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MULTILEVEL ALGORITHMS FOR ACYCLIC PARTITIONING OF
DIRECTED ACYCLIC GRAPHS\ast 
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KAMER KAYA\S , AND \"UMIT V. \c CATALY\"UREK\dagger 

Abstract. We investigate the problem of partitioning the vertices of a directed acyclic graph
into a given number of parts. The objective function is to minimize the number or the total weight
of the edges having end points in different parts, which is also known as the edge cut. The standard
load balancing constraint of having an equitable partition of the vertices among the parts should
be met. Furthermore, the partition is required to be acyclic; i.e., the interpart edges between the
vertices from different parts should preserve an acyclic dependency structure among the parts. In this
work, we adopt the multilevel approach with coarsening, initial partitioning, and refinement phases
for acyclic partitioning of directed acyclic graphs. We focus on two-way partitioning (sometimes
called bisection), as this scheme can be used in a recursive way for multiway partitioning. To ensure
the acyclicity of the partition at all times, we propose novel and efficient coarsening and refinement
heuristics. The quality of the computed acyclic partitions is assessed by computing the edge cut.
We also propose effective ways to use the standard undirected graph partitioning methods in our
multilevel scheme. We perform a large set of experiments on a dataset consisting of (i) graphs
coming from an application and (ii) some others corresponding to matrices from a public collection.
We report significant improvements compared to the current state of the art.

Key words. directed graph, acyclic partitioning, multilevel partitioning

AMS subject classifications. 05C70, 05C85, 68R10, 68W05

DOI. 10.1137/18M1176865

1. Introduction. The standard graph partitioning (GP) problem asks for a
partition of the vertices of an undirected graph into a number of parts. The objective
and the constraint of this well-known problem are to minimize the number of edges
having vertices in two different parts and to equitably partition the vertices among
the parts. The GP problem is NP-complete [13, ND14]. We investigate a variant of
this problem, called acyclic partitioning, for directed acyclic graphs. In this variant,
we have one more constraint: the partition should be acyclic. In other words, for a
suitable numbering of the parts, all edges should be directed from a vertex in a part
p to another vertex in a part q where p \leq q.

The directed acyclic graph partitioning (DAGP) problem arises in many appli-
cations. The stated variant of the DAGP problem arises in exposing parallelism in
automatic differentiation [6, Chap. 9], and particularly in the computation of the
Newton step for solving nonlinear systems [4, 5]. The DAGP problem with some
additional constraints is used to reason about the parallel data movement complex-
ity and to dynamically analyze the data locality potential [10, 11]. Other important
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(a) A toy graph (b) A partition ignoring
the directions; it is cyclic.

(c) An acyclic partition-
ing

Fig. 1.1. (a) A toy example with six tasks and six dependencies, (b) a nonacyclic partitioning
when edges are oriented, and (c) an acyclic partitioning of the same directed graph.

applications of the DAGP problem include (i) fusing loops for improving temporal
locality, and enabling streaming and array contractions in runtime systems [19], such
as Bohrium [20]; (ii) analysis of cache efficient execution of streaming applications
on uniprocessors [1]; (iii) a number of circuit design applications in which the signal
directions impose an acyclic partitioning requirement [7, 29].

Let us consider a toy example shown in Figure 1.1(a). A partition of the vertices
of this graph is shown in Figure 1.1(b) with a dashed curve. Since there is a cut edge
from s to u and another from u to t, the partition is cyclic and is not acceptable. An
acyclic partition is shown in Figure 1.1(c), where all the cut edges are from one part
to the other.

We adopt the multilevel partitioning approach [2, 14] with the coarsening, initial
partitioning, and refinement phases for acyclic partitioning of DAGs. We propose
heuristics for these three phases (subsections 4.1, 4.2, and 4.3, respectively) which
guarantee acyclicity of the partitions at all phases and maintain a DAG at every
level. We strived to have fast heuristics at the core. With these characterizations,
the coarsening phase requires new algorithmic/theoretical reasoning, while the initial
partitioning and refinement heuristics are direct adaptations of the standard methods
used in undirected graph partitioning, with some differences worth mentioning. We
discuss only the bisection case, as we were able to improve the direct k-way algorithms
we proposed before [15] by using the bisection heuristics recursively---we give a brief
comparison in subsection 5.4.

The acyclicity constraint on the partitions precludes the use of the state-of-the-art
undirected graph partitioning tools. This has been recognized before, and those tools
were put aside [15, 21]. While this is sensible, one can still try to make use of the
existing undirected graph partitioning tools [14, 16, 25, 27], as they have been very
well engineered. Let us assume that we have partitioned a DAG with an undirected
graph partitioning tool into two parts by ignoring the directions. It is easy to detect
whether the partition is cyclic since all the edges need to go from part one to part
two. Furthermore, we can easily fix it as follows. Let v be a vertex in the second
part; we can move all u vertices for which there is a path from v to u into the second
part. This procedure breaks any cycle containing v, and hence the partition becomes
acyclic. However, the edge cut may increase, and the partitions can be unbalanced.
To solve the balance problem and reduce the cut, we can apply a restricted version
of the move-based refinement algorithms in the literature. After this step, this final
partition meets the acyclicity and balance conditions. Depending on the structure
of the input graph, it could also be a good initial partition for reducing the edge
cut. Indeed, one of our most effective schemes uses an undirected graph partitioning



ACYCLIC PARTITIONING OF DAGs A2119

algorithm to create a (potentially cyclic) partition, fixes the cycles in the partition,
and refines the resulting acyclic partition with a novel heuristic to obtain an initial
partition. We then integrate this partition within the proposed coarsening approaches
to refine it at different granularities. We elaborate on this scheme in subsection 4.4.

The rest of the paper is organized as follows. Section 2 introduces the notation
and background on DAGP, and section 3 briefly surveys the existing literature. We
propose multilevel partitioning heuristics for acyclic partitioning of DAGs in section 4.
Section 5 presents the experimental results, and section 6 concludes the paper.

2. Preliminaries and notation. A directed graph G = (V,E) contains a set of
vertices V and a set of directed edges E of the form e = (u, v), where e is directed
from u to v. A path is a sequence of edges (u1, v1) \cdot (u2, v2), . . . with vi = ui+1. A path
((u1, v1) \cdot (u2, v2) \cdot (u3, v3) \cdot \cdot \cdot (u\ell , v\ell )) is of length \ell , where it connects a sequence of
\ell +1 vertices (u1, v1 = u2, . . . , v\ell  - 1 = u\ell , v\ell ). A path is called simple if the connected
vertices are distinct. Let u \leadsto v denote a simple path that starts from u and ends at
v. A path ((u1, v1) \cdot (u2, v2) \cdot \cdot \cdot (u\ell , v\ell )) forms a (simple) cycle if all vi for 1 \leq i \leq \ell 
are distinct and u1 = v\ell . A directed acyclic graph, DAG in short, is a directed graph
with no cycles.

The path u \leadsto v represents a dependency of v on u. We say that the edge (u, v) is
redundant if there exists another u \leadsto v path in the graph. That is, when we remove
a redundant (u, v) edge, u remains connected to v, and hence the dependency infor-
mation is preserved. We use \ttP \ttr \tte \ttd [v] = \{ u | (u, v) \in E\} to represent the (immediate)
predecessors of a vertex v and \ttS \ttu \ttc \ttc [v] = \{ u | (v, u) \in E\} to represent the (immediate)
successors of v. We call the neighbors of a vertex v its immediate predecessors and
immediate successors: \ttN \tte \tti \ttg \tth [u] = \ttP \ttr \tte \ttd [v]\cup \ttS \ttu \ttc \ttc [v]. For a vertex u, the set of vertices
v such that u \leadsto v are called the descendants of u. Similarly, the set of vertices v such
that v \leadsto u are called the ancestors of the vertex u. We will call vertices without any
predecessors (and hence ancestors) the sources of G and vertices without any succes-
sors (and hence descendants) the targets of G. Every vertex u has a weight denoted
by wu, and every edge (u, v) \in E has a cost denoted by cu,v.

A k-way partitioning of a graph G = (V,E) divides V into k disjoint subsets
\{ V1, . . . , Vk\} . The weight of a part Vi denoted by w(Vi) is equal to

\sum 
u\in Vi

wu, which
is the total vertex weight in Vi. Given a partition, an edge is called a cut edge if its
end points are in different parts. The edge cut of a partition is defined as the sum of
the costs of the cut edges. Usually, a constraint on the part weights accompanies the
problem. We are interested in acyclic partitions, which are defined below.

Definition 2.1 (acyclic k-way partition). A partition \{ V1, . . . , Vk\} of G =
(V,E) is called an acyclic k-way partition if two paths u \leadsto v and v\prime \leadsto u\prime do not
co-exist for u, u\prime \in Vi, v, v

\prime \in Vj, and 1 \leq i \not = j \leq k.

There is a related definition in the literature [11], which is called a convex parti-
tion. A partition is convex if for all vertex pairs u, v in the same part, the vertices in
any u \leadsto v path are also in the same part. Hence, if a partition is acyclic, it is also
convex. On the other hand, convexity does not imply acyclicity. Figure 2.1 shows
that the definitions of an acyclic partition and a convex partition are not equiva-
lent. For the toy graph in Figure 2.1(a), there are three possible balanced partitions
shown in Figures 2.1(b), 2.1(c), and 2.1(d). They are all convex, but only the one in
Figure 2.1(d) is acyclic.

Deciding on the existence of a k-way acyclic partition respecting an upper bound
on the part weights and an upper bound on the cost of cut edges is NP-complete [13].
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(a) A toy graph

a b

c d

(b) Cyclic and convex

a b

c d

(c) Cyclic and convex

a b

c d

(d) Acyclic and convex

Fig. 2.1. A toy graph (left), two cyclic and convex partitions (middle two), and an acyclic and
convex partition (right).

The formal problem treated in this paper is defined as follows.

Definition 2.2 (DAGP problem). Given a DAG G = (V,E) and an imbalance
parameter \varepsilon , find an acyclic k-way partition P = \{ V1, . . . , Vk\} of V such that the
balance constraints

(2.1) w(Vi) \leq (1 + \varepsilon )

\sum 
v\in V wv

k

are satisfied for 1 \leq i \leq k, and the edge cut is minimized.

3. Related work. Fauzia et al. [11] propose a heuristic for the acyclic partition-
ing problem to optimize data locality when analyzing DAGs. To create partitions,
the heuristic categorizes a vertex as ready to be assigned to a partition when all of
the vertices it depends on have already been assigned. Vertices are assigned to the
current partition set until the maximum number of vertices that would be ``active""
during the computation of the part reaches a specified limit, which is the cache size
in their application. This implies that part sizes are not limited by the sum of the
total vertex weights but that it is a complex function that depends on an external
schedule (order) of the vertices. This differs from our problem, as we limit the size of
each part by the total sum of the weights of the vertices on that part.

Kernighan [17] proposes an algorithm to find a minimum edge-cut partition of
the vertices of a graph into subsets of size greater than a lower bound and inferior
to an upper bound. The partition needs to use a fixed vertex sequence that cannot
be changed. Indeed, Kernighan's algorithm takes a topological order of the vertices
of the graph as an input and partitions the vertices such that all vertices in a subset
constitute a continuous block in the given topological order. This procedure is optimal
for a given, fixed topological order and has a runtime proportional to the number of
edges in the graph if the part weights are taken as constant. We used a modified
version of this algorithm as a heuristic in the earlier version of our work [15].

