
I
S

S
N

0
2

4
9

-
6

3
9

9
I
S

R
N

I
N

R
I
A

/
R

R
-
-
7

5
4

9
-
-
F

R
+

E
N

G

RESEARCH
REPORT
N° 7549
February 2011

Project-Team ROMA

Constructing elimination
trees for
sparse unsymmetric
matrices
Kamer Kaya, Bora Uçarin

ria
-0

05
67

97
0,

 v
er

si
on

 4
 - 

4 
O

ct
 2

01
2

http://hal.inria.fr/inria-00567970
http://hal.archives-ouvertes.fr


in
ria

-0
05

67
97

0,
 v

er
si

on
 4

 - 
4 

O
ct

 2
01

2



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Constructing elimination trees for
sparse unsymmetric matrices

Kamer Kaya, Bora Uçar

Project-Team ROMA

Research Report n° 7549 — February 2011 — 13 pages

Abstract: [Eisenstat and Liu, SIAM J. Matrix Anal. Appl., 26 (2005) and 29 (2008)]. The
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Construire les arbes d’élimination pour
des matrices creuses non symétriques

Résumé : Eisenstat et Liu ont récemment décrit l’arbre d’élimination pour
des matrices creuses non symétriques et ont proposé un algorithme pour le
construire en temps O(mn) pour une matrice de taille n ayant m éléments
non nuls hors diagonaux [Eisenstat and Liu, SIAM J. Matrix Anal. Appl., 26
(2005) and 29 (2008)]. Nous décrivons un algorithme dont la complexité en
temps est O(m log n). Nous comparons les deux algorithmes expérimentalement
et montrent que les deux sont efficaces en général. L’algorithme de Eisenstat
et Liu est plus rapide dans de nombreux cas pratiques, mais il y a des cas
dans lesquels la différence entre le temps d’exécution de deux algorithmes est
significative en faveur de le nôtre.

Mots-clés : Arbre d’élimination, factorisation des matrices creuses
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Elimination trees for unsymmetric matrices 3

1 Introduction
Arguably, the elimination tree is the single most important data structure in
sparse matrix factorization methods. It is used to estimate and optimize the
storage and computational requirements during symbolic and numerical factor-
izations [10]. The elimination tree for symmetric (positive definite) systems
dates from 80s [11] and even before (see [4, Section 3.3] and [10]), whereas the
elimination tree for unsymmetric matrices is a recent development. Eisenstat
and Liu [6] define the elimination tree for unsymmetric matrices and discuss its
properties. In a follow up paper [7], they describe algorithms to construct those
trees and discuss the use of the elimination trees to improve the performance
of a symbolic factorization algorithm. The algorithm of Eisenstat and Liu [7]
for constructing the elimination tree of an n ⇥ n unsymmetric matrix with m
off-diagonal nonzeros has a worst-case time complexity of ⇥(mn). We present
an O(m log n) time algorithm for the same purpose.

A directed graph (digraph) G = (V, E) consists of a finite set of vertices
V and a set of edges E, where each edge (u, v) 2 E is an ordered pair in V .
The directed graph G(A) = (V, E) of an n ⇥ n matrix A with m off-diagonal
nonzeros contains n vertices, V = {v1, v2, . . . , vn}, and m edges, E = {(vi, vj) :

aij 6= 0, for 1  i 6= j  n}. We assume that A has a zero-free diagonal.
However, as the definition of G(A) shows, we will omit the self loops implied by
the diagonal entries. We also assume that m � n to simplify some definitions
and complexity analysis.

A path of length k in a directed graph G = (V, E) is a sequence of vertices
u0, u1, . . . , uk such that (ui, ui+1) 2 E for i = 0, . . . , k � 1. For two vertices
u, v 2 V , we say that u is connected to v in G, denoted u

G! v, if there is path
u = u0, u1, . . . , uk = v from u to v. A cycle is a path which starts and ends at
the same vertex. A simple cycle is a path u0, u1, . . . , uk, u0 where k � 1 and
ui 6= uj for 0  i < j  k.

A directed graph G0
= (V 0, E0

) is a subgraph of a larger digraph G = (V, E)

if V 0 ✓ V and E0 ✓ E \ (V 0 ⇥ V 0
). A subgraph is said to be a induced subgraph

if E0
= E \ (V 0 ⇥ V 0

). Let V = {v1, v2, . . . , vn} and we have a total order on
the vertices. Then, Gk denotes a special induced subgraph containing the first
k vertices in V . That is,

Gk = ({v1, . . . , vk}, E \ {v1, . . . , vk} ⇥ {v1, . . . , vk}) .

