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Sparse matrices

A sparse matrix is a matrix with a lot of zero entries.

More importantly: all or some zeros are not stored.

A =




1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Sparse matrices are abound in scientific computing: I large scale
optimization, I chemical process simulation, I computational fluid
dynamics, I numerical solution of partial differential equations, I web
information retrieval (e.g., Google’s page rank),. . .
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Sparse matrices: Coordinate format

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.




1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Coordinate (Triplet) format

Two integer arrays (irn, jcn) and a
double array A:

irn = [ 1 2 2 3 3 4 5 5 5 ]

jcn = [ 1 2 4 1 3 4 2 4 5 ]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5 ]

The kth entry aij is stored as irn[k] = i , jcn[k] = j , a[k] = aij .

Let τ denote the number of nonzeros, then the storage is 2τ integer and
τ double (or single or complex). In general, τ = O(m + n).
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Sparse matrices: Compressed row storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.




1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Compressed row storage

Two integer arrays (ia, jcn) and a
double array A:

ia = [ 1 2 4 6 7 10 ]

jcn = [ 1 2 4 1 3 4 2 4 5 ]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5 ]

The nonzeros of the ith row are stored at the
ia[i]. . . ia[i+1]-1 positions of jcn and A .

For example the 3rd row: starts at ia[3] = 4 and finishes at

ia[3+1]-1=5 . The column indices are therefore jcn[4,5]= 1 3 and

values are A[4,5]=3.1 3.3 .
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Sparse matrices: Compressed row storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.
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0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Compressed row format

Two integer arrays (ia, jcn) and a
double array A:

ia = [ 1 2 4 6 7 10 ]

jcn = [ 1 2 4 1 3 4 2 4 5 ]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5 ]

The nonzeros of the ith row are stored at the ia[i]. . . ia[i+1]-1

positions of jcn and A .

Let matrix be of size m × n, and τ be the number of nonzeros, then the
storage is m + 1 + τ integer and τ double (or single or complex).
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Sparse matrices: Compressed column storage
There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.




1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Compressed column storage

Two integer arrays (irn, ja) and a
double array A:

ja = [ 1 3 5 6 9 10 ]

irn = [ 1 3 2 5 3 2 4 5 5 ]

A = [1.1 3.1 2.2 5.2 3.3 2.4 4.4 5.4 5.5 ]

The nonzeros of the jth column are stored at the ja[j]. . . ja[j+1]-1

positions of irn and A .

For example the 2nd col: starts at ja[2] =3 and finishes at

ja[2+1]-1=4 . The row indices are therefore irn[3,4]= 2 5 and

values are A[3,4]=2.2 5.2 .
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Sparse matrices: Compressed column storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.




1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5




Compressed column format

Two integer arrays (irn, ja) and a
double array A:

ja = [ 1 3 5 6 9 10 ]

irn = [ 1 3 2 5 3 2 4 5 5 ]

A = [1.1 3.1 2.2 5.2 3.3 2.4 4.4 5.4 5.5 ]

The nonzeros of the jth column are stored at the
ja[j]. . . ja[j+1]-1 positions of irn and A .

Let matrix be of size m × n, and τ be the number of nonzeros, then the
storage is n + 1 + τ integer and τ double (or single or complex).
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Reminder: Dense matrix vector multiplication

Need to compute y ← Ax for an m × n dense/ matrix A and suitable
dense vectors y and x .

Row major order

for i = 1 to m do
y [i ]← 0.0
for j = 1 to n do

y [i ]← y [i ] + A[i , j ] ∗ x [j ]

Column-major order

for i = 1 to m do
y [i ]← 0.0

for j = 1 to n do
for i = 1 to m do

y [i ]← y [i ] + A[i , j ] ∗ x [j ]

9 Parallel sparse matrix vector multiplications
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Sparse matrices: Sparse matrix vector multiplies

Need to compute y ← Ax for an m × n sparse matrix A and suitable
dense vectors y and x .

Coordinate format with τ nonzeros (irn, jcn, A)

for i = 1 to m do
y [i ]← 0.0

for k = 1 to τ do
y [irn[k]]← y [irn[k]] + A[k] ∗ x [jcn[k]]
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Sparse matrices: Sparse matrix vector multiplies

Need to compute y ← Ax for an m × n sparse matrix A and suitable
dense vectors y and x .

Compressed row storage
(ia, jcn, A)

for i = 1 to m do
val ← 0.0
for k = ia[i ] to ia[i + 1]− 1 do

val ← val + A[k] ∗ x [jcn[k]]
y [i ]← val

Compressed column storage
(ja, irn, A)

for i = 1 to m do
y [i ]← 0.0

for j = 1 to n do
xval ← x [j ]
for k = ja[j ] to ja[j + 1]− 1 do

y [irn[k]]← y [irn[k]] + A[k] ∗ xval

Characterizes a wide range of applications with irregular computational
dependency.

reduction operation from inputs (here entries of x) to outputs (here
entries of y)

A fine grain computation: each nnz is read/operated on once.
Guaranteeing efficiency will guarantee efficiency in applications with a
coarser grain computation.
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Sparse matrices: Sparse matrix vector multiplies

SpMxV’s of the form y ← Ax are the computational kernel of many
scientific computations

Solvers for linear systems, linear programs, eigensystems, least
squares problems,

Repeated SpMxV with the same large sparse matrix A,

The matrix A can be symmetric, unsymmetric, rectangular,

Sometimes multiplies are of the form y ← ADAT z with a diagonal
D (in interior point methods for linear programs).

computation proceeds (why?) as w ← AT z , then x ← Dw , then
y ← Ax

Sometimes we have multiplies with A and AT independent; y ← Ax
and w ← AT z (QMR, CGNE, and CGNR methods with square
unsymmetric A; rectangular A in Lanczos method).

