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Outline

APPLICATION 1: water suppression in Magnetic Resonance

spectroscopic imaging (MRSI)

� Method Æ Löwner based tensor approach applied to MRSI

APPLICATION 2: Tissue type differentiation of gliomas

� Method 1Æ Non-negative (N) CPD applied to MRSI

� Method 2Æ NCPD applied to multi-parametric MRI 
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APPLICATION 1: water suppression in MRSI

𝑆 𝑡 = ෍
𝑟=1

𝑅

𝑎𝑟𝑒𝑗𝜙𝑟𝑒(−𝑑𝑟+𝑗2𝜋𝑓𝑟) + 𝜂(𝑡)

Time domain Model𝑆 𝑓 = ෍
𝑟=1

𝑅
𝑎𝑟𝑒𝑗𝜙𝑟/2𝜋

𝑑𝑟 + 𝑗2𝜋(𝑓 − 𝑓𝑟)
+ 𝜂(𝑓)

Frequency domain Model

HSVD based water suppression

𝑆 = 𝑊𝐻𝑇

Spectra from 
Voxels

Spectra of sources

Source abundancies 
in the grid

3Aim: Suppress the large water peak from all the voxels



Löwner based water suppression- Löwner matrix

• For a function 𝑆(𝑡) evaluated at 𝑇 = 𝑡1, 𝑡2, … . , 𝑡𝑁 . 
Partition T into two disjoint point sets 𝑋 = 𝑥1, 𝑥2, … . , 𝑥𝐼
and 𝑦 = 𝑦1, 𝑦2, … . , 𝑦𝐽 , then Löwner matrix is given by:

• A Löwner matrix constructed by a rational function of 
degree-R will have a rank-R.

• The BSS problem 𝑆 = 𝑊𝐻𝑇 can be formulated using 
Löwner matrix/tensor*.

𝐿 =

𝑆 𝑥1 − 𝑆 𝑦1
𝑥1 − 𝑦1

⋯
𝑆 𝑥1 − 𝑆 𝑦𝐽

𝑥1 − 𝑦𝐽
⋮ ⋱ ⋮

𝑆 𝑥𝐼 − 𝑆 𝑦1
𝑥𝐼 − 𝑦1

⋯
𝑆 𝑥𝐼 − 𝑆 𝑦𝐽

𝑥𝐼 − 𝑦𝐽

L𝑠 = ෍
𝑟=1

𝑅

𝐿𝑊𝑟 ⊗ ℎ𝑟
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Löwner based water suppression*- CPD

• For each voxel in the MRSI signal construct a Löwner
matrix from the spectra and stack then to form a tensor.

• Each individual component can be well approximated by a 
degree-1 rational function, BSS reduces to CPD.

L𝑠 ≈ ෍
𝑟=1

𝑅

𝑎𝑟 ⊗ 𝑏𝑟 ⊗ ℎ𝑟

5
*H. N. Bharath, O. Debals, D. M. Sima, U. Himmelreich, L. De Lathauwer, S. Van Huffel, “Löwner Based Method for 
Residual Water Suppression in 1H Magnetic Resonance Spectroscopic Imaging ”, Submitted to IEEE transactions on 
biomedical engineering.



Löwner based water suppression – Method

• Estimate the Rational function parameters from mode-1 
and mode-2 factor matrices using Least squares.

• Extend the sources outside the region of interest using the 
estimated parameters.

• Calculate the abundancies hk from extended sources and 
measured spectra using least squares.

• Water component is estimated using only the sources and 
amplitudes that are in the water frequency range (4.2-6 
ppm).

• Finally the water component is suppressed by subtracting 
the estimated signal from the measured signal.
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Löwner based water suppression- Baseline
• Problem: In some voxels, water suppression will result in a 

baseline at the edges of the spectra.

• Model the baseline using polynomial function by adding it 
to the source matrix 𝑊.