If u
G! v for all u, v 2 V , the digraph G is called strongly connected. A

maximal, strongly connected, induced subgraph C of G is called a strong com-
ponent of G. A directed graph without simple cycles is called a directed acyclic
graph (dag). The strong components of a dag are its vertices, i.e., each vertex
forms a trivial strong component.

We say that a matrix A with a zero-free diagonal is irreducible if G(A) is
strongly connected, i.e., it only has one strong component.

Let ⇧ = {V1, V2, . . . , V`} be a partition of the vertex set V of a directed
graph G = (V, E). The quotient graph G⇧

= (V ⇧, E⇧
) induced by ⇧ has `

super-vertices V1, . . . , V` and a directed edge (Vi, Vj) 2 E⇧ iff (u, v) 2 E for
some u 2 Vi and v 2 Vj .

Let A be a nonsingular, sparse, unsymmetric n ⇥ n matrix with a nonzero
diagonal, and assume that the LU-factorization A = LU with unit lower trian-
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Elimination trees for unsymmetric matrices 4

gular L and upper triangular U exists. Then, the elimination tree T (A) of an
unsymmetric A is defined by Eisenstat and Liu [6, 7] as follows.

Parent(i) = min{j : j > i and j
G(L)! i

G(U)! j} (1)

where Parent(i) denotes the parent of vertex i in the elimination tree if i is not
a root. Otherwise, Parent(i) = 1. Eisenstat and Liu prove the following the-
orem in order to develop an algorithm for constructing T (A) without knowing
G(L) and G(U).

Theorem 1 (see Theorem 3.3 of [6]). Vertex k is the parent of vertex i in the
elimination tree T (A) if and only if k is the first vertex after i such that k and
i belong to the same strong component of the subgraph Gk(A) of G(A).

Given this theorem, Eisenstat and Liu [7] propose Algorithm 1 to compute
the parent pointers (1) and hence to construct the elimination tree.

1: for vertex k = 1 to n do
2: Find the strong component C of Gk(A) that contains k
3: for each vertex i 2 C \ {k} do
4: if Parent(i) = 1 then
5: Parent(i) = k
6: Parent(k) = 1

Algorithm 1: eTree

The strong components of a digraph with m edges and n vertices can be
found in ⇥(n + m) time [12]. Hence, the worst-case time complexity of the
algorithm eTree is ⇥(mn) for a graph containing n vertices and m edges.
Eisenstat and Liu reduce the practical running time of the algorithm by using
quotient graphs [7] and specialized algorithms to find the strong component
containing a given vertex, but report that the worst-case time complexity of the
improved algorithm is still ⇥(mn).

2 An O(m log n) time algorithm
The essence of the proposed algorithm lies in the following theorem of Eisenstat
and Liu [7, Theorem 3.2].

Theorem 2. (see [7, Theorem 3.2]) Let C = (Vc, Ec) be a strong component of
Gk(A) and let it be the highest numbered vertex in Vc. Then the vertex set Vc

corresponds to the vertex set of the subtree of the elimination tree T (A) rooted
at it.

Eisenstat and Liu make use of this theorem in a bottom-up approach in the
improved version of Algorithm 1. Each time k is incremented, the newly formed
connected component (a union of a set of strong components) is detected using
quotient graphs and the vertex k is set to be the root of the new component
whose children are the roots of the strong components that form the component
of k. The algorithm that we propose makes use of Theorem 2 in a top-down
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Elimination trees for unsymmetric matrices 5

approach. Assume we have detected the strong components of Gk. Then,
we can build the subtrees of T (A) rooted at the highest numbered vertex in
each component recursively. Furthermore, we can build the quotient graph
induced by the partition formed by the components of Gk and the vertices of G
that are not in Gk (each as a single vertex) and compute the elimination tree
associated with this quotient graph recursively. Once this is done, the whole
tree T (A) can be obtained by replacing each super-vertex with the associated
subtree. The algorithm that we propose below implements this recursion. The
proposed algorithm is based on an algorithm of Tarjan [13]. Tarjan’s original
algorithm constructs a tree whose leaves correspond to the vertices of a given
graph and applies a recursion to the edge set, whereas the proposed elimination
tree algorithm constructs a tree whose vertices correspond to the vertices of the
given graph by applying a recursion to the vertex set.

