net incidence matrix, i.e., the rows of 𝐴 correspond to the
vertices of ℋ, and the columns of 𝐴 correspond to the nets
of ℋ such that 𝑎𝑣𝑛 = 1 iff 𝑣 ∈ pins[𝑛]. Consider now the
symmetric matrix 𝑀 = 𝐴𝐴𝑇 − 𝑑𝑖𝑎𝑔(𝐴𝐴𝑇 ). The matrix 𝑀
can be effectively represented by an undirected graph 𝒢(𝑀)
with ∣𝒱∣ vertices and having an edge of weight 𝑚𝑢𝑣 between
two vertices 𝑢 and 𝑣 if 𝑚𝑢𝑣 ∕= 0. That is, there is a one-to-
one correspondence between the vertices of ℋ and 𝒢(𝑀).
As 𝑚𝑢𝑣 ∕= 0 iff the vertices 𝑢 and 𝑣 of ℋ are adjacent, the
correspondence implies that a matching among the vertices
of ℋ corresponds to a matching on the vertices of 𝒢(𝑀).
Therefore, various matching algorithms and heuristics for
graphs can be used on 𝒢(𝑀) to find a matching among the
vertices of ℋ.

Bisseling and Manne [21] propose a distributed memory,
1/2-approximate algorithm to find weighted matchings in
graphs. Building on this work, Çatalyürek et al. [22] present
efficient distributed-memory parallel algorithms and scalable
implementations. Halappanavar et al. [23] present an effi-
cient shared-memory implementations for computing 1/2-
approximate weighted matchings. For maximum cardinality
matching problem, in a recent work, Patwary et al. [24]
propose a distributed memory, sub-optimal algorithm.

There are a number of reasons why we cannot use
aforementioned algorithms. First and foremost, storing the
graph 𝒢(𝑀) requires a large memory. The time required
to compute this graph is about as costly as computing a
matching in ℋ in a sequential execution. Second, it is our
experience (with the coarsening algorithms within the multi-
level partitioner PaToH) that one does not need a maximum

weighted matching, nor a maximum cardinality one, nor an
approximation guarantee to find helpful coarsening schemes.
Third, while matching the vertices of a hypergraph, we
sometimes need to avoid matched vertices become too big,
or favor vertex clusters with smaller weights (due to multi-
level nature of the partitioning algorithm), and vertices
that are mostly related via nets of smaller size. These
modifications can be incorporated into the graph 𝒢(𝑀) by
adjusting the edge weights (or by leaving some edges out).
This will help reduce the memory requirements of the graph
matching based algorithms. However, the computational cost
of constructing the graph remains the same. Almost all of the
most effective sequential clustering algorithms implemented
in PaToH for coarsening purposes has the same worst
case time complexity but are much faster in practice. We,
therefore, cannot afford building the graph 𝒢(𝑀) or its mod-
ified versions and call existing graph matching algorithms.
Furthermore, agglomerative clustering algorithms cannot be
accomplished by using the aforementioned algorithms.

We highlight that the matching-based clustering algo-
rithms considered in this paper can be perceived as a
graph matching algorithm adjusted to work on an implicit
representation of the graph 𝒢(𝑀) or its modified versions.
However, to the best of our knowledge, there is no immediate
parallel graph-matching based algorithm that is analogous to
the agglomerative clustering algorithms considered in this
work (although variants of agglomerative coarsening for
graphs exist, see for example [25] and [26]).

As a sanity check, we implemented a modified version of
the sequential 1/2-approximation algorithm of Halappanavar
et al. [23] which works directly on hypergraphs. In other
words, instead of explicitly constructing the graph 𝒢(𝑀),
adjacencies of vertices are constructed on the fly, like
Algorithm 1. We compared the quality and cardinality of
this algorithm with that of the greedy sequential matching
HCM. The approximation algorithm obtained matchings
with better quality by 14% while the cardinalities were
the same. However, this good performance comes with
a significant execution time overhead, yielding 6.5 times
slower execution. When we integrated the 1/2-approximation
algorithm into the coarsening phase of PaToH, we observed
that better matching quality helps the partitioner to obtain
better cutsize. For example, when the partitioner is executed
10 times with random seeds, the average cutsize of 1/2-
approximation algorithm is 8% better than the one obtained
by using HCM. However, when we compare the minimum
of these cutsizes, HCM outperforms the approximation
algorithm by 2%. Moreover, the difference between the
minimum cut obtained by using HCM with the average
cut obtained by using the approximation algorithm is 14%
in favor of HCM. After these preliminary experiments, we
decided to parallelize HCM and HCC, since they are much
faster, and one can obtain better cutsize by using them.
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III. MULTITHREADED CLUSTERING FOR COARSENING

In this section, we will present three novel parallel greedy
clustering algorithms. The first two are matching-based and
the third one is a greedy agglomerative clustering method.

