A sparse matrix scaling algorithm and its efficient parallelization

Bora Ucar

CNRS and LIP. ENS Lvon. France

HPCSE2013, 27-30 May, 2013, Soláň, Czech Republic

loint work with:

Patrick R. Amestoy Umit V. Catalyürek Philip A. Knight lain S. Duff

Kamer Kaya Daniel Ruiz

3

2 Distributed memory parallelization • Experiments

Shared-memory parallelization

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Experiments

т	heorv
	neory

Shared-memory parallelization

<ロ> <同> <同> < 回> < 回>

Conclusion

Matrix scaling

Definition

Given an $m \times n$ sparse matrix **A**, find diagonal matrices **D**₁ > 0 and **D**₂ > 0 such that all rows and columns of the scaled matrix

 $\hat{\boldsymbol{\mathsf{A}}} = \boldsymbol{\mathsf{D}}_1 \boldsymbol{\mathsf{A}} \boldsymbol{\mathsf{D}}_2$

have equal norm.

Motivations

- Equilibration, balancing, good pivoting strategy, numerical/optimal properties.
- Scaling combined with permutations can avoid many numerical difficulties [Duff and Pralet '05] during LU factorization:
 - Provides (weak) diagonal dominance
 - Increases robustness of the factorization algorithms
 - May improve the condition number

Т	heorv

 $\max\{|x_i|\}$

(日) (同) (三) (三)

3

The sequential algorithm (Ruiz'01)

1:
$$\mathbf{D}_{r}^{(0)} \leftarrow \mathbf{I}_{m \times m} \quad \mathbf{D}_{c}^{(0)} \leftarrow \mathbf{I}_{n \times n}$$

2: for $k = 1, 2, \dots$ until convergence do
3: $\mathbf{D}_{1} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{r}_{i}^{(k)}\|_{\ell}}\right) i = 1, \dots, m$
4: $\mathbf{D}_{2} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{c}_{j}^{(k)}\|_{\ell}}\right) j = 1, \dots, n$
5: $\mathbf{A}^{(k+1)} \leftarrow \mathbf{D}_{1}^{(k+1)} \mathbf{A} \mathbf{D}_{2}^{(k+1)}$
6: $\mathbf{D}_{r}^{(k+1)} \leftarrow \mathbf{D}_{r}^{(k)} \mathbf{D}_{1}^{-1}$
7: $\mathbf{D}_{c}^{(k+1)} \leftarrow \mathbf{D}_{c}^{(k)} \mathbf{D}_{2}^{-1}$

Notes

 ℓ : any vector norm (usually ∞ - and 1-norms) Convergence is achieved when

$$\max_{1 \le i \le m} \left\{ |1 - \| \mathbf{r}_i^{(k)} \|_\ell | \right\} \le \varepsilon \text{ and } \max_{1 \le j \le n} \left\{ |1 - \| \mathbf{c}_j^{(k)} \|_\ell | \right\} \le \varepsilon$$

(日) (同) (三) (三)

Features

Some properties (Ruiz'01; Knight, Ruiz, U. '12)

- Preserves symmetry; permutation independent; amenable to parallelization
- With ∞ -norm, linear convergence with asymptotic rate of 1/2
- With 1-norm, convergence under some structural conditions (as in some other well-known algorithms [Sinkhorn and Knopp'67])
 - For symmetric matrices, converges linearly with a rate depending on the spectrum of the scaled matrix
 - For unsymmetric ones, converges linearly with a rate depending on the second largest singular value of the scaled matrix
- Sequential codes available in HSL library as MC77 [Ruiz'01]
- Parallel codes available—also have been plugged into MUMPS [Amestoy, Duff, and L'Excellent'00]

heorv	

Shared-memory parallelization

Conclusion

(ロ) (同) (三) (三) (三) (○)

Number of iterations

SK-1 and SK-2: Sinkhorn–Knopp algorithm in 1- and 2-norms; A-1, A-2, and A- ∞ : proposed algorithm; error tolerance $\varepsilon = 1.0e$ -4.

