
Outline

A sparse matrix scaling algorithm and its
efficient parallelization

Bora Uçar

CNRS and LIP, ENS Lyon, France

HPCSE2013, 27–30 May, 2013, Soláň, Czech Republic

Joint work with:

Patrick R. Amestoy Kamer Kaya

Ümit V. Çatalyürek Philip A. Knight
Iain S. Duff Daniel Ruiz

1/35 Matrix scaling

Outline

1 Theory

2 Distributed memory parallelization
Experiments

3 Shared-memory parallelization
Experiments

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Matrix scaling

Definition

Given an m × n sparse matrix A, find diagonal matrices D1 > 0 and
D2 > 0 such that all rows and columns of the scaled matrix

Â = D1AD2

have equal norm.

Motivations

Equilibration, balancing, good pivoting strategy, numerical/optimal
properties.

Scaling combined with permutations can avoid many numerical
difficulties [Duff and Pralet ’05] during LU factorization:

Provides (weak) diagonal dominance
Increases robustness of the factorization algorithms
May improve the condition number

2/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

The sequential algorithm (Ruiz’01)

1: Dr
(0) ← Im×m Dc

(0) ← In×n
2: for k = 1, 2, . . . until convergence do

3: D1 ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: D2 ← diag
(√
‖cj (k)‖`

)
j = 1, . . . , n

5: A(k+1) ← D1
(k+1)AD2

(k+1)

6: Dr
(k+1) ← Dr

(k) D1
−1

7: Dc
(k+1) ← Dc

(k) D2
−1

Reminder

ri (k): ith row at it. k

‖x‖∞ = max{|xi |}
‖x‖1 =

∑ |xi |

Notes

`: any vector norm (usually ∞- and 1-norms)
Convergence is achieved when

max
1≤i≤m

{
|1− ‖ri (k)‖`|

}
≤ ε and max

1≤j≤n

{
|1− ‖cj (k)‖`|

}
≤ ε

3/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Features

Some properties (Ruiz’01; Knight, Ruiz, U. ’12)

Preserves symmetry; permutation independent; amenable to
parallelization

With ∞-norm, linear convergence with asymptotic rate of 1/2

With 1-norm, convergence under some structural conditions (as in
some other well-known algorithms [Sinkhorn and Knopp’67])

For symmetric matrices, converges linearly with a rate depending on
the spectrum of the scaled matrix
For unsymmetric ones, converges linearly with a rate depending on
the second largest singular value of the scaled matrix

Sequential codes available in HSL library as MC77 [Ruiz’01]

Parallel codes available—also have been plugged into MUMPS
[Amestoy, Duff, and L’Excellent’00]

4/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Number of iterations

SK-1 and SK-2: Sinkhorn–Knopp algorithm in 1- and 2-norms;
A-1, A-2, and A-∞: proposed algorithm;
error tolerance ε = 1.0e-4.

214 matrices from UFL: real, 1000 ≤ n ≤ 121000, 2n ≤ nnz ≤ 1790000,
without explicit zeros, fully indecomposable, not a matrix of {−1, 0, 1}.

matrix type statistics SK-1 SK-2 A-1 A-2 A-∞

unsymmetric (64)
min 1 47 1 6 2
med 2135 4905 2436 4897 8
max 116205 177053 307672 519249 19

symmetric (104)
min 8 1 3 1 2
med 238 700 32 33 13
max 11870 22302 10307 18925 19

sym pos def (46)
min 73 46 7 3
med 444 1494 14 12
max 11271 14418 17 18

5/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Helps numerically (experiments with MUMPS)

Unsuccessful (usuc.), if MUMPS 4.10 returns a warning or an error message.

unsymmetric matrices general symmetric matrices

strategy usuc. actM
estM

cnd(DAE)
cnd(A)

off-piv. usuc. actM
estM

cnd(DAE)
cnd(A)

off-piv.

no-scaling 7 1.02 —– 308 23 1.09 —– 3454

[0, 3(1), 0] 3 1.02 1.23e-03 67 4 1.04 1.89e-03 3458

[1, 3(1), 0] 3 1.01 1.17e-03 44 3 1.04 1.83e-03 3454

[0, 10(1), 0] 3 1.01 1.54e-03 157 1 1.03 3.94e-03 3462

[1, 10(1), 0] 3 1.01 1.54e-03 160 1 1.03 3.86e-03 3462

[1, 100(1), 0] 3 1.01 1.21e-05 148 0 1.05 4.97e-03 3580

[0, 3(2), 0] 0 1.02 3.78e-02 8 3 1.01 2.26e-02 5504

[1, 3(2), 0] 0 1.01 3.54e-02 9 2 1.02 1.74e-02 5504

[0, 10(2), 0] 0 1.01 3.21e-02 8 1 1.02 1.32e-02 5504

[1, 10(2), 0] 0 1.01 3.39e-02 8 1 1.02 1.36e-02 5504

[1, 100(2), 0] 0 1.01 3.50e-02 8 2 1.01 1.71e-02 5504

Bunch 1 1.03 5.83e-02 5504

SK10 0 1.01 3.52e-02 9

Moral: [Bunch’71] for symmetric matrices, sequential environment; “SK” for

unsymmetric matrices; proposed one for symmetric matrices, parallel

environment.