A. Multithreaded matching algorithms

To adapt the greedy sequential matching algorithm
for multithreaded architectures, we use two different ap-
proaches. In the first one, we employ a locking mechanism
which prevents inconsistent matching decisions between the
threads. In the second approach, we let the algorithm run
almost without any modifications and then use a conflict
resolution mechanism to create a consistent matching.

The lock-based algorithm is given in Algorithm 3. The
structure of the algorithm is similar to the sequential one ex-
cept the lines 2 and 5, where we use the atomic CHECKAND-
LOCK operation. To lock a vertex 𝑢, this operation first
checks if 𝑢 is already locked or not. If not, it locks it
and returns true. Otherwise, it returns false. Its atomicity
guarantees that a locked vertex is never considered for a
matching. That is, both the visited vertex 𝑢 (at line 1) and
the adjacent vertex 𝑣 must not be locked to consider the
matching of 𝑢 and 𝑣. If they are, and if the similarity of
𝑣 is bigger than the current best (at line 3), the algorithm
keeps 𝑣 as the best candidate 𝑣∗. When a better candidate
is found, the old one is UNLOCKed to make it available for
other threads (line 6), and to construct better matchings in
terms of cardinality and quality.

Algorithm 3: Parallel lock-based matching
Data: ℋ = (𝒱,𝒩 ), rep

1 for each vertex 𝑢 ∈ 𝒱 in parallel do
2 if CHECKANDLOCK(𝑢) then

adj𝑢 ← {}
for each net 𝑛 ∈ nets[𝑢] do

for each vertex 𝑣 ∈ pins[𝑛] do
if 𝑣 /∈ adj𝑢 then

adj𝑢 ← adj𝑢 ∪ {𝑣}
conn[𝑣] ← conn[𝑣] + c[𝑛]

𝑣∗ ← 𝑢
𝑐𝑜𝑛𝑛∗ ← 0

3 for each vertex 𝑣 ∈ adj𝑢 do
4 if conn[𝑣] > 𝑐𝑜𝑛𝑛∗ then
5 if CHECKANDLOCK(𝑣) then

if 𝑢 ∕= 𝑣∗ then
6 UNLOCK(𝑣∗)

𝑐𝑜𝑛𝑛∗ ← conn[𝑣]
𝑣∗ ← 𝑣

conn[𝑣] ← 0

if 𝑢 ∕= 𝑣∗ then
rep[𝑢]← 𝑢
rep[𝑣∗ ] ← 𝑢

As a different approach without a lock mechanism, we
modify the sequential code slightly and execute it in a
multithreaded environment. If the for loop at line 1 of
Algorithm 1 is executed in parallel, different threads may
set rep[𝑢] to different values for a vertex 𝑢. Hence, the
rep array will contain inconsistent decisions. To solve this
issue, one can make each thread use a private rep array and
store all of its matching decisions locally. Then, a consistent
matching can be devised from this information in another
phase. Another idea is keeping the sequential code (almost)
as is, letting the threads create conflicts, and resolving the
conflicts later. Our preliminary experiments show that there
is not much difference between the performances of these
two approaches in terms of the cardinality and the quality.
However, the first one requires more memory: one rep array
per thread compared to a shared one. Hence, we followed
the second idea and use a conflict resolution scheme with
𝒪(∣𝒱∣) complexity. Algorithm 4 shows the pseudocode of
our parallel resolution-based algorithm.

