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Abstract—We investigate the scalability of the hypergraph-
based sparse matrix partitioning methods with respect to the
increasing sizes of matrices and number of nonzeros. We propose
a method to rowwise partition the matrices that correspond to
the discretization of two-dimensional domains with the five-point
stencil. The proposed method obtains perfect load balance and
achieves very good total communication volume. We investigate
the behaviour of the hypergraph-based rowwise partitioning
method with respect to the proposed method, in an attempt to
understand how scalable the former method is. In another set of
experiments, we work on general sparse matrices under different
scenarios to understand the scalability of various hypergraph-
based one- and two-dimensional matrix partitioning methods.

I. INTRODUCTION

There are a number of hypergraph-based methods for sparse
matrix partitioning methods. The row-net and column-net
based models [1], [2] are used to obtain one-dimensional (1D)
matrix partitions, along the columns or the rows. The fine-
grain [3] method, the checkerboard model [4], the jagged-
like method [5], and Mondriaan methods [6] are used to
obtain two-dimensional (2D) matrix partitions. The principal
objective of all these methods is to efficiently parallelize sparse
matrix-vector multiply (SpMxV) operations by partitioning the
matrix in such a way that the total volume of communication
operations is reduced while achieving computational load
balance among processors. Given a matrix, unless one of the
specific partitioning method is required, one would like to use
the best partitioning resulting from any of those. The notion
of best is not very well defined. Considering the principal
objective stated above, one can choose the partitioning method
that gives the minimum total volume of communication as the
best one. How can we know which method would that be
without partitioning the given matrix with all of the methods?
In [5], Çatalyürek et al. proposed a recipe that suggests a
method among the alternatives by using simple statistical
measures of the nonzero pattern of a given matrix. We try
to go one step beyond and get a better insight into how
communication volume scales with scaling of the input, either
the matrix size, or the number of parts, or both. To achieve
this goal, we examine the models under differing scenarios
for which one can make an educated guess as to how the best
algorithm would behave.

In order to understand the scalability of the hypergraph
partitioning methods we run them on matrices arising from dis-
cretization of two-dimensional domains with five-point stencil,
again with the objective of reducing the total communication
volume in SpMxV operations. Initially, we have thought
that the Cartesian partitioning of the mesh, which partitions
the nodes of the mesh using vertical and horizontal lines
each spanning the entire domain, would give good results.
This corresponds to rowwise partitioning of the associated
Laplacian matrices. We have observed that the hypergraph
models for 1D partitioning yield smaller total communication
volume than the Cartesian partitioning. Therefore, we tried
to find a partitioning method that obtains better results than
the Cartesian partitioning. We were able to find a mesh
partitioning algorithm that obtains perfect load balance and
smaller total volume of communication than the Cartesian
partitioning and the 1D hypergraph models. This algorithm
is described in Section III. Section IV presents both the
comparison of different hypergraph based partitioning methods
under different scaling scenarios as well as the comparison of
the 1D hypergraph models with the proposed mesh partitioning
method.

II. BACKGROUND

In this section, we provide a brief summary of hypergraphs,
hypergraph partitioning, and five-point stencil meshes. We also
remind the reader the equivalence between the hypergraph
partitioning problem and the partitioning of the finite-element
meshes when the objective sought is the reduction of the total
communication volume.

A. Hypergraphs and hypergraph partitioning

A hypergraph H=(V,N ) consists of a set of vertices V and
a set of nets (hyperedges) N . Every net nj ∈ N connects a
subset of vertices in V; these vertices are called the pins of nj .
The size of a net is equal to the number of its pins. Weights
can be associated with vertices and costs can be associated
with nets. For our purposes in this paper each vertex has unit
weight and each net has unique cost.

Given a hypergraph H = (V,N ), Π = {V1, . . . ,VK} is
called a K-way partition of the vertex set V if each part is



non-empty, parts are pairwise disjoint, and the union of parts
gives V . The partitioning constraint is to maintain a balance
criterion on part weights, i.e.,

|Vk ≤
|V|
K

(1 + ε), for k = 1, 2, . . . ,K . (1)

In (1), ε represents the predetermined, maximum allowable
imbalance ratio.