214 matrices from UFL: real, $1000 \le n \le 121000$, $2n \le nnz \le 1790000$, without explicit zeros, fully indecomposable, not a matrix of $\{-1, 0, 1\}$.

matrix type	statistics	SK-1	SK-2	A-1	A-2	A- ∞
	min	1	47	1	6	2
unsymmetric (64)	med	2135	4905	2436	4897	8
	max	116205	177053	307672	519249	19
	min	8	1	3	1	2
symmetric (104)	med	238	700	32	33	13
	max	11870	22302	10307	18925	19
	min	73	46	7	3	
sym pos def (46)	med	444	1494	14	12	
	max	11271	14418	17	18	

Theory		paralleliz

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Helps numerically (experiments with MUMPS)

Unsuccessful (usuc.), if MUMPS 4.10 returns a warning or an error message.

		unsymm	netric matric	es	ger	ieral syr	nmetric ma	trices
strategy	usuc.	actM estM	$\frac{cnd(DAE)}{cnd(A)}$	off-piv.	usuc.	actM estM	$\frac{cnd(DAE)}{cnd(A)}$	off-piv.
no-scaling	7	1.02		308	23	1.09	<u> </u>	3454
$[0, 3^{(1)}, 0]$	3	1.02	1.23e-03	67	4	1.04	1.89e-03	3458
$[1, 3^{(1)}, 0]$	3	1.01	1.17e-03	44	3	1.04	1.83e-03	3454
$[0, 10^{(1)}, 0]$	3	1.01	1.54e-03	157	1	1.03	3.94e-03	3462
$[1, 10^{(1)}, 0]$	3	1.01	1.54e-03	160	1	1.03	3.86e-03	3462
$[1, 100^{(1)}, 0]$	3	1.01	1.21e-05	148	0	1.05	4.97e-03	3580
[0, 3 ⁽²⁾ , 0]	0	1.02	3.78e-02	8	3	1.01	2.26e-02	5504
$[1, 3^{(2)}, 0]$	0	1.01	3.54e-02	9	2	1.02	1.74e-02	5504
$[0, 10^{(2)}, 0]$	0	1.01	3.21e-02	8	1	1.02	1.32e-02	5504
$[1, 10^{(2)}, 0]$	0	1.01	3.39e-02	8	1	1.02	1.36e-02	5504
$[1, 100^{(2)}, 0]$	0	1.01	3.50e-02	8	2	1.01	1.71e-02	5504
Bunch		-			1	1.03	5.83e-02	5504
SK10	0	1.01	3.52e-02	9				

Moral: [Bunch'71] for symmetric matrices, sequential environment; "SK" for unsymmetric matrices; proposed one for symmetric matrices, parallel environment.

Theory

2 Distributed memory parallelization

Experiments

Shared-memory parallelization

1: $\mathbf{D}_{r}^{(0)} \leftarrow \mathbf{I}_{m \times m} \quad \mathbf{D}_{c}^{(0)} \leftarrow \mathbf{I}_{n \times n}$ 2: for $k = 1, 2, \dots$ until convergence do 3: $\mathbf{D}_{1} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{r}_{i}^{(k)}\|_{\ell}}\right) i = 1, \dots, m$ 4: $\mathbf{D}_{2} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{c}_{j}^{(k)}\|_{\ell}}\right) j = 1, \dots, n$ 5: $\mathbf{A}^{(k+1)} \leftarrow \mathbf{D}_{1}^{(k+1)} \mathbf{A} \mathbf{D}_{2}^{(k+1)}$ 6: $\mathbf{D}_{r}^{(k+1)} \leftarrow \mathbf{D}_{r}^{(k)} \mathbf{D}_{1}^{-1}$ 7: $\mathbf{D}_{c}^{(k+1)} \leftarrow \mathbf{D}_{c}^{(k)} \mathbf{D}_{2}^{-1}$

Conclusion

Parallelization: Data distribution

$$\mathbf{D}_{\mathbf{P}}^{(k)}$$
 $\mathbf{D}_{\mathbf{C}}^{(k)}$

$$D_1$$
 and D_2 .

The scaled matrix $\hat{\mathbf{A}}^{(k)}$

Α.

Do not store $\hat{\mathbf{A}}^{(k)} = \mathbf{D}_{R}^{(k)} \mathbf{A} \mathbf{D}_{C}^{(k)}$ explicitly; access $\mathbf{a}_{ij}^{(k)}$ by

 $d_r^{(k)}(i) \times |a_{ij}| \times d_c^{(k)}(j)$

- Distribute **A**, **D**_{*R*}, and **D**_{*C*}. At every iteration, **D**₁ and **D**₂ (the row and column norms) are computed afresh.
 - Matrix A is already distributed (in another context).
 Each processor holds a set of entries a_{ij} and their indices (i, j).
 - Partition the diagonal elements of D_R and D_C among processors.

Problem definition

Given a partition on **A**, find the best partitions for D_R and D_C .