Algorithm 4: Parallel resolution-based matching
Data: ℋ = (𝒱,𝒩 ), rep
for each vertex 𝑢 ∈ 𝒱 in parallel do

if rep[𝑢] = null then
adj𝑢 ← {}
for each net 𝑛 ∈ nets[𝑢] do

for each vertex 𝑣 ∈ pins[𝑛] do
if 𝑣 /∈ adj𝑢 then

adj𝑢 ← adj𝑢 ∪ {𝑣}
conn[𝑣] ← conn[𝑣] + c[𝑛]

𝑣∗ ← 𝑢
𝑐𝑜𝑛𝑛∗ ← 0
for each vertex 𝑣 ∈ adj𝑢 do

1 if rep[𝑣] = null then
if conn[𝑣] > 𝑐𝑜𝑛𝑛∗ then

if 𝑢 ∕= 𝑣 then
𝑐𝑜𝑛𝑛∗ ← conn[𝑣]
𝑣∗ ← 𝑣

conn[𝑣] ← 0

2 if rep[𝑢] = rep[𝑣] = null then
3 rep[𝑢] ← 𝑣∗

4 rep[𝑣∗ ] ← 𝑢

5 for each vertex 𝑢 ∈ 𝒱 in parallel do
𝑣 ← rep[𝑢]
if 𝑣 ∕= null and 𝑢 ∕= rep[𝑣] then

rep[𝑢] ← null

for each vertex 𝑢 ∈ 𝒱 in parallel do
𝑣 ← rep[𝑢]
if 𝑣 ∕= null and 𝑢 < 𝑣 then

rep[𝑢] ← 𝑢

Our conflict resolution scheme starts at line 5 of Algo-
rithm 4. Note that instead of setting a fixed representative
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for the matched vertices 𝑢 and 𝑣∗, we set their rep values
to each other. This bidirectional information is then used
in our resolution scheme to check if the rep array contains
inconsistent information. That is if 𝑢 ∕= rep[rep[𝑢]] for a
vertex 𝑢, we know that at least two threads matched either 𝑢
or 𝑣 with different vertices. If this is the case, the resolution
scheme acts greedily and aggressively sets rep[𝑢] to null
indicating 𝑢 will be unmatched. After the first loop at line 5,
which is executed in parallel, the rep array will contain the
matching decisions consistent with each other. Then, with
the last parallel loop, we set the representatives for each
matched pair.

The proposed resolution scheme is sufficient to obtain a
valid matching in the multithreaded setting. However, we
slightly modify Algorithm 1 to obtain better matchings.
Since each conflict will probably cost a pair, and losing
a pair reduces matching cardinality and hence, quality,
we desire lesser conflicts. To avoid them, at line 1 of
Algorithm 4, we check if a vertex 𝑣 adjacent to 𝑢 is already
matched. If we detect an already matched candidate, we do
not consider it as a possible mate for 𝑢. Furthermore, at
line 2, we again verify if 𝑢 and 𝑣 are already matched right
before matching them. This check is necessary since either
of them could have been matched by another thread after
the current one starts considering them.

B. Multithreaded agglomerative clustering

To adapt the sequential agglomerative clustering algo-
rithm to multithreaded setting, we use the same lock-based
approach integrated to Algorithm 3. The pseudocode of
the parallel agglomerative clustering algorithm is given in
Algorithm 5. The algorithm visits the vertices in parallel,
and when a thread visits a vertex 𝑢, it tries to lock 𝑢. If 𝑢 is
already locked the thread skips 𝑢 and visits the next vertex.
If 𝑢 is not locked but is already a member of a cluster, the
thread unlocks 𝑢. Since a cluster cannot be the source of
a new cluster, this is necessary. On the other hand, if 𝑢 is
a singleton vertex, the thread continues by computing the
similarity values for each adjacent vertex and then traverses
the adjacency list adj𝑢 along the same lines as the sequential
algorithm. The main difference here is the locking request
for 𝑣𝑟 (line 1) which is either set to 𝑣 if 𝑣 is singleton,
or to the representative of the cluster that 𝑣 resides in.
Before considering 𝑣𝑟 as a matching candidate, this lock
is necessary. However, if 𝑣𝑟 is already the best candidate, it
is not so (since the thread has already grabbed 𝑣𝑟). When
the lock is granted, the thread checks if the adjacent vertex
𝑣, which was singleton before, has been assigned to a cluster
by another thread. If this is the case, the thread unlocks the
representative and continues with the next adjacent vertex.
Otherwise, it recomputes the total weight of 𝑢 and 𝑣𝑟 (line 3)
since new vertices might have been inserted to 𝑣𝑟’s cluster
by other threads. Since insertions can only increase w[𝑣𝑟]
and conn[𝑣𝑟], we do not need to compare conn[𝑣𝑟] with

𝑐𝑜𝑛𝑛∗ again. On the other hand, since we cannot construct
clusters with large weights, we need to check if 𝑡𝑜𝑡𝑊 is still
smaller than 𝑚𝑎𝑥𝑊 (line 4). When the best candidate 𝑣∗ is
found, we put 𝑢 in the cluster 𝑣∗ represents and update the
rep and w arrays accordingly. Unlike the matching based
algorithms, a cluster is allowed to be a candidate more than
once throughout the execution. Hence, at the end of the
iteration (lines 5 and 6) we unlock all the vertices that are
locked during this iteration.