Most of the time the SpMxV’s are of the form y ← AM−1x (called
preconditioning).

12 Parallel sparse matrix vector multiplications
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Iterative solvers: How do they look?

Basic form
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Computations are of the form:

Linear vector operations
x ← x + αy I x i = x i + αy i

Inner products
α← (x , y) I α =

∑
x iy i

Sparse matrix vector multiplies
y ← Ax
y ← AT x

The Conjugate Gradient method

because is orthogonal to . Then, (6.71) becomes . In

addition, writing that as defined by (6.72) is orthogonal to yields

Note that from (6.70)

and therefore,

Putting these relations together gives the following algorithm.

1. Compute , .

2. For , until convergence Do:

3.

4.

5.

6.

7.

8. EndDo

It is important to note that the scalars in this algorithm are different from those of

the Lanczos algorithm. The vectors are multiples of the ’s of Algorithm 6.16.

In terms of storage, in addition to the matrix , four vectors ( , , , and ) must be

saved in Algorithm 6.17, versus five vectors ( , , , , and ) for Algorithm 6.16.

Algorithm 6.17 is the best known formulation of the Conjugate Gradient algorithm. There

are, however, several alternative formulations. Here, only one such formulation is shown,

which can be derived once more from the Lanczos algorithm.

The residual polynomial associated with the -th CG iterate must satisfy a

three-term recurrence, implied by the three-term recurrence of the Lanczos vectors. Indeed,

these vectors are just the scaled versions of the residual vectors. Therefore, we must seek

a three-term recurrence of the form

In addition, the consistency condition must be maintained for each , leading

to the recurrence,

With certain types of
preconditioners, we have SpMxV
with another matrix M and/or
MT . Replace Apj with AMpj .
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Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

nonzeros in A are distributed,

the input vector entries, x js, are distributed,

the ouput vector entries, y i s, are distributed (that is, the
responsibility of storing them is decided).

What are the aims of a distribution?

load balance among processors: equal number of aij per processor,

reduced communication requirement:

• aij is to be multiplied by x j ; these two should meet at a processors;

• the scalar product aijx j is a contribution to y i ; the result of the
product aijx j and the vector entry y i should meet at a processor.

15 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Row parallel
Column parallel
Row-column parallel

Parallel sparse matrix vector multiplies
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Column parallel
Row-column parallel

Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

nonzeros in A are distributed,

the input vector entries, x js, are distributed,

the ouput vector entries, y i s, are distributed (that is, the
responsibility of storing them is decided).

What are the aims of a distribution?

load balance among processors: equal number of aij per processor,

reduced communication requirement:

• aij is to be multiplied by x j ; these two should meet at a processors;

• the scalar product aijx j is a contribution to y i ; the result of the
product aijx j and the vector entry y i should meet at a processor.
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Row parallel
Column parallel
Row-column parallel

Parallelization objectives

Achieve load balance

Load of a processor: number of nonzeros.
⇒ assign almost equal number of nonzeros per processor.

Minimize communication cost

Communication cost is a complex function (depends on the machine
architecture and problem size):

total volume of messages,

total number of messages,

max. volume of messages per processor (sends or receives, both?),

max. number of messages per processor (sends or receives, both?).

18 Parallel sparse matrix vector multiplications
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Row parallel
Column parallel
Row-column parallel

Parallel sparse matrix vector multiplies

We restrict ourselves to the distributed memory setting.

What are the aims of a distribution?

load balance among processors: equal number of aij per processor,

reduced communication requirement: aij is to be multiplied by x j ;
these two should meet at a processors; the scalar product aijx j is a
contribution to y i ; the result aijx j and y i should meet at a processor.

Assume there are no operations between x and y of the SpMxV y ← Ax
after the multiply operation.

In half of the cases(!), the input vector x and the output vector y undergo
vector operations (such as x ← x + βy , or γ ← xT y), in such cases it is
better to have the same partition on x and y —we will come to this later.

19 Parallel sparse matrix vector multiplications
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Parallel sparse matrix vector multiplies: Variants

We classify parallel SpMxV algorithms into three groups (according to
the distribution on the matrix)

Row-parallel algorithm: all nonzeros in a row of the matrix is
assigned to the same processor (aij and aik are in the same
processor),

Column-parallel algorithm: all nonzeros in a column of the matrix is
assigned to the same processor (aij and akj are in the same
processor).