Cong, Li, and Bagrodia [7] describe two approaches for obtaining acyclic parti-
tions of directed Boolean networks, modeling circuits. The first one is a single-level
Fiduccia--Mattheyses (FM)-based approach. In this approach, Cong, Li, and Bagrodia
generate an initial acyclic partition by splitting the list of the vertices (in a topolog-
ical order) from left to right into k parts such that the weight of each part does not
violate the bound. The quality of the results is then improved with a k-way variant
of the FM heuristic [12] taking the acyclicity constraint into account. Our previous
work [15] employs a similar refinement heuristic. The second approach of Cong, Li,
and Bagrodia is a two-level heuristic; the initial graph is first clustered with a special
decomposition, and then it is partitioned using the first heuristic.
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In a recent paper [21], Moreira, Popp, and Schulz focus on an imaging and com-
puter vision application on embedded systems and discuss acyclic partitioning heuris-
tics. They propose a single-level approach in which an initial acyclic partitioning is
obtained using a topological order. To refine the partitioning, they proposed four local
search heuristics which respect the balance constraint and maintain the acyclicity of
the partition. Three heuristics pick a vertex and move it to an eligible part if and only
if the move improves the cut. These three heuristics differ in choosing the set of eli-
gible parts for each vertex; some are very restrictive, and some allow arbitrary target
parts as long as acyclicity is maintained. The fourth heuristic tentatively realizes the
moves that increase the cut in order to escape from a possible local minimum. It has
been reported that this heuristic delivers better results than the others. In a follow-
up paper, Moreira, Popp, and Schulz [22] discuss a multilevel graph partitioner and
an evolutionary algorithm based on this multilevel scheme. Their multilevel scheme
starts with a given acyclic partition. Then, the coarsening phase contracts edges that
are in the same part until there is no edge to contract. Here, matching-based heuris-
tics from undirected graph partitioning tools are used without taking the directions
of the edges into account. Therefore, the coarsening phase can create cycles in the
graph; however, the induced partitions are never cyclic. Then, an initial partition is
obtained, which is refined during the uncoarsening phase with move-based heuristics.
In order to guarantee acyclic partitions, the vertices that lie in cycles are not moved.
In a systematic evaluation of the proposed methods, Moreira, Popp, and Schulz note
that there are many local minima and suggest using relaxed constraints in the multi-
level setting. The proposed methods have high runtime, as the evolutionary method
of Moreira, Popp, and Schulz is not concerned with this issue. Improvements with
respect to the earlier work [21] are reported.

Previously, we had developed a multilevel partitioner [15]. In this paper, we
propose methods to use an undirected graph partitioner to guide the multilevel par-
titioner. We focus on partitioning the graph in two parts since we can handle the
general case with a recursive bisection scheme. We also propose new coarsening, ini-
tial partitioning, and refinement methods specifically designed for the 2-partitioning
problem. Our multilevel scheme maintains acyclic partitions and graphs through all
the levels.

Other related work on acyclic partitioning of directed graphs include an exact,
branch-and-bound algorithm by Nossack and Pesch [23] which works on the integer
programming formulation of the acyclic partitioning problem. This solution is, of
course, too costly to be used in practice. Wong, Young, and Mak [29] present a
modification of the decomposition of Cong, Li, and Bagrodia [7] for clustering and
use this in a two-level scheme.

4. Directed multilevel graph partitioning. We propose a new multilevel
tool for obtaining acyclic partitions of DAGs. Multilevel schemes [2, 14] form the
de-facto standard for solving graph and hypergraph partitioning problems efficiently
and are used by almost all current state-of-the-art partitioning tools [3, 14, 16, 25, 27].
Similar to other multilevel schemes, our tool has three phases: the coarsening phase,
which reduces the number of vertices by clustering them; the initial partitioning phase,
which finds a partition of the coarsest graph; and the uncoarsening phase, in which
the initial partition is projected to the finer graphs and refined along the way, until a
solution for the original graph is obtained.

4.1. Coarsening. In this phase, we obtain smaller DAGs by coalescing the ver-
tices, level by level. This phase continues until the number of vertices becomes smaller
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than a specified bound or the reduction on the number of vertices from one level to
the next one is lower than a threshold. At each level \ell , we start with a finer acyclic
graph G\ell , compute a valid clustering \scrC \ell ensuring the acyclicity, and obtain a coarser
acyclic graph G\ell +1. While our previous work [15] discussed matching-based algo-
rithms for coarsening, we present agglomerative, clustering-based variants here. The
new variants supersede the matching-based ones. Unlike the standard undirected
graph case, in DAGP, not all vertices can be safely combined. Consider a DAG with
three vertices a, b, c and three edges (a, b), (b, c), (a, c). Here, the vertices a and c
cannot be combined since that would create a cycle. We say that a set of vertices is
contractible (all its vertices are matchable) if unifying them does not create a cycle.
We now present a general theory about finding clusters without forming cycles, after
giving some definitions.

Definition 4.1 (clustering). A clustering of a DAG is a set of disjoint subsets
of vertices. Note that we do not make any assumptions on whether the subsets are
connected or not.

Definition 4.2 (coarse graph). Given a DAG G and a clustering C of G, we
let G| C denote the coarse graph created by contracting all sets of vertices of C.

The vertices of the coarse graph are the clusters in C. If (u, v) \in G for two
vertices u and v that are located in different clusters of C, then G| C has an (directed)
edge from the vertex corresponding to u's cluster to the vertex corresponding to v's
cluster.

Definition 4.3 (feasible clustering). A feasible clustering C of a DAG G is a
clustering such that G| C is acyclic.

Theorem 4.1. Let G = (V,E) be a DAG. For u, v \in V and (u, v) \in E, the coarse
graph G| \{ (u,v)\} is acyclic if and only if there is no path from u to v in G avoiding the
edge (u, v).

Proof. Let G\prime = (V \prime , E\prime ) = G| \{ (u,v)\} be the coarse graph and w be the merged,
coarser vertex of G\prime corresponding to \{ u, v\} .

If there is a path from u to v in G avoiding the edge (u, v), then all the edges of
this path are also in G\prime , and the corresponding path in G\prime goes from w to w, creating
a cycle.

Assume that there is a cycle in the coarse graph G\prime . This cycle has to pass through
w; otherwise, it must be in G, which is impossible by the definition of G. Thus, there
is a cycle from w to w in the coarse graph G\prime . Let a \in V \prime be the first vertex visited
by this cycle after w and b \in V \prime be the last one, just before completing the cycle. Let
p be an a \leadsto b path in G\prime such that (w, a) \cdot p \cdot (b, w) is the said w \leadsto w cycle in G\prime .
Note that a can be equal to b and in this case p = \emptyset . By the definition of the coarse
graph G\prime , a, b \in V and all edges in the path p are in E\setminus \{ (u, v)\} . Since we have a
cycle in G\prime , the following two items must hold:

\bullet (i) either (u, a) \in E or (v, a) \in E, or both; and
\bullet (ii) either (b, u) \in E or (b, v) \in E, or both.

Hence, overall we have nine (3\times 3) cases. Here, we investigate only four of them, as the
``both"" conditions in (i) and (ii) can be eliminated easily by the following statements:

\bullet (u, a) \in E and (b, u) \in E is impossible because otherwise, (u, a) \cdot p \cdot (b, u)
would be a u \leadsto u cycle in the original graph G.

\bullet (v, a) \in E and (b, v) \in E is impossible because otherwise, (v, a) \cdot p \cdot (b, v)
would be a v \leadsto v cycle in the original graph G.

\bullet (v, a) \in E and (b, u) \in E is impossible because otherwise, (u, v)\cdot (v, a)\cdot p\cdot (b, u)
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would be a u \leadsto u cycle in the original graph G.
Thus, (u, a) \in E and (b, v) \in E. Therefore, (u, a) \cdot p \cdot (b, v) is a u \leadsto v path in G

avoiding the edge (u, v), which concludes the proof.

Theorem 4.1 can be extended to a set of vertices by noting that this time all paths
connecting two vertices of the set should contain only the vertices of the set. Neither
the theorem nor its extension implies an efficient algorithm, as it requires at least one
transitive reduction. Furthermore, it does not describe a condition about two clusters
forming a cycle, even if both are individually contractible. In order to address both
of these issues, we put a constraint on the vertices that can form a cluster, based on
the following definition.

Definition 4.4 (top-level value). For a DAG G = (V,E), the top-level value of
a vertex u \in V is the length of the longest path from a source of G to that vertex. The
top-level values of all vertices can be computed in a single traversal of the graph with
a complexity O(| V | + | E| ). We use \ttt \tto \ttp [u] to denote the top level of the vertex u.

The top-level value of a vertex is independent of the topological order used for
computation. By restricting the set of edges considered in the clustering to the edges
(u, v) \in E such that \ttt \tto \ttp [u] + 1 = \ttt \tto \ttp [v], we ensure that no cycles are formed by
contracting a unique cluster (the condition identified in Theorem 4.1 is satisfied). Let
C be a clustering of the vertices. Every edge in a cluster of C being contractible is a
necessary condition for C to be feasible but not a sufficient one. More restrictions on
the edges of vertices inside the clusters should be found to ensure that C is feasible.
We propose three coarsening heuristics based on clustering sets of more than two
vertices, whose pairwise top-level differences are always zero or one.

4.1.1. Acyclic clustering with forbidden edges. To have an efficient heuris-
tic, we rely only on static information computable in linear time while searching for
a feasible clustering. As stated in the introduction of this section, we rely on the
top-level difference of one (or less) for all vertices in the same cluster, as well as an
additional condition to ensure that there will be no cycles when a number of clusters
are contracted simultaneously. In Theorem 4.2, we give two sufficient conditions for
a clustering to be feasible (that is, the graphs at all levels are DAGs) and prove their
correctness.

Theorem 4.2 (correctness of the proposed clustering). Let G = (V,E) be a
DAG and C = \{ C1, . . . , Ck\} be a clustering. If C is such that

\bullet for any cluster Ci and for all u, v \in Ci, | \ttt \tto \ttp [u] - \ttt \tto \ttp [v]| \leq 1, and
\bullet for two different clusters Ci and Cj and for all u \in Ci and v \in Cj, either
(u, v) /\in E, or \ttt \tto \ttp [u] \not = \ttt \tto \ttp [v] - 1,

then the coarse graph G| C is acyclic.

Proof. Let us assume (for the sake of contradiction) that there is a clustering
with the same properties above but the coarsened graph has a cycle. We pick one
such clustering C = \{ C1, . . . , Ck\} with the minimum number of clusters. Let ti =
min\{ \ttt \tto \ttp [u], u \in Ci\} be the smallest top-level value of a vertex of Ci. According to the
properties of C, for every vertex u \in Ci, either \ttt \tto \ttp [u] = ti, or \ttt \tto \ttp [u] = ti +1. Let wi

be the coarse vertex in G| C obtained by contracting all vertices in Ci for i = 1, . . . , k.
By the assumption, there is a cycle in G| C , and let c be one with the minimum length.
This cycle passes through all the wi vertices. Otherwise, there would be a smaller
cardinality clustering with the properties above and creating a cycle in the coarsened
graph, contradicting the minimal cardinality of C. Let us renumber, without loss of
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generality, the wi vertices such that c is a w1 \leadsto w1 cycle which passes through all
the wi vertices in the nondecreasing order of the indices. This also renumbers the
clusters accordingly.

After renumbering the wi vertices, for every i \in \{ 1, . . . , k\} , there is a path in G| C
from wi to wi+1. Given the definition of the coarsened graph, for every i \in \{ 1, . . . , k\} ,
there exist a vertex ui \in Ci and a vertex ui+1 \in Ci+1 such that there exists a
path ui \leadsto ui+1 in G. Thus, \ttt \tto \ttp [ui] + 1 \leq \ttt \tto \ttp [ui+1]. According to the second
property, either there is at least one intermediate vertex between ui and ui+1 and
then \ttt \tto \ttp [ui] + 1 < \ttt \tto \ttp [ui+1]; or \ttt \tto \ttp [ui] + 1 \not = \ttt \tto \ttp [ui+1] and then \ttt \tto \ttp [ui] + 1 <
\ttt \tto \ttp [ui+1]. Thus, in any case, \ttt \tto \ttp [ui] + 1 < \ttt \tto \ttp [ui+1], which can be rewritten as
\ttt \tto \ttp [ui] < \ttt \tto \ttp [ui+1] - 1.