C. Implementation Details

To obtain lock functionality for the multithreaded clus-
tering algorithms described in the previous section, we
use the compare and exchange CPU instruction which
exists in x86 and Itanium architectures. We first allo-
cate a lock array of length ∣𝒱∣ and initialize all entries
to 0. For each call of the corresponding function in C,
__sync_bool_compare_and_swap, the entry related
with the lock request is compared with 0. In case of equality,
it is set to 1, and the function returns true. On the other hand,
if the entry is not 0 then it returns false. To unlock a vertex,
we simply set the related entry in the lock array to 0.

Although this function provides great support and flexibil-
ity for concurrency, our preliminary experiments show that it
can also reduce the efficiency of a multithreaded algorithm.
To alleviate this, we try reduce the number of calls on this
function by adding an if statement before each lock request
which helps us to see if the lock is really necessary. We
observe significant improvements on the execution times due
to these additional if statements. For example, the parallel
lock-based matching algorithm described in the previous
section should be implemented as in Algorithm 6 to make
it much faster. We stress that the if statements at lines 1
and 3 do not change anything in the execution flow. That is
if a vertex is not locked, it cannot be also matched since a
matched vertex always stays locked. Hence everything that
can pass the lock requests (lines 2 and 4) can also pass the
previous if statements. However, the opposite is not true.

We used the same hypergraph data structure with PaToH.
We store the ids of the vertices of each net 𝑛, that is its pins,
consecutively in an array ids of size

∑
𝑛∈𝒩 ∣pins[𝑛]∣. We

also keep another array xids of size ∣𝒩 ∣ + 1, which stores the
start index of each net’s pins. Hence, in our implementation,
the pins of a net 𝑛, denoted by pins[𝑛] in the pseudocodes,
are stored in ids[xids[𝑛]] through ids[xids[𝑛+ 1]− 1].

With the data structures above, the computational com-
plexity of the clustering algorithms in this paper are in
the order of

∑
𝑛∈𝒩 ∣pins[𝑛]∣2, since all non-loop lines in

their pseudocodes have 𝒪(1) complexity. For example, in
Algorithm 1, to remove matched vertices from pins[𝑛]
(line 3), we keep a pointer array netend of size 𝒩 where
netend[𝑛] initially points to the last vertex in pins[𝑛] for
all 𝑛 ∈ 𝒩 . Then, to execute pins[𝑛] ← pins[𝑛] ∖{𝑣}, we
only decrease netend[𝑛] and swap 𝑣 with the vertex in the
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Algorithm 5: Parallel agglomerative clustering
Data: ℋ = (𝒱,𝒩 ), 𝑚𝑎𝑥𝑊 , rep
for each vertex 𝑢 ∈ 𝒱 in parallel do

if CHECKANDLOCK(𝑢) then
if rep[𝑢] ∕= null then

UNLOCK(𝑢)
continue

adj𝑢 ← {}
for each net 𝑛 ∈ nets[𝑢] do

for each vertex 𝑣 ∈ pins[𝑛] do
if 𝑣 /∈ adj𝑢 then

adj𝑢 ← adj𝑢 ∪ {𝑣}
conn[𝑣] ← conn[𝑣] + c[𝑛]