6/35 Matrix scaling

Outline

1 Theory

2 Distributed memory
parallelization

Experiments

3 Shared-memory parallelization

1: Dr
(0) ← Im×m Dc

(0) ← In×n

2: for k = 1, 2, . . . until convergence do

3: D1 ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: D2 ← diag
(√
‖cj

(k)‖`
)
j = 1, . . . , n

5: A(k+1) ← D1
(k+1)AD2

(k+1)

6: Dr
(k+1) ← Dr

(k) D1
−1

7: Dc
(k+1) ← Dc

(k) D2
−1

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: Data distribution

Data

Â
(k)
, A, DR

(k) DC
(k), D1 and D2.

The scaled matrix Â(k)

Do not store Â
(k)

= DR
(k)ADC

(k) explicitly; access aij
(k) by

dr
(k)(i)× |aij | × dc

(k)(j)

Distribute A,DR , and DC . At every iteration, D1 and D2 (the row
and column norms) are computed afresh.

Matrix A is already distributed (in another context).
Each processor holds a set of entries aij and their indices (i , j).
Partition the diagonal elements of DR and DC among processors.

Problem definition

Given a partition on A, find the best partitions for DR and DC .

7/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: Computations and computational
dependencies

Local computations

Each processor p should use each (i , j , aij) triplet to compute partial
results on d1(i) and d2(j), e.g., in ∞-norm, sets

d1
p(i) = max

{
dR

(k)(i)× |aij | × dC
(k)(j) : aij ∈ p

}

Communication operations

The partial results should be combined/reduced for each dR
(k+1)(i).

The owner of dR(i) should set, in ∞-norm,

dR
(k+1)(i) = dR

(k)(i)× 1√
max{d1

p(i) : 1 ≤ p ≤ P}
.

The owner should send dR
(k+1)(i) back to the contributing processors.

Similar discussion for dC (j).

8/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: ∞-norm algorithm for step k

i

j

1

1

2 2 2

3

44

Row ri

Processors 2 and 4 contribute to
dR

(k+1)(i). Whichever owns dR(i),
receives one unit of data and sends one
unit of data after computing the final
dR

(k+1)(i).

Column cj

Processors 1, 2, and 3 contribute to
dC

(k+1)(j). Whichever owns dC (j),
receives two units of data and sends two
units of data after computing the final
dC

(k+1)(j).

9/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: Communication requirements

Common communication cost metric: the total volume.

Communication for DR

The volume of data a processor receives while reducing a dR
(k+1)(i)

is equal to the volume of data it sends after computing dR
(k+1)(i).

Nonzeros in row ri are split among sr (i) processors

All contribute to dR
(k+1)(i).

Reduction on sr (i) partial results.
If one of those sr (i) processors owns dR(i), sr (i)− 1 partial results
will be send to the owner.
If owned by somebody else, then sr (i) partial results will be send to
the owner.

Communication for DC

Similar observations.

10/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: Partitioning DR and DC

Communication requirements

Nonzeros in row ri are split among sr (i) processors: total volume of
communication is equal to

2×
∑

(sr (i)− 1) = 2× κconn

(half for receiving contributions, half for sending back the results).

The total volume of communication is the same for any dR(i) to
processor assignment as long as that processor has at least one
nonzero from row ri .

Similar observation for the column cj .

Twice the requirements of parallel sparse matrix-vector multiply
operation.

11/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Summary of computational and communication
requirements

Computations (per iteration)

Op. SpMxV 1-norm ∞-norm
add nnz(A) 2× nnz(A) 0

mult nnz(A) 2× nnz(A) + m + n 2× nnz(A) + m + n
comparison 0 0 2× nnz(A)

Communication (per iteration)

The communication operations both in the 1-norm and ∞-norm
algorithms are the same as those in the computations

y← Ax
x← ATy

when the partitions on x and y are equal to the partitions on DR and DC .

12/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization: Our partitioning approach

What we did?

To avoid extra work, use simple strategies.

Ensure that each scaling entry (those of DR or DC) is assigned to a
processor that contributes to that entry

the minimum total volume of communication under a given partition
of matrix elements.

dR(i): assign to the processor p that has an entry aij with j giving
min{|i − j |}; in case of ties to the processor with the smallest rank.

dC (j): assign to the processor p that has an entry aij with i giving
min{|i − j |}; in case of ties to the processor with the smallest rank.

13/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments

Data set

Matrices from University of Florida sparse matrix collection

real, 1000 ≤ n < nnz(A) ≤ 2.0e + 6
A total of 213 matrices out of 1877 (as of Sep.’07).