By definition, we know that ti \leq \ttt \tto \ttp [ui] and \ttt \tto \ttp [ui+1]  - 1 \leq ti+1. Thus, for
every i \in \{ 1, . . . , k\} , we have ti < ti+1, which leads to the self-contradicting statement
t1 < tk+1 = t1 and concludes the proof.

The main heuristic based on Theorem 4.2 is described in Algorithm 1. This
heuristic visits all vertices in an order, and adds the visited vertex to a cluster, if
certain criteria are met; if not, the vertex stays as a singleton. When visiting a
singleton vertex, the clusters of its in-neighbors and out-neighbors are investigated,
and the best (according to an objective value) among those meeting the criterion
described in Theorem 4.2 is selected.

Algorithm 1 returns the \ttl \tte \tta \ttd \tte \ttr array of each vertex for the current coarsening
step. Vertices with the same leader form a cluster (and will form a single vertex in
the coarsened graph). For each vertex u \in V , \ttl \tte \tta \ttd \tte \ttr [u] is the id of the representative
vertex for the cluster that will contain u after Algorithm 1. The \ttl \tte \tta \ttd \tte \ttr table will
be used to build the coarse graph. Any arbitrary vertex in a given cluster can be
used as the leader of this cluster without impacting the rest of the algorithm. At the
beginning, each vertex belongs to a singleton cluster, and \ttl \tte \tta \ttd \tte \ttr [u] = u. To keep
the track of trivial clusters (singleton vertices), we use an auxiliary \ttm \tta \ttr \ttk array. The
value \ttm \tta \ttr \ttk [u] is false if u still belongs to a singleton cluster. Otherwise, the value is
set to true.

For each singleton vertex u, we maintain an auxiliary array \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts to
keep the number of nontrivial bad neighbor clusters. That is to say, the number
of clusters containing a neighbor of u that would violate the second condition of
Theorem 4.2 in case u was put in another cluster. Hence, if u has only one bad
neighbor cluster, it can only be put into this cluster. For instance, in Figure 4.1(a),
at this point of the coarsening, vertex B can only be put in cluster 1. Otherwise,
if vertex B was matched with one of its other neighbors, the second condition of
the theorem would be violated. Thus, if a vertex has more than one bad neighbor in
different clusters, it has to stay as a singleton. For instance, in Figure 4.1(b), vertex B
has two bad neighbor clusters and cannot be put in any cluster without violating the
second condition of Theorem 4.2. To check whether there exists another bad neighbor
cluster previously formed, we maintain an array \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr that keeps the
representative/leader of the first bad neighbor cluster for each vertex. Initially, this
value is set to minus one.

In Algorithm 1, the function ValidNeighbors selects the compatible neighbors of
vertex u, that is, the neighbors in clusters that vertex u can join. This selection is
based on the top-level difference (to respect the first condition of Theorem 4.2), the
number of bad neighbors of u and u's neighbors (to respect the second condition of
Theorem 4.2), and the size limitation (we do not want a cluster to be bigger than
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10\% of the total weight of the graph). Then, a best neighbor, BestNeigh, according
to an objective value, such as the edge cost, is selected. After setting the leader of
vertex u to the same value as the leader of BestNeigh, some bookkeeping is done
for the arrays related to the second condition of Theorem 4.2. More precisely, at
lines 16--22 of Algorithm 1, the neighbors of u are informed about u joining a new
cluster, potentially becoming a bad neighbor. While doing that, the algorithm skips
the vertices v such that | \ttt \tto \ttp [u]  - \ttt \tto \ttp [v]| > 1 since u cannot form a bad neighbor
cluster for such v. Similarly, if the best neighbor chosen for u was not in a cluster
previously, i.e., was a singleton vertex, the number of bad neighbors of its neighbors
are updated (lines 24--30).

(a) (b)

Fig. 4.1. Two examples of acyclic clustering.

In our framework, we also implemented the version in the preliminary study [15]
where the size of the cluster is limited to two, meaning that it computes a matching
of the vertices.

It can be easily seen that Algorithm 1 has a worst case time complexity of O(| V | +
| E| ). The array \ttt \tto \ttp is constructed in O(| V | + | E| ) time, and the best, valid neighbor
of a vertex u is found in O(| \ttN \tte \tti \ttg \tth [u]| ) time. The neighbors of a vertex are visited at
most once to keep the arrays related to the second condition of Theorem 4.2 up to
date at lines 16 and 24.

4.1.2. Acyclic clustering with cycle detection. We now propose a less re-
strictive clustering algorithm to ensure that the acyclicity of the coarse graph is main-
tained. As in the previous section, we rely on the top-level difference of one (or less)
for all vertices in the same cluster; i.e., for any cluster Ci and for all u, v \in Ci,
| \ttt \tto \ttp [u] - \ttt \tto \ttp [v]| \leq 1. Knowing this invariant, when a new vertex is added to a clus-
ter, a cycle-detection algorithm checks that no cycles are formed when all the clusters
are contracted simultaneously. This algorithm does not traverse the entire graph by
also using the fact that the top-level difference within a cluster is at most one.

From the proof of Theorem 4.2, we know that with a feasible clustering, if adding
a vertex to a cluster whose vertices' top-level values are t and t + 1 creates a cycle
in the contracted graph, then this cycle goes through only the vertices with top-level
values t or t + 1. Thus, when considering the addition of a vertex u to a cluster C
containing v, we check potential cycle formations by traversing the graph starting
from u in a breadth-first manner in the DetectCycle function used in Algorithm 2.
Let t denote the minimum top level in C. When at a vertex w, we normally add a
successor y of w into the queue if | \ttt \tto \ttp (y) - t| \leq 1; if w is in the same cluster as one
of its predecessors x, we also add x to the queue if | \ttt \tto \ttp (x)  - t| \leq 1. This function
uses markers to not visit the same vertex multiple times, returns true if at some point
in the traversal a vertex from cluster C is reached, and returns false otherwise. In
the worst case, this cycle detection algorithm completes a full graph traversal, but in



A2126 HERRMANN, \"OZKAYA, U\c CAR, KAYA, AND \c CATALY\"UREK

Algorithm 1: Clustering with forbidden edges.

Data: Directed graph G = (V,E), a traversal order of the vertices in V , a priority on
edges

Result: The \ttl \tte \tta \ttd \tte \ttr array for the coarsening
\bfone \ttt \tto \ttp \leftarrow CompTopLevels(G)

/* \ttI \ttn \tti \ttt \tti \tta \ttl \tti \ttz \tte \tta \ttl \ttl \ttt \tth \tte \tta \ttu \ttx \tti \ttl \tti \tta \ttr \tty \ttd \tta \ttt \tta \ttt \tto \ttb \tte \ttu \tts \tte \ttd */
\bftwo for u \in V do
\bfthree \ttm \tta \ttr \ttk [u]\leftarrow false // \tta \ttl \ttl \ttv \tte \ttr \ttt \tti \ttc \tte \tts \tta \ttr \tte \ttm \tta \ttr \ttk \tte \ttd \tta \tts \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn 
\bffour \ttl \tte \tta \ttd \tte \ttr [u]\leftarrow u
\bffive \ttw \tte \tti \ttg \tth \ttt [u]\leftarrow wu // \ttk \tte \tte \ttp \tts \ttt \tth \tte \ttt \tto \ttt \tta \ttl \ttw \tte \tti \ttg \tth \ttt \ttf \tto \ttr \tte \tta \ttc \tth \ttc \ttl \ttu \tts \ttt \tte \ttr 

/* \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [u] \tts \ttt \tto \ttr \tte \tts \ttt \tth \tte \ttn \ttu \ttm \ttb \tte \ttr \tto \ttf \ttb \tta \ttd \ttc \ttl \ttu \tts \ttt \tte \ttr \tts \ttf \tto \ttr \tta \ttv \tte \ttr \ttt \tte \ttx u. \ttI \ttf 
\tti \ttt \tte \ttx \ttc \tte \tte \ttd \tts \tto \ttn \tte , u \tti \tts \ttl \tte \ttf \ttt \tta \ttl \tto \ttn \tte (\ttt \tth \tte \tts \tte \ttc \tto \ttn \ttd \ttc \tto \ttn \ttd \tti \ttt \tti \tto \ttn \tto \ttf \ttT \tth \tte \tto \ttr \tte \ttm \ttfour .\tttwo ).
*/

\bfsix \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [u]\leftarrow 0
\bfseven \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [u]\leftarrow  - 1
\bfeight for u \in V following the traversal order in input do
\bfnine if \ttm \tta \ttr \ttk [u] then continue

/* \ttT \tth \tte \ttf \ttu \ttn \ttc \ttt \tti \tto \ttn \ttV \tta \ttl \tti \ttd \ttN \tte \tti \ttg \tth \ttb \tto \ttr \tts \ttr \tte \ttt \ttu \ttr \ttn \tts \ttt \tth \tte \tts \tte \ttt \tto \ttf \ttv \tta \ttl \tti \ttd \ttm \tta \ttt \ttc \tth \ttc \tta \ttn \ttd \tti \ttd \tta \ttt \tte \tts 
\ttf \tto \ttr u \ttb \tta \tts \tte \ttd \tto \ttn \ttT \tth \tte \tto \ttr \tte \ttm \ttfour .\tttwo . \ttI \ttt \tta \ttl \tts \tto \ttc \tth \tte \ttc \ttk \tts \ttt \tth \tte \ttt \tth \ttr \tte \tts \tth \tto \ttl \ttd \ttf \tto \ttr \ttt \tth \tte 
\ttm \tta \ttx \tti \ttm \ttu \ttm \ttc \ttl \ttu \tts \ttt \tte \ttr \tts \tti \ttz \tte \tta \ttn \ttd \ttt \tth \tte \ttn \ttu \ttm \ttb \tte \ttr \tto \ttf \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \ttc \ttl \ttu \tts \ttt \tte \ttr \tts \ttf \tto \ttr u. */

\bfone \bfzero N \leftarrow ValidNeighbors(u, G, \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts , \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts , \ttw \tte \tti \ttg \tth \ttt )
\bfone \bfone if N = \emptyset then continue
\bfone \bftwo BestNeigh\leftarrow BestNeighbor(N)
\bfone \bfthree \ell \leftarrow \ttl \tte \tta \ttd \tte \ttr [BestNeigh]
\bfone \bffour \ttl \tte \tta \ttd \tte \ttr [u]\leftarrow \ell // \tta \tts \tts \tti \ttg \ttn u \ttt \tto \ttB \tte \tts \ttt \ttN \tte \tti \ttg \tth '\tts \ttc \ttl \ttu \tts \ttt \tte \ttr 
\bfone \bffive \ttw \tte \tti \ttg \tth \ttt [\ell ]\leftarrow \ttw \tte \tti \ttg \tth \ttt [\ell ] + wu

/* \ttL \tte \ttt \ttt \tth \tte \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts \tto \ttf u \ttk \ttn \tto \ttw \ttt \tth \tta \ttt \tti \ttt \tti \tts \ttn \tto \ttt \tta \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn \tta \ttn \tty \ttm \tto \ttr \tte */
\bfone \bfsix for v \in \ttN \tte \tti \ttg \tth [u] do
\bfone \bfseven if | \ttt \tto \ttp [u] - \ttt \tto \ttp [v]| > 1 then continue // u \ttc \tta \ttn \ttn \tto \ttt \ttf \tto \ttr \ttm \tta \ttb \tta \ttd \ttc \ttl \ttu \tts \ttt \tte \ttr 
\bfone \bfeight if \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] = 0 then
\bfone \bfnine \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow 1
\bftwo \bfzero \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow \ell 

