

Tamara G. Kolda Sandía Natíonal Laboratories Livermore, CA

SIAM Conf. on Computational Science & Engineering (CSE17)
MS236: Tensor Decompositions: Applications and Efficient Algorithms
March 2, 2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Illustration by Chris Brigman

Data, Estimates, Models, and Loss Functions

WLOG, all data are tensors of size $n_1 \times \cdots \times n_d$

Let
$$\mathcal{I} = \{ \mathbf{i} = (i_1, \dots, i_d) \}$$
 denote the set of all indices

Loss function:
$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} f(x_{\mathbf{i}}, m_{\mathbf{i}})$$
 (sum of elementwise functions)

Sum of Square Error Assumes Normally Distributed Data

Typically: Consider data to be low-rank plus "white noise"

$$x_{\mathbf{i}} \sim m_{\mathbf{i}} + \mathcal{N}(0, \sigma)$$

Equivalently, Gaussian with mean $m_{
m i}$

$$x_{\mathbf{i}} \sim \mathcal{N}(m_{\mathbf{i}}, \sigma)$$

Gaussian Probability
Density Function (PDF)

$$\frac{e^{-(x-m)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$$

Want to maximize likelihood of model:

$$L(\mathbf{M}) = \prod_{\mathbf{i} \in \mathcal{I}} \frac{e^{-(x_{\mathbf{i}} - m_{\mathbf{i}})^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}}$$

Equivalent to minimizing negative log likelihood:

$$-\log(L(\mathbf{M})) = \sum_{\mathbf{i} \in \mathcal{I}} \frac{(x_{\mathbf{i}} - m_{\mathbf{i}})^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)$$

Assume σ is constant, so left with SSE!

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} (x_{\mathbf{i}} - m_{\mathbf{i}})^{2} \sim \sum_{\mathbf{i} \in \mathcal{I}} \frac{1}{2} m_{\mathbf{i}}^{2} - x_{\mathbf{i}} m_{\mathbf{i}}$$
$$f(x_{\mathbf{i}}, m_{\mathbf{i}})$$

KL Divergence Assumes Poisson Distributed Data

$$x_{\mathbf{i}} \sim \text{Poisson}(m_{\mathbf{i}}), \ m_{\mathbf{i}} \geq 0$$

Poisson Probability
$$e^{-m} m^x$$

Mass Function (PMF) $x!$

Want to maximize likelihood of model:

$$L(\mathbf{M}) = \prod_{\mathbf{i} \in \mathcal{I}} \frac{e^{-m_{\mathbf{i}}} m_{\mathbf{i}}^{x_{\mathbf{i}}}}{x_{\mathbf{i}}!}$$

Equivalent to minimizing negative log likelihood:

$$-\log(L(\mathbf{M})) = \sum_{\mathbf{i} \in \mathcal{I}} m_{\mathbf{i}} - x_{\mathbf{i}} \log m_{\mathbf{i}} + \log(x_{\mathbf{i}}!)$$

Remove constant term and left with KL divergence!

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} \underbrace{m_{\mathbf{i}} - x_{\mathbf{i}} \log m_{\mathbf{i}}}_{f(x_{\mathbf{i}}, m_{\mathbf{i}})}$$

Chi & Kolda, SIMAX 2012

Alternative for Poisson Distributed Data: Log-Poisson

$$x_{\mathbf{i}} \sim \text{Poisson}(e^{m_{\mathbf{i}}}), \ m_{\mathbf{i}} \in \mathbb{R}$$

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} e^{m_{\mathbf{i}}} - x_{\mathbf{i}} m_{\mathbf{i}}$$
$$f(x_{\mathbf{i}}, m_{\mathbf{i}})$$

Contrast with previous slide

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} m_{\mathbf{i}} - x_{\mathbf{i}} \log m_{\mathbf{i}}$$

Loss Function for Bernoulli Data

$$p^x(1-p)^{(1-x)}, p \in (0,1)$$

$$x_{\mathbf{i}} \sim \text{Bernoulli}(m_{\mathbf{i}}/(1+m_{\mathbf{i}})), \ m_{\mathbf{i}} \geq 0$$

Alternative Loss Function for Bernoulli Data (Logit)

$$p^x(1-p)^{(1-x)}, p \in (0,1)$$

$$x_{\mathbf{i}} \sim \text{Bernoulli}(e^{m_{\mathbf{i}}}/(1+e^{m_{\mathbf{i}}})), \ m_{\mathbf{i}} \in \mathbb{R}$$