Parallelization: Computations and computational dependencies

Local computations

Each processor p should use each (i, j, a_{ij}) triplet to compute partial results on $d_1(i)$ and $d_2(j)$, e.g., in ∞ -norm, sets

$$d_1^{p}(i) = \max\left\{d_R^{(k)}(i) \times |a_{ij}| \times d_C^{(k)}(j) : a_{ij} \in p\right\}$$

Communication operations

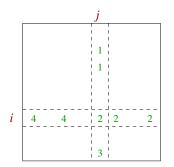
The partial results should be combined/reduced for each $d_R^{(k+1)}(i)$. The owner of $d_R(i)$ should set, in ∞ -norm,

$$d_{\mathcal{R}}^{(k+1)}(i) = d_{\mathcal{R}}^{(k)}(i) \times \frac{1}{\sqrt{\max\{d_1^p(i) : 1 \le p \le P\}}}$$

The owner should send $d_R^{(k+1)}(i)$ back to the contributing processors.

• Similar discussion for $d_C(j)$.

Parallelization: ∞ -norm algorithm for step k



Row \mathbf{r}_i

Processors 2 and 4 contribute to $d_R^{(k+1)}(i)$. Whichever owns $d_R(i)$, receives one unit of data and sends one unit of data after computing the final $d_R^{(k+1)}(i)$.

Column \mathbf{c}_j

Processors 1, 2, and 3 contribute to $d_C^{(k+1)}(j)$. Whichever owns $d_C(j)$, receives two units of data and sends two units of data after computing the final $d_C^{(k+1)}(j)$.

イロト イポト イヨト イヨト 二日

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Parallelization: Communication requirements

Common communication cost metric: the total volume.

Communication for \mathbf{D}_R

- The volume of data a processor receives while reducing a d_R^(k+1)(i) is equal to the volume of data it sends after computing d_R^(k+1)(i).
- Nonzeros in row r_i are split among s_r(i) processors
 - All contribute to $d_R^{(k+1)}(i)$.
 - Reduction on $s_r(i)$ partial results.
 - If one of those $s_r(i)$ processors owns $d_R(i)$, $s_r(i) 1$ partial results will be send to the owner.
 - If owned by somebody else, then $s_r(i)$ partial results will be send to the owner.

Communication for $\boldsymbol{\mathsf{D}}_{\mathcal{C}}$

Similar observations.

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Parallelization: Partitioning D_R and D_C

Communication requirements

Nonzeros in row \mathbf{r}_i are split among $\mathbf{s}_r(i)$ processors: total volume of communication is equal to

$$2 imes \sum (s_r(i) - 1) = 2 imes \kappa_{conn}$$

(half for receiving contributions, half for sending back the results).

 The total volume of communication is the same for any d_R(i) to processor assignment as long as that processor has at least one nonzero from row r_i.

Similar observation for the column c_i .

Twice the requirements of parallel sparse matrix-vector multiply operation.

イロン イボン イヨン イヨン

Summary of computational and communication requirements

Computations	(per iterat	tion)	
Op.	SpMxV	1-norm	∞ -norm
add	nnz(A)	$2 \times nnz(\mathbf{A})$	0
mult	nnz(A)	$2 \times nnz(\mathbf{A}) + m + n$	$2 \times nnz(\mathbf{A}) + m + n$
comparison	0	0	$2 \times nnz(\mathbf{A})$

Communication (per iteration)

The communication operations both in the 1-norm and $\infty\text{-norm}$ algorithms are the same as those in the computations

when the partitions on \mathbf{x} and \mathbf{y} are equal to the partitions on \mathbf{D}_R and \mathbf{D}_C .

イロト 不得 トイヨト イヨト 二日

Parallelization: Our partitioning approach

What we did?

- To avoid extra work, use simple strategies.
- Ensure that each scaling entry (those of D_R or D_C) is assigned to a processor that contributes to that entry
- the minimum total volume of communication under a given partition of matrix elements.

 $d_R(i)$: assign to the processor p that has an entry a_{ij} with j giving min $\{|i - j|\}$; in case of ties to the processor with the smallest rank.

 $d_C(j)$: assign to the processor p that has an entry a_{ij} with i giving min $\{|i - j|\}$; in case of ties to the processor with the smallest rank.

イロン 不同 とくほう イロン

3

Experiments

Data set

- Matrices from University of Florida sparse matrix collection
- real, 1000 ≤ n < nnz(A) ≤ 2.0e + 6 A total of 213 matrices out of 1877 (as of Sep.'07).

Number of iterations with convergence criteria of arepsilon=1.0e-6

- ∞ -norm: Always converges very fast. Average 11.
- 1- and 2-norms: Did not converge for 10 and 17 matrices in 5000 iterations, respectively.
 - Average number of iterations in converged cases are 206 and 257,
 - Matrices from two groups (GHS_indef and Schenk_IBMNA) cause problems (larger number of iterations as well). 60 matrices from these groups.
 - Excluding those matrices, the averages are 26 and 29.