In a partition Π of H, a net that connects at least one
vertex in a part is said to connect that part. Connectivity set
Λj of a net nj is defined as the set of parts connected by nj .
Connectivity λj = |Λj | of a net nj denotes the number of parts
connected by nj . The partitioning objective is to minimize the
cutsize defined over the cut nets. There are various cutsize
definitions. The relevant cutsize definition for our purposes is:

cutsize(Π) =
∑

nj∈N
λj − 1 . (2)

The hypergraph partitioning problem is known to be NP-
hard [7].

B. Five-point stencil meshes and their partitioning
Consider an M×N mesh corresponding to the discretization

of a 2D domain with five-point stencil. Assume that the top
leftmost node is denoted by (1, 1) and the bottom rightmost
node denoted by (M,N). In this mesh, each node (i, j) has
up to four neighbors: one in the north (i − 1, j), one in the
south (i+ 1, j), one in the east (i, j+ 1), and one in the west
(i, j − 1). It is understood that if any of those neighboring
index pair fall outside the range, then the node (i, j) does
not have the corresponding neighbor. These meshes are used
to obtain finite difference approximations to derivatives at the
nodes of the mesh (see, for example, [8, pp.211–212]). In
this context, the approximation at a node (i, j) is improved
using the approximations at the node itself and the neighboring
nodes.

For a node (i, j), let adj(i, j) denote the set of neighboring
nodes. Let madj(i, j) denote the set of nodes adj(i, j) ∪
{(i, j)}. Suppose we have partitioned the nodes of the mesh
among K processors. We use part(i, j) denotes the owner
of the node (i, j). For a node (i, j) define con(i, j) = {p :
(k, `) ∈ madj(i, j) and part(k, `) = p}. Then the node
(i, j) necessitates a communication volume of |con(i, j)| − 1,
where the processor part(i, j) sends messages to all proces-
sors in con(i, j) except itself. Let us associate a hypergraph
H = (V,N ) with the mesh such that each mesh node
(i, j) corresponds to a unique vertex in V , and madj(i, j)
corresponds to a unique net in N . Then partitioning the
nodes of the mesh among the processors in such a way
that each processor gets almost equal number of nodes and
the total communication volume is minimized corresponds
to the partitioning of the hypergraph H, where the balance
criterion (1) is met and the objective (2) is minimized. We
note that one can use graph models to partition the nodes of
the mesh, but the graph edge-cut metric is not an exact measure
of the total communication volume (see [2]).

III. MESHPART: AN ALGORITHM TO PARTITION THE
FIVE-POINT STENCIL MESHES

Although the partitioning of the five-point stencil matrices
are very well studied to test the ordering heuristics for sparse
matrix factorization [9], [10], they are not studied much for
the total volume of communication metric. To the best of
our knowledge, only Bisseling [8, Section 4.8] studies the
partitioning of these meshes. The objective in that work is to
reduce the BSP cost which includes metrics such as maximum
volume of messages sent and received by a processor, and
hence does not addresses our mesh partitioning problem.

We consider partitioning of the nodes of an M ×N , five-
point stencil mesh among K = P × Q processor in such a
way that each processor gets the same number of mesh nodes,
and the total communication volume is reduced. We propose
an algorithm, referred to as MeshPart, for the case M

P = N
Q ,

both ratios are integral, 4 × M×N
P×Q is a square number, and

2×M×N
P×Q ≥ 16. We find the simplest way of implementing the

algorithm as follows: first partition a square mesh of 4×M×N
P×Q

nodes into four partitions (quadrisection), and then extend the
quadrisection to the rest of the mesh by tearing apart and
sliding the partitions.

Even though our MeshPart is not generic to partition all
possible mesh size dimensions and the number of parts, we
believe that it provides very useful insights for achieving good
partitioning of the five-point stencil meshes. Furthermore, as
we will show in the experimental result section (Section IV),
it achieves better results than the existing methods, therefore
it becomes a good base case for evaluating other methods.