\bftwo \bfone else if \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] = 1 and \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] \not = \ell then
\bftwo \bftwo \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow 2 // \ttm \tta \ttr \ttk v \tta \tts \ttu \ttn \ttm \tta \ttt \ttc \tth \tta \ttb \ttl \tte 

/* \ttI \ttf \ttB \tte \tts \ttt \ttN \tte \tti \ttg \tth \ttw \tta \tts \ttf \tto \ttr \ttm \tti \ttn \ttg \tta \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn \ttc \ttl \ttu \tts \ttt \tte \ttr \ttb \tte \ttf \tto \ttr \tte u'\tts \tta \tts \tts \tti \ttg \ttn \ttm \tte \ttn \ttt */
\bftwo \bfthree if \ttm \tta \ttr \ttk [BestNeigh] = false then

/* \ttL \tte \ttt \ttB \tte \tts \ttt \ttN \tte \tti \ttg \tth '\tts \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts \ttk \ttn \tto \ttw \ttt \tth \tta \ttt \tti \ttt \tti \tts \ttn \tto \ttt \tta \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn \tta \ttn \tty \ttm \tto \ttr \tte */
\bftwo \bffour for v \in \ttN \tte \tti \ttg \tth [BestNeigh] do
\bftwo \bffive if | \ttt \tto \ttp [BestNeigh] - \ttt \tto \ttp [v]| > 1 then continue
\bftwo \bfsix if \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] = 0 then
\bftwo \bfseven \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow 1 // \ttT \tth \tte \ttf \tti \ttr \tts \ttt \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \ttc \ttl \ttu \tts \ttt \tte \ttr \ttf \tto \ttr v
\bftwo \bfeight \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow \ell 

\bftwo \bfnine else if \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] = 1 and \ttl \tte \tta \ttd \tte \ttr \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v] \not = \ell then
\bfthree \bfzero \ttn \ttb \ttb \tta \ttd \ttn \tte \tti \ttg \tth \ttb \tto \ttr \tts [v]\leftarrow 2 // \ttm \tta \ttr \ttk v \tta \tts \ttu \ttn \ttm \tta \ttt \ttc \tth \tta \ttb \ttl \tte 

\bfthree \bfone \ttm \tta \ttr \ttk [BestNeigh]\leftarrow true // \ttB \tte \tts \ttt \ttN \tte \tti \ttg \tth \tti \tts \ttn \tto \ttt \tta \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn \tta \ttn \tty \ttm \tto \ttr \tte 

\bfthree \bftwo \ttm \tta \ttr \ttk [u]\leftarrow true // u \tti \tts \ttn \tto \ttt \tta \tts \tti \ttn \ttg \ttl \tte \ttt \tto \ttn \tta \ttn \tty \ttm \tto \ttr \tte 

\bfthree \bfthree return \ttl \tte \tta \ttd \tte \ttr 

practice, it stops quickly and does not introduce a significant overhead.
Here, we propose different clustering strategies. These algorithms consider all the

vertices in the graph, one by one, and put them in a cluster if their top-level differences
are at most one and if no cycles are introduced. The clustering algorithms depending
on different vertex traversal orders and priority definitions on the adjacent edges are
described in Algorithm 2. As with Algorithm 1, this algorithm also returns the leader
array of each vertex for the current coarsening step. When a vertex is put in a cluster
with top-level values t and t+ 1, its markup (respectively, markdown) value is set to
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true if its top-level value is t (respectively, t + 1). Since the worst-case complexity
of the cycle detection is O(| V | + | E| ), the worst-case complexity of Algorithm 2 is
O(| V | (| V | + | E| )). However, the cycle detection stops quickly in practice and the
behavior of Algorithm 2 is closer to O(| V | + | E| ), as described in subsection 5.6.

Algorithm 2: Clustering with cycle detection.

Data: Directed graph G = (V,E), a traversal order of the vertices in V , a priority
on edges

Result: A feasible clustering C of G
\bfone \ttt \tto \ttp \leftarrow CompTopLevels(G)
\bftwo for u \in V do
\bfthree \ttm \tta \ttr \ttk \ttu \ttp [u]\leftarrow false // \tti \ttf u'\tts \ttc \ttl \ttu \tts \ttt \tte \ttr \tth \tta \tts \tta v \ttw \tti \ttt \tth \ttt \tto \ttp [v] = \ttt \tto \ttp [u] + 1
\bffour \ttm \tta \ttr \ttk \ttd \tto \ttw \ttn [u]\leftarrow false // \tti \ttf u'\tts \ttc \ttl \ttu \tts \ttt \tte \ttr \tth \tta \tts \tta v \ttw \tti \ttt \tth \ttt \tto \ttp [v] = \ttt \tto \ttp [u] - 1
\bffive \ttl \tte \tta \ttd \tte \ttr [u]\leftarrow u // \ttt \tth \tte \ttl \tte \tta \ttd \tte \ttr \ttv \tte \ttr \ttt \tte \ttx \tti \ttd \ttf \tto \ttr u'\tts \ttc \ttl \ttu \tts \ttt \tte \ttr 

\bfsix for u \in V following the traversal order in input do
\bfseven if \ttm \tta \ttr \ttk \ttu \ttp [u] or \ttm \tta \ttr \ttk \ttd \tto \ttw \ttn [u] then continue
\bfeight for v \in \ttN \tte \tti \ttg \tth [u] following given priority on edges do
\bfnine if (| \ttt \tto \ttp [u] - \ttt \tto \ttp [v]| > 1) then continue // \ttw \tte \ttu \tts \tte | \ttt \tto \ttp [u] - \ttt \tto \ttp [v]| = 1

/* \ttI \ttf \ttt \tth \tti \tts \tti \tts \tta (u, v) \tte \ttd \ttg \tte */
\bfone \bfzero if v \in \ttS \ttu \ttc \ttc [u] then
\bfone \bfone if \ttm \tta \ttr \ttk \ttu \ttp [v] then \ttc \tto \ttn \ttt \tti \ttn \ttu \tte 
\bfone \bftwo if DetectCycle(u, v, G, \ttl \tte \tta \ttd \tte \ttr ) then \ttc \tto \ttn \ttt \tti \ttn \ttu \tte 
\bfone \bfthree \ttl \tte \tta \ttd \tte \ttr [u]\leftarrow \ttl \tte \tta \ttd \tte \ttr [v]
\bfone \bffour \ttm \tta \ttr \ttk \ttu \ttp [u]\leftarrow \ttm \tta \ttr \ttk \ttd \tto \ttw \ttn [v]\leftarrow true

/* \ttI \ttf \ttt \tth \tti \tts \tti \tts \tta (v, u) \tte \ttd \ttg \tte */
\bfone \bffive if v \in \ttP \ttr \tte \ttd [u] then
\bfone \bfsix if \ttm \tta \ttr \ttk \ttd \tto \ttw \ttn [v] then \ttc \tto \ttn \ttt \tti \ttn \ttu \tte 
\bfone \bfseven if DetectCycle(u, v, G, \ttl \tte \tta \ttd \tte \ttr ) then \ttc \tto \ttn \ttt \tti \ttn \ttu \tte 
\bfone \bfeight \ttl \tte \tta \ttd \tte \ttr [u]\leftarrow \ttl \tte \tta \ttd \tte \ttr [v]
\bfone \bfnine \ttm \tta \ttr \ttk \ttd \tto \ttw \ttn [u]\leftarrow \ttm \tta \ttr \ttk \ttu \ttp [v]\leftarrow true

\bftwo \bfzero return \ttl \tte \tta \ttd \tte \ttr 

4.1.3. Hybrid acyclic clustering. The cycle detection--based algorithm can
suffer from quadratic runtime for vertices with large in-degrees or out-degrees. To
avoid this, we design a hybrid acyclic clustering which uses the clustering strategy
described in Algorithm 2 by default and switches to the clustering strategy in Al-
gorithm 1 for large degree vertices. We define a limit on the degree of a vertex
(typically

\sqrt{} 
| V | /10) for calling it large degree. When considering an edge (u, v) where

\ttt \tto \ttp [u] + 1 = \ttt \tto \ttp [v], if the degrees of u and v do not exceed the limit, we use the
cycle detection algorithm to determine whether we can contract the edge. Otherwise,
if the out-degree of u or the in-degree of v is too large, the edge will be contracted
if Algorithm 1 allows so. The complexity of this algorithm is in between those of
Algorithms 1 and 2 and will likely avoid the quadratic behavior in practice (if not,
the degree parameter can be adapted).

4.2. Initial partitioning. After the coarsening phase, we compute an initial
acyclic partitioning of the coarsest graph. We present two heuristics. One of them
is akin to the greedy graph growing method used in the standard graph/hypergraph
partitioning methods. The second one uses an undirected partitioning and then fixes
the acyclicity of the partitions. Throughout this section, we use (V0, V1) to denote
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the bisection of the vertices of the coarsest graph G. The acyclic bisection (V0, V1) is
such that there is no edge from the vertices in V1 to those in V0.

4.2.1. Greedy directed graph growing. One approach to compute a bisec-
tion of a directed graph is to design a greedy algorithm that moves vertices from one
part to another using local information. Greedy algorithms have shown to be effective
for initial partitioning in multilevel schemes in the undirected case. We start with
all vertices in V1 and replace vertices towards V0 by using heaps. At any time, the
vertices that can be moved to V0 are in the heap. These vertices are those whose all
in-neighbors are in V0. Initially, only the sources are in the heap, and when all the
in-neighbors of a vertex v are moved to the first part, v is inserted into the heap. We
separate this process into two phases. In the first phase, the key values of the vertices
in the heap are set to the weighted sum of their incoming edges, and the ties are bro-
ken in favor of the vertex closer to the first vertex moved. The first phase continues
until the first part has more than 0.9 of the maximum allowed weight (modulo the
maximum weight of a vertex). In the second phase, the actual gain of a vertex is
used. This gain is equal to the sum of the weights of the incoming edges minus the
sum of the weights of the outgoing edges. In this phase, the ties are broken in favor
of the heavier vertices. The second phase stops as soon as the required balance is
obtained. The reason that we separated this heuristic into two phases is that at the
beginning, the gains are of no importance, and the more vertices become movable the
more flexibility the heuristic has. Yet, towards the end, parts are fairly balanced, and
using actual gains can help keep the cut small.

Since the order of the parts is important, we also reverse the roles of the parts
and the directions of the edges. That is, we put all vertices in V0, and move the
vertices one by one to V1, when all out-neighbors of a vertex have been moved to V1.
The proposed greedy directed graph growing heuristic returns the better of these two
alternatives.

4.2.2. Undirected bisection and fixing acyclicity. In this heuristic, we par-
tition the coarsest graph as if it were undirected and then move the vertices from one
part to another in case the partition was not acyclic. Let (P0, P1) denote the (not
necessarily acyclic) bisection of the coarsest graph treated as if it were undirected.

The proposed approach designates arbitrarily P0 as V0 and P1 as V1. One way to
fix the cycle is to move all ancestors of the vertices in V0 to V0, thereby guaranteeing
that there is no edge from vertices in V1 to vertices in V0, making the bisection (V0, V1)
acyclic. We do these moves in a reverse topological order, as shown in Algorithm 3.
Another way to fix the acyclicity is to move all descendants of the vertices in V1

to V1, again guaranteeing an acyclic partition. We do these moves in a topological
order, as shown in Algorithm 4. We then fix the possible unbalance with a refinement
algorithm.