𝑣∗ ← 𝑢
𝑐𝑜𝑛𝑛∗ ← 0
for each vertex 𝑣 ∈ adj𝑢 do

if 𝑢 = 𝑣 then
continue

𝑣𝑟 ←rep[𝑣]
if 𝑣𝑟 = null then

𝑣𝑟 ← 𝑣

if 𝑣𝑟 ∕= 𝑣 then
conn[𝑣𝑟] ← conn[𝑣𝑟] + conn[𝑣]
#replace 𝑣 with 𝑣𝑟

conn[𝑣] ← 0
adj𝑢 ← adj𝑢 ∪ {𝑣𝑟} ∖ {𝑣}

𝑡𝑜𝑡𝑊 ← w[𝑢] + w[𝑣𝑟]
if conn[𝑣𝑟] > 𝑐𝑜𝑛𝑛∗and 𝑡𝑜𝑡𝑊 < 𝑚𝑎𝑥𝑊 then

1 if 𝑣𝑟 = 𝑣∗or CHECKANDLOCK(𝑣𝑟) then
2 if rep[𝑣] ∕= 𝑣𝑟 and rep[𝑣] ∕= null then

UNLOCK(𝑣𝑟)
continue

3 𝑡𝑜𝑡𝑊 ← w[𝑢] + w[𝑣𝑟]
4 if 𝑡𝑜𝑡𝑊 < 𝑚𝑎𝑥𝑊 then

𝑐𝑜𝑛𝑛∗ ← conn[𝑣𝑟]
𝑣∗ ← 𝑣𝑟

if 𝑢 ∕= 𝑣∗ then
UNLOCK(𝑣∗)

else
UNLOCK(𝑣𝑟)

for each vertex 𝑣 ∈ adj𝑢 do
conn[𝑣] ← 0

if 𝑢 ∕= 𝑣∗ then
rep[𝑣∗ ] ← 𝑣∗

rep[𝑢]← 𝑣∗

w[𝑣∗ ] ← w[𝑣∗ ] + w[𝑢]
5 UNLOCK(𝑣∗)

6 UNLOCK(𝑢)

Algorithm 6: Parallel lock-based matching: modified

for each vertex 𝑢 ∈ 𝒱 in parallel do
1 if rep[𝑣] = null then
2 if CHECKANDLOCK(𝑢) then

⋅ ⋅ ⋅
for ⋅ ⋅ ⋅ do
⋅ ⋅ ⋅
if ⋅ ⋅ ⋅ then

3 if rep[𝑣] = null then
4 if CHECKANDLOCK(𝑣) then

⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

new location. In this way, we also keep the list of vertices
connected to each net unchanged since we only reorder
them.

In the actual implementation of Algorithm 1, the set adj𝑢
corresponds to an array of maximum size ∣𝒱∣, and an integer
which keeps the number of adjacent vertices in the array.
With this pair, the vertex addition (line 5) and reset (line
2) operations take constant time. Furthermore, to find if a
vertex 𝑣 is a member of adj𝑢 (line 4), we use conn[𝑣] since
the edge costs are positive, and conn[𝑣] > 0 if and only if
𝑣 ∈ adj𝑢. The implementation of these lines are the same
for other algorithms.

IV. EXPERIMENTAL RESULTS

The algorithms are tested on a computer with 2.27GHz
dual quad-core Intel Xeon CPUs with 2-way hyper-threading
enabled, and 48GB main memory. All of the algorithms are
implemented in C and OpenMP. The compiler is icc version
11.1 and -O3 optimization flag is used.

To generate our hypergraphs, we used real life matrices
from the University of Florida (UFL) Sparse Matrix Collec-
tion (http://www.cise.ufl.edu/research/sparse/matrices). We
randomly choose 70 large, square matrices from the library
and create corresponding hypergraphs using the column-net
hypergraph model [2]. An overall summary of the properties
of these hypergraphs is given in Table I. The complete list
of matrices is at http://bmi.osu.edu/∼kamer/multi coarse
matrices.txt.

Table I
PROPERTIES OF THE HYPERGRAPHS USED IN THE EXPERIMENTS

min max average
# vertices 256,000 9,845,725 1,089,073
# pins 786,396 57,156,537 6,175,717

#𝑝𝑖𝑛𝑠
#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

1.91 39.53 6.61
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A. Individual performance of the algorithms

We first compare the performance of the multithreaded
clustering algorithms with respect to the cardinality, quality
and speedup as standalone clustering algorithms.

1) Performance on cardinality and quality: For matching
based clustering, a matching with the best quality can
be found by first constructing the matrix 𝑀 = 𝐴𝐴𝑇 −
𝑑𝑖𝑎𝑔(𝐴𝐴𝑇 ) where 𝐴 is the vertex-net incidence matrix.
Then a maximum weighted matching in 𝒢(𝑀), the asso-
ciated weighted graph of 𝑀 , is also the maximum quality
matching.