Number of iterations with convergence criteria of ε = 1.0e − 6

∞-norm: Always converges very fast. Average 11.

1- and 2-norms: Did not converge for 10 and 17 matrices in 5000
iterations, respectively.

Average number of iterations in converged cases are 206 and 257,
Matrices from two groups (GHS indef and Schenk IBMNA) cause
problems (larger number of iterations as well). 60 matrices from
these groups.
Excluding those matrices, the averages are 26 and 29.

14/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization results: Speedup values

Seq. Number of processors
matrix Time (s.) 2 4 8 16
aug3dcqp 8.30 1.7 2.9 4.1 4.5

3.06 1.9 3.8 4.3 3.6
a2nnsnsl 20.71 1.8 3.1 4.0 4.8

7.24 1.5 1.8 2.1 3.3
a0nsdsil 20.92 1.8 3.1 4.0 4.6

7.22 1.5 1.8 2.1 3.2

lhr71 78.25 2.0 3.8 7.3 13.5
18.10 2.0 3.4 6.8 14.0

G3 circuit 455.25 1.8 3.8 7.4 14.0
173.11 1.9 3.3 6.9 14.5

thermal2 573.24 2.0 3.9 7.6 14.4
208.20 1.6 3.4 6.5 13.1

Averages of 10 different
partitions (with PaToH
[Çatalyürek and Aykanat,
Tech.Rep (1999)]),

PC cluster with a Gigabit
Ethernet switch (Intel
Pentium IV 2.6 GHz), PC
cluster with an Infiniband
interconnect (dual AMD 150
Opteron processors)

1000 iterations’ running time
in seconds

Best three and worst three speedup values are shown—speedup tends to
be higher for matrices with larger number of nonzeros.

The partitions are such that they result in reduced total communication

volume, κconn.

15/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization results: Speedup values

SpMxV in a more recent system:

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

BL

In-house PETSc

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

Trilinos

64-nodes; each node has a 2.27GHz
dual quad-core Intel Xeon
(Bloomfield) CPU; 20Gbps DDR
InfiniBand. All MPI (mvapich2).

16/35 Matrix scaling

Outline

1 Theory

2 Distributed memory
parallelization

3 Shared-memory parallelization
Experiments

1: Dr
(0) ← Im×m Dc

(0) ← In×n

2: for k = 1, 2, . . . until convergence do

3: D1 ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: D2 ← diag
(√
‖cj

(k)‖`
)
j = 1, . . . , n

5: A(k+1) ← D1
(k+1)AD2

(k+1)

6: Dr
(k+1) ← Dr

(k) D1
−1

7: Dc
(k+1) ← Dc

(k) D2
−1

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Data structures and the approach (1)

The algorithm will be parallelized using the standard OpenMP techniques
(locks, atomic instructions, and/or private memory).

Point of view of a programmer who adopts loop-level parallelism and
single-program multiple-data paradigm, without too much adaptations.

Goal: Reduce the associated overhead (size of the private memory,
number of locks, number of atomic operations, extra parallel work).

1: Dr
(0) ← Im×m Dc

(0) ← In×n
2: for k = 1, 2, . . . until convergence do

3: D1 ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: D2 ← diag
(√
‖cj (k)‖`

)
j = 1, . . . , n

5: A(k+1) ← D1
(k+1)AD2

(k+1)

6: Dr
(k+1) ← Dr

(k) D1
−1

7: Dc
(k+1) ← Dc

(k) D2
−1

17/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Data structures and the approach (2)

The programmer knows CSR
and COO:

1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5

and also knows how to
perform operations on
matrices stored that way.

Compressed row storage (CRS)

Two integer arrays (ia, jcn) and a
double array A:

ia = [1 2 4 6 7 10]

jcn = [1 2 4 1 3 4 2 4 5]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5]

Coordinate format (COO)

Two integer arrays (irn, jcn) and a
double array A:

irn = [1 2 2 3 3 4 5 5 5]

jcn = [1 2 4 1 3 4 2 4 5]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5]

18/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Shared memory parallelization

We do not store the scaled matrix; access its elements and compute (say
1-norm):

•  We%do%not%store%the%scaled%matrix%at%each%itera>on%but%
recompute%it%at%each%itera>on%

•  We%parallelize%each%itera>on%with%τ%threads%
•  CRSLbased%storage:%par>>on%the%rows%among%processors%
•  COOLbased%storage:%par>>on%the%nonzeros%among%processors%

%

%

%%

Catalyurek%et%al.%On%sharedLmemory%paralleliza>on%of%a%sparse%matrix%scaling%algorithm%%% 8 ICPP'12
09/11/2012

Shared*memory#paralleliza2on#

dr
row scaling

dc - col scaling

aij

d2- col sums

d1
 row sums

We parallelize each iteration with τ threads:

CRS-based storage: partition the rows among the processors.