As an intuitive alternative to the proposed MeshPart algo-
rithm, consider partitioning the nodes of the mesh using a
Cartesian partitioning, that is partitioning with only vertical
and horizontal lines. In a Cartesian partitioning of an M ×N
mesh into K = P × Q parts, there are P − 1 horizontal
lines, each of length N , and Q − 1 vertical lines, each of
length M , where each part gets (M × N)/K nodes. Let
p(i) = b(i − 1)/P c + 1 and q(j) = b(j − 1)/Qc + 1 for
i = 1, . . . ,M and j = 1, . . . , N . Then the mesh node (i, j) is
assigned to the part (p(i)−1)×Q+q(j). It is easy to establish
that the total volume of communication resulting from P ×Q-
Cartesian partitioning of M×N mesh is given by the formula

vol+(M,N,P,Q) = 2×(P−1)×N+2×(Q−1)×M . (3)

In particular when M = N , P = Q = 2, i.e., in the
quadrisection of a square mesh of size M × M with the
Cartesian partitioning, the volume is 4×M .

A. Quadrisection of a square mesh

Assume that we are going to partition an M × M mesh
into four. We note that due to our assumptions M ≥ 16. The
proposed quadrisection algorithm uses slanted lines to partition
the mesh, instead of vertical and horizontal ones used in the
Cartesian partitioning. At this point, we invite the reader to
have a look at the quadrisection of the 16×16 mesh shown in



Fig. 1 to see what we intend to achieve with the quadrisection
algorithm described below. We are going to partition the mesh
into four in such a way that the four corners of the mesh
will be assigned to different parts as follows: part(1, 1) = 1,
part(1,M) = 2, part(M, 1) = 3 and part(M,M) = 4. This
restriction reveals one of the properties of the quadrisection
algorithm we propose: the symmetric (with respect to diagonal
and anti-diagonal) mesh nodes of part 1’s will be in part 4, and
those of part 2’s will be in part 3. That is, if part(i, j) = 1,
then part(M+1−j,M+1−i) = 4; similarly, if part(i, j) =
2, then part(M + 1 − j,M + 1 − i) = 3. We note that this
holds for the Cartesian quadrisection as well.

The proposed quadrisection algorithm is shown in Algo-
rithm 1. In this algorithm, we first define the nodes of the
parts 1 and 4 that are going to be neighbors of some nodes
of 2 and 3, then define some nodes of 2 and 3 that are going
to be neighbors of some nodes of each other. In our design,
this defines all the boundaries. Then we start partitioning all
the remaining nodes with a subroutine, bfsColor, we have
written. The subroutine bfsColor, given a starting node and
a part number, assigns the starting node to the given part, and
adds all the neighboring nodes, if not assigned to a part yet,
into a queue. Then, bfsColor picks a node from the queue and
repeats the process until the queue is empty.

We now discuss the parts 1 and 2. In the 3rd line, we assign
the node (M/2−M/8,M/2−M/8) to the part 1. The square
block from (1, 1) to this node will be assigned to the same
part. After this decision, we need to find target many nodes to
be assigned to the same processor. We achieve this in the while
loop of the lines 8–14. During this while loop, the rightmost
nodes in some rows are assigned to the part 1, implying that
the nodes in the same mesh row, up until that rightmost node
are going to be assigned to the same part. The nodes that
are symmetric to those nodes are also marked with the same
intention. The nodes in the last such row are all marked to be
assigned to the part 1 (for loop of lines 15–17). Note that the
nodes marked for the part 1 form a symmetric structure along
the main diagonal of the mesh. If target is odd, we cannot
achieve this. We therefore need the assumption that M ×M
is divisible by 128. The square block mentioned above has
9 ×M ×M/64 nodes. Therefore, target is 7 ×M ×M/64.
We will have half of this amount below the diagonal and other
half above the diagonal. As long as M ≥ 12, we can find the
set of nodes found in the lines 8–17 of Algorithm 1. Since we
assume M to be divisible by 8, the smallest such M is 16.
After those nodes of the parts 1 and 4, we then define M/8
nodes along the main diagonal for each of the parts 2 and 3
in lines 18–19.