Row-column parallel algorithm: many possibilities

each nonzero is assigned to a processor on its own (aij and aik can be
in different processors; aij and akj can be in different processors),
the nonzeros in a row and/or column are assigned to a small set of
processors (e.g., assume a 2D mesh of processors and distribute the
nonzeros in a row of A among the processors of a row of the mesh).

20 Parallel sparse matrix vector multiplications
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Parallel SpMxV: Row-parallel

The rows and columns of an m × n matrix A are permuted into a K × K
block structure

ABL =




A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK




for rowwise partitioning, where K is the number of processors.

Block Ak` is of size mk × n`, where
∑

k mk = m and
∑

` n` = n.

Processor Pk holds the kth row stripe [Ak1 · · ·AkK ] of size mk × n.

Load balance: The row stripes should have nearly equal number of
nonzeros for having the computational load balance among
processors.

22 Parallel sparse matrix vector multiplications
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Parallel SpMxV: Row-parallel

In y ← Ax , y and x are column vectors of size m and n; A is partitioned
as shown in the previous slide.

A rowwise partition of matrix A defines a partition on the output
vector y .

The input vector x is assumed to be partitioned conformably with
the column permutation of matrix A.

y and x vectors are partitioned as y = [yT
1 · · · yT

K ]T and
x = [xT1 · · · xTK ]T , where yk and xk are column vectors of size mk

and nk , respectively.

processor Pk holds xk and is responsible for computing yk .

23 Parallel sparse matrix vector multiplications
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Parallel SpMxV: Row-parallel

Matrix is partitioned rowwise among 4 processors.
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row stripes are assigned
to processors.

virtual column stripes
shows the assignment of
x vector entries.

The columns of the
matrix are permuted
according to the
partition on x .

25 nonzeros in the 1st row stripe (assigned to processor P1)
26 nonzeros in the 2nd row stripe (assigned to processor P2)
25 nonzeros in the 3rd row stripe (assigned to processor P3)

25 nonzeros in the 4th row stripe (assigned to processor P4)
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Parallel SpMxV: Row-parallel algorithm

Executes the following steps at each processor Pk :

1 For each nonzero off-diagonal block A`k , send sparse vector x̂`k to
processor P`, where x̂`k contains only those entries of xk
corresponding to the nonzero columns in A`k .

2 Compute the diagonal block product yk
k ← Akk × xk , and set

yk = yk
k .

3 For each nonzero off-diagonal block Ak`, receive x̂k` from processor
P`, then compute y `

k ← Ak` × x̂k` , and update yk ← yk + y `
k .

In Step 1, Pk might be sending the same xk -vector entry to different
processors according to the sparsity pattern of the respective column of
A. This multicast-like operation is called the expand operation.

25 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Row parallel
Column parallel
Row-column parallel

Parallel SpMxV: Row-parallel

Matrix is partitioned rowwise among 4 processors. y vector entries are
partitioned according to the rowwise partition of A; assume the x vector
entries are partitioned and the columns of A are permuted.
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Row-parallel SpMxV: Communication requirements
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Fact 1: Number of messages sent by Pk

The number of messages sent by processor Pk is equal to the number of
nonzero off-diagonal blocks in the kth virtual column stripe of A.

P2, sends x [12 :14] to P3—nonzero columns 12, 13, and 14 in A32.

P2 sends x [12] to P4—nonzero column 12 in A42.

The number of messages sent by P2 is 2.
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Row-parallel SpMxV: Communication requirements
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Fact 2: Volume of messages sent by Pk

The volume of messages sent by Pk is equal to the sum of the number of
nonzero columns in each off-diagonal block in the kth virtual column stripe of
A.

P2, sends x [12 :14] to P3—(size 3).

P2 sends x [12] to P4—(size 1).

The volume of messages sent by P2 is 4.
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Row-parallel SpMxV: Communication requirements
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Fact 3: Total volume and number of messages

The total volume of messages is equal to the number of nonzero columns
in off-diagonal blocks.

The total number of messages is equal to the number of nonzero
off-diagonal blocks.

Total volume of messages is 13. Total number of messages is 9.
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Parallel SpMxV: Column-parallel

The rows and columns of an m × n matrix A are permuted into a K × K
block structure




A11 A12 · · · A1K

A21 A22 · · · A2K

...
...

. . .
...

AK1 AK2 · · · AKK




for columnwise partitioning, where K is the number of processors.

Block Ak` is of size mk × n`, where
∑

k mk = m and
∑

` n` = n.

Processor Pk holds the kth column stripe [AT
1k · · ·AKk ]T of size

m × nk .

Load balance: The column stripes should have nearly equal number
of nonzeros for having the computational load balance among
processors.
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Parallel SpMxV: Column-parallel

In y ← Ax , y and x are column vectors of size m and n; A is partitioned
as shown in the previous slide.

A columnwise partition of matrix A defines a partition on the
input-vector x .

The output vector y is assumed to be partitioned conformably with
the row permutation of matrix A.

y and x vectors are partitioned as y = [yT
1 · · · yT

K ]T and
x = [xT1 · · · xTK ]T , where yk and xk are column vectors of size mk

and nk , respectively.

processor Pk holds xk and is responsible for computing yk .
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Parallel SpMxV: Column-parallel

Matrix is partitioned columns among 4 processors.
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column stripes are assigned to
processors.

virtual row stripes shows the
assignment of y vector entries.