We use Gabow’s maximum weighted matching algo-
rithm [27]—implemented by Rothberg and available as a
part of The First DIMACS Implementation Challenge (avail-
able at ftp://dimacs.rutgers.edu/pub/netflow). This algorithm
has a time complexity of 𝒪(∣𝒱∣3) for a graph on ∣𝒱∣ vertices
and finds a maximum weighted matching in the graph, not
necessarily among the maximum cardinality ones.

Due to the running time complexity of the maximum
quality matching algorithm, it is impractical to obtain the
relative performance of the clustering algorithms on our
original dataset. We therefore use an additional data set
containing considerably small matrices. The new dataset
contains all 289 square matrices in the UFL sparse matrix
collection with at least 3, 000 and at most 10, 000 rows. We
construct the hypergraphs for each of these matrices and find
the maximum quality matching on them.

Table II
RELATIVE PERFORMANCE OF THE SEQUENTIAL AND PARALLEL

MATCHING BASED CLUSTERING ALGORITHMS W.R.T. TO THE MAXIMUM

QUALITY MATCHINGS (# OF THREADS = 8).

Quality Cardinality
min max gmean min max gmean

Sequential 0.24 1.00 0.81 0.85 1.68 1.02
Lock-based 0.32 1.00 0.83 0.74 1.65 1.02
Resolution-based 0.25 0.99 0.74 0.77 1.78 0.99

The relative performance of an algorithm is computed
by dividing its cardinality and quality scores to those of
Gabow’s quality matching algorithm. Table II shows the
minimum, the maximum, and the geometric mean of all
289 relative performance for each algorithm. As the table
shows, the sequential algorithm and its parallel lock-based
variant are only 17–19% far from the optimal in terms of
quality and almost equal in terms of cardinality. Considering
the difference in computational complexities, we can argue
that their relative performance is reasonably good. The lock-
based algorithm performs slightly better than the sequential
one. This demonstrates that while reducing the execution
time, the proposed lock-based parallelization does not ham-
per the performance of the sequential matching algorithm in
terms of both cardinality and quality. For this experiment,
the parallel algorithms were executed with 8 threads.

Figure 1 shows the performance profiles generated to

Figure 1. Performance profiles for sequential and multithreaded matching
algorithms with respect to the maximum quality matchings. A point (𝑥, 𝑦)
in the profile graph means that with 𝑦 probability, the quality of the
matching found by an algorithm is larger than 𝑚𝑎𝑥/𝑥 where 𝑚𝑎𝑥 is the
maximum quality for that instance.

analyze the results in more detail. A point (𝑥, 𝑦) in the
profile graph means that with 𝑦 probability, the quality of
the matching found by an algorithm is more than 𝑚𝑎𝑥/𝑥
where 𝑚𝑎𝑥 is the maximum quality for that instance. The
figure shows that for this data set, the resolution-based
algorithm performs worse than the other algorithms. The
lock-based algorithm obtains matchings which are at most
1.25 times less than 𝑚𝑎𝑥 with 74% probability. However,
the resolution-based matching has this performance only for
45% probability. While obtaining matchings having at most
15% worse quality than the optimum, the probabilities are
56% and 28% for the lock- and resolution-based algorithms,
respectively. Hence, the former performs two times better
than the latter.

For the original data set with large hypergraphs, the rela-
tive performance of the multithreaded algorithms are given
with respect to that of their sequential versions. Table III
shows the statistics for this experiment.

Table III
RELATIVE PERFORMANCE OF THE PARALLEL MATCHING-BASED AND

AGGLOMERATIVE CLUSTERING W.R.T. TO THEIR SEQUENTIAL

VERSIONS (# OF THREADS = 8).

Quality Cardinality
min max gmean min max gmean

Lock-based 0.79 1.1 0.99 0.99 1.01 1.01
Resolution-based 0.63 1.1 0.91 0.78 1.01 0.97
Agglomerative 0.56 1.3 1.01 0.94 1.03 0.99

Table III shows that the multithreaded versions of lock-
based and agglomerative algorithms perform as good as
their sequential versions in terms of cardinality and quality.
Hence, once again, we can conclude that parallelization
via locks does not diminish the performance of the multi-
threaded algorithms. On the other hand, the resolution-based
algorithm is outperformed by other algorithms in terms of
quality.
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Figure 2. Speedups for matching and clustering: For the lock- and
resolution-based algorithms, speedup is computed by using the execution
times of sequential greedy matching algorithm. For the parallel agglomer-
ative one, its sequential version is used.