2.1 The algorithm

Let A be an irreducible, unsymmetric, n ⇥ n matrix. Algorithm 2 displays the
proposed algorithm UET which finds the elimination tree T (A). There are two
inputs for the algorithm: a strongly connected digraph G with ⌘ vertices and an
integer s < ⌘ such that Gs is acyclic. That is, all the strong components of Gs

are trivial. The initial call is UET(G(A) = ({1, 2, . . . , n}, E), 0). We assume that
the parent pointers are initialized to 1 before the execution of the algorithm.

Since G is strongly connected and Gs is known to be acyclic, if s = ⌘ � 1,
the vertex i⌘ must be the vertex that makes G strongly connected. If this
is the case, we set the parent pointers appropriately; vertex i⌘ becomes the
parent of all vertices i1, . . . , i⌘�1. If this is not the case, the algorithm exam-
ines Gk where k = d(s + ⌘)/2e. Assume that Gk has p strong components
C` = (V`, E`) for ` = 1, . . . , p. By Theorem 2, the vertex set of each strong
component V` corresponds to the vertices of the subtree of the elimination tree
rooted at the highest numbered vertex in V`. In this case, each recursive call
at line 11 is responsible for setting the parent pointers of the vertices in these
subtrees where the root of each subtree is the highest numbered vertex in the
associated component. When we have computed the subtrees associated with
each strong component of G, UET is called on the quotient graph with partition
⇧ = {V1, . . . , Vp, ik+1, ik+2, . . . , i⌘}, where V1, . . . , Vp correspond to the p strong
components of Gk, to set the parents of the roots of these subtrees. As we need
a vertex to represent V` for ` = 1, . . . , p, we find it convenient to use the root,
i.e., the highest numbered vertex in V`.

In a recursive call with a strong component C`, s` is equal to the number of
vertices in V` at an index smaller than or equal to s. Hence, the subgraph of C`

containing the first s` vertices is acyclic (has only trivial strong components).
On the other hand, for the graph G⇧, we know that the first p vertices form a
directed acyclic graph since they correspond to the strong components of Gk.
These two observations show that at an invocation of UET each vertex ij 2 V
such that j  s represents a subtree in T (A) with root ij (may also be a leaf
node).

Consider the sample matrix from [7] shown in Fig. 1(a) whose graph is
shown in Fig. 1(b). The first call with the whole graph finds k = 5, p = 3 with
V1 = {1}, V2 = {4}, V3 = {2, 3, 5}, and then recursively calls the algorithm in
V3; then the algorithm reaches line 14, yielding the subtree shown in Fig. 1(c)
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Elimination trees for unsymmetric matrices 6

Input A graph G = ({i1, i2, . . . , i⌘}, E) and a nonnegative integer s < ⌘ such
that

(i) G is strongly connected,

(ii) Gs is acyclic,

(iii) the remaining vertices satisfy is+1 < is+2 < · · · < i⌘ whenever
s < ⌘ � 1.

Output Parent pointers are set.
1: if s = ⌘ � 1 then
2: for j = 1 to ⌘ � 1 do
3: Parent(ij) = i⌘
4: else
5: k = d(s + ⌘)/2e
6: Let p be the number of strong components of Gk

7: for ` = 1 to p do
8: Let C` = (V`, E`) be the `th strong component of Gk

9: if |V`| > 1 then
10: s` = |{ij : ij 2 V`, j  s}| I the first s vertices form a dag
11: UET(C`, s`) I Set parents for the vertices in each str.

comp.
12: Let ⇧ = {V1, . . . , Vp, ik+1, ik+2, . . . , i⌘} be a partition of V
13: Let G⇧

= (V ⇧
= {r1, . . . , rp, ik+1, ik+2, . . . , i⌘}, E⇧

) be the quotient
graph induced by ⇧ where V` is represented by the highest numbered
vertex r` 2 V` for ` = 1, . . . , p

14: UET(G⇧
= (V ⇧, E⇧

), p) I G⇧ is strongly connected, G⇧
p is acyclic

Algorithm 2: UET(G = ({i1, i2, . . . , i⌘}, E), s)
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Elimination trees for unsymmetric matrices 7
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Fig. 1. A sparse matrix and its directed graph.