COO-based storage: partition the nonzeros among the processors.

19/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with CRS (assume 1-norm scaling)

Rows are partitioned among
threads
No conflict for row-sum writes

Use private memory for column
sums (size n)

Total computational overhead
is 2τn.

The rowwise partitioning is
determined dynamically at run
time by OpenMP scheduling
policy.

20/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with CRS: Improvement (1)

Algorithm 4: Part. based scaling with CRS-Cut
Input: A: n× n input matrix in CRS format and a partition

Π = {R1,R2, . . . ,Rτ} of rows
Output: dr , dc: row and column scaling vectors
· · ·
while not converged do

· · ·
init for t = 1 to τ in parallel do

for i = 1 to cut do
dt
2[i] ← 0

put for t = 1 to τ in parallel do
◮t is the current thread id
for each external row i in Rt do

sumt ← 0
for each external nonzero aij in row i do

val ← dr[i]× aij × dc[j]
add val to sumt and dt

2[j]

for each internal nonzero aij in row i do
val ← dr[i]× aij × dc[j]
add val to sumt and d2[j]

d1[i] ← sumt

for each internal row i in Rt do
sumt ← 0
for each nonzero aij in row i do

val ← dr[i]× aij × dc[j]
add val to sumt and d2[j]

d1[i] ← sumt

get for t = 1 to τ do
for i = 1 to cut in parallel do

d2[i] ← d2[i] + dt
2[i]

· · ·

We need private memory only for
columns whose nonzeros are
assigned to different threads.

Rows are partitioned statically
among threads (we know the
assignment)
No conflict for row-sum writes

Use private memory for
columns that span multiple
threads (size κcut)

External nonzero aij : there are two
or more threads on column j .

21/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with CRS: Improvement (1)

We need private memory only for columns touching more than one parts
(call them NC).

for a partition Π, the extra
memory per thread is

κcut(Π) =
∑

n∈NC

1

The computational
overhead is

2τκcut(Π)

•  The%column%net%model:%rows%are%the%ver>ces.%
•  Set%c[n]%=%1%for%each%col%n,%w[v]%is%the%#nnz%on%row%v%%
•  We%only%need%extra%memory%for%external%nets%
(connec>vity%>%1)%

•  For%a%par>>oning%%%%,%%total%extra%memory%is%

•  The%computa>on%overhead%is%%

%%%%%%%%%%%%%%%%%2τ%
%%

Catalyurek%et%al.%On%sharedLmemory%paralleliza>on%of%a%sparse%matrix%scaling%algorithm%%% 15 ICPP'12
09/11/2012

Paralleliza2on:#Sta2c#par22oning#for#CRS#
Introduction

Parallel SpMxV
Hypergraphs and hypergraph partitioning

Summary and concluding remarks

Sparse matrices: Compressed row storage

There are many ways to store a sparse matrix.

We will look at three standard representations which store only the
nonzero entries.

2
66664

1.1 0.0 0.0 0.0 0.0
0.0 2.2 0.0 2.4 0.0
3.1 0.0 3.3 0.0 0.0
0.0 0.0 0.0 4.4 0.0
0.0 5.2 0.0 5.4 5.5

3
77775

Compressed row storage

Two integer arrays (ia, jcn) and a
double array A:

ia = [1 2 4 6 7 10]

jcn = [1 2 4 1 3 4 2 4 5]

A = [1.1 2.2 2.4 3.1 3.3 4.4 5.2 5.4 5.5]

The nonzeros of the ith row are stored at the
ia[i]. . . ia[i+1]-1 positions of jcn and A .

For example the 3rd row: starts at ia[3] = 4 and finishes at

ia[3+1]-1=5 . The column indices are therefore jcn[4,5]= 1 3 and

values are A[4,5]=3.1 3.3 .
5 Parallel sparse matrix vector multiplications

λ= [2 2 1 2 1]

 There are 3 external nets

maxj

n
|1� kc(k)

j k1|
o
 " for a given value of " > 0.

The computational core of the algorithm is the lines 1
and 2. In a proper sequential implementation of this algo-
rithm, these two steps should be carried out as follows:
v d

(k)
r (i) ⇥ aij ⇥ d

(k)
c (j) and d1(i) d1(i) + v

and d2(j) d2(j) + v. In other words, one accesses
a nonzero entry, retrieves the components of the Dr and
Dc (three reads), performs the scalar multiplications, and
then adds the result to the components of D1 and D2 (two
read-and-writes). This high number of memory accesses per
nonzero renders the overall algorithm hard to efficiently
parallelize. Furthermore, our preliminary experiments verify
that handling read/write conflicts during parallelization is
crucial since the scaling algorithm does not self-stabilize in
case of a conflict.