Loss Function for Bernoulli Data

$$p^x(1-p)^{(1-x)}, p \in (0,1)$$

$$x_{\mathbf{i}} \sim \text{Bernoulli}(m_{\mathbf{i}}/(1+m_{\mathbf{i}})), \ m_{\mathbf{i}} \geq 0$$

Log-likelihood for Bernoulli

$$p^x(1-p)^{(1-x)}, p \in (0,1)$$

$$x_{\mathbf{i}} \sim \text{Bernoulli}(m_{\mathbf{i}}/(1+m_{\mathbf{i}})), m_{\mathbf{i}} \geq 0$$

$$L(\mathbf{M}) = \prod_{\mathbf{i} \in \mathcal{I}} \left(\frac{m_{\mathbf{i}}}{1 + m_{\mathbf{i}}} \right)^{x_{\mathbf{i}}} \left(1 - \frac{m_{\mathbf{i}}}{1 + m_{\mathbf{i}}} \right)^{(1 - x_{\mathbf{i}})}$$

$$-\log(L(\mathbf{M})) = \sum_{\mathbf{i} \in \mathcal{I}} -x_{\mathbf{i}} \log \left(\frac{m_{\mathbf{i}}}{1 + m_{\mathbf{i}}} \right) - (1 - x_{\mathbf{i}}) \log \left(1 - \frac{m_{\mathbf{i}}}{1 + m_{\mathbf{i}}} \right)$$

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} \log(m_{\mathbf{i}} + 1) - x_{\mathbf{i}} \log m_{\mathbf{i}}$$
$$f(x_{\mathbf{i}}, m_{\mathbf{i}})$$

Low-Rank Multiway Model

Assume model has CP structure

Defined by
$$d$$
 factor matrices: $\mathbf{A}_k = [\mathbf{a}_{k1} \cdots \mathbf{a}_{kr}] \in \mathbb{R}^{n_k \times r}$

Outer product expression:
$$\mathbf{M} = \sum_{j=1}^{\tau} \mathbf{a}_{1j} \circ \cdots \circ \mathbf{a}_{dj}$$

Elementwise expression:
$$m_{\mathbf{i}} = \sum_{j=1}^{n} \mathbf{a}_{1j}(i_1) \cdots \mathbf{a}_{dj}(i_d)$$

Shorthand:
$$\mathbf{M} = [\![\mathbf{A}_1, \dots, \mathbf{A}_d]\!]$$

Sandia National Laboratories

Generalized Formulation

$$\text{Minimize} \quad F(\mathbf{X},\mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} f(x_{\mathbf{i}},m_{\mathbf{i}}) \quad \text{ subject to } \quad \mathbf{M} = [\![\mathbf{A}_1,\ldots,\mathbf{A}_d]\!]$$

Theorem: The partial derivative of F w.r.t. \mathbf{A}_k is given by

MTTRKP

$$\frac{\partial F}{\partial \mathbf{A}_k} = \mathbf{G}_{(k)} \left(\mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1 \right)$$

where $G_{(k)}$ is the mode-k unfolding of a tensor defined by elementwise by

$$g_{\mathbf{i}} = \frac{\partial f}{\partial m}(x_{\mathbf{i}}, m_{\mathbf{i}})$$

Easily extensible to the case of incomplete data, i.e., using a weight tensor.

Notation: Mode-k Unfolding, Khatri-Rao Product, MTTKRP

Khatri-Rao Product

Columnwise Kronecker Product

MTTKRP: matricized tensor times Khatri-Rao product

$$\mathbf{B} = \mathbf{X}_{(k)}(\mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1)$$

Can exploit special structure in this computation, especially if the tensor is sparse.

Generalized Formulation with Missing Values

$$\text{Minimize} \qquad F(\mathbf{X},\mathbf{M}) = \sum_{\mathbf{i} \in \mathcal{I}} f(x_{\mathbf{i}},m_{\mathbf{i}}) \quad \text{ subject to } \quad \mathbf{M} = [\![\mathbf{A}_1,\ldots,\mathbf{A}_d]\!]$$

<u>Theorem</u>: The partial derivative of F w.r.t. \mathbf{A}_k is given by

$$\frac{\partial F}{\partial \mathbf{A}_k} = \mathbf{G}_{(k)} \left(\mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1 \right)$$

where $\mathbf{G}_{(k)}$ is the mode-k unfolding of a tensor defined by elementwise by

$$g_{\mathbf{i}} = \frac{\partial f}{\partial m}(x_{\mathbf{i}}, m_{\mathbf{i}})$$