Note that we can also initially designate P1 as V0 and P0 as V1 and again use
Algorithms 3 and 4 to fix a potential cycle in two different ways. We try all four of
these choices and return the best partition (essentially returning the best of the four
choices to fix the acyclicity of (P0, P1)).

4.3. Refinement. This phase projects the partition obtained for a coarse graph
to the next, finer one and refines the partition by vertex moves. As in the standard
refinement methods, the proposed heuristic is applied in a number of passes. Within a
pass, we repeatedly select the vertex with the maximum move gain among those that
can be moved. We tentatively realize this move if the move maintains or improves the
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Algorithm 3: fixAcyclicityUp.

Data: Directed graph G = (V,E) and a bisection part
Result: An acyclic bisection of G

\bfone for u \in G (in reverse topological order) do
\bftwo if part[u] = 0 then
\bfthree for v \in \ttP \ttr \tte \ttd [u] do
\bffour part[v]\leftarrow 0

\bffive return part

Algorithm 4: fixAcyclicityDown.

Data: Directed graph G = (V,E) and a bisection part
Result: An acyclic bisection of G

\bfone for u \in G (in topological order) do
\bftwo if part[u] = 1 then
\bfthree for v \in \ttS \ttu \ttc \ttc [u] do
\bffour part[v]\leftarrow 1

\bffive return part

balance. Then, the most profitable prefix of vertex moves is realized at the end of the
pass. As usual, we allow the vertices to move only once in a pass; therefore, once a
vertex is moved, it is not eligible to move again during the same pass. We use heaps
with the gain of moves as the key value, where we keep only movable vertices. We call
a vertex movable if moving it to the other part does not create a cyclic partition. As
previously done, we use the notation (V0, V1) to designate the acyclic bisection with
no edge from vertices in V1 to vertices in V0. This means that for a vertex to move
from part V0 to part V1, one of the two conditions should be met: (i) either all its
out-neighbors should be in V1; (ii) or the vertex has no out-neighbors at all. Similarly,
for a vertex to move from part V1 to part V0, one of the two conditions should be met
(i) either all its in-neighbors should be in V0; (ii) or the vertex has no in-neighbors at
all. This is in a sense the adaptation of the boundary Fiduccia--Mattheyses (FM) [12]
to directed graphs, where the boundary corresponds to the movable vertices. The
notion of movability being more restrictive results in an important simplification with
respect to the undirected case. The gain of moving a vertex v from V0 to V1 is

(4.1)
\sum 

u\in \ttS \ttu \ttc \ttc [v]

w(v, u) - 
\sum 

u\in \ttP \ttr \tte \ttd [v]

w(u, v)

and the negative of this value when moving it from V1 to V0. This means that the
gain of a vertex is static: once a vertex is inserted in the heap with the key value (4.1),
it is never updated. A move could render some vertices unmovable; if they were in
the heap, then they should be deleted. Therefore, the heap data structure needs to
support insert, delete, and extract max operations only.

We have also implemented a swapping-based refinement heuristic akin to the
boundary Kernighan--Lin (KL) [18] and another one moving vertices only from the
maximum loaded part. For graphs with unit weight vertices, we suggest using the
boundary FM, and for others we suggest using one pass of boundary KL followed by
one pass of the boundary FM that moves vertices only from the maximum loaded
part.
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Fig. 4.2. 8\times 8 grid graph whose vertices are ordered in a spiral way; a few of the vertices are
labeled with their number. All edges are oriented from a lower numbered vertex to a higher numbered
one. There is a unique bipartition with 32 vertices in each side. The edges defining the total order
are shown in red and blue (color is available online only), except the one from 32 to 33; the cut
edges are shown in gray; other internal edges are not shown.

4.4. Constraint coarsening and initial partitioning. There are a number
of highly successful, undirected graph partitioning libraries [16, 25, 27]. They are
not directly usable for our purposes, as the partitions can be cyclic. Fixing such
partitions, by moving vertices to break the cyclic dependencies among the parts, can
increase the edge cut dramatically (with respect to the undirected cut). Consider, for
example, the n\times n grid graph, where the vertices are integer positions for i = 1, . . . , n
and j = 1, . . . , n and a vertex at (i, j) is connected to (i\prime , j\prime ) when | i  - i\prime | = 1 or
| j  - j\prime | = 1, but not both. There is an acyclic orientation of this graph, called spiral
ordering, as described in Figure 4.2 for n = 8. This spiral ordering defines a total
order. When the directions of the edges are ignored, we can have a bisection with
perfect balance by cutting only n = 8 edges with a vertical line. This partition is
cyclic, and it can be made acyclic by putting all vertices numbered greater than 32 to
the second part. This partition, which puts the vertices 1--32 to the first part and the
rest to the second part, is the unique acyclic bisection with perfect balance for the
associated DAG. The edge cut in the directed version is 35, as seen in the figure (gray
edges). In general, one has to cut n2  - 4n + 3 edges for n \geq 8: the blue vertices in
the border (excluding the corners) have one edge directed to a red vertex; the interior
blue vertices have two such edges; finally, the blue vertex labeled n2/2 has three such
edges.

Let us also investigate the quality of the partitions from a more practical stand-
point. We used MeTiS [16] as the undirected graph partitioner on a dataset of 94
matrices (their details are in section 5). The results are given in Figure 4.3. For
this preliminary experiment, we partitioned the graphs into two with the maximum
allowed load imbalance \varepsilon = 3\%. In the experiment, for only two graphs, the output
of MeTiS is acyclic, and the geometric mean of the normalized edge cut is 0.0012.
Figure 4.3(a) shows the normalized edge cut and the load imbalance after fixing the
cycles, while Figure 4.3(b) shows the two measurements after meeting the balance
criteria. A normalized edge cut value is computed by normalizing the edge cut with
respect to the number of edges.

In both figures, the horizontal lines mark the geometric mean of the normalized
edge cuts, and the vertical lines mark the 3\% imbalance ratio. In Figure 4.3(a), there
are 37 instances in which the load balance after fixing the cycles is feasible. The
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Fig. 4.3. Normalized edge cut (normalized with respect to the number of edges) and the balance
obtained after using an undirected graph partitioner and fixing the cycles (left) and after ensuring
balance with refinement (right).

geometric mean of the normalized edge cuts in this subfigure is 0.0045, while in the
other subfigure, it is 0.0049. Fixing the cycles increases the edge cut with respect to an
undirected partitioning, but not catastrophically (only by 0.0045/0.0012 = 3.75 times
in these experiments), and achieving balance after this step increases the cut only a
little (goes to 0.0049 from 0.0045). That is why we suggest using an undirected graph
partitioner, fixing the cycles among the parts, and performing a refinement-based
method for load balancing as a good (initial) partitioner.

In order to refine the initial partition in a multilevel setting, we propose a scheme
similar to the iterated multilevel algorithm used in the existing partitioners [3, 28]. In
this scheme, first a partition P is obtained. Then, the coarsening phase is employed
to match (or to agglomerate) the vertices that were in the same part in P . After
the coarsening, an initial partitioning is freely available by using the partition P on
the coarsest graph. The refinement phase then can work as before. Moreira, Popp,
and Schulz [22] use this approach for the directed graph partitioning problem. To
be more concrete, we first use an undirected graph partitioner, then fix the cycles as
discussed in subsection 4.2.2, and then refine this acyclic partition for balance with the
proposed refinement heuristics in subsection 4.3. We then use this acyclic partition for
constraint coarsening and initial partitioning. We expect this scheme to be successful
in graphs with many sources and targets where the sources and targets can lie in any
of the parts while the overall partition is acyclic. On the other hand, if a graph is
such that its balanced acyclic partitions need to put the sources in one part and the
targets in another part, then fixing acyclicity may result in moving many vertices.
This in turn will harm the edge cut found by the undirected graph partitioner.

5. Experimental evaluation. The partitioning tool presented (\ttd \tta \ttg \ttP ) is imple-
mented in C/C++ programming languages. The experiments are conducted on a
computer equipped with dual 2.1 GHz, Xeon E5-2683 processors and 512GB memory.
The source code and more information is available at http://tda.gatech.edu/software/
dagP/.

We have performed an extensive evaluation of the proposed multilevel DAGP
method on DAG instances coming from two sources. The first set of instances is
from the Polyhedral Benchmark suite (PolyBench) [26], whose parameters are listed

http://tda.gatech.edu/software/dagP/
http://tda.gatech.edu/software/dagP/
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Table 5.1
Instances from the Polyhedral Benchmark suite (PolyBench).

Graph Parameters \#vertex \#edge Max. deg. Avg. deg. \#source \#target
\tttwo \ttm \ttm P=10, Q=20, R=30, 36,500 62,200 40 1.704 2100 400

S=40
\ttthree \ttm \ttm P=10, Q=20, R=30, 111,900 214,600 40 1.918 3900 400

S=40, T=50
\tta \ttd \tti T=20, N=30 596,695 1,059,590 109,760 1.776 843 28
\tta \ttt \tta \ttx M=210, N=230 241,730 385,960 230 1.597 48530 230
\ttc \tto \ttv \tta \ttr \tti \tta \ttn \ttc \tte M=50, N=70 191,600 368,775 70 1.925 4775 1275
\ttd \tto \tti \ttt \ttg \tte \ttn P=10, Q=15, R=20 123,400 237,000 150 1.921 3400 3000
\ttd \ttu \ttr \ttb \tti \ttn N=250 126,246 250,993 252 1.988 250 249
\ttf \ttd \ttt \ttd -\tttwo \ttd T=20, X=30, Y=40 256,479 436,580 60 1.702 3579 1199
\ttg \tte \ttm \ttm P=60, Q=70, R=80 1,026,800 1,684,200 70 1.640 14600 4200
\ttg \tte \ttm \ttv \tte \ttr N=120 159,480 259,440 120 1.627 15360 120
\ttg \tte \tts \ttu \ttm \ttm \ttv N=250 376,000 500,500 500 1.331 125250 250
\tth \tte \tta \ttt -\ttthree \ttd T=40, N=20 308,480 491,520 20 1.593 1280 512
\ttj \tta \ttc \tto \ttb \tti -\ttone \ttd T=100, N=400 239,202 398,000 100 1.664 402 398
\ttj \tta \ttc \tto \ttb \tti -\tttwo \ttd T=20, N=30 157,808 282,240 20 1.789 1008 784
\ttl \ttu N=80 344,520 676,240 79 1.963 6400 1
\ttl \ttu \ttd \ttc \ttm \ttp N=80 357,320 701,680 80 1.964 6480 1
\ttm \ttv \ttt N=200 200,800 320,000 200 1.594 40800 400
\tts \tte \tti \ttd \tte \ttl -\tttwo \ttd M=20, N=40 261,520 490,960 60 1.877 1600 1
\tts \tty \ttm \ttm M=40, N=60 254,020 440,400 120 1.734 5680 2400
\tts \tty \ttr \tttwo \ttk M=20, N=30 111,000 180,900 60 1.630 2100 900
\tts \tty \ttr \ttk M=60, N=80 594,480 975,240 81 1.640 8040 3240
\ttt \ttr \tti \tts \tto \ttl \ttv N=400 240,600 320,000 399 1.330 80600 1
\ttt \ttr \ttm \ttm M=60, N=80 294,570 571,200 80 1.939 6570 4800

in Table 5.1. The graphs in the Polyhedral Benchmark suite arise from various linear
computation kernels. The parameters in the second column of Table 5.1 represent
the size of these computation kernels. For more details, we refer the reader to the
description of the Polyhedral Benchmark suite (PolyBench) [26]. The second set of
instances is obtained from the matrices available in the SuiteSparse Matrix Collection
(formerly known as the University of Florida Sparse Matrix Collection) [8]. From this
collection, we pick all the matrices satisfying the following properties: listed as binary
and square and has at least 100000 rows and at most 226 nonzeros. There were a
total of 95 matrices at the time of experimentation, with two matrices (ids 1514 and
2294) having the same pattern. We discard the duplicate and use the remaining 94
matrices for experiments. For each such matrix, we take the strict upper triangular
part as the associated DAG instance whenever this part has more nonzeros than the
lower triangular part; otherwise, we take the strict lower triangular part. All edges
have unit cost, and all vertices have unit weight.