A distributed memory parallelization of this algorithm
using MPI is reported by Amestoy et al. [21]. In that
study, it has been shown that the communication volume
requirements of such a parallel implementation is related to
the communication volume requirements of a sparse matrix-
vector multiply operation.

B. Hypergraphs and hypergraph models for sparse matrices

A hypergraph H =(V, N) is defined as a set of vertices
V and a set of nets (hyperedges) N among those vertices. A
net n 2 N is a subset of vertices, and the vertices in n are
called its pins . The size of a net is the number of its pins,
and the degree of a vertex is equal to the number of nets that
contain it. Graph is a special instance of hypergraph such
that each net has size two. Vertices can be associated with
weights, denoted with w[·], and nets can be associated with
costs, denoted with c[·].

A K-way partition of a hypergraph H is denoted as ⇧=
{V1, V2, . . . , VK} where

• parts are pairwise disjoint, i.e., Vk \ V` = ; for all
1 k < ` K,

• each part Vk is a nonempty subset of V , i.e., Vk ✓ V
and Vk 6= ; for 1 k K,

• union of K parts is equal to V , i.e.,
SK

k=1 Vk =V .
In a partition ⇧, a net that has at least one pin (vertex)

in a part is said to connect that part. The number of parts
connected by a net n, i.e., connectivity, is denoted as �n.
A net n is said to be uncut (internal) if it connects exactly
one part, and cut (external), otherwise (i.e., �n > 1).

Let Wk denote the total weight in Vk (i.e., Wk =P
v2Vk

w[v]) and Wavg denote the weight of each part
when the total vertex weight is equally distributed (i.e.,
Wavg = (

P
v2V w[v])/K). If each part Vk 2 ⇧ satisfies

the balance criterion

Wk Wavg(1 + "), for k = 1, 2, . . . , K (1)

we say that ⇧ is balanced where " represents the maximum
allowed imbalance ratio.

The set of external nets of a partition ⇧ is denoted as
NE . Let �(⇧) denote the cost, i.e., cutsize, of a partition ⇧.
There are various cutsize definitions [22] such as:

�cut(⇧) =
X

n2NE

c[n] , (2)

�conn(⇧) =
X

n2N
c[n](�n � 1) , (3)

�SOED(⇧) =
X

n2NE

c[n]�n . (4)

The cutsize metric given in (2) will be referred to here as
cut-net metric, the one in (3) will be referred as connectivity-
1 metric, and the one in (4) will be referred to as the SOED
metric (widely used in the VLSI domain [23, p.10], [24],
and recently found applications in the scientific computing
domain [25]). Given " and an integer K > 1, the hypergraph
partitioning problem can be defined as the task of finding
a balanced partition ⇧ with K parts such that �(⇧) is
minimized. The hypergraph partitioning problem is NP-
hard [22] with any of the above objective functions. We used
a state-of-the-art partitioning tool PaToH [26] which already
has options to perform hypergraph partitioning in order to
optimize cut-net and connectivity-1 metrics (while of course
achieving balance). We have instrumented PaToH with the
technique proposed by Yamazaki et al. [25] to address the
SOED metric (4).

There are three well-known hypergraph models for sparse
matrices. These are the column-net [3], row-net [3], and fine-
grain models [27]. We describe these models below for a
sparse matrix A of size m⇥ n with Z nonzeros.

In the column-net model, A is represented as a unit-cost
hypergraph HR =(VR, NC) with |VR|=m vertices, |NC |=
n nets, and Z pins. In HR, there exists one vertex vi 2 VR
for each row i. Weight w[vi] of a vertex vi is equal to the
number of nonzeros in row i. There exists one unit-cost net
nj 2 NC for each column j. Net nj connects the vertices
corresponding to the rows that have a nonzero in column j.
That is, vi2nj if and only if aij 6=0. The row-net model is
the column-net model of the transpose of A.

In the fine-grain model, A is represented as a unit-weight
and unit-cost hypergraph HZ = (VZ , NRC) with |VZ | = Z
vertices, |NRC |= m+n nets and 2Z pins. In VZ , there exists
one unit-weight vertex vij for each nonzero aij . In NRC ,
there exist one unit-cost row-net ri for each row i and one
unit-cost column-net cj for each column j. The row-net ri

connects the vertices corresponding to the nonzeros in row i,
and the column-net cj connects the vertices corresponding
to the nonzeros in column j. That is, vij 2ri and vij 2cj if
and only if aij 6=0.

∏

maxj

n
|1� kc(k)

j k1|
o
 " for a given value of " > 0.

The computational core of the algorithm is the lines 1
and 2. In a proper sequential implementation of this algo-
rithm, these two steps should be carried out as follows:
v d

(k)
r (i) ⇥ aij ⇥ d

(k)
c (j) and d1(i) d1(i) + v

and d2(j) d2(j) + v. In other words, one accesses
a nonzero entry, retrieves the components of the Dr and
Dc (three reads), performs the scalar multiplications, and
then adds the result to the components of D1 and D2 (two
read-and-writes). This high number of memory accesses per
nonzero renders the overall algorithm hard to efficiently
parallelize. Furthermore, our preliminary experiments verify
that handling read/write conflicts during parallelization is
crucial since the scaling algorithm does not self-stabilize in
case of a conflict.