2. Background. The authors introduced the elimination tree of a sparse unsym-

metric matrix and studied tree-based, BBT orderings in [15]. We briefly review

these ideas here.

2.1. Graph notation. The directed graph G(M) of a sparse unsymmetric n⇥n
matrix M is defined as follows: the vertex set is X(M) = {1, 2, . . . , n}; and for distinct

vertices r and c, there is a directed edge r M��! c from r to c if and only if the entry

mrc 6= 0. We shall use the notation r M
=� c to indicate a directed path1

from r to c.
If the matrix M is clear from context, we shall sometimes use the abbreviated forms

r �! c and r � c.

At times we shall consider composite paths such as r M��! u M �
=� c. If there

is no restriction on the intermediate vertex u, we shall use the abbreviated form

2

r M��! M �
=� c.

A set of vertices S ✓ X(M) induces a subgraph of G(M) consisting of the

vertices in S and all edges u �! v with u, v 2 S. To simplify the presentation

we shall not distinguish between a set of vertices and the subgraph of G(M) that

it induces; that is, we shall use S as a subset of X(M) and as a subgraph of

G(M) interchangeably. It should be clear from context which use is intended. We

shall use the notation Gm(M) to denote the subgraph {1, 2, . . . , m} of G(M) for

0  m  n.

A subgraph S of G(M) is strongly connected if, for any pair of distinct vertices

u, v 2 S, there is a cycle u � v � u in the subgraph S. If S is a maximal strongly

connected subgraph, then it is a (strongly connected) component of G(M).

Figure 1 contains a 10 ⇥ 10 unsymmetric matrix that will be used as an example

throughout the paper. The diagonal entries are the vertices; each • represents an

o�-diagonal nonzero. The subgraph {1, 4, 6, 7} is strongly connected (since 1 �! 4 �!
7 �! 6 �! 1 is a cycle), but is not a component (since the entire graph is strongly

connected).

2.2. Quotient graphs and matrices. Let {S1, S2, . . . , Sq} be a partition of

the vertex set X(M). The quotient graph of G(M) induced by this partition has the

vertices S1, S2, . . . , Sq and a directed edge from Si to Sj if and only if there are

vertices u 2 Si and v 2 Sj with u M��! v. We can represent the quotient graph as

G(Q) by defining a q ⇥ q quotient matrix Q with qij = 1 if there is an edge from Si

to Sj and qij = 0 otherwise.

1Paths and cycles must contain at least one edge, but need not be simple; that is, they may visit
a vertex or edge more than once.

2This notation is due to John Gilbert.

(a) The matrix A

10

1 2 3

674

9

8

5

(b) The directed graph of A

1 2 3

5

4

(c) Initial call reaches line 14

1 4 6

7

2 3

5 8

(d) Another pass at line 14

1 4 6

7

2 3

5 8

9

(e) Final pass at line 14

1 4 6

7

2 3

5 8

9

10

(f) Constructed tree

Figure 1: Tracing the algorithm on the sample matrix.

with V ⇧
= {r1 = 1; r2 = 4; r3 = 5; 6; 7; 8; 9; 10}. The recursive call is made with

s = 3 and then finds k = 6 (pointing to vertex 8). Three strong components
V1 = {1, 4, 6, 7}, V2 = {2, 3, 5}, and V3 = {8} are found; 7 becomes the root of
V1, and 5 becomes the root of V1 after the recursive calls at line 11, yielding
the subtrees shown in Fig. 1(d). Then the algorithm reaches again to line 14
with V ⇧

= {r1 = 7; r2 = 5; r3 = 8; 9; 10} and s = 3. This time k = 4 (points at
vertex 9). Again, three strong components are found and 9 becomes the root of
the component containing 5, yielding the tree shown in Fig. 1(e). The last call
results in the elimination tree shown in Fig. 1(f).