Figure 1 displays the quadrisection of the 16×16 mesh ob-
tained by the proposed quadrisection algorithm. In the figure,
nodes in different parts are shown with different symbols (and
colors). The total volume of communication (vol), the number
of nodes (i, j) with con(i, j)−1 = 1 (referred to as boundary-
1), and the number of nodes (i, j) with con(i, j) − 1 = 2
(referred to as boundary-2) are also shown. The algorithm
marks the node (6, 6) to be in part 1, which sets target as 28.

Algorithm 1 Quadrisection of an M ×M mesh

1: M1/8 ← M
8 ; M1/2 ← M

2 ; M3/8 ←M1/2 −M1/8

2: M+1 ←M + 1
3: part(M3/8,M3/8)← 1
4: part(M+1 −M3/8,M+1 −M3/8)← 4
5: target ←M ×M/4−M3/8 ×M3/8

6: i←M3/8

7: j ←M3/8

8: while target> 0 do
9: i← i+ 1; j ← j − 1

10: target← target −2× j
11: if target< 0 then
12: j ← j + target/2; target← 0
13: part(i, j)← 1; part(M+1 − i,M+1 − j)← 4
14: part(j, i)← 1; part(M+1 − j,M+1 − i)← 4
15: for k = 1 to j do
16: part(i, k)← 1; part(M+1 − i,M+1 − k)← 4
17: part(k, i)← 1; part(M+1 − k,M+1 − i)← 4
18: for k = M3/8 + 1 to M1/2 do
19: part(k, k)← 2; part(M+1 − k,M+1 − k)← 3
20: bfsColor(1, 1, 1); bfsColor(1, M, 2)
21: bfsColor(M, 1, 3); bfsColor(M, M, 4)
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Fig. 1. Quadrisection of the 16× 16 mesh



Then the nodes (7, 5), (8, 4), (9, 3), and (10, 2) are marked
as the rightmost nodes to be assigned to the part 1 in the
respective rows of the mesh (the transposes of these nodes are
marked to be the bottom most nodes in the respective columns
to be assigned to 4). The nodes (7, 7) and (8, 8) are assigned
to the part 2; whereas the associated nodes (17−7, 17−7) and
(17−8, 17−8) are assigned to the part 3. Then the remaining
nodes are partitioned using the subroutine bfsColor.

Note that the quadrisection of a square mesh of size M×M
by the proposed method results in a total communication
volume of 7

2 ×M +2. Although we could not prove it yet, we
suspect that this might be the best possible. Although there is
an equivalence between the mesh partitioning problem (see
Section II-B) and the NP-complete hypergraph partitioning
problem, the hypergraphs corresponding to the five-point sten-
cil meshes are very special, and hence optimal results might
be found in polynomial time. For example, any two vertices
corresponding to two nodes which are not neighbors in mesh
have at most two nets in common.

B. Extending the quadrisection

We achieve a P ×Q way partitioning of an M ×N mesh
by first applying the quadrisection algorithm to a mesh of
size

√
4×M/P ×N/Q. Then we keep the nodes that belong

to parts 1 and 3 (corresponding to the two parts in the first
column of the mesh) intact and push the others to the right by
an amount of M/P = N/Q. This operation opens up a space
for two parts, each will have M/P ×N/Q nodes, and one of
them (say the upper part) will contain the new nodes at the
mesh boundary i = 1 and the other (say the lower part) will
contain the new nodes at 2 ×M/P . We define the boundary
between these two parts and then assign the new nodes to
parts by again using the subroutine bfsColor. The boundary
between the two newly added parts is defined as follows. Let
n = 2×M/P , and consider the nodes in the line joining the
nodes (n/2+n/8, n/2+n/8+1) and (n+1−n/2−n/8, n+
1− (n/2 + n/8 + 1) + n/2). There are a total of n/4 nodes
(including the two nodes as defined). We mark the first half of
these, i.e., n/8 of them, to be assigned to the upper part, and
the second half to be assigned to the lower part. Then calling
bfsColor on the node (n/2 + n/8 − 1, n/2 + n/8 + 1) with
color “upper”, and on the node (n+ 1− n/2− n/8 + 1, n+
1− (n/2 + n/8 + 1) + n/2) with color “lower” results in the
partitioning of the (2×M/P )× (3×N/Q) mesh into 6 parts.
This is seen in Fig. 2(a). We repeat this process until we obtain
2×Q-way partitioning of the mesh of size (2×M/P )×N .