Conclusion

Parallelization results: Speedup values

	Seq.	Nur	nber of	proces	ssors
matrix	Time (s.)	2	4	8	16
aug3dcqp	8.30	1.7	2.9	4.1	4.5
	3.06	1.9	3.8	4.3	3.6
a2nnsnsl	20.71	1.8	3.1	4.0	4.8
	7.24	1.5	1.8	2.1	3.3
a0nsdsil	20.92	1.8	3.1	4.0	4.6
	7.22	1.5	1.8	2.1	3.2
lhr71	78.25	2.0	3.8	7.3	13.5
	18.10	2.0	3.4	6.8	14.0
G3_circuit	455.25	1.8	3.8	7.4	14.0
	173.11	1.9	3.3	6.9	14.5
thermal2	573.24	2.0	3.9	7.6	14.4
	208.20	1.6	3.4	6.5	13.1

- Averages of 10 different partitions (with PaToH [Çatalyürek and Aykanat, Tech.Rep (1999)]),
- PC cluster with a Gigabit Ethernet switch (Intel Pentium IV 2.6 GHz), PC cluster with an Infiniband interconnect (dual AMD 150 Opteron processors)
- 1000 iterations' running time in seconds

(日) (同) (三) (三)

3

- Best three and worst three speedup values are shown—speedup tends to be higher for matrices with larger number of nonzeros.
- The partitions are such that they result in reduced total communication volume, *K*_{conn}.

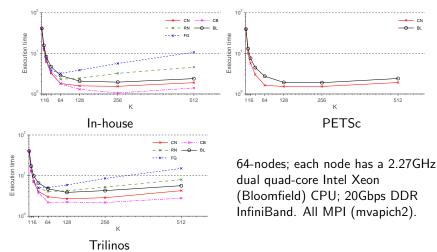
< D > < A >

-∢ ∃ ▶

э

Parallelization results: Speedup values

SpMxV in a more recent system:



Theory

Distributed memory parallelization

Shared-memory parallelizationExperiments

1: $\mathbf{D}_{r}^{(0)} \leftarrow \mathbf{I}_{m \times m} \quad \mathbf{D}_{c}^{(0)} \leftarrow \mathbf{I}_{n \times n}$ 2: for k = 1, 2, ... until convergence do 3: $\mathbf{D}_{1} \leftarrow \operatorname{diag} \left(\sqrt{\|\mathbf{r}_{i}^{(k)}\|_{\ell}} \right) i = 1, ..., m$ 4: $\mathbf{D}_{2} \leftarrow \operatorname{diag} \left(\sqrt{\|\mathbf{c}_{j}^{(k)}\|_{\ell}} \right) j = 1, ..., n$ 5: $\mathbf{A}^{(k+1)} \leftarrow \mathbf{D}_{1}^{(k+1)} \mathbf{A} \mathbf{D}_{2}^{(k+1)}$ 6: $\mathbf{D}_{r}^{(k+1)} \leftarrow \mathbf{D}_{r}^{(k)} \mathbf{D}_{1}^{-1}$ 7: $\mathbf{D}_{c}^{(k+1)} \leftarrow \mathbf{D}_{c}^{(k)} \mathbf{D}_{2}^{-1}$

< ロ > < 同 > < 三 > < 三 >

Data structures and the approach (1)

The algorithm will be parallelized using the standard OpenMP techniques (locks, atomic instructions, and/or private memory).

Point of view of a programmer who adopts loop-level parallelism and single-program multiple-data paradigm, without too much adaptations.

Goal: Reduce the associated overhead (size of the private memory, number of locks, number of atomic operations, extra parallel work).

1:
$$\mathbf{D}_{r}^{(0)} \leftarrow \mathbf{I}_{m \times m} \quad \mathbf{D}_{c}^{(0)} \leftarrow \mathbf{I}_{n \times n}$$

2: for $k = 1, 2, \dots$ until convergence do
3: $\mathbf{D}_{1} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{r}_{i}^{(k)}\|_{\ell}}\right) i = 1, \dots, m$
4: $\mathbf{D}_{2} \leftarrow \operatorname{diag}\left(\sqrt{\|\mathbf{c}_{j}^{(k)}\|_{\ell}}\right) j = 1, \dots, n$
5: $\mathbf{A}^{(k+1)} \leftarrow \mathbf{D}_{1}^{(k+1)} \mathbf{A} \mathbf{D}_{2}^{(k+1)}$
6: $\mathbf{D}_{r}^{(k+1)} \leftarrow \mathbf{D}_{r}^{(k)} \mathbf{D}_{1}^{-1}$
7: $\mathbf{D}_{c}^{(k+1)} \leftarrow \mathbf{D}_{c}^{(k)} \mathbf{D}_{2}^{-1}$

э

< ∃⇒

Data structures and the approach (2)

The programmer knows CSR and COO:

[1.1	0.0	0.0	0.0	0.0
0.0	2.2	0.0	2.4	0.0
3.1	0.0	3.3	0.0	0.0
0.0	0.0	0.0	4.4	0.0
0.0	5.2	0.0	5.4	5.5

and also knows how to perform operations on matrices stored that way.