Since the proposed heuristics have a randomized behavior (the traversals used
in the coarsening and refinement heuristics are randomized), we run them 10 times
for each DAG instance and report the averages of these runs. We use performance
profiles [9] to present the edge cut results. A performance profile plot shows the
probability that a specific method gives results within a factor \theta of the best edge cut
obtained by any of the methods compared in the plot. Hence, the higher and closer
a plot is to the y-axis, the better the method is.

We set the load imbalance parameter \varepsilon = 0.03 in (2.1) for all experiments. The
vertices are unit weighted, and therefore the imbalance is rarely an issue for a move-
based partitioner.

5.1. Coarsening evaluation. We first evaluate the proposed coarsening heuris-
tics. The aim is to find an effective one to set as a default coarsening heuristic.

The performance profile chart given in Figure 5.1 shows the effect of the coarsen-
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Fig. 5.1. Performance profiles of the proposed multilevel algorithm variants using three differ-
ence coarsening heuristics in terms of edge cut.

ing heuristics on the final edge cut for the whole dataset. The variants of the proposed
multilevel algorithm which use different coarsening schemes are called \ttC \tto \ttT \tto \ttp (subsec-
tion 4.1.1), \ttC \tto \ttC \tty \ttc (subsection 4.1.2), and \ttC \tto \ttH \tty \ttb (subsection 4.1.3). Here, and in the
rest of the paper, we used a randomized depth-first topological order for the node
traversal in the coarsening heuristics since it performed better in practice. In Fig-
ure 5.1, we see that \ttC \tto \ttC \tty \ttc and \ttC \tto \ttH \tty \ttb behave similarly; this is expected, as not all
graphs have vertices with large degrees. From this figure, we conclude that in general,
the coarsening heuristics \ttC \tto \ttH \tty \ttb and \ttC \tto \ttC \tty \ttc are more helpful than \ttC \tto \ttT \tto \ttp in reducing
the edge cut.

Another important characteristic to assess for a coarsening heuristic is its con-
traction efficiency. It is important that the coarsening phase does not stop too early
and that the coarsest graph is small enough to be partitioned efficiently. Table 5.2
gives the maximum, the average, and the standard deviation of vertex and edge weight
ratios and the average, the minimum, and the maximum number of coarsening levels
observed for the two datasets. An effective coarsening heuristic should have small
vertex and edge weight ratios. We see that \ttC \tto \ttC \tty \ttc and \ttC \tto \ttH \tty \ttb behave similarly and
provide slightly better results than \ttC \tto \ttT \tto \ttp on both datasets. The graphs from the two
datasets have different characteristics. All coarsening heuristics perform better on the
PolyBench instances compared to the UFL instances: they obtain smaller ratios in
the number of remaining vertices and yield smaller edge weights. Furthermore, the
maximum vertex and edge weight ratios are smaller in PolyBench instances, again
with all coarsening methods. To the best of our understanding, these happen for two
reasons; (i) the average degree in the UFL instances is larger than that of the Poly-
Bench instances (3.63 vs. 1.72); (ii) the ratio of the total number of source and target
vertices to the total number of vertices is again larger in the UFL instances (0.13
vs. 0.03). Based on Figure 5.1 and Table 5.2, we set \ttC \tto \ttH \tty \ttb as the default coarsening
heuristic, as it performs better than \ttC \tto \ttT \tto \ttp in terms of final edge cut and is guaranteed
to be more efficient than \ttC \tto \ttC \tty \ttc in terms of runtime.

5.2. Constraint coarsening and initial partitioning. We now investigate
the effect of using undirected graph partitioners to obtain a more effective coarsening
and better initial partitions, as explained in subsection 4.4. We compare three vari-
ants of the proposed multilevel scheme. All of them use the refinement described in
subsection 4.3 in the uncoarsening phase:
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Table 5.2
The maximum, average, and standard deviation of vertex and edge weight ratios, and the

average, the minimum, and the maximum number of coarsening levels for the UFL dataset on
the upper half of the table, and for the PolyBench dataset on the lower half.

Algorithm Vertex ratio (\%) Edge weight ratio (\%) Coarsening levels
avg std. dev max avg std. dev max avg min max

\ttC \tto \ttT \tto \ttp 1.29 6.34 46.72 26.07 24.95 87.00 12.45 2 17.0
\ttC \tto \ttC \tty \ttc 1.06 6.31 47.29 25.97 24.86 87.90 12.74 2 17.6
\ttC \tto \ttH \tty \ttb 1.08 6.27 46.70 26.00 24.80 87.00 12.69 2 17.7
\ttC \tto \ttT \tto \ttp 1.33 2.26 8.50 25.67 11.08 47.60 7.44 4 11.8
\ttC \tto \ttC \tty \ttc 0.41 0.90 4.10 24.96 9.20 37.00 8.37 5 12.0
\ttC \tto \ttH \tty \ttb 0.54 0.88 3.60 24.81 9.33 39.00 8.46 5 11.9
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Fig. 5.2. Performance profiles for the edge cut obtained by the proposed multilevel algorithm
using the constraint coarsening and partitioning (\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP ), using the constraint coarsening and the
greedy directed graph growing (\ttC \tto \ttH \tty \ttb \ttC ), and using the best identified approach without constraints
(\ttC \tto \ttH \tty \ttb ).

\bullet \ttC \tto \ttH \tty \ttb : this variant uses the hybrid coarsening heuristic described in sub-
section 4.1.3 and the greedy directed graph growing heuristic described in
subsection 4.2.1 in the initial partitioning phase. This method does not use
constraint coarsening.

\bullet \ttC \tto \ttH \tty \ttb \ttC : this variant uses an acyclic partition of the finest graph, obtained as
outlined in subsection 4.2.2 to guide the hybrid coarsening heuristic described
in subsection 4.4, and uses the greedy directed graph growing heuristic in the
initial partitioning phase.

\bullet \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP : this variant uses the same constraint coarsening heuristic as the
previous method but inherits the fixed acyclic partition of the finest graph as
the initial partitioning.

The comparison of these three variants is given in Figure 5.2 for the whole dataset.
From Figure 5.2, we see that using the constraint coarsening is always helpful with
respect to not using them. This clearly separates \ttC \tto \ttH \tty \ttb \ttC and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP from \ttC \tto \ttH \tty \ttb 

after \theta = 1.1. Furthermore, applying the constraint initial partitioning (on top of the
constraint coarsening) brings tangible improvements.

In light of the experiments presented here, we suggest the variant \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP for
general problem instances, as this has clear advantages over others in our dataset.

5.3. Evaluating \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP with respect to a single-level algorithm. We
compare \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP (the variant of the proposed approach with constraint coarsening
and initial partitioning) with a single-level algorithm that uses an undirected graph
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Fig. 5.3. Performance profiles for the edge cut obtained by the proposed multilevel approach
using the constraint coarsening and partitioning (\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP ) and using the same approach without
coarsening (\ttU \ttn \ttd \tti \ttr \ttF \tti \ttx ).
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Fig. 5.4. Performance profiles for the edge cut obtained by \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP , \ttC \tto \ttT \tto \ttp , and Moreira,
Popp, and Schulz's approach on the PolyBench dataset with k \in \{ 2, 4, 8, 16, 32\} .

partitioning, fixes the acyclicity, and refines the partitions. This last variant is denoted
as \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx , and it is the algorithm described in subsection 4.2.2. Both variants use
the same initial partitioning approach, which utilizes MeTiS [16] as the undirected
partitioner. The difference between \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP is the latter's ability to
refine the initial partition at multiple levels. Figure 5.3 presents this comparison. The
plots show that the multilevel scheme \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP outperforms the single-level scheme
\ttU \ttn \ttd \tti \ttr \ttF \tti \ttx at all appropriate ranges of \theta , attesting to the importance of the multilevel
scheme.

5.4. Comparison with existing work. Here, we compare our approach with
the evolutionary graph partitioning approach developed by Moreira, Popp, and Schulz
[21] and briefly with our previous work [15].

Figure 5.4 shows how \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and \ttC \tto \ttT \tto \ttp compare with the evolutionary ap-
proach in terms of the edge cut on the 23 graphs of the PolyBench dataset for the
number of partitions k \in \{ 2, 4, 8, 16, 32\} . We use the average edge cut value of 10
runs for \ttC \tto \ttT \tto \ttp and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and the average values presented in [21] for the evolu-
tionary algorithm. As seen in the figure, the \ttC \tto \ttT \tto \ttp variant of the proposed multilevel
approach obtains the best results on this specific dataset (all variants of the proposed
approach outperform the evolutionary approach).
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Tables A.1 and A.2 show the average and best edge cuts found by \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and
\ttC \tto \ttT \tto \ttp variants of our partitioner and the evolutionary approach on the PolyBench
dataset. The two tables just after them (Tables A.3 and A.4) give the associated
balance factors. The variants \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and \ttC \tto \ttT \tto \ttp of the proposed algorithm obtain
strictly better results than the evolutionary approach in 78 and 75 instances (out of
115), respectively, when the average edge cuts are compared.

As seen in the last row of Table A.2, \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP obtains 26\% less edge cut than
the evolutionary approach on average (geometric mean) when the average cuts are
compared (0.74 vs. 1.00 in the table); when the best cuts are compared, \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP 

obtains 48\% less edge cut (0.50 vs. 0.96). Moreover, \ttC \tto \ttT \tto \ttp obtains 37\% less edge cut
than the evolutionary approach when the average cuts are compared (0.63 vs. 1.00
in the table); when the best cuts are compared, \ttC \tto \ttT \tto \ttp obtains 41\% less cut (0.57
vs. 0.96). In some instances (for example, \ttc \tto \ttv \tta \ttr \tti \tta \ttn \ttc \tte and \ttg \tte \ttm \ttm in Table A.1 and
\tts \tty \ttr \ttk and \ttt \ttr \ttm \ttm in Table A.2), we see large differences between the average and the
best results of \ttC \tto \ttT \tto \ttp and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP . Combined with the observation that \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP 

yields better results in general, this suggests that the neighborhood structure can be
improved (see the notion of the strength of a neighborhood [24, section 19.6]). All
partitions attain 3\% balance.

The proposed approach with all the reported variants takes about 30 minutes
to complete the whole set of experiments for this dataset, whereas the evolutionary
approach is much more compute-intensive, as it has to run the multilevel partitioning
algorithm numerous times to create and update the population of partitions for the
evolutionary algorithm. The multilevel approach of Moreira, Popp, and Schulz [21]
is more comparable in terms of characteristics with our multilevel scheme. When
we compare \ttC \tto \ttT \tto \ttp with the results of the multilevel algorithm by Moreira, Popp,
and Schulz, our approach provides results that are 37\% better on average and the
\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP approach provides results that are 26\% better on average, highlighting the
fact that keeping the acyclicity of the directed graph through the multilevel process
is useful.

Finally, \ttC \tto \ttT \tto \ttp and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP also outperform the previous version of our mul-
tilevel partitioner [15], which is based on a direct k-way partitioning scheme and
matching heuristics for the coarsening phase, by 45\% and 35\% on average, respec-
tively, on the same dataset.

