Computing a class of bipartite matchings in
parallel

Bora Ucar

CERFACS, Toulouse, France

SIAM PP08, 12-14 March 2008, Atlanta

Joint work with
Patrick R. Amestoy (ENSEEIHT-IRIT, Toulouse)
lain S. Duff (CERFACS, Toulouse and RAL, Oxon)
Daniel Ruiz (ENSEEIHT-IRIT)

Fimancl P Supported by Agence Nationale de la Recherche through
l \ SOLSTICE project number ANR-06-CIS6-010.

1/22 Parallel matching

Outline

Outline

© Matchings
© Matrix scaling

© Matchings (cont’)
@ Achieving an exact solution
@ Obtaining a sub-optimal solution

@ Concluding remarks

2/22 Parallel matching

Matchings

Matching

Definitions

Given an n x n matrix A, find a permutation M such that the diagonal
product of the permuted matrix, [] diag(AM), is maximum (in
magnitude) among all permutations. Assume a;; > 0 and there is at least
one nonzero product diagonal (full structural rank).

Alternatively, select n entries from a given matrix such that no two are in
a common row and column, and their product is maximum. Also called
transversal and bipartite matching.

Motivations

Our driving application is direct solvers (e.g., MUMPS [Amestoy, Duff,
L'Excellent, Comput. Methods in Appl. Mech. Eng., (2000)]).

Combined with scaling can avoid many numerical difficulties in factorization
and linear system solution [Duff and Pralet, SIAM SIMAX(2005)].

3/22 Parallel matching

Matchings

Current state-of-the-art

Sequential

@ Polynomial time solvable; best known polynomial algorithm
O(n(7 + nlog n)), where 7 = nnz(A) [Fredman and Tarjan, J. ACM (1987)],

@ HSL subroutine MC64 [Duff and Koster, SIAM SIMAX(1999)] provides
algorithms for a family of bipartite matching problems,

@ MC64 has a higher polynomial (worst case) time complexity; but behaves
faster than that bound.

Parallel

@ Standard algorithms use depth-first/breadth-first search; inherently
sequential,

@ Some newer efforts [Riedy and Demmel, PP04]; some moderate speed-ups
(around 5 across 5-30 processors); slow downs too.

o l-approximation algorithm: [Manne and Bisseling, PPAM 2007]-Scales well
up to 32 processors.

4/22 Parallel matching

Matchings

Key points

Invariance
If Q and R are two matchings and

Hdiag(AQ) > Hdiag(AR)
then

H diag(AQ) > H diag(AR)

for A = D;AD; with D; and D, being diagonal matrices.

Invariance under scaling

N

@ Q is optimal for A iff it is optimal for A.

@ In other words, the matching that gives the maximum diagonal
product is invariant under row/column scaling. Also discussed in
[Olschowka and Neumaier, Linear Algebra Appl., (1996)].

5/22 Parallel matching

Matchings

Key points (cont’)

Suppose we have obtained a scaled matrix A = D;AD; such that
("] 3,1 S 10,

@ all rows and columns has at least one entry equal to 1.0.

Any perfect matching Q with diag(AQ) consisting only entries of
magnitude 1.0 is optimal.

V.

Algorithm starts to shape up...

. A —scale(A)

. Ar —filter(A = 1)

. if there exist a perfect matching in A¢ then
return the matching

else

DU Wl =

6/22 Parallel matching

Matrix scaling

Matrix scaling

Definition
Given an m X n sparse matrix A, find diagonal matrices D; > O and
D> > O such that all rows and columns of the scaled matrix

A = D,AD,

have equal norm.

7/22 Parallel matching

Matrix scaling

The sequential algorithm [Rruiz 2001]

1 DO —1,.,, D@ — 1,
2: for k =1,2,... until convergence do

3 Dr o ding (VIN®Ile) i=1,...,m gym—
4: D¢ « diag (\/HCj(k)”g)j: 1,...,n %]/ 0o = max{|x|}
5. DD — D, (W Dgt X[l = > [xil

: D2(k+1) — Dz(k) D(_‘_1
7. AU p, () AD, (k1)

¢: any vector norm (usually co- and 1-norms)
Convergence is achieved when

O] < { e }<
max {11 i@ e} < e and max {|1—flel} < <

1<i<m

8/22 Parallel matching

Matrix scaling

Features

operties

@ Preserves symmetry; permutation independent; amenable to
paraIIeIization [Amestoy, Duff, Ruiz, and U. (accepted to VecPar’OS)].

@ In oo-norm, linear convergence with asymptotic rate of 1/2,
@ Scaling in co-norm is not unique,

@ With 1-norm, results are similar to those of the other well-known
algorithms [Sinkhorn and Knopp, Pacific J. Math (1967)]; convergence
under certain conditions.

o If each entry lie in a perfect matching, there is a unique scaled
matrix,

o If there exists a perfect matching but not all entries can be made to
be in a perfect matching, iteration converges; those kind of entries
must tend to zero.