Generalized Formulation with Missing Values

$$\text{Minimize} \quad F(\mathbf{X},\mathbf{M}) = \sum_{\mathbf{i} \in \Omega \subset \mathcal{I}} f(x_{\mathbf{i}},m_{\mathbf{i}}) \quad \text{subject to} \qquad \mathbf{M} = [\![\mathbf{A}_1,\ldots,\mathbf{A}_d]\!]$$

<u>Theorem</u>: The partial derivative of F w.r.t. \mathbf{A}_k is given by

$$\frac{\partial F}{\partial \mathbf{A}_k} = \mathbf{G}_{(k)} \left(\mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1 \right)$$

where $\mathbf{G}_{(k)}$ is the mode-k unfolding of a tensor defined by elementwise by

$$g_{\mathbf{i}} = \begin{cases} \frac{\partial f}{\partial m}(x_{\mathbf{i}}, m_{\mathbf{i}}) & \text{if } \mathbf{i} \in \Omega \\ 0 & \text{if } \mathbf{i} \notin \Omega \end{cases}$$

Bernoulli Tensor Factorization

Original Equations

$$f(x,m) = \log(m+1) - x \log m$$

$$\frac{\partial f}{\partial m}(x,m) = 1/(m+1) - x/m$$

Adjustments to Prevent Numerical Issues

$$f(x,m) = \log(m+1) - x\log(m+\xi)$$

$$\frac{\partial f}{\partial m}(x,m) = 1/(m+1) - x/(m+\xi)$$

$$\xi = 10^{-7}$$

$$\min_{\mathbf{A}^{(1)},\dots,\mathbf{A}^{(d)}} F(\mathbf{X},\mathbf{M}) = \sum_{\mathbf{i}\in\mathcal{I}} f(x_{\mathbf{i}},m_{\mathbf{i}})$$

s.t.
$$\mathbf{M} = [\![\mathbf{A}_1, \dots, \mathbf{A}_d]\!]$$
 and $\mathbf{A}_k \geq 0 \ \forall k \in [d]$

$$\frac{\partial F}{\partial \mathbf{A}_k} = \mathbf{G}_{(k)} \left(\mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1 \right) \qquad g_{\mathbf{i}} = \frac{\partial f}{\partial m} (x_{\mathbf{i}}, m_{\mathbf{i}})$$

Preliminary Analysis: Kinship Data

- Australian tribe
- 104 persons
- 4 sections
- 26 kinship terms

Kinship Terms

- Complex relationships having to do with sections, gender, and age
- Example: Adiadya Younger person in same section

Citations

- Denham, PhD Thesis, 1973
- Kemp, Tenenbaum, Griffiths, Yamada, Ueda, Learning Systems of Concepts with an Infinite Relational Model, AAAI-06, 2006
- Nickel, Tresp and Kriegel, A three-way model for collective learning on multi-relational data, ICML-11, 2011

7-Component Results

Scaling Bernoulli Tensor Factorization

- Expectation of dense tensors
 - Even if data is sparse, gradient 'G' tensor is dense
 - If data is sparse, may be dealing with zero inflation
- No clear way to maintain sparsity
 - Is possible in Gaussian & Poisson cases with special handling
- Instead, can use variant of stochastic gradient descent
 - Sparsify function tensor
 - Sparsify gradient tensor

Bernoulli Equations

$$f(x,m) = \log(m+1) - x \log m$$
$$\frac{\partial f}{\partial m}(x,m) = 1/(m+1) - x/m$$

$$F(\mathbf{X}, \mathbf{M}) = \sum_{\mathbf{i} \in \Omega \subseteq \mathcal{I}} f(x_{\mathbf{i}}, m_{\mathbf{i}})$$

$$g_{\mathbf{i}} = \begin{cases} \frac{\partial f}{\partial m}(x_{\mathbf{i}}, m_{\mathbf{i}}) & \text{if } \mathbf{i} \in \Omega \\ 0 & \text{if } \mathbf{i} \notin \Omega \end{cases}$$

Sandia National Laboratories

Bernoulli Tensor Factorization

- Consider data types in formulation of loss function
- General formulation of tensor factorization
 - Accommodates any loss function
 - Accounts for missing data
 - Can be adapted for randomized optimization
- Applied to Bernoulli tensor factorization
- Preliminary results on "kinship" data

More Info: Tammy Kolda tgkolda@sandia.gov