
Partitioning sparse matrices for 
parallel preconditioned iterative methods

Bora Uçar

Emory University, Atlanta, GA

Joint work with Prof C. Aykanat

Bilkent University, Ankara, Turkey



2

Iterative methods

• Used for solving linear systems Axb
– usually A is sparse

• Involves
– linear vector operations

• x = xy  xi = xi   yi

– inner products
•  = x,y   =  xi  yi

– sparse matrix-vector multiplies (SpMxV)
• y = Ax  yi = Ai,x

• y = ATx  yi = AT
i,x

while not converged do
      computations
      check convergence
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• Transform Axb to another system that is easier 
to solve  

• Preconditioner is a matrix that does the desired 
transformation

• Focus:  approximate inverse preconditioners 

• Right approximate inverse M provides AMI 

• Instead of solving Axb, use right preconditioning 
and solve 

AMy = b and then set

                  x = My

Preconditioned iterative methods
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• Avoid communicating vector entries for linear 
vector operations and inner products

• Inner products require communication
– regular communication 

– cost remains the same with the increasing problem 
size

– there are cost optimal algorithms to perform these 
communications.

• Efficiently parallelize the SpMxV operations

• Efficiently parallelize the application of the 
preconditioner

Parallelizing iterative methods
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Preconditioned iterative methods

• Applying approximate inverse preconditioners

– additional SpMxV operations with M
• never form the matrix AM; perform SpMxVs

• Parallelizing a full step requires efficient SpMxV 
with A and M
– partition A and M simultaneously

• What has been done?
– a bipartite graph model (Hendrickson and Kolda, 

SISC 00) 
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Row-parallel y=Ax

• Rows (and hence y) and x is partitioned
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Row-parallel y=Ax

Communication requirements
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Total volume:
#nonzero column 
segments in off 
diagonal blocks (13)

Total number :
#nonzero off diagonal 
blocks (9)

Per processor: 
above two confined 
within a column stripe

Total volume and number of messages 
addressed previously (Catalyurek 
and Aykanat, IEEE TPDS 99; U. and 
Aykanat, SISC 04; Vastenhouw and 
Bisseling, SIREV 05)
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Minimize volume in row-parallel y=Ax: 
Revisiting 1D hypergraph models

• Three entities to partition y, rows of A, & x
– three types of vertices yi, ri & xj

• yi is computed by a single ri
– connect yi and ri (edge, hyperedge)

• xj is a data source; ri's where aij≠0 need xj

– connect xj and all such ri (definitely a 
hyperedge)



Combine yi and ri: owner 
computes rule
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Minimize volume in row-parallel y=Ax: 
Revisiting 1D hypergraph models

General hypergraph model for 
1D rowwise partitioning 

Partition the vertices into K parts 
(partition the data among K processors)
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Hypergraph partitioning

• Partition the vertices of a hypergraph into two or 
more partitions such that:

–  ∑con(ni)–1 is minimized (total volume)

  con(ni)=number of parts connected by hyperedge ni 

– a balance criterion among the part weights is 
maintained (load balance)
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Communication requirements

Total volume:
#nonzero row segments in off 
diagonal blocks (13)

Total number :
#nonzero off diagonal blocks (9)

Per processor: 
above two confined within a row 
stripe

Total volume and number of messages 
addressed previously (Catalyurek 
and Aykanat, IEEE TPDS 99; U. 
and Aykanat, SISC 04; Vastenhouw 
and Bisseling, SIREV 05). 

Column-parallel y=Ax
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Preconditioned iterative methods

• Linear vector operations and inner product 
computations are done: 

– all vectors in a single operation have the same partition

• Partition A and M simultaneously

• A blend of dependencies and interactions 
among matrices and vectors

– different partitioning requirements in different methods

• Figure out partitioning requirements through 
analyzing linear vector operations and inner 
products
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Preconditioned BiCG-STAB
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Preconditioned BiCG-STAB

p, r, v, s, t, and, x  should be partitioned conformably

• What remains?
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Partitioning requirements

• “and” means there is a synchronization 

point between SpMxV’s
– Load balance each SpMxV individually

PAPT and PMPTGMRES

PAQ and PMPTCGNE

PAPT and PM1M2PTTFQMR

PAQTQMPTBiCG-STAB
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Model for simultaneous partitioning

• We use the previously proposed models
– define operators to build composite models

Rowwise model (y=Ax) Col.wise model (w=Mz)
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Combining hypergraph models

• Vertex amalgamation: combine vertices of 
individual hypergraphs, and connect the 
composite vertex to the hyperedges of the 
individual vertices

• Vertex weighting: define multiple weights; 
individual vertex weights are not added up