9/22 Parallel matching

Matrix scaling

Summary of computational and communication

requirements

Computations (sequential execution) per iteration

Op. ‘ SpMxV ‘ 1-norm ‘ oo-norm

add | nnz(A) 2 x nnz(A) 0

mult | nnz(A) | 2 x mnz(A)+ m—+n | 2 x nnz(A)+ m+n
comparison 0 0 2 x nnz(A)

Communication

The communication operations both in the 1-norm and co-norm
algorithms are the same as those in the computations

y «— Ax
x— ATy

when the partitions on x and y are equal to the partitions on D, and Dj.

10/22 Parallel matching

Matrix scaling

Parallelization results: Speed-up values

Seq. Number of processors
matrix Time 2 4 8 16
olesnik 46.08 | 1.9 | 3.7 | 6.9 | 12.3
c-71 5160 | 1.8 | 3.3 | 54 7.6
boyd1 7034 | 19 | 3.6 | 6.3 | 10.2
twotone 7476 | 1.9 | 3.7 | 7.0 | 11.8
lhr71 7825 | 2.0 | 3.8 | 7.3 | 135

aug3dcqp 830 | 1.7 | 29 | 4.1 4.5
abesind| 1509 | 1.8 | 3.0 | 4.1 4.8
a2nnsnsl 20.71 | 1.8 | 3.1 | 4.0 4.8
aOnsdsil 2092 | 1.8 | 3.1 | 40 4.6
blockgpl 3255 | 1.9 | 3.4 | 55 7.4

@ Averages of 10 different partitions obtained using PaToH [Catalyiirek
and Aykanat, Tech.Rep (1999)],

@ PC cluster with a Gigabit Ethernet switch. 16 nodes, each having
Intel Pentium IV 2.6 GHz processor, 1GB RAM,

11/22 Parallel matching

/ t solution
Matchings (cont’) 0 b-optimal solution

Algorithm

In the scaled matrix 3; < 1.0.

Algorithm: scaling (with € tolerance) is efficiently performed

. A —scale(A)

: Ap —filter(1.0 — e <A < 1.0 +¢)

. if there exist a perfect matching in Af then
return the matching

else

What remains to be done?

@ Step 3 can be performed sequentially, if there is only a little number
of nonzeros in the filtered matrix Ar.

@ the “else” part can be addressed in two ways:

o Solve the problem exactly,
e Or, find a sub-optimal solution (quickly).

12/22 Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Solving the “else” part exactly

New entries scaled to < 1.0

Bring on new entries to the filtered matrix As by updating the scaling
factors so that we have perfect matching at the end.

Dulmage-Mendelsohn decomposition

(from [Pothen and Fan, ACM TOMS (1990)])
H Sc Ve

@ Unique Horizontal, Square, and

F X X X Vertical blocks (defined by any
s, 0 X X maximum cardinality matching)
X @ Hpgs are perfectly matched to Hcs,
@ Sgs are perfectly matched to Scs,
V. 0 0 X
R @ V(s are perfectly matched to Vgs.

13/22 Parallel matching

Achlevmg an exact solutlon
Matchings (cont’) Obta sub al solutic

Implications for us

H Sc V. e The filtered matrix As is in this form,
Bl X X X' 5 Matrix A (hence A) must have nonzeros in
X the blocks shown with 0,
S, | 0 X . . .
X @ Find the maximum scaled entries (< 1.0)

from each of those blocks,

Ve 0 0 X e With a rule update the scaling matrices,
keep the 1s in the diagonal blocks.

Suppose 4/a;; is maximum and resides in A(VR, Hc). Let « =1/4/3j

o 1 1/()g
1/0(=1 =1 =1 =1 <1 <1

1 <1 =1 =1 :> <=1 =1 <1

o <1 <1 =1 =1 <=l |=1

14/22 Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Algorithm exposed

Algorithm

1: A} « scale-1-norm(A)
2: A — scale-co-norm(A;)
3: Ap —filter(1.0 —e < A < 1.0 +¢)
4: if there exist a perfect matching in A¢ then
5: return the matching
6: else

7 Compute the dmperm of Af’
8 for k=1,2,... do

9: Scale a particular entry in Atol10+e
10: Update dm-structure and scaling matrices
11: if perfect matching exists then
12: return the matching

Reminder

@ In 1-norm scaling, any entry not in a perfect matching tends to zero,

@ 1-norm scaling is unique; co-norm is not,

Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)

@ Matrices from University of Florida sparse matrix collection,
satisfying the following properties
e Square, with 1000 < n < nnz < 2.0e+6,
o total support (no nonzeros in off diagonal blocks of the dmperm),
o no explicit zeros, real, not {0,1, —1}"*".
A total of 276 matrices. 8 required special attention; excluding
those 268. 192 are symmetric and 76 are unsymmetric.