Compressed row storage (CRS)

Two integer arrays (ia, jcn) and a double array A:

ia	=	Γ	1	2		4		6	7		1	10]
jcn	=	[1	2	4	1	3	4	2	4	5]	
A	=	[1	. 1	2.2	2.4	3.1	3.3	4.4	5.2	5.4	5.5]	

Coordinate format (COO)

Two integer arrays (irn, jcn) and a double array A:

irn =	[1	2	2	3	3	4	5	5	5]
jcn =	[1	2	4	1	3	4	2	4	5]
A =	[1	. 1	2.2	2.4	3.1	3.3	4.4	5.2	5.4	5.5]

Image: A math a math

Theory	memory

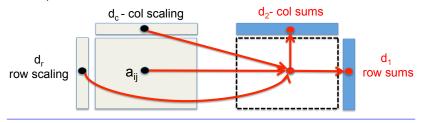
(日) (同) (三) (三)

3

Conclusion

Shared memory parallelization

We do not store the scaled matrix; access its elements and compute (say 1-norm):



We parallelize each iteration with τ threads:

- CRS-based storage: partition the rows among the processors.
- COO-based storage: partition the nonzeros among the processors.

Theory

Distributed memory parallelization 000 Shared-memory parallelization

Conclusion

Parallelization with CRS (assume 1-norm scaling)

Algorithm 2: Simple parallel scaling with CRS

Input: A: $n \times n$ input matrix in CRS format Output: dr. dc: row and column scaling vectors for i = 1 to n in parallel do $\mathbf{d}_r[i] \leftarrow 1$ $\mathbf{d}_{c}[i] \leftarrow 1$ while not converged do for i = 1 to n in parallel do $\mathbf{d}_1[i] \leftarrow 0$ $\mathbf{d}_2[i] \leftarrow 0$ for t = 1 to τ in parallel do init for i = 1 to n do $\mathbf{d}_{2}^{t}[i] \leftarrow 0$ for i = 1 to n in parallel do put ►t is the current thread id $sum^t \leftarrow 0$ for each nonzero a_{ij} in row i do $val \leftarrow \mathbf{d}_r[i] \times a_{ij} \times \mathbf{d}_c[j]$ add val to sum^t and $d_2^t[j]$ $\mathbf{d}_1[i] \leftarrow sum^t$ for t = 1 to τ do get for i = 1 to n in parallel do $\mathbf{d}_2[i] \leftarrow \mathbf{d}_2[i] + \mathbf{d}_2^t[i]$ $error \leftarrow \max(\max_i(|1 - \mathbf{d}_1[i]|), \max_i(|1 - \mathbf{d}_2[i]|))$ if $error < \varepsilon$ then $converged \leftarrow true$ else for i = 1 to n in parallel do $\mathbf{d}_r[i] \leftarrow \mathbf{d}_r[i] / \sqrt{\mathbf{d}_1[i]}$ $\mathbf{d}_{c}[i] \leftarrow \mathbf{d}_{c}[i] / \sqrt{\mathbf{d}_{2}[i]}$

- Rows are partitioned among threads
 No conflict for row-sum writes
- Use private memory for column sums (size *n*)
- Total computational overhead is $2\tau n$.
- The rowwise partitioning is determined dynamically at run time by OpenMP scheduling policy.

イロト イポト イヨト イヨト

Conclusion

Parallelization with CRS: Improvement (1)

Algorithm 4: Part, based scaling with CRS-Cut Input: A: $n \times n$ input matrix in CRS format and a partition $\Pi = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_\tau\} \text{ of rows}$ Output: dr. dr: row and column scaling vectors while not converged do for t = 1 to τ in parallel do init for i = 1 to cut do $\mathbf{d}_{2}^{t}[i] \leftarrow 0$ for t = 1 to τ in parallel do put ▶t is the current thread id for each external row i in \mathcal{R}_t do $sum^t \leftarrow 0$ for each external nonzero a;; in row i do $val \leftarrow \mathbf{d}_r[i] \times a_{ij} \times \mathbf{d}_c[j]$ add val to sum^t and $\mathbf{d}_2^t[j]$ for each internal nonzero and in row i do $val \leftarrow \mathbf{d}_r[i] \times a_{ij} \times \mathbf{d}_c[j]$ add val to sum^t and $\mathbf{d}_2[i]$ $\mathbf{d}_1[i] \leftarrow sum^t$ for each internal row i in \mathcal{R}_{ℓ} do $sum^t \leftarrow 0$ for each nonzero a_{ij} in row i do $val \leftarrow \mathbf{d}_r[i] \times a_{ij} \times \mathbf{d}_c[j]$ add val to sum^t and $\mathbf{d}_2[i]$ $\mathbf{d}_1[i] \leftarrow sum^i$ for t = 1 to τ do get for i = 1 to cut in parallel do $\mathbf{d}_2[i] \leftarrow \mathbf{d}_2[i] + \mathbf{d}_2^t[i]$

We need private memory only for columns whose nonzeros are assigned to different threads.