2.2 Complexity analysis

We now analyze the worst-case running time complexity of Algorithm 2. Con-
sider the call tree for UET where the root node is the initial call and the children
of a node are the recursive calls it makes. The complexity of the body of the
algorithm without the recursive calls is O(|E|), as the running time of the body
is dominated by the computation of the strong components (in O(|E|) time) of
a graph and the construction of the associated quotient graph (which is done in
O(|E|) time as we also discuss in the next subsection). That is, at each node of
the call tree, the complexity is O(|E|). We now proceed in two steps to bound
the running time for an n ⇥ n matrix with m off-diagonal nonzero etnries. In
the first step, we obtain the bound O(m) on the sum of the nonrecursive work
of all nodes of the call tree at a given depth. In the second step, we obtain the
bound O(log n) on the height of the call tree.
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Elimination trees for unsymmetric matrices 8

Consider the algorithm UET making the recursive calls for a given graph
with |E| edges and p strong components. Each edge in E is included either in
one recursive call at line 11, or in the call at line 14 on the quotient graph,
or discarded while building the quotient graph. This implies that

Pp
`=1 |E`| +

|E⇧|  |E|. Therefore the total number of edges in all calls at a given depth is no
larger than the number of edges m in the initial call, and hence the complexity
of nonrecursive work at a given depth is O(m). Let ⌘ � s be the rank of the
problem, i.e., the number of vertices to be examined for strong connectivity in
G. Among the vertices of C`, there are s` of them in the acyclic graph Gs.
The remaining vertices all should be between s and k. Therefore, for a strong
component C`, we have |V`| � s`  k � s. The problem containing the quotient
graph has rank ⌘�k, as among a total of ⌘�k+p vertices, the first p of them form
a dag. By the definition k = d(n+s)/2e, we have max{k�s, ⌘�k}  2(⌘�k)/3;
notice that the inequality is tight only when n� s = 3. Therefore, the rank of a
node of the call tree is at most 2/3 as large as its parent. Since the rank of the
initial problem is n, the height of the call tree is O(log n), and the worst-case
time complexity of the algorithm is O(m log n).

2.3 Implementation details

Our implementation of UET allocates 10n + m space for a strongly connected
graph before calling the recursive function (this does not include the parent
pointers), and overwrites the input matrix, essentially requiring 11n+2m space.
The recursive function itself allocates 2n + p extra space before the recursive
calls on the p strong components (at line 11) and frees up this space just before
the recursive call on G⇧. By following an analysis similar to the one in the
previous subsection, we can see that the recursive calls allocate and free a total
of O(n log n) space throughout the whole process. Notice that this is not the
peak memory requirement at a given time. In comparison, EL uses 9n + 2m
space (this does not include the parent pointers).

The most involved part of the proposed UET algorithm is the construction
of the subgraphs C` and the graph quotient G⇧ while discarding the duplicate
edges. In short, we do this operation as follows: we visit the edges of G once and
construct the graphs of C` for ` = 1, . . . , p and the graph G⇧ during this visit.
We implemented this operation in two different for-loops. In the first for-loop,
we visit the vertices that are not in Gk to add some edges to G⇧. For each such
vertex v, we visit its neighbors in order. If a neighbor u of v is not in Gk, then
the edge is copied into G⇧. Otherwise, we put an edge from v to the vertex
representing u’s strong component, if such an edge was not put before (an array
of markers is used to do this without searching). In the second for-loop, we visit
the vertices of a strong component before visiting the vertices of another one.
When we visit a vertex v in a strong component C`, the neighbors of v that are
in C` are copied into the graph of C`. For a neighbor u of v which is either in
another strong component Cq or not in Gk , we add an edge from the vertex
representing C` to the vertex representing Cq (or to u itself if u is not in Gk) if
such an edge was not added before (we again use an array of markers to avoid
searches). Note that the vertices representing the strong components are the
roots, and their ids along with the ids of vertices not in Gk are passed to the
recursive call on G⇧ to set their parent pointers.

The proposed algorithm requires an irreducible matrix A (or a strongly con-
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Elimination trees for unsymmetric matrices 9

nected graph) at the initial call. One can therefore detect the irreducible blocks
of a general A and call the proposed algorithm to construct the elimination tree
of each block separately and build the elimination tree (forest in this case) of
the initial matrix A. Alternatively, one can append a zero-free row and col-
umn to any input matrix, and create an irreducible matrix, say B. The new
row/column will be the root of the elimination tree of B. By removing the
newly added vertex from the elimination tree of B, one can obtain the elimina-
tion tree of A. We found it convenient to not to add those edges, but assume
their presence and handle them by the if check at line 1 of Algorithm 2.