A similar procedure is run to extend the 2 × Q-way
partitioning into 3×Q partitioning; which is then repeatedly
used to obtain P × Q-way partitioning of the given original
mesh. In this rowwise extension process, the Q parts that have
nodes in the mesh boundary i = 1 are kept intact and the rest
are pushed down by an amount of M/P = N/Q, and Q− 1
boundaries among the Q new coming parts are defined. This
is best seen again in the example of Fig. 2. After the 2×4-way
partitioning of the 16×32 mesh (not displayed), we extend the
mesh to 24× 32 by pushing the nodes in the parts containing

nodes at i = 16 downwards by 8. Then the boundaries between
the nodes are defined, yielding 3 × 4-way partitioning of the
24 × 32 mesh as shown in Fig. 2(b). Then the nodes in the
parts containing nodes at i = 1 are kept intact but others are
pushed downwards by again 8 to open up space for the last
four parts. Again, the boundaries between the new coming
parts are defined, yielding the 16 = 4× 4-way partitioning of
the 32×32 mesh as shown in Fig. 2(c). We note that the four
parts in the four corners of the partition shown in Fig. 2(c)
are the ones that we obtained by the quadrisection algorithm
at the very beginning.

C. Analysis

As stated before, the volume of communication resulting
from the quadrisection of the M×M mesh with the proposed
algorithm is given by the formula

vol(M,M, 2, 2) =
7×M

2
+ 2 . (4)

This can be derived by tracing the algorithm. We have found
that the total volume of communication of the P × Q-way
partitioning of the M ×N mesh with the proposed MeshPart
method behaves according to the formula

vol(M,N,P,Q) = (3× P ×Q− (P +Q)− 1)× n (5)
+ (P − 1)× (3×Q− 5)
+ (Q− 1)× (3× P − 5) ,

where n = M/P = N/Q. Notice that with M = N and
P = Q = 2, this checks with (4). We have observed this
outcome experimentally (see Table 3) but have not proved it
at the time of writing.

The number of nodes (i, j) with |con(i, j)|−1 = 2 is given
by the formula

boundary2(P,Q) = 4× (P − 1)× (Q− 1) . (6)

Note that each of these nodes necessitates a total commu-
nication volume of 2. Hence, with the assumption that the
relation (5) holds, the number of boundary nodes (i, j) with
|con(i, j)| − 1 = 1 (that is the number of nodes which
necessitate a communication volume of 1) is given by the
formula

boundary1(M,N,P,Q) = vol(M,N,P,Q) (7)
− 2× boundary2(P,Q) .

IV. EXPERIMENTAL RESULTS

We ran our tests using PaToH Matlab Matrix-Partitioning
Interface [11], [12] on a dual quad-core 2.26 GHz Intel Xeon
desktop with 24 GB of memory using Matlab v7.8 (R2009a).

In our experiments, we have used five different hypergraph
partitioning methods: two 1D matrix partitioning methods,
namely Rowwise (RW) and Columnwise (CW) partition-
ings [1], [2], and three 2D partitioning methods, namely
Fine-grain (FG) [3], Checkerboard (CH) [4] and Jagged-like
(JL) [5].
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(b) 3× 4-way partitioning of the 24× 32 mesh
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Fig. 2. Steps for 16-way partitioning of the 32× 32 mesh
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Fig. 3. A sample 4-way partitioning of the 128×128 mesh with hypergraph
partitioning.