- Rows are partitioned statically among threads (we know the assignment) No conflict for row-sum writes
- Use private memory for columns that span multiple threads (size κ_{cut})

External nonzero a_{ij} : there are two or more threads on column *j*.

イロト イポト イヨト イヨト

Conclusion

Parallelization with CRS: Improvement (1)

We need private memory only for columns touching more than one parts (call them \mathcal{N}_{C}).

 for a partition Π, the extra memory per thread is

$$\kappa_{cut}(\Pi) = \sum_{n \in \mathcal{N}_C} 1$$

• The computational overhead is

 $2\tau \kappa_{cut}(\Pi)$

[1.1	0.0	0.0	0.0 2.4 0.0 4.4 5.4	0.0	
	0.0	2.2	0.0	2.4	0.0	
	3.1	0.0	3.3	0.0	0.0	
	0.0	0.0	0.0	4.4	0.0	
	0.0	5.2	0.0	5.4	5.5	
λ= [2			2	1]	

There are three columns in \mathcal{N}_C so $\kappa_{cut} = 3$

イロン イボン イヨン イヨン

3

Parallelization with CRS: Improvement (2)

We need private memory only for columns whose nonzeros are assigned to different threads. But a thread is not concerned with all:

Algorithm 5: Part. based scaling with CRS-SOED

```
 \begin{array}{c} \text{Input: } \mathbf{A}: n \times n \text{ input matrix in CRS format and a partition} \\ \Pi = \{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_r\} \text{ of rows} \\ \text{Output: } \mathbf{d}_r, \mathbf{d}_e: \text{ row and column scaling vectors} \\ \cdots \\ \text{while not converged } \mathbf{do} \\ & & \\ & & \\ \text{init} \\ \text{for } t = 1 \ to \ \tau \text{ in parallel } \mathbf{do} \\ & & \\ & & \\ \int \mathbf{c}_1^{t} \mathbf{f}_1 \in \mathbf{0} \\ \text{put} \\ & & \\ \text{get} \\ \begin{array}{c} \text{for } e \mathbf{a} + external \ column \ i \ connected \ to \ \mathcal{R}_t \ \mathbf{do} \\ & & \\ & & \\ & & \\ & & \\ \text{for } t = 1 \ to \ \tau \ \mathbf{do} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

threads in columns: $\lambda = [2 \ 2 \ 1 \ 2 \ 1]$

$$\kappa_{soed} = 2 + 2 + 2 = 6$$

- Rows are partitioned among threads
 No conflict for row-sum writes
- Use private memory for columns that span multiple processors.

A thread knows the entries it is concerned with (+extra space is κ_{soed}).

 Total computational overhead is 2κ_{soed}.

< < >> < <</p>

Parallelization with CRS: Using atomic operations

Objective: Reduce the number of atomic operations or locks.

Algorithm 7: CRS-SOED-Atom: get

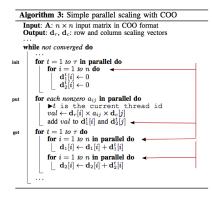
for t = 1 to τ in parallel do for each external column *i* conn. to C_t do (atomic) $\mathbf{d}_2[i] \leftarrow \mathbf{d}_2[i] + \mathbf{d}_2^t[i]$

- Rows are partitioned among threads
 No conflict for row-sum writes
- Use private memory for columns that span multiple threads.
- Writes to *d*₂s, column-sum array, use atomic operations (or locks).

(日) (同) (三) (三)

- The total number of atomic operations/locks is κ_{soed} .
- We can reduce the total number of atomic operations/locks to $\kappa_{soed} \kappa_{cut} = \kappa_{conn}$ with an additional synchronization.

Parallelization with COO (assume 1-norm scaling)



- Nonzeros are partitioned among threads
 Conflicts for row and column-sum writes
- Use private memory for columns and rows (each of size *n*, so 2*n* per thread)
- Total computational overhead is $4\tau n$.
- The nonzero partitioning is determined dynamically at run time by OpenMP scheduling policy.

Image: A math a math

Improvements similar to CRS and an implementation using locks and/or atomic operations are possible.

< A >