One further detail we need to mention is that the body of the else statement
at line 4 handles the case where p = k differently. If we have p = k, then Gk

is acyclic and the strong components of the graph Gk are all trivial. Therefore,
instead of doing recursive calls on the components of Gk, the variable s is
modified and another k between the new s and ⌘ is searched in a while loop,
where at each iteration the strong components of Gk are found. If during this
search we find a Gk with a non-trivial strong component, then the algorithm
continues with the body of the else statement as displayed in Algorithm 2. If
s is found to be ⌘ � 1, then the parent pointers of all vertices are set to the
last vertex of G and the control returns to the caller. This technique does not
affect the theoretical complexity of the algorithm, as it is equivalent to calling
the algorithm recursively with s = k.

3 Experimental results
We have implemented the proposed elimination tree construction algorithm in
C and compared it with a Fortran implementation of the algorithm of Eisen-
stat and Liu [7]. In the sequel, UET refers to the proposed algorithm with the
modification discussed in the last paragraph of Section 2.3, and EL refers to the
algorithm of Eisenstat and Liu. We compiled the C and Fortran codes with mex
of Matlab which uses gcc and gfortran versions 4.4.2 with the optimization
flag -O. We run the compiled codes on a machine with a 2.4Ghz AMD Opteron
250 processor and 8Gbytes of RAM.

3.1 Constructed examples

There are matrices on which the algorithm EL runs in time ⇥(mn). For a given
positive integer k, let A be a matrix of size n = 2k whose nonzero set is the
following:

{aii|i = 1, . . . , n} [ {ai+1,i|i = k, . . . , n � 2} [ {ai�k,i|i = k + 1, . . . , n}
[ {ani|i = 1, . . . , n} [ {ain|i = k + 1, . . . , n � 1} . (2)

A sample matrix of size 10 ⇥ 10 (with k = 5) from this family is shown in
Fig. 2(a).

The matrices as described above are irreducible and have zero fill-in when
the natural order is used during the elimination process. For these matrices,
using the quotient graphs does not have any effect (each component is of size
one until the nth vertex) and therefore EL runs in ⇥(mn) = ⇥(n2

) time. The
proposed algorithm, without the modification presented at the last paragraph
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Elimination trees for unsymmetric matrices 10BRIEF ARTICLE
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Figure 2: A matrix on which EL runs in quadratic time and the corresponding
elimination tree.

n m etree EL UET
100000 249997 0.005 27.509 0.073
200000 499997 0.010 125.064 0.147
300000 749997 0.014 269.573 0.223

Table 1: Running time of the algorithms on instances on which EL runs in
quadratic time.

of Section 2.3, starts with the initial call with s = 0 and all of the 10 vertices.
Then, the graph G5 is found to be acyclic, and a recursive call is made with
s = 5 and again with 10 vertices. The graph G8 is found to be acyclic, and
a recursive call is made with s = 8 and again with 10 vertices. The graph G9

is found to be acyclic, and a recursive call is made with s = 9 and all the 10
vertices. This last call finds s = 9 and ⌘ = 10 (the condition holds at the first
if statement) and sets all parent pointers to 10 resulting in the elimination tree
shown in Fig 2(b). Note that UET, the implementation with the modification
presented at the last paragraph of Section 2.3, sets the parent pointers without
any recursive call (but computes the strong components of G5, G8 and G9).

In order to assess the difference in the execution times of both algorithms,
we run them on matrices described above with parameter k = 5⇥ 10

4, 10⇥ 10

4,
and 15 ⇥ 10

4. The execution times are reported in seconds in Table 1. In order
to put the running times into perspective, we also report the running time of the
standard symmetric elimination tree algorithm (etree in Matlab) in Table 1,
where etree was run on the symmetrized matrices. As seen in the table, EL has
a much higher execution time than UET on these instances. As expected, both
algorithms are much slower than the linear time etree algorithm.

3.2 Real life matrices

We have compared the execution times of the algorithms EL and UET on a set
of matrices from the UFL sparse matrix collection [2]. The matrices are listed
with the properties: square, 50000 < n  5000000, numerical symmetry is less
than 1.0, 2 ⇥ n  m  15000000, real, and not of type Graph. There were a
total of 102 matrices having these properties at the time of experimentation.