The rows of the matrix are permuted
according to the partition on y .

Load balance achieved:
25 nonzeros assigned to processor P1;
26 nonzeros assigned to processor P2;
25 nonzeros assigned to processor P3;
25 nonzeros assigned to processor P4.
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Parallel SpMxV: Column-parallel algorithm

Executes the following steps at each processor Pk :

1 For each nonzero off-diagonal block A`k , form sparse vector ŷk
`

which contains only those results of yk
` = A`k × xk corresponding to

the nonzero rows in A`k . Send ŷk
` to processor P`.

2 Compute the diagonal block product yk
k ← Akk × xk , and set

yk = yk
k .

3 For each nonzero off-diagonal block Ak` receive partial-result vector
ŷ `
k from processor P`, and update yk ← yk + ŷ `

k .

In Step 3, the multinode accumulation on the yk -vector entries is called
the fold operation.
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Parallel SpMxV: Column-parallel

Matrix is partitioned columnwise among 4 processors. x vector entries are

partitioned according to the columnwise partition of A; assume the y vector

entries are partitioned and the rows of A are permuted.
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Column-parallel SpMxV: Communication
requirements

Fact 1: Number of messages sent by Pk

The number of messages sent by processor
Pk in column-parallel y ← Ax is equal to
the number of nonzero off-diagonal blocks
in the kth column stripe of A.

P3 sends a message to P2 for y vector
entries y [12, 13, 14] and to P4 for
y [25, 26].

P4 sends messages to P1 P2 and P3.
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Column-parallel SpMxV: Communication
requirements

Fact 2: Volume of messages sent by Pk

The volume of messages sent by Pk is
equal to the sum of the number of nonzero
rows in each off-diagonal block in the kth
column stripe of A.

P3 sends a message to P2 for y vector
entries y [12, 13, 14] and another one
to P4 for y [25, 26].

P3 sends 5 units of messages.
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Column-parallel SpMxV: Communication
requirements
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Fact 3: Total volume and number of messages

The total volume of messages is equal to the number of nonzero rows in
off-diagonal blocks. (13)
The total number of messages is equal to the number of nonzero
off-diagonal blocks. (9)
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Parallel SpMxV: Row parallel and column parallel
algorithms
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The communication patterns of column parallel y ← AT x and row parallel

y ← Ax are duals of each other (the columnwise partition on AT is equal to

the rowwise partition on A).

39 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Row parallel
Column parallel
Row-column parallel

Outline

1 Introduction

2 Parallel SpMxV
Row parallel
Column parallel
Row-column parallel

3 Hypergraphs and hypergraph partitioning
Hypergraph models for row-parallel SpMxV
Hypergraph models for column-parallel SpMxV
Hypergraph models for row-column-parallel SpMxV
Some other partitioning problems

4 Summary and concluding remarks

40 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Row parallel
Column parallel
Row-column parallel

Parallel SpMxV: Row-column parallel algorithm

Consider y ← Ax , where y and x are column vectors of size m and n,
respectively, and the matrix is partitioned in two dimensions among K
processors.

The vectors y and x are partitioned as y = [yT
1 · · · yT

K ]T and
x = [xT1 · · · xTK ]T , where yk and xk are column vectors of size mk

and nk , respectively. As before we have
∑

k mk = m and
∑

` n` = n.

Processor Pk holds xk and is responsible for computing yk .

Nonzeros of a processor Pk can be visualized as a sparse matrix Ak

Ak =




Ak
11 · · · Ak

1k · · · Ak
1K

...
. . .

...
. . .

...
Ak

k1 · · · Ak
kk · · · Ak

kK
...

. . .
...

. . .
...

Ak
K1 · · · Ak

Kk · · · Ak
KK




of size m × n, where A =
∑

Ak (here Aks are disjoint).
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Parallel SpMxV: Row-column parallel algorithm

Pk has Ak , holds xk and is responsible for yk .

Ak =



Ak
11 · · · Ak

1k · · · Ak
1K

...
. . .

...
. . .

...
Ak

k1 · · · Ak
kk · · · Ak

kK

...
. . .

...
. . .

...
Ak

K1 · · · Ak
Kk · · · Ak

KK



The blocks in row-block stripe
Ak

k∗ = [Ak
k1, · · · ,Ak

kk , · · · ,Ak
kK ] have

row dimension of size mk .

The blocks in column-block stripe
Ak

∗k = [Ak
1k , · · · ,Ak

kk , · · · ,Ak
Kk ] have

column dimension of size nk .

The x-vector entries that are to be used by processor Pk are represented
as xk = [xk

1 , · · · , xk
k , · · · , xk

K ], where xk
k corresponds to xk and other xk

`

are belonging to some other processor P`.

The y -vector entries for which processor Pk computes partial results are
represented as y k = [y k

1 , · · · , y k
k , · · · , y k

K ], where y k
k corresponds to y k and

other y k
` are to be sent to some other processor P`.