A distributed memory parallelization of this algorithm
using MPI is reported by Amestoy et al. [21]. In that
study, it has been shown that the communication volume
requirements of such a parallel implementation is related to
the communication volume requirements of a sparse matrix-
vector multiply operation.

B. Hypergraphs and hypergraph models for sparse matrices

A hypergraph H =(V, N) is defined as a set of vertices
V and a set of nets (hyperedges) N among those vertices. A
net n 2 N is a subset of vertices, and the vertices in n are
called its pins . The size of a net is the number of its pins,
and the degree of a vertex is equal to the number of nets that
contain it. Graph is a special instance of hypergraph such
that each net has size two. Vertices can be associated with
weights, denoted with w[·], and nets can be associated with
costs, denoted with c[·].

A K-way partition of a hypergraph H is denoted as ⇧=
{V1, V2, . . . , VK} where

• parts are pairwise disjoint, i.e., Vk \ V` = ; for all
1 k < ` K,

• each part Vk is a nonempty subset of V , i.e., Vk ✓ V
and Vk 6= ; for 1 k K,

• union of K parts is equal to V , i.e.,
SK

k=1 Vk =V .
In a partition ⇧, a net that has at least one pin (vertex)

in a part is said to connect that part. The number of parts
connected by a net n, i.e., connectivity, is denoted as �n.
A net n is said to be uncut (internal) if it connects exactly
one part, and cut (external), otherwise (i.e., �n > 1).

Let Wk denote the total weight in Vk (i.e., Wk =P
v2Vk

w[v]) and Wavg denote the weight of each part
when the total vertex weight is equally distributed (i.e.,
Wavg = (

P
v2V w[v])/K). If each part Vk 2 ⇧ satisfies

the balance criterion

Wk Wavg(1 + "), for k = 1, 2, . . . , K (1)

we say that ⇧ is balanced where " represents the maximum
allowed imbalance ratio.

The set of external nets of a partition ⇧ is denoted as
NE . Let �(⇧) denote the cost, i.e., cutsize, of a partition ⇧.
There are various cutsize definitions [22] such as:

�cut(⇧) =
X

n2NE

c[n] , (2)

�conn(⇧) =
X

n2N
c[n](�n � 1) , (3)

�SOED(⇧) =
X

n2NE

c[n]�n . (4)

The cutsize metric given in (2) will be referred to here as
cut-net metric, the one in (3) will be referred as connectivity-
1 metric, and the one in (4) will be referred to as the SOED
metric (widely used in the VLSI domain [23, p.10], [24],
and recently found applications in the scientific computing
domain [25]). Given " and an integer K > 1, the hypergraph
partitioning problem can be defined as the task of finding
a balanced partition ⇧ with K parts such that �(⇧) is
minimized. The hypergraph partitioning problem is NP-
hard [22] with any of the above objective functions. We used
a state-of-the-art partitioning tool PaToH [26] which already
has options to perform hypergraph partitioning in order to
optimize cut-net and connectivity-1 metrics (while of course
achieving balance). We have instrumented PaToH with the
technique proposed by Yamazaki et al. [25] to address the
SOED metric (4).

There are three well-known hypergraph models for sparse
matrices. These are the column-net [3], row-net [3], and fine-
grain models [27]. We describe these models below for a
sparse matrix A of size m⇥ n with Z nonzeros.

In the column-net model, A is represented as a unit-cost
hypergraph HR =(VR, NC) with |VR|=m vertices, |NC |=
n nets, and Z pins. In HR, there exists one vertex vi 2 VR
for each row i. Weight w[vi] of a vertex vi is equal to the
number of nonzeros in row i. There exists one unit-cost net
nj 2 NC for each column j. Net nj connects the vertices
corresponding to the rows that have a nonzero in column j.
That is, vi2nj if and only if aij 6=0. The row-net model is
the column-net model of the transpose of A.

In the fine-grain model, A is represented as a unit-weight
and unit-cost hypergraph HZ = (VZ , NRC) with |VZ | = Z
vertices, |NRC |= m+n nets and 2Z pins. In VZ , there exists
one unit-weight vertex vij for each nonzero aij . In NRC ,
there exist one unit-cost row-net ri for each row i and one
unit-cost column-net cj for each column j. The row-net ri

connects the vertices corresponding to the nonzeros in row i,
and the column-net cj connects the vertices corresponding
to the nonzeros in column j. That is, vij 2ri and vij 2cj if
and only if aij 6=0.