In the first set of scalability experiments, we evaluated our
new MeshPart algorithm comparing its results to Cartesian
partitioning as well as hypergraph partitioning. In order to
perform a fair comparison, we have only used 1D hypergraph
partitioning which produces partitioning of mesh nodes. One
could also partition the mesh matrices with 2D partitioning
methods (this would be equivalent to partitioning the edges
of the mesh). Note that since these matrices are symmetric,
1D RW and CW partitioning methods are equivalent. Table I
displays the partitioning results for meshes of sizes from
64 × 64 to 2048 × 2048 with varying number of parts K.
In this table, we only display partitionings that would yield
at least 100 vertices in each part. As seen in the results, the
Cartesian partitioning produced results that are on the average
21% worse than those of the proposed MeshPart method.
1D hypergraph partitioning produces better results than the
Cartesian partitioning, but it is, too, worse than MeshPart.
Figure 3 displays a sample 4-way partitioning of 128 × 128
mesh using 1D hypergraph partitioning. As seen in the figure,
the partitioning result looks somewhat in between Cartesian
partitioning result and MeshPart result as one would expect.
An interesting trend is that for a given mesh size, generally,
the relative total communication volume of Cartesian and 1D
hypergraph partitionings first increases with the number of
parts, then decreases. The fact that this last trend holds for
the Cartesian partitioning can be verified by looking at the
total communication volume formulas. That, the same trend
holds for the hypergraph partitioning is observed on meshes
of sizes 960 and 1920 as well with K = 4, 16, 25, 36, 64, 100,
144, 576, 900, 1600, 3600 for the smaller one, and in addition
to those eleven Ks with 256 and 2304 for the larger one.

The second set of experiments is designed to evaluate per-
formance of hypergraph models with the increasing problem



0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

1x2  1x4  1x6  1x8  2x1  4x1  6x1  8x1  2x2  2x3  3x2  3x3 

N
or
m
al
iz
ed

 T
ot
al
 V
ol
um

e 

Scaling Scenario 

(a) RW

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

1x2  1x4  1x6  1x8  2x1  4x1  6x1  8x1  2x2  2x3  3x2  3x3 

N
or
m
al
iz
ed

 T
ot
al
 V
ol
um

e 

Scaling Scenario 

(b) CW

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

1x2  1x4  1x6  1x8  2x1  4x1  6x1  8x1  2x2  2x3  3x2  3x3 

N
or
m
al
iz
ed

 T
ot
al
 V
ol
um

e 

Scaling Scenario 

(c) JL
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(f) All

Fig. 4. Comparison of hypergraph based partitioning methods. For all partitioning instances and scaling scenarios, we first normalized the total communication
volume with respect to the total communication of the original matrix, then present average results over all matrices and number of parts.

size (both matrix size and the number of parts). For this second
set of experiments, we picked six matrices (Table II) from Uni-
versity of Florida Matrix Collection [13], then systematically
replicated its rows and/or columns to create larger problem
instances. The advantage of this approach is that under ideal
conditions (such as if the solution is not strictly restricted
by the balance constraints), we could easily formulate total
communication volume for the larger problem instances, hence
we can discuss how the methods scale with the increasing
problem size. In this section, a scaling scenario R×C means
that each row of the matrix is replicated R times and each
column of the matrix is replicated C times.

We tested with K ∈ {2, 4, 8, 16, 32, 64, 128, 256}. For a
specific K value, K-way partitioning of a test matrix con-
stitutes a partitioning instance. The partitioning instances in
which min{M,N} < 100 × K are discarded, as the parts
would become too small to be meaningful. Averages over

all K values for five hypergraph models, together with an
overall average of all methods, is displayed in Figure 4. For
2D methods (i.e., JL, CH, FG) and for average of all methods
(Fig. 4(f)), the normalized total communication volume is
displayed as a stacked bar to illustrate normalized expand
and fold communications. In these charts, bottom of the bar
represents the total volume of expand communications and top
represents volume of fold communications.

