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Data, Estimates, Models, and 
Loss Functions
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WLOG, all data are tensors of size 

denote the set of all indicesLet 

Link Function
Model

(low rank)
Estimate

(expected value)Data

Loss function: (sum of elementwise functions)



Sum of Square Error Assumes 
Normally Distributed Data
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Data Model
(low rank)

Typically: Consider data to be 
low-rank plus “white noise”

Equivalently, Gaussian with mean mi

Gaussian Probability 
Density Function (PDF)

Want to maximize likelihood of model:

Equivalent to minimizing negative log likelihood:

Assume σ is constant, so left with SSE!



KL Divergence Assumes 
Poisson Distributed Data
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Data Model
(low rank)

Poisson Probability 
Mass Function (PMF)

Want to maximize likelihood of model:

Equivalent to minimizing negative log likelihood:

Remove constant term and left with KL divergence!

Chi & Kolda, SIMAX 2012



Alternative for Poisson 
Distributed Data: Log-Poisson
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Link Function
Model

(low rank)Expected ValuesData

Contrast with previous slide



Loss Function for Bernoulli Data
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Link Function
Model

(low rank)ProbabilitiesData

Bernoulli Probability Mass Function (PMF)



Alternative Loss Function for 
Bernoulli Data (Logit)
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Bernoulli Probability 
Mass Function (PMF)

Link Function
Model

(low rank)ProbabilitiesData



Loss Function for Bernoulli Data
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Link Function
Model

(low rank)ProbabilitiesData

Bernoulli Probability Mass Function (PMF)



Log-likelihood for Bernoulli
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Bernoulli Probability Mass Function (PMF)



Low-Rank Multiway Model
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Assume 
model has 

CP structure

Defined by d factor matrices: 

Outer product expression: 

Elementwise expression: 

Shorthand: 



Generalized Formulation
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Minimize subject to 

Theorem: The partial derivative of F w.r.t. Ak is given by

where G(k) is the mode-k unfolding of a tensor defined by elementwise by

MTTRKP

Easily extensible to the case of incomplete data, i.e., using a weight tensor. 



Notation: Mode-k Unfolding, 
Khatri-Rao Product, MTTKRP
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mode-k
unfolding

MTTKRP: matricized tensor times Khatri-Rao product

Can exploit special structure in this computation, 
especially if the tensor is sparse.

Khatri-Rao Product

Columnwise Kronecker Product



Generalized Formulation with 
Missing Values
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Minimize subject to 

Theorem: The partial derivative of F w.r.t. Ak is given by

where G(k) is the mode-k unfolding of a tensor defined by elementwise by



Generalized Formulation with 
Missing Values
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Minimize subject to 

Theorem: The partial derivative of F w.r.t. Ak is given by

where G(k) is the mode-k unfolding of a tensor defined by elementwise by



Bernoulli Tensor Factorization 
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Original Equations Adjustments to Prevent Numerical Issues

s.t. and



Preliminary Analysis: Kinship 
Data

 Australian tribe
 104 persons
 4 sections 
 26 kinship terms

 Kinship Terms
 Complex relationships having 

to do with sections, gender, 
and age

 Example: Adiadya – Younger 
person in same section

 Citations
 Denham, PhD Thesis, 1973
 Kemp, Tenenbaum, Griffiths, 

Yamada, Ueda, Learning 
Systems of Concepts with an 
Infinite Relational Model, 
AAAI-06, 2006

 Nickel, Tresp and Kriegel, A 
three-way model for collective 
learning on multi-relational 
data, ICML-11, 2011
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7-Component Results
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Scaling Bernoulli Tensor 
Factorization

 Expectation of dense 
tensors
 Even if data is sparse, 

gradient ‘G’ tensor is dense

 If data is sparse, may be 
dealing with zero inflation

 No clear way to maintain 
sparsity
 Is possible in Gaussian & 

Poisson cases with special 
handling

 Instead, can use variant of 
stochastic gradient descent 
 Sparsify function tensor

 Sparsify gradient tensor
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Bernoulli Equations



Bernoulli Tensor Factorization

 Consider data types in 
formulation of loss function

 General formulation of 
tensor factorization
 Accommodates any loss 

function

 Accounts for missing data

 Can be adapted for 
randomized optimization

 Applied to Bernoulli tensor 
factorization

 Preliminary results on 
“kinship” data
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More Info: Tammy Kolda
tgkolda@sandia.gov
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