We preprocessed these matrices as follows. First, we ensured that the diag-
onal is zero-free. We have two alternatives for this purpose. The first one is to
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dmperm MC64
AMD 84 84

MeTiS 89 90

Table 2: Number of instances on which EL had a smaller running time than UET.
Each cell can be at most 102.

dmperm diagonal MC64 diagonal
AMD MeTiS AMD MeTiS

matrix EL UET EL UET EL UET EL UET
pre2 0.387 0.825 0.333 1.038 0.478 0.869 0.320 1.000
Hamrle3 11.239 2.017 6.358 2.377 17.493 2.240 13.016 2.439
largebasis 0.212 0.991 0.222 1.051 0.191 1.010 0.237 1.047
t2em 0.232 1.094 0.249 1.406 0.232 1.090 0.251 1.396
tmt_unsym 0.244 1.130 0.255 1.383 0.244 1.139 0.251 1.398
ch7-8-b5 80.421 0.297 3.173 0.238 90.689 0.310 2.852 0.247
m133-b3 140.486 0.459 7.333 0.334 285.167 0.459 11.183 0.392
shar_te2-b3 134.650 0.450 19.268 0.391 297.392 0.462 4.953 0.324
atmosmodd 0.467 1.827 0.534 2.574 0.465 1.825 0.537 2.604
atmosmodj 0.465 1.839 0.534 2.593 0.464 1.832 0.534 2.590
atmosmodl 0.543 2.230 0.623 3.129 0.543 2.220 0.622 3.124
atmosmodm 0.543 2.237 0.622 3.062 0.543 2.255 0.623 3.157
memchip 0.804 3.627 0.818 4.198 0.805 3.559 0.814 4.241
circuit5M_dc 0.968 4.678 0.979 4.949 0.959 4.627 0.978 4.836

Table 3: Running time of EL and UET (in seconds) on real-life matrices where
at least one of the algorithms run in more than one second.

use MC64 [3] to find a maximum product matching and to permute the entries
in the matching to the diagonal. The second one is to use an arbitrary zero-
free diagonal using a maximum cardinality matching algorithm (such as those
resulting from dmperm of Matlab). Next, we obtained the Dulmage-Mendelsohn
decomposition [5] and permuted the matrix accordingly (using the output of
dmperm), and deleted all entries that are in the off-diagonal blocks. The reason
in deleting those entries is that it is advisable to factor only the diagonal blocks
of a reducible matrix. As the last step, we used AMD [1] (the command amd
in Matlab) and MeTiS [9] (using MeshPart toolbox [8]) to reorder the matrices
using their symmetrized versions. We use the term “instance”to refer to a matrix
preprocessed in one of the four possible alternative ways. Therefore, we have
4⇥102 = 408 instances. We run EL and UET ten times for each instance resulting
from this preprocessing step in order to be able to report reproducible running
time results. We did not use randomization for AMD in Matlab, and we did
not turn the randomization off in MeTiS. As we expect the same running time
when AMD was used in ordering, we report the minimum of ten running times
for each algorithm. On the other hand, we report the median of ten running
times for each algorithm when MeTiS was used, since the expected behavior in
this case is the median one.

We first give the number of instances on which EL had a smaller running time
than UET in Table 2. As we have 102 matrices in total, the table shows that EL’s
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practical running time is faster than that of UET in a significant number of cases.
We highlight that both of the algorithms are efficient; in only 14 matrices one of
the algorithms had a running time larger than one second with any of the four
preprocessing alternatives. In Table 3, we present the matrices (in increasing
order of ids at the UFL collection) on which this latter case occurred. In this
table, in only 16 out of 56 instances, running time of EL is larger than that of
UET. These instances correspond to the matrices Hamrle3, ch7-8-b5, m133-b3,
and shar_te2-b3. As seen in these instances, the difference in the running
time can be significant in favor of UET. We note that the three matrices for
which there are two orders of difference in the running times are from the same
family in the UFL collection. Combined with the previous subsection results,
we conclude that there are matrices for which the running time of EL can be
significantly larger than that of UET.

4 Conclusion
We have proposed an algorithm to compute the elimination tree of an n ⇥ n
unsymmetric matrix with a zero-free diagonal and m off-diagonal nonzeros in
O(m log n) time. The previously known algorithm [7] has the worst-case time
complexity of ⇥(mn).

We have implemented the proposed algorithm and compared it with the
algorithm of Eisenstat and Liu [7]. Both algorithms are found to be fast in
general. On 88 among 102 real life matrices satisfying the properties 50000 <
n  5000000 and 2 ⇥ n  m  15000000, both of the algorithms run in less
than one second on current desktop computers. The algorithm of Eisenstat
and Liu is found, in a significantly large number of cases, to be faster than the
proposed one. However, there are both real life and constructed matrices where
the proposed algorithm is significantly faster.
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