There are three columns in NC so
κcut = 3

22/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with CRS: Improvement (2)

We need private memory only for columns whose nonzeros are assigned
to different threads. But a thread is not concerned with all:

Algorithm 5: Part. based scaling with CRS-SOED
Input: A: n× n input matrix in CRS format and a partition

Π = {R1,R2, . . . ,Rτ} of rows
Output: dr , dc: row and column scaling vectors
· · ·
while not converged do

· · ·
init for t = 1 to τ in parallel do

for each external column i connected to Rt do
dt
2[i] ← 0

put · · · ◮As same as CRS-Cut

get for t = 1 to τ do
for each external column i of Rt in parallel do

d2[i] ← d2[i] + dt
2[i]

· · ·

threads in columns: λ = [2 2 1 2 1]

κsoed = 2 + 2 + 2 = 6

Rows are partitioned among
threads
No conflict for row-sum writes

Use private memory for columns
that span multiple processors.

A thread knows the entries it is
concerned with (+extra space
is κsoed).

Total computational overhead
is 2κsoed .

23/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with CRS: Using atomic operations

Objective: Reduce the number of atomic operations or locks.

Rows are partitioned among
threads
No conflict for row-sum writes

Use private memory for columns
that span multiple threads.

Writes to d2s, column-sum
array, use atomic operations (or
locks).

The total number of atomic operations/locks is κsoed .

We can reduce the total number of atomic operations/locks to
κsoed − κcut=κconn with an additional synchronization.

24/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Parallelization with COO (assume 1-norm scaling)

Nonzeros are partitioned among
threads
Conflicts for row and
column-sum writes

Use private memory for
columns and rows (each of size
n, so 2n per thread)

Total computational overhead
is 4τn.

The nonzero partitioning is
determined dynamically at run
time by OpenMP scheduling
policy.

Improvements similar to CRS and an implementation using locks and/or
atomic operations are possible.

25/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Setup

Dual quad-core Intel Xeon (Bloomfield)

48GB memory
32KB L1, 256KB L2 caches per core
8MB L3 cache per socket

Dual quad-core AMD Opteron (Shanghai)

32GB memory
64KB L1, 512KB L2 caches per core
6MB L3 cache per socket

Algorithms are implemented in C and OpenMP

icc 12.0 and 11.1 with -O3 optimization flag

26/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Matrices

Properties of the matrices used in the experiments.

Matrix n nnz Avg. deg
trans5 116,835 749,800 6.42
NotreDame 325,729 929,849 2.85
rajat21 411,676 1,876,011 4.56
Hamrle3 1,447,360 5,514,242 3.81
Chebyshev4 68,121 5,377,761 78.94
pre2 659,033 5,834,044 8.85
rajat30 643,994 6,175,244 9.59
Stanford Berk. 683,446 7,583,376 11.10
torso1 116,158 8,516,500 73.32
atmosmodd 1,270,432 8,814,880 6.94
atmosmodl 1,489,752 10,319,760 6.93
cage14 1,505,785 27,130,349 18.02

27/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Effects of minimized metrics

0	

0.5	

1	

1.5	

2	

2.5	

CRS-‐Cut	 CRS-‐SOED	 COO-‐SOED-‐Atom	 COO-‐SOED	

N
or
m
al
iz
ed

	 e
xe
cu
/o

n	
/m

e	

1	 thread	
2	 threads	
4	 threads	
8	 threads	

The average
execution time without
cut minimization but
with perfect near perfect
load balance

divided by the

execution time with
cut minimization (using
PaToH).

The cut-size minimized partitions lead to better performance.

28/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Speedups on Intel

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

sp
ee
du

p	

#	 threads	

CRS	
CRS-‐Cut	
CRS-‐SOED	
COO	
COO-‐SOED	

The speedups are
computed by using the
execution time of the
CRS- and COO-based
sequential algorithms,
respectively.

29/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Speedups on AMD

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

sp
ee
du

p	

#	 threads	

CRS	
CRS-‐Cut	
CRS-‐SOED	
COO	
COO-‐SOED	

The speedups are
computed by using the
execution time of the
CRS- and COO-based
sequential algorithms,
respectively.

30/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Speed-downs from 4 to 8

Scatter plot of the matrices
for which an increase on the
execution time of
COO-Simple is observed
when the number of threads
τ is increased from 4 to 8.

31/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Average relative performance on Intel

0	

0.5	

1	

1.5	

2	

2.5	

3	

1	 2	 4	 8	

Av
g.
	 re

la
*v

e	
pe

rf
or
m
an

ce
	

#	 threads	

CRS-‐Simple	
CRS-‐Cut	
CRS-‐SOED	
COO-‐Simple	
COO-‐SOED	

The relative performance: average execution time of an algorithm over
the best average time.

32/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Experiments: Average relative performance on AMD

0	

0.5	

1	

1.5	

2	

2.5	

3	

1	 2	 4	 8	

Av
g.
	 re

la
*v

e	
pe

rf
or
m
an

ce
	

#	 threads	

CRS-‐Simple	
CRS-‐Cut	
CRS-‐SOED	
COO-‐Simple	
COO-‐SOED	

The relative performance: average execution time of an algorithm over
the best average time.