Never amalgamate hyperedges of individual 
hypergraphs!
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Combining guideline
1. Determine partitioning requirements 

2. Decide on partitioning dimensions 
• generate rowwise model for the matrices to be 

partitioned rowwise

• generate columnwise model for the matrices to 
be partitioned columnwise

3. Apply vertex operations
● to impose identical partition on two vertices 

amalgamate them
● if the applications of matrices are interleaved with 

synchronization apply vertex weighting
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Combining example

• BiCG-STAB requires PAQTQMPT

• A rowwise (y=Ax), M columnwise (w=Mz)

1

2
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Combining example (Cont')

• AQTQM: Columns of A and rows of M

(y=Ax, w=Mz)

3i
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Combining example (Cont')

• PAMPT: Rows of A and columns of M

(y=Ax, w=Mz)

3i
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Remarks on composite models

• Partitioning the composite hypergraphs 
– balances computational loads of processors

– minimizes the total communication volume 

in a full step of the preconditioned iterative 
methods

• Assumption: A and M or their sparsity patterns 
are available
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Experiments: Set up

• Sparse nonsymmetric square matrices from 
Univ. Florida sparse matrix collection

• SPAI by Grote and Huckle (SISC 97)

• AINV by Benzi and Tůma (SISC 98)

• PaToH by Çatalyürek and Aykanat (TPDS 99)
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Experiments: Comparison

20202020average
36363431max
8687min

64-way32-way64-way32-way

RRCC

percent gain in total volume

With respect to partitioning A and applying 
the same partition to M (SPAI experiments)

(Ten different matrices)
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Experiments: Parallel performance
Parallel BiCGStab speedups (best 5 of the results)
(LAM MPI; 400 MHz Pentium II, 128 Mbyte, Fast ethernet; 
SPAI)

Partitioning scheme
CR RC

8-procs 16-procs 8-procs 16-procs
stomach 7.1 14.1 7.1 12.7
epb3 7.3 12.4 7.2 11.4
xenon1 6.7 11.2 6.1 9.2
olafu 6.7 10.6 6.0 8.6
cage12 5.9 9.4 4.4 6.2

RC requires multi-constraint formulation
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Some other partitioning problems

 The principles can be used to parallelize

y= AB  x

y=[ AB ] x
y=[ A B

BT D] x
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Further information

Thanks: M. Benzi, Ü. V. Çatalyürek, M. Grote, B. Hendrickson, 
M. Tůma 

Ucar and Aykanat, “Partitioning sparse matrices for parallel 
preconditioned iterative methods”, submitted to SISC.

http://www.mathcs.emory.edu/~ubora

http://www.cs.bilkent.edu.tr/~aykanat
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Backups
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Hypergraph partitioning

12 21

∑con(ni)–1  = 1+2+2+1 = 6

Communication volume: 6 words =



Matrix properties

Matrix n nnz(A) nnz(M)
big 13209 91465 109088
cage11 39082 559722 424708
cage12 130228 2032536 1444650
epb2 25228 175027 244453
epb3 84617 463625 532851
mark3jac060 27449 170695 276586
olafu 16146 1015156 719873
stomach 213360 3021648 2910283
xenon1 48600 1181120 878143
zhao1 33861 166453 180988



Overlap between sparsity patterns of
A and M (SPAI)

A+M A\M M\A (AnM)/M
Zhao1 234205 67752 53217 0.63
big 147632 56167 38544 0.49
cage11 780776 221054 356068 0.48
cage12 2784199 751663 1339549 0.48
epb2 333794 158767 89341 0.35
epb3 773107 309482 240256 0.42
mark3jac060 397706 227011 121120 0.18
olafu 1357370 342214 637497 0.52
stomach 5182305 2160657 2272022 0.26
xenon1 1520936 339816 642793 0.61



AINV speedups

K CRC RCR
Time S-up Time S-up

Zhao1 1 133 1.0 134 1.0
 8 20 6.7 21 6.4
 16 15 8.9 15 8.9
big 1 50 1.0 50 1.0
 8 10 5.0 10 5.0
 16 8 6.3 8 6.3
cage11 1 227 1.0 227 1.0
 8 43 5.3 50 4.5
 16 30 7.6 38 6.0
epb2 1 104 1.0 104 1.0
 8 17 6.1 18 5.8
 16 12 8.7 13 8.0
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Graph Partitioning

• Partition the vertices of a graph into 
two or more partitions such that:

weights of the edges among the 
parts is minimized

 a balance criterion among the part 
weights is maintained
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Graph Partitioning is Wrong!

• P1 sends 3, P2 sends 3

total 6 ≠ 8
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edge cut is 8