In this experiment, when only columns (rows) of the matrix
is replicated, we expect the total communication volume of
RW (CW) partitioning method to increase linearly with the
number of replication due to the linear increase in the number
of data elements that needs to be communicated. Our results
displayed in Figs. 4(a) and 4(b) (including the last four bars
showing scenarios with replication in both rows and columns)
confirm this expectation. Similarly, when only rows (columns)
of the matrix are replicated, we expect the total communication



TABLE I
COMPARISON OF TOTAL COMMUNICATION VOLUME FOUND BY

MESHPART ALGORITHM WITH RESPECT TO THOSE OF CARTESIAN
PARTITIONING AND 1D HYPERGRAPH PARTITIONING. NUMBERS IN

PARENTHESIS ARE NORMALIZED TOTAL COMMUNICATION VOLUME WITH
RESPECT TO THOSE OF MESHPART.

Mesh Size K MeshPart Cartesian Part 1D Hypergraph
64x64 4 226 256 (1.13) 252 (1.11)
64x64 16 666 768 (1.15) 739 (1.11)

128x128 4 450 512 (1.14) 504 (1.12)
128x128 16 1290 1536 (1.19) 1475 (1.14)
128x128 64 3066 3584 (1.17) 3353 (1.09)
256x256 4 898 1024 (1.14) 1015 (1.13)
256x256 16 2538 3072 (1.21) 2979 (1.17)
256x256 64 5866 7168 (1.22) 6736 (1.15)
256x256 256 13050 15360 (1.18) 13893 (1.06)
512x512 4 1794 2048 (1.14) 2051 (1.14)
512x512 16 5034 6144 (1.22) 6272 (1.25)
512x512 64 11466 14336 (1.25) 13648 (1.19)
512x512 256 24810 30720 (1.24) 28135 (1.13)
512x512 1024 53754 63488 (1.18) 56306 (1.05)

1024x1024 4 3586 4096 (1.14) 4194 (1.17)
1024x1024 16 10026 12288 (1.23) 12251 (1.22)
1024x1024 64 22666 28672 (1.26) 28279 (1.25)
1024x1024 256 48330 61440 (1.27) 58598 (1.21)
1024x1024 1024 101866 126976 (1.25) 114223 (1.12)
2048x2048 4 7170 8192 (1.14) 8463 (1.18)
2048x2048 16 20010 24576 (1.23) 24382 (1.22)
2048x2048 64 45066 57344 (1.27) 56890 (1.26)
2048x2048 256 95370 122880 (1.29) 117996 (1.24)
2048x2048 1024 198090 253952 (1.28) 234477 (1.18)

average (1.21) (1.16)

TABLE II
PROPERTIES OF THE TEST MATRICES.

Number of
name rows columns nonzeros
lp dfl001 6,071 12,230 35,632
shermanACb 18,510 18,510 145,149
mult dcop 01 25,187 25,187 193,276
lp cre b 9,648 77,137 260,785
lp nug30 52,260 379,350 1,567,800
Stanford 281,903 281,903 2,312,497

volume of RW (CW) partitioning method to remain about the
same, because one can achieve this volume simply by assign-
ing replica rows (columns) to the same part with the respective
row (column) of the original matrix. However, since we are
using an heuristic method which does not use concepts like
supernodes [10]—vertices that have identical net sets—, the
solutions can be a little different than the expected outcomes.
It is seen that the normalized total volume for RW increases
up to 1.55 times, whereas for CW it increases up to 1.81 times.
We believe that this discrepancy is due to the shapes of the
matrices we used in our experiments. Three out of six matrices
are rectangular matrices with substantially more columns than
rows. In these cases, column replication increases the number
of vertices of the hypergraph in CW partitioning and makes
the number of nets to number of vertices ratio substantially
smaller. This result suggests that, similar to identical net
elimination techniques, hypergraph partitioning tools should
consider implementing identical vertex elimination (supernode
detection).