Experiments: Setup

- Dual quad-core Intel Xeon (Bloomfield)
 - 48GB memory
 - 32KB L1, 256KB L2 caches per core
 - 8MB L3 cache per socket
- Dual quad-core AMD Opteron (Shanghai)
 - 32GB memory
 - 64KB L1, 512KB L2 caches per core
 - 6MB L3 cache per socket
- Algorithms are implemented in C and OpenMP
- icc 12.0 and 11.1 with -O3 optimization flag

Shared-memory parallelization

Conclusion

Experiments: Matrices

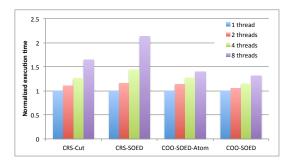
Properties of the matrices used in the experiments.

Matrix	n	nnz	Avg. deg
trans5	116,835	749,800	6.42
NotreDame	325,729	929,849	2.85
rajat21	411,676	1,876,011	4.56
Hamrle3	1,447,360	5,514,242	3.81
Chebyshev4	68,121	5,377,761	78.94
pre2	659,033	5,834,044	8.85
rajat30	643,994	6,175,244	9.59
Stanford_Berk.	683,446	7,583,376	11.10
torso1	116,158	8,516,500	73.32
atmosmodd	1,270,432	8,814,880	6.94
atmosmodl	1,489,752	10,319,760	6.93
cage14	1,505,785	27,130,349	18.02

Shared-memory parallelization

Conclusion

Experiments: Effects of minimized metrics



The average execution time without cut minimization but with perfect near perfect load balance divided by the execution time with cut minimization (using PaToH).

Image: Image:

- ∢ ≣ ▶

- ∢ ≣ →

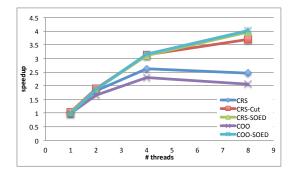
э

The cut-size minimized partitions lead to better performance.

Shared-memory parallelization

Conclusion

Experiments: Speedups on Intel



The speedups are computed by using the execution time of the CRS- and COO-based sequential algorithms, respectively.

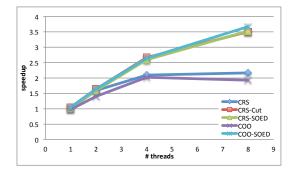
- ∢ ≣ ▶

3

Shared-memory parallelization

Conclusion

Experiments: Speedups on AMD



The speedups are computed by using the execution time of the CRS- and COO-based sequential algorithms, respectively.

- ∢ ≣ →

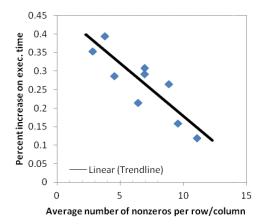
3

Shared-memory parallelization

Conclusion

э

Experiments: Speed-downs from 4 to 8

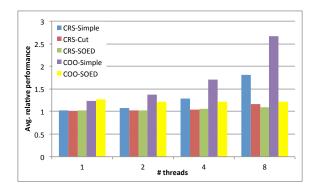


Scatter plot of the matrices for which an increase on the execution time of COO-Simple is observed when the number of threads τ is increased from 4 to 8.

(日) (同) (三) (三)

3

Experiments: Average relative performance on Intel

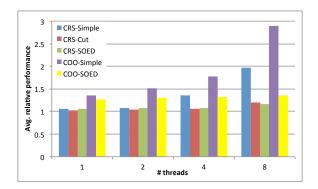


The relative performance: average execution time of an algorithm over the best average time.

(日) (同) (三) (三)

3

Experiments: Average relative performance on AMD



The relative performance: average execution time of an algorithm over the best average time.

Shared-memory parallelization

Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Concluding remarks

- Discussed a matrix scaling algorithm which helps in solving linear systems with direct methods
- A distributed memory, message passing implementation:
 - Communication overhead was expressed to be related to $\kappa_{conn} = \sum (\lambda_j 1)$, where λ_j is the number of processors in which the nonzeros in column j reside
- A shared memory implementation with OpenMP:
 - Memory overhead is $\kappa_{cut} = |\{j:\lambda_j>1\}|$
 - Computational overhead is $\kappa_{soed} = \kappa_{conn} + \kappa_{cut}$
 - Number of atomic operations is κ_{soed} or κ_{conn}
- Not discussed (but can!): the κ s, the overhead functions, are well-known objective functions of the hypergraph partitioning problem. Great tools are at our disposal

Shared-memory parallelization

(日) (同) (三) (三)

Conclusion

Further information

Thank you for your attention.