5.5. Single commodity flow-like problem instances. In many of the in-
stances of our dataset, graphs have many source and target vertices. We investigate
how our algorithm performs on problems where all source vertices should be in a given
part, and all target vertices should be in the other part, while also achieving balance.
This is a problem close to the maximum flow problem, where we want to find the
maximum flow (or minimum cut) from the sources to the targets with balance on
part weights. Furthermore, addressing this problem also provides a setting for solving
partitioning problems with fixed vertices.

For these experiments, we used the UFL dataset. We discarded all isolated ver-
tices and added to each graph a source vertex S (with an edge from S to all source
vertices of the original graph with a cost equal to the number of edges) and a target
vertex T (with an edge from all target vertices of the original graph to T with a cost
equal to the number of edges). A feasible partition should avoid cutting these edges
and separate all sources from the targets.
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Fig. 5.5. Performance profiles of \ttC \tto \ttH \tty \ttb , \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP , and \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx in terms of edge cut for the
single source, single target graph dataset. The average of five runs is reported for each approach.

Fig. 5.6. Runtimes for \ttC \tto \ttT \tto \ttp , \ttC \tto \ttC \tty \ttc , and \ttC \tto \ttH \tty \ttb variants of the proposed multilevel scheme.
For each bar group, the first, second, and third bars present the detailed runtimes of \ttC \tto \ttT \tto \ttp , \ttC \tto \ttC \tty \ttc ,
and \ttC \tto \ttH \tty \ttb , respectively.

The performance profiles of \ttC \tto \ttH \tty \ttb , \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP , and \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx are given in Fig-
ure 5.5 with the edge cut as the evaluation criterion. As seen in this figure, \ttC \tto \ttH \tty \ttb is
the best performing variant, and \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx is the worst performing variant. This is
interesting, as in the general setting, we saw a reverse relation. The variant \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP 

performs in the middle, as it combines the other two.

5.6. Runtime performance. We now assess the runtime performance of the
proposed algorithms. Figure 5.6 shows the runtime comparison and distribution for
13 graphs with the longest coarsening time for the \ttC \tto \ttT \tto \ttp variant. A description of
these 13 graphs can be found in Table 5.3. In Figure 5.6, each graph has three bars
representing the runtime for the multilevel algorithm using the coarsening heuristics
described in subsection 4.1: \ttC \tto \ttT \tto \ttp , \ttC \tto \ttC \tty \ttc , and \ttC \tto \ttH \tty \ttb . We can see that the runtime
performances of the three coarsening heuristics are similar. This means that the cycle
detection function in \ttC \tto \ttC \tty \ttc does not introduce a large overhead, as stated in subsec-
tion 4.1.2. Most of the time, \ttC \tto \ttC \tty \ttc has a bit longer runtime than \ttC \tto \ttT \tto \ttp , and \ttC \tto \ttH \tty \ttb 

offers a good tradeoff. Note that in Figure 5.6, the computation time of the initial
partitioning is negligible compared to that of the coarsening and uncoarsening phases,
which means that the graphs have been efficiently contracted during the coarsening
phase.

Figure 5.7 shows the comparison of the five variants of the proposed multilevel
scheme and the single-level scheme on the whole dataset. Each algorithm is run 10
times on each graph. As expected, \ttC \tto \ttT \tto \ttp offers the best performance, and \ttC \tto \ttH \tty \ttb 
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Table 5.3
13 instances from the UFL dataset with the longest coarsening times for \ttC \tto \ttT \tto \ttp .

Graph \#vertex \#edge Max in Max out Avg deg \#source \#target
\ttthree \ttthree \ttthree \ttS \ttP 3,712,815 11,108,633 9 27 2.992 188,112 316,151
\ttA \ttS \ttthree \ttsix \ttfive 3,799,275 11,368,076 10 13 2.992 306,791 519,431
\ttM \ttsix 3,501,776 10,501,936 10 10 2.999 280,784 472,230
\ttc \tti \ttt -\ttP \tta \ttt \tte \ttn \ttt \tts 3,774,768 16,518,209 779 770 4.376 515,980 1,685,419
\ttd \tte \ttl \tta \ttu \ttn \tta \tty -\ttn \tttwo \tttwo 4,194,304 12,582,869 15 17 3 555,807 337,743
\tth \ttu \ttg \tte \ttb \ttu \ttb \ttb \ttl \tte \tts -\ttzero \ttzero \ttzero \ttone \ttzero 19,458,087 29,179,764 3 3 1.5 3,355,886 3,054,827
\tth \ttu \ttg \tte \ttt \ttr \tta \ttc \tte -\ttzero \ttzero \ttzero \tttwo \ttzero 16,002,413 23,998,813 3 3 1.5 2,514,461 2,407,017
\tth \ttu \ttg \tte \ttt \ttr \tti \ttc -\ttzero \ttzero \ttzero \ttone \ttzero 6,592,765 9,885,854 3 3 1.5 1,085,866 1,006,163
\tti \ttt \tta \ttl \tty -\tto \tts \ttm 6,686,493 7,013,978 5 8 1.049 155,509 458,561
\ttr \ttg \ttg -\ttn -\tttwo -\tttwo \tttwo -\tts \ttzero 4,194,304 30,359,198 24 25 7.238 3,550 3,576
\ttr \tto \tta \ttd -\ttu \tts \tta 23,947,347 28,854,312 8 8 1.205 6,392,288 8,010,032
\ttw \ttb -\tte \ttd \ttu 9,845,725 29,494,732 17,489 3841 2.996 1,489,057 2,794,680
\ttw \tti \ttk \tti \ttp \tte \ttd \tti \tta -\tttwo \ttzero \ttzero \ttsix \ttzero \ttnine \tttwo \ttfive 2,983,494 26,103,626 74,970 5,844 8.749 1,406,429 72,744
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Fig. 5.7. Runtime performance profile of \ttC \tto \ttC \tty \ttc , \ttC \tto \ttH \tty \ttb , \ttC \tto \ttT \tto \ttp , \ttC \tto \ttH \tty \ttb \ttC , \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP , and
\ttU \ttn \ttd \tti \ttr \ttF \tti \ttx on the whole dataset. The values are the averages of 10 runs.

offers a good tradeoff between \ttC \tto \ttT \tto \ttp and \ttC \tto \ttC \tty \ttc . An interesting remark is that these
three algorithms have a better runtime than the single-level algorithm \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx . For
example, on average, \ttC \tto \ttT \tto \ttp is 1.44 times faster than \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx . This is mainly due to
the cost of fixing acyclicity. Undirected partitioning accounts for roughly 25\% of the
execution time of \ttU \ttn \ttd \tti \ttr \ttF \tti \ttx , and fixing the acyclicity constitutes the remaining 75\%.
Finally, the variants of the multilevel algorithm using constraint coarsening heuristics
provide satisfying runtime performance with respect to the others.

6. Conclusion. We proposed a multilevel approach for acyclic partitioning of
DAGs. This problem is close to the standard graph partitioning in that the aim
is to partition the vertices into a number of parts while minimizing the edge cut
and meeting a balance criterion on the part weights. Unlike the standard graph
partitioning problem, the directions of the edges are important and the resulting
partitions should have acyclic dependencies.

We proposed coarsening, initial partitioning, and refinement heuristics for the
target problem. The proposed heuristics take the directions of the edges into account
and maintain the acyclicity through all the multilevel hierarchy. We also proposed
efficient and effective approaches to use the standard undirected graph partitioning
tools in the multilevel scheme for coarsening and initial partitioning. We performed
a large set of experiments on a dataset with graphs having different characteristics
and evaluated different combinations of the proposed heuristics. Our experiments
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suggested (i) the use of constraint coarsening and initial partitioning, where the main
coarsening heuristic is a hybrid one which avoids the cycles and, in case it does not,
performs a fast cycle detection (\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP ) for the general case; (ii) a pure multilevel
scheme without constraint coarsening, using the hybrid coarsening heuristic (\ttC \tto \ttH \tty \ttb )
for the cases where a number of sources need to be separated from a number of targets;
(iii) a pure multilevel scheme without constraint coarsening, using the fast coarsening
algorithm (\ttC \tto \ttT \tto \ttp ) for the cases where the degrees of the vertices are small. All three
approaches are shown to be more effective and efficient than the current state of the
art.

An avenue for future work is applying the proposed multilevel scheme in real life
applications that are based on task graphs. This requires a scheduling step to be
applied after the proposed partitioning scheme, which needs further investigations. A
recent work uses a multilevel algorithm for recombination and mutation [22]. Plugging
in our multilevel scheme to that framework can yield significant improvements.

Appendix A. Detailed results on the PolyBench instances. We give in
Tables A.1 and A.2 the detailed edge cut results of the proposed \ttC \tto \ttT \tto \ttp and \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP 

and Moreira, Popp, and Schulz's evolutionary algorithm [21]. Tables A.3 and A.4 give
the balance attained in the partitions. In these two tables, the average balance of the
10 runs yielding the average edge cut of Tables A.1 and A.2 is reported per problem
instance. The balance of the partition yielding the best edge cut of the previous tables
is also given per problem instance.

Acknowledgment. We thank John Gilbert for his comments on an earlier
version of this work presented at CSC'16. John suggested that we look at the spiral
ordering of the grid graph.
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Table A.1
Comparing the edge cuts obtained by \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and \ttC \tto \ttT \tto \ttp with those obtained by the evolu-

tionary algorithm of Moreira, Popp, and Schulz on the Polyhedral Benchmark Suite (first set of
results).

\ttG \ttr \tta \ttp \tth k
\ttM \tto \ttr \tte \tti \ttr \tta , \ttP \tto \ttp \ttp , \tta \ttn \ttd \ttS \ttc \tth \ttu \ttl \ttz [\tttwo \ttone ] \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP \ttC \tto \ttT \tto \ttp 
Average Best Average Best Average Best

\tttwo \ttm \ttm 

2 200 200 200 200 200 200
4 947 930 6134 2686 2160 1900
8 7181 6604 8713 6300 5361 4027

16 13330 13092 12135 9380 11196 10698
32 14583 14321 15911 14829 15932 14838

\ttthree \ttm \ttm 

2 1000 1000 7399 800 1000 1000
4 38722 37899 16771 7653 9264 8634
8 58129 49559 24330 9832 28121 24270

16 64384 60127 37041 31036 39683 37194
32 62279 58190 46437 43062 48567 43210

\tta \ttd \tti 

2 134945 134675 142719 142174 143067 139672
4 284666 283892 212938 211939 215399 214945
8 290823 290672 271949 266349 256302 255522

16 326963 326923 300755 292351 282485 281511
32 370876 370413 324494 316241 306075 305411

\tta \ttt \tta \ttx 

2 47826 47424 44942 38679 39876 39876
4 82397 76245 60187 47184 48645 48645
8 113410 111051 63353 51580 51243 50419

16 127687 125146 70723 62697 59208 57085
32 132092 130854 78264 67401 69556 63166

\ttc \tto \ttv \tta \ttr \tti \tta \ttn \ttc \tte 

2 66520 66445 27269 4775 55195 17183
4 84626 84213 82125 61793 61991 34307
8 103710 102425 136946 122656 74325 50680

16 125816 123276 142177 123221 119284 106422
32 142214 137905 121155 103751 133522 117431

\ttd \tto \tti \ttt \ttg \tte \ttn 

2 43807 42208 5035 3000 5947 5947
4 72115 71072 37767 22290 37051 31157
8 76977 75114 51283 43572 53244 50795

16 84203 77436 62296 56650 66483 64488
32 94135 92739 68350 62576 74786 70168

\ttd \ttu \ttr \ttb \tti \ttn 

2 12997 12997 12997 12997 12997 12997
4 21641 21641 21572 21572 21566 21566
8 27571 27571 27519 27518 27520 27520