Fast solutions

In 180 matrices, no iterations after the initial 1-norm (at most 40
iterations) and co-norm (at most 20 iterations) scaling steps with
e = 1.0e-3 (126/192 symmetric; 54/76 unsymmetric).

16/22 Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)—Cont

Algorithm: first few steps

A; —scale-1-norm(A)

A — scale-co-norm(A;)

: Ap —filter(1.0 —e < A < 1.0 +¢)

. if there exist a perfect matching in Af then
return the matching

else

Q@M

Details of the fast solutions (among 180 matrices)

in 155, nnz(A¢) = n; in the rest maximum three of nnz(As)/n are
{5.87,5.74,1.03}

Memory requirements: A vs A (of the 180 instances)

min ‘ avg ‘ max
nnz(A)/n | 2.25 | 22.05 | 132.36
nnz(As)/n | 1.00 | 1.06 | 5.87

17/22 Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Experiments (Looking for an exact solution)—Cont

Others (88/268 matrices, select and re-scale loop executed)

@ averaging 8294 iterations after the initial 1-norm (at most 40
iterations) and co-norm (at most 20 iterations) scalings, mostly
belonging to the matrix families Schenk_IBMNA (27 matrices),
GHS_indef (25 matrices), and Nemeth (13 matrices).

@ considerable savings in memory requirements

min ‘ avg ‘ max
nnz(A)/n | 3.22 | 24.97 | 159.03
nnz(Af)/n | 1.00 | 153 | 2.60

@ However, we do not want to do iterations.

e although very sparse, the dmperm update requires DFS/BFS-like
algorithms—inherently sequential.

e we can reduce to a single processor and solve the problem there—too
much iterations.

Sub-optimal alternatives may be acceptable.

18/22 Parallel matching

A ng an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

A sub-optimal solution

Algorithm

1: A; < scale-1-norm(A)

2: A « scale-oo-norm(A;)

3: Ap —filter(1.0 — e <A < 1.0 +¢)

4: if there exist a perfect matching in Af’ then

5: return the matching

6: else

7 Compute a maximum matching using only the entries in As
8 A, — Af

9 L — sort the entries of A — Af

==

0: fork=1,2,...do
1 add entries from L in decreasing order to AW such that all
unmatched rows and columns get at most one more entry
12: if not possible, add at most one more entry per each row
and column
13: Augment the matching (weighted)
14: if a perfect matching obtained then
15: return the matching

19/22 Parallel matching

Achieving an exact solution
Matchings (cont’) Obtaining a sub-optimal solution

Experiments (sub-optimal solution)

On 88/268 matrices (solution is not obtained after the first scaling steps)

Quality of the matching

Compare V =3 logdiag(AM) and V* = > log diag(AM*)

(V*=Vv)/v*
min 0.00
avg 0.17
max 12.15

Largest 5 values: 12.15 0.54 0.28 0.21 0.17

Iterations and memory requirements

min ‘ avg ‘ max .
nnz(A)/n | 322 | 2407 | 159.03 On 13 instances, number
A 500 | % 58l of augmentation iterations is
.nnz(w)/n : : : greater than 3.
iters 1 3.05 38

20/22 Parallel matching

Concluding remarks

Summary and plans

@ On 155/268 matrices, at most 40 iterations of 1-norm scaling and
then at most 20 iterations of co-norm scaling suffices to compute a
maximum product matching.

@ On another 25 matrices, with a little sequential overhead an
optimum matching is obtained.

@ On the others (88/268): Sub-optimal solutions can be found with
fairly small additional, sequential work.

On going and future work

@ The effects on factorization (already done a few experiments and
observed that sub-optimal solutions are not worse than the optimal
ones in terms of some factorization metrics)

@ Sub-optimal solutions with approximation guarantee,

@ Matrices with support but without total support.

Concluding remarks

Further information

Thank you for your attention.

http://www.cerfacs.fr/algor

http://www.cerfacs.fr/ ubora
ubora@cerfacs.fr

22/22 Parallel matching

Concluding remarks

Number of iterations with error rate of ¢ = 1.0e-6

@ oo-norm: Always converges very fast. Average 11.

@ 1- and 2-norms: Did not converge on 10 and 17 matrices in 5000
iterations, respectively.
o Average number of iterations in converged cases are 206 and 257,
o Matrices from two groups (GHS_indef and Schenk IBMNA) cause
problems (larger number of iterations as well). 60 matrices from
these groups.
o Excluding those matrices, the averages are 26 and 29.

23/22 Parallel matching

	Outline
	Matchings
	Matrix scaling
	Matchings (cont')
	Achieving an exact solution
	Obtaining a sub-optimal solution

	Concluding remarks