Table IV shows the average numbers of matched vertices
and conflicts for the proposed resolution-based algorithm
with respect to the number of threads. To compute the
averages, we execute the algorithm on each hypergraph
ten times and report the geometric mean of these results.
As expected, the number of the conflicts increases with
the number of threads. However, when compared with the
cardinality of the matching, the conflicts are at most 0.7%
of the total match count for a single graph instance. This
shows that the probability of a conflict is very low even
with 8 threads.

Table IV
THE AVERAGE MATCHING CARDINALITY AND THE NUMBER OF

CONFLICTS FOR THE PROPOSED RESOLUTION-BASED ALGORITHM WITH

RESPECT TO THE NUMBER OF THREADS.

Thread # #𝑚𝑎𝑡𝑐ℎ #𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 #𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
#𝑚𝑎𝑡𝑐ℎ

1 290206.9 0.0 0.000000
2 290103.6 17.8 0.000061
4 290052.9 18.9 0.000065
8 289965.9 24.1 0.000083

2) Speedup: Figure 2 shows the speedups achieved by
the multithreaded algorithms. On the average, the algorithms
obtain decent speedups compared to their sequential versions
up to 8 threads. In 8-thread experiments, the resolution-based
algorithm has the highest speedup of 5.87, which is followed
by the parallel agglomerative algorithm with a speedup of
5.82. The lock-based algorithm has the least speedup of 5.23
in this category. However, this is still decent especially when
we consider the 5–7% overhead due to OpenMP and atomic
operations.

To analyze the scalability of the algorithms from a closer
point of view, we draw the speedup profiles in Figure 3.
The resolution-based algorithm has better scalability in
general. For example, with 4 threads, the probability that
the resolution-based algorithm obtains a speedup of at least
3.2 is 83%. The same probabilities for the lock-based and
parallel agglomerative algorithms are 54% and 65%, respec-
tively. With 8 threads, the resolution-based version achieves

Figure 4. Speedups on the time spent by the clustering algorithms in the
multi-level approach.

at least 6.6 speedup for 33% the hypergraphs. However, the
lock-based and parallel agglomerative algorithms achieve the
same speedup only in for 16% and 20% of them. Hence,
the resolution-based algorithm is the best among the ones
proposed in this paper in terms of scalability.

B. Multi-level performance of the algorithms

As mentioned in the introduction, we integrated our
algorithms into the coarsening phase of PaToH [15]. In this
section, we first investigate how our algorithms scale for the
clustering operations inside PaToH. The overall performance
of a clustering algorithm in such a setting can be different
from the standalone performance of the same algorithm,
since in the multi-level framework, the hypergraphs are
coarsened until the coarsest hypergraph is considerably small
(for example, until the number vertices reduces below 100).

Figure 4 shows that the speedups on the multi-level
clustering part are slightly worse than that of the standalone
clustering. For example, the average speedups for the 8(4)
threads case, are 5.25(3.22), 5.56(3.40), and 5.47(3.23) for
the lock-based, resolution-based, and parallel agglomerative
algorithms, respectively.

Since we only parallelize the clustering operations inside
the partitioner, the speedups we obtain on the overall execu-
tion time cannot be equal to the number of threads, even in
the ideal case. To find the ideal speedups, we use Amdahl’s
law [28]:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑖𝑑𝑒𝑎𝑙 =
1

(1− 𝑟) + 𝑟
#𝑡ℎ𝑟𝑒𝑎𝑑𝑠

(4)

where 𝑟 is the ratio of the total clustering time to the total
time of a sequential execution. To find the ideal speedup on
the average, we compute (4) for each hypergraph and then
take the geometric mean since we do the same for actual
speedups.

Figure 5 shows the ideal and actual speedups of the multi-
threaded algorithms. Since the ideal speedup lines (in dashed
style) are drawn by using different sequential algorithms
for the matching-based and agglomerative clustering, we
separated these two cases and draw two different charts.
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(a) #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 4 (b) #𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 8

Figure 3. Speedup profiles for the multithreaded algorithms: A point (𝑥, 𝑦) in the profile graph means that with 𝑦 probability, the speedup obtained by
the parallel algorithm will be more than 𝑥.