𝑊𝑝𝑜𝑙𝑦 =
𝑤11 ⋯ 𝑤1𝑅
⋮ ⋱ ⋮

𝑤𝑁1 ⋯ 𝑤𝑁𝑅

1 ⋯ 𝑓1𝑑
⋮ ⋱ ⋮
1 ⋯ 𝑓𝑁𝑑
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Löwner based water suppression- Results

Box-plot of error on simulated MRSI data Box-plot of difference in 
variance on in-vivo MRSI data
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APPLICATION 2: Tissue type differentiation
of Gliomas

Grade IV Glioblastoma patient:
Edema

Active 
tumor

Necrosis

� Gliomas: 30% of all primary 
brain tumors and 80% of the 
malignant brain tumors.
� WHO grade of malignancy: 
grade I-IV.
� 5-year survival rates:

�Anaplastic astrocytoma
(grade III): 26%
�Glioblastoma multiforme 
(grade IV): 5%

Aim: To identify active tumor and tumor core pathological region
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Tissue type differentiation of Gliomas
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Method 1: NCPD applied to MRSI*

• It reduces the length of spectra without losing vital information required for 
tumor tissue type differentiation.
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canonical polyadic decomposition for tissue type differentiation in gliomas,” IEEE Journal of Biomedical and Health 
Informatics, vol. PP, no. 99, pp. 1–1, 2016



Method 1: NCPD applied to MRSI- XXT tensor

• Construct a 3-D tensor by stacking XXT from each voxel.
• It gives more weight to the peaks and makes the signal 

smoother. 
• MRSI tensor couples the peaks in the spectra because of 

the XXT in the frontal slices.
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Method 1: NCPD applied to MRSI- NCPD

• Non-negative constraint is applied on all 3-modes.
• To maintain symmetry in frontal slices common factor (S) is

used in both mode 1 and mode 2.

𝑇 ≈ [𝑆, 𝑆, 𝐻] = ෍
𝑟=1

𝐾

𝑆 : , 𝑟 о 𝑆 : , 𝑟 о 𝐻(: , 𝑟)

• Non-negative CPD is performed in Tensorlab* toolbox
using structured data fusion.
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Method 1: NCPD applied to MRSI:- NCPD-l1
• Here, we assume that spectra corresponding to each voxel 

belong to a particular tissue type, therefore the factor matrix 
H will be sparse.

• Non-negative CPD with l1 regularization on the abundances 
H.

[𝑆∗, 𝐻∗] = min
𝑆,𝐻

𝑇 − ෍
𝑟=1

𝐾

𝑆 : , 𝑟 о 𝑆 : , 𝑟 о 𝐻(: , 𝑟),

2

2

+𝜆 𝑉𝑒𝑐 𝐻 1

Where λ controls the sparsity in H. 
• Use more sources (higher rank) to accommodate for

artifacts and variations within tissue types.
• Source Spectra are recovered from least squares:

𝑆 = (𝐻†𝑌𝑇)𝑇

𝐻† is the pseudo inverse of H obtained from Non-negative
CPD.
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Method 1: NCPD applied to MRSI- Results
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Method 1: NCPD applied to MRSI- Results
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Method 2: NCPD applied to multiparametric MRI*
Conventional MRI PWI

DWI MRSI
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decomposition for tissue type differentiation using multi-parametric MRI in high-grade gliomas," 2016 24th 
European Signal Processing Conference (EUSIPCO), Budapest, 2016, pp. 547-551.



Method 2: NCPD applied to MP-MRI:-XXT tensor
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Method 2: NCPD applied to MP-MRI:- CPD

• To maintain symmetry in frontal slices common factor (S) is
used in both mode-1 and mode-2.

• Non-negative constraint is applied on mode-3, H.
• Also, l1 regularization in applied on the abundances H.

• Solved using structured data fusion method in Tensorlab*.

𝑆∗, 𝐻∗ = arg min
𝑆,𝐻≥0

T − ෍
𝑖=1

𝑅

)𝑆 : , 𝑖 𝑜 𝑆 : , 𝑖 𝑜 𝐻(: , 𝑖

2

2

+ 𝜆 )𝑉𝑒𝑐(𝐻 1
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Method 2: NCPD applied to MP-MRI:- Results
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Method 2: NCPD applied to MP-MRI:- results

Constrained CPD-l1 hNMF
Dice

Tumor
Dice
Core

Tumor source
Correlation

Dice
Tumor

Dice
Core

Tumor source
Correlation

Mean 0.83 0.87 0.95 0.78 0.85 0.81
Standard 
deviation 0.07 0.1 0.05 0.09 0.13 0.19
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