33/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Concluding remarks

Discussed a matrix scaling algorithm which helps in solving linear
systems with direct methods

A distributed memory, message passing implementation:

Communication overhead was expressed to be related to
κconn =

∑
(λj − 1), where λj is the number of processors in which

the nonzeros in column j reside

A shared memory implementation with OpenMP:

Memory overhead is κcut = |{j : λj > 1}|
Computational overhead is κsoed = κconn + κcut

Number of atomic operations is κsoed or κconn

Not discussed (but can!): the κs, the overhead functions, are
well-known objective functions of the hypergraph partitioning
problem. Great tools are at our disposal

34/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Further information

Thank you for your attention.

A symmetry preserving algorithm for matrix scaling,
P. A. Knight, D. Ruiz, and B. Uçar, INRIA tech rep RR-7552.

A parallel matrix scaling algorithm,
P. R. Amestoy, I. S. Duff, D. Ruiz, and B. Uçar, VecPar’08.

On shared memory parallelization of a matrix scaling algorithm,
Ü. V. Çatalyürek, K. Kaya, and B. Uçar, ICPP 2012.

http://perso.ens-lyon.fr/bora.ucar

35/35 Matrix scaling

http://perso.ens-lyon.fr/bora.ucar

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs: Definitions

A hypergraph is a two-tuple H = (V,N) where V is a set of vertices and
N is a set of hyperedges.

A hyperedge h ∈ N is a subset of vertices. We call them nets for short.

A weight w(v) is associated with each vertex v .

An undirected graph can be seen as a hypergraph where each net
contains exactly two vertices.

36/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs: Example

H = (V,N) with V = {1, 2, 3, 4, 5} N = {n1, n2, n3} where
n1 = {1, 3, 4} n2 = {1, 2, 3, 4} n3 = {2, 5}

Venn diagram-like
representation

1

2

4

5

3

Graph-like
representation

2

1

5

4

3

n
2

n
1

n
3

37/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs: Partitioning

Partition

Π = {V1,V2, . . . ,VK} is a K -way vertex partition if

Vk 6= ∅,
parts are mutually exclusive: Vk ∩ V` = ∅,
parts are collectively exhaustive: V =

⋃Vk .

In Π, a net connects a part if it has at least one vertex in that part, i.e., h
connects Vk if h ∩ Vk 6= ∅.
The connectivity λ(h) of a net is equal to the number of parts connected
by h.

Constraint: balanced part weights
∑

v∈Vk
w(v) ≤ (1 + ε)

∑
v∈V w(v)

K
.

Objective: Minimize a function of λ(·)s over the cut nets.

Hypergraph partitioning problem is NP-complete.

38/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs partitioning: Example

H = (V,N) with 10 vertices and 4 nets, partitioned into four parts.
V1 = {4, 5} V2 = {7, 10} V3 = {3, 8, 9} V4 = {1, 2, 6}

!!

!"#$%&%'#()#'%*+*+,-+-&

-$* .,--$.*+/+*"01

1 20131

2 40132

4 40132

5 20131

67*8+9$: ;

Objective functions:

κcut(Π) =
∑

n∈NC

1

= 1 + 1 + 1 + 1 = 4

κconn(Π) =
∑

n∈NC

λn − 1

= 1 + 2 + 2 + 1 = 6

κsoed(Π) =
∑

n∈NC

λn

= 2 + 3 + 3 + 2

39/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: H = (V,N) where V corresponds to the
rows, and N corresponds to the columns.

!!

!"#$%&%'#()#'%*+*+,-+-&

-$* .,--$.*+/+*"01

1 20131

2 40132

4 40132

5 20131

67*8+9$: ;

1 2 3 4 5 6 7 8 9 10

4

5

7

10

3

8

9

1

2

6

4−way partitioning

nnz = 36
vol = 13 imbal = [−33.3%, 55.6%]

40/35 Matrix scaling

Theory Distributed memory parallelization Shared-memory parallelization Conclusion

Hypergraphs partitioning: Example

Column net model of a matrix: H = (V,N) where V corresponds to the
rows, and N corresponds to the columns.

1 2 3 4 5 6 7 8 9 10

4

5

7

10

3

8

9

1

2

6

4−way partitioning

nnz = 36
vol = 13 imbal = [−33.3%, 55.6%]

Two objective functions in shared
memory:

κcut(Π) = memory =
∑

n∈NC

1

= 1 + 1 + 1 + 1 = 4

κsoed(Π) = atomic ops =
∑

n∈NC

λn

= 2 + 3 + 3 + 2

41/35 Matrix scaling

	Theory
	Distributed memory parallelization
	Experiments

	Shared-memory parallelization
	Experiments