(a) Matching-based clustering (b) Agglomerative clustering

Figure 5. Overall speedup on the total execution time of PaToH. The ideal speedup line is drawn by using Amdahl’s law.

On the average, all the algorithms obtain speedups close to
the ideal. Among the matching-based algorithms, the lock-
based one is more efficient since its speedup is closer to the
ideal. This is interesting since according to Figure 4, it has
less speedup on the total clustering time. At first sight, this
looks like an anomaly because this is the only part that has
been parallelized. However, the since lock-based algorithm’s
quality is better (Table III), there is probably less work
remaining for the refinement heuristics in the uncoarsening
phase. Hence, in total, one can achieve better speedup by
using the lock-based algorithm rather than the resolution-
based one.

We also obtain good speedups with the parallel agglomer-
ative algorithm. For 2, 4, and 8 threads, the algorithm makes
PaToH only 6%, 6% and 10% slower, respectively, than the
best possible parallel execution time.

Parallelization of both matching-based and agglomerative
clustering algorithm reduces the total execution time sig-
nificantly. As mentioned before, matching-based algorithms
are faster than the agglomerative ones. However, Figure 6
shows that PaToH is 20–30% faster when an agglomerative
algorithm is used in the coarsening phase rather than a
matching based one. According to our experiments, the

coarsening phase is indeed 25% slower with the agglomera-
tive clustering algorithm. However, the total execution time
is 13% less. The difference comes from the reduction on
the time of initial partitioning and uncoarsening/refinement
phases. The initial partitioning takes less time because the
coarsest hypergraph has fewer number of vertices with
an agglomerative algorithm. In addition, the agglomerative
clustering results in 25% less cutsize compared to the
matching-based clustering. Hence, we can claim that it is
more suitable for the cutsize definition given in (3).

When equipped with the multithreaded clustering algo-
rithms, the cutsize of the partition found by PaToH is almost
equal to the original cutsize obtained by using the sequential
versions. For the agglomerative case, the cutsize changes
only up to 1%. This is also true with the lock-based matching
algorithm when compared with sequential greedy matching.
For the resolution-based matching algorithm, there is at most
3% percent increase in the cutsize on average. On the other
hand, as shown above the algorithms scale reasonably well.

V. CONCLUSION

Clustering algorithms are the most time consuming part of
the current-state-of-the-art hypergraph partitioning tools that
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(a) Minimum cutsize found by PaToH (b) Total execution time

Figure 6. The minimum cut and execution time of PaToH when equipped with the clustering algorithms in this paper. The numbers are normalized with
respect to that of agglomerative clustering algorithm.

follow the multi-level framework. We have investigated the
matching-based and agglomerative clustering algorithms. We
have argued that the matching-based clustering algorithms
can be perceived as a matching algorithm on an implicitly
represented undirected, edge weighted graph, whereas there
is no immediate equivalent algorithm for the agglomerative
ones.

We have proposed two different multithreaded implemen-
tations of the matching-based clustering algorithms. The
first one uses atomic lock operations to prevent inconsistent
matching decisions made by two different threads. The sec-
ond one lets the threads perform matchings as they would do
in a sequential setting and then later on resolves the conflicts
that would arise. We have also proposed a multithreaded
agglomerative clustering algorithm. This algorithm also uses
locks to prevent conflicts.

We have presented different sets of experiments on a large
number of hypergraphs. Our experiments have demonstrated
that the multithreaded clustering algorithms perform almost
as good as their sequential counter parts, sometimes even
better in terms of clustering quality and cardinality. The
experiments have also shown that our algorithms achieve
decent speedups (the best was 5.87 with 8 threads).

We integrated our algorithms to a well-known hypergraph
partitioner PaToH. This integration makes PaToH 1.85 times
faster where the ideal speedup is 2.07. In addition, it does
not worsen the cutsizes obtained.

We observed that clusterings with better quality helps the
partitioner to obtain better cuts. Fortunately, the multi-level
framework may tolerate slower algorithms which generate
better clusterings in terms of cardinality and quality. This
is because of the fact that such clusterings will reduce the
time required for the initial partitioning and uncoarsening
phases. However, there is a limit with this tolerance. If the
algorithm is too slow, one can execute the partitioner several
times with a faster, parallelizable algorithm that generates
clusterings with acceptable quality and achieve even better
cutsizes.
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