As explained in [4], [5], JL and CH methods can be applied
by using rowwise partitioning first followed by columnwise
partitioning, and vice versa. In our experiments, without any
particular reason, we only test the former approach. This
inherently effected the results, especially for CH and FG,
because of the properties of our test matrices. For CH where
second partitioning is a multi-constraint columnwise partition-
ing, column replication makes the multi-constraint partitioning
harder, in comparison to row replication. Hence the different
scaling behavior in CH with row versus column replication.
For FG, this means that FG will find solutions “closer” to
CW in wide rectangular matrices, and when we compare the
trends in Fig. 4(e) with Fig. 4(b) we notice that they are similar
but, as expected, FG scales better. One general and expected
observation is that the 2D partitioning methods scale better
than the 1D partitioning methods. That is, their normalized
total communication volume increases less with the increased
number of replication.

The last figure (Fig. 5) displays the performance of par-
titioning methods with the increasing number of parts. We
expect a more steep increase in the normalized communication
volume with the 1D partitioning methods, where the results
displayed in Figs. 5(a) and 5(b) confirm this expectation.
Unfortunately, the shape of our test matrices also shows
its effects in this experiment. Due to the wide rectangular
matrices, partitioning into larger K values does not scale well
in the RW method in comparison to the CW method. When
compared to FG, the normalized total communication volume
of the JL and CH methods increase much slower with the
increasing number of parts, and hence creating an illusion of
JL and CH scaling better than FG in these results. However, we
need to note that absolute value of the total communication
volume for JL and CH methods are noticeably higher than
those of FG—in some instances even 256-way FG partitioning
produces smaller total communication than 4-way those found
by JL and CH. Nevertheless, these results once more confirms
that 2D methods scale better than 1D partitioning methods.
One final note about this result is that FG shows a similar
scaling pattern with our MeshPart method.

V. CONCLUSION

We investigated the scalability of the hypergraph partition-
ing methods under different scenarios for which an educated
guess as to how the best algorithm would behave can be made.
Experimental results showed that the 2D partitioning methods
scale better than the 1D partitioning methods. The increase in
the total communication volume of the 2D methods is smaller
than the increase in that of the 1D methods for the increasing
problem size and/or number of parts. In both the 1D and
2D methods, the increases in the total communication volume
are smaller than the increase in the number of parts. Results
also suggest that hypergraph partitioning tools should consider
implementing identical net and vertex elimination (supernode
detection) to improve the solution quality.

For another scalability study, we investigated the perfor-
mance of the hypergraph partitioning methods on the matrices
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Fig. 5. Comparison of hypergraph based partitioning methods. For all partitioning instances and scaling scenarios we first normalized the total communication
volume with respective the total communication of the corresponding partitioning for K = 4 then here present average results over all matrices and all scenarios.

arising from the discretization of two-dimensional domains
with the five-point stencil. For such matrices, we proposed a
partitioning method, MeshPart, which uses the domain specific
knowledge to partition the nodes of the mesh (and hence the
rows of the matrices). The proposed MeshPart method assigns
equal number of mesh nodes to processors and yields better
total volume of communication than the hypergraph models.
Although we were not able to prove yet, we think that it
might yield the best possible total communication volume
for four way partitioning of the two-dimensional meshes in
question. We used this method to investigate the scalability of
the 1D hypergraph partitioning methods. Results showed that
1D hypergraph partitioning method scales reasonably well but
the results are still far from optimum—this calls for better
partitioning heuristics.

We think that the current work sheds light into the scala-
bility of the hypergraph models. However, there is still much
to do in order to address the question: which method would
yield the best results for a given matrix and the number of
processors, and what would the resulting total communication
volume be?

A few research directions arise regarding the proposed mesh
partitioning method. First, we are investigating the use of the
proposed mesh partitioning routine for developing fill-reducing
ordering methods for sparse matrices, again corresponding to
the finite element meshes. Second, we are trying to answer
the following questions. How can one partition the meshes
that are built using the 7-point and 9-point stencils? How can
one generalize these methods to the meshes arising from the
discretization of 3D domains? Can we generalize the these
methods to address partitioning of irregular meshes? In other
words, can we infer heuristic approaches for the hypergraph

partitioning problem?
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