16 32865 32865 32852 32848 32912 32912
32 39726 39725 39738 39732 39826 39826

\ttf \ttd \ttt \ttd -\tttwo \ttd 

2 5494 5494 6264 6003 6024 5896
4 15100 15099 15294 13199 16965 16674
8 33087 32355 23699 21886 35711 34361

16 35714 35239 32917 30725 44643 43608
32 43961 42507 42515 41258 53658 52420

\ttg \tte \ttm \ttm 

2 383084 382433 4200 4200 44549 44549
4 507250 500526 168962 12600 59854 46677
8 578951 575004 183228 36273 116990 96059

16 615342 613373 294777 241136 263050 238125
32 626472 623271 330937 307225 332946 299774

\ttg \tte \ttm \ttv \tte \ttr 

2 29349 29270 26368 22824 20913 20913
4 49361 49229 45689 38663 40299 40185
8 68163 67094 56930 49776 55266 53759

16 78115 75596 62143 57779 59072 56598
32 85331 84865 75425 68673 73131 71349

\ttg \tte \tts \ttu \ttm \ttm \ttv 

2 1666 500 24762 500 500 500
4 98542 94493 24613 1783 10316 8710
8 101533 98982 25342 13522 9618 9397

16 112064 104866 37819 21155 35686 30954
32 117752 114812 48775 42523 45050 40671

\tth \tte \tta \ttt -\ttthree \ttd 

2 8695 8684 10165 9648 9378 9225
4 14592 14592 17093 16321 16700 16424
8 20608 20608 28388 25862 25883 25470

16 31615 31500 47612 46825 42137 41261
32 51963 50758 64614 62894 70462 69439
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Table A.2
Comparing the edge cuts obtained by \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP and \ttC \tto \ttT \tto \ttp with those obtained by the evolu-

tionary algorithm of Moreira, Popp, and Schulz on the Polyhedral Benchmark Suite (second set of
results). The last line (Geomean) is for the whole PolyBench dataset (i.e., computed by combin-
ing this table with the previous one), where the performance of the algorithms are normalized with
respect to the average values shown under the column \ttM \tto \ttr \tte \tti \ttr \tta , \ttP \tto \ttp \ttp , \tta \ttn \ttd \ttS \ttc \tth \ttu \ttl \ttz .

\ttG \ttr \tta \ttp \tth k
\ttM \tto \ttr \tte \tti \ttr \tta , \ttP \tto \ttp \ttp , \tta \ttn \ttd \ttS \ttc \tth \ttu \ttl \ttz [\tttwo \ttone ] \ttC \tto \ttH \tty \ttb \ttC \ttI \ttP \ttC \tto \ttT \tto \ttp 
Average Best Average Best Average Best

\ttj \tta \ttc \tto \ttb \tti -\ttone \ttd 

2 596 596 646 472 682 660
4 1493 1492 1617 1272 1789 1756
8 3136 3136 2845 2560 3431 3216

16 6340 6338 4519 3841 5089 4872
32 8923 8750 6742 6026 6883 6634

\ttj \tta \ttc \tto \ttb \tti -\tttwo \ttd 

2 2994 2991 4327 4002 3445 3342
4 5701 5700 8405 7379 7370 7247
8 9417 9416 14872 13802 13168 12895

16 16274 16231 22626 21625 21565 21098
32 22181 21758 30423 28911 29558 28979

\ttl \ttu 

2 5210 5162 5351 4160 6085 6039
4 13528 13510 21258 13141 22979 16959
8 33307 33211 53643 44342 57437 49080

16 74543 74006 105289 96617 108189 102868
32 130674 129954 156187 147852 164737 158621

\ttl \ttu \ttd \ttc \ttm \ttp 

2 5380 5337 5731 5337 6942 5339
4 14744 14744 25247 19339 22368 22065
8 37228 37069 60298 50208 60255 50101

16 78646 78467 106223 98324 109920 99798
32 134758 134288 158619 151063 165018 155120

\ttm \ttv \ttt 

2 24528 23091 57216 33263 21281 19792
4 74386 73035 55679 36564 38215 35788
8 86525 82221 62453 47771 46776 43724

16 99144 97941 71650 59399 54925 48385
32 105066 104917 83635 79030 62584 60389

\tts \tte \tti \ttd \tte \ttl -\tttwo \ttd 

2 4991 4969 4374 3401 4772 4638
4 12197 12169 13177 12553 11784 11485
8 21419 21400 24396 22452 21937 21619

16 38222 38110 38065 35777 39747 38831
32 52246 51531 58319 57012 59278 57885

\tts \tty \ttm \ttm 

2 94357 94214 26374 24629 43597 43330
4 127497 126207 59815 49450 85730 78379
8 152984 151168 91892 75126 118259 111126

16 167822 167512 105418 96322 135278 131127
32 174938 174843 108950 99584 145903 141223

\tts \tty \ttr \tttwo \ttk 

2 11098 3894 4343 900 16124 14404
4 49662 48021 12192 3121 22915 17959
8 57584 57408 29194 24912 28787 27259

16 59780 59594 29519 26327 31807 29132
32 60502 60085 36111 34079 36689 35155

\tts \tty \ttr \ttk 

2 219263 218019 76767 3240 11740 9036
4 289509 289088 72148 9995 56832 34893
8 329466 327712 112236 66981 121664 109730

16 354223 351824 179042 172076 184437 170781
32 362016 359544 196173 186162 224330 213676

\ttt \ttr \tti \tts \tto \ttl \ttv 

2 6788 3549 367 280 336 336
4 43927 43549 38148 1277 828 828
8 66148 65662 20163 9364 2156 2156

16 71838 71447 20421 12847 6240 5881
32 79125 79071 25279 19949 13431 13172

\ttt \ttr \ttm \ttm 

2 138937 138725 50057 32720 13659 3440
4 192752 191492 58477 16617 72276 35000
8 225192 223529 92185 58957 134574 102693

16 240788 238159 128838 122111 157277 145934
32 246407 245173 153644 147551 171562 158113

\bfG \bfe \bfo \bfm \bfe \bfa \bfn 1.00 0.96 0.74 0.50 0.63 0.57
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Table A.3
The partition balances for the edge cuts given in Table A.1.

\ttG \ttr \tta \ttp \tth k
\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP \ttC \tto \ttT \tto \ttp 

Average Best Average Best

\tttwo \ttm \ttm 

2 1.001 1.001 1.001 1.001
4 1.028 1.030 1.024 1.001
8 1.030 1.030 1.030 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttthree \ttm \ttm 

2 1.021 1.009 1.017 1.017
4 1.027 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\tta \ttd \tti 

2 1.000 1.000 1.030 1.030
4 1.030 1.030 1.030 1.029
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\tta \ttt \tta \ttx 

2 1.010 1.011 1.030 1.030
4 1.020 1.030 1.030 1.030
8 1.027 1.016 1.029 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttc \tto \ttv \tta \ttr \tti \tta \ttn \ttc \tte 

2 1.022 1.023 1.030 1.030
4 1.026 1.021 1.030 1.030
8 1.028 1.030 1.030 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttd \tto \tti \ttt \ttg \tte \ttn 

2 1.003 1.000 1.030 1.030
4 1.030 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttd \ttu \ttr \ttb \tti \ttn 

2 1.024 1.024 1.024 1.024
4 1.018 1.018 1.023 1.023
8 1.020 1.020 1.028 1.028

16 1.028 1.028 1.030 1.030
32 1.030 1.029 1.030 1.030

\ttf \ttd \ttt \ttd -\tttwo \ttd 

2 1.007 1.000 1.006 1.000
4 1.023 1.026 1.021 1.025
8 1.026 1.028 1.027 1.024

16 1.027 1.027 1.029 1.028
32 1.029 1.030 1.028 1.029

\ttg \tte \ttm \ttm 

2 1.010 1.008 1.029 1.029
4 1.024 1.025 1.030 1.030
8 1.029 1.028 1.029 1.027

16 1.030 1.030 1.027 1.030
32 1.030 1.030 1.030 1.030

\ttg \tte \ttm \ttv \tte \ttr 

2 1.008 1.000 1.000 1.000
4 1.030 1.030 1.029 1.030
8 1.029 1.025 1.030 1.029

16 1.029 1.029 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttg \tte \tts \ttu \ttm \ttm \ttv 

2 1.014 1.010 1.022 1.022
4 1.026 1.013 1.030 1.030
8 1.028 1.027 1.027 1.030

16 1.029 1.029 1.030 1.030
32 1.030 1.030 1.030 1.030

\tth \tte \tta \ttt -\ttthree \ttd 

2 1.008 1.030 1.030 1.030
4 1.030 1.030 1.030 1.030
8 1.020 1.016 1.030 1.030

16 1.024 1.022 1.030 1.030
32 1.030 1.028 1.030 1.030
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Table A.4
The partition balances for the edge cuts given in Table A.2. The last three lines (Min, Average,

Max) are for the whole PolyBench dataset (i.e., computed by combining this table with the previous
one).

\ttG \ttr \tta \ttp \tth k
\ttC \tto \ttH \tty \ttb \ttC \ttI \ttP \ttC \tto \ttT \tto \ttp 

Average Best Average Best

\ttj \tta \ttc \tto \ttb \tti -\ttone \ttd 

2 1.009 1.010 1.016 1.006
4 1.019 1.027 1.016 1.022
8 1.016 1.006 1.024 1.028

16 1.025 1.024 1.024 1.024
32 1.027 1.027 1.028 1.028

\ttj \tta \ttc \tto \ttb \tti -\tttwo \ttd 

2 1.027 1.030 1.028 1.030
4 1.017 1.012 1.029 1.030
8 1.027 1.027 1.030 1.030

16 1.027 1.028 1.030 1.030
32 1.029 1.028 1.030 1.030

\ttl \ttu 

2 1.023 1.003 1.030 1.030
4 1.027 1.030 1.029 1.027
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttl \ttu \ttd \ttc \ttm \ttp 

2 1.020 1.020 1.022 1.020
4 1.027 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttm \ttv \ttt 

2 1.020 1.028 1.024 1.030
4 1.021 1.015 1.028 1.021
8 1.025 1.030 1.029 1.021

16 1.028 1.030 1.029 1.030
32 1.029 1.030 1.030 1.030

\tts \tte \tti \ttd \tte \ttl -\tttwo \ttd 

2 1.012 1.011 1.016 1.008
4 1.024 1.022 1.028 1.025
8 1.026 1.030 1.030 1.030

16 1.029 1.029 1.030 1.030
32 1.029 1.028 1.030 1.030

\tts \tty \ttm \ttm 

2 1.016 1.030 1.030 1.030
4 1.021 1.019 1.030 1.030
8 1.027 1.029 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\tts \tty \ttr \tttwo \ttk 

2 1.018 1.016 1.026 1.000
4 1.029 1.030 1.020 1.029
8 1.030 1.027 1.029 1.030

16 1.030 1.030 1.027 1.021
32 1.030 1.030 1.030 1.030

\tts \tty \ttr \ttk 

2 1.021 1.022 1.024 1.026
4 1.030 1.030 1.028 1.030
8 1.029 1.027 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttt \ttr \tti \tts \tto \ttl \ttv 

2 1.012 1.021 1.027 1.027
4 1.026 1.028 1.020 1.020
8 1.028 1.030 1.026 1.026

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\ttt \ttr \ttm \ttm 

2 1.028 1.024 1.016 1.010
4 1.027 1.021 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

\bfM \bfi \bfn 1.000 1.000 1.000 1.000
\bfA \bfv \bfe \bfr \bfa \bfg \bfe 1.025 1.025 1.027 1.027

\bfM \bfa \bfx 1.030 1.030 1.030 1.030
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