42 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Row parallel
Column parallel
Row-column parallel

Parallel SpMxV: Row-column parallel algorithm

Executes the following steps at each processor Pk :

1 For each ` 6= k having nonzero column-block stripe A`
∗k , send sparse

vector x̂`k to processor P`, where x̂`k contains only those entries of
xk corresponding to the nonzero columns in A`

∗k .

2 Compute the column-block stripe product yk ← Ak
∗k × xkk .

3 For each nonzero column-block stripe Ak
∗`, receive x̂k` from processor

P`, then compute yk ← yk + Ak
∗` × x̂k` , and set yk = yk

k .

4 For each nonzero row-block stripe Ak
`∗, form sparse partial-result

vector ŷk
` which contains only those results of yk

` = Ak
`∗ × xk

corresponding to the nonzero rows in Ak
`∗. Send ŷk

` to processor P`.

5 For each ` 6= k having nonzero row-block stripe A`
k∗ receive

partial-result vector ŷ `
k from processor P`, and update yk ← yk + ŷ `

k .
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Parallel SpMxV: Row-column parallel algorithm
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Load balance is achieved by assigning almost equal number of nonzeros
to the processors.
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Row-column-parallel SpMxV: Communication
requirements

Communication on x (expand operations)

Same as that in the row-parallel algorithm

Communication on y (fold operations)

Same as that in the column-parallel algorithm
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Running time comparisons
from Vastenhouw and Bisseling’052D DATA DISTRIBUTION FOR SPARSE MATRIX-VECTOR MULTIPLICATION 91

Table 5.8 Communication volume (in data words) and time (in ms) of parallel sparse matrix-
vector multiplication on an SGI Origin 3800. The lowest volume and time are marked
in boldface.

Name p Volume Time

1D row 1D col 2D 1D row 1D col 2D

tbdmatlab 1 0 0 0 5.74 5.71 5.77
2 5056 6438 5056 3.28 3.31 3.20
4 14650 14949 11005 2.08 2.06 1.95
8 30982 26804 17792 1.62 1.40 1.34

16 56923 42291 27735 1.34 1.19 1.17
32 98791 62410 40497 1.77 1.58 1.70

tbdlinux 1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 14.06 12.22 12.14
8 90919 96038 49120 6.49 6.35 6.62

16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23

bcsstk30 1 0 0 0 50.99 50.96 56.18
2 948 948 940 28.37 28.24 26.04
4 2099 2099 2124 6.00 6.03 5.83
8 5019 5019 4120 2.87 2.90 2.88

16 9344 9344 8491 1.53 1.56 1.64
32 15593 15593 14771 1.08 1.12 1.17

in Tables 5.4 and 5.6. The execution time of a matrix-vector multiplication has been
obtained by averaging over 100 multiplications, performed as iterations in the main
loop of the program. Each such experiment was carried out three times, and the
smallest timing value was taken as the result, since this value presumably was least
influenced by interference from other activities on the parallel computer. (The system
guarantees exclusive access to the CPUs involved, but in standard operating mode it
cannot guarantee exclusive access to all machine resources.)

The timings given in Table 5.8 for the term-by-document matrices show that
the 2D method performs best in most cases. For small p, the computation time is
dominant and the savings in communication time for a 2D method are relatively
small compared to the total time. Furthermore, the difference in volume between
the best 1D method and the 2D method is small (for p = 2, there is no difference).
For larger p, communication time becomes more important and the savings become
larger. Note, for instance, the savings of over 21% in total time for tbdlinux/32,
leading to a speedup of 21 compared to the best p = 1 time, which is close to the time
of an overhead-free sequential program. Table 5.8 reveals superlinear speedups, e.g.,
5.6 for tbdlinux/4. This must be due to beneficial cache effects. For tbdmatlab/32,
execution time starts to increase, due to the increase in communication time per data
word and the global synchronization time as a function of p. We measured the time of
an isolated global synchronization as 0.05 ms for p = 16 and 0.14 ms for p = 32. If we
include message startup costs for an all-to-all communication pattern, these values
become 0.33 ms for p = 16 and 1.01 ms for p = 32. For large p, the reduction in
communication volume obtained for tbdmatlab does not compensate for the extra
synchronization time needed in the 2D case. The extra time is independent of the
problem size, and therefore it is less important for the larger problem tbdlinux/32.

The timings given in Table 5.8 for the finite-element matrix bcsstk30 do not
show an advantage for the 2D method. The average saving in communication volume
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Parallelization objectives

Achieve load balance

Load of a processor: number of nonzeros.
⇒ assign almost equal number of nonzeros per processor.

Minimize communication cost

Communication cost is a complex function (depends on the machine
architecture and problem size):

total volume of messages,

total number of messages,

max. volume of messages per processor (sends or receives, both?),

max. number of messages per processor (sends or receives, both?).

The common metric in different works: total volume of communication.
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Hypergraphs: Definitions

A hypergraph is two-tuple H = (V,N ) where V is a set of vertices and
N is a set of hyperedges.

A hyperedge h ∈ N is a subset of vertices. We call them nets for short.

A cost c(h) is associated with each net h.

A weight w(v) is associated with each vertex v .