- A symmetry preserving algorithm for matrix scaling,
 P. A. Knight, D. Ruiz, and B. Uçar, INRIA tech rep RR-7552.
- A parallel matrix scaling algorithm, P. R. Amestoy, I. S. Duff, D. Ruiz, and B. Uçar, VecPar'08.
- On shared memory parallelization of a matrix scaling algorithm, Ü. V. Çatalyürek, K. Kaya, and B. Uçar, ICPP 2012.

http://perso.ens-lyon.fr/bora.ucar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Hypergraphs: Definitions

A hypergraph is a two-tuple $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ where \mathcal{V} is a set of vertices and \mathcal{N} is a set of hyperedges.

A hyperedge $h \in \mathcal{N}$ is a subset of vertices. We call them nets for short.

A weight w(v) is associated with each vertex v.

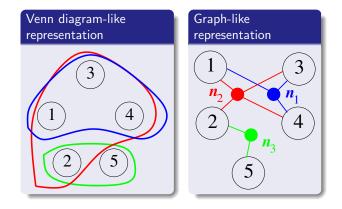
An undirected graph can be seen as a hypergraph where each net contains exactly two vertices.

Shared-memory parallelization

Conclusion

Hypergraphs: Example

$$\mathcal{H} = (\mathcal{V}, \mathcal{N}) \text{ with } \mathcal{V} = \{1, 2, 3, 4, 5\} \ \mathcal{N} = \{n_1, n_2, n_3\} \text{ where } n_1 = \{1, 3, 4\} \quad n_2 = \{1, 2, 3, 4\} \quad n_3 = \{2, 5\}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Hypergraphs: Partitioning

Partition

- $\Pi = \{\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_K\} \text{ is a } K\text{-way vertex partition if }$
 - $\mathcal{V}_k \neq \emptyset$,
 - parts are mutually exclusive: $\mathcal{V}_k \cap \mathcal{V}_\ell = \emptyset$,
 - parts are collectively exhaustive: $\mathcal{V} = \bigcup \mathcal{V}_k$.
 - In Π, a net connects a part if it has at least one vertex in that part, i.e., h connects V_k if h ∩ V_k ≠ Ø.
 - The connectivity $\lambda(h)$ of a net is equal to the number of parts connected by h.

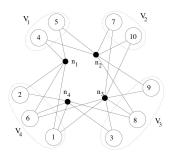
Constraint: balanced part weights $\sum_{v \in \mathcal{V}_k} w(v) \leq (1 + \varepsilon) \frac{\sum_{v \in \mathcal{V}} w(v)}{\kappa}$. Objective: Minimize a function of $\lambda(\cdot)$ s over the cut nets. Hypergraph partitioning problem is NP-complete.

Shared-memory parallelization

Conclusion

Hypergraphs partitioning: Example

 $\begin{array}{l} \mathcal{H} = (\mathcal{V}, \mathcal{N}) \text{ with 10 vertices and 4 nets, partitioned into four parts.} \\ V_1 = \{4, 5\} \quad V_2 = \{7, 10\} \quad V_3 = \{3, 8, 9\} \quad V_4 = \{1, 2, 6\} \end{array}$



Objective functions:

$$\kappa_{cut}(\Pi) = \sum_{n \in \mathcal{N}_{C}} 1$$

$$= 1 + 1 + 1 + 1 = 4$$

$$\kappa_{conn}(\Pi) = \sum_{n \in \mathcal{N}_{C}} \lambda_{n} - 1$$

$$= 1 + 2 + 2 + 1 = 6$$

$$\kappa_{soed}(\Pi) = \sum_{n \in \mathcal{N}_{C}} \lambda_{n}$$

$$= 2 + 3 + 3 + 2$$

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Shared-memory parallelization

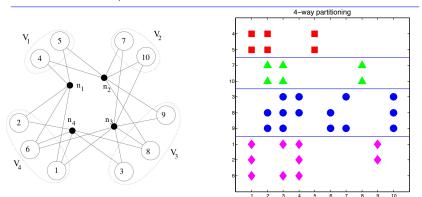
イロン イボン イヨン イヨン

3

Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ where \mathcal{V} corresponds to the rows, and \mathcal{N} corresponds to the columns.

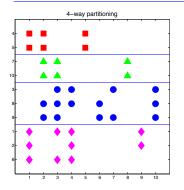


Shared-memory parallelization

Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: $\mathcal{H} = (\mathcal{V}, \mathcal{N})$ where \mathcal{V} corresponds to the rows, and \mathcal{N} corresponds to the columns.



Two objective functions in shared memory:

$$\kappa_{cut}(\Pi) = memory = \sum_{n \in \mathcal{N}_{C}} 1$$
$$= 1 + 1 + 1 + 1 = 4$$
$$\kappa_{soed}(\Pi) = atomic \ ops = \sum_{n \in \mathcal{N}_{C}} \lambda_{n}$$
$$= 2 + 3 + 3 + 2$$

(日) (同) (三) (三)

3