An undirected graph can be seen as a hypergraph where each net
contains exactly two vertices.

49 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Hypergraph models for row-parallel SpMxV
Hypergraph models for column-parallel SpMxV
Hypergraph models for row-column-parallel SpMxV
Some other partitioning problems

Hypergraphs: Example

H = (V,N ) with V = {1, 2, 3, 4, 5} N = {n1, n2, n3} where
n1 = {1, 3, 4} n2 = {1, 2, 3, 4} n3 = {2, 5}

Venn diagram-like
representation

1

2

4

5

3

Graph-like
representation

2

1

5

4

3

n
2

n
1

n
3
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Hypergraphs: Partitioning

Partition

Π = {V1,V2, . . . ,VK} is a K -way vertex partition if

Vk 6= ∅,
parts are mutually exclusive: Vk ∩ V` = ∅,
parts are collectively exhaustive: V =

⋃Vk .

In Π, a net connects a part if it has at least one vertex in that part, i.e.,
h connects Vk if h ∩ Vk 6= ∅.

The connectivity λ(h) of a net is equal to the number of parts connected
by h.

Objective: minimize cutsize(Π)
∑

h c(h)(λ(h)− 1),

Constraint: balanced part weights
∑

v∈Vk
w(v) ≤ (1 + ε)

∑
v∈V w(v)

K .

Hypergraph partitioning problem is NP-complete.
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Hypergraphs partitioning: Example

H = (V,N ) with 10 vertices and 4 nets, partitioned into four parts.
V1 = {4, 5} V2 = {7, 10} V3 = {3, 8, 9} V4 = {1, 2, 6}

!!

!"#$%&%'#()#'%*+*+,-+-&

-$* .,--$.*+/+*"01

1 20131

2 40132

4 40132

5 20131

67*8+9$: ;
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Hypergraphs: Partitioning tools and applications

Tools

hMETIS (Karypis and Kumar, Univ.

Minnesota),
MLPart (Caldwell, Kahng, and Markov,

UCLA/UMich),
Mondrian (Bisseling and Meesen,

Utrecht Univ.),
Parkway (Trifunovic and Knottenbelt,

Imperial Coll. London),
PaToH (Çatalyürek and Aykanat, Bilkent

Univ.),
Zoltan-PHG (Devine, Boman, Heaphy,

Bisseling, and Çatalyürek, Sandia National

Labs.).

Applications

VLSI: circuit partitioning,

Scientific computing:
matrix partitioning,
ordering, cryptology, etc.,

Parallel/distributed
computing: volume
rendering, data aggregation,
scheduling,
declustering/clustering,

Software engineering,
information retrieval,
processing spatial join
queries, etc.
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Hypergraph models for matrix partitioning for
parallel computations

In all of the cases we will see, we will have unit net-costs, that is
c(h) = 1 The objective function becomes

∑

h

(λ(h)− 1)

Make the data to be partitioned as vertices of the hypergraph.

Assign weights to the vertices.

Put nets to represent dependencies of computations to the input
data; and dependencies of output data into computations.

Partition into K parts, each Vk holds the data of a processor.

Load balance would be achieved if part weights are balanced.

Total volume of communication would be equivalent to the cut-size.
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Hypergraph models for row-parallel SpMxV

Three entities to partition y , rows of A, and x
three types of vertices y i , r i , and x j

Assign vertex weights
weight of r i is equal to the number of nnz in row i .
weight of y i and x j can be set to zero.

y i is computed by a single row, that is r i
represent the dependency of y i on r i

x j is a data source; r i s where aij 6= 0 need x j
connect x j and all such r i
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Row-parallel SpMxV: Communication requirements
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Total volume and number of messages

The total volume of messages is equal to the number of nonzero columns in
off-diagonal blocks. Here, the total volume of messages is 13.
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Hypergraph models for row-parallel SpMxV
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Part weights=processor’s loads in terms of nnz.
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Hypergraph models for row-parallel SpMxV
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Number of nonzeros columns
in off-diagonal blocks is 5.
Total volume is 5.
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Column-net c14 connects 2 parts; c5

connects 3 parts; c12 connects 2
parts; c13 connects 2 parts.
Cut-size is 5.
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Hypergraph models for row-parallel SpMxV

What about load balance?
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row stripe.
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Each row-vertex gets a weight
equivalent to the number of
nonzeros in the associated row of A.
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Hypergraph models for column-parallel SpMxV

Three entities to partition y , columns of A, and x
three types of vertices y i , c j , and x j

Assign vertex weights
weight of c j is equal to the number of nnz in column j .
weight of y i and x j can be set to zero.

x j is needed by a single column, that is c j
represent the need of c j on x j

y i is computed by contributions from different columns; each
column c j with aij 6= 0 contributes to y i

connect y i and all such c j
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Column-parallel SpMxV: Communication
requirements
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Total volume and number of messages

The total volume of messages is equal to the number of nonzero rows in
off-diagonal blocks. (13)
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Hypergraph models for column-parallel SpMxV

For column-parallel w ← Az computations.

)

w

iw

kw

jc jz

(kn

(jn w,r)

ni ( )w,r

w,r

j

Elementary hypergraph model
for 1D colwise partitioning.

)

w

iw

kw

jc
jz

(kn

(jn w,r)

ni ( )w,r

w,r

j

Combine c j and z j ; one col-
umn needs only one z-vector
entry.

Partition the vertices into K parts (partition the data among K
processors). Part weights=processor loads in terms of number of
nonzeros.

64 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Hypergraph models for row-parallel SpMxV
Hypergraph models for column-parallel SpMxV
Hypergraph models for row-column-parallel SpMxV
Some other partitioning problems

Hypergraph models for column-parallel SpMxV

The computation is w ← Az
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Row-net r13 connects 2 parts; r1

connects 2 parts; r9 connects 2
parts; r4 connects 3 parts.
Cut-size is 5.
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Hypergraph models for column-parallel SpMxV

What about load balance?

The computation is w ← Az
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Each column-vertex gets a weight
equal to the number of nonzeros in
the associated column of A.
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Hypergraph models for row column-parallel SpMxV

Three entities to partition y , nonzeros of A, and x
three types of vertices y i , c j , and aij

Assign vertex weights
weight of aij -vertex is equal to 1.
weight of y i and x j can be set to zero.

x j is needed by all aij 6= 0
connect x j and all such aij

y i is computed by contributions from different different nonzeros;
each aij 6= 0 contributes to y i

connect y i and all such aij
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Parallel SpMxV: Row-column parallel algorithm
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Communication on x (expand operations): Same as that in the
row-parallel algorithm.

Communication on y (fold operations): Same as that in the
column-parallel algorithm.
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Hypergraph models for row column-parallel SpMxV

For row-column-parallel y ← Ax computations.

y
jxa jii

Elementary hypergraph model for row-column-parallel algorithm

Partition the vertices into K parts (partition the data among K
processors).
Part weights=processor loads in terms of nonzeros.
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Hypergraph models for row column-parallel SpMxV

For row-column-parallel y ← Ax computations.
ON TWO-DIMENSIONAL SPARSE MATRIX PARTITIONING 659
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Fig. 2.1. (a) A 16×16 unsymmetric matrix A with nnz = 47 nonzeros. (b) Sparse matrix-vector
multiplication y ← Ax of the sample matrix A. The matrix and the input and output vectors are
partitioned among four processors. The four disjoint sets of nonzeros and vector entries that are
assigned to the four processors are shown with four distinct shapes and colors. The average number
of nonzeros per processor is 47/4 = 11.75. The maximum number of nonzeros of a processor is 13,
giving an imbalance ratio of 10.6%; i.e., the maximally loaded processor has 10.6% more nonzeros
than the average number of nonzeros. The minimum number of nonzeros of a processor is 10, being
14.9% less than the average number of nonzeros. We indicate the imbalance among the parts, imbal,
using these two marginal percentages. The total communication volume is denoted with vol.

1. For each ! != k, form and send sparse vector x̂
(!)
k to processor P!, where x̂

(!)
k

contains only those entries of x(k) corresponding to the nonzero columns in

A
(!)
∗k .

2. In order to form x̂(k) = [x̂
(k)
1 , . . . , x̂

(k)
k , . . . , x̂

(k)
K ], first define x̂

(k)
k = x(k).

Then, for each ! != k where A
(k)
∗! contains nonzeros, receive x̂

(k)
! from processor

P!, corresponding to the nonzero columns in A
(k)
∗! .

3. Compute ŷ(k) ← A(k)x̂(k).

4. For each ! != k, send the sparse partial-results vector ŷ
(!)
k to processor P!,

where ŷ
(!)
k contains only those partial results for y(!) corresponding to the

nonzero rows in A
(k)
!∗ .

5. Receive the partial-results vector ŷ
(k)
! from each processor P! which has com-

puted a partial result for y(k), i.e., from each processor P! where A
(!)
k∗ has

nonzeros.
6. Compute y(k) ← ∑

! ŷ
(k)
! , adding all the partial-results ŷ

(k)
! received in the

previous step to its own partial results for y(k).
There are two communication phases in this algorithm. The first one is just

before the local matrix-vector multiply, and it is due to the communication of the
x-vector entries (steps 1 and 2). We refer to this operation as expand. The second
communication phase is just after the local matrix-vector multiply, and it is due to
the communication of the partial results on y-vector entries (steps 4 and 5). We refer
to this operation as fold. It is possible to restructure this algorithm in order to take
full advantage of communication and computation overlap [48].

Figure 2.1 shows a sample matrix and input- and output-vectors of a matrix-
vector multiply operation, partitioned among four processors. The matrix is permuted

[Part of the fine grain model on the board....]
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The approach

Put vertices to represent the data items to partition

Put nets to represent dependencies and needs

Assign weights to vertices to have load balance

Try to simplify (not lose the flexibility) by

if two data items want to be in the same processors, amalgamate the
vertices
if there are nets of size 1, remove them.

We can specify, for a set of vertices to which part it should be
assigned; if this is imposed by the problem that we want to
parallelize.
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The approach on row parallel algorithm: Symmetric
partitioning wanted
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y i and r i wants to be in the same part processor (owner computes
rule—avoids communication).

net ny (i) has size 1 after amalgamation; remove it from the model. Some
nx(i) may have single vertex (in which case?)—they can be removed too.
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Problem 1

Problem

Describe a hypergraph model which can be used to
partition the matrix A rowwise for the y ← Ax computations
under given, possibly different, partitions on the input and output
vectors x and y .

A parallel algorithm that carries out the y ← Ax computations under
given partitions of x and y should have a communication phase on x , a
computation phase, and a communication phase on y .
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Solution to Problem 1

Problem

Describe a hypergraph model which can be used to
partition the matrix A rowwise for the y ← Ax computations
under given, possibly different, partitions on the input and output
vectors x and y .

Solution

Take the elementary model
and fix the vertices x j and y i

to the parts as specified by
the given partitions.
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Problem 2

Problem

Describe a hypergraph model to obtain the same partition on the input
and output vectors x and y which is
different than the partition on the rows of A for the y ← Ax
computations.

The previous parallel algorithm will be used.
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Solution to Problem 2

Problem

Describe a hypergraph model to obtain the same
partition on the input and output vectors x and y which is
different than the partition on the rows of A for the y ← Ax
computations.

Solution

Take the elementary model and amalgamate the vertices x i and y i

iy ir

xj

xi

xk

i(ny )

k(nx )

i(nx )

j(nx )

ir

xj

xk
k(nx )

j(nx )

iy
xi

i(ny )

i(nx )
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Problem 3

Problem

Describe a hypergraph model to obtain
different partitions on x and on the rows of A, where
y is partitioned conformably with the rows of A
under the owner-computes rule for computations of the form y ← Ax
followed by x ← x + y .
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Solution to Problem 3

iy ir

xj

xi

xk

i(ny )

k(nx )

i(nx )

j(nx )

(a) Elementary model for y ← Ax

iy ir

xj

xk

i(ny )

j(nx )

i(nx )

k(nx )

xi
xi+ iy

(c) Owner computes rule for x i ← x i + y i

iy ir

xj

xi

xk

i(ny )

j(nx )

i(nx )

k(nx )

xi iy
)(i

+
nx+y

(b) New vertices for x i ← x i + y i and the

dependencies for them.

xj

xk

iyi
r

i(ny ) i(nx )

j(nx )

k(nx )

xi yi+
xi

(d) Owner computes rule for y i

80 Parallel sparse matrix vector multiplications



Introduction
Parallel SpMxV

Hypergraphs and hypergraph partitioning
Summary and concluding remarks

Hypergraph models for row-parallel SpMxV
Hypergraph models for column-parallel SpMxV
Hypergraph models for row-column-parallel SpMxV
Some other partitioning problems

Problem 4: Preconditioned iterative methods

Iterative methods may converge slowly, or diverge

transform Ax = b to another system that is easier to solve

Preconditioner is a matrix that helps in obtaining desired
transformation
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Problem 4: Preconditioned iterative methods

We consider parallelization of iterative methods that use
approximate inverse preconditioners

Approximate inverse is a matrix M such that AM ≈ I

Instead of solving Ax = b, use right preconditioning and solve

AMy = b

and then set
x = My
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Problem 4: Preconditioned iterative methods

Additional SpMxV operations with M
never form the matrix AM; perform successive SpMxVs

Parallelizing a full step in these methods requires efficient SpMxV
operations with A and M

partition A and M

A blend of dependencies and interactions among matrices and
vectors

partition A and M simultaneously
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Problem 4: Preconditioned iterative methods

Partition A and M simultaneously

Figure out partitioning requirements through analyzing linear vector
operations and inner products

Reminder: never communicate vector entries for these operations

Different methods have different partitioning requirements
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Problem 4: Preconditioned iterative methods

Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB

Nevel amalgamate/unify nets of individual hypergraphs

combine vertices of individual hypergraphs, and connect the
composite vertex to the nets of the individual vertices

define multiple weights for vertices, if the multiply operations are
separated by global synchronization type of operations; individual
vertex weights are not added up.

need to decide how to partition matrices (lets say A rowwise and M
columnwise

generate column-net model for the matrices to be partitioned rowwise
generate row-net model for the matrices to be partitioned columnwise
apply vertex amalgamation to respect the partitioning requirement
(PAQT and QMPT or PAMPT ).
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Problem 4: Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB
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Problem 4: Preconditioned BiCG-STAB

Parallel speed-up values
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Summary

A sparse matrix is a matrix with a lot of zero entries.

More importantly: all or some zeros are not stored.

Parallel SpMxV is an important computational kernel in many problems;
furthermore it characterizes a wide range of applications with irregular
computational dependency.

Row-parallel, column-parallel and row-column-parallel algorithms.

Hypergraph models can quite handy in modeling different kind of
problems.

Vertex weights are used to have load balance; nets are used to encode
data dependencies. Cut size corresponds to the total communication
volume.
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Thanks!

Thanks for your attention.

http://perso.ens-lyon.fr/bora.ucar/

Some of the material are from papers by Aykanat, Çatalyürek, Bisseling.
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